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Introduction

It is increasingly recognized that the tumor microenviron-
ment, which includes cells such as macrophages, dendritic cells, T 
cells, endothelial cells, pericytes, and fibroblasts, as well as extra-
cellular matrix (ECM) components, proteases, and cytokines, 
plays an important role during tumor evolution and metastasis.1,2 
Although these stromal cells are not themselves malignantly 
transformed, they are often induced by tumor cells to promote 
tumorigenesis, and they co-evolve with tumor epithelial cells to 
foster angiogenesis, growth, and invasion.3,4 These microenviron-
mental changes are observed in nearly all tumor types, includ-
ing cancers of the breast, prostate, pancreas, liver, brain, skin, 
and ovary, and contribute to both early and late stages of tumor 
progression. The alterations in the microenvironment are also 
critical in the development of metastases. Indeed, upon arriving 
at a distant metastatic site, tumor cells are exposed to a foreign 
microenvironment very different from their origin and must set 
up a new home conducive to their growth in order to colonize 
successfully and survive.5 Recent evidence suggests that changes 
to the ECM in potential metastatic sites involve recruiting bone 
marrow-derived immune and inflammatory cells even before 
metastatic cells take hold.6-9 Because of their contributions to 

tumorigenesis, microenvironmental cells and the ECM and pro-
teolytic components of tumors have emerged as new therapeutic 
targets for treating primary and metastatic cancer.

The crosstalk between cancer cells and the environment has 
been intensely investigated over the last decade. Secreted proteins 
such as cytokines, chemokines, and growth factors can signal in 
a paracrine or endocrine manner. Recently, tumor-derived exo-
somes, which contain various proteins and RNAs, have also been 
shown to be involved in cell–cell communication.6,10,11 In addi-
tion, tumor cells and tumor-associated macrophages (TAMs) 
release proteases such as matrix metalloproteinases (MMPs) and 
cathepsins, which release bioactive growth factors sequestered 
in the ECM and mediate tumor responsiveness to chemother-
apy.12,13 Many ECM components such as collagen, fibronectin, 
and tenascin are also produced and secreted by tumor cells and 
fibroblasts. Because production of these molecules is itself a regu-
lated process, identifying these regulatory mechanisms has been 
of great interest.

MicroRNAs (miRNAs) are small non-coding RNA molecules 
that negatively regulate gene expression at the post-transcrip-
tional level and have recently been implicated in fine-tuning vari-
ous aspects of tumor development.14,15 (Excellent reviews on the 
biogenesis of miRNAs have appeared elsewhere14,15 and will not 
be discussed further here.) Increasing evidence demonstrates that 
miRNA expression is dysregulated in numerous cancer types, 
and that miRNA expression profiles are capable of classifying 
human tumors, which can be correlated with clinical outcomes 
in cancer patients.16,17 In this article, we describe examples of the 
diverse functions of miRNAs in regulating multiple aspects of 
the complex tumor microenvironment and highlight the role of 
one particular master orchestrator, the miR-29 family.

Results

microRNAs that regulate cancer-associated fibroblasts
Fibroblasts are one of the principal constituents of the tissue 

microenvironment. During normal wound healing, fibroblasts 
change their phenotype to become reactive. Reactive fibroblasts, 
also known as a myofibroblasts, share properties with both fibro-
blasts and smooth muscle cells, and are also found in tumors, 
where they are referred to as cancer-associated fibroblasts (CAFs). 
CAFs differ from normal fibroblasts by their high expression of 
α-smooth muscle actin (SMA) and their pro-tumorigenic proper-
ties.1,18,19 They secrete a repertoire of pro-inflammatory molecules 
including interleukins (e.g., IL-6), chemokines (e.g., CXCL12/
SDF-1α), vascular endothelial, and platelet-derived growth 

*Correspondence to: Zena Werb; Email: zena.werb@ucsf.edu
Submitted: 07/24/2013; Accepted: 08/07/2013
http://dx.doi.org/10.4161/cc.26087

microRNA-mediated regulation  
of the tumor microenvironment

Jonathan Chou1,2, Payam shahi1, and Zena werb1,2,*

1Department of Anatomy; University of California, san Francisco; san Francisco, CA UsA;  
2Biomedical sciences Program; University of California, san Francisco; san Francisco, CA UsA

