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Planar Structures from Line Correspondences
in a Manhattan World

Chelhwon Kim1, Roberto Manduchi2

1 Electrical Engineering Department
2 Computer Engineering Department
University of California, Santa Cruz

Santa Cruz, CA, US

Abstract. Traditional structure from motion is hard in indoor environ-
ments with only a few detectable point features. These environments,
however, have other useful characteristics: they often contain severable
visible lines, and their layout typically conforms to a Manhattan world
geometry. We introduce a new algorithm to cluster visible lines in a Man-
hattan world, seen from two different viewpoints, into coplanar bundles.
This algorithm is based on the notion of “characteristic line”, which is
an invariant of a set of parallel coplanar lines. Finding coplanar sets of
lines becomes a problem of clustering characteristic lines, which can be
accomplished using a modified mean shift procedure. The algorithm is
computationally light and produces good results in real world situations.

1 Introduction

This paper addresses the problem of reconstructing the scene geometry from
pictures taken from different viewpoints. Structure from motion (SFM) has a
long history in computer vision [1, 2], and SFM (or visual SLAM) algorithms
have been ported on mobile phones [3, 4]. Traditional SFM relies on the ability
of detecting and matching across views a substantial number of point features.
Unfortunately, robust point detection and matching in indoor environments can
be challenging, as the density of detectable points (e.g. corners) may be low.
At the same time, indoor environments are typically characterized by (1) the
presence of multiple line segments (due to plane intersections and other linear
structures), and (2)“Manhattan world” layouts, with a relatively small number
of planes at mutually orthogonal orientations.

This paper introduces a new algorithm for the detection and localization of
planar structures and relative camera pose in a Manhattan world, using line
matches from two images taken from different viewpoints. As in previous ap-
proaches [5–7], the orientation (but not the position) of the two cameras with
respect to the environment is computed using vanishing lines and inertial sensors
(available in all new smartphones). The main novelty of our algorithm is in the
criterion used to check whether groups of lines matched in the two images may
be coplanar. Specifically, we introduce a new invariant feature (~n-characteristic
line) of the image of a bundle of coplanar parallel lines, and show how this
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feature can be used to cluster visible lines into planar patches and to compute
the relative camera pose. The algorithm has low complexity (quadratic in the
number of matched line segments); implemented on an iPhone 5s, its average
end-to-end execution time is of 0.28 seconds. Our algorithm fully exploits the
strong constraints imposed by the Manhattan world hypothesis, and is able to
produce good results even when very few lines are visible, as long as they are
correctly matched across the two images.

2 Related Work

The standard approach to recovering scene structure and camera pose from
multiple views is based on point feature matches across views [2]. When point
features are scarce, line features can be used instead. Computation of 3-D line
segments and camera pose from three images of a set of lines is possible using
the trifocal tensor [2, 8, 9]. This approach follows three general steps: (1) trifocal
tensor computation from triplets of line correspondences, producing the three
camera matrices; (2) 3-D line computation via triangulation from line corre-
spondences; (3) non-linear optimization for refinement. At least 13 triplets of
line correspondences are necessary for computing the trifocal tensor [2]. Note
that direct 3-D line computation requires at least three views because two views
of 3-D lines in the scene do not impose enough constraints on camera displace-
ments [9, 10].

A few authors have attempted to recover structure and motion using line fea-
tures from only two views (as in our contribution), under strong geometric priors
such as the Manhattan world assumption. Košecka and Zhang [11] presented a
method to extract dominant rectangular structures via line segments that are
aligned to one of the principal vanishing points, thus recovering camera pose
and planar surfaces. Elqursh and Elgammal [7] introduced an SFM algorithm
based on line features from a man-made environment. Three line segments, two
of which parallel to each other and orthogonal to the third one, are used to re-
cover the relative camera rotation, and the camera translation is computed from
any two intersections of two pairs of lines. This algorithm was shown to work
even in the absence of dominant structures.

An alternative approach is to detect dominant planes and compute the in-
duced homographies, from which the camera pose and planar geometry can be
recovered [12–15]. Zhou et al. [16] presented a SFM system to compute structure
and motion from one or more large planes in the scene. The system detects and
tracks the scene plane using generalized RANSAC, and estimates the homogra-
phies induced by the scene plane across multiple views. The set of homographies
are used to self-calibrate and recover the motion for all camera frames by solving
a global optimization problem. Another possibility for planar surface recovery is
to fit multiple instances of a plane to 3-D point cloud obtained by SFM using a
robust estimation algorithm [17–19].

