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Abstract

Pedestrian Dead Reckoning Using Smartphone Inertial Data for Blind Wayfinding

by

Fatemeh Elyasi

Accurate, robust, and infrastructure-free pedestrian positioning and navigation systems

have gained significant attention in recent years due to their diverse applications. GPS

is ineffective indoors and fixed infrastructure-based indoor navigation systems, such as

beacons or Wi-Fi networks, pose practical and cost challenges. To address this, there’s

a growing demand for self-reliant navigation systems that seamlessly function indoors

and outdoors. These systems often utilize sensor fusion and machine learning for precise

and adaptive navigation. They can be integrated into standard smartphones, providing

a portable and comprehensive navigation tool.

A specific beneficiary group for such systems includes individuals with visual

impairments who rely on tools such as long canes or guide dogs. Self-reliant navigation

systems can be customized for their specific needs, enhancing mobility and independence

indoors and outdoors. Existing research has primarily focused on sighted individuals,

however, there is an increasing interest to understand the unique challenges faced by

visually impaired individuals and optimizing systems for more inclusive and effective

solutions.

This dissertation addresses this need by developing a Pedestrian Dead Reckoning

(PDR) system for inertial navigation using smartphones to assist visually impaired

xii



individuals in indoor settings. Such PDR system requires two important components:

step detection and step length estimation.

For step detection within our system, an LSTM-based network was developed,

trained, and tested on the WeAllWalk data set, which includes inertial data gathered from

ten blind and five sighted walkers. The achieved results on this data set surpassed existing

benchmarks, highlighting the crucial role of selecting from the walker community for

training data plays in determining results. Furthermore, the PDR system, incorporating

this step detector method, outperformed the state-of-the-art learning-based model, RoNIN,

in path reconstruction on the WeAllWalk data set.

For step length estimation, a model consisting of an LSTM layer followed by

four fully connected layers was implemented. The same network scheme was used to

predict either step length or walking speed (allowing for integration over a step period

to calculate step length). In the initial step, data was collected from twelve sighted

participants who traversed four routes with varying stride lengths. Results from sighted

participants suggest that step length can be predicted more reliably than average walking

speed over each step. Subsequently, the model was trained and tested on data from seven

blind participants. The obtained results highlighted the different gait patterns among

sighted and blind walkers, emphasizing the importance of designing systems for assisted

navigation based on data from the visually impaired community.

Finally, an iOS application named WayFinding was designed to aid indoor

navigation for blind travelers. The developed step detector module was integrated into

this app. However, for this study, a calibrated step length was used instead of the

xiii



step length estimator. WayFinding enables an individual to determine and follow a

route through building corridors to reach a certain destination, assuming the app has

access to the building’s floor plan. This app exclusively utilizes the inertial sensors of the

smartphone, requiring no infrastructure modifications, such as the installation and support

of BLE beacons. A watch-based user interface and speech-based notifications enable

hands-free interaction for blind users. A user study involving seven blind participants was

conducted in our campus buildings to assess the system’s performance. All participants

successfully navigated the pre-defined routes and provided positive feedback during the

post-experiment interviews and questionnaires.
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Chapter 1

Introduction

While the fields of localization and odometry have traditionally focused on

moving platforms, there is a growing interest in developing mechanisms that can effectively

localize and track human pedestrians as they move, especially within indoor environments.

This emerging interest arises from a diverse range of applications, each presenting unique

benefits and challenges.

Recently, localization and tracking technologies have played a crucial role in

addressing challenges related to contagious diseases and interpersonal interactions. These

technologies are now essential for accurately tracking interpersonal contagion in close-

contact scenarios. Innovative methods have been developed for this purpose [63, 79, 75].

Another application involves monitoring people’s movements in various contexts, including

healthcare facilities. This is crucial for ensuring patient safety and well-being, potentially

enhancing the quality of care [90, 108]. Another important application is providing

navigation and location-based information to individuals exploring unfamiliar places,
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particularly benefiting those with visual impairments. Visual challenges, such as the

inability to recognize landmarks, preview route sections, and access visual maps, are

common among individuals with visual impairments. While some blind individuals can

construct mental maps through direct locomotion experience, others may have a limited

grasp of their surroundings during route navigation [106, 80]. Technological solutions

supporting safe navigation for the visually impaired individuals can significantly enhance

their mobility and independence, offering valuable assistance [3].

Developing an indoor pedestrian localization and navigation system is a complex

task. Some approaches necessitate the setup of dedicated infrastructure, like BLE

beacons [26] or UWB beacons [36], which limits their practicality to locations where

these devices have been specifically deployed. Alternatively, certain methods rely on

external signals that are expected to be accessible at the area of interest, such as GPS

measurements, radio signals from Wi-Fi routers [16], and magnetic field fluctuations

caused by electrical appliances [97]. GPS-based localization is ineffective indoors, and

methods relying on Wi-Fi signals or magnetic fields necessitate an initial calibration

phase (commonly known as fingerprinting), making them unstable over time, especially

when Wi-Fi routers are repositioned.

Two indoor pedestrian tracking methods that do not require external infrastruc-

ture or prior calibration are visual odometry and inertial odometry. Inertial sensors and

cameras are commonly found in smartphones, but visual odometry is power-intensive,

needs clear field of view, and raises privacy concerns. Despite known issues like drift,

inertial odometry is argued to be more practical for pedestrian tracking than visual-based
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methods. Users can conveniently place their smartphone in their pocket and rely on

inertial sensors, making it suitable for visually impaired individuals who may use a cane

or a guide dog while walking.

Standard strap-down inertial odometry, which involves double integrating ac-

celerometer data while subtracting the gravity vector, faces challenges like drift caused by

noise and bias. It uses gyro data to track the gravity direction but computes odometry

in the sensor’s frame, making it prone to misinterpretations of walking direction due to

smartphone orientation changes relative to the user’s body. To improve performance,

we can leverage the specific characteristics of human walking. Walking consists of steps

with stance and swing phases. Inertial sensors on the walker’s feet reset estimated

velocity during stance, reducing drift (known as zero-velocity updates or ZUPTs [33]).

These are effective for foot-mounted sensors but not applicable to smartphones. Mod-

ern methods employ neural networks to learn the dynamics of inertial data recorded

during human walking, resulting in reduced odometry drift. These machine learning

approaches require well-calibrated datasets containing both inertial data and ground

truth positions [14, 45, 66, 99].

Pedestrian Dead Reckoning (PDR) determines the user’s position by detecting

step events and adjusting the location based on step length and orientation. PDR is

favored for its simplicity and robustness. Errors in step length determination have a

linear impact on the computed location, whereas uncompensated accelerometer bias leads

to a quadratic effect due to double integration. Machine learning methods are employed

to estimate step lengths from inertial data [40, 110, 55, 116], offering improved reliability
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compared to previous heuristic techniques [61, 111, 54].

Inertial navigation systems can greatly benefit blind travelers who face significant

wayfinding challenges due to their visual impairment. These systems have the potential to

enhance their safety and confidence during independent travel. Existing inertial odometry

systems, mainly designed for sighted individuals, may not be suitable for blind walkers.

This is because the gait patterns of blind individuals using a cane or guide dog differ from

those of sighted walkers [44]. For example, blind walkers often exhibit varying heading

directions due to side-to-side swings with a long cane. Navigating without sight can lead

to frequent encounters with obstacles and other people, necessitating frequent stops and

reorientation. These occurrences introduce inaccurate inertial measurements that may

pose challenges for odometry systems designed for sighted individuals.

To create an odometry system for individuals with visual impairment, it’s crucial

to include data from blind walkers, especially when using learning-based methods. The

WeAllWalk data set, previously compiled by Dr. Manduchi’s research group, is the only

publicly available data set with inertial data from blind participants. They carried two

iPhones and traversed various paths in two different buildings, with blind walkers using

canes or guide dogs as travel aids.

This dissertation focuses on developing a smartphone-based indoor inertial

localization and odometry system designed to assist visually impaired individuals in

navigating indoor environments. In situations where a building map is accessible, the

system is equipped for wayfinding, delivering detailed turn-by-turn routing information

and instructions. This application was implemented in collaboration with another Ph.D.
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researcher in our group

To accomplish this goal, a Pedestrian Dead Reckoning (PDR) system was

developed, relying on step-detection algorithms using phone inertial data. First, in

Chapter 2, I provide a background on positioning techniques. Chapter 3 involves the

design, training, and testing of a Long Short-Term Memory (LSTM)-based model. This

model, leveraging the WeAllWalk data set for step counting, not only outperforms existing

benchmarks but also sets a new standard for accuracy on this data set. Furthermore, the

developed PDR system comprises multiple components, including the aforementioned

step counter model, a turn-detector module (crafted by a fellow Ph.D. researcher), and a

learned fixed step length. This comprehensive system has undergone rigorous testing

on the WeAllWalk data set, yielding results that surpass those achieved by the leading

learning-based odometry system, RoNIN. These results mark a significant milestone in

the development of our indoor inertial localization and odometry system.

In Chapter 4, I present another essential component of a PDR system involving

the estimation of step length. To enable learning about step lengths, a new data

set was gathered from twelve sighted participants. This was important to address the

accelerometer range limitation of the foot sensor in the WeAllWalk data set. For this data

set, participants traversed four routes with different stride lengths, during which inertial

data was collected using two smartphones worn on their bodies. Ground truth step lengths,

along with average walking speed during each step, were established using foot-mounted

sensors and EKF-based odometry integrated with zero-velocity updates. Subsequently,

an LSTM network was introduced to predict either step length or average walking speed
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during a step. The experimental results robustly indicated that predicting step length

is more reliable for achieving greater accuracy in distance measurements compared to

estimating the walker’s velocity. Finally, the performance of the proposed step length

estimator model was evaluated using data collected from seven blind participants. The

results emphasized that a model trained exclusively with sighted walkers consistently

yielded poor results when tested with blind users. However, when the training set included

data from this specific community, the results exhibited substantial improvement.

Finally, in Chapter 5, WayFinding is introduced, an iOS-based application

designed to assist blind travelers in navigating indoor environments. Assuming access to

the building’s floor plan, the system utilizes the phone’s inertial data to provide detailed

turn-by-turn navigational instructions, guiding blind travelers to their destination. The

system integrates two PDR-based localization technologies with particle filtering for

inertial-based localization. One approach incorporates the previously mentioned step

detector module, identifying steps with a length equal to the estimated step length and

direction derived from the phone’s azimuth angle. Since the step length estimator model

was trained on sighted walkers, we employ a calibrated adaptable step length. The second

PDR technology is based on RoNIN [45], estimating position by integrating the estimated

velocity over time. Moreover, a user-friendly speech-based interface has been incorporated

for blind travelers, allowing interaction through a smartwatch. Users receive instructions

and feedback via speech, and notifications are strategically designed to provide ample

time for decision-making while addressing the inherent inaccuracies associated with the

dead-reckoning nature of inertial-based localization. Lastly, a user study involving seven
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blind travelers was conducted to assess the application’s performance in real-life scenarios.

Participants traversed four routes in two different buildings, including one to become

familiar with the app usage. Observations and feedback obtained through interviews

with the participants were encouraging, indicating that the system can be a feasible aid

for navigating indoor spaces.
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Chapter 2

Related Work

Navigation is the process of guiding an object or a person from its current

location to the desired destination. This task involves two main components: positioning

and guidance. Indoor navigation systems find applications in various scenarios. For

example, providing the position of emergency responders like firefighters and police

officers in rescue efforts aids navigation in challenging environments, such as smoke-filled

buildings. Another crucial application is wayfinding for individuals in office buildings,

shopping malls, and transit hubs, which is particularly challenging for blind travelers

and requires support for independent travel.