The tumor microenvironment includes cells such as fibro-
blasts, immune cells, endothelial cells, as well as extracellular 
matrix (eCM), proteases, and cytokines. Together, these com-
ponents participate in a complex crosstalk with neoplastic 
tumor cells that affects growth, angiogenesis, and metastasis. 
MicroRNAs (miRNAs) are small, non-coding RNAs involved in 
post-transcriptional regulation of gene expression and have 
recently emerged as important players involved in regulating 
multiple aspects of cancer biology and the tumor microenvi-
ronment. Differential miRNA expression in both the epithelial 
and stromal compartments of tumors compared with normal 
tissue suggests that miRNAs are important drivers of tumori-
genesis and metastasis. This review article summarizes our 
current understanding of the diverse roles of miRNAs involved 
in tumor microenvironment regulation and underscores the 
importance of miRNAs within multiple cell types that contrib-
ute to the hallmarks of cancer.
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factors (e.g., VEGF and PDGFs), matrix metalloproteinases 
(MMPs), and ECM components (e.g., tenascin C, fibronectin, 
and collagen type I).20 These factors recruit other cell types to the 
primary tumor and to future sites of metastatic colonization5 and 
actively participate in remodeling the surrounding microenviron-
ment to facilitate growth, invasion, and metastasis.

The precise mechanisms by which CAFs are generated are 
poorly understood, but current evidence suggests that they are 
generated locally by inducing normal fibroblasts to take on CAF 
properties via tumor-derived paracrine signals. Interestingly, 
when CAFs are isolated from tumors and cultured in vitro, their 
phenotype is sustainable over multiple passages.18,19 Recently, it 
was shown that miRNAs regulate the CAF phenotype in ovar-
ian cancer.21 MicroRNA expression profiling of primary CAFs 
and adjacent normal fibroblasts isolated from ovarian cancer 
patients, as well as of induced human CAFs generated by co-
culturing normal fibroblasts with tumor cells, has identified 
3 differentially expressed miRNAs (miR-31, miR-214, and 
miR-155). Perturbation of these miRNAs is sufficient to con-
vert normal fibroblasts into induced CAFs that promote ovarian 
cancer growth, invasion, and migration. Conversely, CAFs can 
be retro-converted into “normal” fibroblasts by reverse perturba-
tion. miR-214 targets CCL5 and loss of miR-214 increases CCL5 
production, leading to increased tumor growth and migration, 
which can be blocked by an anti-CCL5 antibody. The exact 
mechanism of CCL5 in ovarian cancer remains unclear, but 
CCL5 can upregulate Mmp9 transcription, promote invasion and 
migration, and maintain an immunosuppressive environment 
by recruiting myeloid-derived suppressor cells (MDSCs) into 
the tumor microenvironment.22-24 In addition, miR-31 has been 
identified as the most downregulated miRNA in endometrial 
cancer CAFs,25 suggesting that this miRNA plays crucial roles 
in fibroblasts of diverse cancer types. miR-31 directly targets the 
homeobox gene SATB2, which is significantly upregulated in 
CAFs and plays a role in chromatin remodeling. Re-expression 
of miR-31 in endometrial CAFs impairs their ability to stimulate 
cell migration and invasion without affecting cell proliferation.

In prostate cancer, miR-15a and miR-16 are downregulated 
in the stroma.26 These tumor-suppressive miRNAs are located in 
a chromosomal region frequently deleted in cancer.27 Restoring 
miR-15a/miR-16 expression in prostate CAFs decelerates tumor 
growth, at least in part by regulating fibroblast growth factor 
(FGF) signaling via Fgf2 and Fgfr1. Other targets of miR-15a/
miR-16 include cell cycle and anti-apoptotic genes (Ccnd1, 
Wnt3A, and Bcl2).27 In addition, prostate tumors mixed with 
CAFs that express miR-15a/miR-16 have decreased blood vessel 
density, suggesting that miRNAs expressed in fibroblasts affect 
endothelial cell recruitment within tumors. Other recently dis-
covered miRNAs within fibroblasts include miR-148, which 
targets 2 WNT family members, WNT1 and WNT10B, that 
stimulate migration in endometrial cancer cell lines.28

Interestingly, perturbation of fibroblast homeostasis by delet-
ing Pten in mammary stromal fibroblasts accelerates the initia-
tion, progression, and malignant transformation of mammary 
epithelial tumors.29 Loss of Pten is associated with extensive 
ECM remodeling, immune infiltration, and angiogenesis.29,30 

Interestingly, deletion of Pten alters the repertoire of miRNAs 
expressed in fibroblasts and results in the downregulation of 
miR-320. Re-expressing miR-320 in Pten-null fibroblasts within 
tumors suppresses tumor proliferation and blood vessel density. 
Mechanistically, miR-320 targets ETS2 (v-ets erythroblastosis 
virus E26 oncogene homolog 2), which is upregulated upon Pten 
loss and induces an oncogenic secretome that promotes tumor 
angiogenesis and invasion. The miR-320 secretome signature dis-
tinguishes normal vs. tumor stroma in human breast cancer and 
correlates with patient outcomes. Taken together, these studies 
illustrate that miRNA dysregulation within CAFs significantly 
affects the tumor microenvironment and cancer progression.