A more recent research direction looks to recover the spatial layout of an
indoor scene from a single image [20–22]. Lee et al. [23] proposed a method
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based on an hypothesis-and-test framework. Layout hypotheses are generated
by connecting line segments using geometric reasoning on the indoor environ-
ment, and verified to find the best fit to a map that expresses the local belief of
region orientations computed from the line segments. Flint et al. [24] addressed
the spatial layout estimation problem by integrating information from image
features, stereo features, and 3-D point clouds in a MAP optimization problem,
which is solved using dynamic programming. Ramalingam et al. [25] presented a
method to detect junctions formed by line segments in three Manhattan orthog-
onal directions using a voting scheme. Possible cuboid layouts generated from
the junctions are evaluated using an inference algorithm based on a conditional
random field model. Tsai et al. [26] model an indoor environment as a ground
plane and a set of wall planes; by analyzing ground-wall boundaries, a set of hy-
potheses of the local environment is generated. A Bayesian filtering framework is
used to evaluate the hypotheses using information accumulated through motion.

3 The Characteristic Lines Method

3.1 Notation and Basic Concepts

By Manhattan world we mean an environment composed of planar surfaces, each
of which is oriented along one of three canonical mutually orthogonal vectors3

(~n1, ~n2, ~n3). In addition, we will assume that each line visible in the scene lies
on a planar surface (possible at its edge) and is oriented along one of the three
canonical vectors. Two pictures of the environment are taken by two different
viewpoints (camera centers, ~c1 and ~c2) with baseline ~t = ~c1 − ~c2. The rotation
matrix representing the orientation of the frame of reference of the first camera
with respect to the second one is denoted by R. Previous work has shown how
to reconstruct the orientation of a camera from a single picture of a Manhattan
world, using the location of the three vanishing points of the visible lines [5]. This
estimation can be made more robust by measuring the gravity vector using a
3-axis accelerometer, a sensor that is present in any modern smartphones [6]. We
will assume that the intrinsic calibration matrices K1, K2 of the cameras have
been obtained offline, and that the orientation of each cameras with respect
to the canonical reference system (~n1,~n2,~n3) has been estimated using one of
the methods mentioned above (and, consequently, that R is known). We will
also assume that lines visible in both images have been correctly matched; the
algorithm used in our implementation for line detection and matching is briefly
discussed in Sec. 4.

A generic plane Π will be identified by the pair (~n, d), where ~n is its ori-
entation (unit-norm normal) and d is its signed offset with respect to the first
camera (d = 〈~p − ~c1, ~n〉, where ~p is a generic point on the plane, and 〈·, ·〉 in-

dicates inner product). A generic line L will be identified by its orientation ~l

3 A vector is represented by an arrowed symbol (~n) when the frame of reference is
immaterial, and by a boldface symbol (n) when expressed in terms of a frame of
reference.
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(unit-norm vector parallel to the line) and by the location of any point on the
line. In a Manhattan world, surface planes and visible lines are oriented along
one of the three canonical orientations.

It is well known that a plane (~n, d) imaged by two cameras induces an ho-
mography H on the image points in the two cameras. Given a line L in the plane,
the two homogeneous representations L1 and L2 of the image lines in the two
camera are related to one another as by L1 = HTL2. The lever vectors ~u1(L)
and ~u2(L) are unit-norm vectors orthogonal to the plane containing L and the
optical center of camera 1 and camera 2, respectively (see Fig. 1, left panel).
Expressed in terms of the associated camera reference frames, the lever vectors
can be written as u1 = KT

1 L1 and u2 = KT
2 L2. The lever vectors are thus easily

computed from the image of the line L in the two cameras. The following relation
holds:

u1 = HT
c u2 (1)

where Hc = K−12 HK1 is the calibrated homography matrix induced by the plane,
which can be decomposed [2] as

Hc = R + tnT /d (2)

In the above equation, the baseline t and plane normal n are expressed in terms
of the reference frames defined at the second camera and at the first camera,
respectively, and d is the distance between the plane and the first camera.

A set of lines will be termed ~n-coplanar if the lines are all coplanar, and the
common plane has orientation ~n.

