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With the availability of high-throughput sequencing data, identification of genetic causal

variants accurately requires the efficient incorporation of function annotation data into

the optimization routine. This motivates the need for development of novel methods

for genome wide association studies with special focus on fine-mapping capabilities. A

penalty function method that is simple to implement and capable of integrating functional

annotation information into the estimation procedure, is proposed in this work. The

idea is to use the prior distribution of the effect sizes explicitly as a penalty function.

The estimates obtained are shown to be better correlated with the true effect sizes (in

comparison with a few existing techniques). An increase in the positive and negative

predictive value is demonstrated using Hapgen2 simulated data.

Keywords: effect sizes, SNP discovery, optimization, mixture model, fine-mapping

1. INTRODUCTION

Detection and estimation of the genetic causal variants associated with a particular phenotypic trait
is one of themost challenging problems inmodern day statistical genetics.Mathematical techniques
are formulated with primary focus on fine-mapping studies, phenotype prediction, and heritability
estimation (Servin and Stephens, 2007; Lee et al., 2009; Gaffney et al., 2012; Maller et al., 2012;
Valdar et al., 2012; Zuber et al., 2012; de los Campos et al., 2013; International Multiple Sclerosis
Genetics Consortium et al., 2013; Zhou et al., 2013; Mahajan et al., 2014; Pickrell, 2014; Spain and
Barrett, 2015; Schweiger et al., 2016). Algorithms that integrate functional annotation data into
the estimation procedure (Schork et al., 2013; Zhou et al., 2013; Kichaev et al., 2014; Zablocki
et al., 2014; Vilhjálmsson et al., 2015) are being continually developed with the understanding
that Linkage Disequilibrium (LD) and polygenicity reduces the likelihood of the identified genetic
variant being biologically causal (Visscher et al., 2012). The resulting procedures have better
fine-mapping and effect size estimation capabilities (Kichaev et al., 2014; Kichaev and Pasaniuc,
2015).

While fine-mapping studies focuses on detecting causal variants, regression, or Bayesian
optimization methods integrate these fine-mapping results into the estimation procedure to
accurately determine the effect sizes. Currently, fine-mapping studies either use summary statistics
or raw genotype data to arrive at quantitative assessment of causal nature of the SNPs. For example,
CAVIAR (Hormozdiari et al., 2014, 2015), PAINTOR (Kichaev et al., 2014), and RiVIERA (Li and
Kellis, 2016) use summary statistics, and DAP (Wen et al., 2016), CavMeN (Brown et al., 2017)
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use the raw genotype data. End results of these analyses, typically
probability of the SNP being causal, are used in target gene
identification studies.

With the understanding that GWAS significant SNPs harbor
more than one causal variant, few researchers have attempted
to utilize multivariate methods to detect additional association
signals (Newcombe et al., 2016; Ning et al., 2017) from summary
statistics. Newcombe et al. (2016) utilized the correlation
structure of the variants from the reference panel to develop
a Bayesian regression framework that accounts for various
models with respect to the number of causal SNPs per region.
Ning et al. (2017) used the covariance structure between the
variants, and between the variant and phenotype vector to obtain
LASSO results for a series of λ’s (regularization parameter).
These studies demonstrate the improvement achieved through
additional analysis on already identified potential causal SNPs.
The current line of work follows a similar strategy wherein prior
information regarding the causal nature of the SNPs (in terms of
p-values or posterior probabilities) are used to localize additional
causal variants (using raw genotype data) that might have been
gone undetected due to their small effect size, lower posterior
probability, or possibly due to small sample size.

Frequently, a two-mixture model, one each to represent
the causal and null SNPs, is used to model the effect size
distribution obtained using Genome Wide Association Studies
(GWAS) (Meuwissen et al., 2001;Wray et al., 2007; Bukszár et al.,
2009; Logsdon et al., 2010; Park et al., 2010, 2011; Yang et al.,
2010, 2011; Guan and Stephens, 2011; Habier et al., 2011; Xu
et al., 2011; Speed et al., 2012; Zhou et al., 2013; Holland et al.,
2016). Accurate identification of causal and null SNPs helps in
understanding the underlying biological pathway regulating a
disease (Sun et al., 2006; Yoo et al., 2009). Integrating functional
annotation data into the estimation procedure is one way of
improving the identifiability of causal SNPs (Schork et al., 2013;
Kichaev et al., 2014; Zablocki et al., 2014; Kichaev and Pasaniuc,
2015; Vilhjálmsson et al., 2015).