microRNAs that regulate angiogenesis, endothelial cells, 
and the hypoxic response

Tumors must recruit new blood vessels to meet the high meta-
bolic and nutritional demands during tumor growth. In embryo-
genesis, the development of the vasculature involves the birth 
of new endothelial cells and their assembly into tubes (known 
as vasculogenesis), as well as sprouting from pre-existing ves-
sels (known as angiogenesis). During tumor progression, cancer 
cells mainly utilize angiogenesis to sustain delivery of oxygen 
and nutrients and removal of carbon dioxide and other waste. 
Secreted growth factors released by tumor and other microenvi-
ronmental cells, including members of the vascular endothelial 
growth factor (VEGF), platelet-derived growth factor (PDGF), 
and fibroblast growth factor (FGF) families, regulate angio-
genesis. These growth factors bind to the membrane-bound 
receptors tyrosine kinases VEGFR1 (also known as Flt-1) and 
VEGFR2 (also known as Flk-1 or KDR), and transmit signals 
through kinase-dependent signaling cascades, which ultimately 
result in gene expression changes that affect the growth, migra-
tion, morphology, and function of endothelial cells to form new 
blood vessels.

Recently, miRNAs have been shown to regulate tumor angio-
genesis. One such miRNA is miR-126, which is silenced in many 
human cancers. Loss of miR-126 is associated with reduced 
metastasis-free survival in recurrent breast cancer patients.31 
Mechanistically, miR-126 regulates endothelial cell recruitment 
to metastatic breast cancer cells by inhibiting several previ-
ously uncharacterized pro-angiogenic genes including IGFBP2, 
PITPNC1, and MERTK.32 In addition, miR-126 levels inversely 
correlate with microvessel density in lung cancer,33 suggesting 
that miR-126 is an important regulator of angiogenesis in mul-
tiple tumor types. Interestingly, during normal zebrafish devel-
opment, miR-126 also regulates vascular integrity by repressing 
Sprouty-related protein 1 (SPRED1) and phosphoinositol-3 
kinase regulatory subunit 2 (PIK2R2), 2 proteins that negatively 
regulate VEGF signaling, which increases PI3 kinase and MAP 
kinase signaling.34 Knockdown of miR-126 results in loss of vas-
cular integrity and hemorrhage during embryonic development, 
indicating that miR-126 is critical in promoting VEGF signaling 
to maintain endothelial cell survival. Therefore, the cellular and 
developmental context dictates the role miR-126 plays in pro-
moting angiogenesis during normal endothelial cell development 
and inhibiting angiogenesis in breast cancer cells, which will be 
important in designing anti-angiogenesis therapies.



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

3264 Cell Cycle volume 12 issue 20

Another miRNA involved in angiogenesis is miR-9, which is 
enriched in MYC-amplified human tumors. Interestingly, miR-9 
not only promotes epithelial-to-mesenchymal transition (EMT) 
by repressing E-cadherin, priming cells to lose cell adhesive prop-
erties, but also stimulates angiogenesis through activation of 
β-catenin signaling.35 Increased β-catenin signaling upregulates 
VEGF. Overexpression of miR-9 in non-metastatic breast tumor 
cells enables these cells to form lung micrometastases in mice, 
while inhibiting miR-9 in highly malignant cells inhibits metas-
tasis formation.

Upstream of VEGF, hypoxia is a potent inducer of angiogen-
esis through hypoxia-inducible factor 1α (HIF1α). Recently, a 
signature of hypoxia-inducible miRNAs has been identified.36 
Interestingly, many hypoxia-induced microRNAs are also over-
expressed in human cancers,37 suggesting that induction of 
these miRNAs might enhance tumor survival, proliferation, 
and vascularization or alter the response to chemotherapy. For 
example, HIF1α regulates VEGF expression by binding to the 
VEGF promoter in MCF7 breast cancer cells in hypoxic condi-
tions. However, this binding is blocked when miR-20b is pres-
ent, suggesting that HIF1α-mediated induction of VEGF occurs 
in a miR-20b-dependent manner.38 Mechanistically, miR-20b 
regulates HIF1α and VEGF expression by directly binding to 
the 3¢UTR of Hif1a and Vegfa. Conversely, inhibition of miR-
20b increases HIF-1α and VEGF in normoxic tumor cells. 

