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Abstract 

Extensive evidence from diverse areas of the cognitive 
sciences suggests that iconicity—the resemblance between 
form and its meaning—is pervasive and plays a pivotal role in 
the processing, memory, and evolution of human language. 
However, despite its acknowledged importance, iconicity in 
language models remains notably underexplored. This paper 
examines whether Japanese language models learn iconic 
associations between shape and sound, known as the 
bouba/kiki (or maluma/takete) effect, which has been widely 
observed in human language as well as English and 
multilingual vision-and-language models, including Finnish, 
Indonesian, Hungarian, and Lithuanian models in previous 
studies. A comparison between the current results and the 
previous studies revealed that Japanese models learn language-
specific aspects of iconicity, such as the associations between 
/p/ and roundness, and /ɡ/ and hardness, reflecting the sound 
symbolic system in Japanese. 

Keywords: iconicity; sound symbolism; bouba/kiki effect; 
crossmodal correspondence; language-specificity; vision-and-
language model; embodiment 

Introduction 
Iconicity—traditionally defined as the resemblance between 
form and meaning (Peirce, 1932)—is pervasive at different 
levels of human language, both signed and spoken langauge 
(Dingemanse, Blasi, Lupyan, Christiansen, & Monaghan, 
2015; Perniss, Thompson, & Vigliocco, 2010). For example, 
certain phonemes can be associated with certain meanings, a 
phenomenon known as “sound symbolism”. Examples 
include shape sound symbolism, known as the bouba/kiki (or 
maluma/takete) effect, in which sonorant and bilabial 
consonants (e.g., /m/, /l/, /b/) and rounded vowels (e.g., /o/, 
/u/) are associated with roundness, whereas voiceless stops 
(e.g., /t/, /k/) and high-front vowels (e.g., /i/) are associated 
with spikiness (Köhler, 1929; McCormick, Kim, List, & 
Nygaard, 2015; Ramachandran & Hubbard, 2001). This 
effect has been robustly demonstrated cross-linguistically 
using pseudowords (Ćwiek, Fuchs, Draxler, Asu, Dediu, 
Hiovain, Kawahara, Koutalidis, Krifka, Lippus, & Lupyan, 
et al., 2021), and also observed in object nouns in English 
(Sidhu, Westbury, Hollis, & Pexman, 2021), as well as 
among preverbal infants as young as 4 months old (Ozturk, 
Krehm, & Vouloumanos, 2013).    

Another example of iconicity is ideophones, including 
onomatopoeia (e.g., bowwow, cock-a-doodle-doo), which 
abound in many of the world’s languages. They depict 
sensory information in an imitative fashion (e.g., kira-kira 
‘twinkling’ in Japanese), illustrating word-level iconicity 
(Dingemanse, 2012). This pervasive presence of iconicity 
indicates that it is “a general property of language” (Perniss, 
Thompson, & Vigliocco, 2010).   

Furthermore, compelling evidence from diverse areas of 
the cognitive sciences suggests that iconicity plays a pivotal 
role in the processing (Sidhu, Vigliocco, & Pexman, 2020), 
learning (Imai, Kita, Nagumo, & Okada, 2008; Kantartzis, 
Imai, & Kita, 2011; Imai & Kita, 2014; Imai, Miyazaki, 
Yeung, Hidaka, Kantartzis, Okada, & Kita, 2015), memory 
(Sonier, Poirier, Guitard, & Saint-Aubin, 2020; Sidhu, 
Khachatoorian, & Vigliocco, 2023), and evolution of human 
language (Akita & Imai 2020; Imai & Kita 2014). However, 
despite its recognized significance in human language, 
iconicity in language models is still one of the least explored 
areas. An exception can be the experiments conducted by 
Alper and Averbuch-Elor (2023), who investigated shape 
sound symbolism (the bouba/kiki effect) with English vision-
and-language models and multilingual vision-and-language 
models (Finnish, Indonesian, Hungarian, and Lithuanian). 
They concluded that vision-and-language models learn the 
association between sound and shape, such as the 
associations between voiceless stops (e.g., /p, t, k/) and 
“sharpness” and between voiced stops and sonorants (e.g., 
/b, d, m, n, l/) and “roundness”, paralleling with human 
perception demonstrated by studies conducted in 
psycholinguistics (McCormick et al., 2015).  