The currently available methods for variable selection and
estimating the effect sizes can be broadly categorized into Bayes’
theorem based or penalty function based. Bayesian methods
proceed by assigning a prior probability density function (pdf)
to effect sizes and use either maximum likelihood estimation
method or Markov Chain Monte Carlo (MCMC) simulations
to determine the posterior effect sizes (effect sizes conditioned
on the measured phenotypic data). The various methods that
fall under this category differ in the specification of the prior
pdf (Meuwissen et al., 2001; Habier et al., 2011; Zhou et al.,
2013). Some of them are the Bayesian alphabet models (BayesA,
BayesB, BayesC, BayesCπ , BayesR, etc.), and Bayesian Sparse
Linear Mixture Model (BSLMM). Regression methods, on the
other hand, aim to minimize an objective function with a
penalty term, which is chosen to impart sparse characteristics to
the effect size estimates. For example, the least angle absolute
shrinkage operator (LASSO) uses a L1 penalty (Tibshirani,
1996), and the Ridge Regression (RR) uses the L2 penalty
(Hoerl and Kennard, 1970). Methods that are a combination
of either Bayesian and regression methods (Bayesian LASSO;
Park and Casella, 2008; Li et al., 2010) or two regression based

methods (Elastic Net; Zou and Hastie, 2005) have also been
developed.

While in the Bayesian methods, the prior probabilities
aid in variable selection, the shrinkage constraints does the
equivalent job in regression based methods. Both the Bayesian
and regressionmethods are geared toward accurate identification
of the causal variants and phenotypic prediction. A review of
the currently available methods can be found in Zhou et al.
(2013) and de los Campos et al. (2013). The Bayesian methods
though are mostly independent of tuning parameters, suffer from
practical applicability to large datasets (in terms of efficient effect
size estimation).

In this work, we formulate a simple and efficient optimization
routine which combines the flexibility of Bayesian methods and
simplicity of penalty function methods into a single framework.
The idea is to use the prior pdf of the effect sizes explicitly as
a penalty function. The motivation of the paper is to introduce
the method, provide details regarding the implementation of the
procedure, and demonstrate its various capabilities. At this stage,
theoretically, we do not claim superiority over existing methods
developed for effect size estimation and phenotype prediction.

2. PROBLEM STATEMENT

ConsideringN individuals, n geneticmarkers, and a linearmodel;
the N× 1 phenotype vector y is related to N× n genotype matrix
X through the n × 1 vector of effect sizes β as (Meuwissen et al.,
2001):

y = Xβ + ε (1)

Here ε is the vector of noise termsmodeled asN(0,6ε). Elements
of X are typically coded as 0, 1, or 2 (prior to normalization). We
aspire to select the causal variants and determine their effect sizes,
β̂ such that ε = (Xβ − y)T(Xβ − y) is minimun. Due to the
correlated and sparse nature of the SNPs, the univariate results
often end up being erroneous estimates (Kim et al., 2009; de los
Campos et al., 2013; Zhou et al., 2013).

This resulted in the evolution of multivariate methods for
determining the causal variants (see, for example, Hoerl and
Kennard, 1970; Tibshirani, 1996; Zou andHastie, 2005; Kim et al.,
2009; de los Campos et al., 2013; Zhou et al., 2013).

3. METHODS

3.1. Regression Methods
The Elastic Net (EN) (Zou and Hastie, 2005) provides the
most generalized representation of the commonly used objective
functions in penalty methods, and is given as:

FEN = (Xβ − y)T(Xβ − y)+ λ

n
∑

j=1

[1

2
(1− α)β2

j + α|βj|
]

;

λ > 0; 0 < α ≤ 1 (2)

In the above expression, α = 1 corresponds to the LASSO
(Tibshirani, 1996), and α = 0 results in the Ridge regression
(RR) (Hoerl and Kennard, 1970). There exists several algorithms
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that minimizes the above objective function while efficiently
determining the regularization parameters (Tibshirani, 1996;
Fu, 1998; Efron et al., 2004; Zou and Hastie, 2005; Park and
Casella, 2008; Wu and Lange, 2008). A variant of the LASSO,
termed group LASSO (Meier et al., 2008) employs multiple
regularization parameters to different groups of SNPs.

