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Abstract

Using integrable colored vertex models to study LLT polynomials, super ribbon
functions, and domino tilings of the Aztec diamond

by

Andrew Gitlin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Sylvie Corteel, Chair

The study of integrable systems - also known as vertex models, ice models, or mul-
tiline queues - is a classical subject, see e.g. [4, 48]. Recently they have enjoyed
an advent into the world of (non)symmetric polynomials [12, 53, 9], and have been
generalized to colored vertex models [8, 13, 14, 16, 21, 27] and polyqueue tableaux
[21, 3]. In this thesis, we study three topics in algebraic combinatorics - LLT poly-
nomials, super ribbon functions, and domino tilings of the Aztec diamond - using
several Yang-Baxter integrable colored vertex models.

Employing the “white” vertices, we construct a certain class of partition functions
that we show are equal to the LLT polynomials of Lascoux, Leclerc, and Thibon [39].
We then give alternate proofs of many properties of these polynomials, including
symmetry and a Cauchy identity, using the vertex model formalism.

Employing the “white” and “purple” vertices, we construct a certain class of partition
functions that we show are essentially equal to the super ribbon functions of Lam
[38]. This construction generalizes our construction of partition functions equal to
the LLT polynomials which employ just the “white” vertices. We then give proofs of
many properties of these polynomials, namely a Cauchy identity and generalizations
of known identities for supersymmetric Schur polynomials, using the vertex model
formalism.

Finally, we study k-tilings (k-tuples of domino tilings) of the Aztec diamond. We
describe two models - one based on the “purple” and “gray” vertices and one based
on the “white” and “pink” vertices - for assigning a weight to each k-tiling, depending
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on the number of dominos of certain types and the number of “interactions” between
the tilings. We compute the generating polynomials of the k-tilings in both models,
as well as the arctic curves of the k-tilings in certain limits of the interaction strength.
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Chapter 1

Introduction

1.1 Partitions

A partition with p parts is a weakly decreasing sequence λ = (λ1 ≥ ⋯ ≥ λp ≥ 0)
of p non-negative integers. Here we consider our partitions to have a fixed number of
parts but allow for the possibility of parts equalling zero; later we will also consider
partitions with an infinite number of parts, only finitely many of which are non-zero.
We let the length ℓ(λ) of λ be the number of non-zero parts of λ, and we let the size
∣λ∣ be the sum λ1 + . . .+ λp of its parts. We define the empty partition ∅ to be the
partition with 0 parts, and we define the staircase partition

ρp ∶= (p − 1, . . . , 1, 0),

which has the property that λ + ρp has distinct parts for any partition λ with p
non-negative parts. We associate to λ its Young (or Ferrers) diagram D(λ) ⊆ Z×Z,
given as

D(λ) = {(i, j) ∣ 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi}.
We refer to the elements of D(λ) as cells. We draw our diagrams in French notation
in the first quadrant, so that the first row is on the bottom and the first column is
on the left, such as below.

λ = (4, 2, 1), D(λ) =
•

The cell labelled above has coordinates (1,3). The conjugate λ
′
of the partition λ is

the partition whose diagram is the set of lattice squares (i, j) such that 0 ≤ j ≤ λi.



CHAPTER 1. INTRODUCTION 2

We say two partitions λ and µ interlace (and we write λ ⪰ µ) if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . .

We say two partitions λ and µ co-interlace (and we write λ ⪰
′
µ) if λ

′
⪰ µ

′
. We say

λ/µ is a horizontal (vertical) strip if λ and µ interlace (co-interlace).
The content of a cell u = (i, j) in row i and column j of any Young diagram is

c(u) = j − i. Notice that the c content line y = x − c goes through the center of
each cell with content c. The Maya diagram of λ is a doubly infinite sequence

. . . , a− 5
2
, a− 3

2
, a− 1

2
, a 1

2
, a 3

2
, a 5

2
, . . .

of symbols in the alphabet {◦ = 0,• = 1}, starting with infinitely many •’s and
ending with infinitely many ◦’s, where

ai+ 1
2
= { • if λj − j = i for some j

◦ otherwise
.

The Maya diagram of λ can be found by following the NE border of the Young
diagram of λ from NW to SE, where each E step corresponds to a ◦ and each S step
corresponds to a •, and moreover the steps corresponding to ac− 1

2
and ac+ 1

2
lie on

the left and right side of the c content line, respectively. It is easy to see that the 0
content line is the unique content line such that the number of ◦’s to its left equals
the number of •’s to its right.

Example 1.1.1. The Maya diagram of (4,3,2,2,1) is . . .•• ◦•◦••◦•◦• ◦◦ . . ..

◦
•
◦
•
•
◦
•
◦
•
◦ ◦

•
•

In red, we have indicated the 0 content line; there are two ◦’s to its left and two •’s
to its right.

If λ and µ are partitions such that D(λ) ⊇ D(µ), then the skew shape λ/µ is
the set of cells in D(λ) not in D(µ). We draw D(λ/µ) by coloring the cells in D(µ)
gray, such as below.

λ = (4, 2, 1), µ = (2, 1), D(λ/µ) =
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The size of λ/µ is ∣λ/µ∣ = ∣λ∣ − ∣µ∣. A semistandard Young tableau of shape
λ/µ is a filling of each cell of D(λ/µ) with a positive integer such that the rows are
weakly increasing and the columns are strictly increasing. We call the set of all such
fillings SSYT(λ/µ).

We can extend many of these definitions to k-tuples of (skew) partitions. Given

a k-tuple of partitions λ = (λ(1), λ(2), . . . , λ(k)), we define its conjugate to be λ
′
=

(λ(k)′, λ(k−1)′, . . . , λ(1)′) and its size to be ∣λ∣ = ∣λ(1)∣ + . . . + ∣λ(k)∣. We define 0
to be the k-tuple (∅k) of empty partitions. Given a k-tuple of skew partitions

λ/µ = (λ(1)/µ(1)
, . . . , λ

(k)/µ(k)), we define a semistandard Young tableau of shape

λ/µ to be a semistandard Young tableau on each λ
(j)/µ(j)

, that is,

SSYT(λ/µ) = SSYT(λ(1)/µ(1)) ×⋯× SSYT(λ(k)/µ(k)).
We can picture this as placing the Young diagrams diagonally “on content lines”
with the first shape in the South-West direction and the last shape in the North-
East direction.

Example 1.1.2. Let λ/µ = ((3, 1), (2, 2, 2)/(1, 1, 1), (1), (2, 1)/(2)). The top row
labels the contents of each line.

−3 −2 −1 0 1 2

3

7

6

4

1

8

2 5 9

We also extend the definition of interlacing to k-tuples of partitions; we write λ ⪰ µ

if λ
(i)

⪰ µ
(i)

for all i ∈ [k]. Similarly we extend the definitions of co-interlacing and
horizontal/vertical strips to k-tuples of partitions. We define the Maya diagram of a

k-tuple of partitions λ to be the k-tuple (a(1), . . . , a(k)) where

a
(i)

= (. . . , a(i)
− 5

2

, a
(i)
− 3

2

, a
(i)
− 1

2

, a
(i)
1
2

, a
(i)
3
2

, a
(i)
5
2

, . . .)

is the Maya diagram of λ
(i)

for all i ∈ [k]. Finally, we define P
(k)
p to be the set of

k-tuples of partitions, each having p parts.
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1.2 Vertex models

The vertex models we will use were originally studied in [22, 28, 20], although
they can be realized as degenerations of vertex models introduced in [1] (see Lemma

1.4.1). We begin with some notation. For a vector I = (I1, . . . , Ik) ∈ Rk
, we define

∣I∣ =
k

∑
m=1

Ii.

For vectors I = (I1, . . . , Ik),J = (J1, . . . , Jk) ∈ Rk
, we define

φ(I,J) = ∑
1≤i<j≤k

IiJj.

For variables x and t and an integer n ≥ 0, we define the t-Pochhammer symbol

(x; t)n =

n−1

∏
m=0

(1 − xt
m).

We will also use the notation x̄ =
1

xtk−1
(when k is clear from context).

We will define our vertices both algebraically and graphically. There are two
types of vertices: the L, L

′
, M , and M

′
matrices are “box vertices” and the R, R

′
,

and R
′′
matrices are “cross vertices.” Algebraically, a square vertex is a family of

functions ({0, 1}k)4 → C[x, t], one for each integer k ≥ 0, whereas a cross vertices
is a family of functions ({0, 1}k)4 → C(x, y, t), one for each integer k ≥ 0. In other
words, a vertex associates a weight (either a polynomial in x, t for a box vertex or

a rational function in x, y, t for a cross vertex) to every 4-tuple of vectors in {0, 1}k
for each integer k ≥ 0.

While the algebraic definitions give explicit formulae for the weights of the ver-
tices, it is often more useful to think of a vertex graphically. We can draw a vertex
as a face with four incident edges, each labelled by an element of {0, 1}k. A face
takes one of two forms:

J L

K

I

(a box) or

I

J K

L

(a cross).

The edge labels describe colored paths moving through the face SW-to-NE (in a box)

or left-to-right (in a cross). If an edge has the label I = (I1, . . . , Ik) ∈ {0, 1}k, then
for each i ∈ [k], a path of color i is incident at the edge if and only if Ii = 1. For
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Vertex Algebraic definition

L L
(k)
x (I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ii+Ji≠2 ⋅ x
∣L∣
t
φ(L,I+J)

L
′

L
′(k)
x (I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ki≥Ji ⋅ x
∣L∣
t
φ(L,K−J)

M M
(k)
x (I,J ,K,L) = x

k
t
(k
2
)
L
(k)
x̄ (I,J ,K,L)

M
′

M
′(k)
x (I,J ,K,L) = x

k
L

′(k)
x−1

(I,J ,K,L)

R R
(k)
y/x(I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ji≥Ki
⋅ (−1)∣J∣−∣K∣(y/x)∣J∣(x/y; t)∣J∣−∣K∣t

φ(J ,K−J)

R
′

R
′(k)
y/x(I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ii+Ji≠2 ⋅ (x/y)
∣L∣(−x/y; t)−1∣K∣+∣L∣t

φ(L,K+L)

R
′′

R
′′(k)
x/y (I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ki≥Ji ⋅ (x/y)
∣L∣(x/y; t)∣K∣−∣J∣t

φ(L,K−J)

Table 1.1: Algebraic definitions of the vertex weights

example, with k = 2 (letting blue be color 1 and red be color 2), the path configuration
associated to the edge labels I = (0, 1),J = (1, 0),K = (0, 1),L = (1, 0) is

(for a box) or (for a cross).

The factor of 1I+J=K+L that appears in the algebraic definition of each vertex imposes
a path conservation restriction: in order for a vertex to have a non-zero weight,
the paths entering the vertex and the paths exiting the vertex must be the same.

To define the vertex weights graphically, we first define the weights in the case
k = 1 in Table 1.2; the k-color weights are then defined in terms of the 1-color weights
in Table 1.3.
For the white L and gray M weights, the equivalence of the algebraic and graphical
definitions is shown in Appendix B. The equivalence for the other vertices can be
shown similarly.

The box vertices will primarily be used to construct various lattices and their
associated partition functions. A lattice is a rectangular grid of vertices, with the
variables and the labels on the outer edges specified, but with the labels on the
internal edges unspecified. A lattice configuration is a lattice with the labels on
the internal edges specified, such that the weight of each vertex is non-zero. The
weight of a lattice configuration is the product of the weights of the vertices.
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Vertex One-color definition

L
j l

k

i

x :

L
(1)
x (i, j, k, l): 1 x x 1 1

L
′ j l

k

i

x :

L
′(1)
x (i, j, k, l): 1 1 x 1 x

M
j l

k

i

x̄ :

M
(1)
x (i, j, k, l): x 1 1 x x

M
′ j l

k

i

x
−1 :

M
′(1)
x (i, j, k, l): x x 1 x 1

R
iy

jx k

l

:

R
(1)
y/x(i, j, k, l): 1 − y/x y/x 1 y/x 1

R
′

iy

jx k

l

:

R
′(1)
y/x(i, j, k, l): 1

1+y/x
y/x

1+y/x
1

1+y/x
y/x

1+y/x 1

R
′′

iy

jx k

l

:

R
′′(1)
x/y (i, j, k, l): 1 − x/y 1 x/y x/y 1

Table 1.2: Graphical definitions of the vertex weights for k = 1
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Vertex k-color definition

L L
(k)
x (I,J ,K,L) =

k

∏
i=1

L
(1)
xtδi

(Ii, Ji, Ki, Li) where δi = # colors greater than i that are present

L
′

L
′(k)
x (I,J ,K,L) = ∏k

i=1 L
′(1)
xtδ

′
i
(Ii, Ji, Ki, Li) where δ

′
i = # colors greater than i of the form

M M
(k)
x (I,J ,K,L) =

k

∏
i=1

t
βiM

(1)
xtαi−βi(Ii, Ji, Ki, Li) where

αi = # colors greater than i that don’t exit right
βi = # colors greater than i that exit top

M
′

M
′(k)
x (I,J ,K,L) = ∏k

i=1 t
γiM

′(1)
xt−γi(Ii, Ji, Ki, Li) where γi = # colors greater than i of the form

R R
(k)
y/x(I,J ,K,L) =

k

∏
i=1

R
(1)
y/(xtϵi)(Ii, Ji, Ki, Li) where ϵi = # colors greater than i of the form

R
′

R
′(k)
y/x(I,J ,K,L) =

k

∏
i=1

R
′(1)
y/(xtϵ

′
i)
(Ii, Ji, Ki, Li) where ϵ

′
i = # colors greater than i that are present

R
′′

R
′′(k)
x/y (I,J ,K,L) =

k

∏
i=1

R
′′(1)
tϵ

′′
ix/y

(Ii, Ji, Ki, Li) where ϵ
′′
i = # colors greater than i of the form

Table 1.3: Graphical definitions of the vertex weights for general k

Example 1.2.1. Consider the following lattice of white vertices with k = 3.

1 0 0

0
1
1
x1

0 0 0

1
0
0

x1

1
1
0

0 1 0
x2

0 1 01
0
1

x3

Then the weight of one possible lattice configuration is

1 0 0

0 0 10
1
1

1
1
0

x1
0 0 0

0 1 01
0
0

x1

1
1
0

0 1 01
0
1

x2
0 1 01

0
1

x3
=

x
2
2t

2 ⋅ x23t
2

⋅x21t
3 ⋅ x1t

= x
3
1x

2
2x

2
3t

8
.

(Here blue is color 1, red is color 2, and green is color 3.)

Given a lattice L, the associated partition function is

∑
C∈LC(L)

weight(C)

where LC(L) is the set of valid lattice configurations on L. Often, when it is clear
from context, we will abuse notation and let the drawing of the lattice be equal to
the partition function of the vertex model on the lattice.
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1.3 The vertex models and (co-)interlacing

partitions

In the case k = 1, there is a very natural interpretation of single rows of our box
vertices in terms of (co-)interlacing partitions. Given two partitions λ and µ such
that λ1 + ℓ(λ) ≤ n and µ1 + ℓ(µ) ≤ n, we can draw rows of n vertices with border
conditions as follows.

µ

λ

x

x
µ

λ

x

x
µ
′

λ
′
x

x

µ
′

λ
′

x

x

Here a partition on the boundary of the array means that the border condition is
given by the corresponding Maya diagram, and we mark the position of the 0 content
line with an x. For example, with λ = (3, 2, 2) and µ = (2, 2, 0), we get the following
configurations.

µ

λ

x

x
µ

λ

x

x

,
µ
′

λ
′
x

x

µ
′

λ
′

x

x

It is easy to see that each row has no valid configurations unless µ ⪯ λ, in which case

it has one valid configuration with weight x
∣λ∣−∣µ∣

. Thus the weight of each row is

{ x
∣λ∣−∣µ∣

if µ ⪯ λ
0 otherwise

.

It is easy to generalize this interpretation of rows of vertices to general values of k

in the case t = 1. Given two k-tuples of partitions µ and λ such that λ
(i)
1 +ℓ(λ(i)) ≤ n

for all i ∈ [k], we can draw rows of n vertices with border conditions as follows.

µ

λ

x

x
µ

λ

x

x
µ

′

λ
′
x

x

µ
′

λ
′

x

x

Here a k-tuple of partitions on the boundary of the array means that, for all i ∈ [k],
the i-th component of the border condition is given by the Maya diagram correspond-
ing to the i-th partition. It is easy to see that each row has no valid configurations

unless µ ⪯ λ, in which case it has one valid configuration with weight x
∣λ∣−∣µ∣

when
t = 1. Thus the weight of each row is

{ x
∣λ∣−∣µ∣

if µ ⪯ λ
0 otherwise

when t = 1.
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1.4 Yang-Baxter integrability

One of the main technical tools we will need in the following chapters is the
Yang-Baxter integrability of our vertex models (Propositions 1.4.6-1.4.9). The Yang-
Baxter equation (YBE), which was first introduced in statistical mechanics as a
bridge to quantum mechanics, can be thought of as a sort of commutation relation
between the vertices. The Yang-Baxter integrability of our vertex models will follow
from work done in [1]. Each of our vertex weights can be realized as a degeneration
of the vertex weights Wz(A,B;C,D∣r, s) from [1, Definition 5.1.1].

Lemma 1.4.1 ([28, Lemma 3.1]). We adopt the notation of [1], except we use t in
place of q. In particular, we let Wz(A,B;C,D∣r, s) be the vertex weights from [1,
Definition 5.1.1] with t in place of q. Then

x

A

B

C

D = lim
α→0

(−α)d lim
β→0

β
−2d
Wx/α(A,B;C,D∣(x/α)1/2, β),

y

A

B

C

D = lim
Y→0

Y
−d

lim
S→0

W1(A,B;C,D∣Sy−1/2, SY 1/2),

y

x

A

B C

D

= lim
α→0

Wx/y(A,B;C,D∣(x/α)1/2, (y/α)1/2),

y

x

A

B C

D

= lim
α→0

Wx/α(A,B;C,D∣(x/α)1/2, (−y/α)−1/2),

y

x

A

B C

D

= lim
S→0

W1(A,B;C,D∣Sx−1/2, Sy−1/2).

Proof. This follows from various corollaries in [1, Section 8.3] along with the algebraic
definitions of the L (white box), L

′
(purple box), R (white cross), R

′
(yellow cross),

and R
′′
(orange cross) matrices.

• For the L matrix, this follows from [1, Cor. 8.3.6].

• For the L
′
matrix, this follows from [1, Cor. 8.3.4].

• For the R matrix, this follows from [1, Cor. 8.3.1] (substituting s = (y/α)1/2).

• For theR
′
matrix, this follows from [1, Cor. 8.3.8] (substituting s = (−y/α)−1/2).

• For the R
′′
matrix, this follows from [1, Cor. 8.3.3].
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Although the M and M
′
matrices are not mentioned in the previous lemma, they

too can be realized as degenerations of theWz weights; their algebraic definitions are

M
(k)
x (I,J ,K,L) = x

k
t
(k
2
)
L
(k)
x̄ (I,J ,K,L),

M
′(k)
x (I,J ,K,L) = x

k
L

′(k)
x−1

(I,J ,K,L)

and the L and L
′
matrices can be realized as degenerations of the Wz weights by the

lemma.
As shown in [1], the Wz weights satisfy the Yang-Baxter equation.

Theorem 1.4.2 ([1, Prop. 5.1.4]). The Wz weights satisfy the YBE

∑
I2,J2,K2

Wχ/γ(I1,J1; I2,J2∣r, s)Wχ/z(K1,J2;K2,J3∣r, τ)Wγ/z(K2, I2;K3, I3∣s, τ)

= ∑
I2,J2,K2

Wγ/z(K1, I1;K2, I2∣s, τ)Wχ/z(K2,J1;K3,J2∣r, τ)Wχ/γ(I2,J2; I3,J3∣r, s)

(1.1)
for all χ, γ, z, r, s, τ ∈ C and choice of boundary condition I1,J1,K1, I3,J3,K3 ∈

{0, 1}k. Using the conventions of [1], we can draw this diagrammatically as

∑
I2,J2,K2

w

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

J1

I1

K1

I3

J3

K3

K2

I2

J2

(χ; r)

(γ; s)

(z; τ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ∑
I2,J2,K2

w

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

J1

I1

K1

J3

I3

K3

K2

J2

I2

(χ; r)

(γ; s)

(z; τ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where solid arrows are fixed and dashed arrows are summed over.

Remark 1.4.3. Let us say a quick word about where Theorem 1.4.2 comes from.
Bazhanov and Shadrikov [5] constructed the fundamental R-matrix for the quantum

affine superalgebra Uq(ŝl(m∣n)), and showed that it satisfied the Yang-Baxter equa-
tion. (Although this was not the method used in [5, Section 3], the fact that this
matrix satisfies the Yang-Baxter equation can be verified via a direct computation
using the explicit formulae for its entries.) Aggarwal, Borodin, and Wheeler [1] con-
structed the Wz weights by applying the fusion procedure originating in [37] to the
fundamental R-matrix, specializing to m = 1, and applying analytic continuation.
The Yang-Baxter equation for the Wz weights falls out from the Yang-Baxter equa-
tion for the fundamental R-matrix.
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As a consequence of Lemma 1.4.1 and Theorem 1.4.2, our vertices satisfy several
YBEs, which we list below. We will derive Prop. 1.4.4, 1.4.6, and 1.4.7; the others
can be derived via a suitable change of variables (to go from white to gray or from
purple to pink). Prop. 1.4.4 is proven in a different (combinatorial) way in [22,
Theorem 4.1].

Proposition 1.4.4 ([28, Prop. 3.2]). The L and R matrices satisfy the YBE

∑
interior paths

w

⎛
⎜⎜⎜⎜
⎝ x

yJ1

I1

K1

I3

J3

K3 ⎞
⎟⎟⎟⎟
⎠
= ∑

interior paths

w

⎛
⎜⎜⎜⎜
⎝ y

xJ1

I1

K1

J3

I3

K3 ⎞
⎟⎟⎟⎟
⎠

for any choice of boundary condition I1,J1,K1, I3,J3,K3.

Proposition 1.4.5 ([22, Prop. 6.2]). The L, M , and R matrices satisfy the YBE

∑
interior paths

w

⎛
⎜⎜⎜⎜
⎝ x̄

yJ1

I1

K1

I3

J3

K3 ⎞
⎟⎟⎟⎟
⎠
= ∑

interior paths

w

⎛
⎜⎜⎜⎜
⎝ y

x̄J1

I1

K1

J3

I3

K3 ⎞
⎟⎟⎟⎟
⎠

for any choice of boundary condition I1,J1,K1, I3,J3,K3.

Proposition 1.4.6 ([28, Prop. 3.3]). The L, L
′
, and R

′
matrices satisfy the YBE

∑
interior paths

w

⎛
⎜⎜⎜⎜
⎝ x

yJ1

I1

K1

I3

J3

K3 ⎞
⎟⎟⎟⎟
⎠
= ∑

interior paths

w

⎛
⎜⎜⎜⎜
⎝ y

xJ1

I1

K1

J3

I3

K3 ⎞
⎟⎟⎟⎟
⎠

for any choice of boundary condition I1,J1,K1, I3,J3,K3.

Proposition 1.4.7 ([28, Prop. 3.4]). The L
′
and R

′′
matrices satisfy the YBE

∑
interior paths

w

⎛
⎜⎜⎜⎜
⎝ x

yJ1

I1

K1

I3

J3

K3 ⎞
⎟⎟⎟⎟
⎠
= ∑

interior paths

w

⎛
⎜⎜⎜⎜
⎝ y

xJ1

I1

K1

J3

I3

K3 ⎞
⎟⎟⎟⎟
⎠

for any choice of boundary condition I1,J1,K1, I3,J3,K3.

Proposition 1.4.8 ([20, Prop. 3.1]). The L
′
, M , and R

′
matrices satisfy the YBE

∑
interior paths

w

⎛
⎜⎜⎜⎜
⎝ x̄

yJ1

I1

K1

I3

J3

K3 ⎞
⎟⎟⎟⎟
⎠
= ∑

interior paths

w

⎛
⎜⎜⎜⎜
⎝ y

x̄J1

I1

K1

J3

I3

K3 ⎞
⎟⎟⎟⎟
⎠

for any choice of boundary condition I1,J1,K1, I3,J3,K3.



CHAPTER 1. INTRODUCTION 12

Proposition 1.4.9 ([20, Prop. 3.2]). The L, M
′
, and R

′
matrices satisfy the YBE

∑
interior paths

w

⎛
⎜⎜⎜⎜
⎝ x

ỹJ1

I1

K1

I3

J3

K3 ⎞
⎟⎟⎟⎟
⎠
= ∑

interior paths

w

⎛
⎜⎜⎜⎜
⎝ ỹ

xJ1

I1

K1

J3

I3

K3 ⎞
⎟⎟⎟⎟
⎠

for any choice of boundary condition I1,J1,K1, I3,J3,K3.

Proof of Proposition 1.4.4. Fix x, y, α, β ∈ C. Substituting χ = x/α, γ = y/α, z = 1,

r = (x/α)1/2, s = (y/α)1/2, and τ = β into (1.1) gives

∑
I2,J2,K2

Wx/y(I1,J1; I2,J2∣(x/α)1/2, (y/α)1/2)Wx/α(K1,J2;K2,J3∣(x/α)1/2, β)Wy/α(K2, I2;K3, I3∣(y/α)1/2, β)

= ∑
I2,J2,K2

Wy/α(K1, I1;K2, I2∣(y/α)1/2, β)Wx/α(K2,J1;K3,J2∣(x/α)1/2, β)Wx/y(I2,J2; I3,J3∣(x/α)1/2, (y/α)1/2).

Multiplying both sides by (−α)∣I3∣+∣J3∣β
−2(∣I3∣+∣J3∣) gives

∑
I2,J2,K2

Wx/y(I1,J1; I2,J2∣(x/α)1/2, (y/α)1/2)

⋅ (−α)∣J3∣β
−2∣J3∣Wx/α(K1,J2;K2,J3∣(x/α)1/2, β)

⋅ (−α)∣I3∣β−2∣I3∣Wy/α(K2, I2;K3, I3∣(y/α)1/2, β)
= ∑

I2,J2,K2

(−α)∣I2∣β−2∣I2∣Wy/α(K1, I1;K2, I2∣(y/α)1/2, β)

⋅ (−α)∣J2∣β
−2∣J2∣Wx/α(K2,J1;K3,J2∣(x/α)1/2, β)

⋅Wx/y(I2,J2; I3,J3∣(x/α)1/2, (y/α)1/2)
where we use ∣I2∣ + ∣J2∣ = ∣I3∣ + ∣J3∣ by path conservation on the right-hand side.
Taking α → 0 and β → 0 and then applying Lemma 1.4.1 gives the desired YBE

∑
I2,J2,K2

Ry/x(I1,J1; I2,J2)Lx(K1,J2;K2,J3)Ly(K2, I2;K3, I3)

= ∑
I2,J2,K2

Ly(K1, I1;K2, I2)Lx(K2,J1;K3,J2)Ry/x(I2,J2; I3,J3).

Proof of Proposition 1.4.6. Fix S, Y, x, y ∈ C and let α = −S2
and β = SY

1/2
.

Substituting χ = x, γ = α, z = α, r = (x/α)1/2, s = Sy
−1/2

, and τ = SY
1/2

into (1.1)
gives

∑
I2,J2,K2

Wx/α(I1,J1; I2,J2∣(x/α)1/2, Sy−1/2)Wx/α(K1,J2;K2,J3∣(x/α)1/2, SY −1/2)W1(K2, I2;K3, I3∣Sy−1/2, SY 1/2)

= ∑
I2,J2,K2

W1(K1, I1;K2, I2∣Sy−1/2, SY 1/2)Wx/α(K2,J1;K3,J2∣(x/α)1/2, SY 1/2)Wx/α(I2,J2; I3,J3∣(x/α)1/2, Sy−1/2).
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Multiplying both sides by (−α)∣J3∣(SY 1/2)−2∣J3∣Y
−∣I3∣ gives

∑
I2,J2,K2

Wx/α(I1,J1; I2,J2∣(x/α)1/2, Sy−1/2)

⋅ (−α)∣J3∣(SY 1/2)−2∣J3∣Wx/α(K1,J2;K2,J3∣(x/α)1/2, SY −1/2)
⋅ Y

−∣I3∣W1(K2, I2;K3, I3∣Sy−1/2, SY 1/2)
= ∑

I2,J2,K2

Y
−∣I2∣W1(K1, I1;K2, I2∣Sy−1/2, SY 1/2)

⋅ (−α)∣J2∣(SY 1/2)−2∣J2∣Wx/α(K2,J1;K3,J2∣(x/α)1/2, SY 1/2)
⋅ (−α)∣J3∣−∣J2∣S

−2∣J3∣+2∣J2∣Wx/α(I2,J2; I3,J3∣(x/α)1/2, Sy−1/2)

where we use ∣I2∣ + ∣J2∣ = ∣I3∣ + ∣J3∣ by path conservation on the right-hand side.

Substituting α = −S2
and β = SY

1/2
gives

∑
I2,J2,K2

Wx/α(I1,J1; I2,J2∣(x/α)1/2, (−y/α)−1/2)

⋅ (−α)∣J3∣β
−2∣J3∣Wx/α(K1,J2;K2,J3∣(x/α)1/2, β)

⋅ Y
−∣I3∣W1(K2, I2;K3, I3∣Sy−1/2, SY 1/2)

= ∑
I2,J2,K2

Y
−∣I2∣W1(K1, I1;K2, I2∣Sy−1/2, SY 1/2)

⋅ (−α)∣J2∣β
−2∣J2∣Wx/α(K2,J1;K3,J2∣(x/α)1/2, β)

⋅Wx/α(I2,J2; I3,J3∣(x/α)1/2, (−y/α)−1/2).

Taking S → 0 and Y → 0 (hence also α = −S2
→ 0 and β = SY

1/2
→ 0) and then

applying Lemma 1.4.1 gives the desired YBE

∑
I2,J2,K2

R
′
y/x(I1,J1; I2,J2)Lx(K1,J2;K2,J3)L′

y(K2, I2;K3, I3)

= ∑
I2,J2,K2

L
′
y(K1, I1;K2, I2)Lx(K2,J1;K3,J2)R′

y/x(I2,J2; I3,J3).

Proof of Proposition 1.4.7. Fix S, Y, x, y ∈ C and let α = −S2
and β = SY

1/2
.

Substituting χ = 1, γ = 1, z = 1, r = Sx
−1/2

, s = Sy
−1/2

, and τ = SY
−1/2

into (1.1)
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gives

∑
I2,J2,K2

W1(I1,J1; I2,J2∣Sx−1/2, Sy−1/2)W1(K1,J2;K2,J3∣Sx−1/2, SY −1/2)W1(K2, I2;K3, I3∣Sy−1/2, SY 1/2)

= ∑
I2,J2,K2

W1(K1, I1;K2, I2∣Sy−1/2, SY 1/2)W1(K2,J1;K3,J2∣Sx−1/2, SY 1/2)W1(I2,J2; I3,J3∣Sx−1/2, Sy−1/2).