L

~l

~n

~c1

~c2

⇧

~u1(L) ~u2(L)

~t

d

~c1
~c2

sr(L, ~n)

⇧(L, ~n)

⇧

~n L

\(~u1(L), ~n)

\(~u1(L), ~u2(L))

~u1(L)

~u2(L)

~t/d

Fig. 1. Left: The two camera centers ~c1, ~c2 and the lever vectors ~u1(L), ~u2(L) for
line L. Right: Line L lies on the plane Π ≡ (~n, d) (both line and plane orthogonal to
this page). The thick blue line is the trace of the ~n-characteristic plane Π(L, ~n) (also
orthogonal to the page).
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3.2 Characteristic Planes

Given a line L and a vector ~n, we define by sin-ratio sr(L, ~n) the following
quantity:

sr(L, ~n) =
sin∠(~u1(L), ~u2(L))

sin∠(~u1(L), ~n)
(3)

where ∠(·, ·) indicates the signed angle between two vectors. Note that the nu-
merator of (3) has magnitude equal to ‖(u1 ×RTu2)‖, while the denominator
has magnitude equal to ‖u1 × n‖, where n is defined with respect to the first
camera’s reference frame. Hence, sr(L, ~n) can be computed from the two im-
ages of L and from R without knowledge of the baseline ~t. The sin-ratio has an
interesting property:

Proposition 1. If the line L lies on plane (~n, d), then the projection
〈~t/d, ~u2(L)〉 of ~t/d onto ~u2(L) is equal to sr(L, ~n).

Proof. From (1) one derives

u1 ×HT
c u2 = 0 (4)

Combining (4) with (2), one obtains

(RTu2)× u1 = u1 × nuT2 t/d (5)

The vectors (RTu2)× u1 and u1 × n are both parallel to the line L. The ratio
of their magnitudes (multiplied by -1 if they have opposite orientation) is equal
to the sin-ratio sr(L, ~n). This value is also equal to uT2 t/d = 〈~u2(L),~t/d〉 �

This result may be restated as follows. Given a plane (~n, d) and a line L on
this plane, define by characteristic plane Π(L, ~n) the plane with normal equal to
~u2(L) and offset with respect to the second camera center ~c2 equal to sr(L, ~n).
Then, the “normalized” baseline vector ~t/d is guaranteed to lie on Π(L, ~n) (see
Fig. 1, right panel). This constraint is at the basis of our characteristic line
method, discussed in the next section. A parallel derivation of the characteristic
plane and of its properties, based on algebraic manipulation, is presented in the
Appendix.

3.3 Characteristic Lines and Coplanarity

Given a set of parallel lines {Li}, with common orientation ~l, the associated

characteristic planes {Π(Li, ~n)} for a given unit norm vector ~n are all parallel to ~l
by construction (since the lever vectors {~u2(Li)} are all coplanar and orthogonal

to ~l). Any two such planes intersect at a ~n-characteristic line L∗ oriented along
~l. It may be interesting to study under which conditions all of the characteristic
planes associated with {Li} intersect at a common line, i.e., when the lines {Li}
induce a ~n-characteristic plane intersection at L∗.
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Corollary 1. Let {Li} be any number of parallel ~n-coplanar lines. These
lines induce a ~n-characteristic plane intersection at L∗, where the char-
acteristic line L∗ goes through ~t/d, and d is the signed offset of the plane
defined by the lines {Li} to the first camera.

Proof. By definition of ~n–coplanarity, all lines {Li} lie on the plane (~n, d).
Hence, by Proposition 1, ~t/d is contained in all of the ~n-characteristic planes
defined by the lines. Since these planes are all parallel to the orientation of the
lines {Li}, they must intersect at a single characteristic line containing ~t/d�

Corollary 1 shows that a sufficient condition for a set of parallel lines to induce
a ~n-characteristic plane intersection is that they be ~n-coplanar. The resulting
characteristic line represents an invariant property of parallel, coplanar lines;
importantly, it can be computed from the image lines, provided that the rotation
R and the normal ~n of the plane are known. As discussed earlier in Sec. 3.1, this
information can be easily obtained in a Manhattan world.

~c2

L1

L2

L3

d1

d4

L4

~c1

~n

⇧ L1

L2

~n

⇧(L1, ~n)

⇧(L2, ~n)

L3

L4

⇧(L3, ~n)

⇧(L4, ~n)

⇧

L⇤

Fig. 2. Left: Lines L1, L2 and L3 (orthogonal to this page) are ~n-coplanar. Their asso-
ciated ~n-characteristic planes all intersect at a characteristic line through the baseline
(also orthogonal to this page). They also individually intersect with the ~n-characteristic
plane associated with line L4, parallel but not coplanar with the other lines, but these
intersections are outside of the baseline. Right: The sets of parallel lines (L1, L2) and
(L3, L4) are mutually orthogonal; all lines are ~n-coplanar. The ~n-characteristic line
associated with (L3, L4) intersects the ~n-characteristic line associated with (L1, L2),
L∗, at a point on the baseline.