Interestingly, overexpression of HIF-1α in normoxic tumor cells 
downregulates miR-20b expression, suggesting a feedback mech-
anism to fine-tune the response to hypoxia.39

Finally, additional miRNAs involved in endothelial cell biol-
ogy have been identified through deep sequencing and func-
tional screening in model organisms. For example, in zebrafish, 
miR-221 is specifically induced in endothelial cells at the time of 
sprouting and regulates endothelial cell tip behavior by repressing 
cyclin-dependent kinase inhibitor 1b (cdkn1b) and phosphoinosit-
ide-3-kinase regulatory subunit 1 (pik3r1). These results identify 
miR-221 as an important mediator through which endothelial 
tip cell migration and proliferation are controlled during normal 
angiogenesis.40 Taken together, these studies demonstrate the 
diverse roles miRNAs play in regulating tumor-derived angio-
genic factors like VEGF and multiple signaling pathways within 
endothelial cells, as well as the tumor response to hypoxia.

microRNAs that regulate the inflammatory milieu
Inflammation is a potent contributor to cancer progression, as 

many cancers arise from sites of infection and chronic inflamma-
tion.41 Inflammatory cells, which include cells such as tumor-asso-
ciated macrophages (TAMs), neutrophils, dendritic cells, natural 
killer (NK) cells, B and T cells, have been shown to play both 
pro- and antitumorigenic roles.42,43 In addition, tumor cells have 
co-opted many of the same signaling molecules (e.g., selectins, che-
mokines, and interleukins) for invasion, migration, and metastasis.

Figure 1. microRNA-mediated control of the tumor microenvironment. The tumor microenvironment is shown, which is composed of cancer-associated 
fibroblasts (CAFs), extracellular matrix (eCM), endothelial cells, and immune cells (such as T cells and macrophages). Cytokines produced by various cell 
types recruit other bone-marrow derived and immune cells into the vicinity. Matrix metalloproteinases (MMPs) cleave the eCM and also release seques-
tered growth factors. Many cell types within the microenvironment and biological processes that contribute to tumor growth (such as angiogenesis, the 
hypoxic response, and collagen remodeling) are subject to miRNA regulation.
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Many of these cells are derived from the bone marrow, par-
ticularly the myeloid lineage, and are recruited by cancer cells 
to enhance their survival, growth, invasion, and dissemination.44 
One of the major inflammatory cell types within the tumor 
microenvironment is the TAM, which has been implicated in 
pro- and antitumorigenic roles depending on whether they are 
the classical M1 or the alternative M2 subtype.43,45 Recently, sev-
eral miRNAs have been implicated in modulating macrophage 
activation and function in response to Toll-like receptors (TLRs), 
tumor necrosis factor (TNF), and various interleukin stimuli 
(e.g., IL4, IL10).46 For example, in response to TLR ligands, 
NFκB signaling promotes expression of miR-155.47 To enhance 
the classical pro-inflammatory response, miR-155 targets sup-
pressor of cytokine signaling (SOCS) 1, B-cell lymphoma-6 pro-
tein (BCL6), and the IL-13 receptor, which promote alternative 
activation.48,49 In addition, macrophages that express miR-125b 

are highly responsive to interferon (IFN) γ and potently activate 
T cell responses. miR-125b binds to the Tnfa 3′ UTR, inhibits 
TNFα production, and sustains a M1 phenotype by targeting 
IFN regulatory factor 4 (IRF4).50 On the other hand, miR-146 
directly inhibits adaptors TRAF6 and IRAK1 in the NFκB 
pathway, thus attenuating pro-inflammatory cytokine produc-
tion and promoting alternative M2 activation. TAMs also pro-
duce miRNA-containing microvesicles that fuse with acceptor 
cells. In vitro studies demonstrate that the invasive properties of 
breast cancer cells can be modulated by microvesicle-mediated 
transfer of miR-223, which downregulates MEF2C expression in 
cancer cells, leading to increased β-catenin nuclear localization 
and, ultimately, cell invasion.51 These studies point to miRNAs 
playing a critical role in regulating M1 and M2 polarization, 
and hence macrophage responses that promote or inhibit tumor 
growth.

Table 1. examples of microRNAs that regulate the tumor microenvironment

miRNA Targets Tumor microenvironment function

let-7a/let-7g COL1A2, iTGA3, RAs, GAB2, FN1, - Cell adhesion and eCM

miR-9 CDH1, MMP14, ResT, CoResT
- Angiogenesis, endothelial cells, and hypoxia

- MMPs
- Cell adhesion and eCM

miR-15a/16 FGF2, FGFR1, CCND1, wNT3a, BCL2 - Regulation of CAFs

miR-17 FN1, FNDC3A, iL8 - Cell adhesion and eCM

miR-20b HiF1α, veGF - Angiogenesis, endothelial cells, and hypoxia

miR-29b/miR-29c

ANGPTL4, COL1A1, other collagens 
(including type ii, iv, v, vii, viii), 

eLN, FBN1, iGF1, iTGA6, iTGB1, LOX, 
LOXL2, LOXL4, MMP2, MMP9, PDGFA, 

PDGFB, PDGFC, PDGFRA, PDGFRB

- Regulation of CAFs (?)
- Angiogenesis, endothelial cells, and hypoxia

- MMPs
- Cell adhesion and eCM

miR-30 iTGB3 - Cell adhesion and eCM

miR-31 sATB2, RhoA, iTGA5, e-selectin
- Regulation of CAFs

- Cell adhesion and eCM

miR-34a CCL22, siRT1 - inflammation

miR-101 MKP-1, MYCN - inflammation

miR-125b TNFα, iRF4, MMP13
- inflammation

- MMPs

miR-126/miR-126* iGFBP2, PiTPNC1, MeRTK, sPReD1 - Angiogenesis, endothelial cells, and hypoxia

