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ABSTRACT OF THE DISSERTATION

Transfer Theorems on Tautological Modules of Hilbert Schemes of Nodal Curves and
de Jonquieres’ Formulas

by

Kwangwoo Lee

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2012

Dr. Ziv Ran , Chairperson

Given a linear system (L, V ), where L ∈ Picd(X) and V ∈ G(r+1, H0(L)), on a smooth

algebraic curve X, the classical de Jonquieres’ formula gives the number of divisors of

degree n of the form D = a1D1 + · · · + akDk, where degDi = ni and
∑
aini = n,

contained in this system, provided this number is finite. In this dissertation we verify

the de Jonquieres’ formula for a curve and get some de Jonquieres’ formulas for a family

of nodal curves using Module theorem, Splitting principle, and Transfer theorems.
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Chapter 1

Introduction

Counting hyperplanes multi-tangent to a curve is well known as a particular

case of the classical formula of de Jonquieres. With the complete understanding of the

Chow ring of X(n), the symmetric product of a smooth algebraic curve, MacDonald[Mac]

reduces many questions of enumerative geometry on the curve X to simple computa-

tions, e.g. de Jonquieres’ formula.

The aim of enumerative geometry is to count how many geometric figures sat-

isfy given conditions. One of the typical enumerative problem is: How many lines in P3,

in general, intersect four given lines? To see this, one can degenerate the arrangement

of four lines so that the first intersect the second and the third intersect the fourth.

Then there are two lines: the line joining the two points of intersection and the line

of intersection of the two planes. Now Schubert’s principle of conservation of number

asserts that this is the general result.

David Hilbert asked in his 15th problem for solid mathematical foundations

and a systematic approach to enumerative geometry. A fundamental breakthrough in

this direction was to develop a theory of parameter spaces or moduli spaces, i.e., parame-
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terizing the geometric objects to be studied. Imposing geometric conditions corresponds

to cutting appropriate subspaces in the moduli space. Thus enumerative geometry is

reduced to intersection theory on moduli spaces. For example, by Schubert calculus on

Grassmannian G(2, 4), there are 2 lines intersecting general four given lines L1, · · · , L4:

the fourfold self-intersection σ4
1 = 2, where σ1 is the Schubert cycle, i.e. the cohomology

class of Schubert variety of lines in P3 meeting L1[GH p.206].

One of the first proofs of the existence of special divisors(one of the main

results of Brill-Noether theory[H1],[ACGH]) was based on intersection theory on sym-

metric products, the Hilbert schemes of a smooth algebraic curve, developed by Mac-

Donald[Mac] using the Porteous’ formula.

Theorem 1 (Kempf[Ke], Kleiman-Laksov[KL]) When the Brill-Noether number ρ ≥ 0,

every curve of genus g possesses a grd.

In [Mum] Mumford defined certain cohomology classes called tautological classes on

the moduli space of smooth curves of genus g, Mg: κi, 1 ≤ i ≤ 3g − 3 and λl, 1 ≤

l ≤ g classes. He suggested studying the moduli space of curves in the same way of

Grassmannian G(k, n) parametrizing k-plaines in Cn; there is a universal bundle E on

G(k, n) of rank k, and this induces Chern classes cl(E), 1 ≤ l ≤ k, in Chow ring. Then

this Chow ring is generated as ring by {cl(E)} with tautological relations

(1 + c1(E) + · · ·+ ck(E))−1
l = 0, l > n− k.

ForMg he considered the tautological subring of Chow or cohomology ring generated by

tautological classes κi’s, λl’s; any geometric calculation can be translated to the Chow

ring will require only knowledge of the tautological subring and this subring is much

smaller than the Chow or cohomology ring.
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Theorem 2 (Mumford) The tautological subring R∗(Mg) is generated by the g − 2

classes κ1, · · · , κg−2.

The objects in this paper are the flat families of nodal curves

X

π

y
B,

where π−1(b) is an nodal curve. By nodal curve, we mean a curve that has only nodes

as singularities. We want to take B itself projective, which means one must allow some

singular fiber. One example is B = Mg, the moduli space of Deline-Mumford stable

curves, a nodal curve with only finitely many automorphisms. Note that by semistable

reduction, any family can be modified so as to have node singularity without changing

the general fiber. For enumerative geometry, however, we may loose some characters of

the family.

Many questions in the classical projective and enumerative geometry of this

family ([Mum], [Kon]) can be phrased in the context of the relative Hilbert scheme

X
[m]
B = Hilbm(X/B). This is a universal parameter space for length-m subschemes of

X contained in fibers of π, and carries the natural tautological vector bundles Λm(E), as-

sociated to any vector bundle E on X. Enumerative questions for a family of curves con-

tain relative multiple points and multisecants formulas whose solutions involves Chern

numbers of the tautological bundles. Thus, turning these formal solution into meaning-

ful ones requires computing the Chern numbers in question.

For the enumerative geometry of Hilbert schemes one uses the induction pro-

cedure that allows one to compare the geometric properties of X
[m]
B and X

[m−1]
B by flag

schemes, i.e. schemes parametrizing flags of subschemes. For a family of nodal curves

we also consider flag relative Hilbert scheme. In this paper we will verify the classical de

Jonquieres’ formula of low degree for a single smooth curve and get some de Jonquiere’s
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formula for a family of nodal curves.
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Chapter 2

Tautological module

This chapter contains the results that are relevant to our work. The most the-

oretical results in this chapter are in [R5].

2.1 Blowup theorem

For a flat family of curve, we consider the relative Hilbert schemes of points of

X contained in fibers of π. Hence we have a constant Hilbert polynomial, say P = m.

It is well-known that the absolute Hilbert scheme of a smooth algebraic curve X is

isomorphic to the symmetric product. It has been proved that the variety of divisors

of degree n and the n-fold symmetric product are isomorphic[S]. For the symmetric

product or more generally quotient varieties we refer to [H2]. For the isomorphism of

symmetric product and Hilbert scheme of a smooth algebraic curve, we may associate

a point [Z] ∈ X [m] a formal sum
∑

x∈X length(OZ,x) · x a point in symmetric product

X(m). Note that since Z is an 0-dimensional subscheme H0(Z,OZ) is an Artinian C-

algebra and the length(OZ,x) = length(H0(Z,OZ) = dimCH
0(OZ). This defines the
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Hilbert-Chow morphism

ρ : X [m] → X(m),

at least set-theoretically. ρ is indeed a morphism[Leh].

Theorem 3 The Hilbert-Chow morphism for a smooth algebraic curve X

cm : X [m] → X(m), Z 7→
∑

p∈supp(Z)

length(OZ,p)[p]

is an isomorphism.

Proof. As the local ring of X at a point p is a discrete valuation ring, all ideals in OX,p

are powers of the maximal ideal mp. Thus for all [Z] ∈ X [m] we have

OZ = ⊗iOX,pi/mmi
pi ,
∑
i

mi = m.

Then cm sends Z to
∑

imi[pi], hence cm is bijective. As it is also birational, it is an

isomorphism by Zariski’s main theorem.

For a smooth surface, Forgarty[Fo] showed that the Hilbert scheme is the resolution of

singularities of symmetric product.

Remark 4 Note that the main difference of Hilbert schemes and Chow varieties is

that the Hilbert scheme has a natural scheme structure whereas the Chow variety does

not[Kol].

For the family of nodal curves
X

π

y
B,

we have the

Theorem 5 (Blowup Theorem)[R4] The cycle map

cm : X
[m]
B → X

(m)
B

is equivalent to the blowing up of the big diagonal Dm ⊂ X(m)
B .
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Proof. (sketch) The theorem is the statement that the natural birational correspon-

dence between X
[m]
B and BlDm(X(m)) projects isomorphically both ways. By GAGA, it

suffices to prove for the corresponding anayltic spaces. Then the statement is local over

X
(m)
B and by splitting argument we may reduced the theorem to the case where X/B

is the standard family xy = t. We let U denote any neighborhood of the origin in X.

Then the relative cartesian product UmB as a subscheme of Um ×B is given locally by

x1y1 = · · · = xmym = t.

Letting σxi , σ
y
i be the elementary symmetric functions in x1, · · · , xm and y1, · · · , ym,

respectively, where σ0 = 1, we have an embedding near mp

σ : U
(m)
B → A2m ×B,

where p is the node.

Since the fiber c−1
m (mp) is the union of Cmi , i = 1, · · · ,m− 1, it is reasonable to try to

model the cycle map on the 1-parameter of curves specializing to a chain of m− 1 lines.

Let C1, · · · , Cm−1 be copies of P1 with homogeneous coordinates ui, vi on the i-th copy.

Let

C̃ ⊂ C1 × · · · × Cm−1 ×B/B

be the subscheme over B defined by

v1u2 = tu1v2, · · · , vm−2um−1 = tum−2vm−1.

Note that C̃ is smooth and specializes to its unique singular fibre C̃0, the union of m−1-

copies of P1. To construct our model H̃, define H̃ ⊂ C̃ ×A2m be the subscheme defined

by

a0u1 = tv1, d0vm−1 = tum−1

a1u1 = dm−1v1, · · · , am−1um−1 = d1vm−1.
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Then we have an isomorphism

Φ : H̃ → U
[m]
B .

Now we need to show that c−1
m (Dm) = 2Γm is Cartier. For this, consider ordered Hilbert

scheme
X
dme
B

$m−−−−→ X
[m]
Byocm ycm

Xm
B

ωm−−−−→ X
(m)
B ,

where X
dme
B = X

[m]
B ×

X
(m)
B

Xm
B . Now it suffices to show that ω∗m(Dm) = 2ODm, where

ODm =
∑

i<j p
−1
i,j (OD2), is Cartier. Indeed if this is the case then the natural map

X
dme
B → Bl2ODmX

m
B is an isomorphism. Then so is the Sm-equivariant map

f : X
dme
B → (BlDmX

(m)
B )×

X
(m)
B

Xm
B ,

which is just the pullback of the natural map

c′m : X
[m]
B → BlDmX

(m)
B

by the finite flat surjective map $m, therefore so is c′m. That ω∗m(Dm) = 2ODm is

Cartier follows from the following lemma.

Lemma 6 (R4) Gi generates O(−OΓ(m)) over Ũi, where

Gi = ±det(V m
i ).

In particular, OΓ(m) is Cartier.

This allow us to study the relative Hilbert schemes of family of nodal curves.

In the proof we considered the geometry of special fiber of cm over the maximal singular

point mp ∈ X(m) which is the union of m− 1 copies of P1 as in the

Theorem 7 (R3) The punctual Hilbert scheme of the analytic neighborhood of a node

is a union of m− 1 copies of P1

Cm1 ∪Qm2 Cm2 ∪ · · · ∪Qmm−1
Cmm−1
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normally crossing at Qmi and smooth elsewhere.

For the case of the affine line and small m, we refer to [Leh].

2.2 Tautological module

In this section we define the tautological module and consider the module struc-

ture on the small diagonal. By Tm(X/B) we mean, as a group, generated by the fol-

lowings:

1. the diagonal loci Γ
(m)
µ , where µ = (n1, · · · , nk) any partition of m: this locus is the

closure of the set of schemes of the form n1p1 + · · · + nkpk, where pi are distinct

smooth points of the same fiber. More generally, we will consider twisted classes

Γ
(m)
µ [α.], where α. are the base classes, i.e. α. ∈ H∗(symm(X)).

2. the node classes. First, the node scrolls Fn,mj (θ): P1-bundles over a diagonal locus

of the boundary family of curves. Moreover the node sections −Γ(m)Fn,mj (θ).

Similarly as above these can be considered as operators on H∗(symm(X)).

Notation: Γ(m) := 1
2c
−1
m (D(m)), the discriminant polarization, where D(m) is the big

diagonal on the relative symmetric product X
(m)
B .

By the module theorem below this is a Q[Γ(m)]-module.

Remark 8 Node classes

1. The node scroll Fn,mj (θ) is the closure of the set of schemes of the form nθ + D,

where θ is a node in a fiber and in the same fiber D is in the diagonal class

Γ
(m−n)
ν ⊂ (Xθ

T )
[m−n]
T , where ν is a partition of m− n, T is a boundary component
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of B with a diagram

X

π
��

T

θ

>>

� � δ // B,

and Xθ
T is the blowup of the relative node in X. That is, (Xθ

T )
[m−n]
T is (m− n)-th

relative Hilbert scheme of the family of nodal curves Xθ
T and Γ

(m−n)
ν is a diagonal

class of this relative Hilbert scheme. Note that the fibers of this family have 1 less

genus of that of the family X/B.

2. Since the fiber is union of P1 by the Theorem 7, we see that Fn,mj (θ) is P1-bundle

over (Xθ
T )

[m−n]
T .

3. Now we have node section −Γ(m)Fn,mj (θ) of this P1-bundle.

In this section we consider the small diagonal locus and this is the heart of the matter,

indeed, the intersection of any diagonal loci with Γ(m) is determined by reduction to

the small diagonal locus. Let Γ(m) ⊂ X
[m]
B be the small diagonal, i.e. the closure of the

subschemes of mp in a fiber or equivalently the pullback of the small diagonal

D(m) ' X ⊂ X
(m)
B .