Multiplying both sides by Y
−∣I3∣−∣J3∣ gives

∑
I2,J2,K2

W1(I1,J1; I2,J2∣Sx−1/2, Sy−1/2)

⋅ Y
−∣J3∣W1(K1,J2;K2,J3∣Sx−1/2, SY −1/2)

⋅ Y
−∣I3∣W1(K2, I2;K3, I3∣Sy−1/2, SY 1/2)

= ∑
I2,J2,K2

Y
−∣I2∣W1(K1, I1;K2, I2∣Sy−1/2, SY 1/2)

⋅ Y
−∣J2∣W1(K2,J1;K3,J2∣Sx−1/2, SY 1/2)

⋅W1(I2,J2; I3,J3∣Sx−1/2, Sy−1/2)

where we use ∣I2∣ + ∣J2∣ = ∣I3∣ + ∣J3∣ by path conservation on the right-hand side.
Taking S → 0 and Y → 0 and then applying Lemma 1.4.1 gives the desired YBE

∑
I2,J2,K2

R
′′
x/y(I1,J1; I2,J2)L′

x(K1,J2;K2,J3)L′
y(K2, I2;K3, I3)

= ∑
I2,J2,K2

L
′
y(K1, I1;K2, I2)L′

x(K2,J1;K3,J2)R′′
x/y(I2,J2; I3,J3).
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Chapter 2

LLT polynomials

2.1 Introduction

LLT polynomials are a family of symmetric polynomials, which can be seen as a t-
deformation of products of skew Schur functions. They were originally introduced by
Lascoux, Leclerc and Thibon (for whom the polynomials are eponymously named) in
[39] to study certain plethysm coefficients, and they were defined via a relationship
with the Fock space representation of a quantum affine Lie algebra. The original
definition expresses the LLT polynomials as a sum over k-ribbon tableaux, weighted
with a spin statistic which arises naturally in this representation [39, 32]. Bylund and
Haiman discovered an alternative way to model LLT polynomials, instead indexed by
k-tuples of skew Young diagrams, weighted with an inversion statistic, as described
in [30]. While not apparent from either definition, LLT polynomials possess many
astonishing properties:

I. they are symmetric in the variables Xn = {x1, . . . , xn} [39];

II. when their indexing tuple of partitions is a tuple of single rows, they are equal
to the modified Hall-Littlewood polynomials H̃µ(Xn; t) [39];

III. they satisfy a Cauchy-like identity [38];

IV. they are Schur-positive, i.e. they expand as a N[t]-linear combination of Schur
polynomials [40, 29].

Using the vertex models defined in Chapter 1, we prove several new results on
LLT polynomials and give new (combinatorial) proofs of several of the known listed
properties above. The main result can be summarized as follows.
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Theorem 2.1.1 (Thm. 2.3.3). Let β/γ be a tuple of skew partitions. There is an
integrable vertex model whose partition function Zβ/γ(Xn; t) is precisely the coinver-
sion LLT polynomial Lβ/γ(Xn; t). Explicitly, Zβ/γ(Xn; t) is the partition function
associated to the lattice

⋮

. . .

γ

β

x1

xn

.

Here we present a new formulation of LLT polynomials, which we call a coinversion
LLT polynomial. They serve as a generating function for k-tuples of semistandard
Young tableaux, weighted with a coinversion statistic. The definition is easily seen
to be equivalent to the inversion definition after inverting t and multiplying by a
suitable power of t. This new formulation was detailed to the fourth author in
personal correspondence with M. Haiman, and can be reviewed in the first of a
recent series of publications [7].

We take the time now to expound on the details of properties I.-IV. and outline
the organization of this chapter.
I. Symmetry. The definition of LLT polynomials as spin-generating functions arises
naturally in the study of the representation theory of the Fock space for Uq(ŝln). In
particular, there are natural vertex operators on this space whose action on basis
elements is captured by the LLT polynomials. The symmetry of the LLT polyno-
mials follows from the commutativity of these vertex operators. Later, a purely
combinatorial proof was given using the inversion variant of LLT polynomials [31].

As innocuous as it is, the symmetry of the LLT polynomials has had several
important uses in combinatorics. In [30], the authors conjectured a combinatorial
formula for the Frobenius character of the ring of diagonal coinvariants (known later
as the shuffle conjecture). This Frobenius character is inherently symmetric, owing to
a natural Sn-module structure for the diagonal coinvariant ring. The combinatorial
formula was shown to expand into LLT polynomials, thus witnessing their symme-
try. A similar argument was used later in [31] to show that a proposed monomial
expansion for Macdonald polynomials was indeed symmetric.

We use the integrability of our vertex model to provide another proof that LLT
polynomials are symmetric. Our proof is combinatorial, modulo the underlying rep-
resentation theory governing the Yang-Baxter equation.
II. Single Rows. From the definition of coinversion LLT polynomials (Definition
2.2.4 below), one can easily see that at t = 1, the definition devolves into a product
of Schur functions

Lβ/γ(X; 1) = sβ(1)/γ(1)(X)⋯sβ(k)/γ(k)(X).
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Hence, the LLT polynomial Lµ(X; t) indexed by the tuple of partitions µ = (µ(1)
, . . . , µ

(k))
gives a t-analog c

λ

µ(1),...,µ(k)(t) of the classical Littlewood-Richardson coefficients.

When each partition µ
(j)

has only one part µj, c
λ
µ1,...,µk(t) coincides (up to a power

of t) with the Kostka-Foulkes polynomial Kλ,µ(t). The Kostka-Foulkes polynomials
have seemingly endless appearances in representation theory and combinatorics; in
particular, they are the coefficients of a Schur function on the basis of transformed
Hall-Littlewood polynomials Hµ(X; t). Hence, the identity

Lµ(X; t) = t
d
Hµ(X; t) (2.1)

holds, for some integer d. The original proof of (2.1) relies on the geometry of an
underlying flag variety. We apply our vertex model to provide an alternate (combi-
natorial) proof.
III. Cauchy identity. A Cauchy identity was given in [38] for the original spin-
generating LLT polynomials. We prove the following Cauchy identity for coinversion
LLT polynomials

∑
λ

Lλ(Xn; t)Lλrot(Yn; t) =
n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m)−1 (2.2)

where λ
rot

denotes the tuple of partitions gotten by rotating each partition 180
degrees and then reversing the order. As remarked in [38], the reader is warned that
(2.2) does not imply that the LLT polynomials form an orthogonal basis under some
inner product, as they are not linearly independent.
IV. Schur positivity. It was shown in [40] that when the LLT polynomials are
indexed by tuples of partitions, then their coefficients in the Schur basis are certain
affine Kazhdan-Lusztig polynomials. As it is known that these Kazhdan-Lusztig
polynomials have non-negative coefficients, the result implies that LLT polynomials
are Schur-positive. This argument was extended in [29] to arbitrary skew partitions,
and moreover generalized to any complex reductive Lie group. Unfortunately, it
is not clear how the vertex model formalism can be used to tackle the notion of
positivity.

This chapter is organized as follows. In Section 2.2, we define the coinversion
LLT polynomials and review the necessary combinatorial preliminaries. In Section
2.3, we use the white vertices defined in Chapter 1 to define a partition function,
which we show equals the coinversion LLT polynomial. In Section 2.5 we show that
LLT polynomials coincide with Hall-Littlewood polynomials, and in Section 2.6 we
show that they satisfy the above Cauchy identity. Finally, in Section 2.7, we provide
some examples of using Theorem 2.3.3 to compute coinversion LLT polynomials.
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2.2 LLT polynomials

Let T = (T (1)
, . . . , T

(k)) be a semistandard Young tableau on a tuple of skew

partitions β/γ = (β(1)/γ(1), . . . , β(k)/γ(k)). We choose the reading order on cells by
reading from the smallest to the largest content line, moving along a each content
line from SW to NE. We say two cells attack each other if either (1) they are on
the same content line or (2) they are on adjacent content lines, with the cell on the
larger content line in an earlier shape. We define an attacking inversion of T to
be a pair of attacking cells with different entries in which the larger entry precedes
the smaller in reading order.

Definition 2.2.1. Let β/γ be a tuple of skew partitions. The inversion LLT poly-
nomial is the generating function

Gβ/γ(X; t) = ∑
T∈SSYT(β/γ)

t
inv(T )

x
T

where inv(T ) is the number of attacking inversions of T .

Remark 2.2.2. Definition 2.2.1 was first given in [30], but it is not evidently related

to the original spin-generating functions G
(k)
λ/µ(X; q) defined in [39]. The connection

materializes via the Littlewood k-quotient map (Definition 3.2.5), which is a weight-
preserving bijection between semistandard ribbon tableaux and tuples of semistandard
Young tableaux on the quotient shape. It was shown in [30] that there is some constant
e depending only on the shape β/γ such that

G
(k)
λ/µ(X; t) = t

eGβ/γ(X; t
−2). (2.3)

where β/γ is the k-quotient of λ/µ.
As is the case for Macdonald polynomials, the number of attacking inversions can

be reformulated as the number of inversion triples, which we now define. Given a
tuple β/γ of skew partitions, we say that three cells u, v, w ∈ Z × Z form a triple
of β/γ if

1. v ∈ λ/µ;
2. they are situated as below

u w

v

(2.4)
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namely with v and w on the same content line and w in a later shape, and u
on a content line one smaller, in the same row as w; and

3. if u and w are in row r of λ
(j)/µ(j)

, then u and w must be between the cells

(r, µ(j)
r ) and (r, λ(j)r + 1), inclusive.

It is important to note that while v must be a cell in β/γ, we allow the cells u and
w to not be in any of the skew shapes, in which case u must be at the end of some
row in γ and w must be the cell directly to the right of the end of some row in β.

Definition 2.2.3. Let β/γ be a tuple of skew partitions and let T ∈ SSYT(β/γ).
Let a, b, c be the entries in the cells of a triple (u, v, w), where we set a = 0 and
c = ∞ if the respective cell is not in β/γ. We say the triple of entries

a c

b

is a coinversion triple if a ≤ b ≤ c and an inversion triple if b < a ≤ c or
a ≤ c < b.

There are 7 coinversion triples in Example 1.1.2 above: (0, 2, 4), (0, 2, 7),
(3,4,∞), (0,4,7), (4,5,∞), (1,9,∞), and (0,9,∞). However, we note that Definition
2.2.3, and that of a triple, depends not merely on the tuple of skew partitions β/γ,
but on the individual tuples of partitions β, γ. Indeed, if in Example 1.1.2, we made
the superficial change in the third skew shape from (1)/(0) to (2,2)/(2,1), then we
would introduce another coinversion triple (0, 9,∞). Likewise, if we consider the
third skew shape being instead (1,0)/(0,0), then we introduce the coinversion triples
(0, 8,∞) and (0, 6,∞). It’s easily seen that any extra coinversion triples present are
independent of the filling T .

Definition 2.2.4. Let β/γ be a tuple of skew partitions. The coinversion LLT
polynomial is the generating function

Lβ/γ(X; t) = ∑
T∈SSYT(β/γ)

t
coinv(T )

x
T

where coinv(T ) is the number of coinversion triples of T .
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In light of the preceding remarks, we note that if β/γ and β
∗/γ∗

are two represen-
tations of the same skew shapes, then their coinversion LLT polynomials differ by
an overall power of t.

Note that in a semistandard filling T on some tuple of skew partitions, a pair of
attacking entries forms an inversion if and only if they are in a (unique) inversion
triple. Indeed, if b < a ≤ c, then (a, b) is an attacking inversion, and likewise if
a ≤ c < b, then (b, c) is an attacking inversion. Hence, we have the identity

Lβ/γ(X; t) = t
mGβ/γ(X; t

−1) (2.5)

where m is the number of triples in β/γ. We give explicit formulae for m in Section
2.5.

Remark 2.2.5. A simplified version of Definition 2.2.4, in which each shape in β/γ
consists of a single row, can be found in [7]. There, the coinversion LLT polynomials
are first defined, via the action of a Hecke algebra, as a polynomial truncation of a
certain formal power series. It is then shown that this algebraic definition results in
the combinatorial definition above.

The formal power series in question consists of terms that are GLn characters.
This is the reason why our polynomials depend on the individual tuples of partitions
β, γ. Indeed, the reader is welcome to view β and γ not as partitions, but really as
dominant weights of GLn, i.e. non-increasing lists of integers. In fact, this “LLT
series” can be defined for any complex reductive Lie group (see [29]).

2.3 Vertex model

In this section we use the white L vertices defined in Chapter 1 to construct
a partition function which we show equals the coinversion LLT polynomial defined
above (with the appropriate choice of boundary conditions).

Recall the algebraic definition of the L matrix

L
(k)
x (I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ii+Ji≠2 ⋅ x
∣L∣
t
φ(L,I+J)

.

Graphically, the constraint I +J = K +L is a conservation property, meaning that
the paths entering and the paths exiting must be the same. The constraint that
there be no indices i ∈ [k] such that Ii + Ji = 2 means that there can be at most
one path of any given color. If these two constraints are satisfied, then the weight
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can be expressed as

L
(k)
x (I,J ;K,L) = x

# colors exiting the
vertex to the right ∏

colors i exiting the
vertex to the right

t
# colors larger than i that

appear in the vertex . (2.6)

When k = 1, this is the non-intersecting path model (also known as the five vertex
model), as illustrated in [51, Thm. 7.16.1].

Given a k-tuple of partitions λ = (λ(1), . . . , λ(k)) and an integer i, we define

λ(i) = (a(1)
i− 1

2

, . . . , a
(k)
i− 1

2

) ∈ {0, 1}k

where a = (a(1), . . . , a(k)) is the Maya diagram of λ. Let

r = r(β/γ) = min{i ∈ Z ∶ γ(i) ≠ 1},
s = s(β/γ) = max{i ∈ Z ∶ β(i) ≠ 0} + 1.

With this notation, we introduce a lattice that will be of particular interest to us:

Wn(β/γ) ∶=

0

⋮

0

0

⋮

0

β(r) ⋯ β(s)

γ(r) ⋯ γ(s)

x1 ⋯ x1

xn ⋯ xn

⋮ ⋮ (2.7)

Following [45], we define the bandwidth band(β/γ) ∶= s(β/γ) − r(β/γ) to be
one less than the number of columns in this lattice. To simplify notation, we will
often replace β(r) . . .β(s) with β and γ(r) . . .γ(s) with γ to indicate the top and
bottom boundary conditions.

Example 2.3.1. Let β/γ = ((3, 3)/(2, 1), (3, 1)/(1, 0)) and n = 2.

β/γ =

−1 0 1 2
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We compute r = −1 and s = 3, and

Lβ/γ =

(0, 0)

(0, 0)

(0, 0)

(0, 0)

−1 0 1 2 3
(0, 0)(0, 1)(0, 0)(1, 0)(1, 1)

(0, 1)(1, 0)(0, 1)(1, 0)(0, 0)

x1 x1 x1 x1 x1

x2 x2 x2 x2 x2

where we have included the column indices (in addition to the variables and the outer
edge labels).

We let Zβ/γ(Xn; t) denote the partition function of Wn(β/γ), that is,

Zβ/γ(Xn; t) = ∑
L∈LC(Wn(β/γ)

weight(L).

Remark 2.3.2. It is easy to see that the partition function does not change if we
expand the lattice to go from column r

′
≤ r to column s

′
≥ s. Indeed, for all r

′
< r,

we have γ(r′) = β(r′) = 1 so each color is forced to travel vertically through column
r
′
, contributing a factor of 1 to the weight of each lattice configuration. Similarly,

for all s
′
> s, we have γ(s′) = β(s′) = 0 so column s

′
is empty, contributing a factor

of 1 to the weight of each lattice configuration.

Having set up the necessary notation, we can state the main theorem of this chapter.

Theorem 2.3.3 ([22, Thm. 3.4]). Let β/γ be a tuple of skew partitions. Then

Zβ/γ(Xn; t) = Lβ/γ(Xn; t).

Some examples of using this theorem to compute LLT polynomials are given in
Section 2.7.

This theorem will follow from a weight-preserving bijection

φ ∶ SSYT(β/γ) → LC(Wn(β/γ)).

Given T ∈ SSYT(β/γ), the corresponding lattice configuration L = φ(T ) is con-
structed as follows. Each row in T corresponds to a colored path in L. Fix a row

c c + 1. . .c + j − 1

. . .

. . . e1 e2 . . . ej T
(i)

. . .
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in T . The corresponding path in L has color i, enters via the bottom of column c
and exits via the top of column c+ j, and crosses from column c+m− 1 to column
c +m at row em for each index m ∈ [j].

Example 2.3.4. Let β/γ = ((3, 3)/(2, 1), (3, 1)/(1, 0)) and n = 2. Then

−1 0 1 2

2

1 1

1 2

1

↔

−1 0 1 2 3

where in the lattice configuration blue is color 1, red is color 2, and we have omitted
the variables and the edge labels (as we will do often).

The invertibility of φ is straightforward; indeed this is a well-known fact for one
color [51, Thm. 7.16.1] and the proof for k colors follows from applying the proof
for one color to each of the k colors independently. The following proposition then
completes the proof of Theorem 2.3.3.

Proposition 2.3.5 ([22, Prop. 3.6]). Let T ∈ SSYT(β/γ) and let φ(T ) be the
corresponding lattice configuration, as defined above. Then

coinv(T ) = ∑
vertices V in φ(T )

∑
colors i exiting V to the right

(# colors larger than i that appear in V ).

In particular, the weight of the lattice configuration φ(T ) is x
T
t
coinv(T )

.

Proof. The left-hand side counts the number of coinversion triples in T ; that is, the
number of triples of boxes in T

a c T
(j)

p

b T
(i)

with p denoting the content line, i < j, and a ≤ b ≤ c, where we set a = 0 and
c = ∞ if the respective box is empty. One can observe that the coinversion triple
can be recovered just from i, j, b, p, so we will identify each coinversion triple with
the corresponding quadruple (i, j, b, p). The right-hand side counts the number of
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quadruples (i, j, b, p) where V is the vertex in φ(T ) at row b and column p, i is a
color exiting V to the right, and j is a color larger than i that appears in V . The
proposition follows from the fact that the left-hand side quadruples correspond to
the right-hand side quadruples via φ. To verify this correspondence, we split into
cases based on the form of the coinversion triple.

0 < a < b < c < ∞

a c T
(j)

p

b T
(i)

↔

a

⋮

b

⋮

c

p

j

i. . .

0 < a < b < c = ∞

a ∞ T
(j)

p

b T
(i)

↔

a

⋮

b

⋮

n

p

j

i. . .

0 < a < b = c < ∞

a b T
(j)

p

b T
(i)

↔

a

⋮

b

⋮

n

p

j

i. . .

0 = a < b < c < ∞

0 c T
(j)

p

b T
(i)

↔

1

⋮

b

⋮

c

p

j

i. . .

0 = a < b < c = ∞

0 ∣ ∞ T
(j)

p

b T
(i)

↔

1

⋮

b

⋮

n

p

j

i. . .

0 = a < b = c < ∞

0 b T
(j)

p

b T
(i)

↔

1

⋮

b

⋮

n

p

j

i. . .

0 < a = b < c < ∞

b c T
(j)

p

b T
(i)

↔

1

⋮

b

⋮

c

p

j

i. . .

0 < a = b < c = ∞

b ∞ T
(j)

p

b T
(i)

↔

1

⋮

b

⋮

n

p

j

i. . .

0 < a = b = c < ∞

b b T
(j)

p

b T
(i)

↔

1

⋮

b

⋮

n

p

j

i. . .

2.4 The symmetry of the LLT polynomials

The Yang-Baxter equation (Prop. 1.4.4) can be used to give an alternate proof
that the coinversion LLT polynomials Lβ/γ(X; t) are symmetric in the X variables.
This was originally shown in [39], and later proven purely combinatorially in [31].

Theorem 2.4.1 ([22, Thm. 4.2]). The coinversion LLT polynomial Lβ/γ(X; t) is
symmetric in the X variables.

Proof. It is enough to show that swapping xi and xj leaves the partition function
Zβ/γ(X; t) unchanged, for any i < j. Consider two rows

0 xi . . . xi 0

0 xj . . . xj 0
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in Wn(β/γ). We insert an R matrix at the left end and repeatedly apply the YBE
to get

0

0

xi . . . xi 0

xj . . . xj 0
=

0

0

0 xj . . . xj

0 xi . . . xi
.

To get a non-zero entry of the R matrix, we have I = J = 0 if and only if K = L = 0,
in which case Rxj/xi(0,0,0,0) = 1. Therefore the above equality becomes

0

0

xi . . . xi 0

xj . . . xj 0
=

0

0

0 xj . . . xj

0 xi . . . xi
.

The technique used to swap two white rows in the previous proof is sometimes
called the “train argument.” We will use this technique many times throughout this
thesis.

2.5 Single rows

In this section, we consider the case when γ = ∅ and each partition in β has
a single part i.e. β is a k-tuple of single rows. In this case, we can view β as
a (weak) composition β, and we will abuse notation by writing Lβ(X; t) to mean
the polynomial Lβ(X; t). Using the results of the previous section, we give another
proof that the LLT polynomial indexed by β coincides with a certain Hall-Littlewood
polynomial. The exact statement is as follows.

Let Kλ,µ(t) ∈ Z[t] denote the Kostka-Foulkes polynomial. Let Hµ(X; t) denote
the transformed Hall-Littlewood polynomials, given by their Schur expansion

Hµ(X; t) = ∑
λ≥µ

Kλ,µ(t)sλ(X) (2.8)

where the sum is over partitions λ that dominate µ (i.e. ∣λ∣ = ∣µ∣ and ∑j

i=1 λi ≥

∑j

i=1 µi for all j). We define the modified Hall-Littlewood polynomials H̃µ(X; t) by

H̃µ(X; t) = t
n(µ)

Hµ(X; t
−1) (2.9)
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where n(µ) = ∑i(i− 1)µi. Similarly, we define the modified Kostka-Foulkes polyno-

mials K̃λ,µ(t) ∶= t
n(µ)

Kλ,µ(t−1), so that

H̃µ(X; t) = ∑
λ≥µ

K̃λ,µ(t)sλ(X). (2.10)

The following is due to [39], albeit in a different form than stated below.

Proposition 2.5.1 ([22, Prop. 5.1]). Let µ be a partition, viewed also as a tuple of
rows. Then

Gµ(X; t) = H̃µ(X; t). (2.11)

where we recall that Gµ(X; t) denotes the inversion LLT polynomials.

The polynomials K̃λ,µ(t) have many geometric interpretations. It is a well known
fact [42] that when t = q is the cardinality of a finite field Fq, GLn(Fq) acts on

the set of Fq-rational points of a flag variety, and K̃λ,µ(q) equals the value of an
irreducible character χλ in this representation on a unipotent element u with Jordan
form specified by µ. Prop. 2.5.1 is proven in [39] by showing that there is a cell
decomposition of a similar flag variety whose cells are indexed by k-tuples of tableaux
and whose dimensions are precisely the inversion statistic defined in Section 2.2.

As far as the author is aware, the only known proofs of Prop. 2.5.1 rely on the
geometry of an underlying flag variety. We present a new proof using our vertex
model formulation of coinversion LLT polynomials. Using (2.9) and (2.5), (2.11)
becomes

Lµ(X; t) = t
m(µ)−n(µ)

Hµ(X; t) (2.12)

where we recall that m(µ) is the number of triples in µ. We derive the following
explicit formula for m which holds for all tuples of partitions β, not just those
consisting of single rows.

Proposition 2.5.2 ([22, Prop. 5.2]). Let β be a tuple of partitions. Then,

m(β) = #{a < b, i, j ∣ 0 ≤ β
(b)
j −j+i < β

(a)
i }+∑

a<b
i,j

max(min(β(a)
i −i, β

(b)
j −j)+min(i, j), 0)

(2.13)

Proof. We count triples by the cell labelled v in (2.4), as this cell must always be in

the shape β. Fix a cell v = (i, ℓ) ∈ β
(a)

. If (u, v, w) is a triple, then u,w must lie

in (or adjacent to) some β
(b)

for b > a. For each row β
(b)
j , let w be the unique cell in

this row on the same content line as v and let u be the cell directly to the left of w.
Then (u, v, w) is a triple if
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1. u,w are both in β
(b)
j ;

2. u is the cell (j, 0) just before the beginning of the row; or

3. u is the cell (j, β(b)
j ) at the end of the row.

In other words, v forms a triple with two cells in row β
(b)
j exactly when β

(b)
j has a cell

of content c(v) or c(v)− 1. As the set of contents of cells in the row β
(b)
j is precisely

the interval [1 − j, β
(b)
j − j], we have

(u, v, w) is a triple ⟺ 1− j ≤ c(v) ≤ β
(b)
j − j + 1 ⟺ i− j ≤ ℓ− 1 ≤ β

(b)
j + i− j.

As ℓ − 1 ranges over the interval [0, β(a)
i − 1], after summing over ℓ, i, j and a < b,

we find that the number of triples (u, v, w) is

m(β) = ∑
a<b
i,j

# ([0, β(a)
i − 1] ∩ [i − j, β

(b)
j + i − j])

= ∑
a<b
i,j

# ([−i, β(a)
i − i − 1] ∩ [−j, β(b)

j − j])

= ∑
a<b
i,j

max(min(β(a)
i − i − 1, β

(b)
j − j) −max(−i,−j) + 1, 0)

= ∑
a<b
i,j

max(min(β(a)
i − i, β

(b)
j − j) +min(i, j), 0) + {1 ∶ −min(i, j) ≤ β

(b)
j − j ≤ β

(a)
i − i − 1

0 ∶ else

= ∑
a<b
i,j

max(min(β(a)
i − i, β

(b)
j − j) +min(i, j), 0) + {1 ∶ i −min(i, j) ≤ β

(b)
j − j + i < β

(a)
i

0 ∶ else
.

The condition i −min(i, j) ≤ β
(b)
j − j + i is seen to be equivalent to 0 ≤ β

(b)
j − j + i

in either case i ≤ j or j ≤ i.

Given a composition β, we define Inv(β) = #{i < j ∣ βi > βj}.

Lemma 2.5.3 ([22, Cor. 5.3]). Let µ be a partition and let β be a rearrangement of
the parts of µ. Then

m(β) = n(µ) + Inv(β)
where n(µ) = ∑i(i − 1)µi.
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Proof. As β is k-tuple of single rows, the only terms that contribute to the right-hand
side of (2.13) are when i = j = 1. Thus,

m(β) = #{a < b ∣ 0 ≤ β
(b)

< β
(a)} +∑

a<b

max(min(β(a)
− 1, β

(b)
− 1) + 1, 0)

= inv(β) +∑
a<b

min(β(a)
, β

(b)).

The result follows from the identity n(µ) = ∑a<bmin(β(a)
, β

(b)).

With Lemma 2.5.3, (2.12) becomes

Lµ(X; t) = t
Inv(µ)

Hµ(X; t). (2.14)

We establish the following statement, giving another proof of (2.14).

Proposition 2.5.4 ([22, Prop. 5.5]). Let µ be a partition and let β be a rearrange-
ment of the parts of µ. Then

Lβ(X; t) = t
Inv(β)

Hµ(X; t).

In particular, if µ
rev

= (µn, . . . , µ1) is µ in reverse order, then

Lµrev(X; t) = Hµ(X; t).

Proof. Using Prop. 2.5.5 below, it suffices to prove the particular case with µ
rev

.
Viewing µ

rev
as a composition rather than as a tuple of rows, we recast the definition

of Lµrev(X; t) as a sum over fillings of the diagram D(µrev):

Lµrev(X; t) = ∑
σ∶µrev→Z+

rows≤

t
coinv(σ)

x
σ

(2.15)

where the sum is over fillings of µ
rev

with weakly increasing rows, and coinv(σ) counts
triples of the form

a c

b

(2.16)

with a ≤ b ≤ c (we set a = 0 if it is not in µ
rev

).
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We recall the combinatorial definition of Hµ(X; t), given in [31], by exchanging
q and t in the combinatorial formula for Macdonald polynomials and setting q = 0:

Hµ(X; t) = ∑
σ∶µ′→Z+
cols≥

t
coinv

′(σ)
x
σ
. (2.17)

Here, the sum is over fillings σ of the conjugate Young diagram D(µ′) with weakly
decreasing columns, and coinv

′(σ) counts triples of the form

x z

y
(2.18)

with x ≤ z ≤ y (we set y = 0 if it is not in µ
′
).

Define Φ to be the map from fillings of µ
rev

to fillings of µ
′
which rotates 90

degrees counterclockwise and swaps entries i and n − i + 1. For example:

1 2 4 4

2 3 4

3 3

1 3

↦

1

1 1

3 2 2 2

4 3 2 4

It is clear that Φ is a bijection and (after setting a = y, b = z, and c = x) maps
coinversion triples as in (2.16) precisely to triples as in (2.18). In other words, Φ is
a weight-preserving bijection from terms in (2.15) to terms in (2.17).

Proposition 2.5.5 ([22, Prop. 5.4]). Let µ be a partition and let β be a rearrange-
ment of the parts of µ. Then

Lµ(X; t) = t
Inv(µ)−Inv(β)Lβ(X; t).

Proof. It suffices to prove this statement in the case when β is obtained from µ by a
single swap of consecutive rows, and in fact we only need to consider the case when
µ = (µ1, µ2) and β = (µ2, µ1). We take blue to be color 1 and red to be color 2. As
the case µ1 = µ2 is trivial, we assume µ1 > µ2. In this case, in any path configuration
of Wn(µ), the blue path will end to the right of the red path. Since the paths start
at the same face, there exists a last face of the form . Taking a path configuration

of Wn(µ) and swapping the colors of the paths after this face gives a bijection with
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path configurations of Wn(β). For example,

↦

It’s clear that the number of coinversions decreases by one after swapping, so that

Lµ(X; t) = t Lβ(X; t).

2.6 Cauchy identity

In this section, we give another proof of a Cauchy identity for LLT polynomials.
A Cauchy identity was given in [38] for the original spin-generating LLT polynomials,
whereas our Cauchy identity is for coinversion LLT polynomials; however the reader
can readily use (2.3) to rederive the identity in [38].

Theorem 2.6.1 ([22, Thm. 6.1]). [Cauchy Identity] Fix n, k ≥ 1. Then

∑
λ

t
d(λ)Lλ(Xn; t)Lλ(Yn; t) =

n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m)−1 (2.19)

where the sum is over k-tuples λ of partitions with n non-negative parts and d(λ) is
given in Lemma 2.6.7.

To prove Theorem 2.6.1, we will use a method of using vertex models to prove
Cauchy-type identities given in [53].

Row-to-row transfer matrices

We introduce two types of semi-infinite row-to-row transfer matrices. The
first is obtained by concatenating infinitely many L matrices, and the second is
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obtained by concatenating infinitely many M matrices. Graphically, we represent
these matrices as follows:

T (x) =
x

. . .

T
∗(x) =

x̄

. . .

For T (x) we write the parameter x to the left of the row to indicate that every
face has weights given by Lx, and similarly for T

∗(x). An entry of the matrix is
given by fixing the incoming (left and bottom) and outgoing (top and right) paths
on the boundary and summing over the weight of all configurations respecting these
boundary conditions.

Note that the matrix entries are well-defined only if we assume ∣x∣ < 1, which
means that any matrix entry with unbounded degree in x is equal to 0, hence

x

. . .
= 0 =

x̄

. . .
.

We are interested in certain submatrices given by

T+(x) ∶= x

. . .

T
∗
+ (x) ∶= x̄

. . .

where to simplify notation we use a black circle to indicate the vector 1 and a
white circle to indicate the vector 0. Graphically, fixing how the paths enter and
exit the row from the top and bottom, the corresponding entry T+(x) is the sum
over the weight all possible infinite row configurations of white boxes such that
the leftmost edge is unoccupied and only empty boxes appear sufficiently far to
the right, respecting the top and bottom boundary conditions. The corresponding
entry of T

∗
+ (x) is the sum over the weight all possible infinite row configurations

of gray boxes such that the leftmost edge is unoccupied and only boxes with all
paths horizontal appear sufficiently far to the right respecting the top and bottom
boundary conditions.

Repeated application of the Yang-Baxter equation (1.4.5) yields the following:
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Proposition 2.6.2 ([22, Prop. 6.3]). The matrices T+(y) and T
∗
+ (x) satisfy

y

x̄

. . .

=

x̄

y

. . .

(2.20)

Proof of Theorem 2.6.1

The proof comes in several steps. We begin with the equation

. . .

y1
⋱

yn

x̄1

. .
.
x̄n

=

. . .

y1

⋮

yn

x̄1

⋮

x̄n

(2.21)

which follows from repeated applications of Prop. 2.6.2. Here the gray rows are
generated by T

∗
+ and the white rows are generated by T+.

We first simplify the left-hand side of (2.21). As no paths enter from the left, we
can factorize the left-hand side as follows:

. . .

y1
⋱

yn

x̄1

. .
.
x̄n

×

The first factor equals 1, since there are no paths. To evaluate the second factor, we
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observe that the only non-zero contribution occurs for the following configuration:

x̄1

⋮

x̄n

y1

⋮

yn

. . .

in which the bold paths indicate that paths of every color follow the trajectory. This
has weight

(xk1t(
k
2
))
n−1

(xk2t(
k
2
))
n−2

⋯ (xkn−1t(
k
2
))

1

= (xρn)k t(
n
2
)(k

2
)
. (2.22)

where we recall ρn = (n − 1, . . . , 0) and x
ρn denotes the monomial x

n−1
1 ⋯x

0
n.