miR-132/miR-212 MMP9 - MMPs

miR-146 TRAF6, iRAK1 - inflammation

miR-148 wNT1, wNT10B - Regulation of CAFs

miR-155
sOCs1, BCL6, sHiP-1, c-Maf, 

PU.1, iL13R, TP53iNP1
- Regulation of CAFs

- inflammation

miR-214 CCL5, iTGA3
- Regulation of CAFs

- Cell adhesion and eCM

miR-221 CDKN1B, PiK3R1, iCAM-1
- Angiogenesis, endothelial cells, and hypoxia

- Cell adhesion and eCM

miR-320 eTs2, MMP9, eMiLiN2
- Regulation of CAFs

- Angiogenesis, endothelial cells, and hypoxia
- MMPs

miR-335 sOX4, TNC - Cell adhesion and eCM
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miRNAs also control the development and function of NK 
cells, which are involved in tumor surveillance and mediate cyto-
toxic killing of tumor cells. For example, mice with a targeted 
deletion of miR-150 have an impaired, cell lineage-intrinsic defect 
in their ability to generate mature NK cells,52 while miR-155 over-
expression in transgenic mice causes an expansion and constitu-
tive activation of NK cells, resulting in more potent antitumor 
activity in vitro and improved survival of lymphoma-bearing mice 
in vivo.53 This is partly explained by the diminished expression of 
the inositol phosphatase SHIP1, which is regulated by miR-155. 
Other profiling studies in NK/T-cell lymphomas demonstrate 
several downregulated miRNAs, including miR-101 and miR-
26a/b, which function in part  by regulating NK cell growth.54

Other immune cells present within the tumor microenviron-
ment include monocytes, which are part of the innate immune 
system that responds quickly to inflammatory signals and replen-
ishes the resident macrophage and dendritic cell populations in 
tissues. In addition to promoting a role in angiogenesis, miR-126 
and its complementary counterpart miR-126* also inhibit breast 
cancer metastasis by repressing recruitment of mesenchymal stem 
cells (identified by Sca1+CD44+CD45-Lin- cells) and inflam-
matory monocytes (identified by CD11+Gr1+CD115+ cells) in 
xenografted tumors.55 miR-126 and miR-126* directly and inde-
pendently inhibit Sdf-1a expression through 2 unique binding 
sites in the Sdf-1a 3′ UTR, resulting in the suppression of mes-
enchymal stem cell migration, which indirectly inhibits expres-
sion of chemokine C–C motif ligand 2 (Ccl2). Interestingly, 
expression of miR-126 and miR-126* does not affect the F4/80+ 
macrophage population in tumors. This pair of miRNAs is 
downregulated in cancer by increased promoter methylation of 
the host gene, Egfl7, thus illustrating how changes in gene meth-
ylation within tumor cells can affect the microenvironment via a 
miRNA-mediated mechanism.

Finally, T cells, which include Th1, Th2, and Th17 as well as 
T regulatory cells (Tregs), have also been shown to be pro- and 
antitumor, depending on the T cell subtype and polarization. For 
example, Th2 cells promote invasion and metastasis through an 
IL-4-mediated mechanism,56 while Tregs promote immune tol-
erance, thus allowing cancer cells to evade the immune system. 
Tregs also supply a source of RANKL, which initiates down-
stream NFκB signaling, to promote metastasis.57 In hepatocellu-
lar carcinoma, the pro-inflammatory microenvironment caused 
by hepatitis infection induces transforming growth factor-β 
(TGFβ), which suppresses expression of miR-34a.58 Decreased 
miR-34a increases one of its targets, CCL22, thereby enhancing 
the recruitment of immune-suppressive Tregs into the microenvi-
ronment. This study points to miR-34a as a critical downstream 
target of TGFβ that influences immune cell recruitment, and 
suggests that increasing miR-34a expression, perhaps by promot-
ing known inducers such as p53,59 will suppress the influx of 
Tregs and other CCL2-mediated microenvironmental changes.