The purpose of this paper is to replicate the findings of 
Alper and Averbuch-Elor (2023) using Japanese vision-and-
language models, employing the same probing methodology 
as theirs. We investigate whether models trained on general 
image generation tasks are aware of the associations between 
sound and shape, without any additional training specifically 
for these associations, as conducted by Alper and Averbuch-
Elor (2023). Our study reveals significant divergences from 
their reported findings, shedding light on the language-
specific, systematic dimensions of iconicity originating from 
the sound symbolic system of imitative words (i.e. 
ideophones) in Japanese. Our data and codes will be made 
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publicly available at: https://github.com/hfunakura/vlm-ssw-
ja. 

Related Work 

Universality and Language-Specificity of Iconicity  
Iconic form-meaning associations are assumed to be 
identifiable across languages because iconicity relies on 
perceptuomotor analogies (i.e., biological bases) (Akita & 
Imai, 2022; Dingemanse et al., 2015; Imai & Kita, 2014). For 
example, shape sound symbolism has been observed among 
speakers of 25 languages from nine unrelated language 
families, including English and Japanese (Ćwiek et al, 2022). 
Words containing bilabials (e.g., /m, b/), sonorants (e.g., /m, 
n, l/), and rounded back vowels (e.g., /u/, /o/) such as bouba 
and maluma, sound round, and  words containing non-
bilabial obstruents (e.g., /t, k, s, d, ɡ, z/) and unrounded front 
vowels (e.g., /i, e/) such as takete or kiki sound sharp. These 
sound-shape associations are based on articulatory (e.g. 
rounded vowels corresponding to round shapes) (Akita & 
Imai, 2022; Ramachandran & Hubbard, 2001; Sapir, 1929;  
Sidhu & Pexman, 2018) and/or acoustic features of the 
sounds (e.g., the gradual amplitude changes of sonorants 
corresponding to rounded shapes) (D’Onofrio, 2014).  

However, recent studies have revealed that not all types of 
iconic form-meaning associations are necessarily universal 
or biologically grounded, indicating that iconicity can be 
language-specific. For example, Japanese exhibits somewhat 
unique associations between voicing and meaning contrasts, 
which speakers of other languages may not perceive. 
Iwasaki, Vinson, and Vigliocco (2017) asked native Japanese 
speakers and English speakers to rate Japanese ideophones 
for laughing (e.g., gera-gera ‘laughing loudly’, kusu-kusu 
‘giggling’) and walking (e.g., peta-peta ‘slapping’, 
yochiyochi ‘toddling’) on 14 semantic differential scales, 
such as Loud–Soft (in volume), Graceful–Vulgar for 
laughing, and Big strides–Small strides, Feminine–
Masculine for walking. Their findings revealed that English-
speaking participants failed to accurately guess the semantic 
contrast between voiced and voiceless obstruents, especially 
for ideophones for manner of walking (e.g., bura-bura 
‘wandering’ vs. furafura ‘walking unsteadily’). Saji, Akita, 
Kantartzis, Kita, and Imai (2019) used a production-
elicitation task and demonstrated that the systematic 
associations between voiceless consonants and ‘small’ and 
‘light’ and between voiced and ‘big’ and ‘heavy’ were 
identified by Japanese speakers but not by English speakers. 
Uno, Kobayashi, Shinohara, and Odake (2016) also report on 
the Japanese unique associations between voicing and 
hardness.   