Positioning techniques can be broadly categorized into two main types based on

the technologies they utilize: external infrastructure-based systems and infrastructure-free

systems [95].
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2.1 Infrastructure-Dependent Systems

2.1.1 WiFi-based systems

WiFi, a wireless local area network (WLAN) technology, is extensively utilized

indoors, making it well-suited for indoor positioning applications. Two primary methods

are commonly used for positioning with WiFi signals: signal strength-based methods and

fingerprinting.

2.1.1.1 Signal strength-based

In this approach, the method involves measuring the received signal strength

index (RSSI) of each WiFi access point (AP) to compute the distance between a target

device and multiple APs. Employing trilateration techniques, the system calculates the

target device’s position in relation to the known positions of these APs. However, it

is worth noting that the reliability of this positioning technique is challenged by the

presence of strong reflections and scattering conditions indoors, leading to a significant

reduction in the accuracy of RSSI measurements [68, 18].

2.1.1.2 Fingerprinting

This method operates in two stages: offline mode and runtime mode. In

offline mode, a database is generated, creating a radio map that depicts the relationship

between RSSI values and positions at reference points with known locations. During

runtime, the measured RSSI is compared with stored RSSI values in the database to
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estimate the device’s position. However, this technique also suffers from the signal

attenuation issues. Additionally, constructing and updating the fingerprint database is

a time-consuming process. It’s important to note that mobile devices, being small and

constrained by battery power, present challenges in minimizing power consumption in

these methods [68, 18, 109].

2.1.2 Bluetooth-based systems

Using Bluetooth for positioning purposes has been extensively investigated in

the past. The primary challenge in these systems lies in the considerable time required to

obtain a sufficient number of nearby Bluetooth devices, leading to a significant increase in

localization latency. In 2010, the situation changed with the introduction of Bluetooth 4.0,

which includes Bluetooth Low Energy (BLE). Compared to classic Bluetooth, BLE offers

improved data rate, coverage range, and higher energy efficiency. Similar to WiFi-based

systems, Bluetooth-based systems rely on Received Signal Strength Indicator (RSSI).

The methods used for positioning with BLE beacons can be divided into two main

categories: distance-based and fingerprinting-based. In the distance-based approach,

knowledge of the exact locations of BLE beacon stations is essential. Consequently, the

target’s position can be estimated using trilateration. The fingerprinting-based approach

is similar to WiFi-based fingerprinting methods. The Reference Fingerprint Map (RFM)

is constructed during offline mode, and in the online phase, the position can be estimated

by comparing the collected fingerprint with the fingerprints in the RFM. Although it

has been demonstrated that BLE is more accurate than WiFi in identical locations, it
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shares similar drawbacks, as mentioned in the previous section. Creating an RFM is

time and energy-consuming, requiring periodic updates due to possible changes in the

environment[9, 18, 58, 122].

2.1.3 Ultrasound-based systems

Researchers drew inspiration from bats, which use ultrasound signals for night-

time navigation, leading to the exploration of ultrasound signals in positioning systems.

To implement such a system, ultrasonic receivers are strategically placed in known

locations within the environment. The mobile target acts as a transmitter, emitting

both radio and ultrasonic signals simultaneously. Given that radio signals travel much

faster than ultrasound signals, receivers can synchronize quickly. By measuring the time

difference of arrival between the radio and corresponding ultrasonic signals, each receiver

can infer its distance from the transmitter. Trilateration, using multiple distances to

known locations, then allows for the determination of the target’s position. However,

these systems face challenges due to potential inaccuracies caused by reflections, obstacles,

and multi path receptions. Additionally, the installation of several receivers is costly and

complex, and the speed of ultrasound signals can be affected by temperature changes,

introducing further measurement challenges [72, 41, 68].
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2.2 Infrastructure-Free Systems

2.2.1 Vision-based systems

Visual odometry, employing techniques like Structure from Motion or visual

SLAM, reconstructs the camera’s position, orientation, and world structure by continu-

ously tracking features across frames [24]. Frameworks such as Apple ARKit integrate

visual odometry with inertial odometry to precisely determine the camera’s global position

and orientation [13]. Scale determination often relies on data from acceleration or depth

sensors. Leveraging visual data for indoor localization holds significant promise. While

individuals with sight heavily rely on their eyes to gather essential spatial information,

mobile targets can also be equipped with cameras, like those attached to robots or

smartphones carried by people as sensors. These systems execute localization by tracking

environmental features. However, vision-based positioning systems, reliant on cameras as

sensors, have limitations. They may not perform optimally in low-light environments,

when the camera is obstructed, or lacks a clear line of sight, for instance, when a user

keeps a phone in their pocket [89, 68, 18, 34].

2.2.2 Inertial sensor-based systems

Inertial sensors, typically comprised of accelerometers and gyroscopes integrated

into Inertial Measurement Units (IMUs),are significant components within the broader

category of Micro Electro Mechanical Systems (MEMS).The changes in inertial measure-

ment signals captured by an IMU during body movement are employed in the positioning
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process. IMU sensors can be categorized into two types: wearable sensors and portable

sensors. Wearable sensors can be attached to one or more parts of the user’s body, while

portable sensors can be integrated into devices like smartphones or smartwatches, which

may be placed in the user’s pocket or held in hand during motion. In contrast to other

sensor types, inertial sensors offer several advantages, ncluding small size, lightweight

design, portability, wearability, cost-effectiveness, low power consumption, and indepen-

dance from infrastructure [96, 95]. The subsequent section explores the primary methods

that leverage inertial sensors for various applications.

2.2.2.1 Strapdown Inertial Navigation Systems (SINS)

The Inertial Navigation System (INS) integrates the sensor outputs to calculate

the navigation solution (velocity, position, and attitude) continuously. An unaided

inertial navigation system suffers from integration drift, i.e. small errors in acceleration

and angular rates cause errors in speed and heading direction, which accumulate over

time and form a drastically larger error in the position estimate. Inertial sensors can be

strapped to a moving object to create a strapdown inertial navigation system. In this

scheme, the sensor outputs are measured in the sensor frame rather than the navigation

frame. The attitude is calculated by integrating the angular rates measured by the three

gyros. Next, this orientation is used to transform the acceleration values measured in

the sensor frame into the navigation frame, and the gravitational component is removed

from the z-acceleration. The acceleration measurements in the navigation frame are then

integrated to obtain the velocity. Finally, the velocity is integrated to obtain the position
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(see Figure 2.1).

Figure 2.1: Strapdown Inertial Navigation System [115]

Foot-mounted sensors are very popular among strapdown inertial navigation

systems for use in indoor positioning. Due to the presence of zero velocity conditions

during stance phases, the positions can be regularly corrected using techniques such

as Zero velocity UPdaTes (ZUPT). The pedestrian’s foot alternates between a moving

stride phase and a stationary stance phase when the foot touches the ground. ZUPT is

applied during the stance phases where the velocity is theoretically zero in order to limit

the growth of the velocity and, consequently, the position errors in inertial navigation

systems. Moreover, Kalman Filter-based frameworks can be implemented to combine

zero velocity measurements with inertial navigation system (INS) solutions. To further

improve the position accuracy, it has been shown that instead of simply resetting the

velocity to zero, ZUPT can be introduced as measurements into the Kalman Filter [33].

More importantly, ZUPT enables the Kalman Filter to correct most of the position drifts

that occur during the stride phase [98, 28].
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2.2.2.2 Pedestrian Dead Reckoning (PDR)

One of the simplest methods to track the moving body’s trajectory is using

PDR systems which are based on detecting the step events and moving the location

forward by the step length in the direction that is determined for the user’s orientation.

Traditionally, researchers analyze the acceleration signals to detect peaks [39] or zero-

crossing events [7, 8] to count the number of steps. Recently, learning-based approaches

have been utilized for step-counting purposes. The phone’s orientation can be obtained by

integrating the data from the accelerometer and gyro. In [31], a system is proposed based

on dynamic programming to estimate the discrete walker’s orientation along with drift.

Although the algorithm performed well in tests with sighted walkers, the quality of the

results degraded in tests with blind walkers. The main challenge is that the orientation

of the phone needs to be decoupled from the direction of walking, for example, if one at

some point re-positions the phone on their body. Step length estimation (SLE) plays a

crucial role in the operation of PDR systems. SLE is a challenging problem as stride

length can vary with gender, height, weight, and health condition [110]. Traditional

empirical methods use predefined coefficients and acceleration values to estimate the

step length [111, 54, 61]. Recently, learning-based methods have been employed for step

length estimation problems [40, 110, 55, 116].
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2.3 Data-Driven Odometry

Recent advancements in inertial odometry have introduced learning-based

methods. In the earliest work, RIDI (Robust IMY Double Integration) regresses velocity

vector from angular velocity and linear acceleration data to optimize bias but still relies

on double integration from the corrected IMU data for position estimation [117]. IONet

takes a different approach by feeding accelerometer and gyroscope measurements into

a deep neural network. This method estimates the user’s heading and regresses the

change in distance in a predefined time window [14]. RoNIN stands out as it processes

inertial data in a heading-agnostic reference frame, utilizing three distinct neural network

architectures: an LSTM network, a temporal convolutional network (TCN), and a residual

network (ResNet). An impressive feature of RoNIN is its capacity to function seamlessly

even when the phone is repositioned on the user’s body. This is achieved by decoupling

the phone’s orientation from the user’s orientation, ensuring effective performance, even if

the user shifts the phone to a different pocket during walking [45]. In recent work, TLIO

(Tight Learned Inertial Odometry) introduces regression for 3D displacement estimates

using a ResNet architecture. Subsequently, by utilizing the raw IMU measurements and

employing the estimated states as measurements through a stochastic cloning Extended

Kalman Filter (EKF), the method allows for the extraction of sensor biases, position,

and orientation [66].
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2.4 Inertial Navigation for Blind Users

Performing everyday tasks, such as navigating their surroundings, poses a

significant challenge for visually impaired individuals. Consequently, there has been a

growing focus on developing assistive technologies to facilitate independent travel for the

blind. Particularly, indoor navigation presents additional complexities, as GPS signals are

often limited in such environments, such as office buildings, shopping malls, and transit

hubs [74, 82]. Assistive navigation systems incorporate various technologies, including

location-based information to navigate obstacles (e.g., announcing the presence of nearby

stairs) and wayfinding systems that provide directions or assist users in retracing their

path to the starting point. In [35], visual odometry is employed for wayfinding. This

approach uses computer vision to detect standard signs, such as exit signs, as beacons.

Additionally, 2D maps are utilized to identify impassable barriers, leveraging particle

filters to estimate and track the user’s location in the environment. BLE beacon-based

turn-by-turn navigation system is proposed in [3], which requires the availability of the

environment map. In another study [25], authors introduce a particle filter-based method

that exploits inertial sensors and leverages visually impaired users’ unique tactile sensing

capabilities to confirm the presence of anticipated tactile landmarks along the provided

path. Furthermore, in [29], an inertial sensor-based system is proposed for assisted return,

utilizing a turns/steps representation of indoor environments.
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2.5 Inertial Data Sets

Training learning-based approaches for odometry and assessing their perfor-

mance rely on well-calibrated inertial data sets. Recent attention has been given to

creating smartphone-based inertial data sets for indoor localization, considering the

lack of publicly available data sets. Examples include the OxIOD data set, collected

with pedestrians walking inside a room using a smartphone at different placements,

recording IMU data. Additionally, an optical motion capture system (Vicon) provides

high-precision labels with locations, velocities, and orientations of the user at each

time [15, 14]. The RIDI data set comprises IMU sensor measurements and 3D motion

trajectories obtained from the Visual Simultaneous Localization and Mapping (VSLAM)

system on a smartphone equipped with an RGBD camera, specifically the Google Tango

phone [117]. RoNIN collected a diverse and large-scale data set using two devices: one for

recording IMU measurements and another (Asus Zenfone AR) for ground-truth motion

trajectories [45]. In the data set presented in [110], a smartphone provides inertial data,

and a foot-mounted sensor generate ground truth for heel strike moments and stride

length.