We now simplify the right-hand side of (2.21). The right edge of the lattice is
situated at infinity, hence a non-zero contribution is possible only if the lowest n edges
are unoccupied and the highest n edges are occupied. Therefore we can factorize the
right-hand side as follows:

. . .

y1

⋮

yn

x̄1

⋮

x̄n

×

The only non-zero contribution to the second factor is

y1

⋮

yn

x̄1

⋮

x̄n

=

n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m) . (2.23)
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The first factor can be expressed as
. . .

y1

⋮

yn

x̄1

⋮

x̄n

= ∑
λ

. . .

y1

⋮

yn

λ

×

⋯

x̄1

⋮

x̄n

λ

.

We know from Theorem 2.3.3 that the first factor in the sum is Lλ(y1, . . . , yn; t). In
the next subsection, we will prove that the second factor in the sum is

L∗
λ(x1, . . . , xn; t) ∶=

⋯

x̄1

⋮

x̄n

λ

= (xρn)k t(
n
2
)(k

2
)
t
d(λ)Lλ(Xn; t) (2.24)

where d(λ) is given in Lemma 2.6.7. In light of (2.22), (2.23), and (2.24), we see
that (2.21) becomes

(xρn)k t(
n
2
)(k

2
)
=

n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m)∑

λ

(xρn)k t(
n
2
)(k

2
)
t
d(λ)Lλ(Xn; t)Lλ(Yn; t).

Rearranging gives Theorem 2.6.1.

Calculation of L∗
λ

Definition 2.6.3. Let N, n, k be non-negative integers. Given a partition λ with n
non-negative parts, each of which is ≤ N , we define its complement in an N × n
box to be the partition

λ
c
= (N − λn, . . . , N − λ1).

Given λ ∈ P
k
n , we define its complement in an N×n box to be the k-tuple of partitions

λ
c
= ((λc)(1), . . . , (λc)(k)) where

(λc)(i) = (λ(k−i))c.
(We will use this notation in Chapter 2. In Chapter 3, we will actually define the
above to be the complement in an n×N box, as necessitated by the use of purple/pink
vertices.)
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To derive (2.24), we need the following two identities of LLT polynomials.

Proposition 2.6.4 ([22, Prop. 6.4]). Let λ = (λ(1), . . . , λ(k)) be a k-tuple of par-
titions, each having n non-negative parts. Fix the number of columns M such that
band(λ) <M and let N =M − n. Let λ

c
be the complement of λ in an N × n box.

We have
M

x1

⋮

xn

λ

= t
d(λ)Lλc(Xn; t)

where d(λ) is given below in Lemma 2.6.7. In other words, if B = ((Nn)k) (the
k-tuple of partitions, each of which has all n of its parts equal to N), then

LB/λ(Xn; t) = t
d(λ)Lλc(Xn; t). (2.25)

Proposition 2.6.5 ([22, Prop. 6.5]). Let λ and N be as in Prop. 2.6.4. Then

Lλ(Xn; t) = (x1⋯xn)kN td̃(λ)Lλc(X−1
n ; t) (2.26)

where

d̃(λ) = (k − 1)∣λ∣ − nN(k2). (2.27)

Remark 2.6.6. Prop. 2.6.5 has a representation-theoretic meaning. At q = 1, (2.26)
is simply a statement of contragredient duality for (tensor products of) irreducible
representations of GLn. One can use this same duality, together with the machinery
of affine Hecke algebras, to conclude the statement for arbitrary q.

A similar result was proven in [50, Prop. 10] for the class of generalized Hall-
Littlewood polynomials defined therein. These polynomials coincide, up to a power of
t, with coinversion LLT polynomials when the indexing tuple consists of rectangles.

For the proof of Prop. 2.6.4, we construct a bijection LC(Wn(B/λ)) → LC(Wn(λc/0)),
which we show is weight-preserving (up to an overall power of t and rearranging the
X variables) using a “corner flipping argument.” The proof of Prop. 2.6.5 is similar,
but we use a bijection LC(Wn(λ/0)) → LC(Wn(λc/0)).

Proof of Prop. 2.6.4. There is a bijection Φ ∶ LC(Wn(B/λ)) → LC(Wn(λc/0))
given by rotating 180 degrees and reversing the colors. For example, with two colors
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we have

↦

Note that horizontal steps in row i become horizontal steps in row n − i + 1 under
this bijection, so the X weight remains unchanged up to switching xi and xn−i+1. By
Lemma 2.6.7 below, the bijection decreases the t weight by d(λ). Thus

LB/λ(Xn; t) = t
d(λ)Lλc(xn, . . . , x1; t) = Lλc(Xn; t)

where the last equality uses Theorem 2.4.1.

Lemma 2.6.7 ([22, Lemma 6.6]). Let λ and Φ be as in the proof of Prop. 2.6.4.
Then

d(λ) ∶= coinv T − coinv Φ(T )
is independent of T . In particular,

d(λ) = (n2)(
k
2) −#{i, j, a < b ∣ λ(b)i − i < λ

(a)
j − j}. (2.28)

Proof. For any k-tuple of skew partitions β/γ, LC(Wn(β/γ)) is connected under
corner flips

↔ .

It thus suffices to show that if T ∈ LC(Wn(λ/0)) and f(T ) ∈ LC(Wn(λ/0)) results
from flipping a single corner of T , then

coinv T − coinv f(T ) = coinv Φ(T ) − coinv Φ(f(T )). (2.29)

As coinversions are counted pairwise between colors and Φ interchanges down-flippable
corners with up-flippable corners, without loss of generality it suffices to prove (2.29)

in the case when λ = (λ(1), λ(2)) and f(T ) results from T by flipping a corner down.
The table below shows the 10 possible local configurations of paths where a corner
of T might be down-flippable, along with the corresponding corner in Φ(T ). (Here
blue is color 1 and red is color 2.)
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Case 1 (R) 2 (B) 3 (B) 4 (B) 5 (B) 6 (R) 7 (R) 8 (B) 9 (R) 10 (R)

T

Φ(T )

We will do case 1 in detail. The rest can be done similarly.
In case 1 the original local configuration of T contributes a power of t as the blue

path exits right and a red path is present. Suppose that flipping the red corner down
causes T to lose a power of t. Marking the original face with a ∗, we must be in the
situation

T,
∗ flip

−−→
∗

where no blue path is present in the bottom-right face (since a blue path exiting
right would contribute a power of t, and the presence of a blue path in the top-right
face prevents a blue path from exiting up). In Φ(T ) this corresponds to the situation

Φ(T ),
∗

flip
−−→

∗

where no red path is present in the top-left face. Here the bottom-left face originally
contributed a power of t, which is lost after the flip. Thus we lose a power of t in
both T and Φ(T ).

Now suppose there was no change in the power of t after flipping the corner in
T . Then we must be in the situation

T,
∗ flip

−−→
∗

where a blue paths exits right in the bottom-right face contributing a power of t to
make up for the one lost from the top-left face. In Φ(T ) this corresponds to

Φ(T ),
∗

flip
−−→

∗

where now the top-left face contributes a power of t to make up for the one lost from
the bottom-left face. Thus there is no net change in the power of t for either T or
Φ(T ).
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From this we see that coinv T − coinv Φ(T ) is independent of T . It is left to
compute this quantity for some T . We choose T such that all the paths stay as high
as possible (no up-flips available). For this choice of configuration T , in Φ(T ) the
paths are as low as possible (no down-flips available). For example:

T

⟶

Φ(T )

For two colors, one can check that the powers of t in T and Φ(T ) are given by

coinv T =

n

∑
i=1

min(N − λ
(1)
i , N − λ

(2)
i ) +

n

∑
i=1

#{j < i ∣ λ(2)i − i ≥ λ
(1)
j − j},

coinv Φ(T ) =
n

∑
i=1

min((λc)(2)i , (λc)(1)i ) +
n

∑
i=1

#{j ≥ i ∣ (λc)(1)j − j > (λc)(2)i − i}

=

n

∑
i=1

min(N − λ
(1)
i , N − λ

(2)
i ) +

n

∑
i=1

#{j ≥ i ∣ λ(2)i − i < λ
(1)
j − j}

where in each expression, the first sum counts powers of t coming from and the

second sum counts powers of t coming from . We have

d(λ) = coinv T − coinv Φ(T )

=

n

∑
i=1

#{j < i ∣ λ(2)i − i ≥ λ
(1)
j − j} −

n

∑
i=1

#{j ≥ i ∣ λ(2)i − i < λ
(1)
j − j}

= (n2) −#{i, j ∣ λ(2)i − i < λ
(1)
j − j}.

To extend this to k colors, we sum over all pairs of colors a < b and get

d(λ) = (n2)(
k
2) −∑

a<b

#{i, j ∣ λ(b)i − i < λ
(a)
j − j}.
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Proof of Prop. 2.6.5. Upon specialization at t = 1 and k = 1 of (2.26), we arrive at
a well-known identity of Schur functions [51, Ex. 7.41]

sλ(Xn) = (x1⋯xn)Nsλc(X−1
n )

which is proven combinatorially using a bijection SSYT(λ) → SSYT(λc). We recall
that bijection here.

Fix a partition λ with n ≥ ℓ(λ) and N ≥ λ1. Fix T ∈ SSYT(λ) and let ν
1
, . . . , ν

N

denote the (possibly empty) columns of T , left to right. Let ν̃
i
be the column whose

entries are [n] \ {j ∣ j ∈ ν
i}, arranged in increasing order. Define Φ(T ) to be the

tableau with columns ν̃
N
, . . . , ν̃

1
, left to right. An example is given below with n = 4

and N = 3.

4

2 3 4

1 1 2

⟷

2 1 1

4 3 2

3 4 4

1 2 3

Now if T = (T (1)
, . . . , T

(k)) ∈ SSYT(λ), then we abuse notation and write

Φ(T ) = (Φ(T (k)), . . . ,Φ(T (1))) ∈ SSYT(λc)

to be the reversal of applying the bijection Φ individually to each tableau. We
further abuse notation and write Φ(T ) ∈ LC(Wn(λc/0)) to be the corresponding
lattice configuration, when T ∈ LC(Wn(λ/0)) is a lattice configuration. Note that
if T has weight x

T
in the X variables, then Φ(T ) will have weight (x−1)T (x1⋯xn)kN

in the X variables. The proposition then follows from Lemma 2.6.8 below.

Lemma 2.6.8 ([22, Lemma 6.7]). Let λ, N , and Φ be as in the proof of Proposition
2.6.5. Then

d̃(λ) ∶= coinv T − coinv Φ(T )
is independent of T . In particular,

d̃(λ) = (k − 1)∣λ∣ − nN(k2). (2.30)

Proof. Similarly as in the proof of Lemma 2.6.7 (noting that once again Φ inter-
changes down-flippable corners with up-flippable corners), it suffices to prove

coinv T − coinv f(T ) = coinv Φ(T ) − coinv Φ(f(T )) (2.31)
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in the case when λ = (λ(1), λ(2)) and f(T ) results from T by flipping a corner up.
Letting blue be color 1 and red be color 2, we consider the case

T

a

a + 1
flip
−−→

f(T )

where a blue path goes through the square but not the circle in T . (The other cases
can be shown similarly.) Since the configuration f(T ) is obtained from T by flipping
a red corner up from row a to row a + 1, the tableaux f(T ) is obtained from T by

swapping an entry a ∈ T
(2)

with a + 1 ∈ f(T (2)). Therefore the tableaux Φ(f(T ))
is obtained from Φ(T ) by swapping an entry a + 1 ∈ Φ(T (2)) with a ∈ Φ(f(T (2))),
hence the configuration Φ(f(T )) is obtained from Φ(T ) by flipping a blue corner
down from row a + 1 to row a.

T

a

a + 1
flip
−−→

f(T ) Φ(T )

a

a + 1
flip
−−→

Φ(f(T ))

We claim that a red path goes through the square but not the circle in Φ(T ), hence

coinv Φ(T ) − coinv Φ(f(T )) = −1 = coinv T − coinv f(T ).

A blue path goes through the square in T , so there is an entry a + 1 ∈ T
(1)

on the

same content line as the entry a ∈ T
(2)
. A blue path does not go through the circle

in T , so the cell directly below this a + 1 (if it is in T at all) cannot contain an a.

Thus Φ(T (1)) contains an a but not an a+ 1 in the corresponding column. The case
is pictured below, with a concrete example on the left and the general case on the
right; gray cells denote cells in the complement shape, and a is the circled green 2 in
the left picture.
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−3 −2 −1 0 1 2

4 3 1

3 4 3

2 2 4

1 1 2

2 1 1

4 3 2

3 4 4

1 2 3

Φ(T (2))
⋮

a+1

⋮

Φ(T (1)) ⋮

⋮ a

a ⋮

⋮ T
(2)

⋮

a+1

⋮

T
(1)

Let c1 denote the column containing a+1 ∈ T
(1)

and a ∈ Φ(T (1)) and let c2 denote

the column containing a ∈ T
(2)

and a+1 ∈ Φ(T (2)). Due to column strictness, in
both c1 and c2 the set of numbers between the a and the a+ 1 is exactly the interval
[a + 2, n]. Thus the number of cells between the a and the a + 1 is the same, and

since we know a+1 ∈ T
(1)

and a ∈ T
(2)

are on the same content line, then so too

must a ∈ Φ(T (1)) and a+1 ∈ Φ(T (2)). Therefore the cell a ∈ Φ(T (1)) corresponds
to a red path going through the square in Φ(T ). We can also conclude that Φ(T (1))
does not contain an a + 1 on the content line immediately above the content line
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containing this a; by semistandardness, the only place this a + 1 could go on this

content line is the cell directly above the a, but we know Φ(T (1)) does not contain
an a+ 1 in the same column as the a. Therefore a red path does not go through the
circle in Φ(T ).

We now explicitly calculate d̃(λ) = coinv T − coinv Φ(T ) for some T . We choose
the configuration in which the paths are as low as possible (no down-flips available).
On the tuple of tableaux, this corresponds to the superstandard filling, i.e. the filling
in which the i-th row is filled with only i’s. Hence Φ(T ) is the configuration in which
the paths are as high as possible (no up-flips available).

T

⟶

Φ(T )

As in the proof of Lemma 2.6.7, one can check that the powers of t in T and Φ(T )
are given by

coinv T =

n

∑
i=1

min(λ(1)i , λ
(2)
i ) +

n

∑
i=1

#{j ≥ i ∣ λ(1)j − j > λ
(2)
i − i},

coinv Φ(T ) =
n

∑
i=1

min(λ(1),ci , λ
(2),c
i ) +

n

∑
i=1

#{j ≤ i ∣ λ(1),ci − i < λ
(2),c
j − j}

=

n

∑
i=1

min(N − λ
(1)
N−i, N − λ

(2)
N−i) +

n

∑
i=1

#{j ≤ i ∣ −λ(1)N−i − i < −λ
(2),c
N−j − j}

= Nn −
n

∑
i=1

max(λ(1)i , λ
(2)
i ) +

n

∑
i=1

#{j ≤ i ∣ λ(1)N−i + i > λ
(2)
N−j + j}

= Nn −
n

∑
i=1

max(λ(1)i , λ
(2)
i ) +

n

∑
i=1

#{j ≥ i ∣ λ(1)i − i > λ
(2)
j − j}.

Hence

d̃(λ) = coinv T − coinv Φ(T )

=

n

∑
i=1

min(λ(1)i , λ
(2)
i ) −Nn +

n

∑
i=1

max(λ(1)i , λ
(2)
i )

= ∣λ(1)∣ + ∣λ(2)∣ −Nn.
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To extend this to k colors, we sum over all pairs of colors a < b and get

d̃(λ) = (k − 1)∣λ∣ − nN(k2).

Continuing with our calculation of L∗
λ, we switch from the L weights to the M

weights in Prop. 2.6.4.

Corollary 2.6.9 ([22, Cor. 6.9]). Fix λ and M as in Prop. 2.6.4. We have

M

x̄1

⋮

x̄n

λ

= (x1⋯xn)kM tn
2(k

2
)
t
d̃(λ)+d(λ)Lλc(X−1

n ; t).

Proof. Recall the algebraic definition of the M weights

M
(k)
x (I,J ,KL) = x

k
t
(k
2
)
L
(k)
x̄ (I,J ,KL)

where x̄ =
1

xit
k−1 . Thus, to switch to M weights in Prop. 2.6.4, we first take xi ↦

x̄i =
1

xit
k−1 and then multiply each face in row i by x

k
i t

(k
2
)
. This gives

(x1⋯xn)kM tnM(k
2
)
t
d(λ)Lλc(x−11 t−k+1, . . . , x−1n t−k+1; t)

= (x1⋯xn)kM tnM(k
2
)
t
d(λ)

t
−(k−1)∣λc∣Lλc(x−11 , . . . , x−1n ; t)

= (x1⋯xn)kM tnM(k
2
)
t
d(λ)

t
(k−1)∣λ∣−k(k−1)n(M−n)Lλc(X−1

n ; t)

= (x1⋯xn)kM tn
2(k

2
)
t
−n(M−n)(k

2
)
t
(k−1)∣λ∣

t
d(λ)Lλc(X−1

n ; t)

= (x1⋯xn)kM tn
2(k

2
)
t
d̃(λ)+d(λ)Lλc(X−1

n ; t).

Corollary 2.6.10 ([22, Cor. 6.10]). Fix λ and M as in Prop. 2.6.4. We have

M

x̄1

⋮

x̄n

λ

= (xρn)k (x1⋯xn)k(M−n)
t
(n
2
)(k

2
)
t
d̃(λ)+d(λ)Lλc(X−1

n ; t)
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Proof. By the nature of the M weights, in order for a configuration of the lattice in
Cor. 2.6.9 to have a non-zero weight, the configuration must have the form

M

x̄1

⋮

x̄n

λ

i.e. the i-th path of each color must end with n − i + 1 vertical steps. Similarly the
configurations of the lattice in this corollary must have the form

M

x̄1

⋮

x̄n

λ

i.e. the i-th path of each color must end with i horizontal steps. There is a weight-
preserving bijection from configurations in Cor. 2.6.9 to configurations in this corol-
lary by taking

↦

(while fixing the beginnings of the paths) and multiplying by (x1⋯xn)−nk (xρn)k t−(
n+1
2

)(k
2
)
.

Proposition 2.6.11 ([22, Prop. 6.11]). Let λ = (λ(1), . . . , λ(k)) be a k-tuple of
partitions, each with n non-negative parts. Then,

L∗
λ(Xn; t) = (xρn)k t(

n
2
)(k

2
)
t
d(λ)Lλ(Xn; t)

Proof. Fix the number of columns M as usual. Combining Prop. 2.6.5 and Cor.
2.6.10 yields

M

x̄1

⋮

x̄n

λ

= (xρn)k t(
n
2
)(k

2
)
t
d(λ)Lλ(Xn; t).
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Note that this is independent of M . Taking M → ∞ gives the proposition.

We are finally ready to prove the Cauchy identity.

Proof of Theorem 2.6.1. Combining (2.22), (2.23), and Prop. 2.6.11, we see that
(2.21) becomes

(xρn)k t(
n
2
)(k

2
)
=

n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m)∑

λ

(xρn)k t(
n
2
)(k

2
)
t
d(λ)Lλ(Xn; t)Lλ(Yn; t).

Cancelling (xρn)kt(
n
2
)(k

2
)
from both sides gives the desired identity.

Reformulations of the Cauchy identity

A similar argument holds when we let the paths enter the bottom at positions
indexed by a tuple of partitions µ:

. . .

y1
⋱

yn

x̄1

. .
.
x̄n

µ

=

. . .

y1

⋮

yn

x̄1

⋮

x̄n

µ

On the left-hand side, we get

y1
⋱

yn

x̄1

. .
.
x̄n

×

. . .

y1

⋮

yn
×

⋯

x̄1

⋮

x̄n

µ

The first factor is 1, the second factor is 1, and the third factor is

L∗
µ(Xn; t) = (xρn)k t(

n
2
)(k

2
)
t
d(µ)Lµ(Xn; t).
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We can factorize the right-hand side as follows:

. . .

y1

⋮

yn

x̄1

⋮

x̄n

µ

×

The second factor is

y1

⋮

yn

x̄1

⋮

x̄n

=

n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m) .

The first factor is

∑
λ

. . .

y1

⋮

yn

µ

λ

×

⋯

x̄1

⋮

x̄n

λ

= Lλ/µ(Xn; t)Lλ(Xn; t)

= Lλ/µ(Xn; t) (xρn)
k
t
(n
2
)(k

2
)
t
d(λ)Lλ(Xn; t).

Rearranging, we get the following reformulation of the Cauchy identity:

Proposition 2.6.12 ([22, Prop. 6.12]).

∑
λ

t
d(λ)Lλ(Xn; t)Lλ/µ(Yn; t) = t

d(µ)Lµ(Xn; t)
n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m)−1
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Take B to be the smallest box containing λ and let λ
c
be the complement taken

in this box. Define λ
rot ∶= B/λc, which we can think of as (λ(k),rot, . . . , λ(1),rot)

where λ
rot

is λ rotated 180 degrees. Plugging in λ
c
into (2.25) for this choice of B,

we see that
Lλrot(Xn; t) = t

d(λc)Lλ(Xn; t).
Using this to replace one of the Lλ in the sum in Theorem 2.6.1, and noting that
d(λc) = d(λ), we can reformulate the Cauchy identity as follows:

Corollary 2.6.13 ([22, Cor. 6.13]).

∑
λ

Lλ(Xn; t)Lλrot(Yn; t) =
n

∏
i,j=1

k−1

∏
m=0

(1 − xiyjt
m)−1

2.7 Examples

Throughout this section, blue is color 1 and red is color 2. We use Theorem 2.3.3
to compute two coinversion LLT polynomials.

First we compute Lβ/γ(x1, . . . , xn; t) where β/γ = ((3)/(0), (2)/(0)) and n = 2.
There are 12 semistandard Young tableaux of shape β/γ with entries in {1, 2}, which
are shown below along with the corresponding lattices and polynomials.
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3
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x
5
2t

3
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Therefore the coinversion LLT polynomial is

L((3)/(0),(2)/(0))(x1, x2; t) = t(x21x32 + x
3
1x

2
2)

+ t
2(x1x42 + x

2
1x

3
2 + x

3
1x

2
2 + x

4
1x2)

+ t
3(x52 + x1x

4
2 + x

2
1x

3
2 + x

3
1x

2
2 + x

4
1x2 + x

5
1).

Next, we compute Lβ/γ(x1, . . . , xn; t) where β/γ = ((3, 3)/(2, 1), (3, 1)/(1, 0))
and n = 2. Again there are 12 semistandard Young tableaux, shown below along
with the corresponding lattices and polynomials.

−1 0 1 2

1

1 1

1 2

1

x
5
1x2t
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−1 0 1 2

1
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1 2

1

x
4
1x
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x
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1

x
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1 2

1

x
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1
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1

x
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1
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2
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1

2 2

2 2

1

x
2
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4
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2

−1 0 1 2

2
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1

x
3
1x

3
2t

2

−1 0 1 2

2

1 2

2 2

1

x
2
1x

4
2t

2

−1 0 1 2

2

2 2

2 2

1

x1x
5
2t

2

Therefore the coinversion LLT polynomial is

L((3,3)/(2,1),(3,1)/(1,0))(x1, x2; t) = t(x21x42 + x
3
1x

3
2 + x

4
1x

2
2)

+ t
2(x1x52 + 2x

2
1x

4
2 + 3x

3
1x

3
2 + 2x

4
1x

2
2 + x

5
1x2).
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Chapter 3

Super ribbon functions

3.1 Introduction

Supersymmetric LLT polynomials G(k)
λ/µ(Xn;Ym; t) were introduced in [38] (in

which they are called super ribbon functions). As the name suggests, these poly-
nomials are supersymmetric in the X and Y variables (see Definition 3.4.6) and
specialize to LLT polynomials when m = 0 (see [28, Remark B.3]). The supersym-
metric LLT polynomials have several other interesting specializations in addition to
the LLT polynomials, including the metaplectic symmetric functions, where were in-
troduced in [15], and the supersymmetric Schur polynomials, which can be realized
as characters of certain simple modules of the Lie superalgebra gl(n∣m) [6].

In this chapter, we will study supersymmetric LLT polynomials from the perspec-
tive of integrable vertex models. As was shown in the previous chapter, as well as in
[1, 22, 23], the LLT polynomials can be realized as a certain class of partition func-
tions constructed from an integrable vertex model. In [15], the authors constructed
a vertex model whose partition functions are the metaplectic symmetric functions.
In this paper, we generalize these results by showing the that there is an integrable
vertex model whose partition functions are the supersymmetric LLT polynomials.
The main result of this chapter can be summarized as follows.

Theorem 3.1.1 (Prop. 3.5.9). Suppose the k-tuple of skew shapes λ/µ is the k-
quotient of the skew shape λ/µ. There is a Yang-Baxter integrable vertex model
whose partition function LSλ/µ(Xn;Ym; t) is equal to

LSλ/µ(Xn;Ym; t) = t
□G(k)

λ/µ(Xn;Ym; t
1/2)

for some half-integer □ ∈
1

2
Z, where G(k)

λ/µ(Xn;Ym; t) is the super ribbon function.
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Explicitly, LSλ/µ(Xn;Ym; t) is the partition function associated to the lattice

⋮

⋮

. . .

µ

λ

x1

xn

y1

ym

.

This chapter is organized as follows. In Section 3.2, we describe how to relate
tuples of semistandard Young tableaux to semistandard ribbon tableaux through the
Littlewood quotient map, and we extend this map to the case of super tableaux. In
Section 3.3, we define the relevant partition functions that give rise to the supersym-
metric LLT polynomials LSλ/µ. In Section 3.4, we prove a variety of properties of the

LSλ/µ. The main result of this section is

Theorem 3.1.2. The polynomials LSλ/µ(Xn;Ym; t) satisfy the following properties.

1. (Symmetry, Lemma 3.4.4) The polynomials LSλ/µ(Xn;Ym; t) are symmetric in
the X and Y variables.

2. (Cancellation, Lemma 3.4.5) LSλ/µ(Xn−1, r;Ym−1,−r; t) = LSλ/µ(Xn−1;Ym−1; t)

3. (Homogeneity, Lem. 3.4.9) The polynomial LSλ/µ(Xn;Ym; t) is homogeneous in
the X and Y variables of degree ∣λ/µ∣ = ∣λ∣ − ∣µ∣.

4. (Restriction, Lemma 3.4.8)

LSλ/µ(Xn−1, 0;Ym; t) = LSλ/µ(Xn−1;Ym; t),
LSλ/µ(Xn;Ym−1, 0; t) = LSλ/µ(Xn;Ym−1; t)

5. (Factorization, Lemma 3.4.10) If there exist τ and η such that

λ
(i)

= (m + τ
(i)
1 , . . . ,m + τ

(i)
n , η

(i)
1 , . . . , η

(i)
s )

for all i, then

LSλ(Xn;Ym; t) = Lτ (Xn; t) ⋅ tg(η)Lη′(Ym; t−1) ⋅
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj).
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The first two properties together imply the supersymmetry of the LSλ/µ(Xn;Ym; t).
In the case where λ = (λ) is a 1-tuple of partitions, one can show that the su-
persymmetric LLT polynomial LSλ(Xn;Ym; t) is exactly the supersymmetric Schur
polynomial sλ(Xn;Ym). In fact, taking µ = 0 and k = 1 in Theorem 3.1.2, these
properties uniquely characterize the supersymmetric Schur polynomials (see [46, Sec-
tion 2.1.2] and [43, Example I.3.23]). However, we suspect (but do not prove) that
the properties in Theorem 3.1.2 do not uniquely characterize the supersymmetric
LLT polynomials, even in the case µ = 0.

In Section 3.5, we relate the supersymmetric LLT polynomials to the super ribbon
functions introduced in [38], by proving Theorem 3.1.1. Finally, in Section 3.6, we
show the supersymmetric LLT polynomials satisfy a Cauchy identity. The main
result of this section is

Theorem 3.1.3 (Thm. 3.6.13). Let µ and ν be tuples of partitions each with in-
finitely many parts only finitely many of which are non-zero. Fix positive integers
n,m, p, q. Then

∑
λ

t
d(µ,λ)LSν/λ(Xn, Ym; t)LSµ/λ(Wp, Zq; t)

= Ω(Xn, Ym,Wp, Zq; t)∑
λ

t
d(λ,ν)LSλ/µ(Xn, Ym; t)LSλ/ν(Wp, Zq; t)

(3.1)

where

Ω(Xn, Ym,Wp, Zq; t) =
k−1

∏
l=0

n

∏
i,i′=1

m

∏
j,j ′=1

p

∏
α,α′

=1

q

∏
β,β′

=1

(1 − xiwαt
l)(1 − yj ′zβ′t

l)
(1 + yjwα′tl)(1 + xi′zβt

l) .

3.2 Ribbon tableaux and the Littlewood quotient

map

This section provides necessary background information and establishes some
notation for the rest of this chapter. In Chapters 1 and 2, we ventured into the world
of tableaux on tuples of skew shapes and defined coinversion LLT polynomials. In
Section 3.2, we venture into the world of ribbon tableaux and connect the two worlds
via the Littlewood quotient map. In Section 3.2, we define super ribbon functions and
extend the Littlewood quotient map to a bijection between super ribbon tableaux
(Definition 3.2.7) and semistandard super Young tableaux (Definition 3.2.10). This
bijection plays a pivotal role in the rest of this chapter, because it allows us to relate
our partition functions (Definition 3.3.2) to the super ribbon functions in Prop. 3.5.9.
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Ribbon tableaux and the Littlewood quotient map

First we discuss semistandard ribbon tableaux. We define a bijection, called the
Littlewood quotient map, relating them and tuples of semistandard Young tableaux.

Fix a positive integer k. A k-ribbon is a skew shape of size k that is connected
and does not contain any 2× 2 square. The head (tail) of a k-ribbon is the SE-most
(NW-most) cell in its Young diagram. A horizontal (vertical) k-ribbon strip of
shape λ/µ is a tiling of λ/µ by k-ribbons such that the head (tail) of each ribbon
is adjacent to the southern (western) boundary of the shape. We let HRSk(λ/µ)
(VRSk(λ/µ)) denote the set of horizontal (vertical) k-ribbon strips of shape λ/µ.

Throughout this chapter, we will omit k when it is clear from context. For
example, we will use “ribbon” and “k-ribbon” interchangeably.

Definition 3.2.1. A semistandard k-ribbon tableau of shape λ/µ is a tiling of
λ/µ by k-ribbons and a labelling of the k-ribbons by positive integers such that, for
all i,

1. removing all ribbons labelled j for j > i gives a valid skew shape λ≤i/µ, and

2. the subtableau of ribbons labelled i form a horizontal k-ribbon strip of shape
λ≤i/λ≤i−1.

We let SSRTk(λ/µ) denote the set of semistandard k-ribbon tableau of shape λ/µ.

Following the exposition of [47, Section 3], we now define the Littlewood k-
quotient map. This map was introduced in [41]; another (perhaps clearer) formula-
tion, as well as a proof that the map is a bijection, is given in [52].

We first define the k-quotient map, which is a function

{skew partitions λ/µ} → {k-tuples λ/µ = (λ(0)/µ(0)
, . . . , λ

(k−1)/µ(k−1)) of skew partitions}.

This function can be defined graphically as follows. Given a partition λ, we truncate
its Maya diagram to a finite sequence (a0, . . . , ar−1) of East = ◦ and South = • steps
by following the North-East boundary of λ from North-West to South-East.

Example 3.2.2 (cf. Ex. 1.1.1). The Maya diagram of (4,3,2,2,1) is ◦•◦••◦•◦•.

◦
•
◦
•
•
◦
•
◦
•
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Remark 3.2.3. Observe that postpending finitely many ◦’s to a Maya diagram does
not change the corresponding partition. Thus we can take the length r of the Maya
diagram (a0, . . . , ar−1) to be a multiple of k.

Let λ be a partition with Maya diagram (a0, . . . , ar−1). By the preceding remark, we
may assume s = r/k is an integer. We define the k-quotient of λ to be the k-tuple
of partitions

λ = (λ(0), . . . , λ(k−1))
where, for each i, λ

(i)
is the partition corresponding to the Maya diagram

(ai, ak+i, . . . , a(s−1)k+i).

We define the k-quotient of a skew partition λ/µ to be the k-tuple λ/µ of skew
partitions, where λ and µ are the k-quotients of λ and µ respectively. Here we
require λ and µ to have the same number of parts, postpending parts equalling 0 to
µ if necessary.