Thus, it may be possible that form-meaning associations in 
language models are not as robust as those in humans 
because they should not be aware of the biological or bodily 
bases which iconicity relies on. Additionally, it may also be 
possible that we may observe different form-meaning 
associations across language models, reflecting the 
language-specific aspects of iconicity observed in individual 

human languages. This paper examines these possibilities in 
an exploratory fashion.   

Iconicity in Computational Models  
Iconicity in computational models is less explored compared 
to iconicity in human language. Yamagata, Kwon, 
Kawashima, Shimoda, and Sakamoto (2021) investigated 
associations between sound and tactile sensations using 
Japanese sound symbolic words. They developed a computer 
vision method to generate the phonemes and structure 
comprising sound-symbolic words that probabilistically 
correspond to the input images. Their evaluation indicated 
that the sound-symbolic words output by their system had an 
accuracy rate of about 80%. While these findings suggest that 
computer vision systems can learn certain associations 
between sound and visual information, the study does not 
specify which aspects of form are associated with particular 
meanings. Additionally, since the study focused solely on 
Japanese sound symbolic words, it does not provide insights 
into whether these associations transcend different 
languages.  

Alper and Averbuch-Elor (2023) more directly examined 
the extent to which vision-and-language models capture 
sound symbolism, particularly the bouba/kiki effect, by 
investigating whether multilingual vision-and-language 
models (English, Finnish, Indonesian, Hungarian, and 
Lithuanian) encode a relationship between sounds and sharp 
or round shapes. They employed vector representations 
obtained through Stable Diffusion and CLIP, focusing on 
English adjectives, nouns, and pseudowords corresponding 
to sharpness and roundness. Additionally, they also 
conducted a user study to validate that the pseudowords have 
a similar effect on human perception. They concluded that 
multilingual vision-and-language models learn the 
associations between sound and shape sharpness and 
roundness even though the models should not be aware of 
embodied motivations (i.e., perceptuomotor analogies) for 
the iconic form-meaning mappings as humans are. In the 
current study, we will try to replicate Alper and Averbuch 
Elor’s (2023) findings using models of Japanese, which is 
phylogenetically unrelated to the five languages they 
investigated. 

Methodology  
In this section, we describe the methodology we adopted 
from Alper and Averbuch-Elor (2023). Due to computational 
resource constraints, we focused on adjectives and pseudo-
words, not including nouns. We first describe the models 
used—Stable Diffusion and CLIP—and then the scores for 
predicting the association between sound and meaning, 
namely the geometric score and phonetic score. Finally, we 
introduce evaluation metrics to assess the classification 
ability of the models.  
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Models  
Alper and Averbuch-Elor (2023) chose Stable Diffusion and 
CLIP as representative models in the field of vision-and-
language models. We will describe these models below.  

 
Stable Diffusion Stable Diffusion is a generative model that 
takes textual inputs and outputs corresponding to images. 
Utilizing a process of iterative refinement, it transforms a 
random pixel pattern into a coherent image that corresponds 
with the provided text. In the subsequent sections, we denote 
the output image from Stable Diffusion when given a prompt 
𝒊 as the following:  

SD(𝑖)  
  
CLIP CLIP (Contrastive Language–Image Pre-training) is a 
model accepting both text and images as input. It is trained 
to output similar vector representations for similar text-
image pairs. Alper and Averbuch-Elor (2023) utilized CLIP 
for the specific purpose of vectorizing images generated by 
Stable Diffusion, and for evaluating the performance of CLIP 
itself. Hereafter, the vector output by CLIP when given a 
certain image or text 𝑖 as input will be represented as follows: 

CLIP(𝑖)	

Obtaining Vector Representations 
Here, 𝐴! and 𝐴" are defined as sets of adjectives associated 
with roundness and sharpness, respectively, and  𝑃! and 𝑃" as 
sets of pseudowords associated with roundness and 
sharpness, respectively. The elements of each set will be 
described in the following section. Alper and Averbuch-Elor 
(2023) create prompts for the primary input to the model 
following the template below.1 

“a 3D rendering of a X object” 
By substituting a word for X, a corresponding prompt 𝑖# (= 
“a 3D rendering of a object”) can be obtained. For each 
pseudoword 𝑝 = 𝑃! ∪ 𝑃" , the vector representing it can be 
obtained through two different pipelines. 