microRNAs that regulate matrix metalloproteinases
Matrix metalloproteinases (MMPs) are a family of zinc-

dependent enzymes that are involved in ECM degradation, the 
generation of novel ECM fragments with pro-tumor activities, 
the conversion of growth factors from inactive to active forms, 

and the release of growth factors sequestered within the ECM. 
Moreover, MMPs have been shown to be involved in metastatic 
niche formation and orchestrating the inflammatory response 
in cancer. In addition to their proteolytic functions, recent evi-
dence suggests that MMPs also have important non-proteolytic 
functions that affect processes such as cell migration.60 MMP 
activity is regulated at various levels, including gene expression, 
compartmentalization, conversion from its inactive zymogen to 
its active form, and by interactions with specific inhibitors such 
as tissue inhibitors of metalloproteinases (TIMPs).60 A number of 
miRNAs have been implicated in the regulation of MMPs. For 
example, miR-320 in fibroblasts inhibits Mmp9 through 2 mecha-
nisms involving the direct interaction with the Mmp9 3′ UTR 
and indirect regulation of Ets2.30 Other miRNAs, such as miR-
125b and miR-9, suppress cancer cell proliferation and invasion of 
by targeting MMP13 and MMP14, respectively.61,62 In addition, 
the miR-212/miR-132 family regulates the outgrowth of mam-
mary ducts during normal development by directly targeting 
Mmp9. Interestingly, transplantation experiments demonstrated 
that miR-212/miR-132 is required in the stromal and not the 
epithelial compartment. Genetic deletion of miR-212/miR-132 
in mice alters collagen deposition and leads to hyperactivation of 
TGFβ signaling.63 Recent reports have suggested that miR-132 is 
downregulated in prostate cancer, breast ductal carcinoma in situ, 
and pancreatic cancer, suggesting that miR-132 and miR-212 are 
important in multiple cancer types,64-66 though the exact mecha-
nism of action in these cancers remains to be investigated.

microRNAs that regulate cell adhesion, integrins, and com-
ponents of the ECM

In addition to regulating proteases, growth factors, and cyto-
kines, miRNAs directly affect ECM composition such as colla-
gen, laminin, and fibronectin, as well as integrins, which cells use 
to interact with the ECM. Numerous collagens, which are fre-
quently overexpressed in breast tumors, provide not only struc-
ture in the mammary gland, but also actively contribute to tumor 
initiation and migration. Indeed, mammographic density, which 
reflects the composition of collagen, fat, and epithelial cells 
within the breast, is strongly associated with breast cancer risk, 
with collagen-dense breasts associated, and with increased risk of 
malignancy.67 Tumor cells exposed to an ECM high in type I col-
lagen form invasive projections in vitro and large, invasive tumors 
when xenografted in mice.68,69 Interestingly, collagen type I is a 
downstream target of let-7a and let-7g,70,71 and a feedback mecha-
nism allows collagen to regulate let-7 expression in pancreatic 
cancer cells as well.72 In addition, the lysyl oxidase (LOX) and 
its family of proteins, which modify collagen cross-linking, are 
also regulated by miRNAs (see below). These enzymes promote 
tumorigenesis and metastasis and are important therapeutic tar-
gets in cancer and fibrotic disorders.73-76

The laminins, which form the basement membrane and are 
breached during tumor progression, are regulated by miRNAs 
such as miR-29c (see below for a complete discussion about 
the miR-29 family).77 Other miRNAs, such as miR-17, target 
fibronectin and the fibronectin type-III domain containing 3A 
(FNDC3A) both in vitro and in transgenic mice. Overexpression 
of miR-17 decreases cell adhesion, migration, and proliferation, 
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and miR-17 transgenic mice show overall growth retardation 
and reduced hematopoietic cell lineages.78 miR-17 abundance 
is reduced in highly invasive breast cancer cell lines and node-
positive breast cancer, as well as in human prostate cancer speci-
mens.79 In breast cancer, miR-17 is anti-metastatic by directly 
repressing IL-8 through its 3′ UTR, which inhibits migration 
and invasion.80 However, whether miR-17 exerts any antitumor 
activity by regulating fibronectin remains to be determined.

miRNA expression profiling has also identified miR-335 as 
one of the most significantly downregulated miRNAs in paren-
tal vs. metastatic-enriched cell lines. miR-335 is lost in breast 
cancers that relapse, and re-expression of miR-335 decreases 
both lung and bone metastasis in a mouse model.31 Interestingly, 
miR-335 not only controls the expression of transcription factors 
involved in progenitor cell development such as SOX4, but also 
tenascin C (TNC), an extracellular matrix protein that promotes 
stem cell niches. This affects the aggressiveness of lung metasta-
ses by enhancing survival and growth through increased WNT 
and Notch signaling.81