Example 3.2.4. The 3-quotient of (4,3,2,2,1) is ((1,1),(0,0),(2)).

◦
•
◦
•
•
◦
•
◦
•

◦
•
•

•
•
◦

◦ ◦
•

We are now ready to define the Littlewood k-quotient map.

Definition 3.2.5. Let λ/µ be the k-quotient of λ/µ. The Littlewood k-quotient
map is a bijection

SSRTk(λ/µ) → SSYT(λ/µ)
defined as follows. Fix T ∈ SSRTk(λ/µ). For each i, we put an i into each cell of
the k-quotient of λ≤i/λ≤i−1 (which lies inside λ/µ). In this fashion, we place positive

integers into the cells of λ/µ, resulting in T = (T (0)
, . . . , T

(k−1)) ∈ SSYT(λ/µ).

Example 3.2.6. In Example 3.2.4, we found that the 3-quotient of λ = (4, 3, 2, 2, 1)
was λ = ((1, 1), (0, 0), (2)). One can compute that

1

2
3

4

↔
1
2

3 4
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via the Littlewood 3-quotient map. For example, when i = 3, one can compute the
k-quotient of λ≤i/λ≤i−1 as follows.

1

2
3

4

↔
1
2

3 4

Here we have drawn the Maya diagrams of both λ≤3 and λ≤2. From this, we see that

that a cell at coordinates (1, 1) is added in T
(2)
, and we fill it with a 3.

Extending the Littlewood quotient map to super tableaux

Throughout this subsection, let A = {1 < 2 < ⋯} and A′
= {1′ < 2

′
< ⋯}. Also

fix a total order on A ∪A′
that is compatible with the natural orders on A and A′

.

Definition 3.2.7. A super k-ribbon tableau of shape λ/µ is a tiling of λ/µ by
k-ribbons and a labelling of the k-ribbons by the alphabet A ∪A′

such that

1. for i ∈ A ∪A′
, the ribbons with label ≤ i form a valid skew shape λ≤i/µ;

2. for i ∈ A, the subtableau of ribbons labelled i form a horizontal k-ribbon strip;
and

3. for i
′
∈ A′

, the subtableau of ribbons labelled i
′
form a vertical k-ribbon strip.

We let SRTk(λ/µ) denote the set of super k-ribbon tableau of shape λ/µ.
Note that a SRT in the alphabet A of shape λ/µ is the same as a SSRT of shape
λ/µ. Moreover, there is a bijection between SRT in the alphabet A′

of shape λ/µ
and SSRT of shape λ

′/µ′
, given by conjugation (and unpriming the labels).

The height h(R) of a ribbon R is the number of rows it contains. The spin of a
super ribbon tableau T is

spin(T ) = ∑
R

(h(R) − 1)

where the sum is taken over all ribbons R in T .

Definition 3.2.8. [38, Definition 44] The super k-ribbon function associated to
a skew partition λ/µ is the generating function

G(k)
λ/µ(X;Y ; t) = ∑

T∈SRTk(λ/µ)
t
spin(T )

x
weight(T )

y
weight

′(T )
.
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Example 3.2.9. We use the ordering 1 < 2 < . . . < 1
′
< 2

′
< . . . on A ∪ A′

. Let
k = 3 and λ/µ = (8, 7, 6, 6, 6, 4, 1)/(2). The super ribbon tableau

1

2

1
2
3

1
′
2
′

1

1
′
3
′

3
′

4
′

has spin 14 and contributes
t
14
x
3
1x

2
2x

1
3y

2
1y

1
2y

2
3y

1
4

to G(k)
λ/µ(X;Y ; t).

Definition 3.2.10. A semistandard super Young tableau of shape λ/µ is a
filling of each cell of D(λ) with an element of A ∪A′

such that

1. the rows and the columns are weakly increasing,

2. the entries in A are strictly increasing along columns, and

3. the entries in A′
are strictly increasing along rows.

We let SSSYT(λ/µ) denote the set of semistandard super Young tableaux of shape

λ/µ. Given a tuple λ/µ = (λ(1)/µ(1)
, . . . , λ

(k)/µ(k)) of skew partitions, a semistan-
dard super Young tableau of shape λ/µ is a semistandard super Young tableau on

each λ
(j)/µ(j)

, that is,

SSSYT(λ/µ) = SSSYT(λ(1)/µ(1)) ×⋯× SSSYT(λ(k)/µ(k)).

Note that a SSSYT in the alphabet A of shape λ/µ is the same as a SSYT of shape
λ/µ. Moreover, there is a bijection between SSSYT in the alphabet A′

of shape λ/µ
and SSYT of shape λ

′/µ′
, given by conjugation (and unpriming the labels).

We are now ready to extend the Littlewood k-quotient map.

Definition 3.2.11. The (extended) Littlewood k-quotient map is a bijection

SRTk(λ/µ) → SSSYT(λ/µ)

where λ/µ is the k-quotient of λ/µ. We simply take Definition 3.2.5 and extend the
set of labels: for each i ∈ A ∪ A′

, we put an i into each cell of the k-quotient of
λ≤i/λ≤i−1.
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Example 3.2.12.

1

2

1
2
3

1
′
2
′

1

1
′
3
′

3
′

4
′

↔

1
2

1
2
′

3
′
3
′

3 1
′ 1 4

′
2
1
′

The following facts, which we prove in Appendix C, can be useful in computing
the (extended) Littlewood k-quotient map in examples.

Lemma 3.2.13 ([28, Lemma 2.16]). Suppose T ↔ T via the (extended) Littlewood
k-quotient map.

1. A ribbon in T labelled i corresponds to a cell labelled i in T , so the number of
ribbons in T labelled i equals the number of cells labelled i in T .

2. Two ribbons R,R
′
in T whose tails u, u

′
have the same content modulo k cor-

respond to two cells v, v
′
in the same shape in T . Moreover, in this case,

c(u) − c(u′)
k

= c(v) − c(v′).

3.3 Partition functions

In the following definitions, let λ/µ be a k-tuple of skew partitions, each having p
parts. Recall from Theorem 2.3.3 that the coinversion LLT polynomial Lλ/µ(Xn; t)
is the partition function associated to the lattice

Wn(λ/µ) = ⋮

. . .

µ

λ

x1

xn

.

Definition 3.3.1. We define LPλ/µ(Xn; t) to be the partition function associated to
the lattice

Pn(λ/µ) ∶= ⋮

. . .

µ

λ

x1

xn

.
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Definition 3.3.2. We define the supersymmetric LLT polynomial LSλ/µ(Xn;Ym; t)
to be the partition function associated to the lattice

Sn,m(λ/µ) ∶=
⋮

⋮

. . .

µ

λ

x1

xn

y1

ym

.

3.4 Identities of supersymmetric LLT

polynomials

In this section, we establish various properties of the partition functions LSλ/µ
of Definition 3.3.2. These include four properties (summarized in Theorem 3.1.2)
which generalize four properties that uniquely characterize the supersymmetric Schur
polynomials.

Let P
(k)
p be the set of k-tuples of partitions, each having p parts. Given a non-

negative integer n and λ,µ ∈ P
(k)
p , there is a bijection

ψ ∶ LC(Wn(λ/µ)) → LC(Pn(λ′/µ′)).

Explicitly, ψ(C) is obtained from C by inverting the vertical parts of the paths,
reflecting the lattice over its left edge, changing each color i to color k − i, and
making the vertices purple. For example,

→ → → →

where we have done each step in order (and where blue is color 1 and red is color 2).

Fix λ,µ ∈ P
(k)
p . Also fix a sufficiently large number of columns; specifically, the

number of columns must be larger than each band(λ/µ). If λ/µ is a horizontal strip,
then there is a unique configuration Cλ/µ on a single white row with top boundary λ,
bottom boundary µ, and empty left/right boundaries. Similarly, if λ/µ is a vertical
strip, then there is a unique configuration on a single purple row with top boundary
λ, bottom boundary µ, and empty left/right boundaries.
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Lemma 3.4.1 ([28, Lemma 4.1]). There exists a function g ∶ P (k)
p → Z≥0 so that

Lλ/µ(x; t) = t
g(λ)−g(µ)LPλ′/µ′(x; t−1)

for all λ,µ ∈ P
(k)
p such that λ/µ is a horizontal strip.

Proof. Fix λ,µ ∈ P
(k)
p such that λ/µ is a horizontal strip. Let C = Cλ/µ. Note

that C is the unique configuration on a single white row with top boundary λ,
bottom boundary µ, and empty left/right boundaries. Moreover, ψ(C) is the unique
configuration on a single purple row with top boundary λ

′
, bottom boundary µ

′
, and

empty left/right boundaries. Thus

Lλ/µ(x; t) = weight(C) = x
α
t
β
,

LPλ/µ(x; t) = weight(ψ(C)) = x
γ
t
δ

for some non-negative integers α, β, γ, δ. Note

α = #{(i, j) ∣ the i-th smallest color exits right in the b-th leftmost box in C}
= #{(i, j) ∣ the i-th largest color exits right in the b-th rightmost box in ψ(C)} = γ.

Therefore
Lλ/µ(x; t) = x

α
t
β
= t

β+δ
x
γ
t
−δ

= t
β+δLPλ/µ(x; t−1).

Also note

β + δ = #{(i, j, b) ∣ i < j, in box b of C color i exits right and color j is present}
+#{(i′, j ′, b′) ∣ i′ > j

′
, in box b

′
of ψ(C) color i

′
is vertical and color j

′
exits right}

= #{(i, j, b) ∣ i < j, in box b of C color i exits right and color j is present}
+#{(i, j, b) ∣ i < j, in box b of C color i is absent and color j enters left}

= ∑
b

∑
i<j

1b is “good” for i and j

where we say a box b is “good” for the colors i < j if either color i exits right and
color j is present, or color i is absent and color j enters left. Therefore

Lλ/µ(x; t) = t
g̃(λ/µ)LPλ′/µ′(x; t−1)

where we have defined

g̃(λ/µ) ∶= ∑
boxes b
of Cλ/µ

∑
colors
i<j

1b is “good” for i and j.
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We can recursively define the desired function g by the rule

g(λ) = { g(µ) + g̃(λ/µ) if there exists µ ∈ P
(k)
p − {λ} such that λ/µ is a horizontal strip

0 otherwise (i.e. if λ = 0)
.

Provided that g(λ) is well-defined (i.e. g(µ) + g̃(λ/µ) is independent of µ) for all

λ ∈ P
(k)
p ,

Lλ/µ(x; t) = t
g̃(λ/µ)LPλ′/µ′(x; t−1) = t

g(λ)−g(µ)LPλ′/µ′(x; t−1)

for all λ,µ ∈ P
(k)
p such that λ/µ is a horizontal strip. To show g is well-defined,

we induct on the number of cells in λ. Clearly g(0) = 0 is well-defined. Fix λ ∈

P
(k)
p − {0} and assume g is well-defined on elements of P

(k)
p with strictly fewer boxes

than λ. Fix α,µ ∈ P
(k)
p − {λ} such that λ/α and λ/µ are horizontal strips. There

exist (not necessarily distinct)

β
0
= 0, . . . ,β

r−1
= α,β

r
= λ ∈ P

(k)
p ,

ν
0
= 0, . . . ,ν

r−1
= µ,ν

r
= λ ∈ P

(k)
p

such that β
i/βi−1 and ν

i/νi−1 are horizontal strips for all i. Note that each sequence
completely determines a configuration of paths on an r×M lattice with top boundary
λ and bottom boundary 0, since they determine the state of the paths at every row.

Since the two configurations have the same top and bottom boundary, it is pos-
sible to get from one configuration to the other via corner flips

↔ .

A straightforward corner flipping argument shows that the quantity

∑
b

∑
i<j

1b is “good” for i and j

is the same for both configurations. Therefore

g̃(βr/βr−1)+g̃(βr−1/βr−2)+. . .+g̃(β1/β0) = g̃(νr/νr−1)+g̃(νr−1/νr−2)+. . .+g̃(ν1/ν0).

Applying the inductive hypothesis, we have

g̃(βr/βr−1) + g(βr−1) − g(βr−2) + . . . + g(β1) − g(β0)
= g̃(νr/νr−1) + g(νr−1) − g(νr−2) + . . . + g(ν1) − g(ν0).
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The sums telescope to give

g̃(βr/βr−1) + g(βr−1) − g(β0) = g̃(νr/νr−1) + g(νr−1) − g(ν0)

which we can rewrite as

g̃(λ/α) + g(α) − g(0) = g̃(λ/µ) + g(µ) − g(0).

Therefore g(α) + g̃(λ/α) = g(µ) + g̃(λ/µ).

Corollary 3.4.2 ([28, Cor. 4.2]). g(λ) = g(λ′)

Proof. We induct on the number of cells in λ. Note that g(0) = 0 = g(0′). Fix

λ ∈ P
(k)
p − {0} and assume g(µ) = g(µ′) for all µ ∈ P

(k)
p with strictly fewer cells

than λ. Since λ ≠ 0, there exists µ ∈ P
(k)
p that can be obtained by removing

a single cell u from λ. We want to show g(λ) = g(λ′). It is enough to show
g̃(λ/µ) = g̃(λ′/µ′), since then

g(λ) = g(µ) + g̃(λ/µ) = g(µ′) + g̃(λ′/µ′) = g(λ′).

Let λ
(i)

be the partition to which u belongs. Since λ/µ consists of the single cell

u in λ
(i)/µ(i)

, every color in every box in Cλ/µ is either vertical or absent, with the
exception of the color i in two adjacent boxes, which has the form

b b + 1
.

Note that Cλ′/µ′ is exactly the configuration ψ(Cλ/µ) with white in place of purple.
Therefore every color in every box in Cλ′/µ′ is either vertical or absent, with the

exception of the color i
′
= k − i in two adjacent boxes, which has the form

b
′ − 1 b

′

.

We have

g̃(λ/µ) =#{j > i ∶ j is vertical in box b of Cλ/µ} +#{h < i ∶ h is absent in box b + 1 of Cλ/µ}
=#{j ′ < i

′
∶ j

′
is absent in box b

′
of Cλ′/µ′} +#{h′ > i

′
∶ h

′
is vertical in box b

′
− 1 of Cλ′/µ′}

=g̃(λ′/µ′).
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Theorem 3.4.3 ([28, Thm. 4.3]).

LSλ/µ(Xn;Ym; t) = t
g(λ)−g(µ)LSλ′/µ′(Ym;Xn; t

−1)

Proof. If λ/µ is a horizontal strip, then by Lemma 3.4.1, we have

Lλ/µ(x; t) = t
g(λ)−g(µ)LPλ′/µ′(x; t−1). (3.2)

If λ/µ is a vertical strip, then by Lemma 3.4.1 (with t
−1

in place of t and with λ
′/µ′

in place of λ/µ) and Cor. 3.4.2, we have

LPλ/µ(x; t) = t
g(λ)−g(µ)Lλ′/µ′(x; t−1). (3.3)

Using (3.2) or (3.3) at each row of our lattice, we have

LSλ/µ(Xn;Ym; t) =
⋮

⋮

. . .

µ

λ

x1

xn

y1

ym

= ∑LPλ/αm+n−1(ym; t) . . .LPαn+1/αn(y1; t)Lαn/αn−1(xn; t) . . .Lα1/µ(x1; t)
= ∑ t

g(λ)−g(µ)L
λ′/αm+n−1′(ym; t−1) . . .Lαn+1′/αn

′(y1; t−1)LPαn
′/αn−1′(xn; t

−1) . . .LP
α1

′/µ′(x1; t
−1)

= t
g(λ)−g(µ)∑Lλ′/βm+n−1(ym; t−1) . . .Lβn+1/βn(y1; t−1)LPβn/βn−1(xn; t−1) . . .LPβ1/µ′(x1; t−1)

= t
g(λ)−g(µ)

⋮

⋮

. . .

µ
′

λ
′

x1

xn

y1

ym

= t
g(λ)−g(µ)

⋮

⋮

. . .

µ
′

λ
′

y1

ym

x1

xn

= LSλ′/µ′(Ym;Xn; t
−1)

where

• the sums in the second and third lines are over all α
0
= µ, . . . ,α

m+n
= λ such

that α
i/αi−1

is a horizontal strip for all i ≤ n and a vertical strip for all i > n,

• the sum in the fourth line is over all β
0
= µ

′
, . . . ,β

m+n
= λ

′
such that β

i/βi−1
is a vertical strip for all i ≤ n and a horizontal strip for all i > n, and
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• the second-to-last equality uses repeated applications of Prop. 1.4.6:

. . .

. . .

xi

yj
=

. . .

. . .

yj

xi
=

. . .

. . .

yj

xi
=

. . .

. . .

yj

xi

The technique used to swap a white row and a purple row at the end of the
previous proof is sometimes called the “train argument” (cf. the proof of Theorem
2.4.1). This technique is used again to prove the following lemma.

Lemma 3.4.4 ([28, Lemma 4.4]). The partition function associated to any lattice
that can be obtained from the lattice Sn,m(λ/µ) (Definition 3.3.2) by permuting the

rows is equal to LSλ/µ(Xn;Ym; t). In particular, LSλ/µ(Xn;Ym; t) is symmetric in the
X and Y variables separately.

Proof. Two rows can be swapped using the train argument along with Prop. 1.4.4
(to swap two white rows), Prop. 1.4.6 (to swap a white row and a purple row), or
Prop. 1.4.7 (to swap two purple rows).

Next we prove a certain cancellation property for the polynomials LSλ/µ(Xn;Ym; t).

Lemma 3.4.5 (Cancellation). [[28, Lemma 4.5]] For n,m ≥ 1, we have

LSλ/µ(Xn−1, r;Ym−1,−r; t) = LSλ/µ(Xn−1;Ym−1; t).

Proof. Using Lemma 3.4.4, we can write

LSλ/µ(Xn−1, r;Ym−1,−r; t) =

⋮

⋮

. . .

µ

λ

x1

xn−1

y1

ym−1

r

−r

= ∑
α

. . .

α

λ

r

−r

⋮

⋮

. . .

µ

α

x1

xn−1

y1

ym−1

.

We will show that, for all α ≠ λ, there is an involution φα on the set of configurations
of the lattice

Lλ/α =

. . .

α

λ

r

−r
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such that weight(φα(C)) = −weight(C) for all C. Therefore

LSλ/µ(Xn−1, r;Ym−1,−r; t) =
. . .

λ

λ

r

−r

⋮

⋮

. . .

µ

λ

x1

xn−1

y1

ym−1

=

⋮

⋮

. . .

µ

λ

x1

xn−1

y1

ym−1

= LSλ/µ(Xn−1;Ym−1; t).

Fix α ≠ λ and a configuration C on Lλ/α. Since α ≠ λ, there exist two consec-
utive columns c and c+ 1 of C and a color i such that, in columns c and c+ 1 of C,
color i has the form

or .

Let c be the rightmost column for which there exists a color of this form in columns
c and c + 1, and let i be the largest color of this form in columns c and c + 1. We
define φα(C) to be the result of flipping color i in columns c and c + 1

↔ .

Clearly φα is an involution. To show weight(φα(C)) = −weight(C), we must show

weight(
r

−r ) = −weight(
r

−r ) (3.4)

regardless of the paths taken by the other colors. However, by the maximality of c
and i, we know that every color not equal to i must have the form

and every color greater than i must not have the form

or .

With these constraints, some straightforward computations show (3.4) holds.

Combining Lemmas 3.4.4 and 3.4.5, we can now conclude that the polynomials
LSλ/µ(X;Y ; t) are supersymmetric in the X and Y variables.
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Definition 3.4.6. A family of polynomials {p(Xn;Ym) ∶ n,m ∈ Z≥0} is supersym-
metric if

• p(σ(Xn);Ym) = p(Xn;Ym; t) for any permutation σ ∈ Sn
(i.e. p(Xn;Ym) is symmetric in the X variables),

• p(Xn; τ(Ym)) = p(Xn;Ym; t) for any permutation τ ∈ Sm
(i.e. p(Xn;Ym) is symmetric in the Y variables), and

• p(Xn−1, r;Ym−1,−r) = p(Xn−1;Ym−1) when n,m ≥ 1.

Theorem 3.4.7 ([28, Thm. 4.7]). The polynomials LSλ/µ(Xn;Ym; t) are supersym-
metric in the X and Y variables.

We proceed by proving a certain restriction property for the LSλ/µ(Xn;Ym; t).

Lemma 3.4.8 (Restriction). [28, Lemma 4.8] We have

LSλ/µ(Xn−1, 0;Ym; t) = LSλ/µ(Xn−1;Ym; t),
LSλ/µ(Xn;Ym−1, 0; t) = LSλ/µ(Xn;Ym−1; t).

Proof. Using Lemma 3.4.4, we can write

LSλ/µ(Xn−1, 0;Ym; t) =

⋮

⋮

. . .

µ

λ

x1

xn−1

y1

ym

0

= ∑
α

. . .

α

λ

0

⋮

⋮

. . .

µ

α

x1

xn−1

y1

ym

It is easy to see that
. . .

α

λ

0 = 1λ=α.

Therefore

LSλ/µ(Xn−1, 0;Ym; t) =
⋮

⋮

. . .

µ

λ

x1

xn−1

y1

ym

= LSλ/µ(Xn−1;Ym; t) (3.5)
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A similar argument shows that

LSλ/µ(Xn;Ym−1, 0; t) = LSλ/µ(Xn;Ym−1; t).
Alternatively, we can deduce

LSλ/µ(Xn;Ym−1, 0; t) = t
g(λ)−g(µ)LSλ′/µ′(Ym−1, 0;Xn; t

−1) (by Theorem 3.4.3)

= t
g(λ)−g(µ)LSλ′/µ′(Ym−1;Xn; t

−1) (by (3.5))

= t
g(λ)−g(µ)(t−1)g(λ

′)−g(µ′)LSλ/µ(Xn;Ym−1; t) (by Theorem 3.4.3)

= LSλ/µ(Xn;Ym−1; t). (by Cor. 3.4.2)

Lemma 3.4.9 ([28, Lemma 4.9]). The polynomial LSλ/µ(Xn;Ym; t) is homogeneous
in the X and Y variables of degree ∣λ/µ∣ = ∣λ∣ − ∣µ∣ i.e.

LSλ/µ(rXn; rYm; t) = r
∣λ/µ∣LSλ/µ(Xn;Ym; t).

Proof. This follows from the fact that, in any configuration of the lattice

⋮

⋮

. . .

µ

λ

rx1

rxn

ry1

rym

,

the total number of right steps taken by the paths is ∣λ/µ∣.

The factorization property

The goal of this subsection is to prove the following lemma.

Lemma 3.4.10 (Factorization). [[28, Lemma 4.10]] Fix λ ∈ P
(k)
p . Suppose there

exist τ and η such that

λ
(i)

= (m + τ
(i)
1 , . . . ,m + τ

(i)
n , η

(i)
1 , . . . , η

(i)
s )

for all i, where s = p − n. Then

LSλ(Xn;Ym; t) = Lτ (Xn; t) ⋅ tg(η)Lη′(Ym; t−1) ⋅
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj).
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Throughout this subsection, let λ, τ , and η be as in the above lemma. Moreover,
it is easy to see that the above lemma holds if n = 0 or m = 0, so we will assume
n,m ≥ 1 throughout the rest of this subsection. To prove the above lemma, we need
two smaller lemmas.

Lemma 3.4.11 ([28, Lemma 4.11]). Let λ, τ , and η be as in Lemma 3.4.10. Then
the polynomial

t
g(η)Lη′(Ym; t−1) = LPη (Ym; t)

is a factor of the polynomial LSλ(Xn;Ym; t). In fact,

LSλ(Xn;Ym; t) = LPη (Ym; t) ⋅ LSm+τ (Xn;Ym; t)

where (m + τ )(i)j = m + τ
(i)
j for all i and j.

Lemma 3.4.12 ([28, Lemma 4.12]). Let λ, τ , and η be as in Lemma 3.4.10. Then

LSλ(Xn−1, r;Ym−1,−t
l
r; t) = 0

for all l ∈ {0, . . . , k − 1}.

Given these two lemmas, let us prove Lemma 3.4.10.

Proof of Lemma 3.4.10. Fix l ∈ {0, . . . , k − 1}. Since

LSλ(Xn−1, r;Ym−1,−t
l
r; t) = 0

by Lemma 3.4.12, we know t
l
xn + ym is a factor of LSλ(Xn;Ym; t). Thus, since

LSλ(Xn;Ym; t) is symmetric in the X and Y variables separately by Lemma 3.4.4,

n

∏
i=1

m

∏
j=1

(tlxi + yj)

is a factor of LSλ(Xn;Ym; t). Since this holds for all l ∈ {0, . . . , k − 1},
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj)

is a factor of LSλ(Xn;Ym; t). Moreover, since t
g(η)Lη′(Ym; t−1) is a factor of LSλ(Xn;Ym; t)

by Lemma 3.4.11, we know

t
g(η)Lη′(Ym; t−1) ⋅

k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj)
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is a factor of LSλ(Xn;Ym; t). Thus there is a polynomial f(Xn;Ym; t) such that

LSλ(Xn;Ym; t) = f(Xn;Ym; t) ⋅ tg(η)Lη′(Ym; t−1) ⋅
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj). (3.6)

It remains to show f(Xn;Ym; t) = Lτ (Xn; t).
Combining (3.6) with Lemma 3.4.11, we get

LSm+τ (Xn;Ym; t) = f(Xn;Ym; t) ⋅
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj). (3.7)

Given a polynomial p(Xn;Ym; t), let degY (p(Xn;Ym; t)) be its total degree in the Y
variables. Recall LSm+τ (Xn;Ym; t) is the partition function associated to the lattice
Sn,m(m+ τ ) (Definition 3.3.2). In any configuration of this lattice, a given path can
take at most one step right in a purple row. Thus, since there are m purple rows
and since there are n paths of each of the k colors, we have

degY (LSm+τ (Xn;Ym; t)) ≤ mnk = degY (
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj)) .

This inequality along with (3.7) implies f(Xn;Ym; t) = h(Xn; t) for some polynomial
h(Xn; t). It remains to show h(Xn; t) = Lτ (Xn; t).

We can rewrite (3.7) as

⋮

⋮

. . .

0

m + τ

x1

xn

y1

ym

= h(Xn; t) ⋅
k−1

∏
l=0

n

∏
i=1

m

∏
j=1

(tlxi + yj).

We interpret both sides of the above equation as polynomials in the Y variables. On
the right-hand side, the coefficient of y

nk
1 . . . y

nk
m is h(Xn; t). A configuration of the

lattice on the left-hand side has a weight of the form p(Xn; t) ⋅ ynk1 . . . y
nk
m for some

polynomial p(Xn; t) if and only if each path of each color takes one right step in each
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purple row. Thus the y
nk
1 . . . y

nk
m term on the left-hand side is exactly

⋮

⋮

. . .

0

m + τ

τ

x1

xn

y1

ym

= ⋮

. . .

0

τ

x1

xn

⋅ ⋮

. . .
m + τ

τ

y1

ym

=Lτ (Xn; t) ⋅ ynk1 . . . y
nk
m .

(Here, each path takes one right step in each purple row.) Thus h(Xn; t) = Lτ (Xn; t).

We are left to prove Lemmas 3.4.11 and 3.4.12.

Proof of Lemma 3.4.11. Using Theorem 3.4.3 and the fact that g(0) = 0, we have

LPη (Ym; t) = LSη(;Ym; t) = t
g(η)LSη′(Ym; ; t−1) = t

g(η)Lη′(Ym; t−1).

Recall LSλ(Xn;Ym; t) is the partition function associated to the lattice Sn,m(λ/µ).
Any configuration of this lattice must have the form

⋮

⋮

. . .

0

λ

x1

xn

y1

ym

p . . .
n + 1 n n − 1

. . .
2 1

where we have labelled the columns for convenience. Consider the behavior of the
paths starting in columns n and n+1 in the j-th purple row for some j ∈ [m]. Note
that a path can take at most one step right in a given purple row.

• Since λ
(i)
n = m + τ

(i)
n ≥ m for all i, the paths starting in column n must exit

the m-th purple row weakly right of column n−m, so they must exit the j-th
purple row weakly right of column n − j.

• Since the paths starting in column n + 1 enter the first purple row in column
n + 1, they must exit the j-th purple row weakly left of column n + 1 − j.
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This argument shows that the remainder of the paths starting in columns n+1, . . . , p
and the remainder of the paths starting in columns 1, . . . , n can be chosen indepen-
dently of each other, and that the weight of the overall configuration is the weight of
the configuration consisting of the paths starting in columns n + 1, . . . , p times the
weight of the configuration consisting of the paths starting in columns 1, . . . , n. It
follows that

LSλ(Xn;Ym; t) =
⋮

⋮

. . .

0

λ{n+1,...,p}

x1

xn

y1

ym

p . . .
n + 1 n n − 1

. . .
2 1

⋅

⋮

⋮

. . .

0

λ{1,...,n}

x1

xn

y1

ym

p . . .
n + 1 n n − 1

. . .
2 1

where, for a set S = {s1 < . . . < sj} ⊆ {1, . . . , p}, we define

λS = (λ(1)S , . . . , λ
(k)
S ) with λ

(i)
S = (λ(k)s1 , . . . , λ

(k)
sj ).

Since λ{n+1,...,p} = η, the first factor is exactly

⋮

⋮

. . .

0

η

x1

xn

y1

ym

p . . .
n + 1 n n − 1

. . .
2 1

= ⋮

. . .

0

η

y1

ym

= LPη (Ym; t).

Since λ{1,...,n} = m + τ , the second factor is exactly

⋮

⋮

. . .

0

m + τ

x1

xn

y1

ym

p . . .
n + 1 n n − 1

. . .
2 1

=

⋮

⋮

. . .

0

m + τ

x1

xn

y1

ym

= LSm+τ (Xn;Ym; t).
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Proof of Lemma 3.4.12. By Lemma 3.4.4, LSλ(Xn−1, r;Ym−1,−t
l
r; t) is the partition

function associated to the lattice

⋮

⋮

. . .

0

λ

x1

xn−1

y1

ym−1

r

−tlr

Any configuration of this lattice must have the form

⋮

⋮

. . .

0

λ

x1

xn−1

y1

ym−1

r

−tlr

p . . .
n + 1 n n − 1

. . .
2 1

where we have labelled the columns for convenience. In a configuration, if there
exists a color i such that the path of color i starting in column 1 goes vertically in
the bottom two rows, then color i must have the form

⋮

⋮

. . .

0

λ

x1

xn−1

y1

ym−1

r

−tlr

p . . .
n + 1 n n − 1

. . .
2 1

.

A path can take at most one step right in a given purple row, so the path of color i
starting in column n can make at mostm−1 total steps right in the lattice. However,

since λ
(i)
n = m + τ

(i)
n ≥ m, the path of color i starting in column n must make at

least m total steps right in the lattice. This is a contradiction, which means that in
any configuration, every path starting in column 1 must make at least one step right
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somewhere in the bottom two rows. Therefore

LSλ/µ(Xn−1, r;Ym−1,−t
l
r; t) =

⋮

⋮

. . .

0

λ

x1

xn−1

y1

ym−1

r

−tlr

= ∑
α

. . .

0

α

r

−tlr

⋮

⋮

. . .

α

λ

x1

xn−1

y1

ym−1

where the sum is over all α such that α
(i)
1 > 0 for all i. We will show that, for all

such α, there is an involution φα on the set of configurations of the lattice

Lα =

. . .

0

α

r

−tlr

such that weight(φα(C)) = −weight(C) for all C. Therefore

LSλ/µ(Xn−1, r;Ym−1,−r; t) = 0.

Fix α with α
(i)
1 > 0 for all i and fix a configuration C on the lattice Lα. We again

label the columns for convenience as follows.

. . .

p . . .
2 1 0 −1

. . .

0

α

r

−tlr

Given a color i, let ci be the column in which the path of color i starting in column
1 exits the lattice through the top. Since every path starting in column 1 must make
at least one step right, ci ≤ 0 for all i. We define an ordering ≺ on the colors by

i ≺ j ⇔ ci > cj OR ci = cj and i < j.

Let i be the (l + 1)-th largest color in this ordering (so that l = #{j ∶ i ≺ j}). In
columns ci + 1 and ci of C, color i has the form

12

3 4

or
12

3 4
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where we have labelled the boxes for convenience. We define φα(C) to be the result
of flipping color i in columns ci + 1 and ci

↔ .