2.5.1 WeAllWalk Data Set

The gait patterns of sighted individuals may differ from those of blind walkers,

emphasizing the importance of using data sets that include blind travelers for developing

odometry systems for the visually impaired. All previously mentioned data sets are
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limited to data collected from sighted individuals. The WeAllWalk data set stands

out as the sole publicly available collection of inertial data from blind individuals. In

this study, ten blind volunteers and five sighted walkers participated, with nine blind

walkers using a long cane, one using a dog guide, and two alternating between a long

cane and a dog guide. Collectively, participants covered 7 miles of long and complex

routes, segmented into "straight" or "turn" categories on floor maps, with corresponding

coordinate information provided. Two iPhones (6s) were carried by participants at

different locations to record inertial and attitude data (sampled at 25 Hz), and two

foot-mounted sensors on participants’ shoes generated ground truth labels for heel

strike times. Additionally, the data set records the time each walker crossed segment

boundaries (waypoints) and timestamps specific events such as door openings, collisions

with obstacles, or getting caught in a door opening, which are tagged as features [30].
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Chapter 3

Step Counting

3.1 Introduction

To create an effective wayfinding system for the visually impaired, a dependable

inertial odometry system is crucial. Wayfinding strategies differ when a building map

isn’t available. In such cases, the navigation system can be useful in assisted return

by providing directional guidance to visually impaired user who is backtracking their

path. Whereas, when a map is accessible, the routing information can be provided by

the system to the selected destination. Fundamental to tracking the moving body is step

detection, altering the position according to the user’s step length and direction. Hence,

step counting serves as the core of pedestrian dead reckoning (PDR) systems, drawing

considerable attention in research and commercial applications.

Commercial pedometers commonly employ sensors embedded in shoes, attached

to ankles, or belts. Additionally, step counting is integrated into contemporary smart-
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watches and smartphone apps for fitness monitoring. Traditionally, step counting involves

identifying peaks or features within acceleration or rotation rate signals [5, 51]. Inspired

by previous work [23], I developed a recurrent neural network (RNN)-based step counting

system. User heading direction can be obtained from azimuth angles provided by modern

smartphone operating systems or derived from a turn-detection module (developed by

another researcher in our group) for users moving along paths with discrete turning

angles. Various methods for estimating step length will be discussed in the next chapter.

This chapter introduces a step counter model, presenting experimental results achieved

with the WeAllWalk data set and displaying the results obtained through a PDR system

that includes the step counter as a key component.

3.2 Step Counter Model

We’ve developed a step-counting system based on LSTM (Long Short-Term

Memory) [46], a popular type of Recurrent Neural Network (RNN). Past research [23]

utilized a bi-directional LSTM, which can enhance robustness by considering a whole

batch of data simultaneously. However, this approach might not be suitable for scenarios

necessitating timely step detection, such as wayfinding or assisted return applications

where continuous tracking of the walker’s position along the route is critical. Thus, we

opted for a regular, uni-directional LSTM for our application.

We can obtain the inertial data of interest from the phones by utilizing the

device’s proprietary sensor fusion algorithm, which processes data collected through the
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onboard accelerometers and gyroscopes. The desired data including attitude, representing

the 3-D orientation relative to a fixed “world” reference frame where the Z axis aligns

with gravity; gyro, providing a 3-D vector of angular velocities; and user acceleration, a

3-D vector indicating the actual acceleration of the phone (i.e., excluding the force of

gravity).

Our LSTM takes as input the user acceleration (across three axes) and rotation

rate (along three axes). These vectors are pre-multiplied by the inverse of the attitude

matrix to establish a reference frame independent of heading [45]. Each axis’s data

is normalized to zero mean and unit variance. The LSTM is trained to generate a

sequence that approximates the desired output, a sequence uniformly set to 0, except

during heel strikes, where it is set to 1. More precisely, we convert each impulse into

a narrow triangular wave spanning three samples. The LSTM is trained using Keras

with 100-sample windows (equivalent to 4 seconds) and utilizes the least squares loss

function. Note that the output of LSTM is a sequence of numbers between 0 and 1,

and is transformed to a binary signal by applying a suitable threshold S. Within each

series of consecutive LSTM output samples surpassing this threshold, we designate the

midpoint as the estimated time of heel strike.

Our LSTM consists of a 2-layer network with a hidden unit size of six. Through

initial experiments, we found this network depth to be sufficient for the task, as adding

more layers increased the risk of overfitting. We employed the Adam optimizer and

dropout for regularization. Training occurs with a batch size of 256 and an initial learning

rate of 0.005, reduced by half after 50 epochs, across a total of 64 epochs.
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Figure 3.1 illustrates instances of step detection. While our step counter

performs reliably in most conditions, we observed a decaying oscillatory pattern in the

LSTM output when a person stops walking. Additionally, occasional misses of the initial

one or two steps might occur when starting to walk.

3.3 Step Length

To apply step counting in odometry, defining the walker’s step length is crucial.

Various techniques, including learning-based methods using inertial data, have been

proposed to estimate step length. In my experiments with the WeAllWalk data set, I

tested several of these algorithms but encountered challenges in achieving consistent and

accurate results. The primary issue arises from the inability to establish ground truth

step length labels within this data set. Consequently, I derived a fixed step length based

on the known lengths of paths traversed in WeAllWalk, and the ground-truth number of

steps recorded for each path by each participant within the training set.
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(a)

(b)

Figure 3.1: Examples of step detection. (a) Top row: the output of LSTM (black line) is

thresholded, and the midpoints of the resulting positive segments (gray line) are taken

as the estimated times of heel strike (ground-truth shown by red line). The LSTM takes

in input the 3-axes rotation rate (middle row) and the 3-axes user acceleration (bottom

row). In (b), instances of overcounting are observed between t = 24s and t = 26s, while

an instance of undercounting is visible between t = 29s and t = 30s
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3.4 Experiments

3.4.1 Training/Test Modalities

Considering the distinct walking characteristics between long cane users and

guide dog users [47], we analyzed these groups separately, denoted by the modifiers

:LC (for long cane users) and :GD (for guide dog users). We employed the following

training/test schemes, ensuring that the system testing a specific walker was never trained

using data from that same individual.

• Train on Sighted (TS): All parameters are derived using data gathered from the

five sighted walkers within WeAllWalk. The system’s performance is then evaluated

on the two communities of blind users (TS:LC, TS:GD). This scenario simulates

the use of a system initially designed for sighted walkers when employed by blind

walkers without specific tailoring or customization.

• Train in same Community (TC): In this setup, the system, tested with long

cane users, guide dog users, and sighted individuals, was trained exclusively on data

from walkers within the same community. We utilized the Leave-One-Person-Out

(LOPO) cross-validation strategy [37, 57], wherein each participant was tested using

a system trained on data from all other participants within the same community.

It’s important to note that each training set in the TC:GD modality comprises

data from only two walkers.

• Train on All (TA): In this configuration, all available data in WeAllWalk was
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utilized for training, employing the Leave-One-Person-Out cross-validation strategy

(TA:LC, TA:GD). For instance, a long cane user is tested with a system trained on

data including all sighted participants, guide dog users, and other long cane users.

For all tests in each modality, the measured quantities of interest are averaged over both

iPhones carried by the participants, all paths, and all participants in the test set.

3.4.2 Step Counter Results

We considered two different error metrics for the step counter:

• SC-Error 1: We compute the midpoint between any two consecutive ground-truth

heel strike times, and count the number of detected steps between two consecutive

such midpoints. Note that there is exactly one ground-truth heel strike within this

interval. If n>1 steps are detected within this interval, n-1 overcount events are

recorded. If no steps are detected, an undercount event is recorded.

• SC-Error 2: The difference between the number of detected steps in a WeAllWalk

segment and the number of ground-truth heel strikes in the same segment is recorded

as overcount (if positive) or undercount (if negative).

The total number of overcount and undercount events in each path is normalized by the

total number of ground-truth heel strikes to produce an undercount (UC) rate and an

overcount (OC) rate. Note that increasing the threshold S on the output of the LSTM

normally results in an increase in the UC rate and a decrease in the OC rate. This is

shown in Figure 3.2, where we plotted the UC rate vs OC rate as a function of S.
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(a) (b)

Figure 3.2: UC rate vs OC rate curves as a function of the threshold S on the LSTM

output.

The test results are presented in Table 3.1. The threshold S is determined

to balance the OC and UC rates of SC-Error 2 measured in the training data. Thus,

these S values are computed and averaged over all cross-validation rounds (refer to

Table 3.1). Additionally, the average step length (SL) obtained from the training data is

also included in Table 3.1.

27



SC-Error 1 SC-Error 2
Mean S Mean SL (m)

UC rate % OC rate % UC rate % OC rate %

TS:LC 10.58 2.51 8.20 0.13 0.78 0.74

TS:GD 8.74 2.08 6.75 0.1 0.78 0.74

TC:S 3.03 1.05 2.24 0.26 0.78 0.74

TC:LC 3.22 3.27 0.91 0.96 0.55 0.55

TC:GD 4.99 2.15 3.23 0.39 0.68 0.62

TA:LC 4.06 3.8 1.42 1.17 0.56 0.62

TA:GD 2.29 2.55 0.83 1.08 0.55 0.62

Table 3.1: Undercount (UC) and overcount (OC) rates of step counter, along with the

mean threshold S and step length SL. Boldface highlights the pair (UC rate, OC rate)

with the smallest sum for each community of blind walkers (LC, GD).

The results presented in Table 3.1 and the curves illustrated in Figure 3.2 clearly

show how the choice of the walker community used for training the system significantly

impacts the accuracy of step counting. For instance, when evaluating with long cane

users, using a step counter trained on sighted walkers (TS:LC), the sum of undercount

and overcount rates were 13.09% (SC-Error 1) or 8.33% (SC-Error 2). However, by

training the system solely on data from other long cane users (TC:LC), these numbers

decreased remarkably to 6.49% and 1.87%, respectively. The best outcomes for guide dog

users were achieved when training on entirety of available data (TA:GD). The limited

number of guide dog users explains why TC:GD doesn’t surpass TA:GD.

Prior studies applied various step counting algorithms to WeAllWalk in [30].

Our findings indicate a notable improvement with the utilization of an LSTM model.

28



For example, the lowest SC-Error 1 value (measured as the sum of UC and OC rates)

for long cane users was found to be 7.8% in [30] compared to 6.5% with our system.

Similarly, for the same user community, the minimum SC-Error 2 reported in [30] was

4.8%, while our system achieved 1.9% (refer to Table 3.1).

The mean threshold S derived from the LSTM output notably differs across

walker communities, with sighted walkers exhibiting a substantially larger average value

(0.78) compared to guide dog users (0.68) and long cane users (0.55). Larger thresholds

should be expected when the output of the LSTM is closer to the binary signal used to

indicate heel strikes. This suggests that the LSTM is better capable of modeling the

desired output for sighted walkers (possibly due to their more regular gait) than for blind

walkers.

The average step lengths learned within each community also exhibit variations,

with sighted walkers demonstrating a larger average step length (0.74 m) compared to

guide dog users (0.62 m) and long cane users (0.55 m). This aligns with expectations as

guide dog users typically walk at a faster pace than long cane users, as they do not need

to probe the space ahead with the cane and can rely on their guide dog.