Integrins, which are receptors used for cell–ECM commu-
nication, are also subject to miRNA regulation. For example, 
miR-31 represses radixin, RhoA, and integrin α5 (ITGA5), 
which impairs local invasion, extravasation, and colonization.82 
Inhibition of metastasis is mediated in part by targeting ITGA5, 
which diminishes AKT signaling and triggers apoptosis in a BIM-
dependent manner.83 Meanwhile, miR-183, whose expression is 
inversely correlated with lung cancer metastatic capacity,84 and 
miR-124, which is downregulated in oral squamous cell cancer, 
inhibit invasion and motility by targeting integrin β1 (ITGB1), 
in addition to affecting cytoskeletal dynamics and migration.85,86 
Furthermore, miR-338 and miR-451 also target ITGB1, while 
miR-30 and let-7a inhibit ITGA3.87 Loss of integrin expression 
can also be oncogenic, as miR-93 overexpression in glioblastoma 
promotes tumor growth and angiogenesis by targeting ITGB8.88 
Finally, a cohort of miRNAs, including miR-9, miR-192, miR-
200, miR-221, and miR-222, regulate cell adhesion molecules 
such as E-cadherin and ICAM-1.35,89 These studies demonstrate 
that miRNAs regulate integrin signaling and cell adhesion, in 
addition to many major components of the ECM.

miR-29 as a master orchestrator of the tumor 
microenvironment

We recently showed that the transcription factor GATA3, 
which is expressed in good-prognostic luminal type breast can-
cers, promotes expression of miR-29b, an miRNA that nega-
tively regulates a network of pro-metastatic microenvironmental 
genes.90 The miR-29 family consists of 3 members that share the 
same seed sequence (miR-29a, miR-29b, and miR-29c) and are 
downregulated in numerous cancer types, including leukemia, 
breast cancer, lung cancer, liver cancer, rhabdomyosarcoma, 
cholangiocarcinoma, and melanoma.90-96 Their decreased expres-
sion correlates with poor prognosis.97 We found that by target-
ing genes such as ANGPTL4, PDGFs, and VEGFA, miR-29b 
regulates multiple factors involved in angiogenesis and vascular 
permeability within lung capillaries.90 Interestingly, miR-29b has 
direct binding sites in multiple PDGF family members, includ-
ing PDGFA, PDGFB, and PDGFC, as well as their receptors, 

PDGFRA and PDGFRB, demonstrating the exquisite ability 
of miR-29b to exert control over an entire family of genes. As 
a result, miR-29b-expressing breast tumors are less vascular-
ized, which, in turn, decreases lung metastasis. Indeed, miR-29b 
overexpression in mammary90 and hepatocellular carcinoma98 
reduces microvessel density. The anti-metastatic effects of miR-
29b can be reversed with VEGFA re-expression, suggesting that 
it is a critical target of miR-29b. In addition, miR-29b also regu-
lates trophoblastic angiogenesis by targeting VEGFA in models of 
pre-eclampsia,99 suggesting that miR-29b regulates angiogenesis 
in diverse cellular contexts.

Interestingly, multiple collagen genes also contain miR-29 
binding sites in their 3′ UTRs, including collagen type I, type 
II, type IV, type V, type VII, and type VIII, many of which have 
been experimentally validated as miR-29 targets.77,100 Again, 
this shows that miR-29 is capable of regulating entire gene 
families. miR-29b suppresses collagen expression in a number 
of different experimental systems, including renal and cardiac 
fibrosis, systemic sclerosis, as well as osteoclast differentiation, 
demonstrating that this is a common mechanism used by cells 
to control collagen expression.100-104 In some collagen genes, 
there are multiple miR-29b binding sites in the 3′ UTR, as in 
the case of COL1A1, which has 3 sites. An integrated miRNA 
and mRNA ananglysis of 101 primary breast cancers revealed 
that miR-29c expression is inversely correlated with cell adhe-
sion and ECM gene expression.105 In addition, miR-29 also tar-
gets fibrillin-1 (FBN1) and laminin γ1, 2 other proteins that are 
important constituents of the ECM, although their function in 
cancer remains poorly understood.77,103

In addition to ECM composition, ECM organization is also 
tightly regulated, and aberrations occur during cancer progres-
sion.106 Recent evidence suggests that cells sense the stiffness of 
their microenvironment, mediated in part by lysyl oxidase (LOX) 
and LOX-like enzymes. In addition, LOX also recruits CD11b+ 
myeloid bone marrow-derived cells into tumors by crosslinking 
collagen type IV.107 Interestingly, LOX, LOXL2, and LOXL4 all 
have miR-29b binding sites in their 3′ UTRs, and in the case of 
LOX and LOXL2, multiple binding sites (3 and 2 sites, respec-
tively). By regulating LOX, LOXL2, and LOXL4, miR-29b exerts 
coordinated control over collagen crosslinking and tissue stiff-
ness,90 properties that contribute to metastasis.108,109 We found 
that overexpression of miR-29b reduces Lox, Loxl2, and Loxl4 
expression, thus decreasing fibrillar collagen in xenografted 
breast tumors.90 In addition, miR-29 expression reduces LOX in 
hepatic stellate cells.110 Together, these studies point to the pivotal 
role the miR-29 family has in regulating collagen crosslinking 
and the ECM microenvironment, which ultimately affects tumor 
invasiveness and metastasis.