Thus, for a given canonical orientation ~n, one may test whether a group of
parallel lines all belong to a plane oriented as ~n by observing whether the asso-
ciated characteristic planes intersect at one line (see Fig. 2, left panel). In fact,
one never needs to test many lines at once: the characteristic planes for multiple
lines in a parallel bundle intersect at a single line if and only if the characteristic
lines from pairwise plane intersection are identical. Hence, one needs only test
two parallel lines at a time. This observation suggests the following algorithm to
cluster parallel lines into coplanar groups for a given plane orientation ~n:

1. For each pair of parallel lines, find the associated ~n-characteristic line;
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2. Find clusters of nearby characteristic lines. Each such cluster may signify
the presence of a plane;

3. For all characteristic lines in a cluster, label the associated parallel lines {Li}
as belonging to the same plane (~n,d) for some d.

An example of application of this algorithm is shown in Fig. 3. Since all ~n-
characteristic lines for a given line orientation ~l are parallel to ~l, in Fig. 3 we
simply plot the intersections of these lines with a plane orthogonal to ~l. To
identify cluster centers, we run mean shift on these 2-D points.

A degenerate case occurs when the camera moves in the direction of ~l. In
this case, ~u1 = ~u2 and thus sr(Li, ~n) = 0 for all lines Li, meaning that all
~n-characteristic planes intersect at ~c2. This is consistent with the fact that the
image of the lines does not change as the camera moves along ~l.

Before closing this section, we note that from a set of coplanar parallel lines
we cannot really say much about the baseline ~t. As we will see next, multiple
bundles of parallel lines allow us to also precisely compute ~t/d.

x

y

Fig. 3. Top row: Image pair with detected lines oriented along one canonical direction
(~n1). Only lines that have been matched across images are shown. Bottom left: Traces of
the ~n2- and ~n3-characteristic lines on a plane oriented as ~n1. The cluster centers, found
by mean shift, are marked by a cross. Note that the cluster centers for the ~n2- and ~n3-
characteristic lines are found separately. Characteristic line traces are shown by circles
in dark blue color when associated with a cluster, by circles in pale blue color otherwise.
Bottom right: The coplanar line sets defined by the characteristic line clusters. Each set
drawn with a characteristic color (For line segments at the intersection of two planes,
we used one color corresponding to one of the two planes).
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3.4 Multiple Line Orientations

In a Manhattan world, lines belonging to a plane orthogonal to a canonical orien-
tation ~ni must be oriented along one of the two other canonical orientations (~nj
or ~nk), orthogonal to ~ni. For each such orientation, consider a bundle of copla-
nar parallel lines. These two line bundles induce an ~nj- and ~nk-characteristic
line, respectively, where the first characteristic line contains ~t/dj and the second
one contains ~t/dk (dj and dk being the offsets of the planes defined by the two
line bundles to the first camera). If both bundles are coplanar, then obviously
dj = dk = d, and the characteristic lines in both directions intersect at ~t/d
(Fig. 2, right panel). This is a very interesting result: the intersection of charac-
teristic lines induced by orthogonal coplanar lines directly provides the direction
of camera translation. (Note again that this simple result is only possible in a
Manhattan world, where the orientation of planes in the scene is known.)

The algorithm for testing coplanarity introduced in Sec. 3.3 can be easily
modified to consider, for each canonical orientation ~n, the two bundles of parallel
lines in the two directions orthogonal to ~n. This calls for an algorithm that can
detect accumulation points of 3-D lines, defined as points in 3-D space that,
within a cubic neighborhood, contain a high density of characteristic lines in both
directions. For this purpose we propose a modified version of mean shift [27],
described next.

3.5 A Modified Mean Shift Algorithm

Suppose we are looking for groups of ~n1-coplanar lines; each one of these lines is
oriented along either ~n2 or ~n3. Given a cubic neighborhood around a point ~p, it
is convenient to consider the traces (intersections) of the lines on the cube’s faces
orthogonal to ~n2 and ~n3. Suppose to move the point ~p (and the cube around
it) along ~n2; it is clear that only the density (within the cube) of lines oriented
along the orthogonal direction ~n3 will change. Likewise, moving the point along
~n3 will change only the density of lines parallel to ~n2. If, however, the point is
moved along ~n1, the density of both lines in the cube will change.