Clearly φα is an involution. To show weight(φα(C)) = −weight(C), we must show

weight
⎛
⎜
⎝ r

−tlr
⎞
⎟
⎠
= −weight

⎛
⎜
⎝ r

−tlr
⎞
⎟
⎠

(3.8)

regardless of the paths taken by the other colors. Compared to the configuration
with color i absent, the presence of color i in the form

r

−tlr

contributes −tlr ⋅ ta to the overall weight, where

a = #{j > i ∶ j is vertical in box 2} +#{j < i ∶ j exits right in box 3}.

Compared to the configuration with color i absent, the presence of color i in the form

r

−tlr

contributes r ⋅ tb to the overall weight, where

b = #{j > i ∶ j appears in box 3} +#{j < i ∶ j exits right in box 1}
+#{j < i ∶ j exits right in box 3} +#{j < i ∶ j exits right in box 4}.

It is easy to see that

b − a = #{j > i ∶ j appears in box 3} −#{j > i ∶ j is vertical in box 2}
+#{j < i ∶ j exits right in box 1 +#{j < i ∶ j exits right in box 4}

= #{j > i ∶ ci ≥ cj} +#{j < i ∶ ci > cj}
= #{j ∶ j ≻ i}
= l.
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Therefore

weight
⎛
⎜
⎝ r

−tlr
⎞
⎟
⎠

weight
⎛
⎜
⎝ r

−tlr
⎞
⎟
⎠

=
−tlr ⋅ ta

r ⋅ tb
= −t

l+a−b
= −1.

Thus (3.8) holds.

Swapping single rows

In this subsection, we prove an identity of the supersymmetric LLT polynomials
in the case µ = 0 and p = 1. As in Section 2.5, we can view λ as a (weak) composition
λ, and for any composition ν = (ν1, . . . , νk), we define

Inv(ν) = #{a < b ∶ νa > νb}.

Taking m = 0 in the following proposition, we recover Prop. 2.5.5; in fact, these two
propositions are proven in nearly identical ways.

Proposition 3.4.13 ([28, Prop. 4.13]). Let λ ∈ P
(k)
1 . If ν ∈ P

(k)
1 is a rearrangement

of λ, then

LSλ(Xn;Ym; t) = t
Inv(λ)−Inv(ν)LSν (Xn;Ym; t).

Proof. It is enough to show that, given i ∈ [k − 1],

LSλ(Xn;Ym; t) = t ⋅ LSν (Xn;Ym; t)

where λ1 ≥ ⋯ ≥ λi > λi+1 ≥ ⋯ ≥ λk and

νj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λj j ≠ i, i + 1
λi+1 j = i
λi j = i + 1

.

We will let blue be color i and red be color i + 1. We will now define a bijection

ρ ∶ LC(Sn,m(λ)) → LC(Sn,m(ν)).

Fix a configuration C ∈ Sn,m(λ). Since λi > λi+1, the column in which color i
exits the lattice is strictly right of the column in which color i + 1 exits the lattice.
Therefore, since color i and color i+ 1 enter the lattice in the same column, C must
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have a row in which color i enters weakly left and exits strictly right of color i + 1.
Thus C must have a vertex of the form

or .

Consider the NE-most vertex V of this form. Swap color i and color i + 1 in every
vertex NE of V . For example:

↦

and

↦

The result is a configuration ρ(C) ∈ LC(Sn,m(ν)). It’s clear that ρ is a bijection.
We will now compare weight(C) with weight(ρ(C)). There are four types of vertices
to consider.

1. For the vertex V itself, the effect of applying ρ is

↦ or ↦ .

In either case, it is easy to see that the weight before applying ρ is t times the
weight after applying ρ.

2. For any vertex not NE of V , ρ does not change the configuration, so the weight
is not changed.

3. For any vertex NE of V in which either color i or color i+ 1 is absent, ρ swaps
color i and color i + 1, but the weight is not changed.

4. For any vertex NE of V in which both color i and color i + 1 are present, this
vertex must have the form

.
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Applying ρ swaps color i and color i + 1, resulting in

.

It is easy to see that the weight is not changed.

Therefore
weight(C) = t ⋅ weight(ρ(C))

and the proposition follows.

3.5 Relating LS
to G

The goal of this section is to relate the partition function LSλ/µ of Definition 3.3.2

to the super ribbon function G(k)
λ/µ of Definition 3.2.8. In [23] the authors construct a

lattice model whose partition function is equal to the spin LLT polynomials. Lemma
3.5.6 below, which relates our vertex model to the spin LLT polynomial, can also be
interpreted as a mapping between our vertex model and the one in [23] (see Remark
3.5.7).

Fix a positive integer k. Let λ/µ be the k-quotient of λ/µ. Let A = {1 < 2 <

⋯ < n} and A′
= {1′ < 2

′
< ⋯ < m

′}. We use the ordering 1 < 2 < . . . < n < 1
′
<

2
′
< . . . < m

′
on A ∪A′

.
We begin by constructing a bijection

SSSYT(λ/µ) → LC(Sn,m(λ/µ)).
We do this in the usual way in which each row of i-th tableaux maps to a path of

color i. Precisely, given T = (T (1)
, . . . , T

(k)) ∈ SSSYT(λ/µ), the corresponding
C ∈ LC(Sn,m(λ/µ)) is constructed as follows. Fix a row

c c + 1. . .c + j − 1
. . .

. . . e1 e2 . . . ej T
(i)

. . .

in T . (Here we have labelled the diagonal content lines going through the row.) The
corresponding path in C has color i, enters the lattice via the bottom of column c,
exits the lattice via the top of column c + j, and crosses from column c + l − 1 to
column c + l at

{ the a-th white row if el = a ∈ A
the a-th purple row if el = a

′
∈ A′
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for each index l ∈ [j]. Recall that the Littlewood k-quotient map is a bijection

SRTk(λ/µ) → SSSYT(λ/µ).

The composition of these two bijections gives a bijection

θ ∶ SRTk(λ/µ) → LC(Sn,m(λ/µ)).

Example 3.5.1. Let n = 3, m = 4, and k = 3. Recall Example 3.2.12.

1

2

1
2
3

1
′
2
′

1

1
′
3
′

3
′

4
′

↔

1
2

1
2
′

3
′
3
′

3 1
′ 1 4

′
2
1
′

The corresponding configuration is

x1

x2

x3

y1

y2

y3

y4

where blue is color 1, green is color 2, and red is color 3.

Remark 3.5.2. The bijection SSSYT(λ/µ) → LC(Sn,m(λ/µ)) becomes a bijection

SSYT(λ/µ) → LC(Wn(λ/µ)).

when m = 0. This bijection was used in Chapter 2 to prove Theorem 2.3.3.

Remark 3.5.3. The bijection θ restricts to bijections

HRSk(λ/µ) → LC(W1(λ/µ)), VRSk(λ/µ) → LC(P1(λ/µ))

by labelling each ribbon in a horizontal (vertical) k-ribbon strip with a 1 (1
′
).
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For the rest of this section, we switch to drawing our Young diagrams in Russian
convention, so rows are oriented SW-to-NE and columns are oriented SE-to-NW.
The reason for this switch is to allow for an elegant graphical interpretation of θ.
Let T ∈ SRTk(λ/µ) and let C = θ(T ) ∈ LC(Sn,m(λ/µ)). By the construction of θ,
we note that

1. for each i ∈ A, the horizontal ribbon strip λ≤i/λ≤i−1 of ribbons labelled i in T
corresponds to the i-th white row in C; and

2. for each i
′
∈ A′

, the vertical ribbon strip λ≤i/λ≤i−1 of ribbons labelled i
′
in T

corresponds to the i-th purple row in C.

Given a horizontal (vertical) ribbon strip inside T , we “drop down” the Maya dia-
grams of the top and bottom boundaries to obtain the top and bottom boundaries
of the corresponding white (purple) row in C. Moreover, the top and bottom bound-
aries of the row uniquely determine the path configuration of the row.

Example 3.5.4. Take k = 3. Let blue be color 1, green be color 2, and red be color 3.
Consider the following horizontal 3-ribbon strip of shape (6, 6, 3, 0, 0, 0)/(0, 0, 0, 0, 0, 0).

We now color the steps on the top and bottom boundaries, from left to right. A
South-East step in position i mod k gets color i. North-East steps are not colored.

We now “drop down” the steps on the top and bottom boundaries of the horizontal
3-ribbon strip to obtain the top and bottom boundaries of the corresponding white
row. The steps in positions (j − 1)k + 1, . . . , (j − 1)k + k correspond to the j-th
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leftmost vertex. A step of color i corresponds to a particle of color i, indicating that
a path of color i is incident at the edge.

With these top and bottom boundary conditions (and requiring that no paths be inci-
dent at the left and right edges of the row), there is a unique path configuration.

Remark 3.5.5. We leave it as an exercise for the reader to verify that our graphical
interpretation of θ is correct (see Lemma 3.2.13). We also leave it as an exercise for
the reader to check that the diagram

HRSk(λ/µ) VRSk(λ′/µ′)

LC(W1(λ/µ)) LC(P1(λ′/µ′))

conjugate

θ θ

ψ

commutes. Here ψ is the bijection defined at the beginning of Section 3.4. (This
result is not needed in the rest of this chapter.)

In order to relate LSλ/µ to G(k)
λ/µ, we must consider how the spin

spin(T ) = ∑
ribbons R in T

(h(R) − 1)

of a horizontal (vertical) ribbon strip T appears in the corresponding path config-
uration θ(T ) of a single white (purple) row. Clearly spin(T ) equals the number of
positions that the tile
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(two cells in the same column and ribbon) can be placed in T . For example, if T is

1
2

3

4
5

64
5

6
7

8
9

there are 4 such positions - cells 1 and 2, cells 2 and 3, cells 4 and 5, and cells 8 and
9 - and indeed the spin is 4. We can count these positions according to the “slice”
containing the middle of each tile. In our example, the slices are given by

1 2 3 4 5 6 7 8 9

so slices 2, 3, 4, and 6 each contribute 1 to the spin and the other slices do not
contribute to the spin. In each slice, there are only four shapes that can appear.

1. a column parallelogram (two adjacent halves of cells in the same column and
ribbon)

2. a row parallelogram (two adjacent halves of cells in the same row and ribbon)

3. a head triangle (half of the head of a ribbon)

4. a tail triangle (half of the tail of a ribbon)

1. 2. 3. 4.
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(Of course, a slice could also consist of a single SE step or a single NE step.) Any
other shapes cannot appear in a slice, because if it did, the ribbon containing the
shape would either contain a 2×2 square or not be a valid skew shape. It is clear that
the contribution of a slice to the spin equals the number of column parallelograms
in the slice.

In the following two lemmas, we use the above discussion to characterize the spin
in terms of θ(T ), when T is a horizontal/vertical ribbon strip.

Lemma 3.5.6 ([28, Lemma 5.6]). Let T be a horizontal k-ribbon strip. In the
corresponding white row θ(T ),

spin(T ) = ∑
a<b

(# +# +# +# ) .

Proof. The fact that T is a horizontal ribbon strip restricts the possible forms of the
slices.

1. If a head triangle appears, it must be at the bottom of the slice. This is because
the head of a ribbon must touch the SE boundary.

2. If a tail triangle appears, it must be at the top of the slice. Suppose the tail
triangle of ribbon R appears below a shape in ribbon S in slice i. Then, in all
slices in which both R and S appear, S is above R. As every ribbon has length
k, R appears in slices i, . . . , i + k and S appears in slices i − j, . . . , i − j + k
for some j ∈ {0, . . . , k}. In particular, in slice i − j + k, the head triangle of S
appears above R, which contradicts the first restriction.

With these restrictions in mind, one can show that each slice must have one of the
following five forms:

⋮

⋮

⋮ ⋮

⋮

H1 H2 H3 H4 H5

Here ⋮ indicates arbitrarily many (possibly 0) copies of the shape, and South-East
steps on the top/bottom boundaries are colored as in our graphical interpretation of
θ (see Example 3.5.4).
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Remark 3.5.7. The five types of slices we draw here are in bijection with the five
types of allowed vertices given in [23, Figure 14]. To see this, suppose we are looking
at a slice whose top and bottom boundaries correspond to color a. Then we can map
it to a vertex of the form given in [23] by assigning arrows to the edges of the vertex
according to the following rules:

1. If the top boundary of the slice is a NE (SE) step then the top edge of the vertex
gets a down (up) arrow. Similarly for the bottom boundary of the slice.

2. If the slice contains a head triangle, assign a left arrow to the k-th eastern
horizontal edge. If the slice contains a tail triangle, assign a left arrow to the
1st western horizontal edge.

3. If a ribbon whose head is in a slice of color b passes through the slice, then
assign left arrows to the the (b+ k − a mod k)-th eastern horizontal edge and
the ((b + k − a mod k) + 1)-th western horizontal edge.

4. Otherwise assign right arrows to the horizontal edges.

Assigning each slice a weight of x
#head triangles

t
#col. parellelograms

makes this a weight-
preserving bijection. Through the bijection θ defined above, the rest of this proof can
be seen as giving a weight-preserving bijection between our vertex model and that of
[23].

We claim that there is a one-to-one correspondence between the five possible
forms of a slice in T and the five possible path configurations of the corresponding
color in the corresponding white vertex in θ(T ).

H1 ↔ W1 H2 ↔ W2 H3 ↔ W3 H4 ↔ W4 H5 ↔ W5

The correspondence is obvious for H3, H4, and H5 from the top/bottom boundary
conditions. Moreover, from the top/bottom boundary conditions, slices of the form
H1 or H2 correspond to path configurations of the form W1 or W2. To show the
correspondence for H1 and H2, we will show that a slice of the form H2 always gives
a configuration of the form W2 and vice versa.

• Suppose slice i has the form H2. It contains the head triangle of a ribbon, so
slice i − k will contain the tail triangle of this ribbon. This slice then must
have the form H2 or H4. If slice i − k has the form H2, then we can repeat
this argument to show that slice i − 2k has the form H2 or H4. Since there
are finitely many ribbons, eventually we find that slice i− jk has the form H4,
for some positive integer j, and slices i − (j − 1)k, . . . , i − k, i have the form
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H2. Since slice i − jk has the form H4, the corresponding path configuration
has the form W4, in which the path exits right. Thus the path configuration
corresponding to slice i− (j − 1)k must have the path entering left, so it must
have the form W2, in which the path exits right. Repeating, we conclude the
path configuration corresponding to slice i has the form W2.

• Suppose slice i corresponds to a path configuration of the form W2. We know
a path enters the slice from the left, so slice i − k must correspond to a path
configuration in which the path exits right. This path configuration then must
have the form W2 or W4. If slice i − k corresponds to a path configuration
of the form W2, then we can repeat this argument to show that slice i − 2k
corresponds to a path configuration of the form W2 or W4. Since there are
finitely many vertices, eventually we find that slice i−jk corresponds to a path
configuration of the form W4 and slices i− (j − 1)k, . . . , i− k, i correspond to
path configurations of the formW2, for some positive integer j. Since slice i−jk
corresponds to a path configuration of the form W4, it must have the form H4,
so it contains the tail triangle of a ribbon. We see that slice i−(j−1)k contains
the head triangle of this ribbon, so this slice has the form H2. It follows that
slice i − (j − 1)k also contains the tail triangle of a ribbon. Repeating, we
conclude slice i has the form H2.

Recall that slice i = (j − 1)k + a in T corresponds to color a in the j-th leftmost
vertex V in θ(T ). The contribution of this slice to spin(T ) equals the number of
column parallelograms in the slice. Looking at the five possible forms of a slice, we
see that this equals zero if slice i has the form H1, which is equivalent to color a
being absent in V . Otherwise, it equals the number of ribbons R that appear in slice
i but whose head/tail triangles do not.

Let R be such a ribbon, and let slice s be the slice that contains the tail triangle of
R. Since slice i contains a column parallelogram of R but not the head/tail triangle
of R, we have s < i < s + k. Let b ∈ [k] be such that b ≡ s mod k, and note that
b ≠ a. If b < a, then the tail triangle of R appears in slice (j − 1)k + b, so slice
(j − 1)k+ b has the form H2 or H4, so the path configuration of color b in V has the
form W2 or W4, so color b exits V to the right. If b > a, then the head triangle of
R appears in slice (j − 1)k + b, so slice (j − 1)k + b has the form H2 or H5, so the
path configuration of color b in V has the form W2 or W5, so color b enters V from
the left.
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We can now conclude

spin(T ) = ∑
V

∑
a

1a appears in V ⋅ (∑
b<a

1b exits V to the right +∑
b>a

1b enters V from the left)

= ∑
a<b

(# +# ) +∑
a<b

(# +# )

= ∑
a<b

(# +# +# +# ) .

Lemma 3.5.8 ([28, Lemma 5.8]). Let T be a vertical k-ribbon strip. In the corre-
sponding purple row θ(T ),

spin(T ) = ∑
a<b

(# +# +# +# ) .

Proof. We follow the same ideas as in the proof of the previous lemma. The fact
that T is a vertical ribbon strip restricts the possible forms of the slices.

1. If a tail triangle appears, it must be at the bottom of the slice. This is because
the tail of a ribbon must touch the SW boundary.

2. If a head triangle appears, it must be at the top of the slice. Suppose the head
triangle of ribbon R appears below a shape in ribbon S in slice i. Then, in all
slices in which both R and S appear, S is above R. As every ribbon has length
k, R appears in slices i− k, . . . , i and S appears in slices i− j, . . . , i− j + k for
some j ∈ {0, . . . , k}. In particular, in slice i − j, the tail triangle of S appears
above R, which contradicts the first restriction.

With these restrictions in mind, we see that each slice must have one of the following
five forms:

⋮

⋮

⋮

⋮

⋮

V1 V2 V3 V4 V5
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We claim that there is a one-to-one correspondence between the five possible
forms of a slice in T and the five possible path configurations of the corresponding
color in the corresponding purple vertex in θ(T ).

V1 ↔ P1 V2 ↔ P2 V3 ↔ P3 V4 ↔ P4 V5 ↔ P5

The correspondence is obvious for V3, V4, and V5 from the top/bottom boundary
conditions. Moreover, from the top/bottom boundary conditions, slices of the form
V1 or V2 correspond to path configurations of the form P1 or P2. To show the
correspondence for V1 and V2, we will show that a slice of the form V2 always gives
a configuration of the form P2 and vice versa.

• Suppose slice i has the form V2. It contains the tail triangle of a ribbon, so
slice i + k will contain the head triangle of this ribbon. This slice then must
have the form V2 or V5. If slice i + k has the form V2, then we can repeat
this argument to show that slice i + 2k has the form V2 or V5. Since there
are finitely many ribbons, eventually we find that slice i+ jk has the form V5,
for some positive integer j, and slices i, i + k, . . . , i + (j − 1)k have the form
V2. Since slice i + jk has the form V5, the corresponding path configuration
has the form P5, in which the path enters left. Thus the path configuration
corresponding to slice i+ (j − 1)k must have the path exiting right, so it must
have the form P2, in which the path exits right. Repeating, we conclude the
path configuration corresponding to slice i has the form P2.

• Suppose slice i corresponds to a path configuration of the form P2. We know
a path exits the slice to the right, so slice i + k must correspond to a path
configuration in which the path enters left. This path configuration then must
have the form P2 or P5. If slice i + k corresponds to a path configuration
of the form P2, then we can repeat this argument to show that slice i + 2k
corresponds to a path configuration of the form P2 or P5. Since there are
finitely many vertices, eventually we find that slice i + jk corresponds to a
path configuration of the form P5 and slices i, i+k, . . . , i+ (j−1)k correspond
to path configurations of the form P2, for some positive integer j. Since slice
i+jk corresponds to a path configuration of the form P5, it must have the form
V5, so it contains the head triangle of a ribbon. We see that slice i+ (j − 1)k
contains the tail triangle of this ribbon, so this slice has the form V2. It follows
that slice i + (j − 1)k also contains the head triangle of a ribbon. Repeating,
we conclude slice i has the form V2.
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Recall that slice i = (j − 1)k + a in T corresponds to color a in the j-th leftmost
vertex V in θ(T ). The contribution of this slice to spin(T ) equals the number of
column parallelograms in the slice. Looking at the five possible forms of a slice, we
see that this equals zero unless slice i has the form V1, which is equivalent to the
path configuration of color a having form P1 in V , that is, color a being vertical in
V . In that case, the contribution to the spin equals the number of ribbons R that
appear in slice i but whose head/tail triangles do not.

Let R be such a ribbon, and let slice s be the slice that contains the head triangle
of R. Since slice i contains a column parallelogram of R but not the head/tail triangle
of R, we have s − k < i < s. Let b ∈ [k] be such that b ≡ s mod k, and note that
b ≠ a. If b < a, then the tail triangle of R appears in slice (j − 1)k + b, so slice
(j − 1)k+ b has the form V2 or V4, so the path configuration of color b in V has the
form P2 or P4, so color b exits V to the right. If b > a, then the head triangle of R
appears in slice (j − 1)k+ b, so slice (j − 1)k+ b has the form V2 or V5, so the path
configuration of color b in V has the form P2 or P5, so color b enters V from the left.

From this we conclude

spin(T ) = ∑
V

∑
a

1a is vertical in V ⋅ (∑
b<a

1b exits V to the right +∑
b>a

1b enters V from the left)

= ∑
a<b

(# +# ) +∑
a<b

(# +# )

= ∑
a<b

(# +# +# +# ) .

where V varies over the vertices in θ(T ) and a and b vary over the colors.

Using the previous two lemmas, we are now ready to relate LSλ/µ to G(k)
λ/µ.

Proposition 3.5.9 ([28, Prop. 5.9]). Let λ/µ be the k-quotient of λ/µ. Then

LSλ/µ(Xn;Ym; t) = t
□G(k)

λ/µ(Xn;Ym; t
1/2)

for some half-integer □ ∈
1

2
Z. In fact, in any configuration of the lattice Sn,m(λ/µ),

□ =
1

2
∑
a<b

(# +# −# −# ) +
1

2
∑
a<b

(# −# ) .

(3.9)
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Proof. Recall the bijection θ ∶ SRTk(λ/µ) → LC(Sn,m(λ/µ)). It is enough to show

weight(θ(T )) = t
□
t
1
2
spin(T )

x
weight(T )

y
weight

′(T )

for all T ∈ SRTk(λ/µ), for some half-integer □ that does not depend on T . Fix a
super ribbon tableaux T ∈ SRTk(λ/µ) and let C = θ(T ) ∈ LC(Sn,m(λ/µ)) be the
corresponding path configuration. It is clear that the X weights (Y weights) match,
since each ribbon labelled a ∈ A (a

′
∈ A′

) in T corresponds to a path taking a step
right in the a-th white (purple) row of C. We are left to consider the powers of t.
From the previous two lemmas, we see that

spin(T ) = ∑
a<b

(# +# +# +# )

+∑
a<b

(# +# +# +# )

= ∑
a<b

(2 ⋅# +# +# )

+∑
a<b

(# +# +# +# )

= 2 coinv(C) −∑
a<b

(# −# )

+ 2 coinv
′(C) −∑

a<b

(# +# −# −# )

where

coinv(C) = ∑
a<b

(# +# ) and coinv
′(C) = ∑

a<b

(# +# )

are the powers of t coming from the white and purple vertices in C, respectively.
Thus

1

2
spin(T ) + □ = coinv(C) + coinv

′(C)

where □ is the quantity (3.9). A corner flipping argument shows that □ is indepen-
dent of the configuration C, and the result follows.



CHAPTER 3. SUPER RIBBON FUNCTIONS 87

3.6 Cauchy identity

As was shown in Theorem 2.6.1, as well as in [1, 38, 22], the LLT polynomials
satisfy a Cauchy identity. We would like to prove a similar theorem for the super-
symmetric LLT polynomials. Just as we did to prove Theorem 2.6.1, we will proceed

in the style of [53]. It will be useful to define P
(k)
l1,l2

, for 0 ≤ l1, l2 ≤ ∞, to be the set
of k-tuples of partitions with l1 parts whose largest part is less than or equal to l2.

Single rows

In order to construct our Cauchy identity, we will employ infinitely long rows
of vertices. For the white and purple vertices, it is relatively easy to define a row
of infinite length. We start by defining the following finite length rows, where the

allowed states on the top and bottom boundaries are indexed by partitions P
(k)
l1,l2

.
Pictorially these are given by

x

x

← l1 → ← l2 →
x

x

← l1 → ← l2 →

Each row has length l1 + l2 and we explicitly mark the zero content line. We can
increase l1 by extending the partitions indexing the boundary states with zero parts;
similarly we can increase l2 by adding empty faces to the right. Note that increasing
l1 adds faces of the form

or

on the left, while increasing l2 adds faces of the form

or

on the right; since these vertices have weight 1, increasing l1 and l2 does not change
the weight of the row. In fact, we may take l1, l2 → ∞ and allow the boundary states
to be indexed by partitions with infinitely many parts as long as only finitely many
parts are non-zero.

For the gray and pink vertices, we must be slightly more careful. Note that

= x
k
t
(k
2
)
, = 1, = 1, = x

k
.
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For the gray faces, we consider a row of finite length, such that the allowed states

on the bottom are indexed by partitions in P
(k)
l1,l2

, and the allowed states on the top

are indexed by partitions in P
(k)
l1−1,l2

. We draw this as

x

x

← l1 → ← l2 →

The boundary condition on the right allows us to increase l2 by adding faces where
every path is horizontal without changing the weight of the row. However, increasing
l1 by adding zero parts to the partitions does affect the weight since faces where all
the paths are vertical have a non-trivial contribution due to the change of variable.

For the pink faces, we consider a row of finite length, such that the allowed states

on the bottom are indexed by partitions in P
(k)
l1,l2

, and the allowed states on the top

are indexed by partitions in P
(k)
l1+1,l2−1

. We draw this as

x

x

← l1 → ← l2 →

In this case, we can increase l1 by adding zero parts to the partitions without changing
the weight of the row, as this amounts to adding faces on the left where every color
is a cross. However, increasing l2 by adding empty faces on the right does affect the
weight. We will see later that the contribution to the weight coming from increasing
l1 in the case of the gray faces, and the contribution to the weight coming from
increasing l2 in the case of the pink faces, cancels out in the Cauchy identity, allowing
us to circumvent this issue.

Remark 3.6.1. Suppose the bottom boundary of a row is indexed by µ while the
top boundary is indexed by λ. Recall from Section 1.3 that, for the white faces, in
order for the row to have a non-zero weight, λ must be obtained from µ by adding
a horizontal strip. Similarly, for the purple faces, λ must be obtained from µ by
adding a vertical strip. For the gray faces, λ must be obtained from µ by removing
a horizontal strip. For the pink faces, λ must be obtained from µ by removing a
vertical strip.

Some partition functions

Here we will construct certain lattice models, using the single rows above, whose
partition functions will be used in our Cauchy identities. In what follows, we will
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always consider our partitions λ and µ to be k-tuples of partitions, each with a
infinitely many parts, only finitely many of which are non-zero. We will truncate the
partitions, removing only zero parts, to limit the number of parts as needed.

Given λ and µ, choose positive integers l1, l2 such that each partition has at most
l1 non-zero parts and largest part at most l2. Truncate λ and µ so that they are in

P
(k)
l1,l2

. Recall from Section 3.3 that for the white faces we have

Lλ/µ(Xm; t) = ⋮

µ

λ

x

x

x

x

x1

xm

← l1 → ← l2 →

and for the purple faces we have

LPλ/µ(Xm; t) = ⋮

µ

λ

x

x

x

x

x1

xm

← l1 → ← l2 →

where both are independent of the choice of l1 and l2. In particular, the limit as
l1, l2 → ∞ of these partition functions is well-defined.

For the gray faces, fix the number of variables m. This time, given λ and µ,
choose positive integers l1, l2 such that each partition of λ has ≤ l1 non-zero parts,
each partition of µ has ≤ l1 −m non-zero parts, and each partition of both tuples

has largest part ≤ l2. Truncate the partitions so that λ ∈ P
(k)
l1,l2

and µ ∈ P
(k)
l1−m,l2

.
Define

L∗
λ/µ(Xm; t) ∶= ⋮

λ

µ

x

x

x

x

x̄1

x̄m

← l1 → ← l2 →

We have the following proposition.

Proposition 3.6.2 ([28, Prop. 6.2]). We have

L∗
λ/µ(Xm; t) = (x1 . . . xm)(l1−m)k(xρm)ktm(2l1−m−1)(k

2
)
t
d(λ,µ)Lλ/µ(Xm; t)

where d(λ,µ) and Lλ/µ are independent of l1, l2. Furthermore, d(λ,µ) is given by

d(λ,µ) = ∑
a<b

#{i, j∣µ(a)
j − j > µ

(b)
i − i} −∑

a<b

#{i, j∣λ(a)j − j > λ
(b)
i − i}.
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The proof is essentially identical to that of Prop. 2.6.11, for which this is a slight
generalization. (We can recover Prop. 2.6.11 by taking µ = 0 and l1 = m = n.) Note
that L∗

is independent of l2 and we may take l2 → ∞.
For the pink faces, again fix the number of variables m. Given λ and µ, choose

positive integers l1, l2 such that the number of non-zero parts of each partition of
both tuples is ≤ l1, the largest part of every partition in λ is ≤ l2, and the largest

part of every partition in µ is ≤ l2 −m. Truncate the partitions so that λ ∈ P
(k)
l1,l2

,

and µ ∈ P
(k)
l1+m,l2−m

. Define

(LP )∗λ/µ(Xm; t) ∶= ⋮

λ

µ
x

x

x

x
x
−1
1

x
−1
m

← l1 → ← l2 →

We would like to be able to write (LP )∗ in terms of LP . In order to do so we will
prove a series of lemmas. Recall the definition of the complement of a k-tuple of
partitions from Definition 2.6.3 (and note the slight change in notation).

Lemma 3.6.3 ([28, Lemma 6.3]). Fix λ ∈ P
(k)
l1,l2

and µ ∈ P
(k)
l1,l2−m

. Let µ̃ ∈ P
(k)
l1,l2

be
the tuple of partitions one gets by adding m to every part of every partition in µ.
Then

LPµ̃/λ(Xm; t) = t
dP (λ,µ)LPλc/µ̃c(Xm; t)

where complements are taken in an l1× l2 box and dP (λ,µ) = d(λ,µ) is independent
of l1, l2.

Proof. There is a bijection between configurations with bottom boundary λ and top
boundary µ̃ and configurations with bottom boundary µ̃

c
and top boundary λ

c
,

given by rotating 180 degrees and reversing the order of the colors. For example,
with

λ = ((2, 1, 0), (1, 1, 1)), µ = ((1, 0, 0), (1, 1, 0)), l1 = m = 3, l2 = 4

we have λ
c
= ((3, 3, 3), (4, 3, 2)), µ̃ = ((4, 3, 3), (4, 4, 3)), µ̃c

= ((1, 0, 0), (1, 1, 0)).
For a particular configuration we would map

x2

x

x

x

x

x1

x3

λ

µ̃

↦ x2

x

x

x

x

x1

x3

λ
c

µ̃
c
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It is easy to show that under this bijection the x weight does not change, up to
switching xi and xm−i+1, as horizontal steps in row i become horizontal steps in row
m − i + 1. A corner flipping argument shows that the difference in the power of t
before and after the mapping does not depend on the configuration (see for example
the proof of Lemma 2.6.7). This shows that

LPµ̃/λ(Xm; t) = t
dP (λ,µ)LPλc/µ̃c(xm, . . . , x1; t) = t

dP (λ,µ)LPλc/µ̃c(Xm; t)

where the last equality uses the symmetry of LP . Note that increasing l1 by adding
zero parts to λ and parts of size m to µ̃ does not change the power of t on either
side of the bijection as this only adds paths that staircase (i.e. take one step right
in each row). Similarly increasing l2 by adding empty columns does not effect the
power of t on either side. Thus dP (λ,µ) is independent of l1 and l2. As shown in
the next lemma, dP (λ,µ) = d(λ,µ).

Lemma 3.6.4 ([28, Lemma 6.4]). Let λ,µ be as in the previous lemma. Then

dP (λ,µ) = ∑
a<b

#{i, j∣µ(a)
j − j > µ

(b)
i − i} −∑

a<b

#{i, j∣λ(a)j − j > λ
(b)
i − i}.