3.4.3 PDR System Results Built by Step-Counter Module

A Pedestrian Dead Reckoning (PDR) system was constructed by integrating

the step counter module with a heading tracker, employing either the azimuth angle or a

turn detector module (developed by another researcher in our group), and a fixed step

length. This PDR system effectively reconstructs a user’s trajectory, as evaluated on the
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WeAllWalk data set, under the assumption of an unavailable building map. However,

with the availability of a map, further enhancements are feasible. Integration of particle

filtering with a mode searching mechanism, leveraging spatial information from the

map (implemented by another researcher in our group), could significantly augment the

designed system’s wayfinding capabilities.

The path reconstructed by the PDR system was assessed against RoNIN [45], a

state-of-the-art deep learning-based odometry system optimized for data set collected

from sighted individuals. RoNIN processes inertial data in a heading-agnostic reference

frame, utilizing acceleration, raw gyro data, and attitude data as inputs to compute the

walker’s velocity, which is then integrated over time to determine the location.

Adapting RoNIN for use on the WeAllWalk data set required up-sampling

the required inertial data (via a linear interpolation method) from its original 25 Hz

acquisition rate to 200 Hz, matching RoNIN’s training data rate. Utilizing the authors’

open-source implementations of RoNIN (ResNet18 architecture)1, I conducted tests on

the WeAllWalk data set. As anticipated, results might vary due to discrepancies between

the sensors used in RoNIN’s training and those in the iPhones utilized for WeAllWalk.

To mitigate this, a basic adjustment was made by computing a scaling factor through

least squares regression. This factor, found to be 1.27, aimed to align the magnitudes

of velocities generated by RoNIN with the ground-truth velocities in WeAllWalk. This

scaling factor was subsequently applied to the velocity vectors produced by RoNIN.

Additionally, another researcher in our group fine-tuned RoNIN using data obtained from
1https://github.com/Sachini/ronin
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blind walkers within the WeAllWalk data set.

3.4.3.1 Path reconstruction

The WeAllWalk data set only provides the timestamps {tij} indicating when a

walker reached each waypoint. Therfore, to establish a ground truth, a basic assumption

was made that each user traversed the middle of the corridor width during transitions

between waypoints. Additionally, due to the lack of defined reference frame for the

estimated trajectory, alignment with the ground-truth path was necessary (implemented

by another Ph.D. researcher in our group). Following this alignment, the evaluation of

the estimated trajectories involves three key metrics.

• The first metric considered is the RMSE of estimated waypoint locations.

RMSEwp =
√

1

N

∑
j

||P̄ ij − P i(tij)||2

where N is the number of waypoints in the path, {P̄ ij} represents the ground truth

locations of the waypoints, and {P i(tij)} are the estimated waypoints locations

derived by waypoints timestamps.

For the remaining two metrics, I sampled the estimated trajectory into N i
e points {Qim} ,

and the ground truth path into N i
gt points {Q̄in} with a uniform inter-sample distance

of 1 m. Given these two sets of points, the reconstructed path can be assessed by the

following two metrics.

• The second metric is Hausdorff distance [92] between the two sets of points.

Haus = max
(
max
m

(
min
n

(
||Qim − Q̄in||

))
,max

n

(
min
m

(
||Qim − Q̄in||

)))
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• The third metric is the average Hausdorff between the two sets of points.

avHaus =
1

2

(√
1

Ne

∑
m

min
n

(
||Qim − Q̄in||2

)
+

√
1

Ngt

∑
n

min
m

(
||Qim − Q̄in||2

))

The Hausdorff distance highlights significant differences, even if they occur intermittently,

between the estimated and ground truth trajectories. On the other hand, the average

Hausdorff distance, detecting consistent biases. Together, these metrics provide a

comprehensive assessment of the estimated trajectory’s overall accuracy, beyond just

the waypoints. Note that these evaluation metrics (except the sampling algorithm) are

implemented and calculated by another Ph.D. researcher in our group.

The following algorithms are considered for map-less path reconstruction (Fig-

ure 3.3).

Figure 3.3: Three algorithms used for path reconstruction. The blue line represents the

path taken by the walker. The black line represents the estimated path. Dots represent

heel strikes; and circles represent turns.
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• Azimuth/Steps (A/S): With every detected step, a displacement vector is

defined, its length set to the fixed step length, and its orientation equal to the

azimuth angle θ as provided by the phone.

• 45◦-90◦ Turns/Steps (T/S): This algorithm is similar to the first one, but uses

the orientation from a two-stage 45◦ or 90◦ turn detection module (implemented

by another Ph.D. student in our group) under the assumption that users navigate

through corridors forming a network intersecting at these angles.

• RoNIN (R) – Fine-tuned RoNIN (FR): The trajectory is reconstructed by

applying either RoNIN or Fine-tuned version of RoNIN (developed by another

Ph.D. student in our group) on the WeAllWalk data set, which estimates position

by integrating velocity outputs over time.

The Table 3.2 reports reconstruction errors across three metrics for the considered

algorithms. It’s important to note that the assessment involving fine-tuned RoNIN was

exclusively conducted for blind walkers (LC and GD). The smallest reconstruction error

for all metrics are obtained by 90◦Turns/Steps algorithm.
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A/S 45◦ T/S 90◦ T/S R FR

TS:LC 9.43 14.68 4.90 9.17 14.48 4.7 9.03 13.90 4.63 5.43 8.56 2.93 − − −

TS:GD 5.81 8.97 3.30 5.64 8.67 2.82 4.94 7.50 2.75 5.66 8.55 2.84 − − −

TC:S 4.45 7.06 2.39 3.96 6.12 1.89 3.93 5.97 1.88 4.26 6.75 2.39 − − −

TC:LC 3.85 6.21 2.30 3.86 6.45 2.22 3.46 5.47 1.97 5.43 8.56 2.93 4.36 7.37 2.54

TC:GD 6.38 9.90 3.29 6.28 9.86 2.92 6.13 9.60 2.92 5.66 8.55 2.84 6.80 10.42 3.29

TA:LC 6.29 10.27 3.60 5.99 9.79 3.32 5.88 9.47 3.31 5.43 8.56 2.93 6.18 9.90 3.27

TA:GD 5.21 8.37 2.88 5.00 8.18 2.52 4.59 7.64 2.50 5.66 8.55 2.84 5.17 8.08 2.50

Table 3.2: Reconstruction errors (RMSEwp, Haus, avHaus) for path reconstruction

algorithms. Boldface indicates the smallest error values for each metric across walker

communities (S, LC, GD).

3.5 Conclusions

In this chapter, we introduced a step counter module, a fundamental element

within any Pedestrian Dead Reckoning (PDR) system. Utilizing a fixed step length, and a

heading tracker (implemented by another Ph.D. researcher in our group), we constructed

and assessed a PDR system on the WeAllWalk data set. Additionally, we conducted

a comparative analysis against RoNIN, a state-of-the-art odometry system trained by

sighted users. The obtained results emphasize the significance of the walker community

selected for training the algorithm’s parameters in our study. Systems trained solely

with sighted walkers yielded consistently poorer performance when evaluated with long
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cane users and, to a lesser degree, with guide dog users. However, incorporating training

data from these specific communities notably enhanced performance, even comparable

to the best outcomes achieved when tested with sighted walkers (refer to Table 3.2).

Furthermore, our findings indicate superior performance of the Turns/Steps PDR system

compared to the learning-based model, RoNIN (see Table 3.2).
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Chapter 4

Step Length

4.1 Introduction

In order to use step counting for odometry, it is essential to determine the

walker’s step length. The accurate estimation of step length is a critical component of

PDR systems, and it can be quite challenging due to the variations in gait patterns

influenced by factors such as gender, height, weight, age, and health condition [56].

Traditional methods rely on predefined coefficients and acceleration values for step length

estimation. For instance, the Weinberg method exploits the relationship between the step

length and the difference of max and min values of the vertical acceleration within the

step [111]. Kim et al. [54] compute step lengths based on the average of the acceleration

norm, while Ladetto [61] utilizes the local variance of the acceleration signal. These

methods typically involve a calibration process to determine the system coefficients.

Linear models have been proposed in studies like [19, 83], where step length is calculated
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based on a combination of the user’s step frequency and height. However, a significant

limitation of these methods is their reliance on prior knowledge of the user’s height.

Recently, learning-based methods have been introduced to address the step

length estimation problem. In the work presented in [40], an autoencode-based model is

employed. This model learns valuable features from the accelerometer and gyroscope

data through stacked autoencoders using a greedy layer-wise training approach. The

final regression layer is then used to estimate step length using the learned features. The

same approach is employed in [116], though deep belief network (DBN) is used instead

of autoencoders for feature learning. StepNet [55] combines a traditional method with a

learning-based model. In this scheme, the higher-level features extracted from raw inertial

data along with the smartphone location on the body (e.g., pocket, swing, texting) are

plugged to a convolutional neural network (CNN)-based model to estimate the Weinberg

gain coefficient and subsequently calculate step length. In the study described in [110],

step lengths are predicted using a combination of Long Short-Term Memory (LSTM)

and an autoencoder model. The LSTM network first extracts temporal dependencies

and features from the raw inertial data. These learned features, along with traditional

features, are then fed into an autoencoder to train a noise-robust encoder. Finally, a

regression layer is applied to predict step length.

As mentioned in the previous chapter, we conducted experiments with multiple

algorithms; however, achieving consistent and accurate results on the WeAllWalk data

set proved to be challenging. Many of these learning-based approaches rely on ground

truth data created using foot sensors. During our investigation, we discovered that the
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accelerometer range of the foot sensors in the WeAllWalk data set was limited to ±2g.

Unfortunately, this limitation prevented us from creating the necessary ground truth

data using those sensors. Consequently, we were required to gather a new data set to

address this limitation

4.2 Data Collection

In this section, we outline our methodology for collecting a representative

data set, and obtaining precise “ground truth” annotations. Our study was designed to

capture inertial data covering a wide range of stride lengths, each of which was accurately

measured. Note that the common practices (e.g., [55, 91, 40]) such as measuring step

lengths by dividing the path length by the number of steps taken in that path, can yield

inaccurate results. This is particularly relevant because, during “natural” walking, an

individual’s step length exhibits noticeable variations, with the standard deviation often

ranging from 3% to 7% of the average, as measured in previous studies [91]).

Twelve participants (6 female and 6 male, average age: 35.6) walked through an

office building, completing four paths, except for participant P10, who walked three paths.

Each path consisted of multiple sub-paths that began and ended at marked locations

(see Figure 4.1). For each sub-path, one of three possible categories of stride length was

prescribed: “natural”, ”shorter than natural”, or ”longer than natural”. However, no other

directions were given to the participants, allowing them to choose their own pace for

the prescribed stride length category. The sub-paths were chosen such that the total
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distance covered was consistent across all stride length categories (equal to 236 meters,

for a total traversal length of 709 meters per participant.) The number of steps taken by

the participants ranged from 789 (P10) to 1344 (P9).

(a) Path 1 and 2

(b) Path 3 and 4

Figure 4.1: Four paths taken by users on the 3rd floor of the engineering building at

UCSC. (a) Paths 1 and 2 are shown in red and dashed blue lines, respectively, with

a total length of 111.73 meters. (b) Path 3, totaling 254.27 meters, is represented by

dashed orange lines, and the segments taken are numbered. Path 4, shown in purple

lines, covers a distance of 231.19 meters.

Each participant carried two inertial IMU packages (Xsens DOT), with each

package tied to one shoe using an elastic band. The IMUs produced data from 3 accelerom-

eters and 3 gyros at the rate of 120 samples/s with 16 bits resolution. The accelerometers

and gyros were configured to measure data over a scale of ±16 g (accelerometers) and
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±2, 000◦/s (gyroscopes). Additionally, each participant had two smartphones, an iPhone

13 Pro and an iPhone X. One smartphone was placed in the back pocket of their pants,

while the other was held at chest height as if the participant were looking at its screen.