Let (p1, p2, p3) be the coordinates of the point ~p in a canonically oriented
reference system; let (L1

i,2,L3
i,2) be the coordinates of the trace on the (~n1, ~n3)

plane of a generic ~n2-oriented line Li crossing the cubic neighborhood of ~p; and
let (L1

j,3,L2
j,3) be the coordinates of the trace on the (~n1, ~n2) plane of a generic

~n3-oriented line Lj crossing the cube. Our algorithm iterates over a cycle of 3
steps, each requiring a 1-D (component-wise) mean shift update:

1. Implement a mean shift update of p2 based on the measurements {L2
j,3}.

2. Implement a mean shift update of p3 based on the measurements {L3
i,2}.

3. Implement a mean shift update of p1 based on the measurements {L1
i,2} ∪

{L1
j,3}.

At convergence, the point will be situated in a neighborhood with high density
of lines in both directions. We also found it beneficial to assign a weight to each
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line (which is used in the mean shift updates) equal to the mean of a function
g(D) (with g(D) = e−D/σ) of the line’s distance D to each other line oriented in
an orthogonal direction; this ensures that characteristic lines with a high density
of neighbors in the orthogonal direction are given high weight. An example of
application of this algorithm is shown in Fig. 4.

Fig. 4. Top row: Image pair with detected lines oriented along the three canonical
directions (the color of each line identifies its orientation). Only lines that have been
matched across images (including incorrect ones) are shown. Bottom left: Characteristic
lines for the different orientations. The color of a characteristic line matches the color of
the lines it represents. Clusters centers identified by the mean shift algorithm described
in Sec. 3.5 are shown by black crosses. Characteristic lines not associated to a cluster
are shown in pale color. The regressed baseline direction is represented by a black line
through the origin (shown as a thick dot). Bottom right: The coplanar line sets defined
by the characteristic line clusters (each set drawn with a characteristic color).

3.6 Limitations

Corollary 1 provides a sufficient condition for characteristic plane intersection.
This condition, however, is not necessary: there may exist groups of parallel, non-
~n-coplanar lines (but still individually oriented orthogonally to ~n) that induce
a ~n-characteristic plane intersection. This means that a cluster of characteristic
lines could potentially be found even for non-coplanar lines.

In general, the occurrence of such “spurious” clusters is unlikely in a Manhat-
tan world. For example, if two parallel lines are ~n-coplanar, addition of a third,
non-coplanar parallel line will not induce a characteristic plane intersection, as
shown by the following corollary (proof omitted for lack of space.)
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Corollary 2: A bundle of parallel lines, two or more of which are ~n-
coplanar, induces a ~n-characteristic plane intersection only if all lines in
the bundle are ~n-coplanar.

4 Implementation

We use the LSD (Line Segment Detector) algorithm [28] to find line segments.
This algorithm works in linear time, and does not require any parameter tun-
ing. A MSLD (Mean-Standard Deviation Line Descriptor) [29] feature vector is
computed for each line; lines are matched based on a criterion that considers the
Euclidean distance between feature vectors in a line match while ensuring that
the angle between matched image lines in the two images is consistent across
matches. For each image, the vanishing points of detected lines are computed.
This information, together with data from the accelerometers (which measure
the direction of gravity, assumed to be aligned to one of the canonical orienta-
tions), is used to compute the rotation of each camera with respect to the frame
of reference defined by the canonical orientations.

Each image line segment is associated with one canonical direction. In addi-
tion, each line segment is rotated around its midpoint and aligned with the direc-
tion from the midpoint to the associated vanishing point. This pre-processing is
particularly useful for short segments, whose estimated orientation can be noisy.

In addition to vanishing points, we compute the vanishing lines of planes
in the canonical orientations. (In a Manhattan world, vanishing lines join the
two vanishing points of visible lines.) Suppose that the vanishing line for planes
orthogonal to ~n is visible in the image; since the image of a plane orthogonal to ~n
cannot straddle the plane’s vanishing line, when computing the ~n-characteristic
lines we can safely neglect to consider pairs of parallel lines whose images are on
different sides of the vanishing line. This property, which is used extensively in
the computation of structure from single images [23], helps reducing the risk of
false positives.