Proof. First let’s assume that µ = 0 and k = 2. In this case, every part in µ̃ equals
m. We can calculate dP (λ,µ) using any choice of configuration. We will pick the
configuration T of µ̃/λ such all the paths are as low as possible. In this case, each
path will begin as a staircase going right until it reaches the column in which it ends,
and will then travel vertically to its endpoint. Consider a single path of the first
color (blue) corresponding to the j-th row of the skew shape. For it to contribute a
power of t a path of the second color (red) must travel vertically in a face in which
the blue path exits right. Suppose we have such a red path, corresponding to the
i-th row. As a path travels vertically only in the column in which it ends, the blue
path must end to the right of the red path, i.e. j < i. Further, in order for the red
path to cross the blue path while traveling vertically its staircase must be weakly
below the blue staircase, so the blue path must start weakly left of the red path, i.e.

λ
(1)
j − j ≤ λ

(2)
i − i. We see that

coinv
′(T ) = #{j < i∣λ(1)j − j ≤ λ

(2)
i − i}

where coinv
′(T ) is the power of t in the configuration T .

Using our mapping, the configuration T gets mapped to a configuration T
′
of

λ
c/µ̃c

in which all the paths are as high as possible. In this case, the paths all begin
travelling vertically and then staircase to their endpoint. Similar reasoning shows
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that for the j-th blue path to exit right while the i-th red path is vertical, the blue
path must begin weakly left of the red path, and the blue path must end to the right
of red path. This gives

coinv
′(T ′) =#{j ≥ i∣(λc)(1)j − j > (λc)(2)i − i}

=#{j ≥ i∣λ(1)j − j > λ
(2)
i − i}.

From this we find

dP (λ,0) =#{j < i∣λ(1)j − j ≤ λ
(2)
i − i} −#{j ≥ i∣λ(1)j − j > λ

(2)
i − i}

=#{j < i∣λ(1)j − j ≤ λ
(2)
i − i} +#{j < i∣λ(1)j − j > λ

(2)
i − i}

−#{j < i∣λ(1)j − j > λ
(2)
i − i} −#{j ≥ i∣λ(1)j − j > λ

(2)
i − i}

=#{j < i} −#{i, j∣λ(1)j − j > λ
(2)
i − i}.

Noting that #{i, j∣µ(1)
j − j > µ

(2)
i − i} = #{j < i} when µ = 0, we get the result in

the case µ = 0 and k = 2. Summing over all pairs of colors a < b gives the result in
the case µ = 0 and k general.

To prove the general case, let λ and µ be as in the statement of the lemma.
Consider a lattice with n+m rows. Let ν = 0, so that every part of ν̃ equals n+m.
From the above calculation we know that

dP (λ,0) = ∑
a<b

#{j < i} −∑
a<b

#{i, j∣λ(a)j − j > λ
(b)
i − i}.

This can be calculated using any configuration of λ/ν̃. Let us choose a configuration
such that the top boundary of the m-th row is given by µ̃. Then the contribution to
the change in power of t from the rows above the m-th row is given by

dP (µ̃,0) = ∑
a<b

#{j < i} −∑
a<b

#{i, j∣µ̃(a)
j − j > µ̃

(b)
i − i}

while the contribution from the m-th row and below is given by dP (λ,µ). Since the
contribution from the two pieces must equal the overall change in power of t, we see
that

dP (λ,µ) =dP (λ,0) − dP (µ̃,0)
=∑
a<b

#{i, j∣µ̃(a)
j − j > µ̃

(b)
i − i} −∑

a<b

#{i, j∣λ(a)j − j > λ
(b)
i − i}

=∑
a<b

#{i, j∣µ(a)
j − j > µ

(b)
i − i} −∑

a<b

#{i, j∣λ(a)j − j > λ
(b)
i − i}

as desired.
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Lemma 3.6.5 ([28, Lemma 6.5]). Let λ,µ,m, l1, l2 be as in the Lemma 3.6.3. Then

⋮

λ

µ̃

x

x

x

x

x
−1
1

x
−1
m

← l1 → ← l2 →

= (x1 . . . xm)k(l1+l2)tdP (λ,µ)LPλc/µ̃c(X−1
m ; t).

Proof. We start with Lemma 3.6.3. To change from purple faces to pink faces, for
each i ∈ [m], we take xi ↦

1

xi
and multiply every face in the i-th row by x

k
i . This

gives the desired equation.

Lemma 3.6.6 ([28, Lemma 6.6]). Let λ,µ,m, l1, l2 be as in the previous lemma,

except now consider µ as an element of P
(k)
l1+m,l2

(i.e. add m more parts equal to 0).
Then

⋮

λ

µ

x

x

x

x

x
−1
1

x
−1
m

← l1 → ← l2 →

= (x1 . . . xm)k(l1+l2+1)tdP (λ,µ)LPλc/µ̃c(X−1
m ; t).

Proof. Starting with the lattice in the previous lemma, we add a path of each color
on the left edge of each row. The paths entering from the left must end packed to
the left at the top. This, along with the shift right by m of the zero content line,
means that the top boundary is now given by µ. Adding the paths entering from
the left changes the weight by the factor (x1 . . . xm)k.

Finally we must relate the LLT polynomial of a skew partition with that of its
complement.

Lemma 3.6.7 ([28, Lemma 6.7]). Let λ ∈ P
(k)
l1,l2

and µ ∈ P
(k)
l1,l2−m

. Let µ̃ ∈ P
(k)
l1,l2

be
the tuple of partitions one gets by adding m to every part of every partition in µ.
We have

LPλ/µ(Xm; t) = (x1 . . . xm)kl1LPλc/µ̃c(X−1
m ; t).

Proof. We construct a bijection SSYT(λ/µ) → SSYT(λc/µ̃c) as follows. For each
skew partition in λ/µ, draw it inside an l1 × l2 box. Given any SSYT of the skew
shape, go from left to right, row-by-row, and fill the cells of the box with the largest
available integer not already used in that row. After rotating 180 degrees the newly
filled cells of the box are a SSYT of the corresponding skew partition in λ

c/µ̃c
.
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For example, let λ = (3, 3, 1, 0), µ = (1, 0, 0, 0), l1 = m = 4, l2 = 6. Then we have
λ
c
= (6, 5, 3, 3) and µ̃

c
= (2, 2, 2, 1). Consider the filling below.

2

2 3 4

1 2

→

4 3 2 1

2 4 3 1

2 3 4 1

1 2 4 3

→

3 4

1

1 3 4

1 2 3 4

Note that under this map the x weights transform as x
T

↦ (x1 . . . xm)kl1(xT )−1.
We are left to determine what happens to the powers of t. It is easy to check that,
in terms of lattice paths, flipping a corner of color a up (down) on one side of the
bijection corresponds to flipping a corner of color k − a + 1 down (up) on the other
side. As the space of configurations on both sides is connected under corner flips,
a corner flipping argument (see Lemma 2.6.8) shows the difference in the powers
of t does not depend on the configuration. Thus there is some overall power of t
difference, call it d̃P (λ,µ), so that

LPλ/µ(Xm; t) = (x1 . . . xm)kl1td̃P (λ,µ)LPλc/µ̃c(X−1
m ; t).

We need only to compute the difference in the power of t for a specific choice of
configurations to compute d̃P (λ,µ). A similar argument to the one used in the
proof of Lemma 3.6.4 shows d̃P (λ,µ) = 0.

Combining all the above lemmas gives the following proposition.

Proposition 3.6.8 ([28, Prop. 6.8]). We have

(LP )∗λ/µ(Xm; t) =(x1 . . . xm)k(l2+1)tdP (λ,µ)LPλ/µ(Xm; t)

where the whole thing is independent of l1, and dP (λ,µ) and LPλ/µ are also indepen-
dent of l2.

Cauchy identities

Using the above we will now prove several Cauchy identities for the L and LP .

Proposition 3.6.9 ([28, Prop. 6.9]). Let µ and ν be tuples of partitions each with
infinitely many parts only finitely many of which are non-zero. Then

∑
λ

t
d(µ,λ)Lµ/λ(Ym; t)LPν/λ(Xn; t) = (∏

i,j

k−1

∏
l=0

(1 + xiyjt
l)−1)∑

λ

t
d(λ,ν)LPλ/µ(Xn; t)Lλ/ν(Ym; t)
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Proof. Given µ and ν, choose positive integer l1 and l2 such that maximum number
of non-zero parts of a partition in ν is less than l1 −m and the largest part of any
partition in ν is less than l2 + m. Note this ensures that l1 is greater than the
maximum number of non-zero parts of a partition in µ and that l2 is greater than

the largest part of any partition in µ. Truncate the partitions so that µ ∈ P
(k)
l1,l2

and

ν ∈ P
(k)
l1−m,l2+m

. Consider the following partition function.

µ

ν

ȳ1

. .
.
ȳm

x1
⋱

xn

This can be split into three pieces as follows.

ȳ1

. .
.
ȳm

x1
⋱

xn

∑
λ

⋮

µ

λ

x

x

x

x

ȳ1

ȳm

← l1 → ← l2 →

× ⋮

λ

ν

x

x

x

x

x1

xn

← l1 −m →← l2 +m →

From the previous subsection, in particular Prop. 3.6.2, every piece is independent
of l2, so we may take l2 → ∞. Here the crosses have weight one. Using the YBE to
move the crosses to the other side gives

µ

ν

x1

⋮

xn

ȳ1

⋮

ȳm

. . .

Since we have taken l2 → ∞ and paths cannot travel horizontally across a purple
face, we know that the paths originating from the bottom boundary must exit from
the gray faces at the right boundary. Splitting this into parts, we get

∑
λ

⋮

λ

ν

x

x

x

x

ȳ1

ȳm

← l1 →

. . .

× ⋮

µ

λ

x

x

x

x

x1

xn

← l1 →

. . .

×

ȳm

⋮

ȳ1

xn

⋮

x1



CHAPTER 3. SUPER RIBBON FUNCTIONS 96

Equating the two sums gives

∑
λ

L∗
µ/λ(Ym; t)LPν/λ(Xn; t) = (∏

i,j

k−1

∏
l=0

(1 + xiyjt
l)−1)∑

λ

LPλ/µ(Xn; t)L∗
λ/ν(Ym; t).

where the prefactor on the RHS comes from the crosses. Using Prop. 3.6.2, we get

∑
λ

(y)(l1−m)k(yρm)kt(ml1−(
m+1
2

))(k
2
)
t
d(µ,λ)Lµ/λ(Ym; t)LPν/λ(Xn; t)

= (∏
i,j

k−1

∏
l=0

(1 + xiyjt
l)−1)∑

λ

(y)(l1−m)k(yρm)kt(ml1−(
m+1
2

))(k
2
)
t
d(λ,ν)LPλ/µ(Xn; t)Lλ/ν(Ym; t).

Many terms (in particular all the terms involving l1) cancel, and we can then take
l1 → ∞, giving the proposition.

An analogous proof, using white boxes in place of purple boxes and white crosses
in place of yellow crosses, gives the following proposition.

Proposition 3.6.10 ([28, Prop. 6.10]). Let µ and ν be tuples of partitions each
with infinitely many parts only finitely many of which are non-zero. Then

∑
λ

t
d(µ,λ)Lν/λ(Xn; t)Lµ/λ(Ym; t) = ∏

i,j

k−1

∏
l=0

(1−xiyjtl)∑
λ

t
d(λ,ν)Lλ/µ(Xn; t)Lλ/ν(Ym; t).

This is a slight generalization of Prop. 2.6.12 (which we can recover by taking ν = 0,
setting m = n, and swapping X and Y ).

Using the white faces and the pink faces, we have the following.

Proposition 3.6.11 ([28, Prop. 6.11]). Let µ and ν be tuples of partitions each
with infinitely many parts only finitely many of which are non-zero. Then

(∏
i,j

k−1

∏
l=0

(1 + xiyjt
l)−1)∑

λ

t
dP (λ,ν)Lλ/µ(Ym; t)LPλ/ν(Xn; t) = ∑

λ

t
dP (µ,λ)LPµ/λ(Xn; t)Lν/λ(Ym; t).

Proof. Given µ and ν, choose positive integers l1, l2 such that l1 is greater than or
equal to the number of non-zero parts in µ and ν, l2 is greater than or equal to
the largest part in µ, and l2 − n is greater than or equal to the largest part in ν.
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Consider the following partition function.

µ

ν

x
−1
1

⋮

x
−1
n

y1

⋮

ym

This can be split as

∑
λ

⋮

µ

λ

x

x

x

x

x
−1
1

x
−1
n

← l1 → ← l2 →

× ⋮

λ

ν

x

x

x

x

y1

ym

← l1 + n → ← l2 − n →

×

ym

⋮

y1

x
−1
n

⋮

x
−1
1

From the previous subsection, in particular Prop. 3.6.8, every piece is independent
of l1, so we may take l1 → ∞. We can use the YBE to move the crosses to the other
side to get

µ

ν. . .

y1

. .
.
ym

x
−1
1

⋱
x
−1
n

which we split into

y1

. .
.
ym

x
−1
1

⋱
x
−1
n

∑
λ

⋮

µ

λ

x

x

x

x

y1

ym

← l2 →

. . .

× ⋮

λ

ν

x

x

x

x

x̄1

x̄n

← l2 →

. . .

(Sufficiently far to the left in the white faces every column is dense with vertical
paths, so the paths from the cross must enter in the pink faces.) Setting this equal
to the other sum gives

(∏
i,j

k−1

∏
l=0

(1 + xiyjt
l)−1)∑

λ

Lλ/µ(Ym; t)(LP )∗λ/ν(Xn; t) = ∑
λ

(LP )∗µ/λ(Xn; t)Lν/λ(Ym; t)

where the prefactor on the LHS comes from the crosses. Using Prop. 3.6.8 we have
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(∏
i,j

k−1

∏
l=0

(1 + xiyjt
l)−1)∑

λ

(x1 . . . xn)k(l2+1)tdP (λ,ν)Lλ/µ(Ym; t)LPλ/ν(Xn; t)

= ∑
λ

(x1 . . . xn)k(l2+1)tdP (µ,λ)LPµ/λ(Xn; t)Lν/λ(Ym; t).

Canceling the terms involving l2 gives the proposition.

Changing the white faces to purple faces, a similar computation to the above
gives

Proposition 3.6.12 ([28, Lemma 6.12]). Let µ and ν be tuples of partitions each
with infinitely many parts only finitely many of which are non-zero. Then

(∏
i,j

k−1

∏
l=0

(1 − xiyjt
l))∑

λ

t
dP (λ,ν)LPλ/µ(Ym; t)LPλ/ν(Xn; t) = ∑

λ

t
dP (µ,λ)LPµ/λ(Xn; t)LPν/λ(Ym; t).

(One must be careful to only consider terms with finite degree in y; this forces the
paths to only travel from the SW to the SE on the cross.)

Combining these identities, we now come to the main result of this section: a
Cauchy identity for the supersymmetric LLT polynomials.

Theorem 3.6.13 ([28, Thm. 6.13]). Let µ and ν be tuples of partitions each with
infinitely many parts only finitely many of which are non-zero. Fix positive integers
n,m, p, q. Then

∑
λ

t
d(µ,λ)LSν/λ(Xn, Ym; t)LSµ/λ(Wp, Zq; t)

=

k−1

∏
l=0

n

∏
i,i′=1

m

∏
j,j ′=1

p

∏
α,α′

=1

q

∏
β,β′

=1

(1 − xiwαt
l)(1 − yj ′zβ′t

l)
(1 + yjwα′tl)(1 + xi′zβt

l) ∑
λ

t
d(λ,ν)LSλ/µ(Xn, Ym; t)LSλ/ν(Wp, Zq; t)

(3.10)

Proof. We can rewrite the LHS as

LHS = ∑
λ,σ,ρ

LPν/ρ(Ym; t)Lρ/λ(Xn; t)tdP (µ,σ)LPµ/σ(Zq; t)td(σ,λ)Lσ/λ(Wp; t)

where we use the fact that

d(µ,λ) = dP (µ,σ) + d(σ,λ).
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Applying Prop. 3.6.10 on the sum over λ with the second and fourth LLTs gives

LHS =

k−1

∏
l=0

n

∏
i=1

p

∏
α=1

(1 − xiwαt
l)

× ∑
λ,σ,ρ

LPν/ρ(Ym; t)Lλ/σ(Xn; t)tdP (µ,σ)LPµ/σ(Zq; t)td(λ,ρ)Lλ/ρ(Wp; t).

Applying Prop. 3.6.9 on the sum over ρ with the first and fourth LLTs gives

LHS =

k−1

∏
l=0

n

∏
i=1

m

∏
j=1

p

∏
α,α′

=1

1 − xiwαt
l

1 + yjwα′tl

× ∑
λ,σ,ρ

LPρ/λ(Ym; t)Lλ/σ(Xn; t)tdP (µ,σ)LPµ/σ(Zq; t)td(ρ,ν)Lρ/ν(Wp; t).

Applying Prop. 3.6.11 on the sum over σ with the second and third LLTs gives

LHS =

k−1

∏
l=0

n

∏
i,i′=1

m

∏
j=1

p

∏
α,α′

=1

q

∏
β=1

1 − xiwαt
l

(1 + yjwα′tl)(1 + xi′zβt
l)

× ∑
λ,σ,ρ

LPρ/λ(Ym; t)Lσ/µ(Xn; t)tdP (σ,λ)LPσ/λ(Zq; t)td(ρ,ν)Lρ/ν(Wp; t).

Finally, applying Prop. 3.6.12 on the sum over λ with the first and third LLTs gives

LHS =

k−1

∏
l=0

n

∏
i,i′=1

m

∏
j,j ′=1

p

∏
α,α′

=1

q

∏
β,β′

=1

(1 − xiwαt
l)(1 − yj ′zβ′t

l)
(1 + yjwα′tl)(1 + xi′zβt

l)

× ∑
λ,σ,ρ

LPλ/σ(Ym; t)Lσ/µ(Xn; t)tdP (λ,ρ)LPλ/ρ(Zq; t)td(ρ,ν)Lρ/ν(Wp; t)

which can be combined into

LHS

=

k−1

∏
l=0

n

∏
i,i′=1

m

∏
j,j ′=1

p

∏
α,α′

=1

q

∏
β,β′

=1

(1 − xiwαt
l)(1 − yj ′zβ′t

l)
(1 + yjwα′tl)(1 + xi′zβt

l) ∑
λ

t
d(λ,ν)LSλ/µ(Xn, Ym; t)LSλ/ν(Wp, Zq; t)

= RHS

where we again use the fact that

d(λ,ν) = dP (λ,ρ) + d(ρ,ν).
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3.7 Example computations of LS
and G

Example 3.7.1. The 2-quotient of λ = (4, 2) is λ = ((1), (2)).
◦ ◦

•
◦ ◦

•

◦
•
◦

◦ ◦
•

Therefore, by Prop. 3.5.9, we must have

LSλ(x1; y1; t) = t
□G(2)

λ (x1; y1; t1/2)

for some half-integer □ ∈
1

2
Z. To compute LSλ(x1; y1; t), we note that there are 4

configurations of the lattice S1,1(λ).

x1

y1

x1

y1

x1

y1

x1

y1

x
2
1y1 x1y

2
1 tx

3
1 tx

2
1y1

Therefore LSλ(x1; y1; t) = x
2
1y1 + x1y

2
1 + tx

3
1 + tx

2
1y1. To compute G(2)

λ (x1; y1; t1/2), we
note that there are 4 super 2-ribbon tableaux of shape λ in the alphabet {1 < 1

′}.

1
1
′

1 1
1
′

1
′

1 1
1

1 1

1
′

x
2
1y1 x1y

2
1 t

2
x
3
1 t

2
x
2
1y1

Therefore G(2)
λ (x1; y1; t1/2) = x

2
1y1 + x1y

2
1 + t

2
x
3
1 + t

2
x
2
1y1. (The way we’ve ordered the

lattice configurations and the super ribbon tableaux agrees with the bijection θ from
Section 3.5, so that the i-th lattice configuration corresponds to the i-th super ribbon
tableaux via θ.) We see

LSλ(x1; y1; t) = G(2)
λ (x1; y1; t1/2),

so in fact □ = 0 in this case. This agrees with the fact that the quantity

□ =
1

2
∑
a<b

(# +# −# −# ) +
1

2
∑
a<b

(# −# )

is equal to 0 in each of these 4 configurations.
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Example 3.7.2. The 3-quotient of λ = (8, 7, 3) is λ = ((1), (3), (2)).
◦ ◦ ◦

•
◦ ◦ ◦ ◦

•
◦
•
◦

◦
•
◦ ◦

◦ ◦ ◦
•

◦ ◦
•
◦

Therefore, by Prop. 3.5.9, we must have

LSλ(x1; y1; t) = t
□G(3)

λ (x1; y1; t1/2)

for some half-integer □ ∈
1

2
Z. We can thus compute G(3)

λ (x1; y1; t1/2) by computing

LSλ(x1; y1; t) and □. To compute LSλ(x1; y1; t), we note that there are 8 configurations
of the lattice S1,1(λ).

x1

y1

x1

y1

x1

y1

x1

y1

t
3
x
5
1y1 t

2
x
4
1y

2
1 t

5
x
6
1 t

4
x
5
1y1

x1

y1

x1

y1

x1

y1

x1

y1

t
3
x
4
1y

2
1 t

2
x
3
1y

3
1 t

5
x
5
1y1 t

4
x
4
1y

2
1

Therefore

LSλ(x1; y1; t) = t
3
x
5
1y1 + t

2
x
4
1y

2
1 + t

5
x
6
1 + t

4
x
5
1y1 + t

3
x
4
1y

2
1 + t

2
x
3
1y

3
1 + t

5
x
5
1y1 + t

4
x
4
1y

2
1.

We can also observe that the quantity

□ =
1

2
∑
a<b

(# +# −# −# ) +
1

2
∑
a<b

(# −# )

is equal to 1

2
in each of these 8 configurations, so □ =

1

2
. We can now compute

G(3)
λ (x1; y1; t) =t−2□LSλ(x1; y1; t2)

=t
5
x
5
1y1 + t

3
x
4
1y

2
1 + t

9
x
6
1 + t

7
x
5
1y1 + t

5
x
4
1y

2
1 + t

3
x
3
1y

3
1 + t

9
x
5
1y1 + t

7
x
4
1y

2
1.

We see this agrees with the result obtained from explicitly computing all the super
3-ribbon tableaux of shape λ in the alphabet {1 < 1

′}.
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1 1 1 1 1
1
′

1 1 1 1
′

1

1
′ 1 1 1

1 1 1
1 1 1

1 1
′

1

t
5
x
5
1y1 t

3
x
4
1y

2
1 t

9
x
6
1 t

7
x
5
1y1

1 1 1 1 1
′

1
′

1 1 1 1
′

1
′

1
′ 1 1 1

1 1 1
′

1 1 1
1 1

′

1
′

t
5
x
4
1y

2
1 t

3
x
3
1y

3
1 t

9
x
5
1y1 t

7
x
4
1y

2
1

(Again, the way we’ve ordered the lattice configurations and the super ribbon tableaux
agrees with the bijection θ from Section 3.5.)
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Chapter 4

Domino tilings of the Aztec
diamond

4.1 Introduction

Domino tilings of the Aztec diamond were first studied in 1992 in [24, 25]. The
Aztec diamond of rank m is the set of lattice squares inside the diamond-shaped
region

ADm = {(x, y) ∈ R2
∶ ∣x∣ + ∣y∣ ≤ m + 1}.

The Aztec diamond of rank 3 is drawn on the left of Figure 4.1. A domino is a pair of
orthogonally adjacent lattice squares, and a domino tiling of a region is a partitioning
of the region into non-overlapping dominos. For example, a domino tiling of the rank
3 Aztec diamond is drawn on the right of Figure 4.1, and the domino tilings of the
Aztec diamond of rank 2 are displayed in Figure 4.2.

Figure 4.1: The Aztec diamond of rank 3 (left) and an example of a domino tiling
(right)
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Figure 4.2: The 8 domino tilings of the Aztec diamond of rank 2

One surprising enumerative result is the following:

Theorem 4.1.1. The number of domino tilings of the Aztec diamond of rank m is

exactly 2
(m+1

2
)
.

There are numerous proofs of this theorem using many interesting combinatorial
techniques, including random generation algorithms [24, 25], non-intersecting paths
[26], and sequences of interlacing partitions [11, 10]. Thanks to these techniques, we
know a lot about the asymptotic behavior of domino tilings of the Aztec diamond of
rank m when m→ ∞. An important result is the arctic circle theorem of Jockusch,
Propp, and Shor [33], which roughly states that a uniformly random tiling behaves
in a brickwork pattern in four regions (called frozen regions or polar regions), one
adjacent to each corner of the Aztec diamond, whose union is the complement of the
largest circle (called the arctic circle) that can be inscribed within the Aztec diamond.
A beautiful picture for m = 1000 can be found in Figure 4.3, which was taken from
https://sites.uclouvain.be/aztecdiamond/examples/. More precisely:

Theorem 4.1.2 ([33, 49]). For each m, consider a uniformly random domino tiling
of the Aztec diamond of rank m scaled by a factor of 1

m
in each axis to fit into the

limiting diamond
AD∞ = {∣x∣ + ∣y∣ ≤ 1}

and let Pm be the image of the polar regions of the random tiling under this scaling
transformation. Then, for all ϵ > 0, as m→ ∞,

{(x, y) ∈ AD∞ ∶ x
2
+ y

2
>

1

2
+ ϵ}∩( 1

mADm) ⊂ Pm ⊂ {(x, y) ∈ AD∞ ∶ x
2
+ y

2
>

1

2
− ϵ}

holds with probability tending to 1.

In the rest of this chapter, we say that the arctic curve for domino tilings of the
Aztec diamond is the circle

x
2
+ y

2
=

1

2
.
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Cohn, Elkies, and Propp [17] later proved some results about the behavior of the
tiling inside the arctic circle, specifically regarding the probability of observing a
given domino in a given position and regarding the “height function” of the tiling.
Many more papers have been written on domino tilings of the Aztec diamond, for
example [49, 36, 34].

Figure 4.3: A typical tiling of the Aztec diamond of rank 1000

The goal of this chapter is to study superpositions of domino tilings of the Aztec
diamond, using the colored vertex models defined in Chapter 1. For k ≥ 1, we define
a k-tiling of the Aztec diamond of rank m to be the superposition of k tilings, colored
from 1 to k. These tilings are not independent; we define an interaction between the
tilings of colors i < j to be a pair of dominos, one of color i and one of color j, of
a certain form. By relating these tilings to our colored vertex models, we prove the
following theorem.

Theorem 4.1.3 (Thm. 4.3.3 and Thm. 4.3.6). The generating function of the
k-tilings of the rank m Aztec diamond is

k−1

∏
ℓ=0

∏
1≤i≤j≤m

(1 + t
ℓ
xiyj). (4.1)

Here t follows the number of interactions, and xi and yj follow the numbers of dominos
of certain types as defined in Section 4.2.
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When k = 1, we recover known results for domino tilings of the Aztec diamond
(Prop. 4.2.1). We also construct a bijection between k-tilings when t = 0 (i.e. no
interactions) and 1-tilings, which allows us to compute the arctic curves for t = 0.

Theorem 4.1.4 (Thm. 4.4.6). The arctic curve for k-tilings of the Aztec diamond
when t = 0 is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x
2 + y

2
=

1

2
, x ∈ [−1

2
, 1
2
], y >

1

2

(x + (k − 1)y)2 + (ky)2 = 1

2
, x ∈ [− 1

2k
, 1 − 1

2k
], y < − 1

2k

(2x+(k−1)(x+y−1)
2

)2 + (2y+(k−1)(x+y−1)
2

)2 = 1

2
, y ∈ [− 1

2k
, 1
2
], x > −k−1

k+1
y + k

k+1

(2x+(k−1)(x+y−1)
2k

)2 + (2y+(k−1)(3y−x−1)
2k

)2 = 1

2
, y ∈ [− 1

2k
, 1
2
], x < −k−1

k+1
y − 1

k+1

(4.2)

for each color.

Finally, we construct a bijection between k-tilings when t = 0 (i.e. no interactions)
and k-tilings when t → ∞ (i.e. maximum possible number of interactions), which
allows us to compute the arctic curves for t→ ∞.

Corollary 4.1.5. The arctic curve for k-tilings of the Aztec diamond when t → ∞
is given by reflecting (4.2) over the line y = x.

The chapter is organized as follows.

• In Section 4.2, we introduce domino tilings of the Aztec diamond, and we define
two different models (purple-gray and white-pink) for relating a k-tiling to a
sequence of k-tuples of partitions and for assigning a weight to a k-tiling.

• In Section 4.3, we relate the vertex models to the purple-gray and white-pink
models, and we use the vertex models to compute the generating functions of
the k-tilings.

• In Section 4.4, we relate domino tilings to collections of non-intersecting paths,
which allows us to compute the arctic curve of the tilings for t = 0. We then
relate the t = 0 and t→ ∞ cases, which allows us to compute the arctic curve
of the tilings for t→ ∞.

We also present some lozenge k-tilings of the hexagon and compute their arctic curves
for t = 0 in Appendix A.
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4.2 Domino tilings of the Aztec diamond

The Aztec diamond

A lattice square is a 1 × 1 square [a, a + 1] × [b, b + 1] in R2
for some a, b ∈ Z.

A horizontal (vertical) domino is a 2 × 1 (1 × 2) rectangle consisting of two lattice
squares, as shown below on the left (right).

Given a region R ⊆ R2
consisting of lattice squares, a domino tiling of R is a

partitioning of R into non-overlapping horizontal and vertical dominos. A k-tiling
T = (T1, . . . , Tk) is a k-tuple of domino tilings; we say the dominos in the i-th tiling
Ti are colored i.

The Aztec diamond of rank m is the region in R2
which consists of all lattice

squares lying completely inside the diamond-shaped region

{(x, y) ∶ ∣x∣ + ∣y∣ ≤ m + 1}.

We will be interested in domino tilings of the Aztec diamond. As we can draw R2

as a checkerboard, where the lattice square [a, a + 1] × [b, b + 1] is shaded white if
a + b +m is odd and gray if a + b +m is even, we have four types of dominos with
which to tile:

type I type II type III type IV

For example, here is one possible domino tiling of the Aztec diamond of rank m = 3.

Sequences of partitions and tilings of the Aztec diamond

We will actually use two different constructions to go from a sequence of interlac-
ing partitions to a tiling of the Aztec diamond. In addition, for each construction, we
will define the weight of a tiling as a polynomial in the variables x1, . . . , xm, y1, . . . , ym.



CHAPTER 4. DOMINO TILINGS OF THE AZTEC DIAMOND 108

λ
0

λ
1

λ
2

. . .
λ
2m−2

λ
2m−1

λ
2m

0

λ
0

λ
1

λ
2

. . .
λ
2m−2

λ
2m−1

λ
2m

0

Figure 4.4: Two ways of slicing the Aztec diamond.

Figure 4.5: The empty tilings for the purple-gray model (left) and the white-pink
model (right)

The first construction, which we will call the purple-gray model, is as follows.
Specifying a domino tiling of the rank m Aztec diamond is equivalent to specifying
2m + 1 Maya diagrams on the slices going from SW to NE (drawn as dashed lines),
as in the left of Figure 4.4, where the 0 content line for the diagrams is drawn in red.
We impose the condition that

∅ = λ
0
⪯
′
λ
1
⪰ . . . ⪯

′
λ
2m−1

⪰ λ
2m

= ∅

and λ
i
1 + ℓ(λi) ≤ m for all i. (The Maya diagrams of these partitions are truncated

to fit inside the Aztec diamond, with the 0 content line positioned as specified in
the left of Figure 4.4. To recover the untruncated Maya diagram from the truncated
one, we can pre-pend infinitely many •’s and post-pend infinitely many ◦’s.) From
these Maya diagrams, we can draw dominos according to the following rules.

, , ,
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(There is a unique way to do this.) For example, if each λ
ℓ
= ∅, then the corre-

sponding Maya diagrams and domino tiling are given on the left of Figure 4.5. We
define the weight of a domino tiling of the Aztec diamond to be the product of the
weights of the dominos, where we assign weights to the dominos according to the
following rules.

• A domino of the form whose top square is on slice 2i − 1 gets weight xi.

• A domino of the form whose bottom square is on slice 2i− 1 gets weight yi.

• All other dominos get a weight of 1.