3.2. Bayesian Methods
Modeling β as a mixture pdf, β ∼ π1p1(β) + (1 − π1)p0(β)
(Habier et al., 2011; de los Campos et al., 2013; Zhou et al., 2013),
with p1(β) denoting pdf of the causal SNPs and p0(β) denoting
the pdf of the null SNPs, the posterior pdf of β is given as

p(β|y) = Kp(y|β)p(β) (3)

with K−1 =
∫ ∞
−∞ p(y|β)p(β)dβ . The estimate of the effect sizes

is determined as 〈β|y〉, where 〈•〉 denotes the mathematical
expectation operator. Irrespective of the distribution of β , the
likelihood function, p(y|β) can be shown to be Normal with
mean Xβ , and variance 6ε (Robert, 2004). Existing variants of
the Bayesian methods could be obtained by changing the pdfs
p1(β) and p0(β) (de los Campos et al., 2013; Zhou et al., 2013).
SupplementaryMaterial provides information on the equivalence
between Bayesian and regression based methods for a few priors.

3.3. Mixture Model Penalty Method
We design a penalty function that intuitively accomplishes
shrinking the regression coefficients while incorporating any
prior information about the causal nature of the SNPs.
The motivation for this penalty function stems from the
understanding that the effect sizes can be realistically represented
using a multimodal pdf (Meuwissen et al., 2001; Bukszár et al.,
2009; Logsdon et al., 2010; Guan and Stephens, 2011; Habier et al.,
2011; Yang et al., 2011; Zhou et al., 2013; Holland et al., 2016) and
functional annotations help in classifying the SNPs as either being
causal or not (Schork et al., 2013). In our formulation, the main
error minimizing term is the negative log-likelihood function,
and a mixture prior cost function imparts the necessary sparsity
to the effect size estimates. Several researchers in the genetics
community have used the Spike and Slab pdf (Ishwaran and Rao,
2005) as prior pdf of effect sizes (de los Campos et al., 2013;
Zhou et al., 2013). However, using this pdf explicitly as a penalty
function has not been attempted in genetic association studies.
This also sidesteps the computationally expensive Markov Chain
Monte Carlo (MCMC)method used for obtaining posterior effect
size estimates.

The likelihood function, p(y|β) ∼ N(Xβ ,6ε) is expressed as

p(y|β) =
1

(2π)n/2|6ε|1/2
e−

1
2 (y−Xβ)T6−1

ε (y−Xβ) (4)

We construct a cost function, C that has the ability to capture the
causal nature of SNPs:

C =

n
∑

j=1

cj(β̂j) (5)

where the cost associated with the jth SNP is given as

cj(βj) = −log
[

π̃1jp1j(βj)+ (1− π̃1j)p0j(βj)
]

(6)

Here π̃1 = [π̃11, π̃12, · · · , π̃1n]
T is the n × 1 vector of non-null

prior probabilities associated with the functional annotation of
the SNPs. That is, if the jth SNP is highly likely to be causal,
then a higher value (say 0.5) is specified to that SNP. p1j(•)
and p0j(•) denote the pdf of causal and null SNPs, respectively.
The cost function, thus, acts as a medium to incorporate the
enrichment details of individual SNPs. Typically, we use a normal
pdf, φ1j(•; 0; σ̃1j), to model the causal effects. Note that π̃1

denotes the assumed prior probability and π1 denotes the true
unknown probability. Denoting by L the negative log-likelihood
function, the function to be minimized is written as

F = L+ C (7)

with

L = −log
[

(2π)−n/2|6̃ε|
−1/2

]

+
1

2
(y− Xβ)T6̃−1

ε
(y− Xβ) (8)

The nonlinear conjugate gradient method (NCG) (Hestenes and
Stiefel, 1952; Fletcher and Reeves, 1964; Polak and Ribiere, 1969;
Shewchuk, 1994; Dai and Yuan, 1999; Hager and Zhang, 2006)
with Newton-Raphson line search algorithm is used to minimize
F. A step-wise implementation of the optimization procedure is
given in Supplementary Material. We show that when the NCG
method is used for optimization, the evaluation of whole n × n
Hessian matrix can be avoided. This significantly reduces the
computational cost whilst not compromising the accuracy of the
solution (Equation S12).