𝑣$SD = CLIP ,SD-𝑖$./ 
𝑣$CLIP = CLIP-𝑖$. 

𝑣$SD  represents the vector created by CLIP from an image 
generated by Stable Diffusion using a prompt 𝑖$. 𝑣$CLIP is the 
vector output by CLIP when it directly receives the prompt. 
The former is used for evaluating Stable Diffusion, and the 
latter is used for evaluating CLIP.  

The vector representation for each adjective 𝑎	is obtained 
using CLIP as per the following equation: 

𝑣%CLIP = CLIP(𝑖%) 
Henceforth, the normalized version of any vector will be 
referred to as 𝑣1. Next, we will explain the metrics used to 
measure the extent to which these vector representations 
distinctly express the association between sound and shape in the 
model. 

Scores 
To classify the vectors into sharpness or roundness, Alper and 
Averbuch-Elor (2023) defined two scores (numerical criteria 
for prediction): the geometric score and phonetic score. 
Informally speaking, the former is a score for classifying 
pseudowords using abstract adjective vectors and individual 
pseudoword vectors, while the latter uses abstract 
pseudoword vectors and individual adjective vectors for 
classifying adjectives. Although the geometric score and 
phonetic score defined in their paper differ from those 
defined in their implementation,2 this difference does not 
affect the evaluation metrics. The definitions provided below 
follow their implementation. 
 
Geometric Score The geometric score 𝛾$ for a pseudoword 
𝑝	is defined by the following equation: 

𝛾$ ≔ 𝑣$4 ⋅ 𝑣%&'4  
Here, 𝑣%&( = Σ%∈*!𝑣%4− Σ%∈*"𝑣%4 . The vector 𝑣%&( 
represents the difference between the sum of adjective 
vectors with a “round” meaning and the sum of adjective 
vectors with a “sharp” meaning. We refer to this as the 
abstract adjective vector. 𝛾$  represents how much the 
pseudoword 𝑝	is biased towards either the “round” end or the 
“sharp” end in the semantic space. A larger 𝛾$ indicates a bias 
towards the “round” end, while a smaller 𝛾$  suggests a bias 
towards the “sharp” end. Assuming that vector 𝑣%&( represents 
the difference in meaning between “round” and “sharp”, 𝛾$ 
indicates whether the pseudoword 𝑝	leans towards “round” or 
“sharp” in the semantic space. In this sense, 𝛾$ is referred to as 
the “geometric” score. 
 
Phonetic Score The phonetic score 𝜙% for an adjective 𝑎	is 

defined by the following equation: 
𝜙% ≔ 𝑣%4 ⋅ 𝑣$"+4  

Here, 𝑣$"+ = Σ$∈,!𝑣$4− Σ$∈,"𝑣$4. The vector 𝑣$"+ represents 
the difference between the sum of pseudoword vectors with a 
“round” meaning and the sum of pseudoword vectors with a 
“sharp” meaning. We refer to this as the abstract pseudoword 
vector. 𝜙% represents how much the pseudoword 𝑎	is biased 
towards either the “round” end or the “sharp” end in the 
semantic space. A larger 𝜙%  indicates a bias towards the 
“round” end, while a smaller 𝜙% suggests a bias towards the 
“sharp” end. As previously mentioned, since 𝜙% is obtained 
by the text-to-vector model CLIP, it reflects only the features 
of the adjective 𝑎	as a string of characters. Since strings at 
least partially reflect their corresponding phonetic features, it 
is called the “phonetic” score. Therefore, it should be noted 
that “phonetic” here does not mean that this metric is based 
on phonetics, but rather that it does not include the visual 
features of adjectives. 