The second construction, which we will call the white-pink model, is as follows.
Specifying a domino tiling of the Aztec diamond of rank m is equivalent to specifying
2m + 1 Maya diagrams on the slices going from SW to NE (drawn as dashed lines),
as in the right of Figure 4.4, where the 0 content line for the diagrams is drawn in
red. We impose the condition that

∅ = λ
0
⪯ λ

1
⪰
′
. . . ⪯ λ

2m−1
⪰
′
λ
2m

= ∅

and λ
i
1 + ℓ(λi) ≤ m for all i. (Similarly as in the purple-gray model, we truncate the

Maya diagrams to fit inside the Aztec diamond.) From these Maya diagrams, we can
draw dominos according to the following rules.

, , ,

(There is a unique way to do this.) For example, if each λ
ℓ
= ∅, then the corre-

sponding Maya diagrams and domino tiling are given on the right of Figure 4.5. We
define the weight of a domino tiling of the Aztec diamond to be the product of the
weights of the dominos, where we assign weights to the dominos according to the
following rules.

• A domino of the form whose left square is on slice 2i − 1 gets weight xi.

• A domino of the form whose right square is on slice 2i− 1 gets weight yi.

• All other dominos get a weight of 1.

For example, consider the domino tiling in Figure 4.6. In the purple-gray model,
this tiling gives the sequence of partitions

∅ ⪯
′ (1, 1) ⪰ (1, 1) ⪯′ (2, 1) ⪰ (1) ⪯′ (2) ⪰ ∅
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Figure 4.6: A domino tiling and the corresponding Maya diagrams in the purple-gray
(left) and white-pink (right) models

and has weight x
2
1x2x3y2y

2
3. In the white-pink model, this tiling gives the sequence

of partitions
∅ ⪯ (1) ⪰′

∅ ⪯ (1) ⪰′ (1) ⪯ (1) ⪰′
∅

and has weight x1x2y1y3.
We define the generating function of each model to be

Z
(1)
AD,model(Xm;Ym) ∶= ∑

T

w(T )

where the sum is over domino tilings T of the rank m Aztec diamond and the weight
function w is determined by themodel (which is either purple−gray or white−pink).
Both models were studied previously in [11]; surprisingly, the generating functions
are the same:

Proposition 4.2.1 ([11, Remark 2]). For both the purple-gray model and the white-
pink model, the generating function is

Z
(1)
AD(Xm;Ym) ∶= ∏

1≤i≤j≤m

(1 + xiyj).

We will generalize these two models to k-tilings, and recover this result in the case
k = 1.

Extending the models to k-tilings

The two models in the previous section can be extended to k-tilings. For the
purple-gray model, specifying a k-tiling of the Aztec diamond of rank m is equivalent
to specifying a sequence of 2m + 1 k-tuples of partitions satisfying

0 = λ
0
⪯
′
λ

1
⪰ . . . ⪯

′
λ

2m−1
⪰ λ

2m
= 0.
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For the white-pink model, specifying a k-tiling of the Aztec diamond of rank m is
equivalent to specifying a sequence of 2m + 1 k-tuples of partitions satisfying

0 = λ
0
⪯ λ

1
⪰
′
. . . ⪯ λ

2m−1
⪰
′
λ

2m
= 0.

For both models, letting the k-tiling be T = (T1, . . . , Tk) and letting the j-th k-tuple

of partitions be λ
j
= (λ(j,1), . . . , λ(j,k)) for all j, the i-th tiling Ti corresponds to the

sequence of partitions (λ(0,i), . . . , λ(2m,i)) for all i.
We define the weight of a k-tiling T as a polynomial in the variables

x1, . . . , xm, y1, . . . , ym, t

by the equation

w(T ) = w(T1, . . . , Tk) = t
#interactions in T

k

∏
i=1

w(Ti).

In other words, the weight of a k-tiling is the product of the weights of the individual
tilings, times an additional factor of t for every interaction between two of the
tilings. In the purple-gray model, an interaction is a pair of dominos of the form

, , , or .

In the white-pink model, an interaction is a pair of dominos of the form

, , , or .

Here blue is a smaller color than red.
For example, consider the 3-tiling of the rank 3 Aztec diamond in Figure 4.7. In

the purple-gray model, the first tiling has weight x
2
1x2y

2
2x3y

2
3, the second has weight

x
3
1y1y2y3, the third has weight x1y1x2y2, and there are 11 interactions - 4 between

blue and red, 3 between blue and green, and 4 between red and green. Thus the
weight of this 3-tiling is

t
11
x
6
1y

2
1x

2
2y

4
2x3y

3
3.

We define the generating function of each model to be

Z
(k)
AD,model(Xm;Ym; t) ∶= ∑

T

w(T )

where the sum is over k-tilings T of the rank m Aztec diamond and the weight
function w is determined by themodel (which is either purple−gray or white−pink).
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T1 T2 T3

Figure 4.7: An example of a 3-tiling of the rank 3 Aztec diamond

4.3 k-tilings and vertex models

The purple-gray partition function

Consider the following lattice and its associated partition function.

ȳ1

⋮

ȳm

x1

⋮

xm

⟵ m ⟶

=

ȳ1

⋮

ȳm

x1

⋮

xm

= (yρm)kt(
m
2
)(k

2
)

Here y
ρm

= y
m−1
1 y

m−2
2 . . . y

m−m
m , a white dot indicates the absence of all colors, and a

black dot indicates the presence of all colors.
By inserting a yellow cross on the left we can use the YBE (Prop. 1.4.8) to get

ȳ1

⋮

⋮

xm

⟵ m ⟶

ȳm

x1
=

ȳ1

⋮

ȳm

x1

⋮

xm

⟵ m ⟶
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from which we see that

ȳ1

⋮

ȳm

x1

⋮

xm

⟵ m ⟶

=

ȳ1

⋮

ȳm

x1

⋮

xm

⟵ m ⟶

×
k−1

∏
l=0

(1 + x1ymt
l)−1 .

We can repeat this to get

ȳ1

⋮

ȳm

x1

⋮

xm

⟵ m ⟶

=

x1

ȳ1

⋮

⋮

xm

ȳm

⟵ m ⟶

×
k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l)−1

from which we see that

x1

ȳ1

⋮

⋮

xm

ȳm

⟵ m ⟶

= (yρm)kt(
m
2
)(k

2
)
k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l) .

Given a configuration of the lattice

x1

ȳ1

⋮

⋮

xm

ȳm

⟵ m ⟶
x

x

x

x

x

x

x

and looking at the labels on the horizontal edges row by row from bottom to top, we
get a sequence of 2m + 1 k-tuples of Maya diagrams, where we mark the 0 content
line with x’s on the lattice. The corresponding 2m + 1 k-tuples of partitions satisfy

0 = λ
0
⪯
′
λ

1
⪰ . . . ⪯

′
λ

2m−1
⪰ λ

2m
= 0.
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Relating lattice configurations and k-tilings in the
purple-gray model

Given a sequence of k-tuples of partitions

0 = λ
0
⪯
′
λ

1
⪰ . . . ⪯

′
λ

2m−1
⪰ λ

2m
= 0,

we get both a configuration of the lattice

x1

ȳ1

⋮

⋮

xm

ȳm

⟵ m ⟶
x

x

x

x

x

x

x

and a k-tiling of the Aztec diamond of rank m. For example, in Figure 4.8, the tiling
on the left corresponds to the configuration on the right, and in Figure 4.9, we give
the 8 configurations corresponding to the tilings of the rank 2 Aztec diamond, which
were listed in Figure 4.2. As it turns out, the weight of the lattice configuration and
the weight of the k-tiling are related.

Figure 4.8: Domino tilings and vertex models

For the purple faces, one gets a t whenever you have a face of the form

where blue is a smaller color than red. It is easy to see that this equals the number
of domino configurations of the form

.
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Figure 4.9: Purple-gray lattice configurations for the Aztec diamond of rank 2

which is one of the configurations that give a t. One gets an xi whenever a path exits
right in the i-th purple row. It is easy to see that this equals the number of dominos
of the form

whose top square is on slice 2i − 1, which equals the xi power we give the dominos.
We are left to consider the gray faces. Let’s look at the (m − p + 1)-th gray row

⟵ p ⟶
x

x

for some p ∈ [m]. Let y = ym−p+1. For a single color a ∈ [k], we can write the
contribution of the paths of color a to the power of y in the weight of the row as

# +# +# .

Lemma 4.3.1. In the (m − p + 1)-th gray row, for each color,

# +# = p − 1.

Proof. The left-hand side counts the number of paths exiting the row through the
top. There are p paths entering the row through the bottom, 0 paths entering the row
from the left, and 1 path exiting the row through the right. By path conservation,
this means that there are p+0−1 = p−1 paths exiting the row through the top.

The number of vertices in which color a is absent equals the number of cells that get
removed from the a-th partition, i.e.

# = ∣λ(a)2(m−p+1)∣ − ∣λ(a)2(m−p+1)−1∣.

It is easy to see that this equals the number the number of dominos of the form
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whose bottom square is on slice 2(m− p+ 1)− 1, which equals the y power we give
the dominos. Therefore if we pull out a factor of y

p−1
from the weight of the row,

then the y-weights agree. For the t-weight of the row, we can write the t power as

∑
1≤a<b≤k

#{faces∣a right, b top} +#{faces∣a not right, b not right}

= ∑
1≤a<b≤k

#{faces∣a right, b top} +#{faces∣a not right, b top} +#{faces∣a not right, b absent}

= ∑
1≤a<b≤k

#{faces∣b top} +#{faces∣a not right, b absent}

= ∑
1≤a<b≤k

(p − 1) +#{faces∣a not right, b absent}

= (k2)(p − 1) + ∑
1≤a<b≤k

#{faces∣a not right, b absent}

where we have used the fact that #{faces ∶ b exits top} = p − 1 by the previous
lemma. It is easy to see that #{faces ∶ a not right, b absent} equals the number of
domino configurations of the form

, , or

where blue is color a and red is color b, which are three of the configurations that

give a t. Therefore if we pull out a factor of t
(k
2
)(p−1)

from the row, then the t-weights
agree.

Putting it all together, we arrive at the following results.

Lemma 4.3.2 ([20, Lemma 4.2]). There is a weight-preserving bijection between
configurations of the purple-gray lattice

x1

ȳ1

⋮

⋮

xm

ȳm

⟵ m ⟶
x

x

x

x

x

x

x

and k-tilings of the Aztec diamond of rank m. By weight-preserving, we mean that

the weight of the configuration is (yρm)kt(
m
2
)(k

2
)
times the weight of the k-tiling.
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Theorem 4.3.3 ([20, Thm. 4.3]). The partition function of

x1

ȳ1

⋮

⋮

xm

ȳm

⟵ m ⟶
x

x

x

x

x

x

x

with k colors is equal to (yρm)kt(
m
2
)(k

2
)
times the generating function of k-tilings of the

Aztec diamond of rank m in the purple-gray model. We have

Z
(k)
AD,purple−gray(Xm;Ym; t) =

k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l) .

In Figure 4.10, we exhibit an example of the bijection for k,m = 3.

x1

ȳ1

ȳ2

x2

x3

ȳ3

x

x

x

x

x

x

x λ
6
= (∅,∅,∅)

λ
5
= ((2), (1),∅)

λ
4
= ((1), (1),∅)

λ
3
= ((2, 1), (1, 1), (1))

λ
2
= ((1, 1), (1, 1),∅)

λ
1
= ((1, 1), (1, 1, 1), (1))

λ
0
= (∅,∅,∅)

(y21y12y03)3t(
3
2
)(3

2
)(x61x22x3)(y21y42y33)t11 T1 T2 T3

Figure 4.10: An example of a 3-tiling of the rank 3 Aztec diamond (right), the
corresponding sequence of 3-tuples of partitions (middle), and the corresponding
purple-gray lattice configuration (left)

The white-pink partition function

We can apply similar techniques to analyze the white-pink model. Consider the
following lattice and its associated partition function.

y
−1
1

⋮

y
−1
m

x1

⋮

xm

⟵ m ⟶

=

y
−1
1

⋮

y
−1
m

x1

⋮

xm

⟵ m ⟶

= (ym1 ym−1
2 . . . y

1
m)k = (y1 . . . ym)k(yρm)k.
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By inserting a yellow cross on the right we can use the YBE (Prop. 1.4.9)

y
−1
1

⋮

y
−1
m

x1

⋮

xm

⟵ m ⟶

=

y
−1
1

⋮

y
−1
m

x1

⋮

xm

⟵ m ⟶

from which we see that

y
−1
1

⋮

y
−1
m

x1

⋮

xm

⟵ m ⟶

=

y
−1
1

⋮

x1

y
−1
m

⋮

xm

⟵ m ⟶

×
k−1

∏
l=0

(1 + x1ymt
l)−1.

We can repeat this to get

y
−1
1

⋮

y
−1
m

x1

⋮

xm

⟵ m ⟶

=

x1

y
−1
1

⋮

⋮

xm

y
−1
m

⟵ m ⟶

×
k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l)−1

from which we see that

x1

y
−1
1

⋮

⋮

xm

y
−1
m

⟵ m ⟶

= (y1 . . . ym)k(yρm)k
k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l).
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Given a configuration of the lattice

x1

y
−1
1

⋮

⋮

xm

y
−1
m

⟵ m ⟶
x

x

x

x

x

x

x

and looking at the labels on the horizontal edges row by row from bottom to top, we
get a sequence of 2m + 1 k-tuples of Maya diagrams, where we mark the 0 content
line with x’s on the lattice. The corresponding 2m + 1 k-tuples of partitions satisfy

0 = λ
0
⪯ λ

1
⪰
′
. . . ⪯ λ

2m−1
⪰
′
λ

2m
= 0.

Relating lattice configurations and k-tilings in the
white-pink model

Given a sequence of k-tuples of partitions

0 = λ
0
⪯ λ

1
⪰
′
. . . ⪯ λ

2m−1
⪰
′
λ

2m
= 0,

we get both a configuration of the lattice

x1

y
−1
1

⋮

⋮

xm

y
−1
m

⟵ m ⟶
x

x

x

x

x

x

x

and a k-tiling of the Aztec diamond of rank m. For example, in Figures 4.11, we
give the 8 configurations corresponding to the 1-tilings of the rank 2 Aztec diamond,
which were listed in Figure 4.2. As it turns out, the weight of the lattice configuration
and the weight of the k-tiling are related.

Lemma 4.3.4. In the l-th pink row, for each color,

# +# = m − l + 1.
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Figure 4.11: White-pink lattice configurations for the Aztec diamond of rank 2

Proof. In the l-th pink row, there are l + 1 particles entering from the bottom and
m+ 2 vertices. This means there are (m+ 2)− (l + 1) = m− l + 1 vertices in which
a particle does not enter from the bottom.

If we pull out a factor of y
m−l+1
l for the l-th pink row for each l ∈ [m], then we

get an overall factor of (y1 . . . ym)k(yρm)k on the left-hand side, which cancels with
the same factor on the right-hand side. After removing this factor, the l-th pink
row now contributes a yl whenever there is a vertical path, which corresponds to a
domino of the form

whose right square is on slice 2l − 1. We get a t whenever a smaller color exits right
and a larger color is vertical in a pink row, and whenever a smaller color exits right
and a larger color is present in a white row. This corresponds to a pair of dominos
of the form

, , , or

where blue is a smaller color than red.
Putting it all together, we arrive at the following results.

Lemma 4.3.5 ([20, Lemma 4.5]). There is a weight-preserving bijection between
configurations of the white-pink lattice

x1

y
−1
1

⋮

⋮

xm

y
−1
m

⟵ m ⟶
x

x

x

x

x

x

x

and k-tilings of the Aztec diamond of rank m. By weight-preserving, we mean that
the weight of the configuration is (y1 . . . ym)k(yρm)k times the weight of the k-tiling.
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Theorem 4.3.6 ([20, Thm. 4.6]). The partition function of

x1

y
−1
1

⋮

⋮

xm

y
−1
m

⟵ m ⟶
x

x

x

x

x

x

x

with k colors is equal to (y1 . . . ym)k(yρm)k times the generating function of k-tilings
of the Aztec diamond in the white-pink model. We have

Z
(k)
AD,white−pink(Xm;Ym; t) =

k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l) .

Combining the two models

Since the generating functions of the two models are equal, we will write

Z
(k)
AD(Xm;Ym; t) =

k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyjt
l) .

Moreover, we get a surprising combinatorial statement.

Proposition 4.3.7 ([20, Prop. 4.7]). Fix integers k,m, l, r1, . . . , rm, s1, . . . , sm ≥ 0.
There is a bijection between:

• k-tilings of the Aztec diamond of rank m with ℓ pairs of dominos of the form

, , , or

where where blue is a smaller color than red, ri dominos of the form whose

top square is on slice 2i − 1 for each i ∈ [m], and si dominos of the form

whose bottom square is on slice 2i − 1 for each i ∈ [m]; and

• k-tilings of the Aztec diamond of rank m with ℓ pairs of dominos of the form

, , , or
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where where blue is a smaller color than red, ri dominos of the form whose
left square is on slice 2i− 1 for each i ∈ [m], and si dominos of the form
whose right square is on slice 2i − 1 for each i ∈ [m].

We leave it as an open problem to find a combinatorial proof of the proposition.

4.4 Arctic curve computations

In this section, we consider arctic curves for k-tilings with fixed values of t = t0
(or t→ ∞), defined as follows.

Definition 4.4.1. Fix t0 ≥ 0. Fix a positive integer m. Given a k-tiling T =

(T1, . . . , Tk) of the rank m Aztec diamond ADm, define

w(T ; t) ∶= t
# interactions in T

(the weight of T where we set all xi = 1 and all yj = 1). We generate a random
k-tiling T of ADm with probability

p(T ; t0) ∶=
w(T ; t0)

∑S w(S; t0)
,

where the sum is over all k-tilings S of ADm. Then we say that the curve described
by the equation f(x, y) = 0 is the arctic curve for k-tilings of the Aztec diamond
when t = t0 for color i ∈ [k] if, for all ϵ > 0, the probability that

{(x, y) ∈ AD∞ ∶ f(x, y) > ϵ}∩( 1
mADm) ⊂ Pm(Ti) ⊂ {(x, y) ∈ AD∞ ∶ f(x, y) > −ϵ}

holds tends to 1 as m → ∞. Here 1

m
ADm is ADm scaled by 1

m
in each axis to fit

into the limiting diamond
AD∞ = {∣x∣ + ∣y∣ ≤ 1}

and Pm(Ti) is the image of the polar regions of Ti under this scaling transformation.
The case t→ ∞ is defined similarly, where the probability of generating T is now

lim
t→∞

p(T ; t) = lim
t→∞

w(T ; t)
∑S w(S; t)

.

Remark 4.4.2. It is not obvious from Definition 4.4.1 that the arctic curves for
different colors should be the same. In fact, the asymmetric definition of interactions
would suggest otherwise. However, we will see that this is the case for t = 0, 1 and
t→ ∞, and computer simulations suggest it is also the case for other values of t.
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In the case t = 1, we have

p(T ; 1) = 1

# k-tilings of ADm
.

Thus, by Theorem 4.1.2, the arctic curve for k-tilings of the Aztec diamond when
t = 1 for all k colors is the circle x

2 + y
2
=

1

2
.

Schröder paths

To compute the arctic curves for t = 0 and t→ ∞, we need to consider Schröder
paths. A Schröder path is a lattice path using NE (1,1), SE (1,-1), and E (2,0) steps
starting at (x0, y0) and ending at (x0+n, y0) which does not go below the line y = y0.
We can assign paths to the dominos according to the following rules.

, , ,

This gives a well-known [2, 26, 35] bijection between:

• domino tilings of the Aztec diamond of rank m and

• m-tuples of non-intersecting Schröder paths such that, for each i ∈ [m], path
i starts at (−m − 1 + i,−i + 1

2
) and ends at (m + 1 − i,−i + 1

2
).

Figure 4.12 illustrates this bijection in the case m = 2.

Figure 4.12: Non-intersecting paths for the Aztec diamond of rank 2

The weight of a domino tiling can be expressed in terms of Schröder paths. We
will only consider the purple-gray model (but the white-pink model can be described
similarly).

• The power of xi is the number of down-right steps starting on slice 2i − 1

• The power of yi is the number of up-right steps starting on slice 2i − 1.
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• The power of t is the number of configurations of the form

, , ,

where blue is a smaller color than red. In other words, we get a factor of t
when a blue path meets a red path from above, or a blue and a red path take
an up-right step together.

This follows easily from the definition of the weight of a k-tiling (Sections 4.2 and
4.2) in the purple-gray model.

The case t = 0

When t = 0, we have

Z
(k)
AD(Xm;Ym; 0) =

k−1

∏
l=0

∏
1≤i≤j≤m

(1 + xiyj0
l) = ∏

1≤i≤j≤m

(1 + xiyj) = Z
(1)
AD(Xm;Ym).

In this section, we will prove Z
(k)
AD(Xm;Ym; 0) = Z

(1)
AD(Xm;Ym) combinatorially, by

constructing a weight-preserving bijection between k-tilings of the Aztec diamond
with t = 0 and domino tilings of the Aztec diamond. This bijection can be expressed
nicely in terms of Schröder paths. Label the starting and ending points of the paths
as follows.

1
2
⋱
m

1
2

. .
.

m

start end

Note that starting point i and ending point i can be connected viam−i+1 horizontal
steps.

Before constructing the bijection, we need a better understanding of the behavior
of the Schröder paths when t = 0. We begin with the case k = 2. We let blue be
color 1 and red be color 2.

Proposition 4.4.3 ([20, Prop. 5.1]). When t = 0, for any 2-tiling of the rank m
Aztec diamond with non-zero weight:
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1. If i < m+1
2

, then the i-th blue path is forced to have its first i steps be horizontal
while the i-th red path is forced to have its first i − 1 steps be horizontal.

2. If i = ⌊m
2
+1⌋, then the i-th blue path is forced to have all its steps be horizontal

while the i-th red path is forced to have its first i − 1 steps horizontal.

3. If i ≥ ⌈m
2
+1⌉, then the i-th blue path is forced to have all its steps be horizontal

and the i-th red path is forced to have all its steps horizontal.

In other words, the i-th blue path starts with min(i,m − i + 1) horizontal steps, and
the i-th red path starts with min(i − 1,m − i + 1) horizontal steps.

Proof. We begin with three important observations.

1. The i-th and j-th paths of the same color may not intersect for i ≠ j. This
implies (using a simple induction argument from them-th path to the 1st path)
that the i-th path of each color may not go below the horizontal line connecting
starting point i and ending point i.

2. The i-th blue path and the j-th red path may not intersect for i < j when t = 0.
The i-th blue path starts above the j-th red path, so if they did intersect, then
at the first point of intersection, the blue path would meet the red path from
above, which gives a t.

3. Suppose a blue path and a red path meet at two points A and Z, with A left
of Z. Consider the behavior of the two paths at A. If both paths go up-right,
then we get a t. If the blue path goes up-right and the red path goes horizontal
or down-right, then the blue path is above the red path, but the two paths
both reach Z later, so eventually the blue path will meet the red path from
above, which gives a t. Thus, when t = 0, the blue path must not go up-right
at A.

The 1st blue path and the 1st red path start at the same point and end at
the same point. Therefore, by observation 3, the 1st blue path must start with a
horizontal step.

Now assume the proposition holds for the first i − 1 paths of both colors. We
will show the proposition holds for the i-th paths. Suppose i < m − i + 1. We know
the (i − 1)-th blue path begins with i − 1 horizontal steps, so the i-th blue path
must begin with i − 1 horizontal steps by observation 1, and moreover the i-th red
path must begin with i − 1 horizontal steps by observation 2. Since the i-th blue
path and the i-th red path begin by taking i − 1 horizontal steps together, the i-th
blue path must take another horizontal step. (It can’t go up-right by observation 3,
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and it can’t go down-right by observation 1.) Thus the i-th blue path begins with i
horizontal steps. If we suppose instead that i ≥ m − i + 1, then the same argument
works, except the paths are forced to take all their steps horizontally.

Corollary 4.4.4 ([20, Cor. 5.2]). When t = 0, for any 2-tiling of the rank m Aztec
diamond with non-zero weight, the i-th blue path is weakly below the i-th red path and
strictly above the (i + 1)-th red path.

Proof. The fact that the i-th blue path is strictly above the (i+1)-th red path follows
from observation 2 (and the fact that the i-th blue path starts above the (i + 1)-th
red path). If the i-th blue path were ever strictly above the i-th red path, then since
these paths end at the same point, there must be a point where the i-th blue path
meets the i-th red path from above, giving a t.

We will refer to the forced steps described in Prop. 4.4.3 as the frozen parts of
the paths. For example, when k = 2 and m = 4, the frozen paths are as follows.

1
2

3
4

1
2

3
4

We are now ready to construct the bijection in the case k = 2.

Proposition 4.4.5 ([20, Prop. 5.3]). There is a weight-preserving bijection between
2-tilings of the rank m Aztec diamond at t = 0 and domino tilings of the rank m
Aztec diamond, given by shifting the i-th blue path down i steps and left i steps, and
shifting the i-th red path down i − 1 steps and left i − 1 steps.

Proof. By Prop. 4.4.3, it is easy to see that after shifting the paths, the frozen part
of each path is shifted completely outside the Aztec diamond and the non-frozen part
of each path remains inside the Aztec diamond. Since the i-th blue path is weakly
below the i-th red path and strictly above the (i+ 1)-th red path before the shift by
Cor. 4.4.4, after the shift it is strictly below the i-th red path and strictly above the
(i + 1)-th red path. That is, now the paths are non-intersecting. Non-intersecting
Schröder paths are in bijection with domino tilings of the Aztec diamond. Since a
horizontal step has a weight of 1, it follows that the bijection is weight-preserving.
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1
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3
4

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

Figure 4.13: Example of the bijection at t = 0 for k = 2: the 2-tuple of paths (left),
the paths without the frozen steps (middle), and the 1-tuple of paths (right)

→

Figure 4.14: Example of the bijection at t = 0 for k = 2: the 2-tiling with the frozen
dominos in black (left) and the corresponding 1-tiling (right)

An example of the bijection for two colors is given in Figure 4.13. The bijection
can also be defined directly on the tilings (see Figure 4.14).

With this bijection, along with Theorem 4.1.2, we can compute the arctic curve
for k-tilings of the Aztec diamond when t = 0 (see Figure 4.15). For each m, consider
a uniformly random k-tiling of the Aztec diamond of rank m. We scale each tiling
by a factor 1/m in each axis to fit into the limiting diamond AD∞ = {∣x∣+ ∣y∣ ≤ 1}.
In the case k = 2, we get the following result.

Theorem 4.4.6 ([20, Thm. 5.4]). When t = 0, the arctic curves (for both colors)
for 2-tilings of the Aztec diamond are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x
2 + y

2
=

1

2
, x ∈ [−1

2
, 1
2
], y >

1

2

(x + y)2 + (2y)2 = 1

2
, x ∈ [−1

4
, 3
4
], y < −1

4

(3x+y−1
2

)2 + (3y+x−1
2

)2 = 1

2
, y ∈ [−1

4
, 1
2
], x > −1

3
y + 2

3

(3x+y−1
4

)2 + (5y−x−1
4

)2 = 1

2
, y ∈ [−1

4
, 1
2
], x < −1

3
y − 1

3



CHAPTER 4. DOMINO TILINGS OF THE AZTEC DIAMOND 128

Figure 4.15: Simulation and computed arctic curve for a 2-tiling of the Aztec diamond
of rank 128 for t = 0

Proof. From Theorem 4.1.2, we know that for the normal Aztec diamond the arctic
curve is the circle x

2 + y
2
=

1

2
. Reversing the bijection in the previous proposition

determines how one should deform the circle to get the arctic curve for the 2-tilings
of the Aztec diamond of rank m when m → ∞. (Each piece of the arctic circle
becomes a piece of a different ellipse.)

For example, in terms of the Schröder paths, the upper portion of the arctic
curve separates the region of no paths from the disordered region inside the arctic
curve. This boundary is determined by the asymptotic trajectory of the upper most
path. As this path doesn’t shift under our bijection, the portion of the arctic curve
remains the same. This gives us the first region of the theorem: x

2 + y
2
=

1

2
for

x ∈ [−1

2
, 1
2
], y >

1

2
.

Now consider the western portion of the arctic curve. For 1-tilings of the Aztec
diamond, this section of the arctic curve separates the region of up-right paths from
the disordered region. Recall that the 2i-th path of the 1-tiling of the Aztec diamond
maps to the i-th blue path, and the (2i − 1)-th path of the 1-tiling of the Aztec
diamond maps to the i-th red path. Reversing the bijection means shifting these
paths up and right i steps or i − 1 steps, respectively.

Suppose that our Aztec diamond has rank m and we rescale it by a factor of 1

m
in

each axis. Now each square of our checkerboard has size 1

m
× 1

m
. Then the starting
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location of the 2i-th path is at the coordinate

(x2i, y2i) = (−1 + 2i − 1
m ,−

2i − 1
m −

1

2m
) .

Reversing the bijection will shift the 2i-th path of the 1-tiling up and right by

i
m =

1

4
(x2i − y2i + 1) +O ( 1

m) ,

where it will become the i-th blue path in the 2-tiling. In fact, since we are considering
the frozen region of up-right paths, any point (x, y) along the 2i-th path will also
shift by 1

4
(x − y + 1) +O( 1

m
). The same holds for the (2i − 1)-th path, except that

it will become the i-th red path in the 2-tiling.
Now we take m → ∞. With this choice of coordinates, any point (x, y) in this

region of up-right paths in the 1-tiling of the Aztec diamond maps to a point in the
blue or red Aztec diamond according to

(x, y) ↦ (x + x − y + 1

4
, y +

x − y + 1

4
) = (5x − y + 1

4
,
x + 3y + 1

4
) .

Since the arctic curve separating the region of up-right paths from the disordered
region in the 1-tiling is given by x

2+y2 = 1

2
with x < −1

2
, −1

2
< y <

1

2
, after inverting

the above map, we see that the arctic curve in the 2-tiling is given by

(3x + y − 1

4
)
2

+(5y − x − 1

4
)
2

=
1

2
with −1 <

3x + y − 1

4
< −

1

2
and −

1

2
<

5y − x − 1

4
<

1

2

for both colors. We can simplify the constraints to y ∈ [−1

4
, 1
2
], x < −1

3
y − 1

3
, and

we get the last region in the theorem.
The remaining two portions of the arctic curve can be worked out similarly.

It is straightforward to generalize our discussion for 2-tilings to k-tilings. We end
up with the following bijection.

Proposition 4.4.7 ([20, Prop. 5.5]). For any k ≥ 1, there is a weight-preserving
bijection between k-tilings of the rank m Aztec diamond at t = 0 and domino tilings of
the rankm Aztec diamond, given by shifting the i-th path of color a down i(k−1)−a+1
steps and left i(k − 1) − a + 1 steps.
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In other words, the new order of the paths is

path 1 color k, . . ., path 1 color 1,

path 2 color k, . . ., path 2 color 1,

path 3 color k, . . ., path 3 color 1,

. . .

i.e. path i color a becomes path (i− 1)k + (k − a+ 1). Using this bijection, we can
then compute the arctic curve for k-tilings when t = 0, which is Theorem 4.1.4.

The case t→ ∞ and other values of t

In this section, we compute the arctic curve for the k-tilings of the Aztec diamond
as t → ∞. We do this by defining a bijection between k-tilings with no interactions
(i.e. t = 0) and k-tilings with the maximum possible number of interactions (i.e.
t → ∞). Then we can apply the arctic curve computations in the t = 0 case given
in the previous section.

Let ϕ be the involution on the set of k-tilings of the Aztec diamond of rank m
given by reflecting over the line y = x. This involution leads to the following lemma.

Lemma 4.4.8 ([20, Lemma 6.1]). Let T be a k-tiling of the Aztec diamond of rank
m with j interactions. Then ϕ(T ) is a k-tiling of the Aztec diamond of rank m with

(k
2
)(m+1

2
) − j interactions.