We also implemented a simple procedure to remove characteristic lines from
parallel line pairs that are unlikely to belong to the same planar surface. Given a
pair of image segments from parallel lines (i.e. converging at one of the vanishing
points), we compute the smallest quadrilateral Q, two sides of which are collinear
with the line segments, and the remaining sides converge to one of the other
vanishing points, such that all four segments endpoints are contained in the
quadrilateral. This quadrilateral could be construed as the image of a rectangular
planar surface, with edges parallel to the canonical directions. If this were in fact
the case (i.e., if there existed a planar rectangular surface patch projecting onto
the image quadrilateral), one would not expect to see a line orthogonal to the
surface within the image of the surface. Accordingly, if a line aligned towards the
third vanishing point crosses Q, the two line segments defining Q are assumed
not to belong to the same planar patch, and the associated characteristic line
is neglected. This simple procedure has given good results in our experiments,
although it may lead to false negatives in more complex geometrical layouts.
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As detailed in the previous sections, our algorithm searches for coplanar lines
one canonical orientation at a time. All pairs of parallel lines that survive the
tests discussed above generate characteristic lines, and 3-D clusters are found
using our modified mean shift algorithm, seeded with multiple points chosen at
the mid-point between nearby orthogonal characteristic line pairs. Each cluster
represents a plane; the characteristic lines within each cluster identify copla-
nar 3-D lines. In some cases, the same line in space may be associated with
two different characteristic lines, belonging to different clusters. This may be a
legitimate situation for lines at the junction of two planes; otherwise, it repre-
sents an inconsistency. In order to reject outlier clusters, we exploit the property
that clusters of characteristic lines defined by ~n-coplanar lines must be collinear
with the baseline vector ~t (Sec. 3.3). For each canonical orientation ~ni, we select
the cluster of characteristic lines orthogonal to ~ni with highest weight, where
the weight of a cluster is equal to the sum of the weights of the characteristic
lines it contains (with the characteristic line weights defined in Sec. 3.5). The
selected cluster determines a tentative baseline direction ~ti. Among the remain-
ing clusters, we only retain those that are at a distance to the line λ~ti closer
than a threshold T . We repeat this for all canonical directions, obtaining up
to three tentative baseline directions {~ti}. Note that some canonical orientation
may contain no characteristic lines, or the lines may not cluster. (In fact, in our
experiments we never considered the vertical canonical orientation due to the
general lack of line features on the floor and on the ceiling.) Finally, we linearly
regress the direction of ~t from the vectors {~ti}, and project the vectors {~ti} onto
the resulting line to compute (up to a common scale) the distance of each plane
to the first camera (and thus the location of the planes in space).

Our algorithm has been implemented on an iPhone 5s and tested in vari-
ous scenarios. On images with resolution of 352×288, execution time is of 0.28
seconds on average, with 35% of the computation due to line detection, 6% to
vanishing line detection, 7% to line matching, and the remaining 52% due to
characteristic lines computation and clustering.

5 Experimental Evaluation

Quantitative comparative assessment of our algorithm was performed on a set of
49 image pairs. These image pairs were taken by hand, some with an iPhone 4 and
some with an iPhone 5s. Examples can be seen in Fig. 5. The full set of images,
with line detection and 3-D reconstruction, is provided in the Supplementary
Material.

We devised an evaluation criterion based on a test for coplanarity of line
triplets, that does not require ground truth measurements of relative camera
pose (which are difficult to obtain without precisely calibrated instruments).
This criterion requires manual evaluation of coplanarity of all line triplets seen
in the image. In practice, we manually enumerated all planes in the scene and
assigned each line to the one or two planes containing it. From this data, labeling
of all line triplets as coplanar or not is trivial. Given three lines in space, one
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c2

c1

c1

c2

c1c2 c1

c2

Fig. 5. Top row: Coplanar line sets produced by our algorithm for the image set con-
sidered in the evaluation. Only one image for each pair is shown. Different line sets
are shown in different color. Note that some lines (especially those at a planar junc-
tion) may belong to more than one cluster (although they are displayed using only one
color). All lines that have been matched (possibly incorrectly) across images are shown
(by thick segments) and used for coplanarity estimation. The quadrilaterals Q shown
by dotted lines represent potential planar patches. They contain all coplanar lines in
a cluster, and are computed as described in Sec. 4. Bottom row: 3-D reconstruction of
the visible line segments and camera center positions. Line segment are colored accord-
ing to their orientation in space. The colored rectangles are the reconstructed planar
patches corresponding to the quadrilateral Q shown with the same color as in the top
row.