The restriction of the cycle map is a birational morphism

cm : Γ(m) → X

which is an isomorphism except over the nodes of X/B. Recall that for the family

of nodal curves X/B we have the relative dualizing sheaf of the family ωX/B; if X is

smooth, e.g. versal family, then ωX/B = KX ⊗ π∗K∨B([HM]). Note that for a family of

curves, the dualizing sheaf ω exists and if ω2 = 0, then X/B is trivial family. As a

corollary of the blowup theorem above we have the

10



Proposition 9 cm : Γ(m) → X is equivalent to the blowup of Jθ.m, where Jθ.m is the ideal

of nodes. If OΓ(m)
(1)J denotes the canonical blowup polarization, we have

OΓ(m)
(−Γ(m)) = ω

⊗(m2 )
X/B ⊗OΓ(m)

(1)J .

Proof. We may work with the ordered Hilbert scheme X
dme
B , then pass to Sm-invariants.

Note that X
dme
B is the blowup of ODm :=

∑
i<j Di,j , where Di,j is the pullback of

the diagonal from the i, j factors([R4]). Because blowup and Hilbert scheme are both

compatible with base-change, we may then assume X/B is given by xy = t. Then

the ideal of ODm is generated by G1, · · · , Gm, so restrict this on the small diagonal

OD(m) ' X. To this end, consider the natural map

IODm → ω(m2 ), ω := ωX/B.

Note that since ODm :=
∑

i<j Di,j , this is well-defined. To identify the image, note that

(xi − xj)|OD(m)
= dx = x

dx

x

and η = dx
x = −dy

y is a local generator of ω along θ. Therefore

G1|OD(m)
= x(m2 )η(m2 ).

By the formula of Gi we have

Gi|OD(m)
= x(m−i+1

2 )y(i2)η(m2 ), i = 1, · · · ,m.

Now over a neighborhood of θ, we have

IODm .OD(m) ' Jθm ⊗ ω(m2 ).

This being true for each node, it is also true globally and by passing to Sm-quotients,

we also have

IDm .D(m) ' Jθm ⊗ ω(m2 ).

Pulling back to X
[m]
B we get the proposition.

11



Proposition 10 (i) The pullback ideal of Jθm on Γ(m) defines a Cartier divisor of the

form

eθm =
m−1∑
i=1

i(m− i)m
2

Cmi (θ).

(ii) Each Cmi is a Q-Cartier divisor on Γ(m); mC
m
i is Cartier.

Now we have the intersection of small diagonal with Γ(m).

Proposition 11

Γ(m).Γ(m) =

m−1∑
θ,i=1

i(m− i)m
2

Cmi (θ)−
(
m

2

)
ω.

Proof. Consider the exact sequence

0→ OΓ(m)
(−Γ(m))→ OΓ(m)

→ OΓ(m)
|Γ(m) → 0.

Now it follows from the exact sequence and Propositions.

2.3 Polyblocks

For the ordered relative Hilbert scheme X
dme
B , we have the

Proposition 12 We have an equality of divisor classes on ΓI :

Γdme.ΓI =
∑
i<j /∈I

ΓI|{i,j}+|I|
∑
i/∈I

ΓI∪{i}−
(
|I|
2

)
p∗min(I)ω+

∑
s

1

deg(δs)

|I|−1∑
j=1

ν|I|,jδ
I
s,j∗OF

I
j (θs),

where I|{i, j} and I ∪ {i} denote uniting blocks.

Proof. Since the asserted equality trivially holds away from the exceptional locus(the

locus at where the map is not isomorphism) of ocm, the first, second and third sum-

mands come from components Γi,j of Γdme having |I ∩ {i, j}| = 0, 1, 2, respectively.

Next, both sides being divisors on ΓI , it will suffice to check equality away from codi-

mension 2, e.g. over a generic point of each boundary locus (Xθ
T )K−I|K

c−I . But there,
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our cycle map ocm is locally just ocr × iso, r = |I|, with

Γdme ∼ Γdre +
∑
{i,j}*I

Γi,j .

We are then reduced to the case of the small diagonal.

Passing to (unordered) relative Hilbert scheme X
[m]
B by Sm-quotient we have

Proposition 13 For a partition µ of weight m, we have an equality of operators of

Hom(TSµ(R), A.(X
[m]
B )):

Γ(m).Γµ[] = Γµ ◦ (Dsc(m) − Uω) +
∑
θ

∑
µ(n)>0

n−1∑
j=1

j(n− j)n
2

Fn,mj,µ−1n
(θ)[] ◦ un,θ∗µ .

Notations: 1. Dscµ is an operator on base cohomology classes; for a base class α. =

(α1, · · · , αwt(µ)) ∈ Symwt(µ)(H .(X)), Dscµ(α.) =
∑

n1≥n1
n1n2un1,n2,µ, where u is unit-

ing operator uniting n1 and n2 blocks. In particular, Dsc(m) := Dsc(1,1,··· ,1).

2. Uω,µ(α.) :=
∑

n

(
n
2

)
un,ω,µ(α.), where un,ω,µ(α.) is an operator multiplying ω on n

block.

Now we know that for any diagonal classes and node classes Γµ, F
n,m
j (θ) ∈

Tm(X/B), the intersections with discriminant Γ(m) lie in Tm(X/B). To finish the

Module theorem, we need to show that this is true for node sections −Γ(m)Fn,mj (θ)

which follows from the

Theorem 14 (R5) For any twisted node scroll class Fn,mj (θ)[β], we have

(−Γ(m))lFn,mj (θ)[β]

= (−Γ(m))Fn,mj (θ)[sl−1(en,mj , en,mj+1)β]− Fn,mj (θ)[en,mj en,mj+1sl−2(en,mj , en,mj+1)β].

Now we have the

Theorem 15 (Module Theorem)[R5] Compatibly with intersection product, Tm(X/B)

is a Q[Γ(m)]-module.

13



Proof. For any twisted diagonal class Γµ[α.], by Proposition 13, Γ(m).Γµ[α.]

can be written by generators. For the node classes, it is clear. Finally Theorem 14

implies that this is true for the node sections.

2.4 Transfer theorem and Splitting principles

For the enumerative geometry of Hilbert schemes one uses the induction pro-

cedure that allows one to compare the geometric properties of X
[m]
B and X

[m−1]
B by flag

schemes, i.e. schemes parametrizing flags. For a family of nodal curves we also consider

flag relative Hilbert scheme. Let

X
[m,m−1]
B ⊂ X [m]

B ×B X [m−1]
B

denote the flag Hilbert scheme, parametrizing pairs of schemes (z1, z2) satisfying z1 ⊃ z2

and z1 lies in some fiber. This comes equipped with a (flag) cycle map

cm,m−1 : X
[m,m−1]
B → X

(m,m−1)
B ,

where X
(m,m−1)
B ⊂ X

(m)
B ×B X(m−1)

B is the subvariety parametrizing cycle pairs (cm ≥

cm−1). Note that this is a blowup of the sheaf of ideals IDm−1 .IDm on X
(m,m−1)
B ([R4]).

By the construction of the flag Hilbert scheme, we have natural projections and annhi-

lator map a

X
[m,m−1]
B

a−→ X
pm

��

pm−1

��

X
[m−1]
BX

[m]
B

, where a(z1, z2) = ann(z1/z2),

identifying X with the Hilbert scheme of colength-1 ideals.

Now for the enumerative geometry we consider a transfer from X
[m−1]
B to X

[m]
B allowing

twisting by base classes. Indeed Γ(m)Γ(m) = −
(
m
2

)
Γ(m)[ω] +

∑m−1
θ,i=1

i(m−i)m
2 Cmi (θ), i.e.

14



we have to allow twists. Precisely define the twisted transfer map τm by

τm = pm∗(p
∗
m−1 ⊗ a∗) : A.(X

[m−1]
B )⊗A.(X)→ A.(X

[m]
B )Q.

For the definition of τm: by exterior product of Chow groups we have A.(X
[m−1]
B ) ⊗

A.(X) → A.(X
[m−1]
B ×B X) and then from the flat morphism pm−1 × a : X

[m,m−1]
B →

X
[m−1]
B ×B X we have pullback from A.(X

[m−1]
B ×B X) → A.(X

[m,m−1]
B ). Finally by

projection(proper) pm we have the push-forward to A.(X
[m]
B ).

Note that for a smooth algebraic curve X,

A.(X(m−1))⊗A.(X)
×−→ A.(X(m))

is an isomorphism.

Remark 16 Recall the exterior product([Fu])

For algebraic schemes X,Y over B we have the fiber product X ×B Y . Hence we have

the exterior product

Zk(X)⊗ Zl(Y )
×−→ Zk+l(X ×B Y )

by [V ] × [W ] 7→ [V ×B W ]. Since this map preserves the rational equivalence, we have

the following exterior product

Ak(X)⊗Al(Y )
×−→ Ak+l(X ×B Y ).

Properties:

1. the exterior product is associative:

(α× β)× γ = α× (β × γ) for α ∈ A∗X,β ∈ A∗Y, γ ∈ A∗Z.

2. If Y = An, then

A.(X)⊗A.(Y )
×−→ A.(X ×B Y )

is an isomorphism for any X.
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Theorem 17 (R4)

cm−1,1 : X
[m,m−1]
B → X

[m−1]
B ×B X

defined by pm−1 × a is the blowup of the incidence variety D(m−1,1) = {(z, x) : x ∈ z}.

Proposition 18 (R5) (i) The projection pm−1 is flat, with 1-dimensional fibers;

(ii) Let z ∈ X [m−1]
B be a subscheme of a fiber Xs, and let z0 be the part of z supported

on nodes of Xs, if any. Then if z0 is principal(i.e. Cartier) on Xs, the fiber p−1
m−1(z) is

birational to Xs and its general members are equal to z0 locally at the nodes.

Now we have the

Theorem 19 (Tautological Transfer) τm takes tautological classes on X
[m−1]
B to tauto-

logical classes on X
[m]
B . More specifically we have, for any class β ∈ A.(X):

1.

τm(Γµ[α.]β(m)) = Γµ+11 [α.β],

where 11 is the partition of weight 1 and support {1}.

2. for Fn,m−1
j (θ)[α.], α. ∈ Tm−n−1(Xθ

T ),

τm(Fn,m−1
j [α.]β(m)) = Fn,mj (θ)[τm−n,Xθ

T /T
(α.⊗ (β|Xθ

T
))].

3.

τm(−Γ(m−1)Fn,m−1
j [α.]β(m)) =

θ∗(β)Fn+1,m
j (θ)[α.] + (−Γ(m))Fn,mj (θ)[τm−n,Xθ

T /T
(α.β|Xθ

T
)]

− Fn,mj (θ)[en,mj+1(θ)(τm−n,Xθ
T /T

(α.β|Xθ
T

))]

+ Fn,mj (θ)[τm−n,Xθ
T /T

(en,m−1
j+1 (θ)(α.).β|Xθ

T
))].
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Proof. 1 is obvious. The flatness of pm−1 allows us to work over general z ∈ F and by

Proposition 18 we may assume that the added point is a general point on the fibre Xs.

For 3, by [R4]

−Γ(m−1) ∼ Qn,m−1
j + en,m−1

j+1 .

Hence suffice to prove that

τm(Qn,m−1
j+1 [α.]β(m)) = θ∗(β)Fn+1,m

j+1 (θ)[α.] +Qn,mj+1[α.β].

To this end, note that, with Q = Qn,m−1
j+1 , p∗m−1Q splits in two parts, depending on

whether the point w added to a scheme z ∈ Q is in the off-node or nodebound portion

of z. The first part gives rise to the 2nd term in the RHS of the equality.

For the other case we may assume that m = n + 1, i.e. F is just Cm−1
j , a P1. For this

case we refer to [R5].

Now the last tool for our enumerative geometry is the Splitting principle. Let

Wm(X/B)
π(m)

−−−→ B

denote the relative flag Hilbert scheme of X/B, parametrizing flags of subschemes

z. = (z1 < · · · < zm)

where zi has length i and zm is contained in some fiber of X/B. Let

ai : Wm → X

be the canonical map sending a flag z. to the 1-point support of zi/zi−1. Let

Im < O
X

[m]
B ×BX

be the universal ideal of colength m. For any vector bundle E on X, set

Λm(E) = p
X

[m]
B ∗(p

∗
X(E)⊗ (O

X
[m]
B ×BX

/Im));

17



this is called the tautological bundle on X
[m]
B of rank m + rkE and more generally

this is defined for each coherent sheaf on X. This is a secant bundle which was first

introduced by [S] and for a smooth algebraic curve this is just symmetrization Em(E)

in [Mat] in which the total Chern class of it was computed. Note that at z ∈ X
[m]
B ,

Λm(E)|z = H0(z, E ⊗Oz). Set

∆(m) = Γ(m) − Γ(m−1).

The various tautological sheaves form a flag of quotients on Wm:

· · ·� Λm,i(E) � Λm,i−1(E) � · · · .

This gives the

Theorem 20 (Splitting principle)[R2] On Wm(X/B)

c(Λm(E)) =

m∏
i=1

c(a∗i (E)(−∆(i))).

Moreover, in A.(X
[m,m−1]
B )Q

c(Λm(E)) = c(Λm−1(E))c(a∗m(E)(−∆(m))).

Proof. For the first we refer to [R2]. For the second they both pull back to the same

class in Wm. As the projection Wm → X
[m,m−1]
B is generically finite, they agree mod

torsion.

The following theorem makes us to compute the Chern numbers using Tautological

module and transfer theorem.