Several MMPs also have miR-29b binding sites, including 
MMP2 and MMP9, which we and others have demonstrated 
are regulated by miR-29b in multiple tumor types, including 
breast,90 prostate,111 and liver.98 Re-expression of Mmp9 in miR-
29b-expressing breast cancer cells attenuates the ability of miR-
29b to inhibit metastasis, suggesting that Mmp9 is an important 
downstream target. Interestingly, loss of miR-29b-mediated sup-
pression of MMP2 promotes colorectal metastasis to the liver.112 
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These studies illustrate that MMP expression is subject to miR-
29b control in cancer.

In addition to these microenvironmental genes, we also found 
that integrins α6 and β1 (also known as CD49f/ITGA6 and 
CD29/ITGB1, respectively) are miR-29b targets.90 These integ-
rins not only serve as receptors that mediate signaling between the 
ECM, the cytoskeleton and gene transcription, but also as mark-
ers for the stem cell population within the mammary gland.113 
Recent work suggests that these integrins, particularly CD49f, 
play an active role in maintaining the stemness of mammary 
stem cells.114,115 Other differentiation related factors targeted by 
miR-29b include KLF4.116 Therefore, in addition to regulating 
integrin-mediated cell adhesion and ECM signaling, miR-29b 
also regulates cell differentiation and progenitor-like properties. 
Indeed, miR-29b promotes luminal differentiation and gene 
expression, while loss of miR-29b results in a de-differentiation/
mesenchymal phenotype. In accordance, miR-29b expression is 
enriched in luminal type breast cancer compared with basal type 
cancers and inversely correlates with metastatic potential.90

Taken together, these studies add to the growing body of 
evidence demonstrating that the miR-29 family is a master 
orchestrator of the tumor microenvironment. Impressively, a 
single miRNA family regulates a network of genes involved in 
modulating the tumor microenvironment, including angiogen-
esis, vascular permeability, ECM composition, organization 
and stiffness, proteolysis, and cell adhesion. Of note, the miR-
29 family targets multiple members within a gene family (e.g., 
PDGFs, LOX/LOXLs, and collagens) to finely tune microenvi-
ronmental properties. In accordance with the pleiotropic effects 
of miRNAs, miR-29b also plays a role in regulating epithelial 
plasticity and is well-positioned to function as a rheostat for cel-
lular differentiation. Because GATA3 is required for the speci-
fication of luminal epithelial cells in the mammary gland and 
is lost in breast cancer,117-119 our work also reinforces the concept 
that microenvironmental control is critical during cell differen-
tiation. Interestingly, other proteases, such as members of the 
disintegrin and metalloproteinase domain-containing proteins 
with thrombospondin motifs 2, 5, 6, 7, 9, 10, 17, 18, and 19 
(ADAMTS), as well the proto-cadherin family (PCDHA1–
13), which are hypothesized to be involved in cell–cell adhe-
sion, are predicted targets of miR-29b. With the exception of 

ADAMTS7,120 these targets have not been validated, and their 
functions in cancer remain to be investigated. Finally, whether 
miR-29b might play anti-metastatic roles in other cell types 
within the microenvironment, such as fibroblasts or endothelial 
cells, remains to be determined experimentally. Interestingly, 
many of the miR-29b targets that we identified are commonly 
expressed in CAFs to promote tumor growth and metastasis. 
Thus, it will be interesting to explore whether expressing miR-
29b in CAFs or endothelial cells might also have a potent anti-
tumor or anti-metastatic effect.

Conclusions

Emerging work on miRNAs demonstrates the importance of 
miRNAs in controlling and regulating homeostasis within the 
tumor microenvironment. We have highlighted a few examples 
where miRNAs regulate critical aspects of the microenviron-
ment, including cancer-associated fibroblasts, angiogenesis and 
the hypoxic response, inflammation, MMPs, ECM composition, 
and ECM organization (Fig. 1; Table 1). Interestingly, miR-
NAs such as miR-29b are poised to orchestrate multiple prop-
erties within the tumor microenvironment by coordinating the 
expression of major gene families. Our work on miR-29b points 
to the importance of controlling networks to suppress complex 
processes such as metastasis. Additional work on miRNAs will 
continue to elucidate how these small RNAs exert big effects on 
tumor biology, and will likely offer crucial insights and thera-
peutic opportunities, so that we can better control cancer and 
metastatic disease. 
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