These smartphones ran an application that collected time-stamped inertial data at a

rate of 120 samples per second. Both the IMU packages and the smartphones were

synchronized to a common time scale.

4.2.1 Stride length by foot-mounted sensors

First, following [28], we computed and removed the gyroscope bias by averaging

the measurements during the stationary time at the beginning and end of each path. We

then processed the inertial data recorded from each foot sensor using and EKF-based

dead-reckoning algorithm with Zero-velocity UPdaTes (ZUPT) and HDR (Heading Drift

Reduction) corrections to obtain accurate measurements of stride length, defined as the

path traversed between two consecutive heel strikes of the same foot.

4.2.1.1 INS process

Based on prior experiments and using an ablation study, we verified that our

EKF odometry algorithm, which tracks sensor biases along with estimated attitude errors,

velocity errors, and position errors in its state vector, provides the best results. The

15-element error state at time k:

δxk = [δφk, δωbk, δrk, δvk, δa
b
k]
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The algorithm pipeline, consisting of six steps, is shown in Figure 4.2. First, the estimated

sensor biases by EKF are removed from inertial data. Subsequently, the bias-compensated

angular rate is utilized to update the rotation matrix using the Pade’ approximation.

Cnbk+1|k
= Cnbk|k

2I3×3 + δΩk+1∆t

2I3×3 − δΩk+1∆t

where δΩk+1 is the skew-symmetric matrix for angular rates used to define small angular

increments in orientation.

δΩk+1 =


0 −ωb

′

zk+1
ωb

′

yk+1

ωb
′

zk+1
0 −ωb

′

xk+1

−ωb
′

yk+1
ωb

′

xk+1
0


As a third step, the bias compensated acceleration measurements are rotated to the

navigation frame, and the gravity component is removed.

ank+1 = Cnbk+1|k
· ab′k+1 −

(
0 0 g

)T
Next, the acceleration will be integrated to obtain the velocity, and the velocity will be

integrated to obtain the position in the navigation frame. At the fifth step, the velocity

and position corrections will be applied based on the EKF error estimates. Finally, the

EKF attitude error estimates (δφk) will be utilized to apply the attitude correction.

Cnbk+1|k+1
=

2I3×3 + δΘk+1∆t

2I3×3 − δΘk+1∆t
Cnbk+1|k

where δΘk+1 is the skew symmetric matrix for small angles.
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δΘk+1 =


0 −δφk(3) δφk(2)

δφk(3) 0 −δφk(1)

−δφk(2) δφk(1) 0



After each measurement update, the EKF transfers the error states to the INS and resets

the error state vector to zero since those errors are already compensated and integrated

into the INS estimations. Consequently, steps 4 and 6 are only essential after the EKF

measurement updates are applied.

Figure 4.2: EKF-based inertial navigation system [98].
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4.2.1.2 EKF measurements

ZUPT is a common technique used to enhance the accuracy of INS and is

typically integrated into the INS system through a Kalman filter. The assumption that

velocity should be close to zero when the foot is nearly static on the ground is the

basis for ZUPT. As a result, the difference between the INS-calculated velocity and the

zero-velocity measurement is introduced into the Extended Kalman Filter (EKF) as a

ZUPT measurement. This technique is highly effective in reducing errors in velocity

estimates, particularly during periods of rest or when there is no motion.

ZZUPT = vk|k+1 =

(
vx vy vz

)T
−
(
0 0 0

)T

In addition, HDR (Heuristic Heading Drift Reduction) is proposed to mitigate heading

drift by leveraging the observation that many walking paths in various applications

are straight. Generally, when the user is walking along a straight path, the yaw angle

typically experiences minimal variation. Therefore, straight walks can be detected by

analyzing the changes in the yaw angle. If the fluctuations in the yaw angle among

consecutive steps remain below a certain threshold, it indicates that the user is walking

in a straight direction. In such cases, the variations in the yaw angle can be used as an

additional measurement input to the EKF for more accurate heading estimation [52].

ZHDR =


∆ψt if |∆ψt| < th∆ψ

0 otherwise
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4.2.1.3 EKF error estimates

The Kalman filter comprises two main steps: the prediction step and the update

(or correction) step. The error covariance gets predicted at each time sample, but it only

gets corrected when the stance phase is detected and measurements become available.

Pk+1|k = Φk+1Pk|kΦ
T
k+1 +Q

where Φk+1 is the state transition matrix and Q is the process noise covariance matrix.

Φk+1 =



I3×3 ∆tCnbk+1|k
03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 ∆tI3×3 03×3

−∆tS(ank+1) 03×3 03×3 I3×3 ∆tCnbk+1|k

03×3 03×3 03×3 03×3 I3×3


where S(ank+1) is the skew-symmetric matrix formed from the accelerations in the

navigation frame.

S(ank+1) =


0 −anzk+1

anyk+1

anzk+1
0 −anxk+1

−anyk+1
anxk+1

0



The term S(ank+1) relates the variation in velocity errors in the navigation frame to the

variation in orientation errors. This relationship allows EKF to establish appropriate

correlations within the error covariance matrix (P matrix). It’s worth noting that there is

no need to apply the error prediction step, δxk+1|k = Φk+1δxk, within the EKF because
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the EKF transfers the error states to the INS and resets the error state vector to zero

after each measurement update.

When the EKF measurements (ZUPT and HDR) are available, first, kalman

gain gets updated.

K = Pk+1|kH
T (HPk+1|kH

T +R)−1

where R is the measurement noise covariance matrix, and H is the measurement matrix.

H4×15 =


(
0 0 1

)
01×3 01×3 01×3 01×3

03×3 03×3 03×3 I3×3 03×3


subsequently, the update step will be applied to both the state vector and error covariance

matrix.

δxk+1 = KZ

Z = (ZHDR, ZZUPT )

Pk+1|k+1 = (I −KH)Pk+1|k(I −KH)T +KRKT

4.2.1.4 Stance phase detection

Stance periods were identified based on three conditions as described in the

following [52].

• Applying threshold on the magnitude of the acceleration measurements at any time

k.

|ak| =
√
a2xk + a2yk + a2zk
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C1 =


1 if th1 ≤ |ak| ≤ th2

0 otherwise

• The local acceleration variance, which represents the foot activity, must be below a

given threshold.

σ2ak =
1

2s+ 1

k+s∑
j=k−s

(aj − āk)
2

where s is the size of averaging window, and āk is the local mean acceleration at

time k, and it is computed by

āk =
1

2s+ 1

k+s∑
q=k−s

aq

Therefore,

C2 =


1 if σ2ak < th

0 otherwise

• Applying threshold on the magnitude of the angular rates.

|ωk| =
√
ω2
xk + ω2

yk + ω2
zk

C3 =


1 if |ωk| < thω

0 otherwise

When all these three conditions are met, the object is in the stance phase.
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4.2.1.5 Prior experiments

In order to decide the different elements that we can track in the EKF state vector

and different kinds of measurements that we can apply via EKF, we have implemented

twelve variations of the EKF algorithm. These algorithms can be different in terms of the

elements they track or the different measurements that they apply via EKF. We named

the algorithms in a way that G and A represent that the gyroscope and accelerometer

biases are included in the state vector. NoB stands for the case that the bias values are

not included in the state vector. Other than ZUPT, and HDR, we have considered Zero

Angular Rate Updates (ZARUs) as a measurement as well. During the stationary time

when the foot is in contact with the ground, the angular rates, as well as the velocities,

should theoretically be zero. Hence, ZARU can be applied along with ZUPT. To compare

the algorithms, we calculated the Normalized Estimated Length (NEL) as an error metric.

The total distance taken by a user is calculated by accumulating the step lengths and

compared with the ground truth lengths of the paths. The error is then normalized by the

ground truth length and averaged over all users and all paths. Figure 4.3 demonstrates

the results achieved by different algorithms. The algorithm that tracks biases and applies

HDR along with ZUPT gives us the best results (the last bar in the plot). A sample

trajectory achieved by this algorithm with detected steps highlighted is demonstrated in

Figure 4.4.
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Figure 4.3: Results of an ablation study comparing different variations of the EKF

algorithm based on the normalized estimated length error.

Figure 4.4: Reconstructed trajectory by best performed EKF algorithm, detected steps

highlighted in yellow.

In prior experiments, we verified that this algorithm produced distance errors

over long paths that were consistently less than 1% of the total traversed distance in the

path. In order to measure stride lengths, we first detected each heel strike as the highest

peak of the accelerometer magnitude within a window of 0.5 s around the beginning of
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a stance period. Strides were measured by the path traversed between two consecutive

heel strikes (shown as circles in Figure 4.5). Note that the ZUPT algorithm performs a

“correction" of the estimated location during a stance period (see Figure 4.5).

Figure 4.5: An example of a reconstructed trajectory for one foot-mounted sensor (black

line). Note that the ZUPT algorithm applies a correction at each detected stance phase.

The circles represent heel strike times, which are used to compute individual stride

lengths (shown by grey arrows).

Figure 4.6 displays the distribution of stride lengths measured for all participants

in our data collection (represented in purple) with a standard deviation of σ = 0.38m.

The same figure illustrates the stride length distribution in the data set described in [110],

which was also collected using a foot-mounted sensor (represented in green). It is worth

noting that the prior data set was constructed from walkers who maintained a relatively

uniform stride length with a standard deviation of σ = 0.12 m. We emphasize that a

wide distribution of stride lengths is crucial for a thorough evaluation of an odometry

algorithm.

While foot-mounted sensors are are well-suited for measuring stride lengths,

when processing inertial data from a smartphone, it is more convenient to measure step
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lengths, where a step is a path traversed by the user’s body between two consecutive heel

strikes from opposite feet. Note that the data recorded by the phone is approximately

periodic over steps. Within a step, one of the two feet is in the stance phase, while

the other is in the swing phase. To establish a ground truth step length, denoted as l̂i,

we calculate the mean of the two overlapping stride lengths (one per foot) and divide

the result by 2. Additionally, we measure the (average) walking speed during the same

step as v̂i = l̂i/T̂i, where T̂i represents the step period, defined as the time between two

consecutive heel strikes from opposite feet.

Figure 4.6: Distribution of stride lengths for all participants in our data collection (purple

bars), alongside the stride length distribution from the data set described in [110] (green

bars).
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(a) P1 (b) P3

(c) P4 (d) P7

(e) P9 (f) P12

Figure 4.7: Step period vs. step length for six of our participants in our study. Loci of

constant walking speed (0.5 m/s, 1 m/s, and 1.5 m/s) are shown by gray lines.
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Figure 4.7 presents scatterplots of step period T̂i vs. step lengths l̂i for six of our

participants. The figure also shows loci of constant walking speed. These distributions

vary among participants. For example, P1 and P9 maintained nearly constant step periods

for different step lengths, resulting in significant variations in walking speed. Conversely,

P4 and P12 adopted different step periods for different sub-paths with prescribed “shorter

than normal” stride lengths, leading to varying walking speeds for the same step length.

4.3 Algorithms

The objective of our system is to estimate either the length li or the walking

speed vi during each step, based on inertial data recorded by each smartphone. We use

exactly the same architecture for both estimations (li and vi) and assess the results using

similar metrics.