3.3.1. Remarks
1. The cost function shown in Equation (6) is conceptually

similar to the penalty function proposed by Ročková and
George (2016). The authors, using a mixture Laplace pdf,
estimate the prior probability of the effects using a coordinate-
wise optimization routine. We, however, specify different
prior probabilities for each variant, so as to incorporate any
information on LD or functional annotations. Furthermore,
our motivation to use a mixture model stems from our
understanding of the genetic architecture of the human
genome.

2. The likelihood ratio and the cost function are weighed equally,
so that the minimum error solution is sparse. Unequal weights
can be specified, say higher for L if it is known that the genetic
architecture is highly polygenic, and low if only a few genetic
causal variants influence the phenotype under consideration.

3. Variants of the proposed method could be obtained by
changing the pdfs used in constructing the mixture model—
for example, Laplace or non-local pdfs (Johnson and Rossell,
2010) could be used instead of two normal pdfs. These
however, are minor modifications, and our main contribution
lies in proposing an explicit mixture model pdf as a penalty
function.
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4. Instead of considering cost associate with individual SNPs,
the SNPs can be clustered through specification of suitable
correlation. This could possibly capture the underlying LD
information. However, this requires incorporation of LD
metrics such as r2 into covariance structure of the clustered
SNPs. Such studies have not been pursued in this present
work, and will likely be a part of future efforts.

5. Higher prior probabilities can be specified to cluster of SNPs
in a given LD block that is envisioned to contain the causal
signal. SNPs not in this LD block may be provided lower or
zero prior probability.

6. SNPs that belong to certain functional annotation category
have higher likelihood of being causal. Hence, SNPs in these
regions are deemed to be enriched, i.e., have higher probability
of influencing a particular phenotype. Typically SNPs tagging
regulatory and coding regions are considered to be enriched in
comparison with introns and intergenic SNPs (Schork et al.,
2013). SNPs in the MHC region can be considered to be
enriched when studying immune related diseases (Ellinghaus
et al., 2016).

7. Using existing packages such as CAVIAR, DAP, PAINTOR,
RiVIERA, and S-LDSC (Finucane et al., 2015), one could
obtain a quantitative assessment of the causal nature of
individual SNPs. These results can be directly used as prior
probabilities (π̃1) in the proposed optimization routine.
Probabilities could also be based onGWAS p-values. However,
these values tend to alter with increase in power.

8. As mentioned earlier, for each regression based method,
there exists a Bayesian equivalent. In the Bayesian methods,
assuming a prior pdf, samples are drawn from the posterior
distribution using MCMC. The proposed method avoids
sampling from the prior and posterior pdf of the effect sizes
by specifying the prior information explicitly as a penalty
function. This distinguishes the method from the Bayesian
LASSO and BSLMM.

9. Fine-mapping methods typically require data from dense
genotyping arrays, which are further imputed using reference
panels, such as 1,000 Genomes (1000 Genomes Project
Consortium et al., 2012). The mixture-model method, on
the other hand, uses whole genome wide data to locate the
causal signal. In this aspect, genotype data preferred for fine-
mapping studies, may be unsuitable for the proposed method.

3.4. Simulation Studies
Hapgen2 (Su et al., 2011) and 1,000 Genomes (1000 Genomes
Project Consortium et al., 2012) is used for simulating
realistic genotypes for an European population of size 100,000
considering all the 22 chromosomes (80378054 SNPs). True effect
sizes are simulated based on the understanding that a proportion
of the SNPs are causal with effect sizes distributed as N(0, 1).