Theorem 21 (R5) There is a computable inclusion

TCmR → TmR ,

where TCmR is the R-subalgebra of A.(X
[m]
B )Q generated by the Chern classes of Λm(E)

and the discriminant class Γ(m).
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2.5 Enumerative geometry of a family of nodal curves

We restrict to the small diagonal and the 1-parameter families of nodal curves.

In this case the (punctual) transfer τ0
m : Tm−1,0

R (X/B) → Tm,0R (X/B) that fits in the

diagram
Tm−1,0
R (X/B) −−−−→ Tm,0R (X/B)y y
A.(Γ(m−1)) −−−−→ A.(Γ(m))

is given by the

Proposition 22 For each node θ,

τm(Cm−1
i (θ)) =

m− i
m− 1

Cmi (θ) +
i+ 1

m− 1
Cmi+1(θ).

τm(−Γ(m−1)Cm−1
i (θ)) =− Γ(m)Cmi+1(θ)− Cmi+1(θ)[

m− i− 1

m
ψmi+2 +

i+ 1

m
ψmi+1]

+
m− i
m− 1

Cmi (θ)[ψm−1
i ] +

i+ 1

m− 1
Cmi+1(θ)[ψm−1

i ].

Convention: For two line bundle L and M , let LM denote the degree of c1(L) · c1(M) ∈

H4(X,Z).

Example 23 Given a family X/B and a map

f : X → Pn, n < m,

cm−n(Λm(L)|Γ(m)
), where L = f∗(O(1)), represents the locus of points in X where the

fiber admits an m-contact hyperplane, e.g. if n = 1, this is the locus of (m − 1)-st

order ramification points. Note that if dimB = m− n− 1, we have Chern number. For

example,

c2(Λm(L)|Γ(m)
) =

(
m

2

)
L2+(3

(
m+ 1

4

)
−
(
m

3

)
)ω2+(3

(
m+ 1

3

)
−2

(
m

2

)
)Lω−

(
m+ 1

4

)
σ,

where σ is the number of nodes.
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Chapter 3

Classical de Jonquieres’ formula

3.1 Degeneracy Loci and Porteous’ formula

Porteous formula expresses the class of the locus where the rank of a map

between vector bundles is less than or equal to a given bound. One of the applications

of this formula is the first proof of the existence of special linear series on an arbitrary

curve whenever the Brill-Noether number ρ ≥ 0.

Let σ : E → F be a homomorphism of vector bundles of ranks e and f on an

n-dimensional variety X. For k ≤ min(e, f), set

Dk(σ) = {x ∈ X|rank(σ(x)) ≤ k}.

On an affine open set U where E and F are trivial, σ is defined by a matrix of elements

in the coordinate ring of U , which generate the ideal of Z(σ) on U . More generally, for

a non-negative integer k ≤ min(e, f), we have the k-th degeneracy locus

Dk(σ) = {x ∈ X|rank(σ(x)) ≤ k} = Z(
k+1∧

(σ)).

Hence this degeneracy locus has a natural scheme structure on Dk(σ), locally defined

by the vanishing of (k + 1)-minors of a matrix representation of σ. One expects Dk(σ)
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to be m dimensional, where

m = n− (e− k)(f − k),

but in general one can only state that each irreducible component ofDk(σ) has dimension

at least m.

For any formal series ct =
∑

i cit
i, any integer a and any positive integer b, we define

Ma,b(ct) to be the b× b matrix whose (i, j)-th entry is ca+j−i. Finally, we set ∆a,b(ct) =

det(Ma,b(ct)). In these terms, Porteous formula is the

Theorem 24 (Porteous formula) Let σ : E → F be a homomorphism between vector

bundles of respective ranks e and f on a smooth variety X. Let

Dk(σ) = {x ∈ X|rank(σx) ≤ k}

and let [Dk(σ)] ∈ Am(X) be the fundamental class of Dk(σ). If Dk(σ) is either empty,

or of the expected codimension (e− k)(f − k), then

[Dk(σ)] = ∆e−k,f−k((ct(F − E))).

Example 25 The locus D0 is the zero locus of σ, considered as a section of Hom(E,F ),

so that

[D0(σ)] = cef (E∗ ⊗ F );

and, in case e = f , we have that De−1 is the zero locus of
∧e σ, so that

[De−1] =c1(
e∧
E∗ ⊗

e∧
F )

=c1(F )− c1(E).

Remark 26 We may describe the degeneracy loci zero sections by the Grassmann bun-

dle of (e− k)-planes in the fibers of E with universal subbundle and quotient bundle.
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Proof. (sketch proof of Theorem 1) By the Riemann-Roch a divisor D of

degree d moves in a linear series of dimension at least r if and only if the rank of the

evaluation map

H0(KX)→ H0(KX/KX(D))

is d−r or less. As D varies, the target and domain spaces of this map give vector bundles

over the symmetric product X(d), and applying Porteous’ formula to the corresponding

bundle map we arrive at a formula for the class of the locus in X(d) of divisors D such

that r(D) ≥ r. In particular, observing that this class is nonzero (when its codimension

is d−r or less) gives the first proof of the existence of special linear series on an arbitrary

curve whenever the Brill-Noether number ρ ≥ 0.

For more details, we refer to [Fu],[ACGH].

3.2 de Jonquieres’ formula for a smooth curve

Given a linear system (L, V ), where L ∈ Picd(X) and V ∈ G(r + 1, H0(L)),

the classical de Jonquieres’ formula gives the number of divisors of degree n of the form

D = a1D1 + · · · + akDk, where degDi = ni and
∑
aini = n, contained in this system,

provided this number is finite, i.e.
∑
ni = n− r and that they intersect properly.

For a given grd on a smooth curve X, i.e. a pair (L, V ), where L ∈ Picd(X)

and V ∈ G(r + 1, H0(L)), the evaluation map V ⊗OX
evalV−−−→ L induces a morphism of

vector bundles V ⊗OX(d)

φ−→ ΛdL on X(d). Since X(d) is a parameter space of effective

divisors of degree d on X we may see a point z ∈ X(d) as an effective divisor on X. Over

a point z ∈ X(d), this bundle morphism becomes a map V → H0(z, L⊗Oz). Hence the

r-th degeneracy locus of this bundle morphism is enumerating the effective divisors of

degree d on X. Indeed the r-th degeneracy locus is {z ∈ X(d) : there is a section s ∈
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V s.t. s|z = 0}.

By Porteous’ formula, the fundamental class of r-th degeneracy locus of this morphism is

4d−r,1(ct(Λd(L)−V ⊗OX(d))) = 4d−r,1(ct(Λd(L))) = cd−r(Λd(L)). So the de Jonquieres’

formula is the formula cd−r(Λd(L)|Γ(a1,··· ,an)
) when d− r = n.

Remark 27 Note that r(D) ≥ r if and only if there is a divisor in |D| containing any

r given points of the curve. Indeed consider the exact sequence, for any p,

0→ k(p)→ L(D)→ L(D − p)→ 0.

Remark 28 Pascal’s identity:
(
z+1
r

)
−
(
z
r

)
=
(
z
r−1

)
.

Then by integrating we have
∑z

k=r−1

(
k
r−1

)
=
(
z+1
r

)
.

Example 29 For a single block Γ(d), by recursion we have

c(Λd(L)|Γ(d)
) =

d∏
i=1

(1 + Li + (i− 1)ω) = 1 + dL+

(
d

2

)
ω,

in particular, c1 = d(deg(L)) +
(
d
2

)
(2g − 2) = d(dg − g + 1).

Indeed let cd = c(Λd(L)|Γ(d)
) = αd. Then αd = τd(αd−1(1+Ld+Γ(d−1))+(−Γ(d))τd(αd−1)

= αd−1 + αd−1L − αd−1

(
d−1

2

)
ωΓ(d) + αd−1

(
d
2

)
ω = αd−1(1 + L + (d − 1)ω), hence αd =∏d

i=1(1 + Li + (i− 1)ω).

Remark 30 Recall the bundle of principal parts(or the Jet bundle)[Fu](2.5.6)

Let C be a non-singular projective curve of genus g, and let C(r) ⊂ C × C be the

subscheme defined by the ideal sheaf Ir+1, where I is the ideal sheaf of the diagonal; let

p and q be the first and second projections from C(r) to C. For a line bundle L on C,

the bundle of principal parts P r(L) is the sheaf on C defined by:

P r(L) = p∗q
∗L = p∗(q

∗L⊗OC×C/Ir+1).
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Then P 0(L) = L, and for r > 0 there is an exact sequence

0→ (Ω1
C)⊗r ⊗ L→ P r(L)→ P r−1(L)→ 0.

Indeed on C × C, there is an exact sequence

0→ Ir/Ir+1 → OC×C/Ir+1 → OC×C/Ir → 0.

Since q∗L is locally free, we have

0→ Ir/Ir+1 ⊗ q∗L→ OC×C/Ir+1 ⊗ q∗L→ OC×C/Ir ⊗ q∗L→ 0.

Since p is homeomorphism on C(r), we have

0→ Ir/Ir+1 ⊗ L→ P r(L)→ P r−1(L)→ 0.

Since C is smooth, Ω1
C is locally free and

Sym∗OC (Ω1
C)→

∞⊕
r=0

Ir/Ir+1

is an isomorphism, so Ir/Ir+1 ∼= (Ω1
C)⊗r. Therefore P r(L) is locally free of rank r+ 1,

and we have

0→
r∧
P r−1(L)⊗ (Ω1

C)⊗r ⊗ L→
r+1∧

P r(L)→
r+1∧

P r−1(L)→ 0,

where
∧r+1 P r−1(L) = 0. Hence

c1(P r(L)) =c1(
r+1∧

P r(L))

=c1(
r∧
P r−1(L)⊗ (Ω1

C)⊗r ⊗ L)

=c1(
r∧
P r−1(L)) + rc1(Ω1

C) + c1(L).

Integrating this, we have

c1(

r+1∧
P r(L)) = (r + 1)c1(L) +

(
r + 1

2

)
c1(Ω1

C).
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If V ⊂ H0(C,L) is a subspace, there are canonical homomorphisms of vector bundles

on C,

σ : C × V → P r(L).

If dimV = r + 1, i.e., the linear system determined by V has dimension r, then det(σ)

is a section of
∧r+1 P r(L), well-defined up to scalars. If det(σ) 6= 0, its divisor of zeros,

denoted δV , measures the osculation of the linear system. Then

deg(δV ) = (r + 1)deg(L) +

(
r + 1

2

)
(2g − 2).

Remark 31 Plücker formulas are the formulas relating the ramification indices of a

linear system and the degrees of the associated maps, e.g. for g1
d on a curve X Plücker

formula is just the Riemann-Hurwitz formula.

We can derive the Plücker formulas by the lemma and example 29.

Lemma 32

P r(L) ∼= Λr+1(L)|Γ(m)
.

Remark 33 By definition Weierstrass points are the points p ∈ C for which gp is a

special divisor. Hence the locus of Weierstrass points is the degeneracy locus of

H0(C,K)⊗OC(2g−2) → Λ2g−2(K).

So if L = K,V = H0(K), then c1 = (g+ 1)g(g− 1) is the number of Weierstrass points

on a curve genus g.

Remark 34 Moreover c1(Λr+1L|Γ(r+1)
) = (r + 1)deg(L) +

(
r+1

2

)
(2g − 2) is the Brill-

Segre formula[Lak],[EH] enumerating the strictly (r + 1)-tuple points of the complete

linear system H0(L) over the ground field k, where char(k) = p with p = 0 or p > d.
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In the rest of this section we verify the classical de Jonquieres’ fromula for low

degrees with technics in Ch2.

Theorem 35 (de Jonquieres’ formula[ACGH],[Mac],[V]) Let a1, · · · , ak, n1, · · · , nk, d

be positive integers. Let r be a non-negative integer. Suppose the a′is are distinct,

Σni = d − r, and Σaini = d. Set a = (a1, · · · , ak), n = (n1, · · · , nk). Then the virtual

number µa,n of divisors having ni points of multiplicity ai in a given linear series of

dimension r and degree d is

µa,n = [Ra(t)
gPa(t)

d−r−g]tn11 ···t
nk
k
.

This formula is valid in arbitrary characteristic, as proved in Mattuck[Mat].

Let B be a point, i.e. X/B is a smooth curve of genus g. By splitting principle,

c(Λd(L)) = c(Λd−1(L))(1 + Ld + Γ(d−1) − Γ(d)) =
d∏
i=1

(1 + Li + Γ(i−1) − Γ(i)),

where Li = p∗i (L), pi : W d → X is the i-th projection and W d = X
[d,d−1,··· ,1]
B is the

full-flag Hilbert scheme. Now for

c(Λd(L)|Γ(a1,··· ,ak)
)

=

a1∏
i1=1

(1 + Li1 + Γ(i1−1) − Γ(i1))

a1+a2∏
i2=a1+1

(1 + Li2 + Γ(i2−1) − Γ(i2)) · · ·

· · ·
d∏

ik=ak−1+1

(1 + Lik + Γ(ik−1) − Γ(ik)),

consider the polynomial in t1, · · · , tk

(∗)

a1∏
i1=1

((Li1 + Γ(i1−1) − Γ(i1))t1)

a1+a2∏
i2=a1+1

((Li2 + Γ(i2−1) − Γ(i2))t2) · · ·

· · ·
d∏

ik=ak−1+1

((Lik + Γ(ik−1) − Γ(ik))tk).