Evaluation Metrics 
Words are classified as “round” if their score is high and 
“sharp” if it is low, but the threshold value that defines this 
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classification boundary is not obvious. Therefore, the AUC 
and Kendall's correlation are used as threshold-agnostic 
evaluation metrics. Both metrics are calculated from the score 
sequence of each word and the gold label sequence, where 
“round” corresponds to 1 and “sharp” to 0. 
 

Experimental Settings 

Pseudowords and Adjectives 
Here, we describe the set of pseudowords and adjectives used 
in this experiment. Although each word is represented in the 
Latin alphabet below, they were written using kanji (Sino-
Japanese character) and hiragana (Japanese phonogram) in 
our implementation. We define the adjective set as follows: 
𝐴𝑟 = {marui, en-kei-no, marumi-o obita, yawarakai, futotta, 
debu-no, marumaru-to shita, pocchari shita, fukkura shita, 
magatta} 
𝐴𝑠 = {eeri-na, togatta, kakubatta, kado-no aru, supaiku-joo-
no, toge-darake-no, chiku-chiku-shita, kifuku-no aru} 

To construct the pseudoword set, we define the following 
character set based on Alper and Averbuch-Elor (2023).1 

𝑉𝑟 = {𝑜, 𝑢}    𝑉𝑠 = {𝑒, 𝑖}    𝑉 = {𝑎} 
𝐶𝑟 = {𝑏, 𝑑, 𝑔, 𝑚, 𝑛}    𝐶𝑠 = {𝑝, 𝑡, 𝑘, 𝑠, ℎ} 

𝑉𝑟 and 𝐶𝑟 are vowels and consonants associated with 
roundness, and 𝑉𝑠 and 𝐶𝑠 with sharpness. 𝑉_contains the 
neutral vowel 𝑎. Based on these, we define the pseudoword 
set as follows: 

 𝑃𝑟 = {𝐶1𝑉1𝐶2𝑉2𝐶1𝑉1∣𝐶1, 𝐶2∈𝐶𝑟 & 𝑉1, 𝑉2∈𝑉𝑟∪𝑉} 
𝑃𝑠 = {𝐶1𝑉1𝐶2𝑉2𝐶1𝑉1∣𝐶1, 𝐶2∈𝐶𝑠 & 𝑉1, 𝑉2∈𝑉𝑠∪𝑉} 

For example, 𝑃𝑟 includes pseudowords such as bobobo, 
gunagu, while 𝑃𝑠 contains words such as pipipi, tekate, etc. 

Pre-trained Models 
Similar to Alper and Averbuch-Elor (2023), we also used 
Stable Diffusion and CLIP architectures. The difference lies 
in our use of Japanese-specific model. More specifically, we 
adopted the following checkpoints: 
• Stable Diffusion: stabilityai/japanese-stable-diffusion-xl2 
• CLIP: sonoisa/clip-vit-b-32-japanese-v13 
Each model checkpoint is specialized for Japanese, and we 
use them without any additional training. 

Image Generation 
When generating images, we set the hyperparameters as 
follows, consistent with Alper and Averbuch-Elor (2023): 

• Guidance scale: 9 
• Inference steps: 20 

The guidance scale represents the degree to which the model 
adheres to the input prompt, and the inference steps denote 
the number of inference iterations from the input noise image 
to the output image. The images generated by Stable 
Diffusion are influenced by the fluctuations in random noise 

 
1 They include x and l in their character set, but as it is difficult to 

map these to any Japanese sounds, we do not use them in this study. 

that serve as the starting point for inference. Therefore, like 
prior research, we generate 50 images per prompt and 
consider the average of the corresponding vectors for each 
image as the vector associated with that prompt. 

Results 
We present the results of both our experiment and that of 
Alper and Averbuch-Elor (2023) in Table 1. 
 