3.4.1. Whole Genome Analysis
For whole genome analysis, due to computational issues, the
analysis can be carried out using SNP windows such that no two
potential causal SNPs in LD are separated (Berisa and Pickrell,
2016). In this work, we consider SNPs associated with individual
chromosomes in each sliding window. For each chromosome,

the first 20,000 SNPs with minor allele frequency >0.01 are
considered in the analysis, resulting in a total of 440,000 SNPs.
The number of causal variants are taken to be 50% of the SNPs in
the functional annotation category—Exon, 3′UTR, 5′UTR. This
gives rise to 4,233 causal SNPs—approximately 1% of the total
SNPs considered. Thus, SNPs belonging to these categories are
considered to be enriched, i.e., have higher likelihood of being
causal. Three different genotype matrices and three different true
effect sizes are considered for the analysis, resulting in a total
of 18 cases for estimating the normalized mean squared error
(NMSE). The phenotype is simulated using Equation (1) with a
heritability of 0.5. Specifying prior probability to individual SNPs
requires functional annotation information for the genotyped
SNPs. Assuming such significant information is unavailable, we
initially specify equal π̃1 and σ̃1 values for all the SNPs, i.e., π̃1j =

π̃1, σ̃1j = 1,∀j—Mixture Model with Constant Priors (MM-CP).
An estimate of 6ε for determining the likelihood function is
obtained by assuming a heritability of 0.0227 per SNP window.
For comparison, results are obtained using the Regularized
Pseudo Inverse (RegPI)—analytical solution with π̃1 = π1

and no mixture model (Supplementary Material), LASSO, and
univariate regression method. The enrichment factors used in
simulating the data are specified as prior probabilities in the
optimization routine, and the resulting estimates are denoted as
Mixture-Model with Enriched Priors (MM-EP), that is, π̃1 =

π1. The RegPI method and MM-EP methods differ only in the
procedure followed to obtain the effect size estimates, and in
principle, are equivalent. While the RegPI method provides a
closed form solution for the effect sizes, the MM-EP method
utilizes an optimization algorithm to achieve the same goal. As
mentioned in section 3.3.1, results from a prior analysis (typically
fine-mapping studies) could be used to improve the detection and
estimation capabilities of the method. We use end results of DAP
as prior probabilities and the resulting estimates are denoted as
MM-DAP. It is to be noted that the MM-DAP method utilizes
the genotype information twice, once for estimating the prior
probability of causality (DAP), and once in our optimization
routine (for effect size estimation and detection of additional
causal variants). However, the context in which the information is
used slightly differs. An adaptive/iterative method for estimating
the causal probabilities could avoid this. We are working toward
achieving this. Matlab implementation of the proposed method
is included along with this paper. The implementation has
provision for gradual increment or decrement of π̃1 and σ0
values.

4. RESULTS

The correlation between the true and estimated effect sizes, the
percentage of positive and negative predictive values (PPV, NPV)
are used to measure the accuracy of different methods (Figure 1).
PPV is defined as the ratio of number of true variants identified to
the total number of variants identified. Similarly, NPV is defined
as the ratio of number of true null SNPs identified to the total
number of null SNPs identified. For the RegPI and MM-EP
methods, π̃1 = π1, hence thesemethods provide an upper bound
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FIGURE 1 | Estimates obtained using various methods. (A) correlation

between the estimated and true effect sizes, (B) PPV and NPV. RegPI:

Regularized pseudo inverse (green triangle); MM-EP: Mixture model with

enriched priors (magenta diamond); MM-DAP: Mixture model with DAP priors

(orange star); MM-CP: Mixture model with constant priors (red inverted

triangle); Infinitesimal: Normal prior (no mixture) (blue circle); LASSO (black

square); Univariate (brown cross).

for both the effect size correlation, PPV and NPV. This can be
considered as a case where complete genetic architecture of the
effect size distribution is known. For the MM-CP method, π̃1j =

0.01∀j, and the null pdf is taken to be Laplacian. Specifying π̃1j =

1 is the special case of the infinitesimal model, where all the SNPs
are assumed to be causal with Normal effect size distribution.
The MM-DAP method used DAP results as prior probabilities
for the genetic variants. This constitutes partial knowledge about
the distribution of causal SNPs in the genome.