Then we have c(Λd(L)|Γ(a1,··· ,ak)
) = 1 + c1 + · · ·+ ck, where ci = [∗]tα11 ···t

αk
k

with

α1 + · · ·+αk = i and αl ≤ l for any 1 ≤ l ≤ k and by [∗]tα11 ···t
αk
k

we mean the coefficient
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of the monomial tα1
1 · · · t

αk
k . For the de Jonquiere’s question for a smooth curve we have

to compute the top Chern number ck. This can be computed by recursion via transfer

theorems.

For the single block the example 29 verifies the de Jonquieres’ formula. For multiblocks

we need a general transfer theorem as in next section. For a single smooth curve, i.e.

B = pt, we don’t have boundary families and nodes. Thus we have simple transfer

theorems from Theorems 42 and 43:

Theorem 36 For
∑k

i=1 ai = d − 1 and with notations τd,f , τd,p for free and punctual

transfers,

τd,f (Γ(a1,··· ,ak)) = Γ(a1,··· ,ak,1),

τd,p(Γ(a1,··· ,ak)) = Γ(a1,··· ,ak+1).

Example 37 By splitting principle, we have

c(Λd(L)|Γ(a1,a2)
) =

a1∏
i=1

(1 + Li + Γ(i−1) − Γ(i))
d∏

j=a1+1

(1 + Lj + Γ(j−1) − Γ(j)),

where a1 + a2 = d. Considering a polynomial in t1, t2, for c2(Λd(L)|Γ(a1,a2)
), we have to

compute the coefficients of t1t2 and t22, i.e. the followings:

1.
∑a1

i=1(Li + Γ(i−1) − Γ(i))(a2Ld + Γ(a1) − Γ(d))

2.
∑d−1

j=a1+1(Lj + Γ(j−1) − Γ(j))((d− j)Ld + Γ(j) − Γ(d)).

Since

a1∑
i=1

(Li + Γ(i−1) − Γ(i))(a2Ld + Γ(a1) − Γ(d)) = c1(Λa1L|Γ(a1)
)(a2L2 − Γ(d)),

the first sum

(a1L1 +

(
a1

2

)
ω1)(a2L2 − Γ(d)) =a1a2L

2 + (a1

(
a2

2

)
+ a2

(
a1

2

)
)Lω

+

(
a1

2

)(
a2

2

)
ω2 − a2

1a2L− a1a2

(
a1

2

)
ω.
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Moreover, for a1 < i < j,

(Lj + Γ(j−1) − Γ(j))((d− j)Ld + Γ(j) − Γ(d))

= (j − a1 − a2)a1Lj − a1Ld − (j − a1 − 1)

(
a1

2

)
ω1ω2

+ (j − a1 − 1)(j − a1)a1ω2 +

(
j

2

)
a1ωΓ(d) + (j − a1 − 1)

(
a1

2

)
ω1ω2

− (j − a1 − 1)a1a2ω2Γ(d) − a1

(
d

2

)
ωΓ(d).

Integrating the second

d−1∑
j=a1+1

(j − a1 − a2)a1d− (d− j)a1d+ (j − a1 − 1)(j − d)a1ω − a1(

(
d

2

)
−
(
j

2

)
)ω

= −2a1

(
a2

2

)
d− a1

(
a2

2

)
(d− 1)ω

= a1

(
a2

2

)
(−2d− (d− 1)ω).

Hence

c2(Λd(L)|Γ(a1,a2)
)

= a1a2d+ dω(a1

(
a2

2

)
+ a2

(
a1

2

)
)−

(
a1

2

)
a1a2ω +

(
a1

2

)(
a2

2

)
ω2 − a1

(
a2

2

)
(d− 1)ω.

Alternatively, we may compute c2(Λd(L)|Γ(a1,a2)
) as follows.

Example 38 Consider c2(Λd(L)|Γ(a1,a2)
). Then

c2,(a1,a2) := c2(Λd(L)|Γ(a1,a2)
)

= τd,p(c2,(a1,a2−1)) + (a1L1 + (a2 − 1)L2 − Γ(d−1))(Ld + Γ(d−1) − Γ(d)),

hence

c2,(a1,a2) − c2,(a1,a2−1) =a1L
2 + a1L1(Γ(d−1) − Γ(d)) + (a2 − 1)L2(Γ(d−1) − Γ(d))

− Γ(d−1)Ld − Γ(d−1)(Γ(d−1) − Γ(d))

=a1L
2 + (a1(a2 − 1) +

(
a1

2

)
)Lω − a1(a1 + 2a2 − 2)L

+

(
a1

2

)
(a2 − 1)ω2 − a1(

(
a1

2

)
+

(
a2 − 1

2

)
+ (a2 − 1)(d− 1))ω.
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By integrating this, we have

c2,(a1,a2) =a1a2L
2 + (a1

(
a2

2

)
+ a2

(
a1

2

)
)Lω − a1(a1a2 + 2

(
a2

2

)
)L+

(
a1

2

)(
a2

2

)
ω2

− (a1a2

(
a1

2

)
+ a1

(
a2

3

)
+ a2

1

(
a2

2

)
+ a1

(
a2

2

)
2a2 − 1

3
)ω.

Example 39 Consider c3,(a1,a2,a3) := c3(Λd(L)|Γ(a1,a2,a3)
), where a1 + a2 + a3 = d.

c3(Λd(L)|Γ(a1,a2,a3)
) = τd,p(c3,(a1,a2,a3−1)) + c2,(a1,a2,a3−1)(Ld −4(d)).

Now for c2,(a1,a2,a3−1), we have

c2,(a1,a2,a3−1) − τd−1,p(c2,(a1,a2,a3−2)) = c1,(a1,a2,a3−2)(Ld−1 −4(d−1))

=(a1L1 + a2L2 − Γ(d−2))(Ld−1 + Γ(d−2) − Γ(d−1))

=
∑
i=1,2

aiLiL3 + ai(a3 − 2)Liω3 +

(
ai
2

)
L3ωi +

(
ai
2

)
(a3 − 2)ωiω3

− ai(a1L1 + a2L2 + (a3 − 2)L3 + (a3 − 2)(ai + a3 − 2)ω3)Γ(ai+a3−1,a3−i)

− a1a2(L3 + (a3 − 2)ω3)Γ(a1+a2,a3−1) + a1a2(a1 + a2 + 2(a3 − 2))Γ(d−1).

Integrating this we get,

c2,(a1,a2,a3−1) =c2,(a1,a2,1) +
∑
i=1,2

ai(a3 − 2)LiL3 + ai

(
a3 − 1

2

)
Liω3 +

(
ai
2

)
(a3 − 2)L3ωi

+

(
ai
2

)(
a3 − 1

2

)
ωiω3 − ai((a3 − 2)(a1L1 + a2L2) +

(
a3 − 1

2

)
L3

+ ((ai − 1)

(
a3 − 1

2

)
+ 2

(
a3

3

)
)ω3)Γ(ai+a3−1,a3−i) − a1a2((a3 − 2)L3

+

(
a3 − 1

2

)
ω3)Γ(a1+a2,a3−1) + a1a2((a1 + a2)(a3 − 2)

+ 2

(
a3 − 1

2

)
)Γ(d−1),

where

c2,(a1,a2,1) =τ(c2,(a1,a2)) +
∑
i=1,2

(aiLi +

(
ai
2

)
ωi)L3 + (−aiLi +

(
ai
2

)
ωi)(a1Γ(a1+a3−1,a2)

+ a2Γ(a2+a3−1,a1))− a1a2L3Γ(a1+a2,a3−1) + a1a2(a1 + a2)Γ(d−1)
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and c2,(a1,a2) is given in above example. Therefore

c2,(a1,a2,a3−1)

=τ(c2,(a1,a2)) +
∑
i=1,2

ai(a3 − 1)LiL3 + ai

(
a3 − 1

2

)
Liω3 +

(
ai
2

)
(a3 − 1)L3ωi

+

(
ai
2

)(
a3 − 1

2

)
ωiω3 − ai((a3 − 1)(a1L1 + a2L2) +

(
a3 − 1

2

)
L3

−
(
ai
2

)
ωi + ((ai − 1)

(
a3 − 1

2

)
+ 2

(
a3

3

)
)ω3)Γ(ai+a3−1,a3−i)

− a1a2((a3 − 1)L3 +

(
a3 − 1

2

)
ω3)Γ(a1+a2,a3−1)

+ a1a2(a3 − 1)(a1 + a2 + a3)Γ(d−1).

Then c2,(a1,a2,a3−1)(L3 + Γ(d−1) − Γ(d))

=a1a2L
3 + (a1

(
a2

2

)
+ a2

(
a1

2

)
+ a1a2(a3 − 1))L2ω + (

(
a1

2

)(
a2

2

)
+ a1

(
a2

2

)
(a3 − 1)

+ a2

(
a1

2

)
(a3 − 1))Lω2 +

(
a1

2

)(
a2

2

)
(a3 − 1)ω3 − a1(2a1a2 + a2

2 + 2

(
a2

2

)
)L2

− (a1a2

(
a1

2

)
+ a1

(
a2

3

)
+ a2

1

(
a2

2

)
+ a1

(
a2

2

)
2a2 − 1

3
+ a2

1a2(a3 − 1)

+ 2a1

(
a2

2

)
(a3 − 1) + (a1 + a2)(a1

(
a2

2

)
+ a2

(
a1

2

)
))Lω − ((a3 − 1)(a1a2

(
a1

2

)
+ a1

(
a2

3

)
+ a2

1

(
a2

2

)
+ a1

(
a2

2

)
2a2 − 1

3
) + (a1 + a2)

(
a1

2

)(
a2

2

)
+ a1

(
a2

2

)(
a3 − 1

2

)
+ a2

(
a1

2

)(
a3 − 1

2

)
)ω2 + a1(a1 + a2)(a1a2 + 2

(
a2

2

)
)L+ (a1 + a2)(a1a2

(
a1

2

)
+ a1

(
a2

3

)
+ a2

1

(
a2

2

)
+ a1

(
a2

2

)
2a2 − 1

3
)ω.
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Finally integrating this, we have

c3,(a1,a2,a3) =

a1a2a3L
3 + (a1a3

(
a2

2

)
+ a2a3

(
a1

2

)
+ a1a2

(
a3

2

)
)L2ω + (a1

(
a2

2

)(
a3

2

)
+ a2

(
a1

2

)(
a3

2

)
+ a3

(
a1

2

)(
a2

2

)
)Lω2 +

(
a1

2

)(
a2

2

)(
a3

2

)
ω3 − a1(2a1a2a3 + a2

2a3 + 2a3

(
a2

2

)
+ 4a2

(
a3

2

)
)L2 − (a1a2a3

(
a1

2

)
+ a1a3

(
a2

3

)
+ a2

1a3

(
a2

2

)
+ a1a3

(
a2

2

)
2a2 − 1

3

+ a2
1a2

(
a3

2

)
+ 2a1

(
a2

2

)(
a3

2

)
+ (a1 + a2)a3(a1

(
a2

2

)
+ a2

(
a1

2

)
) + 2a1a2

(
a3

2

)
+ a1

(
a2

2

)(
a3

2

)
+ a2

(
a1

2

)(
a3

2

)
+ (a1 + a2 − 2)a1a2

(
a3

2

)
+ 4a1a2

(
a3 + 1

3

)
)Lω

− (a1a2

(
a1

2

)(
a3

2

)
+ a1

(
a2

3

)(
a3

2

)
+ a2

1

(
a2

2

)(
a3

2

)
+ a1

(
a2

2

)(
a3

2

)
2a2 − 1

3

+ (a1 + a2)a3

(
a1

2

)(
a2

2

)
+ a1

(
a2

2

)(
a3

3

)
+ a2

(
a1

2

)(
a3

3

)
)ω2 + (3a2

1a2

(
a3

2

)
)

+ 3a1a
2
2

(
a3

2

)
+ 4a1a2

(
a3

2

)
+ a2

1a
2
2

(
a3

2

)
+ a1a3(a1 + a2)(a1a2 + 2

(
a2

2

)
))L

+ (2a1

(
a2

2

)(
a3

3

)
+ 2a2

(
a1

2

)(
a3

3

)
+ 4a1a2

(
a3 + 1

4

)
− a1a2a3

(
a1

2

)
− a1a2a3

(
a2

2

)
+ a2

1a
2
2

(
a3

3

)
+ 2a1a2

(
a3

3

)
(a1 + a2 − 1) + 6a1a2

(
a3 + 1

4

)
+ (a1 + a2)a3(a1a2

(
a1

2

)
+ a1

(
a2

3

)
+ a2

1

(
a2

2

)
+ a1

(
a2

2

)
2a2 − 1

3
))ω.

Remark 40 1. These are polynomials in d and g.