Table 1: Evaluation metrics for each model. (en) and (ja) 
indicate the English and Japanese models, respectively. The 
results for the English models were reported by Alper and 
Averbuch-Elor (2023). Our experimental results are shown 

in bold. 
 

 𝛾⟨#⟩ 	  𝜙⟨#⟩ 
Model AUC 𝜏  AUC 𝜏 

Stable Diffusion 
(en) 0.74 0.34  0.97 0.68 

CLIP (en) 0.77 0.39  0.98 0.70 
Stable Diffusion 

(ja) 0.51 0.01  0.37 -0.19 

CLIP (ja) 0.43 -0.10  0.69 0.28 
Random 0.50 0.00  0.50 0.00 

 
As the table indicates, all metrics in the Japanese model 
considerably underperform compared to those in the English 
model. 

We grouped the pseudowords by each consonant and 
vowel that compose their first two letters and calculated the 
average geometric score. The results are shown in Figure 1 
and 2. Alper and Averbuch-Elor (2023) have also reported 
the average scores per character with English models, where 
a significant correlation between the scores and sharpness-
roundness was observed. However, our results clearly differ 
from that. Particularly intriguing differences were observed 
in consonants, such as /p/ and /s/, which were expected to be 
round in Alper and Averbuch-Elor’s study, is closer to the 
end associated with roundness in our data from both Japanese 
Stable Diffusion and CLIP. Conversely, the voiced consonant 
/ɡ/, expected to be round, being closer to the sharp end. 
Additionally, the vowel /u/, typically associated with 
roundness, was closer to the sharp end, whereas /e/ was closer 
to the round end. We will discuss the potential sources of 
these differences in the next section.  

 
 

2 https://huggingface.co/stabilityai/japanese-stable-diffusion-xl 
3 https://huggingface.co/sonoisa/clip-vit-b-32-japanese-v1 
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Figure 1: Consonants and vowels sorted by the average 
geometric score of Stable Diffusion. Blue corresponds to 

round characters, while red corresponds to sharp characters 
according to Alper and Averbuch-Elor (2023). 

 

 
 

Figure 2: Consonants and vowels sorted by the average 
geometric score of CLIP. 

 

Discussion  
Our results obtained from Japanese vision-and-language 
models considerably differ from those from English vision-
and-language models, not showing the shape-sound 
associations as demonstrated by Alper and Averbuch-Elor 
(2023). Where do these differences arise from? 

Possible explanations or interpretations include the 
language-specific, systematic aspect of iconicity. As for 
consonants, /ɡ/ was placed closer to the sharp end (Figures 1 
and 2). In the Japanese sound symbolic system, velar stops 
(/k, ɡ/) are associated with ‘hardness of surface’, ‘abrupt 
manner’ and ‘harshness’ according to Hamano (1998, 2014). 
More significantly, the voiced velar stop /ɡ/ is associated 
with ‘roughness,’ along with other voiced obstruents such as 
/d/ and /z/. These associations are illustrated by Japanese 
ideophones, such as giza-giza ‘serrated’, gata-gata ‘uneven’, 
gari-gari ‘hard’, gotsu-gotsu ‘rugged’, and gowa-gowa 
‘rough’, and toge-toge ‘edgy’. 

Furthermore, /p/ can be associated with ‘roundness’ in 
various respects. Firstly, /p/ is classified as a labial 
consonant, as well as /b/ and /m/, associated with roundness 
as in bouba and maluma cross-linguistically (D’Onofrio, 
2014), despite also being categorized as voiceless stops 
which include /t/ and /k/, which may instead be associated 
with sharpness. Another factor contributing to the roundness 
of /p/ is again language-specificity. According to Hamano 
(1998, 2014), /p/ is associated with ‘fatness’ as evidenced by 
ideophones such as pocha-pocha ‘chubby’, puyo-puyo ‘fat’, 
and puku-puku ‘puffing up’. In Japanese, there is a unique 
association between voicing and hardness, with Japanese 
speakers associating voiceless consonants (e.g., /p/) with 
softness and voiced consonants (e.g., /b/) with hardness. The 
crossmodal correspondence between softness and roundness 
may also have contributed to the roundness of /p/ (Sakamoto 
& Watanabe, 2018).  