Following [110], we implemented a 1-layer LSTM network [46], with 64 hidden

units, followed by four fully connected layers with ReLU activation (see Figure 4.8). A

recurrent network is the most natural choice for this type of quasi-periodic signal. meter

and three gyro measurements. Inspired by [45], we normalize the orientation of these

vectors by pre-multiplying them with the inverse of the attitude matrix, provided by the

iPhone API. Heel strike times, signifying the start and end of each step, are detected

using the step counter LSTM network introduced in the previous chapter. Unlike [110],

we maintain the LSTM state without resetting it at the beginning of each step, allowing

the network to adapt more effectively to the periodic variations in the input data.
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During training, we input segments of a fixed length, consisting of 240 samples,

to the LSTM network. Unlike [110], we do not constrain these segments to align with

individual strides, which could necessitate zero-padding when dealing with shorter stride

periods. Instead, we sample these segments from anywhere in the signal. Specifically,

we segment the input signal into intervals of 240 samples with overlap of 120 samples.

For each segment, a quadratic loss is defined on the difference between the last output

value generated by the network and the ground truth step length l̂i or walking speed v̂i

associated with the step that contains the end point of the input segment. Our experiments

consistently demonstrated that this approach yields superior results compared to using

input segments exclusively from individual step periods. The training was performed in

Keras, with a batch size of 128 over a total of 500 epochs. To prevent overfitting, training

was terminated if if there was no observed reduction in loss over 50 consecutive epochs.

At deployment, the network generates one output sample for each input sample.

Figure 4.9 shows examples of the network’s output for calculating step length (a) and

walking speed (b), along with the detected heel strike times. The plots also display the

ground truth values. It is evident from the figure that the network’s output exhibits

significant variations from one sample to another. Rather than picking one value from the

output (e.g., at heel strike times), we compute the average value over each step period to

produce the quantity of interest (step length or walking speed). . This is depicted by the

blue dashed segments in Figure 4.9.
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Figure 4.8: The architecture of the network predicting step length li or walking speed vi.
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(a)

(b)

Figure 4.9: The network’s output predicting either step length (a) or walking speed (b) is

shown in black line. Vertical lines indicate detected heel strikes. Red segments represent

the ground truth values. Blue dashed segments denote the average output values within

a step period. Note that the participant was taking a turn in the path, walking speed

significantly reduced in the second and third steps.
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4.4 Results

We ran experiments using the leave-one-person-out modality [57]: for each

participant being tested, the network was trained with data from the other eleven

participants. This approach helps ensure that the network does not overfit to the data

from the participant being tested. To assess the impact of phone placement, we considered

four scenarios: (1) training and testing with data from the in-hand phone (H → H);

(2) training and testing with data from the in-pocket phone (P → P ); (3) training

with data from both phone placements and testing with data from the in-hand phone

(HP → H); (4) training with data from both phone placements and testing with data

from the in-pocket phone (HP → P ). For each scenario, we trained two networks: one

to estimate step lengths {li}, and another to estimate walking speeds {vi} at each step.

The step periods Ti were computed using our LSTM step counter [81] and are identical

for the two measurements.

4.4.1 Error Metrics

Remember that l̂i represents the ground truth length of the i-th step in the test

set for a certain participant. We define the following error metrics for the estimated step

lengths (where the first and third metrics are from [110]):

• Ed =
|
∑N

i=1 li −
∑N

i=1 l̂i|∑N
i=1 l̂i

• Es =
1

N

N∑
i=1

|li − l̂i|

56



• Esr =
1

N

N∑
i=1

|li − l̂i|
l̂i

• R2 = 1− RMSE2

σ2
, where RMSE =

√∑N
i=1(li − l̂i)2

N
and σ2 is the variance of the

set of ground truth step lengths {l̂i}.

Ed, representing the relative distance error, is particularly applicable to long paths where

step-to-step error fluctuations tend to cancel out. Es denotes the average absolute error

at each step, while Esr normalizes errors with the ground truth step length. R2, the

coefficient of determination, is a numeric value that ranges from 0 to 1, reaching 1 only

in case of zero error. A negative R2 indicates that using a constant value, equal to the

average step length, would yield a lower RMSE error than the predictions {li}.

Table 4.1 reports the errors measured for the network predicting step lengths li.

For these and other measurements, each error metric is calculated for each participant,

then averaged over all participants. Additionally, standard deviations are reported,

computed across participants. The lowest errors are achieved for the H → H phone

placement configuration, while errors increase for the P → P configuration. Training the

network with data from both phones (HP → H and HP → P ) demonstrates a further

decrease in performance. It’s important to highlight that the coefficient of determination

(R2) is consistently positive and reaches a value of 0.76 for the H → H configuration.
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Step Length

Ed Es (m) Esr R2

H → H 0.02± 0.02 0.06± 0.01 0.10± 0.02 0.76± 0.12

P → P 0.05± 0.06 0.07± 0.03 0.12± 0.04 0.61± 0.32

HP → H 0.05± 0.03 0.07± 0.02 0.12± 0.03 0.68± 0.19

HP → P 0.06± 0.06 0.08± 0.03 0.13± 0.04 0.59± 0.31

Table 4.1: Error metrics computed for all phone placement configurations for the network

predicting step lengths li.

For the network predicting walking speed vi, we present error measures in

Tab. 4.2 that are computed based on equivalent step lengths li = vi · Ti, where Ti

is calculated by the step counting network. Essentially, equivalent step lengths are

determined by integrating the predicted walking speed over a step period. Additionally,

we provide error metrics Es and R2 for the walking speed vi itself when compared to the

ground truth v̂i = l̂i/T̂i. The results are substantially worse than when predicting step

length directly. For instance, the relative distance error Ed for equivalent step length

increased by 80% (HP → H) compared to predicting step length directly. Moreover,

the coefficient of determination R2 for equivalent step length is, in most cases, negative.

This suggests that using the mean value would provide a more accurate prediction in

terms of mean square error. Paired t-tests revealed that for all the considered metrics,

there was a significant difference in error between predicted step length and equivalent

step length (p < 0.02).

58



Step Length From Walking Speed Walking Speed

Ed Es (m) Esr R2 Es (m/s) R2

H → H 0.04± 0.02 0.11± 0.02 0.20± 0.03 0.05± 0.39 0.25± 0.12 0.24± 0.27

P → P 0.09± 0.05 0.13± 0.04 0.22± 0.08 −0.38± 1.22 0.23± 0.05 0.22± 0.26

HP → H 0.09± 0.04 0.12± 0.02 0.22± 0.04 −0.14± 0.71 0.27± 0.12 0.14± 0.29

HP → P 0.08± 0.07 0.13± 0.04 0.23± 0.06 −0.50± 1.22 0.26± 0.10 0.12± 0.25

Table 4.2: Error metrics computed for all phone placement configurations for the network

predicting walking speed vi.

Since equivalent step lengths are determined by integrating the predicted walking

speed over the measured step period, computed by our LSTM step counter, it is possible

that errors in equivalent step length might be, at least partially, due to inaccuracies in

step period computation rather than inaccurate walking speed prediction. To investigate

this possibility, we recomputed the equivalent step lengths by integrating the predicted

walking speed over the ground-truth step period, as determined by the foot sensors. The

corresponding error values were not significantly different from those obtained using step

periods from the LSTM step counter.

Figure 4.10 presents scatterplots with step length predictions for different

participants and phone placement configurations. The predictive quality is very good

in the top two plots (P8: H → H; P4: HP → H). However, in the third plot (P9:

P → P ), the system exhibited an overestimation of step length by approximately 5 cm

for shorter than normal strides and an underestimation by roughly 10 cm for longer than
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normal strides. The final plot (P1: HP → P ) displayed a consistent negative error that

increased with step length.

P8: H → H (Esr = 0.09) P4: HP → H (Esr = 0.10)

P9: P → P (Esr = 0.16) P1: HP → P (Esr = 0.22)

Figure 4.10: Examples of step length prediction, plotted against their ground truth

values.

Figures 4.11 and 4.12 present the results of walking speed estimation (vi) and
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equivalent step length prediction using the same input data. The system performance

clearly deteriorates with respect to the prior case, as confirmed by the higher values of

Esr as recorded in the Figures 4.10 and 4.12.

P8: H → H P4: HP → H

P9: P → P P1: HP → P

Figure 4.11: Examples of walking speed predictions, plotted against their ground truth

values.
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P8: H → H (Esr = 0.17) P4: HP → H (Esr = 0.15)

P9: P → P (Esr = 0.39) P1: HP → P (Esr = 0.23)

Figure 4.12: Examples of step length prediction derived from walking speed predictions,

plotted against their ground truth values.
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4.4.2 Comparison with RoNIN

In order to assess the quality of our LSTM-based algorithm, we conducted a

comparative analysis with RoNIN, a state-of-the-art pedestrian dead-reckoning system,

using the same iPhone sensor data. RoNIN is designed to compute the user’s velocity

relative to a fixed reference frame. To make a fair comparison, we integrated the velocity

data from RoNIN over each step period, which was measured by our LSTM step counting

model [81]. The resulting vector length was then extracted and compared with the

ground truth length from the foot sensor. We employed the open-source implementation

provided by the authors of RoNIN (https://github.com/Sachini/ronin) and adopted the

RoNIN resnet18 architecture. To ensure consistency, we up-sampled the data from its

original acquisition rate of 120 Hz to match the 200 Hz sampling rate used for the RoNIN

design. We obtained results with both RoNIN and Scaled-RoNIN, which is a customized

version of RoNIN as explained in Section 3.4.3. We determined a scale factor α by

minimizing the mean squared error between the step length from RoNIN, multiplied by

α, and the ground-truth step length (α = 1.15 and 1.24 for in-hand and in-pocket phone

data, respectively).

Tables 4.3 and 4.4 present the error measures for RoNIN and Scaled-RoNIN,

respectively, using data from in-hand (H) and in-pocket (P) phones. The results show a

performance increase when using Scaled-RoNIN. Notably, the predicted step length from

our system (Table 4.1) exhibited substantially lower errors compared to the equivalent

step length from both RoNIN (Table 4.3) and Scaled-RoNIN (Table 4.4). Additionally,
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our LSTM network’s predictions for walking speed demonstrated superior performance

compared to RoNIN, achieving better results on in-hand phone data and comparable

results on in-pocket phone data compared to Scaled-RoNIN.

Step Length From Walking Speed Walking Speed

Ed Es (m) Esr R2 Es (m/s) R2

H 0.19± 0.07 0.14± 0.04 0.25± 0.09 −0.26± 0.42 0.30± 0.15 0.06± 0.29

P 0.23± 0.07 0.17± 0.04 0.27± 0.05 −0.79± 1.08 0.31± 0.10 −0.12± 0.31

Table 4.3: Error metrics computed for two phone placement configurations using RoNIN.

Equivalent Step Length From Walking Speed Walking Speed

Ed Es (m) Esr R2 Es (m/s) R2

H 0.08± 0.06 0.12± 0.03 0.23± 0.08 −0.05± 0.37 0.27± 0.14 0.16± 0.31

P 0.08± 0.06 0.11± 0.05 0.19± 0.07 −0.27± 1.06 0.23± 0.11 0.22± 0.31

Table 4.4: Error metrics computed for two phone placement configurations using Scaled-

RoNIN.

4.4.3 Model Performance on a Different Data Set

As explained in Section 4.3, we employed a different training methodology and

made adjustments to the model architecture compared to the approach presented in [110].

To assess our model’s performance, we conducted a 10-fold cross-validation on the same

data set used in [110]. The results are reported in Table 4.5. Our system demonstrated

improved results when compared to [110], particularly in terms of the mean Esr error
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rate. Additionally, we achieved a substantial reduction in the mean Ed error compared

to both models considered in [110] (LSTM and LSTM-DAE). Specifically, our system

reduced Ed from 0.05 to 0.01 when compared to their LSTM model and from 0.04 to

0.01 when compared to LSTM-DAE.