2. For a smooth surface S, the de Jonquieres’ formula is a polynomial in L2, Lω, ω2,

and c2(S). More generally Göttsche conjectured( recently proved by Y. Tzeng [T]

and M. Kool, V. Shende, R.P. Thomas [KST]) that for every r, the numbers of

r-nodal curves are given by universal polynomials of these four topological numbers.
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Chapter 4

de Jonquieres’ formula for pencil

4.1 Transfer theorems

For the de Jonquieres’ formula for a family of curves X/B, we need to compute

a polynomial in Chern classes of Λm(L) over Γµ for a partition µ of m, P (c(Λm(L)Γµ)) for

a line bundle L on X/B. More generally, our object is to compute all polynomials in the

Chern classes of tautological bundle Λm(L). The idea is to use the splitting principle

and transfer theorem via flag Hilbert scheme, X
[m,m−1]
B , recursively. Indeed, for any

polynomial in the Chern classes of Λm(L), we can write this as a sum of monomials of

the form P1 · · ·Pm, where Pi comes from X
[i]
B by splitting principle. Inductively we can

compute any such polynomials by free and punctual transfer theorems for any partition

µ. In this section we will give these transfers generalizing the transfers in Ch2.

Let π = (a1, · · · , ak) with wt(π) :=
∑k

i=1 ai = m. By a consolidation of π we mean any

partition µ obtained from π by repeating the operation of uniting two distinct blocks.

Now we define a tautological group Tmπ associated to a partition π generated by

1. Γµ, where µ is any consolidation of π,
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2. polyscrolls F
(n.;m)
(j.,µ′) (θ.;X/B), where n. = (n1, · · · , nr), j. = (j1, · · · , jr),

θ. = (θ1, · · · , θr), and µ′ is a partition such that µ′
∐

(n1, · · · , nr) = µ,

3. polysections (Γ(e1)Fn1
j1

) · · · (Γ(er)Fnrjr )µ′ , where each ei = 0 or m−
∑i−1

j=1 nj and µ′

is a partition such that µ′
∐

(n1, · · · , nr) = µ.

Note that if ei = 0 we have scroll for the node θi otherwise we have section.

Convention: By ei = 0 or 1 we mean ei = 0 or m−
∑i−1

j=1 nj .

Now then we have the

Corollary 41 Tmπ is Q[Γ(m)]-module under the intersection with discriminant Γ(m).

Proof. This can be proved similarly as module theorem 15.

Let τm,f and τm,p be m-th free transfer and m-th punctual transfer, respectively. For

a free transfer calculus, we need to see how the map τm,f : Tm−1
π → Tmπ+11

sends

tautological classes on Tm−1
π .

Theorem 42 (Free transfer) τm,f takes tautological classes on Tm−1
π to tautological

classes on Tmπ+11
as follows:

1. for any twisted polyblock diagonal class Γµ[α.], α. ∈ TSµ(H .(X)), wt(µ) = m− 1,

τm,f (Γµ[α.]β(m)) = Γµ+11 [α.β].

2. for any twisted polyscroll class Fn.,m−1
j.,ν (θ.)[α.], α. ∈ Tm−n.−1(Xθ.

T (θ.)),

τm,f (Fn.,m−1
j.,ν (θ.)[α.]β(m)) = Fn.,mj.,ν+11

(θ.)[τm−n.,Xθ.
T

(α.β|Xθ.
T

)],

where τm−n.,Xθ.
T

is transfer on the tautological module of the boundary family Xθ.
T .
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3. for any twisted nodesection (−Γ(m−1))Fn,m−1
j,ν (θ)[α.], α. ∈ Tm−n−1(Xθ

T (θ)),

τm,f ((−Γ(m−1))Fn,m−1
j,ν (θ)[α.]β(m)) =θ∗(β)Fn+1,m

j,ν (θ)[α.]

+ (−Γ(m))Fn,mj,ν+11
(θ)[τm−n,Xθ

T
(α.β|Xθ

T
)]

− Fn,mj,ν+11
(θ)[en,mj+1(τm−n,Xθ

T
(α.β|Xθ

T
))]

+ Fn,mj,ν+11
(θ)[τm−n,Xθ

T
(en,m−1
j+1 (α.)β|Xθ

T
)].

4. more generally, for any twisted polysection (−Γ(e1)Fn1
j1

) · · · (−Γ(er)Fnrjr )µ′ [α.], α. ∈

Tm−n.−1(Xθ.
T (θ.)), where each ei = 0 or 1 and µ′

∐
(n1, · · · , nr) = µ,

τm,f ((−Γ(e1)Fn1,m−1
j1

(θ1)) · · · (−Γ(er)Fnrjr )µ′ [α.β(m)])

=(−Γ(e1)Fn1,m
j1

(θ1))(
r∑
i=2

(−Γ(e2)Fn2,m−n1
j2

(θ2)) · · · θ∗i (β)Fni+1
ji

(θi) · · ·

· · · (−Γ(er)Fnrjr )µ′ [α.])

+ τm,f (−Γ(e1)Fn1,m
j1

(θ1))(τm−n1,f (−Γ(e2)Fn2,m−1−n1
j2

(θ2) · · · (−Γ(er)Fnrjr )µ′ [α.β])

−
r∑
i=2

(−Γ(e2)Fn2,m−n1
j2

(θ2)) · · · θ∗i (β)Fni+1
ji

(θi) · · · (−Γ(er)Fnrjr )µ′ [α.]).

Proof. Part 1 is obvious. For 2, we will use induction on r, the number of node blocks.

First consider nodescroll Fn,m−1
j,ν (θ;X/B). Recall that Fn,m−1

j,ν (θ) is defined by the fiber

square
Fn,m−1
j,ν (θ) −−−−→ Fn,m−1

j (θ)y yp[m−1−n]

Γν,Xθ
T

g−−−−→ (Xθ
T )[m−1−n],

where p[m−1−n] is P1-bundle projection and g is generically finite onto the locus of

schemes of type ν on the boundary family Xθ
T . Then since the free transfer τm,f of

Fn,m−1
j,ν (θ;X/B) is equivalent to the free transfer of the base Γν,Xθ

T

g−→ (Xθ
T )[m−1−n], by

the transfer of the base the fiber square reduces to

τm,f (Fn,m−1
j,ν (θ)) −−−−→ Fn,mj (θ)y yp[m−n]

Γν+11,Xθ
T

−−−−→ (Xθ
T )[m−n],
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hence τm,f (Fn,m−1
j,ν (θ)) = Fn,mj,ν+11

(θ). For polyscroll/sections, we may use induction on

the number of nodes. Since nodes are disjoint it suffices to consider 2-blocks F =

Fn1,n2;m−1
j1,j2;ν (θ1, θ2;X/B), where ν + 1n1 + 1n2 = µ. Recall that by the construction of

polyscroll, we have the following fiber product

F −−−−→ Fn1,m−1
j1

(θ1;X/B)y y
F ′ −−−−→ (Xθ1

T (θ1))
[m−1−n1],

where F ′ = Fn2,m−1−n1
j2,ν+1j1

(θ2;Xθ1
T (θ1)). Note that the right vertical map is P1-bundle

projection and the bottom horizontal map is generically finite map. Now the base is

transfered to Fn2,m−n1
j2,ν+1j1+1(θ2;Xθ1

T (θ1))→ (Xθ1
T (θ1))

[m−n1]. Hence we have

τm,f (Fn1,n2;m−1
j1,j2;ν (θ1, θ2;X/B)) = Fn1,n2;m

j1,j2;ν+11
(θ1, θ2;X/B). Now by induction we have part

2.

For a nodesection (−Γ(m−1))Fn,m−1
j,ν (θ), consider the fiber square

(−Γ(m−1))Fn,m−1
j,ν (θ) −−−−→ Fn,m−1

j (θ;X/B)y y
Γν −−−−→ (Xθ

T (θ))
[m−1−n1].

Note that on Fn,m−1
j (θ), we have −Γ(m−1) ∼ Qn,m−1

j + en,m−1
j+1 . p∗[m−1]Q

n,m−1
j splits in

two parts, depending on whether the point w added to a scheme z ∈ Qn,m−1
j is in the

off-node or nodebound portion of z. The first case we have Γν+11 and the second case

we have Fn+1,m
j (θ) by the base transfer of the square, hence we have part 3.

For more general polysections we use induction on the number of nodes. For a polysec-

tion (−Γ(e1)Fn1,m−1
j1

(θ1))(−Γ(e2)Fn2,m−1−n1
j2

(θ2))µ′ [α.], α. ∈ Tm−n.−1(Xθ.
T (θ.)), consider

the fiber square

(−Γ(e1)Fn1,m−1
j1

(θ1))(−Γ(e2)Fn2,m−1−n1
j2

(θ2))µ′ −−−−→ −Γ(e1)Fn1,m−1
j1

(θ1)y y
−Γ(e2)Fn2,m−1−n1

j2
(θ2)µ′ −−−−→ (Xθ1

T (θ1))
[m−1−n1].
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Let’s consider the transfer of the base, i.e. −Γ(e2)Fn2,m−1−n1
j2

(θ2)µ′ . The node part(i.e.

θ2) transfers this to Fn2+1,m−n1
j2

(θ2) and hence the corresponding right vertical P1 bundle

is (−Γ(e1)Fn1,m
j1

(θ1)), so we have

(−Γ(e1)Fn1,m
j1

(θ1))Fn2+1,m−n1
j2

(θ2).

Now the off-node part transfers the base to

− Γ(e2)Fn2,m−n1
j2

(θ2)[τm−n1−n2,Xθ.
T

(·)]− Fn2,m−n1
j2,µ+11

(θ2)[en2,m−n1
j2+1 (τm−n.,Xθ.

T
(·))]

+ Fn2,m−n1
j2,µ+11

(θ2)[τm−n.,Xθ.
T

(en2,m−n1−1
j2+1 (·))]

and hence the corresponding right vertical P1 bundle is τm,f (−Γ(e1)Fn1,m
j1

(θ1)), so we

have

τm,f (−Γ(e1)Fn1,m
j1

(θ1))(−Γ(e2)Fn2,m−n1
j2

(θ2)[τm−n1−n2,Xθ.
T

(·)]

− Fn2,m−n1
j2,µ+11

(θ2)[en2,m−n1
j2+1 (τm−n.,Xθ.

T
(·))] + Fn2,m−n1

j2,µ+11
(θ2)[τm−n.,Xθ.

T
(en2,m−n1−1
j2+1 (·))]).

Combining these we have

τm,f ((−Γ(e1)Fn1,m−1
j1

(θ1))(−Γ(e2)Fn2,m−1−n1
j2

(θ2))µ′)

=(−Γ(e1)Fn1,m
j1

(θ1))Fn2+1,m−n1
j2

(θ2)

+ τm,f (−Γ(e1)Fn1,m
j1

(θ1))(τm−n1,f (−Γ(e2)Fn2,m−1−n1
j2

(θ2))− Fn2+1,m−n1
j2

(θ2)).

Now inductively we have part 4.

Next, for a punctual transfer calculus, we need to see how the map τm,p : Tm−1
π → Tmπ′

defined by the restriction of p[m]∗p
∗
[m−1] to Γπ, where π = (a1, · · · , ak), π′ = (a1, · · · , ak+

1) sends tautological classes on Tm−1
π .

Theorem 43 (Punctual transfer) τm,p takes tautological classes on Tm−1
π to tautologi-

cal classes on Tmπ′ as follows:
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1. for any polyblock diagonal class Γµ, wt(µ) = m− 1,

τm,p(Γµ) = Γµ′ ,

where µ′ is the corresponding partition of µ under π → π′.

2. for any nodescroll/section Fn,m−1
j,ν (θ),−Γ(m−1)Fn,m−1

j,ν (θ), where ak belongs to the

ν,

τm,p(F
n,m−1
j,ν (θ)) = Fn,mj,ν′ (θ),

and

τm,p((−Γ(m−1))Fn,m−1
j,ν (θ)) = τm,f (−Γ(m−1)Fn,m−1

j,ν′ (θ)).

More generally for any polyscroll/sections (−Γ(e1)Fn1
j1

) · · · (−Γ(er)Fnrjr )ν , where each

ei = 0 or 1,

τm,p((−Γ(e1)Fn1
j1

) · · · (−Γ(er)Fnrjr )ν) = τm,f ((−Γ(e1)Fn1
j1

) · · · (−Γ(er)Fnrjr )ν′),

where ν ′ is the corresponding partition of ν under π → π′.

(Note that this is free transfer corresponding to ν → ν ′.)

3. for any polyscroll Fn.;m−1
j.;ν

(θ.;X/B), where ak is one of the summands making up

some ni,

τm,p(F
n.;m−1
j.;ν

(θ.)) =
ni + 1− ji

ni
Fn1,··· ,ni+1,··· ,nr,m
j1,··· ,ji,··· ,jr,ν (θ.)+

ji + 1

ni
Fn1,··· ,ni+1,··· ,nr,m
j1,··· ,ji+1,··· ,jr,ν (θ.).

4. for any nodesection (−Γ(m−1))Fn,m−1
j,ν (θ), where ak is one of the summands making

up n,

τm,p((−Γ(m−1))Fn,m−1
j,ν (θ)) =

(−Γ(m))Fn+1,m
j+1,ν (θ)− Fn+1,m

j+1,ν (θ)[(
n− j − 1

n
ψnj+2 +

j + 1

n
ψnj+1)]

+
n− j
n− 1

Fn+1,m
j,ν (θ)[ψn−1

j α.] +
j + 1

n− 1
Fn+1,m
j+1,ν (θ)[ψn−1

j α.].
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5. more generally, for any polysection (−Γ(e1)Fn1
j1

) · · · (−Γ(er)Fnrjr )µ′, where each ei =

0 or 1, where ak is one of the summands making up some ni,

τm,p((−Γ(e1)Fn1
j1

) · · · (−Γ(er)Fnrjr )µ′) =

(−Γ(e1)Fn1
j1

) · · · τm−∑i−1
j=1 nj ,p

((−Γ(ei))Fni,m−1
ji

(θi)) · · · (−Γ(er)Fnrjr )µ′).