The MM-CP, Infinitesimal, LASSO, and Univariate methods
do not use functional annotation information. Thus any
improvement in the effect size estimates obtained using MM-
CP method, in comparison with the other three, is deemed
significant. Though a sparse structure is imposed on the penalty
function in the MM-CP method, the method essentially does not
incorporate any enrichment factors. A slight improvement in the
effect size correlation can be observed in Figure 1. The figure
illustrates the advantage of the proposed formulation in terms of
locating the causal variants accurately. The positive and negative
predictive value for the Infinitesimal and Univariate methods
are not shown in the figure. In obtaining the LASSO estimates,
initially, a two-fold cross validation has been carried out for SNP

FIGURE 2 | Variation in the correlation between estimated and true effect

sizes. (A) MM-CP, (B) LASSO.

window 1 (i.e., chromosome 1), resulting in λ = 0.508. NMSE
estimates are obtained for a grid of values between 0.45 and 0.70
for all the other chromosomes, and the estimates corresponding
to the minimum NMSE value is reported in Figure 1. The MM-
DAP estimates lie between the MM-CP and MM-EP estimates,
as the prior probabilities are based on a previous analysis which
identifies few significant SNPs.

The correlation between estimated and true effect sizes, PPV
and NPV values have been obtained for a grid of π̃1 values and
plotted in Figures 2, 3, respectively. Similar study is carried out
for LASSO (with respect to the regularization parameter λ). For
the MM-CP method, the x-axis is plotted in the reverse direction
so that moving along the x-axis toward right implies increase in
sparseness (consistent with the x-axis of LASSO).

5. DISCUSSION

From Figures 2, 3, it can be observed that the MM-CP
and LASSO estimates follow a similar trend with increase in
sparseness. Enforcing a sparse structure with arbitrary prior
probabilities for the effect sizes result in estimates that are better
at localizing the genetic causal variants. A good understanding
of the distribution of the SNPs across the genome helps
in incorporating the functional annotations, thereby further
improving the effect size estimates—RegPI andMM-EPmethods.
A sensible choice of the enrichment factors require prior
knowledge about the phenotype under study. For example, SNPs
in the MHC region are shown to have a larger impact on
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FIGURE 3 | Variation of PPV and NPV values. (A) MM-CP, (B) LASSO.

Ankylosing Spondylitis than the non MHC SNPs (Ellinghaus
et al., 2016). In this case, one could provide a higher π1 value
for the SNPs in the MHC region (differential enrichment).
The MM-DAP results are obtained using this strategy, i.e. use
prior information to improve the performance of the estimation
procedure.

The correlation plotted in Figure 2 reflects the accuracy of
the estimation procedures, that is, how close the estimated effect
size is to the true effect size (which is unknown). Here π̃1 = 1
implies that all the SNPs (regression coefficients) contribute to
the phenotype y. This leads to the underestimation of the effect
sizes due to the distribution of the true signal among several
SNPs. The sparse representation, say π̃1 = 10−2 on the other
hand has the advantage of distributing the total signal among
few selected non-zero SNPs. Depending on the selected SNPs,
the correlation between true and estimated SNPs may vary. For
the infinitesimal case, though all the causal SNPs have been
identified, will result in low correlation value, because the effect
sizes of these causal variants have been underestimated. The
same phenomenon can be observed when the infinitesimal model
(π̃1 = 1) is compared with LASSO in Figure 1.

It is straightforward to note that the amount of shrinkage
achieved depends on the characteristics of the penalty function
used. Using the mixture model pdf explicitly as a penalty function

places a probabilistic sparse constraint on the effect sizes, as
opposed to the distance based constraints used typical in penalty
function based method. Specifying a sparse structure without
any knowledge about the underlying genetic architecture (i.e.,
specifying an arbitrary π1) is shown to equip the optimization
routine with better fine-mapping capabilities, and result in

estimates that are at least as good as the LASSO and Univariate
methods.

The non-linear conjugate gradient method is used to solve
the optimization problem efficiently by harnessing the structure
of the objective function’s Hessian matrix (Supplementary
Material). Thus, the method in its current form can be applied
to whole genome analysis without any difficulty. Application
of the method to specialized chip sequenced data, say the
Immunochip or Oncochip, requires a careful approach in
specifying the π̃1 values to various SNPs. We are working
toward developingmethodologies to automatically determine the
probability of SNP association, and SNP correlation with in the
optimization framework. Alternately, end results from existing
fine-mapping studies such as DAP or PAINTOR can be used as
prior probabilities. Therefore, the method needs to be viewed
as an efficient optimization algorithm capable of integrating
functional annotation data (if available). Interpretation of the
framework as a means to incorporate functional annotation and
LD information, while at the same time achieving good variable
selection and effect size estimation capabilities are some of the
features we believe are important to the genetics community.
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