The differences in score which come from different places 
of articulations are effectively captured by the geometric 
scores of CLIP, as illustrated in Figure 3. A linear model that 
predicts geometric scores from place of articulation revealed 
that velars (/k, ɡ/) had lower geometric scores (i.e., sharper) 
than other types of consonants, including glottal /h/ (b = 0.01, 
SE < 0.01, t = -3.74, p < .001, R2 = .24). Additionally, labials 
(/b, m, p/) demonstrated higher geometric scores (i.e., 

rounder) than other consonants, such as alveolars (/t, d, n/) (b 
= 0.01, SE < 0.01, t = -3.74, p < .001, R2 = .24). 

 

   

Figure 3: Geometric scores of CLIP by place of 
articulation (the skyblue bots represent the average).  
 

Additionally, /s/ was associated with roundness in our 
data, contrasting with the findings of Alper and Averbuch-
Elor (2023). This discrepancy may arise from the association 
of /s/ with concepts such as ‘surface without resistance’ and 
‘smoothness’, as observed in ideophones referring to 
“smoothness”, such as sarasara, surusuru, and subesube, as 
proposed by Hamano (1998). Consequently, it is conceivable 
that /s/ was linked with roundness rather than sharpness. 

As for vowels, there are two potential explanations for 
why /u/ had a lower geometric score compared to other 
vowels. One possibility is that /u/ ([ɯ]) is normally not 
rounded in the Japanese phonological system. When we 
categorize the five vowels into two groups—rounded /o/ and 
unrounded /a, e, i, u/—the rounded vowel /o/ exhibited a 
higher geometric score (i.e., rounder) than the unrounded 
vowels, aligning with universal associations between 
rounded vowels and round shapes, as depicted in Figure 4. A 
linear model that predicts geometric score from roundness of 
vowels revealed that rounded vowels had higher geometric 
scores (i.e., rounder) than unrounded vowels (b = 0.01, SE < 
0.01, t = -2.10, p = .04, R2 = .01).  

 

 

Figure 4: Geometric scores of CLIP by roundness of 
vowels (the skyblue bots represent the average).  
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Another possibility is that /u/ was combined with voiced 
obstruents (/ɡ/, /b/, /d), since they were expected to be round, 
as investigated by Alper and Averbuch-Elor (2023). As 
mentioned above, voiced obstruents are generally associated 
with ‘roughness’ in the Japanese sound symbolic system 
(Hamano, 1998). This aspect requires further refinement in 
future research, particularly in the reconsideration of 
pseudoword construction.  

Other possible factors contributing to our results are 
diverse, including the expressiveness of Stable Diffusion and 
CLIP and the selection of adjectives: the abstract vectors do 
not have sufficient representation power. What we have 
revealed thus far is that the cosine similarity between 
Σ%∈*!𝑣%4  and Σ%∈*"𝑣%4  in prior research is approximately 
0.93, whereas in this study, it is approximately 0.98. The 
abstract adjective vector is defined as the difference between 
these vectors, with the assumption that this represents the 
difference in meaning between “round” and “sharp”. 
However, due to the lack of significant difference between 
these two vectors, there is doubt about whether our created 
abstract adjective vector is suitable for use as the vector for 
calculating geometric scores. For a more comprehensive 
analysis, measuring the quality of the output at each step is 
one of the future challenges.   

The current results encourage further investigations into 
iconic form-meaning mappings in models of other languages 
to support the universality that Alper and Averbuch-Elor’s 
findings may suggest and language-specificity that the 
current study revealed. Comparing the experimental results 
from psycholinguistics with those from computational 
approaches will help us to understand the nature of iconicity 
in terms of embodied cognition and its possible role in 
human language and language models. 
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