To prove this theorem we use the following lemma

Lemma 44

τm,f ◦ τm−1,p = τm,p ◦ τm−1,f ,

where the punctual transfers on both are considered on the same block.

Proof. Obvious.

Now we prove the theorem.

Proof. 1 is obvious. 2 is from free transfer theorem above and note that when we think

p∗m−1Q has only off-node point which belongs to some block of ν.

For 3, we use induction on r, the number of node blocks. First we prove

τm,p(F
n,m−1
j,ν (θ)) =

n+ 1− j
n

Fn+1,m
j,ν (θ) +

j + 1

n
Fn+1,m
j+1,ν (θ).

Recall that τm,p(C
m−1
j (θ)) = m−j

m−1C
m
j (θ) + j+1

m−1C
m
j+1(θ).

Note that Fn,m−1
j (θ) = τm−1,fτm−2,f · · · τn+1,f (Cnj (θ)), (m− 1− n)-free transfers. Now

consider τm,p(F
n,m−1
j (θ)) punctual transfer. Since (m− 1−n)-free and then 1 punctual

is 1 punctual and then (m− 1− n)-free by lemma,

τm,p(F
n,m−1
j (θ)) =τm,p(τm−1,fτm−2,f · · · τn+1,f (Cnj (θ)))

=τm,f · · · τn+2,f (τn+1,p(C
n
j (θ)))

=τm.,f (
n+ 1− j

n
Cn+1
j (θ) +

j + 1

n
Cn+1
j+1 (θ))

=
n+ 1− j

n
Fn+1,m
j (θ) +

j + 1

n
Fn+1,m
j+1 (θ).
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Now inductively we have part 3 with the fact that

Fn1,m−1
j1

Fn2,m−1−n1
j2

= Fn2,m−1
j2

Fn1,m−1−n2
j1

.

For 4, recall the transfer,i.e. the restriction of p[m]∗p
∗
[m−1] to Γπ when ak is one of the

summands making up n. Letting Γ̃π := p−1
[m−1](Γπ), this is based on the correspondence

Γ̃π
pm

��

pm−1

��

Γπ.Γπ′

We may consider the ordered flag Hilbert scheme and pass to unordered one. Consider

X
dm,m−1e
B

opm

��

opm−1

��

X
dm−1e
B .X

dme
B

Now for the nodesection −Γ(m−1)Fn,m−1
j,ν (θ) of Γ1n+ν , the ordered locus is a nodesection

of ΓI|J , where I = 1n, J = ν. Then since ak is one of the summands making up n,

opm−1 = opI × iso. Now opI and the unordered p[n] is understood by Proposition 22,

hence we have part 4.

Now 5 follows from the induction and the fact that

(−Γ(e1)Fn1,m−1
j1

)(−Γ(e2)Fn2,m−1−n1
j2

) = (−Γ(e2)Fn2,m−1
j2

)(−Γ(e1)Fn1,m−1−n2
j1

).

4.2 de Jonquieres’ problems for a family of curves

Let’s start with the definition of a family of grd’s.

Definition 45 By a family of grd’s on C parametrized by an analytic space S we mean

the datum of

1. A family L of degree d line bundles on C, parametrized by S.
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2. A locally free, rank (r + 1) subsheaf F of φ∗L, where φ is the projection of C × S

onto S, with the property that, for each s ∈ S, the homomorphism

F ⊗ k(s)→ H0(φ−1(s), L⊗Oφ−1(s))

is injective.

At least when S is reduced, a family of grd’s on C parametrized by S can be thought of

as a holomorphically varying family

Ls → C, s ∈ S,

of degree d line bundles on C, together with a holomorphically varying family Ds of grd’s

Ds ⊂ |Ls|, s ∈ S.

If we are given a family of grd’s, G = (L,F ) on C parametrized by S, and a morphism

f : T → S,

we can define the pull-back

f∗(G) = ((1C × f)∗L, f∗(F )),

which is a family of grd’s on C parametrized by T .

Two families (L,F ), (L′, F ′) of grd’s on C parametrized by S are said to be equivalent if

there exist a line bundle R on S and an isomorphism

L′ ∼= L⊗ φ∗R

such that F ′ is identified with F ⊗R. Then

Grd(C) := {grd’s on C}

is the universal parametrizing space;
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Theorem 46 ([ACGH]) For any analytic space S and any family G of grd’s on C

parametrized by S, there is a unique morphism from S to Grd(C) such that the pull-

back of the universal family parametrized by Grd(C) is equivalent to G.

For a family of smooth curves genus g > 1, π : X → B, we have Brill-Noether varieties,

Crd and Wr
d which coincide with the Brill-Noether varieties Crd and W r

d for a smooth

curve, i.e. B = a point. For π : X → B, define

supp(Crd) = {(b,D) : b ∈ B,D ∈ (Xb)
(d) such that h0(Xb,OXb(D)) ≥ r + 1}

and

supp(Wr
d) = {(b, L) : b ∈ B,L ∈ Picd(Xb) such that h0(Xb, L) ≥ r + 1}.

Then they have a scheme structure by showing that they are determinantal varieties[ACG].

Moreover we have another Brill-Noether variety Grd parameterizing all grd’s on the fiber

Xb of the family π.

Proposition 47 (ACG) When g ≥ 2 every component of Grd has dimension at least

3g− 3 + ρ. Similarly, when r ≥ 0 and r ≥ g− d, every component of Wr
d has dimension

at least 3g − 3 − ρ, and every component of Crd has dimension at least 3g − 3 + ρ + r,

where ρ is the Brill-Noether number.

For a family of nodal curves X/B consider a line bundle L on X and a vector bundle E

on B such that E ⊂ π∗L. Note that for any b ∈ B, Eb ⊂ H0(Xb, L|Xb), i.e. a grd on Xb,

hence we have a family of grd. Let π[m] : X
[m]
B → B. As the de Jonquieres’ problem for

a single smooth curve, for a family of nodal curves we have to find a certain degeneracy

locus of the morphism of vector bundles φm : (π[m])∗E → ΛmL on X
[m]
B ; first consider

the composition (π∗E ↪→ π∗π∗L) ◦ (π∗π∗L → L), i.e. π∗E → L. By pulling back via

p1, restriction to the universal subscheme of the relative Hilbert scheme Z, and pushing
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forward via p2, we have p2∗p
∗
1π
∗E → p2∗(p

∗
1L⊗OZ) = ΛmL. Now by composing with a

natural morphism (π[m])∗E → p2∗p
∗
1π
∗E we get the morphism φ. Note that over X

[m]
b ,

(φm)|
X

[m]
b

: O
X

[m]
b

⊗ Eb → (ΛmL)|
X

[m]
b

. Further over z ∈ X [m]
b , φz : Eb → H0(L|z). Now

suppose degL = m, then since H0(L) ≤ degL, rk(E) = e ≤ m.

Now (e− 1)-th degeneracy locus is {z ∈ X [m]
B : there is a section s ∈ Eb ⊂ H0(L|Xb) s.t.

s|z = 0}. Now (e − 1)-degeneracy locus of φ is 4m−e+1,1(ΛmL − π[m]∗E) by Porteous’

formula.

Note that the expected dimension is m+1−(m−e+1). Hence on Γµ, where wt(µ) = k,

the expected dimension of the degeneracy locus is 0, i.e. finite set of divisors when

m−e = k. Therefore for the de Jonquieres’ problem for a 1-parameter family we need to

find ck+1(ΛmL−π[m]∗E)|Γµ , where µ = (a1, · · · , ak). For example c2(ΛmL−π[m]∗E)|Γ(m)

and c3(ΛmL− π[m]∗E)|Γ(a1,a2)
, where a1 + a2 = m. Here since dimB = 1 we have

c2(ΛmL− π[m]∗E)|Γ(m)
= c2(ΛmL|Γ(m)

)− c1(ΛmL|Γ(m)
)x,

c3(ΛmL− π[m]∗E)|Γ(a1,a2)
= c3(ΛmL|Γ(a1,a2)

)− c2(ΛmL|Γ(a1,a2)
)y,

where x = (π[m])∗c1(E) ∩ [Γ(m)] and y = (π[m])∗c1(E) ∩ [Γ(a1,a2)]. We will get these

formulas in this section.

Lemma 48 τm,p · · · τi+1,p(C
i
j) =

∑m−i
k=0

(m−j−km−i−k)(
j+k
k )

(m−1
m−i)

Cmj+k.

Proof. Note that

τi+1,p(C
i
j) =

i+ 1− j
i

Ci+1
j +

j + 1

i
Ci+1
j+1.
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To use induction suppose that τm−1,p · · · τi+1,p(C
i
j) =

∑m−1−i
k=0

(m−1−j−k
m−i−k )(j+kk )

( m−2
m−1−i)

Cm−1
j+k . Then

τm,p(
m−1−i∑
k=0

(
m−1−j−k
m−i−k

)(
j+k
k

)(
m−2
m−1−i

) Cm−1
j+k )

=

m−1−i∑
k=0

(
m−1−j−k
m−i−k

)(
j+k
k

)(
m−2
m−1−i

) (
m− j − k
m− 1

Cmj+k +
j + k + 1

m− 1
Cmj+k+1).

By simple algebra the lemma is proved.

Similarly we have the

Lemma 49 For i, where a1 + 1 ≤ i ≤ a2 and a1 + a2 = m,

τm,p · · · τk+1,p(F
i,k
j,a1

(θ2)) =

a2−i∑
l=0

(
a2−j−l
a2−i−l

)(
j+l
l

)(
a2−1
a2−i

) F a2,mj+l,a1
(θ2).

Remark 50 We also have

1. τm,p · · · τm−i+2,p(
∑a2−i

k=1 k(a2−i+1−k)F a2−i+1,m−i+1
k,a1

) =
∑a2−1

k=1 k(a2−k) a2−ia2−1F
a2,m
k,a1

.

2. τm,p · · · τi+1,p(
∑i−1

j=1
j(i−j)i

2 Cij) =
∑m−1

j=1

j(m−j)(i2)
m−1 Cmj .

Let µ = (a1, · · · , ak), µ − i = (a1, · · · , ak − i) for 1 ≤ i ≤ ak and consider the de Jon-

quieres’ formula; that is, we have to compute the Chern classes ck+1,µ := ck+1(ΛmL|Γµ)

and ck,µ := ck(ΛmL|Γµ) for a pencil case. Indeed, the formula is ck+1,µ − ck,µx, where

x = (π[m])∗c1(E)|Γµ .

Note that we have

ck+1,µ − ck+1,µ−1 =ck,µ−1(Lm −∆(m))

ck,µ−1 =τp(ck,µ−2) + ck−1,µ−2(Lm−1 −∆(m−1)).

By integrating the second, we have

ck,µ−1 =ck−1,µ−2(Lm−1 −∆(m−1)) + · · ·+ (τp)
i(ck−1,µ−(i+2)(Lm−(i+1) −∆(m−(i+1))))

+ · · ·+ (τp)
ak−1(ck,µ−(ak)),
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where (τp)
i := (τm,p)(τm−1,p) · · · (τak+1,p) and τj,p is the j-th punctual transfer from

(a1, · · · , ak−1, j − 1) to (a1, · · · , ak−1, j). Now

ck,µ = τm,p(ck,µ−1) + ck−1,µ−1(Lm −∆(m)).

Inductively, ck,µ−1 and ck−1,µ−1 are given, hence we can derive the de Jonquieres’ for-

mula, ck+1,µ− ck,µx. Note that for a single block this is a polynomial in L2, Lω, ω2, and

σ the number of nodes. For two blocks this is a polynomial in L3, L2ω,Lω2, ω3, and σ.

Example 51 We compute c2,m := c2(ΛmL|Γ(m)
).

By Splitting principle, we have

c2,m − c2,m−1

=((m− 1)L− Γ(m−1))(L+ Γ(m−1) − Γ(m))

=(m− 1)L2 + (m− 1)L(Γ(m−1) − Γ(m))− Γ(m−1)L− Γ(m−1)(Γ(m−1) − Γ(m))

=(m− 1)L2 + (m− 1)L(τm,p(−
(
m− 1

2

)
ω +

m−2∑
i=1

i(m− 1− i)(m− 1)

2
Cm−1
i )

+

(
m

2

)
ω −

m−1∑
i=1

i(m− i)m
2

Cmi ) +

(
m− 1

2

)
Lω + (

(
m− 1

2

)
ω

−
m−2∑
i=1

i(m− 1− i)(m− 1)

2
Cm−1
i )(Γ(m−1) − Γ(m))

=(m− 1)L2 + (m− 1)L(−
(
m− 1

2

)
ω +

(
m

2

)
ω) +

(
m− 1

2

)
Lω

+ (

(
m− 1

2

)
ω)(Γ(m−1)

− Γ(m))− (
m−2∑
i=1

i(m− 1− i)(m− 1)

2
Cm−1
i )(Γ(m−1) − Γ(m))

=(m− 1)L2 +
(m− 1)(3m− 4)

2
Lω + (m− 1)

(
m− 1

2

)
ω2

+ σ(
m−2∑
i=1

i(m− 1− i)(m− 1)

2
−
m−1∑
i=1

i(m− i)(m− 2)

2
)

=(m− 1)L2 +
(m− 1)(3m− 4)

2
Lω + (m− 1)

(
m− 1

2

)
ω2 −

(
m

3

)
σ.
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NB.