Models Ed Esr

LSTM (ours) 0.01 3.02%

LSTM [110] 0.051 3.75%

LSTM-DAE [110] 0.043 3.16%

Table 4.5: Comparison of error metrics between our step length prediction algorithm and

the algorithms described in [110] using the data set from [110].

4.5 Step Length Estimation for Visually Impaired Subjects

4.5.1 Data Collection

At the time when we were collecting data for this project, we were unable to

invite blind participants to attend our study due to COVID-19 restrictions. However,

in a subsequent user study to evaluate our iOS applications, which will be discussed

in Chapter 5, we attached the same foot sensors (Xsens DOT), securing each to the

participants’ shoes using an elastic band. Additionally, we instructed participants to

keep an iPhone 12 in their pants pocket while traversing the return routes to collect

phone inertial data. This approach allowed us to synchronize the inertial data from both

the phone and the foot sensors. Notably, blind users typically prefer not to hold phones
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in their hands, as they already have one hand occupied holding a cane or a dog’s leash.

Consequently, unlike our data collection from sighted users, we collected data with the

phone exclusively placed in the pants pocket, without using two phones – one in hand

and the other in the pants pocket.

We will delve into the details of the user study experiment in the following

chapter. However, to provide context, I explain the routes taken by each participant. We

designed a total of four routes: one is referred to as the ’Practice-Path’ in the Enginnering

2 (E2) building, and the other three routes are located in the Baskin Engineering Building

(R1W, R2W, and R3W). Each participant initially traversed the practice route, after

which we attached foot sensors and instructed them to keep a phone in their pocket

to collect inertial data as they retraced the same route in reverse (Practice-Path-B).

The same procedure applied to the routes in the Baskin Engineering (BE) Building.

Participants first navigated R1W, followed by R2W, and finally R3W. Subsequently,

they retraced these routes in the reverse order, which we refer to as R3B, R2B, and

R1B (see Figure 4.13). A total of seven participants took part in this study, including

5 cane users and 2 guide dog users. We did not record phone inertial data for the first

user on the three routes in the BE building. To compensate for this loss of data, we

recorded the path the user took from the BE building to the office in the E2 building.

It’s also important to note that, due to the study’s main objectives, some participants

could not complete entire routes in certain trials (Figure 4.14 (b)), and others may have

made incorrect turns but subsequently corrected their path to reach their destination

(Figure 4.14 (c)).
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Figure 4.13: ((a)–(d))The four routes that blind participants traversed in the study. The

start and end positions are marked with a square and a star, respectively.

In order to establish the ground truth for the users’ step lengths, we employed

the EKF algorithm, as previously explained in Section 4.2.1.5. Please note that despite

the ZUPT and HDR corrections, this algorithm still experiences drift due to the well-

known issue of sensor noise (Figure 4.14 (a)). More samples of the paths reconstructed

using our EKF algorithm are shown in Figure 4.14.
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Figure 4.14: ((a)–(d)) Sample reconstructed trajectories (in red) of different routes

traversed by various participants, obtained by our EKF algorithm, superimposed on the

floor plan of the BE building. (a) The reconstructed trajectory of route R1B traversed

by P3 shows signs of drift. (b) The reconstructed trajectory of route R3B traversed by

P3, but he was unable to reach his destination. (c) The reconstructed trajectory of route

R2B traversed by P2, including a wrong turn but eventual correction. (d) A successful

traversal of route R3B by P3.
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Figure 4.15 illustrates the distribution of stride lengths measured for all blind

participants during our user study (displayed in orange) (mean: µ =0.86m, standard

deviation: σ =0.23m). The same figure also presents the distribution of stride lengths

in the data set collected from sighted participants (shown in purple) (mean: µ =1.2m,

standard deviation: σ =0.38m) using the same foot-mounted sensors, as described in

Section 4.2. Notably, the mean stride length for blind participants is shorter than that of

sighted individuals.

Figure 4.15: Distribution of stride lengths for all blind participants in our study (orange

bars) is presented alongside the stride length distribution for the data set of sighted

participants (purple bars).

Our objective is to predict step lengths using smartphone inertial data carried in

users’ pants pockets. As previously mentioned, smartphone data is periodically recorded

within each step, with one foot in the stance phase and the other in the swing phase.

Similar to our data set with sighted users, we establish ground truth step lengths by

averaging two overlapping stride lengths (one for each foot) and dividing the result by 2.
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Figure 4.16 displays scatterplots of step period T̂i versus step lengths l̂i for our

participants who used a guide dog as their navigation aid. Whereas Figure 4.17 displays

scatterplots for our participants who used a white cane as their navigation aid. It’s

important to observe that these distributions vary among participants. For instance, P1

and P7, both guide dog users, show distinct stride patterns. P1 typically takes shorter

steps, while P7 walks at a faster pace with longer strides. Among cane users, P5 tends to

have shorter steps on average, with a wide range of step lengths, while P3 takes longer

strides on average.

(a) P1 (b) P7

Figure 4.16: Step period vs. step length for our participants who use a guide dog as

navigation aid in our study. Loci of constant walking speed (0.5 m/s, 1 m/s, and 1.5

m/s) are shown by gray lines.
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(a) P2 (b) P3

(c) P4 (d) P5

(e) P6

Figure 4.17: Step period vs. step length for our participants who use a cane as navigation

aid in our study. Loci of constant walking speed (0.5 m/s, 1 m/s, and 1.5 m/s) are shown

by gray lines.
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4.5.2 Results

We utilized the LSTM model explained in Section 4.3 for predicting the step

length of blind individuals using data from the smartphone carried in their pants pockets.

4.5.2.1 Training/Test Modalities

The gait patterns exhibit notable differences between individuals using white

canes and those relying on guide dogs [114, 47]. These distinctions were clearly observed

in our experiments, as illustrated in the results detailed in the previous chapter. Moreover,

they are visually evident in the scatter plots depicting step lengths for various users

(refer to Figures 4.7, 4.16, and 4.17). To investigate the impact of these differences, and

following the training and testing modalities we utilized in Chapter 3, we categorized

the results based on the communities of long cane users (indicated by the modifier:LC)

and guide dog users (:GD). We employed the following training and testing schemes,

ensuring that the system used to evaluate a particular walker had never been trained on

that walker’s data.

• Train on Sighted (TS): The model is trained using data from the smartphones carried

in the pockets of the twelve sighted walkers in our collected data set. Subsequently,

the system is tested on two communities of blind users who participated in our

user study (TS:LC and TS:DG)

• Train in the same Community (TC): In this scenario, the system was tested with

long cane users and guide dog users, and it was trained using data from walkers

72



within the same community (TC:LC, TC:GD). We employed the Leave-One-Person-

Out (LOPO) policy to perform this training and testing approach [37, 57]. With

LOPO, each participant was tested with a system trained on data from all other

participants within the same community. This training approach allowed us to

explore how the walking characteristics may differ between communities of users.

It’s worth noting that only two walkers in our user study used a guide dog, so each

training set in the TC:GD modality contained data from a single walker only.

• Train on Blind (TB): In this case, all data collected from blind participants in

our user study was used for training, following the Leave-One-Person-Out (LOPO)

policy (TB:LC, TB:DG). For instance, a long cane user is tested with a system

trained on data from all guide dog users and all other long cane users.

• Train on All (TA): In this case, all the data collected from the twelve sighted

walkers in the data set, as well as the seven blind walkers who participated in the

user study, were used for training, following the Leave-One-Person-Out (LOPO)

policy (TA:LC, TA:DG). For instance, a long cane user is tested with a system

trained on data from all sighted participants, all guide dog users, and all other long

cane users.

We have utilized the same error metrics as explained in Section 4.4.1 and are

reporting the results separately for the white cane users’ community in Table 4.6 for

all Training/Test modalities and in Table 4.7 for guide dog users’ community for all

modalities. Each error metric is computed for each participant, then averaged over the
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participants. We also report standard deviations computed across participants.

Ed Es (m) Esr R2

TS : LC 0.14± 0.10 0.09± 0.03 0.29± 0.11 −0.95± 0.96

TC : LC 0.02± 0.01 0.05± 0.01 0.14± 0.03 0.48± 0.08

TB : LC 0.03± 0.02 0.05± 0.01 0.14± 0.03 0.43± 0.12

TA : LC 0.02± 0.01 0.05± 0.01 0.15± 0.03 0.44± 0.03

Table 4.6: Error metrics computed for all Training/Test modalities for cane users for the

network predicting step lengths li.

Ed Es (m) Esr R2

TS : GD 0.19± 0.18 0.14± 0.01 0.33± 0.03 −3.79± 4.64

TC : GD 0.18± 0.10 0.11± 0.07 0.23± 0.11 −0.75± 0.03

TB : GD 0.07± 0.10 0.07± 0.04 0.15± 0.08 0.25± 0.07

TA : GD 0.07± 0.08 0.07± 0.01 0.17± 0.02 −0.22± 0.94

Table 4.7: Error metrics computed for all Training/Test modalities for guide dog users

for the network predicting step lengths li.

The results presented in Tables 4.6 and 4.7 clearly illustrate the impact of

the walker community used for system training on the performance of the step length

prediction model. For instance, when the model was trained on sighted users, it yielded

the poorest results among all modalities when tested on GD users (TS:GD) (see Fig-

ure 4.18 (a)), with negative R2 coefficient. Additionally, due to the limited number of

guide dog users in our user study (only one user in each training set round, and testing
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on the other user), and considering the vastly different gait patterns of these two users,

poor results were still obtained when the model was trained on GD users and tested on

the remaining one (R2 = −0.75). Training on all users and testing on guide dog users in

the LOPO manner still results in a negative R2 = −0.22, indicating that the walking

patterns of sighted walkers and GD users are not similar, as observed in the first row of

the results table in Table 4.7. However, excluding the sighted walkers from the training

set improves the results and yields the best performance for GD users with an R2 = 0.25

(see Figure 4.18 (b–c)).

Similar to the results for GD users, the model trained on sighted users and

tested on cane users exhibits significantly higher error values, indicating poor prediction

performance. The negative R2 value of -0.95 suggests that the predictions do not fit

well with the actual step lengths of cane users. However, in contrast to GD users, we

had 5 subjects who used a long cane as their navigation aid in our user study, and they

exhibited similar gait patterns. When the model was trained on cane users and tested

on the remaining one, it showed strong performance with a low Ed value as low as 0.02,

and an R2 value reaching 0.48. For the models trained on a combination of white cane

users and guide dog users, or trained on all data and tested on white cane users, the

error values are slightly higher compared to the WC:WC scheme, indicating slightly less

accurate predictions but still fairly good (see Figure 4.19). In these cases, the R2 values

are 0.43 and 0.44, respectively.
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(a) P1, TS : GD (Esr = 0.35) (b) P1, TC : GD (Esr = 0.15)

(c) P1, TA : GD (Esr = 0.15) (d) P1, TB : GD (Esr = 0.09)

Figure 4.18: Examples of step length prediction for P1 for different Training/Test

modalities, plotted against their ground truth values.
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(a) P3, TS : LC (Esr = 0.19) (b) P3, TC : LC (Esr = 0.10)

(c) P3, TA : LC (Esr = 0.11) (d) P3, TB : LC (Esr = 0.11)

Figure 4.19: Examples of step length prediction for P3 for different Training/Test

modalities, plotted against their ground truth values.