can test for their coplanarity using Plücker matrices [30]. More precisely, lines
(L1,L2,L3) are coplanar if L1L

∗
2L3 = 0, where L1, L3 are the Plücker L-matrices

associated with L1,L3 and L∗2 is the Plücker L∗-matrix associated with L2 [30].
The ability of an algorithm to determine line coplanarity is critical for precise
reconstruction of Manhattan environments; in addition, this criterion gives us an
indirect assessment of the quality of pose estimation (as we expect that good pose
estimation should result in good 3-D reconstruction and thus correct coplanarity
assessment).

We compared our algorithm against two other techniques. The first is tradi-
tional structure from motion from point features (SFM-P). We used the popular
VisualSFM application [31], created and made freely available by Changchang
Wu. The second technique is Elqursh and Elgammal’s algorithm [7], which uses
lines (rather than point features) in a pair of images to estimate the relative
camera pose (SFM-L). Once the motion parameters (R, t) are obtained with
either algorithm, 3-D lines are reconstructed from matched image line pairs. To
check for coplanarity of a triplet of lines (at least two of which are parallel), we
compute the associated Plücker matrices L1, L∗2 and L3, each normalized to unit
norm (largest singular value), and threshold the norm of L1L

∗
2L3. By varying

this threshold, we obtain a precision/recall curve. This evaluation was conducted
with and without the “corrective” pre-processing step, discussed in Sec. 4, that
rotates each line segment to align it with the associated vanishing point.
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Fig. 6. Precision/recall curves for the algorithms considered (SFM-P, SFM-L, SFM-
CL, CL) with and without the “correction” pre-processing step that aligns line segments
with the associated vanishing point. (Note that the CL method is always computed
with this correction.)

When assessing our characteristic line algorithm, we considered two differ-
ent approaches for determining line triplet coplanarity: (a) From the estimated
relative camera pose (R, t), as discussed above (SFM-CL); (b) From clusters of
characteristic lines (CL). In the second approach, we rely on the fact that each
characteristic line cluster represents a set of ~n-coplanar lines. If all three lines in
a triplet are contained in one such set of ~n-coplanar lines, they are classified as
coplanar. For the CL approach, the precision/recall curve was replaced by the
Pareto front [32] of precision/recall values computed by varying the following
parameters: (1) the constant σ in the function g(D) defined in Sec. 3.5; (2) the
threshold T , defined in Sec. 4, used to select the inlier characteristic line clusters.

Note that line detection and matching across images was performed auto-
matically as described in Sec. 4. In some cases, lines were incorrectly matched;
in this situation, line triplets containing the incorrectly matched lines were re-
moved from the evaluation set (although both correctly and incorrectly matched
lines were fed to the algorithms).

The precision/recall curves for all methods (with and without line re-orientation
pre-processing) are shown in Fig. 6. Note that for two of the 49 image pairs con-
sidered, the VisualSFM application could not find any reliable point features
and thus did not produce any results. Those two images were removed from the
set used for the construction of the precision/recall curves. Without the “correc-
tion” step, the curves for SFM-P, SFM-L and SFM-CL are fairly similar (with
SFM-P showing higher precision than the other two for low recall). When the
correction pre-processing step is implemented, SFM-CL produces better results
than SFM-L and SFM-P. This suggests that our algorithm can reconstruct the
relative camera pose as well as or better than the other methods. The curve for
CL, which does not require explicit 3-D line reconstruction, shows a substantial
improvement. This demonstrates the power of the proposed algorithm for planar
surface modeling and reconstruction.
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6 Conclusions

We have introduced a new algorithm for the explicit detection of coplanar line
sets and for the estimation of the camera motion in a Manhattan world. The
algorithm is simple, easy to implement, fast, and produces comparatively ex-
cellent experimental results in terms of detection of coplanar lines. The main
drawback of this approach, of course, is that it doesn’t work in non–Manhattan
environments, although it could conceivably be extended to support multiple
plane orientations. The newly proposed characteristic line criterion allows for
the analysis of line sets even when they are small in number and even when the
lines are all parallel to each other (in which case, though, the camera motion
cannot be recovered). It is, however, only a sufficient criterion, meaning that
false positives are possible, although arguably rare. Future work will extend this
technique to the case of line matches over more than two images.