τm,p(
m−2∑
i=1

i(m− 1− i)(m− 1)

2
Cm−1
i )

=

m−2∑
i=1

i(m− 1− i)(m− 1)

2
(
m− i
m− 1

Cmi +
i+ 1

m− 1
Cmi+1)

=
m−2∑
i=1

i(m− i)(m− 2)

2
Cmi +

(m− 1)(m− 2)

2
Cmm−1.

Now integrating this, we have

c2,m =

(
m

2

)
L2 + (m− 1)

(
m

2

)
Lω + (3

(
m+ 1

4

)
−
(
m

3

)
)ω2 −

(
m+ 1

4

)
σ.

Example 52 Hence for a single block, de Jonquieres’ formula is

c2(ΛmL− (π[m])∗E) ∩ [Γ(m)] = c2(ΛmL|Γ(m)
)− c1(ΛmL|Γ(m)

)x

=

(
m

2

)
L2 + (m− 1)

(
m

2

)
Lω + (3

(
m+ 1

4

)
−
(
m

3

)
)ω2 −

(
m+ 1

4

)
σ

− (mL+

(
m

2

)
ω − σ

m−1∑
i=1

i(m− i)m
2

Cmi )x,

where x = (π[m])∗c1(E) ∩ [Γ(m)].

Example 53 By Splitting principle,

c2(ΛmL|(a1,a2)) =
∏a1
i=1(1 + Li + Γ(i−1) − Γ(i))

∏m
j=a1+1(1 + Lj + Γ(j−1) − Γ(j)), where

a1 + a2 = m. Writing

a1∏
i=1

((Li + Γ(i−1) − Γ(i))t1)

m∏
j=a1+1

((Lj + Γ(j−1) − Γ(j))t2), (∗)

c2(Λm(L)|Γ(a1,a2)
) = [∗]t21 + [∗]t1t2 + [∗]t22, i.e., we have to compute the followings:

1.
∑a1−1

i=1 (Li + Γ(i−1) − Γ(i))((a1 − i)La1 + Γ(i) − Γ(a1)),

2.
∑m−1

j=a1+1(Lj + Γ(j−1) − Γ(j))((m− j)Lm + Γ(j) − Γ(m)),

3. (a1L1 − Γ(a1))(a2L2 + Γ(a1) − Γ(m)).
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Since the first sum is

τm,f · · · τa1+1,f (c2(Λa1L|Γ(a1)
)),

we have

τm,f · · · τa1+1,f (c2(Λa1L|Γ(a1)
))

=

(
a1

2

)
L2

1 + (a1 − 1)

(
a1

2

)
L1ω1 + (3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1

− σ
(
a1 + 1

4

)
(−Γ(m)F a1,mi (θ1) +

a2−1∑
k=0

(
m−i−k
a1

)(
i+k
k

)(
a2−1
a1

) Cmi+k),

where i is any 1 ≤ i ≤ a1 − 1.

Note that τm,p · · · τa1+2,p(C
a1+1
i )) =

∑a2−1
k=0

(m−i−ka1
)(i+kk )

(a2−1
a1

)
Cmi+k by Lemma 48.

For the second summand, note that

(i) L2(Γ(j) − Γ(m)) =− a1(m− j)LΓ(m) + (

(
a2

2

)
−
(
j − a1

2

)
)L2ω2

(ii) L2(Γ(j−1) − Γ(j)) =(j − a1 − 1)L2ω2 − a1L

(iii)

(Γ(j−1) − Γ(j))Γ(j)

=((j − a1 − 1)ω2 − a1Γ(j) −
j−1−a1∑
k=1

k(j − a1 − k)F j−a1,jk,a1
)Γ(j)

=−
(
a1

2

)
(j − a1 − 1)ω1ω2 −

(
j − a1

2

)
(j − a1 − 1)ω2

2

+ a1(2

(
j − a1

2

)
+

(
j

2

)
)ω + σ((j − a1 − 1)

a1−1∑
k=1

k(a1 − k)a1

2
F a1,jk,j−a1 [ω2]

− a1

j−1∑
k=1

k(j − k)j

2
Cjk −

j−1−a1∑
k=1

k(j − a1 − k)Γ(j)F j−a1,jk,a1
)
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(iv)

(Γ(j−1) − Γ(j))Γ(m)

=((j − a1 − 1)ω2 − a1Γ(j) −
j−1−a1∑
k=1

k(j − a1 − k)F j−a1,jk,a1
)Γ(m)

=−
(
a1

2

)
(j − a1 − 1)ω1ω2 −

(
a2

2

)
(j − a1 − 1)ω2

2 + a1(a2(j − a1 − 1)

+

(
m

2

)
)ω + σ((j − a1 − 1)

a1−1∑
k=1

k(a1 − k)a1

2
F a1,mk,a2

[ω2]

− a1

m−1∑
k=1

k(m− k)m

2
Cmk −

a2−1∑
k=1

k(a2 − k)
j − 1− a1

a2 − 1
Γ(m)F a2,mk,a1

).

Hence for a1 + 1 ≤ j ≤ m− 1, we have

(Lj + Γ(j−1) − Γ(j))((m− j)Lm + Γ(j) − Γ(m))

=(m− j)L2
2 + L2(Γ(j) − Γ(m)) + (m− j)L2(Γ(j−1) − Γ(j)) + (Γ(j−1) − Γ(j))Γ(j)

− (Γ(j−1) − Γ(j))Γ(m)

=(m− j)L2
2 + (

(
a2

2

)
−
(
j − a1

2

)
− 2

(
j − a1

2

)
+ a2(j − a1 − 1))L2ω2

+ (j − a1 − 1)(

(
a2

2

)
−
(
j − a1

2

)
)ω2

2 − 2a1(m− j)L+ a1(

(
j

2

)
−
(
m

2

)
+ 2

(
j − a1

2

)
− a2(j − a1 − 1))ω − σ(a1

m−1∑
k=1

k(m− k)
(
j
2

)
m− 1

Cmk − a1

m−1∑
k=1

k(m− k)m

2
Cmk

+

j−1−a1∑
k=1

k(j − a1 − k)Γ(m)F a2,mk+m−j,a1 −
a2−1∑
k=1

k(a2 − k)
j − 1− a1

a2 − 1
Γ(m)F a2,mk,a1

).

By taking
∑m−1

j=a1+1, the second sum

=

(
a2

2

)
L2

2 +

(
a2

2

)
(a2 − 1)L2ω2 + (

(
a2

2

)(
a2 − 1

2

)
− 3

(
a2 + 1

4

)
+ 2

(
a2

3

)
)ω2

2

− 2a1

(
a2

2

)
L+ a1(

(
m

3

)
−
(
a1 + 1

3

)
−
(
m

2

)
(a2 − 1)−

(
a2

3

)
)ω

− σ(a1

m−1∑
k=1

k(m− k)(

(
m

3

)

−
(
a1 + 1

3

)
−
(
m

2

)
(a2 − 1))Cmk −

a2−1∑
k=1

k

(
a2 − k

2

)
Γ(m)F a2,mk,a1

).
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Using

L1(Γ(a1) − Γ(m)) =

(
a2

2

)
L1ω2 − a1a2L− σ

a2−1∑
i=1

i(a2 − i)a2

2
F a2,mi,a1

[L1]

ω1(Γ(a1) − Γ(m)) =

(
a2

2

)
ω1ω2 − a1a2ω − σ

a2−1∑
i=1

i(a2 − i)a2

2
F a2,mi,a1

[ω1],

the last sum

(a1L1 +

(
a1

2

)
ω1 − σ

a1−1∑
i=1

i(a1 − i)a1

2
Ca1i (θ1))(a2L2 + Γ(a1) − Γ(m))

= a1a2L1L2 +

(
a1

2

)
a2ω1L2 + a1

(
a2

2

)
L1ω2 − a2

1a2LΓ(m)

− σa1

a2−1∑
i=1

i(a2 − i)a2

2
F a2,mi,a1

[L1] +

(
a1

2

)(
a2

2

)
ω1ω2 −

(
a1

2

)
a1a2ωΓ(m)

− σ
(
a1

2

) a2−1∑
i=1

i(a2 − i)a2

2
F a2,mi,a1

[ω1]

− σa2

a1−1∑
i=1

i(a1 − i)a1

2
F a1,mi,a2

[L2] + σ
a1

2

(
a1 + 1

3

)
τm,p · · · τa1+2(Ca1+1

i ),

since

−σ
a1−1∑
i=1

i(a1 − i)a1

2
Ca1i (θ1))(Γ(a1) − Γ(m)) =στm,p · · · τa1+1,p(

a1−1∑
i=1

i(a1 − i)a1

2
Ca1i (θ1))

=σ
a1

2

(
a1 + 1

3

)
τm,p · · · τa1+2,p(C

a1+1
i ),
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where τm,p · · · τa1+2,p(C
a1+1
i )) =

∑a2−1
k=0

(m−i−ka1
)(i+kk )

(a2−1
a1

)
Cmi+k by Lemma 48. Hence we have

c2(ΛmL|(a1,a2))

=

(
a1

2

)
L2

1 +

(
a2

2

)
L2

2 + a1a2L1L2 + (a1 − 1)

(
a1

2

)
L1ω1 +

(
a2

2

)
(a2 − 1)L2ω2

+

(
a1

2

)
a2ω1L2 + a1

(
a2

2

)
L1ω2 + (3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1 +

(
a1

2

)(
a2

2

)
ω1ω2

+ (3

(
a2 + 1

4

)
−
(
a2

3

)
)ω2

2 − a1a2(m− 1)L

+ a1(

(
m

3

)
−
(
a1 + 1

3

)
−
(
m

2

)
(a2 − 1)−

(
a2

3

)
−
(
a1

2

)
a2)ω

− σ(a1

m−1∑
k=1

k(m− k)(

(
m

3

)
−
(
a1 + 1

3

)
−
(
m

2

)
(a2 − 1))Cmk

−
a2−1∑
k=1

k

(
a2 − k

2

)
Γ(m)F a2,mk,a1

+ a1

a2−1∑
i=1

i(a2 − i)a2

2
F a2,mi,a1

[L1]

+ a2

a1−1∑
i=1

i(a1 − i)a1

2
F a1,mi,a2

[L2] +

(
a1

2

) a2−1∑
i=1

i(a2 − i)a2

2
F a2,mi,a1

[ω1]

+

(
a1 + 1

4

)
(−Γ(m)F a1,mi,a2

)−
(
a1 + 2

4

) a2−1∑
k=0

(
m−i−k
a1

)(
i+k
k

)(
a2−1
a1

) Cmi+k).

Example 54 Let’s compute c3(ΛmL|(a1,a2)), where a1 + a2 = m. Note that

c3,µ − c3,µ−1 = c2,µ−1(L2 + Γ(m−1) − Γ(m)),

where c2,µ−1 is given above example.

c2,µ−1L2 =

(
a1

2

)
L2

1L2 + a1(a2 − 1)L1L
2
2 + (a1 − 1)

(
a1

2

)
L1L2ω1 +

(
a1

2

)
(a2 − 1)ω1L

2
2

+ a1

(
a2 − 1

2

)
L1L2ω2 + (3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1L2 +

(
a1

2

)(
a2 − 1

2

)
ω1ω2L2

− a1(a2 − 1)(m− 2)L2 + a1(

(
m− 1

3

)
−
(
a1 + 1

3

)
−
(
m− 1

2

)
(a2 − 2)−

(
a2 − 1

3

)
−
(
a1

2

)
(a2 − 1))Lω.
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Note that (Γ(m−1) − Γ(m)) = (a2 − 1)ω2 − a1Γ(m) −
∑a2−1

j=1 j(a2 − j)F a2,mj,a1
.

c2,µ−1(Γ(m−1) − Γ(m))

=

(
a1

2

)
(a2 − 1)L2

1ω2 + a1(a2 − 1)2L1L2ω2 + (a1 − 1)

(
a1

2

)
(a2 − 1)L1ω1ω2

+

(
a1

2

)
(a2 − 1)2ω1ω2L2 + a1(a2 − 1)

(
a2 − 1

2

)
L1ω

2
2 + (a2 − 1)(3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1ω2 +

(
a1

2

)(
a2 − 1

2

)
(a2 − 1)ω1ω

2
2 − a1(a2 − 1)(m− 1)(m− 2)Lω

+ a1(m− 1)(

(
m− 1

3

)
−
(
a1 + 1

3

)
−
(
m− 1

2

)
(a2 − 2)−

(
a2 − 1

3

)
−
(
a1

2

)
(a2 − 1))ω2 − a1(

(
a1

2

)
+

(
a2 − 1

2

)
+ a1(a2 − 1))L2

− a1((a1 − 1)

(
a1

2

)
+

(
a2 − 1

2

)
(a2 − 2) +

(
a1

2

)
(a2 − 1) + a1

(
a2 − 1

2

)
)Lω

− a1(3

(
a1 + 1

4

)
−
(
a1

3

)
+

(
a1

2

)(
a2 − 1

2

)
+ 3

(
a2

4

)
−
(
a2 − 1

3

)
)ω2

− σ(a1
(m− 2)(m− 3)