Proof. The dominos are of four types, as shown below.

type I type II type III type IV

In the 1-tiling where all dominos are horizontal, there are (m+1
2
) dominos of type I

or II. When we perform a flip

↔ or ↔

the number of dominos of type I or II is unchanged, and we can get all 1-tilings
starting from the 1-tiling where all dominos are horizontal and performing flips.
Therefore there are (m+1

2
) dominos of type I or II in every 1-tiling of the Aztec

diamond of rank m.
When applying ϕ, the dominos of type I become dominos of type II (and vice

versa), and the dominos of type III become dominos of type IV (and vice versa).
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Fix a k-tiling T . Suppose T has j interactions and ϕ(T ) has ℓ interactions. Fix
two colors a (blue) < b (red). When a red domino is of type I, we get a power of t
for

in which case we say the red domino is in case I-A with the color blue, and no power
of t for

, ,

in which case we say the red domino is in case I-B with the color blue. When a red
domino is of type II, we get no power of t for

in which case we say the red domino is in case II-A with the color blue, and a power
of t for

, ,

in which case we say the red domino is in case II-B with the color blue. The red
dominos of type III or IV never get a power of t. Therefore

j + ℓ = ∑
1≤a<b≤k

∑
dominos D
of color b

1D is in case I-A or II-B with a + ∑
1≤a<b≤k

∑
dominos D
of color b

1D is in case I-B or II-A with a

= ∑
1≤a<b≤k

∑
dominos D
of color b

1D is in case I-A, I-B, II-A, or II-B with a

= ∑
1≤a<b≤k

∑
dominos D
of color b

1D has type I or II

= ∑
1≤b≤k

(b − 1) ∑
dominos D
of color b

1D has type I or II

= ∑
1≤b≤k

(b − 1)(m + 1
2 )

= (k2)(
m + 1

2 ).
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Figure 4.16: Simulation of a 2-tiling Aztec diamond of rank 128 for t = 1000

Thus ϕ is a bijection between k-tilings for t = 0 and k-tilings for t → ∞. Thus
ϕ relates the t = 0 arctic curve and the t → ∞ arctic curve, and Cor. 4.1.5 follows.
See Figure 4.16.

Moreover, ϕ relates the t = t0 arctic curve and the t = 1/t0 arctic curve, for fixed
t0 > 0:

Corollary 4.4.9. Fix t0 > 0. Then reflecting the arctic curve for k-tilings of the
Aztec diamond when t = t0 for color i over the line y = x gives the arctic curve for
k-tilings of the Aztec diamond when t = 1/t0 for color i.

Proof. Recall Definition 4.4.1. Using Lemma 4.4.8 and letting c = (k
2
)(m+1

2
), we have

p(T ; t0) = t
# interactions in T
0 /∑

S

t
# interactions in S
0

= t
c−# interactions in ϕ(T )
0 /∑

S

t
c−# interactions in ϕ(S)
0

= t
−# interactions in ϕ(T )
0 /∑

S

t
−# interactions in ϕ(S)
0

= (1/t0)# interactions in ϕ(T )/∑
S

(1/t0)# interactions in ϕ(S)

= (1/t0)# interactions in ϕ(T )/∑
S

(1/t0)# interactions in S

= p(ϕ(T ); 1/t0).
Let f(x, y) = 0 be the arctic curve when t = t0 for color i, meaning that for all ϵ > 0,

lim
m→∞

∑
T s.t. A(f,T )

p(T ; t0) = 1
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where A(f,T ) is the condition

{(x, y) ∈ AD∞ ∶ f(x, y) > ϵ}∩( 1
mADm) ⊂ Pm(Ti) ⊂ {(x, y) ∈ AD∞ ∶ f(x, y) > −ϵ} .

Let g(x, y) = 0 be the result of reflecting f(x, y) = 0 over y = x. Then A(f,T ) if
and only if A(g,Φ(T )). Thus

lim
m→∞

∑
T s.t. A(g,T )

p(T ; 1/t0) = lim
m→∞

∑
T s.t. A(g,Φ(T ))

p(Φ(T ); 1/t0)

= lim
m→∞

∑
T s.t. A(f,T )

p(T ; t0) = 1

so g(x, y) is the arctic curve when t = 1/t0 for color i.

See Figure 4.17.

Remark 4.4.10. In this chapter, we have computed the arctic curves for k-tilings
of the Aztec diamond when t = 0, 1 and t → ∞. Our current techniques do not
generalize to any other values of t. We leave it as an open problem to compute the
arctic curves for the k-tilings of the Aztec diamond for other values of t. See Figure
4.18 for an example with t = 5.
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Figure 4.17: Top: Simulation of a rank 128 Aztec diamond for t = 3. Bottom:
Simulation of a rank 128 Aztec diamond for t = 1/3.

Figure 4.18: Simulation of a 2-tiling of a rank 256 Aztec diamond for t = 5. Note
the formation of a cusp along the South-East boundary of the Aztec diamond.
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Appendix A

Lozenge tilings of the hexagon

We tile the plane with equilateral triangles with side length one, either pointing
up ^ or pointing down _; we shade the former white and the latter gray. The
a × b × c hexagon is the following region in R2

.

a

b

c

(The coordinate axes are in red. The y-axis goes through the midpoint of the bottom
edge of length b, and the x-axis goes through the intersection of the leftmost edges
of lengths a and c.) A lozenge is a pair of two triangles sharing an edge. There are
three types of lozenges:

Type 1 Type 2 Type 3

A lozenge tiling of a region is a partitioning of the region into non-overlapping
lozenges, and a k-tiling is a k-tuple of lozenge tilings. We will consider k-tilings
of the a × b × c hexagon.

Much is already known in the case k = 1. The asymptotic behavior of lozenge
tilings of the sa × sb × sc hexagon (for fixed a, b, c) when s → ∞ exhibits an arctic
curve phenomenon, similar to that of domino tilings of the rank m Aztec diamond
when m→ ∞ (Theorem 4.1.2).
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Theorem A.0.1 ([19]). For each a, consider a uniformly random lozenge tiling of
the a × a × a hexagon Ha scaled by a factor of 2

a
in each axis to fit into the limiting

2 × 2 × 2 hexagon H∞ and let Pa be the image of the polar regions of the random
tiling under this scaling transformation. Then, for all ϵ > 0, as a→ ∞,

{(x, y) ∈ H∞ ∶ x
2
+ y

2
> 3 + ϵ} ∩ (2aHa) ⊂ Pa ⊂ {(x, y) ∈ AD∞ ∶ x

2
+ y

2
> 3 − ϵ}

holds with probability tending to 1.

See the tiling on the left of Figure A.2 for an example. In the rest of this section, we
say that the arctic curve of the a × a × a hexagon is the circle

x
2
+ y

2
= 3.

More generally, the arctic curve of the a× b× c hexagon (where we take a uniformly
random lozenge tiling of the sa× sb× sc hexagon scaled by 2

sa
in each axis and then

take s→ ∞) is the largest inscribed ellipse (in the limiting 2× 2b

a
× 2c

a
hexagon) [18].

We define the weight of a tiling T of the a × b × c hexagon by

w(T ) =
a+c

∏
i=1

x
# lozenges in T of type 2 in row i
i

where we label the rows of triangles 1, . . . , a + c from bottom to top. There is a
weight-preserving bijection between LC(Wa+c(λ)), where λ is the partition (ba) and
λ is the 1-tuple (λ), and lozenge tilings of the a × b × c hexagon.

a b

a + c →

a

b

c

To construct this bijection, we map paths to lozenges via

↦ ↦ ↦

↦ ↦ ↦

↦ ↦ ↦
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and then remove all frozen sections of paths (that is, the first i − 1 steps of the i-th
rightmost path, which must be vertical steps, for all i ∈ [a]). For example:

→

We define the generating function for lozenge tilings of the a × b × c hexagon to be

Za,b,c(Xa+c) = ∑
T

w(T )

where the sum is over lozenge tilings of the a × b × c hexagon. Using this weight-
preserving bijection, we get

Za,b,c(Xa+c) = s(ba)(Xa+c).
Now fix the number of colors k. We can extend this bijection to a bijection between
LC(Wa+c(λ)), where λ = ((ba)k), and k-tilings of the a × b × c hexagon as follows.
Map paths of each color to colored lozenges as described above. Note that in terms
of the lozenges, we get a power of t for every interaction, where an interaction is a
pair of lozenges of the form

or

when blue is a smaller color than red. We define the weight of a k-tiling T to be

w(T ) = w(T1, . . . , Tk) = t
#interactions in T

k

∏
i=1

w(Ti)

and we define the generating function for k-tilings of the a × b × c hexagon to be

Z
(k)
a,b,c(Xa+c; t) = ∑

T

w(T )

where the sum is over k-tilings of the a × b × c hexagon. Then this bijection is
weight-preserving, so we get

Z
(k)
a,b,c(Xa+c; t) = Lλ(Xa+c; t).

First, we consider a symmetry of the k-tilings.
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Proposition A.0.2 ([20, Prop. A.2]). Reflecting over the y-axis and reversing the
order of the colors gives a bijection between k-tilings of the a × b × c hexagon and
k-tilings of the c × b × a hexagon such that a configuration with (k

2
)(ab − bc) + j

interactions maps to a configuration with j interactions.

Proof. Let ϕ be the bijection described in the statement of the proposition. Note
that every tiling of an a× b× c hexagon has ac lozenges of type 1, bc lozenges of type
2, and ab lozenges of type 3. Under ϕ, lozenges of type 2 map to those of type 3 and
vice versa, while those of type 1 stay the same.

Consider any pair of colors α < β. We’ll draw color α as blue and color β as red.
Consider the 2-tiling (Tα, Tβ). Recall the lozenges that give an interaction are

or .

Note that

# ( ) +#( ) +# ( ) = ab

since the number of blue lozenges of type 3 is ab. Rearranging we have

# ( ) +#( ) = ab −# ( ) (A.1)

The lozenges in (Tα, Tβ) that will count as an interaction after applying ϕ are of the
form

or .

Similarly to the previous calculation, we have

# ( ) +#( ) = bc −# ( ) . (A.2)

Subtracting (A.2) from (A.1), we see that the difference in the number of interactions
is constant, and in particular, it is ab − bc. Doing this for every pair of colors α < β
gives the result.

Similar to the Aztec diamond, for special values of t we have bijections with
1-tilings.
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Proposition A.0.3 ([20, Prop. A.3]). There is a bijection between 2-tilings of the
a × b × c hexagon at t = 0 and lozenge tilings of the 2a × b × (c − a) hexagon. (If
a > c, then there are no 2-tilings of the a × b × c hexagon at t = 0.)

Proof. In terms of the vertex model, we need to exhibit a bijection between lattice
configurations of Wa+c((ba)2) at t = 0 and lattice configurations of Wa+c((b2a)1). A
similar sliding argument as in Section 4.4 works again.

More precisely, let blue be color 1 and let red be color 2, and label the paths
of each color 1, . . . , a by starting column from left to right. Shift red path i right i
columns, and shift blue path i right by i− 1 columns. We claim that now the paths
are non-intersecting.

We can see this by first noting that when t = 0, red path i must be weakly right of
blue path i; they start at the same place, and the blue path can never exit right in a
vertex in which the red path is present, as this would give a factor of t. Furthermore,
a blue path cannot exit right in a vertex in which the red path exits right. Therefore,
after the shifting, red path i is strictly right of blue path i.

Next we see that red path i is also strictly left of blue path i + 1; the red path
starts and ends strictly left of the blue path, so if the two paths ever share a face,
the blue path must eventually exit right in a vertex in which the red path is present,
resulting in a factor of t. Therefore, after the shifting, red path i is still strictly left
of blue path i + 1.

Thus, after the shifting, red path i is strictly between blue paths i and i + 1.
Clearly this process is reversible.

See Figure A.1 for an example. A similar result holds for k-tilings.

Proposition A.0.4 ([20, Prop. A.4]). There is a bijection between k-tilings of the
a× b× c hexagon at t = 0 and lozenge tilings of the ka× b× (c− (k − 1)a) hexagon.
(If (k − 1)a > c, then there are no k-tilings of the a × b × c hexagon at t = 0.)

From this we can calculate the arctic curve when t = 0.

Theorem A.0.5 ([20, Thm. A.5]). When t = 0, the arctic curves (for both colors)
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→

→

Figure A.1: Example of the bijection between the 2-tilings of the 2 × 3 × 3 hexagon
at t = 0 and tilings of the 4× 3× 1 hexagon. The top gives the bijection in terms of
lattice path, while the bottom gives the lozenge tilings.

of the 2-tilings of the a × 2a × 3a hexagon are given by
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√
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2

+ y
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= 3, x ≥ 0,

√
3
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3
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√
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3
)
2

+ y
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= 3, x ≥

1
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3
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√
3
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(x + 1)2 + y
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= 3, x ≥ −1, −

√
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√
3
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(3x−
√
3y

3
)
2

+ y
2
= 3, x ≤ −1, −

√
3 ≤ y ≤ −

√
3

2

(More generally, for k-tilings of an a× ka× (2k − 1)a hexagon, the arctic curve can
be worked out similarly.)

Proof. The arctic curve for lozenge tilings of the 2a × 2a × 2a hexagon is the circle
x
2 + y

2
= 3 (Theorem A.0.1). Using this arctic curve, we can derive the arctic curve

for 2-tilings of the a× 2a× 3a hexagon at t = 0, using the bijection from Prop. A.0.3
(as in Theorem 4.4.6).
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See Figure A.2 for an example of the arctic curves for 2 colors and t = 0.

Figure A.2: A simulation and computed arctic curve of a 1-tiling of an 100×100×100
hexagon (left) and a simulation and computed arctic curve for 2-tiling a 50×100×150
hexagon with t = 0 (right). The colors of the arctic curve show which pieces map to
each other under the bijection.

We can also work out the case when t→ ∞. Unlike the Aztec diamond (Lemma
4.4.8 and Cor. 4.1.5), the mapping in this case takes a different form than that of
t = 0. First, we need a small lemma.

Lemma A.0.6 ([20, Lemma A.6]). Consider a configuration of the latticeWa+c((ba)2)
whose weight has the maximum power of t amongst all configurations of this lattice.
For each color, label the paths of each color 1, . . . , a by starting column from left

to right. Let r
(l)
i,j be the row in which path i color l takes its j-th right step, for

i ∈ [a], j ∈ [b], l ∈ [2]. Then

r
(1)
i,1 ≤ r

(2)
i,1 ≤ r

(1)
i,2 ≤ r

(2)
i,2 ≤ . . . ≤ r

(1)
i,b ≤ r

(2)
i,b .

Proof. For 2 colors, a white face contributes a factor of t whenever a path of color 1
takes a right step and a path of color 2 is present. In any configuration ofWa+c((ba)2),
path i color 1 takes b right steps for all i ∈ [a], hence the power of t in the weight
of the configuration is at most ab. Moreover, the power of t in the weight of the
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configuration

a b

a + c

. . .

⋮

(where black indicates the presence of both colors) is ab, so ab is indeed the maximum
power of t in the weight of a configuration of Wa+c((ba)2).

Consider any configuration of Wa+c((ba)2) that achieves this maximum. Since
the power of t in the weight of this configuration equals the number of right steps
taken by the paths of color 1, a path of color 2 must be present in every vertex in
which a path of color 1 takes a right step. Let Ii,j be the path of color 2 which is
present in the vertex Vi,j in which path i color 1 takes its j-th right step. We will
show that Ii,j = i for all i, j, hence

r
(2)
i,j−1 ≤ r

(1)
i,j ≤ r

(2)
i,j

(where we define r
(2)
i,0 = 0) for all i, j as required.

Fix j. To complete the proof, we need to make three key observations.

1. The vertex in which path i color 1 takes its j-th right step is strictly NW of the
vertex in which path i + 1 color 1 takes its j-th right step, for all i ∈ [a − 1].
Thus the sequence of vertices V1,j, . . . , Va,j goes strictly NW-to-SE.

2. Given two vertices, one strictly NW of the other, a path of color 2 cannot visit
both.

3. Given α, β ∈ [a] with α < β, path α color 2 starts strictly left of path β color
2, hence path β color 2 cannot visit a vertex that is strictly NW of any vertex
visited by path α color 2.

By observations 1 and 2, I1,j, . . . , Ia,j are distinct elements of [a]. By observation 3,
we have I1,j < . . . < Ia,j. Therefore Ii,j = i for all i.

Now we can construct the necessary bijection.

Proposition A.0.7 ([20, Prop. A.7]). There is a bijection between 2-tilings of the
a × b × c hexagon when t→ ∞ and lozenge tilings of the a × 2b × c hexagon.
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Proof. We express the bijection in terms of the appropriate lattices. Let ri,j be the
row in which the i-th path of the 1-tiling goes right on its j-th step. Then the
bijection is given by taking

ri,2j−1 = r
(1)
i,j and ri,2j = r

(2)
i,j .

The previous Lemma A.0.6 ensures this is a valid configuration of paths.

More generally, a similar argument holds for k-tilings.

Proposition A.0.8 ([20, Prop. A.8]). There is a bijection between k-tilings of the
a × b × c hexagon when t→ ∞ and lozenge tilings of the a × kb × c hexagon.

By reversing this bijection, we can compute the arctic curves for k-tilings of a par-
ticular hexagon when t→ ∞.

Theorem A.0.9 ([20, Thm. A.9]). The arctic curves (for both colors) for 2-tilings
of the 2a × a × 2a hexagon when t→ ∞ are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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√
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√
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√
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√
3

2

(6x−
√
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√
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√
3

2

(6x+
√
3y+6
3

)
2

+ y
2
= 3, x ≤ −1

2
, −

√
3 ≤ y ≤ −

√
3

2

(More generally, the arctic curves for k-tilings of the ka×a×ka hexagon when t→ ∞
can be worked out similarly.)

Proof. Prop. A.0.7 gives a bijection between 2-tilings of the 2a×a×2a hexagon when
t→ ∞ and 1-tilings of the 2a× 2a× 2a hexagon. Rescale both hexagons by a factor
of 1

a
in each axis. Now each lozenge has side length 1

a
; moreover, the 2a × 2a × 2a

hexagon has sides of length 2 and is centered at (x, y) = (0, 0).
Consider a 1-tiling of the 2a × 2a × 2a hexagon, which we will think of inter-

changeably as paths and lozenges. We label the paths 1, . . . , 2a by starting point
from NW to SE. For all i ∈ [2a], path i of each color starts on the SW side of the
hexagon at

(xi, yi) = (−2 + 2i − 1

4a
,−

√
3(2i − 1)

4a
) .
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Note that each path will take 2a horizontal steps, with each horizontal step moving
the path 1

a
to the right. For path i the center of the j-th horizontal step will occur

along the line

y =

√
3 (x + 2 −

i + 2j − 2

2a
) .

Reversing the bijection from Prop. A.0.7, the (2j − 1)-th horizontal step of path
i in the 1-tiling will map to the j-th horizontal step of path i color 1 in the 2-tiling,
while the 2j-th horizontal step of path i will map to the j-th horizontal step of path
i color 2. Therefore, the bijection has the following geometric interpretation.

• The y-coordinates of the steps do not change.

• We shift the (2j − 1)-th horizontal step of path i in the 1-tiling to the right by
j−1
a

to get the j-th horizontal step of path i color 1 in the 2-tiling.

• We shift the 2j-th horizontal step of path i in the 1-tiling to the right by j

a
to

get the j-th horizontal step of path i color 2 in the 2-tiling.

We can use this to see how to map different sections of the arctic curve.
For example, consider path 1 in the 1-tiling, which starts at (x1, y1). The trajec-

tory of this path gives the boundary between the upper frozen region of lozenges of
type 2 and the disordered region. In the 1-tiling, this portion of the arctic curve is
given by

x
2
+ y

2
= 3, x ≤ 0,

√
3

2
≤ y ≤

√
3.

As stated above, to get path 1 color 1 we shift the (2j − 1)-th horizontal step in the
1-tiling to the right by j−1

a
. Since in the 1-tiling this horizontal step lies along the

line y =
√
3(x + 2 − 4j−1

2a
), we have j−1

a
=

1

6
(6 + 3x −

√
3y) + O( 1

a
). Thus the map

from path 1 of the 1-tiling to path 1 color 1 of the 2-tiling is given by

(x, y) ↦ (x − 1

6
(6 + 3x −

√
3y), y) = (1

6
(3x +

√
3y − 6), y)

up to terms that go to zero as a→ ∞. Inverting this we see that this portion of the
arctic curve for color 1 is given by

(6x −
√
3y + 6

3
)
2

+ y
2
= 3.

The analysis for path 1 color 2 works the same. This gives the second case in the
statement of the theorem.

The other portions of the arctic curve can be done similarly.
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See Figure A.3 for an example.

Figure A.3: A simulation and computed arctic curve for 2-tilings of the 100×50×100
hexagon for large t (t = 100).

Prop. A.0.4 and Prop. A.0.8 can also be used to derive some properties of the

generating function Z
(k)
a,b,c(Xa+c; t) in the specialization xi = q

i−1
for all i ∈ [a + c].

With this specialization, the weight of a lozenge tiling T is q
vol(T )

, where vol is the
“volume” of a lozenge tiling (which corresponds to the size of the associated plane
partition). Thus

Z
(k)
a,b,c(1, q, . . . , q

a+c−1
; t) = ∑

T

t
# interactions in T

q
∑k

i=1 vol(Ti).

In the case k = 1, a classical result of MacMahon [44] states that this equals

Za,b,c(1, q, . . . , qa+c−1) = q
(a
2
)b

a

∏
i=1

b

∏
j=1

1 − q
c+i+j−1

1 − qi+j−1
.

Thus, in the case t = 1, we have

Z
(k)
a,b,c(1, q, . . . , q

a+c−1
; 1) = (Za,b,c(1, q, . . . , qa+c−1))

k
= q

k(a
2
)b (

a

∏
i=1

b

∏
j=1

1 − q
c+i+j−1

1 − qi+j−1
)
k

.
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When t = 0, we can use the bijection in Prop. A.0.4 to conclude

Z
(k)
a,b,c(1, q, . . . , q

a+c−1
; 0) = Zka,b,c−(k−1)a(1, q, . . . , qa+c−1) = q

k(a
2
)b

ka

∏
i=1

b

∏
j=1

(1 − q
c−(k−1)a+i+j−1

1 − qi+j−1
) .

We leave the computation of Z
(k)
a,b,c(1, q, . . . , q

a+c−1
; t) as an open problem. This is a

polynomial in t of degree (k
2
)ab. Using the bijection in Prop. A.0.8, we know that

its leading coefficient is

Za,kb,c(1, q, . . . , qa+c−1) = q
k(a

2
)b

a

∏
i=1

kb

∏
j=1

(1 − q
c+i+j−1

1 − qi+j−1
) .

Note that
Z

(k)
a,b,c(1, q, . . . , q

a+c−1
; t) = L((ba)k)(1, q, . . . , qa+c−1; t)

and in particular, setting q = 1,

Z
(k)
a,b,c(1

a+c
; t) = L((ba)k)(1a+c; t).

A table for small values of a, b, c and q = 1, k = 2 is presented in Table A.1.
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a b c Generating function
1 1 1 3t + 1
1 1 2 6t + 3
1 1 3 10t + 6

1 2 1 5t
2 + 3t + 1

1 2 2 15t
2 + 15t + 6

1 2 3 35t
2 + 45t + 20

2 1 1 3t(2t + 1)
2 1 2 20t

2 + 15t + 1

2 1 3 50t
2 + 45t + 5

2 2 1 t
2(15t2 + 15t + 6)

2 2 2 105t
4 + 175t

3 + 104t
2 + 15t + 1

2 2 3 490t
4 + 1050t

3 + 770t
2 + 175t + 15

3 1 1 t
2(10t + 6)

3 1 2 5t(10t2 + 9t + 1)
3 1 3 175t

3 + 189t
2 + 35t + 1

3 2 1 t
4(35t2 + 45t + 20)

3 2 2 t
2(490t4 + 1050t

3 + 770t
2 + 175t + 15)

3 2 3 4116t
6 + 11340t

5 + 10689t
4 + 3850t

3 + 594t
2 + 35t + 1

Table A.1: Generating functions of 2-tilings of the a × b × c hexagon
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Appendix B

Equivalence of algebraic and
graphical definitions for the L and
M vertices

Recall the algebraic definition of the L matrix:

L
(k)
x (I,J ,K,L) = 1I+J=K+L

k

∏
i=1

1Ii+Ji≠2 ⋅ x
∣L∣
t
φ(L,I+J)

.

Due to the factor of 1I+J=K+L∏k

i=1 1Ii+Ji≠2, in order for the weight to be non-zero,
we require Ii + Ji = Ki + Li and Ii + Ji ≠ 2 for all i ∈ [k]. In terms of our graphical
interpretation, this means that each color must have one of the following five forms.

A B C D E

Note that Li = 1 if color i has form B or C (i.e. color i exits right) and 0 otherwise.
Also note that Ii + Ji = 1 if color i has form B, C, D, or E (i.e. color i is present)
and 0 otherwise. Assuming each color has one of these five forms, the weight is

x
∣L∣
t
φ(L,I+J)

= x
∑k

i=1 Lit
∑k

i=1(Li ∑k
j=i+1(Ij+Jj))

= ∏
1≤i≤k
Li=1

xt
∑k

j=i+1(Ij+Jj)
= ∏

1≤i≤k
color i exits right

xt
δi

where δi is the number of colors greater than i that are present. It is easy to see that
this matches the graphical definition of the L matrix.
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Now recall the algebraic definition of the M matrix:

M
(k)
x (I,J ,K,L) = x

k
t
(k
2
)
L
(k)
x̄ (I,J ,K,L)

where x̄ =
1

xtk−1
. In order forM

(k)
x (I,J ,K,L) to be non-zero, we need L(k)

x̄ (I,J ,K,L)
to be non-zero, which requires each color to have form A, B, C, D, or E. Assuming
each color has one of these five forms, the weight is

x
k
t
(k
2
)
⋅ L

(k)
x̄ (I,J ,K,L) = x

k
t
(k
2
) ∏

1≤i≤k
color i exits right

1

xtk−1
t
δi

which has the form x
p
t
q
for some p, q ∈ Z. We see that

p = k −# colors that exit right = # colors that don’t exit right

and

q = (k2) + ∑
1≤i≤k

color i exits right

δi − ∑
1≤i≤k

color i exits right

(k − 1)

= ∑
1≤i<j≤k

1 + ∑
1≤i<j≤k

color i exits right
color j is present

1 −

⎛
⎜⎜⎜⎜⎜
⎝

∑
1≤i<j≤k

color i exits right

1 + ∑
1≤h<i≤k

color i exits right

1

⎞
⎟⎟⎟⎟⎟
⎠

= ∑
1≤i<j≤k

1 + ∑
1≤i<j≤k

color i exits right
color j is present

1 −

⎛
⎜⎜⎜⎜⎜
⎝

∑
1≤i<j≤k

color i exits right

1 + ∑
1≤i<j≤k

color j exits right

1

⎞
⎟⎟⎟⎟⎟
⎠

= ∑
1≤i<j≤k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = 1 + 0 − (1 + 0) i right, j not present
1 = 1 + 1 − (1 + 0) i right, j present but not right
0 = 1 + 1 − (1 + 1) i right, j right
1 = 1 + 0 − (0 + 0) i not right, j not present
1 = 1 + 0 − (0 + 0) i not right, j present but not right
0 = 1 + 0 − (0 + 1) i not right, j right

= ∑
1≤i<j≤k

color i doesn’t exit right

αi + ∑
1≤i<j≤k

color i exits right

βi

where

αi = # colors j > i that don’t exit right,

βi = # colors j > i that are present but don’t exit right = # colors j > i that exit top.
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Thus the weight is

x
p
t
q
= ∏

1≤i<j≤k
color i doesn’t exit right

xt
αi ⋅ ∏

1≤i<j≤k
color i exits right

t
βi .

It is easy to see that this matches the graphical definition of the M matrix.
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Appendix C

Proof of Lemma 3.2.13

Throughout this section, whenever we consider a skew shape α/β, we assume α
and β have the same number of parts ℓ(α/β). Moreover, using Remark 3.2.3, we
can take the Maya diagrams of α and β to have the same length. We let fk(α/β)
denote the k-quotient of α/β.

Let λ/µ be a skew shape and let λ/µ = fk(λ/µ) = (λ(0)/µ(0)
, . . . , λ

(k−1)/µ(k−1))
be its k-quotient. Let

T ∈ SSRTk(λ/µ) ↔ T = (T (0)
, . . . , T

(k−1)) ∈ SSSYTk(λ/µ)

via the Littlewood k-quotient map. We want to prove the following two claims.

1. A ribbon in T labelled i corresponds to a cell labelled i in T , so the number of
ribbons in T labelled i equals the number of cells labelled i in T .

2. Two ribbons R,R
′
in T whose tails u, u

′
have the same content modulo k

correspond to two cells v, v
′
in the same shape in T . Moreover, in this case,

c(u) − c(u′)
k

= c(v) − c(v′).

We begin by discussing Maya diagrams and content lines. Let α/β be a skew shape,
and let (a0, . . . , as−1), (b0, . . . , bs−1) be the Maya diagrams of α, β respectively. Given
a cell u in α/β, we define its adjusted content to be

ac(u) ∶= c(u) + ℓ(α/β) − 1,

where c(u) is its content. The following facts are straightforward to show.
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(A) The skew shape α/β consists of a single cell u iff ai = bi+1 = E, ai+1 = bi = S,
and aj = bj for j ≠ i, i + 1, for some i. In this case, if u is the single cell in
α/β, we have ac(u) = i.

(B) The skew shape α/β consists of a single ribbon iff ai = bi+k = E, ai+k = bi = S,
and aj = bj for j ≠ i, i+ k, for some i. In this case, if u is the tail of the single
ribbon in α/β, we have ac(u) = i.

The claims will follow from the following lemma.

Lemma C.0.1. If λ/µ is a k-ribbon, then ∣λ/µ∣ = 1 i.e. λ/µ consists of a single
cell v. Let u be the tail of the ribbon in λ/µ and write ac(u) = qk+r where 0 ≤ r < k.

Then v appears in λ
(r)/µ(r)

and has adjusted content ac(v) = q.

Proof of Lemma C.0.1. Let u be the tail of the ribbon λ/µ. Let

(a0, . . . , as−1), (b0, . . . , bs−1)

be the Maya diagrams of λ, µ respectively. By Remark 3.2.3, we may assume t = s/k
is an integer. By Fact B, for some i, we have

ac(u) = i; ai = bi+k = E; ai+k = bi = S; and aj = bj for j ≠ i, i + k.

Let (a(j)0 , . . . , a
(j)
t−1), (b

(j)
0 , . . . , b

(j)
t−1) be the Maya diagrams of λ

(j)
, µ

(j)
respectively for

each j. By the definition of the k-quotient map, we have a
(j)
l = alk+j and b

(j)
l = blk+j

for each j and l. Since aj = bj for j ≠ i, i + k,

(a(j)0 , . . . , a
(j)
t−1) = (b(j)0 , . . . , b

(j)
t−1) for j ≠ r

and thus λ
(j)

= µ
(j)

for j ≠ r. Since ai = bi+k = E, ai+k = bi = S, and aj = bj for
j ≠ i, i + k,

a
(r)
q = b

(r)
q+1 = E; a

(r)
q+1 = b

(r)
q = S; and a

(r)
j = b

(r)
j for j ≠ q, q + 1.

Thus, by Fact A, λ
(r)/µ(r)

has a single cell v with adjusted content ac(v) = q.

We now prove Claim 1, using Lemma C.0.1. Suppose there are m ribbons
R1, . . . , Rm labelled i in T . Then we can construct a series of partitions

α
(0)

= λ≤i−1, . . . , α
(m)

= λ≤i
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such that α
(j)/α(j−1)

= Rj for each j ∈ [m]. Using the lemma,

∣fk(λ≤i/λ≤i−1)∣ = ∣fk(α(m)/α(0))∣ =
m

∑
j=1

∣fk(α(j)/α(j−1))∣ =
m

∑
j=1

∣fk(Rj)∣ =
m

∑
j=1

1 = m.

However, by the definition of the Littlewood k-quotient map, fk(λ≤i/λ≤i−1) (lying
inside λ/µ) consists of exactly the cells labelled i in T , so there are m cells labelled
i in T .

We now prove Claim 2, again using Lemma C.0.1. Write ac(u) = qk + r and
ac(u′) = q

′
k+r′, where 0 ≤ r, r

′
< k. Since u and u

′
have the same content modulo k,

they have the same adjusted content modulo k, hence r = r
′
. Thus, by the lemma,

both v and v
′
appear in the same shape in T , namely T

(r)
= T

(r′)
. Moreover, again

using the lemma,

c(u) − c(u′)
k

=
ac(u) − ac(u′)

k
= q − q

′
= ac(v) − ac(v′) = c(v) − c(v′).