Appendix: Characteristic Planes Revisited

We present here a different derivation of the characteristic planes concept, ob-
tained through algebraic manipulations. For simplicity’s sake, we will restrict our
attention to one canonical plane Πi, assuming that both cameras are located on
it. A 2-D reference system is centered at the first camera. In this 2-D world, each
camera only sees an image line, and the cameras’ relative pose is specified by the
(unknown) 2-D vector t and the (known) 2-D rotation matrix R. We’ll assume
that both cameras have identity calibration matrices. Consider a plane Πj with
(known) normal nj , orthogonal to Πi. A line L in Πj intersects Πi at one point,
X. Note that, from the image of this point in the first camera and knowledge of
the plane normal nj , one can recover X/d, where d is the (unknown) distance
of Πj from the first camera. Let x̂2 be the location of the projection of X in
the second camera’s (line) image, expressed in homogeneous coordinates. From
Fig. 1 one easily sees that λx̂2 = RX + t for some λ, and thus

t/d = λx̂2/d−RX/d = λ2x̂2 − (RX)⊥/d (6)

for some λ2, where (RX)⊥ = RX−(x̂T2 RX)x̂2/(x̂
T
2 x̂2) is the component of RX

orthogonal to x̂2. This imposes a linear constraint on t/d. It is not difficult to
see that x̂2 is orthogonal to the lever vector ~u2 in Fig. 1, and that ‖(RX)⊥/d‖
is equal to the modulus of the sin ratio for the line L seen by the two cameras.
Hence, the linear constraint in (6) is simply an expression of the intersection of
the characteristic plane Π(L, ~nj) with Πi.
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14. Guerrero, J.J., Sagüés, C.: Robust line matching and estimate of homographies
simultaneously. In: Pattern Recognition and Image Analysis. Springer (2003)
297–307

15. Montijano, E., Sagues, C.: Position-based navigation using multiple homographies.
In: Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE In-
ternational Conference on, IEEE (2008) 994–1001

16. Zhou, Z., Jin, H., Ma, Y.: Robust plane-based structure from motion. In: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE (2012)
1482–1489

17. Zhou, Z., Jin, H., Ma, Y.: Plane-based content-preserving warps for video stabi-
lization. In: Computer Vision and Pattern Recognition, 2013. CVPR 2013., IEEE
(2013)

18. Toldo, R., Fusiello, A.: Robust multiple structures estimation with j-linkage. In:
Computer Vision–ECCV 2008. Springer (2008) 537–547



16 Chelhwon Kim, Roberto Manduchi

19. Sinha, S.N., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based
rendering. In: ICCV, Citeseer (2009) 1881–1888

20. Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image.
International Journal of Computer Vision 75 (2007) 151–172

21. Hedau, V., Hoiem, D., Forsyth, D.: Thinking inside the box: Using appearance
models and context based on room geometry. Computer Vision–ECCV 2010 (2010)
224–237

22. Delage, E., Lee, H., Ng, A.Y.: A dynamic bayesian network model for autonomous
3d reconstruction from a single indoor image. In: Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on. Volume 2., IEEE (2006)
2418–2428

23. Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure
recovery. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, IEEE (2009) 2136–2143

24. Flint, A., Murray, D., Reid, I.: Manhattan scene understanding using monocular,
stereo, and 3d features. In: Computer Vision (ICCV), 2011 IEEE International
Conference on, IEEE (2011) 2228–2235

25. Ramalingam, S., Pillai, J.K., Jain, A., Taguchi, Y.: Manhattan junction catalogue
for spatial reasoning of indoor scenes. In: Computer Vision and Pattern Recogni-
tion, 2013. CVPR 2013., IEEE (2013)

26. Tsai, G., Kuipers, B.: Dynamic visual understanding of the local environment
for an indoor navigating robot. In: Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, IEEE (2012) 4695–4701

27. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on 24
(2002) 603–619

28. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a Line
Segment Detector. Image Processing On Line 2012 (2012)

29. Wang, Z., Wu, F., Hu, Z.: Msld: A robust descriptor for line matching. Pattern
Recognition 42 (2009) 941–953

30. Ronda, J.I., Valdés, A., Gallego, G.: Line geometry and camera autocalibration.
Journal of Mathematical Imaging and Vision 32 (2008) 193–214

31. Wu, C.: VisualSFM. http://ccwu.me/vsfm/ (last checked: 6/15/2014)
32. Boyd, S., Vandenberghe, L.: Convex optimization. 2004. Cambridge Univ. Pr

(2004)