3
(

(
m− 1

3

)
−
(
a1 + 1

3

)
−
(
m− 1

2

)
(a2 − 2))

− a1

(
a2

3

)
Γ(m)F a2,mi,a1

[L1]−
(
a1

2

)(
a2

3

)
Γ(m)F a2,mi,a1

[ω1]

+

(
a1 + 2

4

)
2

m− 1
Γ(m−1)τm,p · · · τa1+2,p(C

a1+1
i )),

where note that (τm−1,p · · · τa1+2,p(C
a1+1
i ))(Γ(m−1)−Γ(m)) = 2

m−1Γ(m)τm,p · · · τa1+2(Ca1+1
i ).
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Now we have

c3,µ − c3,µ−1 = c2,µ−1(L2 + Γ(m−1) − Γ(m))

=

(
a1

2

)
L2

1L2 + a1(a2 − 1)L1L
2
2 +

(
a1

2

)
(a2 − 1)L2

1ω2 +

(
a1

2

)
(a2 − 1)ω1L

2
2

+ (a1 − 1)

(
a1

2

)
L1L2ω1 + a1(

(
a2 − 1

2

)
+ (a2 − 1)2)L1L2ω2

+ a1(a2 − 1)

(
a2 − 1

2

)
L1ω

2
2

+ (3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1L2 +

(
a1

2

)
(

(
a2 − 1

2

)
+ (a2 − 1)2)ω1ω2L2

+ (a1 − 1)

(
a1

2

)
(a2 − 1)L1ω1ω2 + (a2 − 1)(3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1ω2

+

(
a1

2

)(
a2 − 1

2

)
(a2 − 1)ω1ω

2
2 − a1(2a1(a2 − 1) +

(
a1

2

)
+ 3

(
a2 − 1

2

)
)L2

+ a1(

(
m

3

)
−
(
m− 1

2

)
(a2 − 1)− 4

(
a1 + 1

3

)
− 2

(
a1

2

)
(a2 − 2)−

(
a2

3

)
−
(
a2 − 1

2

)
(m− 3))Lω + a1(m− 1)(

(
m− 1

3

)
−
(
a1 + 1

3

)
−
(
m− 1

2

)
(a2 − 2)

−
(
a2 − 1

3

)
−
(
a1

2

)
(a2 − 1))ω2 − a1(3

(
a1 + 1

4

)
−
(
a1

3

)
+

(
a1

2

)(
a2 − 1

2

)
+ 3

(
a2

4

)
−
(
a2 − 1

3

)
)ω2 − σ(a1

(m− 2)(m− 3)

3
(

(
m− 1

3

)
−
(
a1 + 1

3

)
−
(
m− 1

2

)
(a2 − 2))− a1

(
a2

3

)
Γ(m)F a2,mi,a1

[L1]

−
(
a1

2

)(
a2

3

)
Γ(m)F a2,mi,a1

[ω1]

+

(
a1 + 2

4

)
2

m− 1
Γ(m)τm,p · · · τa1+2,p(C

a1+1
i )).
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Integrating this, we have

c3,µ

=

(
a1

2

)
a2L

2
1L2 + a1

(
a2

2

)
L1L

2
2 +

(
a1

2

)(
a2

2

)
L2

1ω2 +

(
a1

2

)(
a2

2

)
ω1L

2
2

+ (a1 − 1)a2

(
a1

2

)
L1L2ω1 + (a2 − 1)a1

(
a2

2

)
L1L2ω2 + a1(3

(
a2 + 1

4

)
−
(
a2

3

)
)L1ω

2
2

+ (3

(
a1 + 1

4

)
a2 −

(
a1

3

)
a2)ω2

1L2 + (a2 − 1)

(
a1

2

)(
a2

2

)
ω1ω2L2

+ (a1 − 1)

(
a1

2

)(
a2

2

)
L1ω1ω2 +

(
a2

2

)
(3

(
a1 + 1

4

)
−
(
a1

3

)
)ω2

1ω2

+

(
a1

2

)
(3

(
a2 + 1

4

)
−
(
a2

3

)
)ω1ω

2
2 − a1a2

(
m− 1

2

)
L2

+ a1(−2

(
m+ 1

4

)
−
(
a1 + 1

4

)
+ (a1 + 1)

(
m

3

)
− 4

(
a1 + 1

3

)
a2 − 2

(
a1

2

)(
a2 − 1

2

)
−
(
a2

2

)
(m− 2))Lω + a1(4

(
m+ 1

5

)
− 4

(
a1 + 1

5

)
−
(
m

4

)
+

(
a1

4

)
−
(
m

2

)(
a1 + 1

3

)
+

(
a1

2

)(
a1 + 1

3

)
− 12

(
m+ 2

5

)
+ 12

(
a1 + 2

5

)
+ 12

(
m+ 1

4

)
− 12

(
a1 + 1

4

)
−
(
m

3

)
(a1 + 2) +

(
a1

3

)
(a1 + 2)− (a1 − 1)

(
a2

4

)
− 4

(
a2 + 1

5

)
− 2

(
a1

2

)(
a2

3

)
− 3

(
a1 + 1

3

)(
a2

2

)
)ω2

− a1(3

(
a1 + 1

4

)
a2 −

(
a1

3

)
a2 +

(
a1

2

)(
a2

3

)
+ 3

(
a2 + 1

5

)
−
(
a2

4

)
)ω2

− σ(
a1

3
(20

(
m+ 2

6

)
− 20

(
a1 + 2

6

)
− 12

(
m+ 1

5

)
+ 12

(
a1 + 1

5

)
− 2

(
m− 1

3

)(
m+ 1

3

)
+ 2

(
a1 − 1

3

)(
m+ 1

3

)
− 60

(
m+ 2

6

)
+ 60

(
a1 + 2

6

)
+ 12

(
m+ 1

5

)
(a1 + 1)

− 12

(
a1 + 1

5

)
(a1 + 1) + 24

(
m+ 1

5

)
− 24

(
a1 + 1

5

)
− 6

(
m

4

)
(a1 + 1) + 6

(
a1

4

)
(a1 + 1)

+ σ(a1

(
a2 + 1

4

)
Γ(m)F a2,mi,a1

[L1] +

(
a1

2

)(
a2 + 1

4

)
Γ(m)F a2,mi,a1

[ω1])

− σ
(
a1 + 2

4

)m−1∑
i=a1

2

i
Γ(m)τm,p · · · τa1+2,p(C

a1+1
i ).

With examples 53 and 54 we have the de Jonquieres’ formula on Γ(a1,a2), where a1+a2 =

m, i.e. c3,(a1,a2) − c2,(a1,a2)x, where x = π[m]∗c1(E) ∩ [Γ(a1,a2)].

Example 55 Inductively we compute the total Chern class c(Λm(L)|Γ(n1,n2)
) for pencil,
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where n1 + n2 = m

Note that Tm(n1,n2) is generated by

1. Γ(n1,n2),Γ(m),

2. Fn1,m
j , Fn2,m

j , and Cmj ,

3. −Γ(m)Fn1,m
j ,−Γ(m)Fn2,m

j , and −Γ(m)Cmj = Qmj .

Assume that n2 ≥ 1, hence m ≥ n1 + 1.

Now write recursively

c(n1,n2) := c(Λm(L)|Γ(n1,n2)
)

=an2Γ(n1,n2) + bmΓ(m) +
∑
θ

(

n1−1∑
j=1

cjmF
n1,m
j +

n2−1∑
k=1

dkn2
Fn2,m
k +

m−1∑
l=1

elmC
m
l

+

n1−1∑
j=1

f jm(−Γ(m)Fn1,m
j ) +

n2−1∑
k=1

gkn2
(−Γ(m)Fn2,m

k )) +Am.

By splitting principle we have

c(n1,n2) = τm,p(c(n1,n2−1)(1 + L2 + Γ(m−1))) + (−Γ(m))τm,p(c(n1,n2−1)).

c(n1,n2−1)L2

=an2−1L2 + bm−1L2 +
∑
θ

(

n1−1∑
j=1

cjm−1F
n1,m−1
j [L2] +

n1−1∑
j=1

f jm−1(−Γ(m−1)Fn1,m−1
j [L2]))

c(n1,n2−1)Γ
(m−1)

=an2−1(n1(n2 − 1)Γ(m−1) −
(
n1

2

)
ω1 −

(
n2 − 1

2

)
ω2 +

n1−1∑
j=1

j(n1 − j)n1

2
Fn1,m−1
j

+

n2−2∑
k=1

k(n2 − 1− k)(n2 − 1)

2
Fn2−1,m−1
k ) + bm−1(

m−2∑
l=1

l(m− 1− l)(m− 1)

2
Cm−1
l

−
(
m− 1

2

)
ωΓ(m−1)) +

n2−2∑
k=1

k(n2 − 1− k)(n2 − 1)

2
Fn2−1,m−1
k )

+
∑
θ

(

n1−1∑
j=1

cjm−1Γ(m−1)Fn1,m
j +

n2−2∑
k=1

dkn2−1Γ(m−1)Fn2−1,m−1
k −

m−2∑
l=1

elm−1

+

n1−1∑
j=1

f jm−1(−Γ(m−1)2Fn1,m−1
j ) +

n2−2∑
k=1

gkn2−1(−Γ(m−1)2Fn2−1,m−1
k )).

53



By transfer theorems, the first summand is

an2−1(1 + L2 −
(
n1

2

)
ω1 −

(
n2 − 1

2

)
ω2)Γ(n1,n2) + (bm−1(1 + L−

(
m− 1

2

)
ω)

+ an2−1n1(n2 − 1))Γ(m) +
∑
θ

(

n1−1∑
j=1

(cjm−1(1− L2) + an2−1
j(n1 − j)n1

2
)Fn1,m

j

+

n2−1∑
k=1

(dkn2−1

n2 − k
n2 − 1

+ dk−1
n2−1

k

n2 − 1

+
k(n2 − k)(n2 − 2)

2
an2−1)Fn2,m

k +
m−2∑
l=1

(elm−1

m− l
m− 1

+ el−1
m−1

l

m− 1
)Cml

+

n1−1∑
j=1

(f jm−1 + cm−1
j )(−Γ(m)Fn1,m

j ) +

n2−2∑
k=1

(gkn2−1 + dkn2−1)(−Γ(m)Fn2,m
k+1 ) +Am−1

+

n1−1∑
j=1

f jm−1(−Γ(m−1)Fn1,m−1
j [L2])−

m−2∑
l=1

elm−1 +

n1−1∑
j=1

f jm−1(−Γ(m−1)2Fn1,m−1
j )

+

n2−2∑
k=1

gkn2−1(−Γ(m−1)2Fn2−1,m−1
k )).

By transfer theorem the second summand is

an2−1Γ(n1,n2) + (bm−1Γ(m) +
∑
θ

(

n1−1∑
j=1

cjm−1F
n1,m
j

+

n2−1∑
k=1

(dkn2−1

n2 − k
n2 − 1

+ dk−1
n2−1

k

n2 − 1
)Fn2,m

k

+

m−2∑
l=1

(elm−1

m− l
m− 1

+ el−1
m−1

l

m− 1
)Cml +

n1−1∑
j=1

f jm−1(−Γ(m)Fn1,m
j )

+

n2−2∑
k=1

gkn2−1(−Γ(m)Fn2,m
k+1 ) +Am−1.
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So

− Γ(m)τ0
m,p(cn1,n2−1)

= an2−1(

(
n1

2

)
ω1 +

(
n2

2

)
ω2 − n1n2Γ(m) −

∑
θ

(

n1−1∑
j=1

j(n1 − j)n1

2
Fn1,m
j

−
n2−1∑
k=1

k(n2 − k)n2

2
Fn2,m
k ))

+ bm−1(

(
m

2

)
ω −

m−1∑
θ,l=1

l(m− l)m
2

Cml )

+
∑
θ

(

n1−1∑
j=1

cjm−1(−Γ(m)Fn1,m
j ) +

n2−1∑
k=1

(dkn2−1

n2 − k
n2 − 1

+ dk−1
n2−1

k

n2 − 1
)(−Γ(m)Fn2,m

k )

+
m−2∑
l=1

elm−1

m+ 1

m− 1
+ em−2

m−1 +

n1−1∑
j=1

f jm−1(Γ(m)2Fn1,m
j ) +

n2−2∑
k=1

gkn2−1(Γ(m)2Fn2,m
k+1 )).

Hence, we have

an2 = an2−1(1 + L2 + (n2 − 1)ω2)

bm = bm−1(1 + L+ (m− 1)ω)− n1an2−1

cjm = cjm−1(1− L2)

dkn2
= dkn2−1

n2 − k
n2 − 1

+ dk−1
n2−1

k

n2 − 1
− k(n2 − k)an2−1

elm = elm−1

m− l
m− 1

+ el−1
m−1

l

m− 1
− l(m− l)m

2
bm−1

f jm = f jm−1

gkn2
= gk−1

n2−1 +
n2 − k
n2 − 1

dkn2−1 +
n2 − 1− k
n2 − 1

dk−1
n2−1

Am = Am−1 +

n1−1∑
j=1

f jm−1(−Γ(m−1)Fn1,m−1
j [L2])−

m−2∑
l=1

elm−1 +

m−2∑
l=1

elm−1

m+ 1

m− 1
+ em−2

m−1.
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