4.6 Conclusions

PDR systems for the reconstruction of odometry from inertial data from a

smartphone measure the distance traveled during a path through the detection of
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individual steps and estimation of their lengths. Assuming reliable step detection, one

can choose to predict either the actual step length or the average walking speed for each

step. Existing literature addresses these two tasks differently: step length prediction

typically relies on data from individual steps, while velocity prediction (e.g. [45]) is

often calculated at a higher frequency and then integrated over time to derive position

information. We employed the same computational architecture to estimate both step

length and average walking speed for each step. To do so, We curated a carefully

annotated data set, including participants walking with diverse stride lengths. We

adopted a Leave-One-Person-Out approach for training and testing the system. Our

results strongly support the conclusion that predicting step length is more reliable than

predicting average walking speed.

It can be argued that the dynamics of the body during walking, as measured by

the smartphone’s inertial sensors, might exhibit a stronger dependence on stride length

than on the pacing rate. The distribution of step length and step period could also play a

role in the prediction results. Some insight can be gained by analyzing the coefficient of

variation (CV), which is the standard deviation divided by the mean, for the considered

quantities (step length, step period, and their ratio, representing average walking speed

in each step). These CV values were computed for each participant and each prescribed

stride length, and then averaged across participants, considering only ground-truth data

for this analysis. It was observed that the CV values for step lengths (0.12, 0.09, and

0.08 for short, natural, and long strides, respectively) are considerably lower than those

obtained for step periods (0.35, 0.42, 0.29) and, consequently, for walking speed (0.46,
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0.54, 0.25). Note that the CV values for step length, while slightly higher, may be

attributed to the variations in experimental settings compared to those reported in [91].

Arguably, a recurrent network tasked with tracking a quantity that is locally “stable”

(step length) may face a less challenging task compared to predicting a quantity that

exhibits greater variation from step to step (walking speed).

Our results (Table 4.1) indicated that improved prediction is achieved when

training and testing with a phone placed in the same location on the user’s body. This

insight could be valuable if a system to detect the phone’s placement, such as in [73], is

implemented. It allows for the selection of the most appropriate step length predictor

based on the phone’s current placement. Our analysis focused solely on length, not the

direction, of steps taken while walking. Existing learning-based approaches like those in

[45, 66, 14] can be applied to robustly estimate heading direction.

We also assessed the architecture’s performance for predicting step length with

visually impaired participants in our user study. Our analysis reinforces the findings

presented in the previous chapter, highlighting the critical importance of selecting from

the community of walkers for training the algorithm’s parameters. The model trained

on in-pocket phone data from sighted walkers exhibited lower performance when tested

on cane and guide dog users. On the other hand, when training data included these

communities, there was a significant improvement in results. Although they didn’t reach

the same level of performance as TC:S (train on sighted, test on sighted), they achieved

comparably good results, despite the smaller number of participants (7 compared to 12).
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Chapter 5

WayFinding

5.1 Introduction

Independent navigation is a fundamental aspect of daily life for most individuals,

allowing them to move freely, explore new environments, and accomplish various tasks

without external assistance. Navigation in unfamiliar surroundings can be especially

challenging. Sighted individuals depend on landmarks to help them in wayfinding by

providing essential spatial location and task-related information. While they may have

a clear destination in mind, the specific spatial coordinates and path to reach it are

unknown. Sighted individuals use visible landmarks as guiding points to help them

navigate through their environment and reach their intended destination. However, this

can be more challenging for people with visual impairments (PVI) due to their lack of

confidence and knowledge about the environment [114].

While many visually impaired individuals can independently navigate familiar
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routes by forming detailed cognitive maps through exploration and receiving training

from Orientation and Mobility (O&M) professionals, they face significant challenges

when it comes to new or infrequently visited places where prior exploration is impossible.

In such situations, independent travel becomes quite difficult for them. The physical

cues that indicate possible paths or points of interest in the surroundings are usually

visual, like distant signs or landmarks. Hence, they are inaccessible to people with visual

impairment. Moreover, people with visual impairments may lack awareness of their

position within a building’s floor plan and their relationship to essential features such as

stairs, doors, elevators, and obstacles. Consequently, in such scenarios, seeking assistance

from a passerby to find an accessible route becomes necessary, but there is no assurance

of someone being available to assist at all times [3, 77].

Different assistive navigation technologies are proposed to enhance users’ in-

dependence by providing guidance to their destination and alerting them about nearby

Points-Of-Interests (POIs). Despite their usefulness in supporting navigation for individ-

uals with visual impairments, these systems encounter several limitations and challenges.

For instance, GPS-based approaches have been leveraged to provide outdoor navigation.

Still, due to their inaccuracy in indoor places and outdoor areas with high construc-

tion density [107], there is a need for assistive technology that aids individuals with

visual impairments in indoor navigation. Currently, there are no commercially available

systems suitable for extensive use. However, researchers have investigated different

strategies to facilitate indoor localization and navigation for PVI. These strategies involve

using ultrasound, infrared, RFID, and ultra-wide band (UWB) sensors. While these
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methods achieve acceptable accuracy, they typically require users to carry a dedicated

device. [22, 1, 48, 27, 85].

Researchers are dedicated to creating assistive technologies that free people with

visual impairments from the necessity of carrying additional devices, mainly because they

often rely on white canes or guide dogs while walking. Smartphone-based approaches have

the added benefit of offering localization and navigation capabilities without burdening

users with extra devices. These methods can provide guidance using a variety of sensors,

such as Bluetooth Low Energy (BLE) beacons, Wi-Fi, inertial measurement units (IMUs),

video cameras, or a fusion of these sensors [29, 20, 34, 50, 67, 70, 71, 86].

The availability of accurate and detailed building maps plays a crucial role

in ensuring the effectiveness and reliability of such indoor wayfinding systems. These

maps provide essential information about the configuration of rooms, hallways, staircases,

elevators, and other structural elements necessary for generating accurate navigation

routes. Moreover, building maps also contain data about critical points of interest (POIs),

such as entrances, exits, restrooms, emergency exits, offices, meeting rooms, and amenities.

Access to these POIs is vital as it guides users to specific destinations, enhancing their

overall indoor navigation experience. Additionally, indoor wayfinding systems require

information about walkable paths, potential obstacles, and potential bottlenecks within

the building for pathfinding and routing. Building maps facilitates the generation of

optimized routes that avoid obstacles and provide the shortest or most accessible paths

for users. Furthermore, the availability of building maps is essential for integrating with

various positioning technologies and sensors, such as Wi-Fi, Bluetooth beacons, RFID,
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and cameras. Combining map data with sensor inputs can enhance localization accuracy

and provide more reliable navigation guidance.

Indoor maps’ availability is undoubtedly on the rise, thanks to commercial

efforts like Google Indoor Maps. However, it would be impractical to expect accurate

maps of all public buildings to be universally accessible in a standardized format. In

cases where building maps are unavailable, assisted return strategies can be utilized

to guide individuals effectively. Assisted return refers to offering support to a visually

impaired user attempting to retrace their steps and find their way back to the starting

point after walking along a particular path when human assistance is unavailable. An

example application for assisted return could be in a hospital setting. A visually impaired

patient receives assistance from hospital staff to navigate from their room to a specific

department for a medical appointment. After the appointment, the patient might need

to independently return to their room or designated waiting area. In this scenario, the

assisted return application would offer support to the visually impaired individual as

they make their way back on their own[29, 105].

In the following sections, I will begin with reviewing currently available smartphone-

based applications for indoor wayfinding within the related work section. Following

that, I will discuss the development of the two distinct iOS applications, which were a

collaborative effort with my colleagues from the computer vision lab. These applications

have been specifically crafted to offer assistance in both wayfinding and backtracking for

blind travelers when they move around indoors. Wayfinding encompasses the process of

determining and following a route through a building’s hallways to reach a destination.
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This process relies on the app having access to the building’s floor plan. On the other

hand, backtracking involves retracing one’s steps without relying on any previous map

information. Our apps solely use smartphones’ inertial and magnetic sensors, eliminating

the need for infrastructure modifications, such as the installation and support of BLE

beacons. In contrast to systems that utilize the phone’s camera, our apps allow users

to conveniently keep their phones in their pockets while interacting with the apps via a

smartwatch. Routing directions are delivered audibly. As my primary contribution lies

in the wayfinding app, I will provide a more detailed discussion of it within my thesis.

Both applications underwent successful testing in a user study that involved seven blind

participants navigating a campus building, as explained in the experiment section.

5.2 Related Work

5.2.1 Indoor WayFinding Apps with Maps

5.2.1.1 NavCog (Navigational Cognitive assistant)

NavCog [3] is an advanced smartphone-based turn-by-turn navigation system

created collaboratively by researchers from Carnegie Mellon University and IBM research.

The system offers real-time navigation assistance across extensive areas, specifically

designed to aid individuals with visual impairments while navigating unfamiliar indoor

environments. It incorporates a precise localization algorithm that strikes a balance

between accuracy and deployment workload, an interactive feature based on customizable

voice and non-vocal sound instructions, and tools to expedite the deployment process.
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Additionally, the app provides users with information about nearby POIs and accessibility

concerns, such as the presence of stairs ahead.

The core of the NavCog system lies in the interplay between three essential

components: the Map Server, Beacon Localization, and the NavCog App (see Figure 5.1).

Figure 5.1: The components of the NavCog system: BLE beacons, Map Server, and the

NavCog app [3]

• Map Server: The map-building process for the NavCog app involves several steps.

First, a floor plan of the environment is uploaded to a map server. Using a web-

based map editor, users mark beacons, walkable areas, decision points, and POIs

on the map. The map can be easily updated as the mapped areas expand. Once

the map is complete, it is uploaded to a remote server and then retrieved by the

NavCog app on users’ smartphones. This approach enables offline localization and

navigation since the position computation is entirely performed on the mobile device,

eliminating the need for a network connection. The map is structured as a graph,

with nodes representing significant locations in the environment. Additionally,
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the map server handles the management of Bluetooth beacons installed in the

environment, which play a crucial role in the localization process.

• Beacon Localization: Beacons provide several advantages, such as more precise

localization compared to GPS or WiFi-based methods, easy installation and main-

tenance, and increasing popularity. To localize the user, NavCog creates a model

linking BLE beacon signals to positions in the environment. BLE beacon signals

are sampled at known positions during the model training stage using a fingerprint-

based method. By employing a K-nearest neighbor (KNN) algorithm with a K-d

tree data structure, NavCog efficiently identifies the nearest BLE beacons based on

RSSI readings from the user’s smartphone. This enables the system to accurately

estimate the user’s position, ensuring real-time localization for visually impaired

individuals during indoor navigation.

• NavCog App: The NavCog App comprises a planning interface and a navigation in-

terface, designed with a user-friendly layout for individuals with visual impairments

(see Figure5.2). The planning interface allows users to select destinations and plan

routes, change vocal message speed, and the preferred way to receive instructions.

The navigation interface aids users during navigation. The design of this interface

aims to facilitate simplified interactions between visually impaired users and the

touch screen. Positioned at the corners of the touch screen are four strategically

located buttons, each with a specific purpose. The bottom right button concludes

navigation and returns the user to the planning interface, while the top left button
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replays the last navigation message, assisting users who might have missed it due

to distractions. The top right button provides accessibility-related guidance based

on the user’s location, and the bottom left button allows users to request additional

information about their surroundings. The interface also includes a central map

serving as a NavCog functionality testing tool. This map visually displays the user’s

current position and illustrates the path taken. Overall, the navigation interface is

thoughtfully designed for seamless and intuitive interactions for visually impaired

NavCog App users.

Figure 5.2: NavCog app, user interfaces: (a) Planning and (b) Navigation [3]

NavCog’s navigation mode offers visually impaired users three types of messages:

Distance announcements use verbal messages or clicking sounds to indicate the proximity

of upcoming actions, while action instructions guide users through turns and transitions
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in their route. Point of interest descriptions offer information about landmarks and

accessibility points, enhancing the user’s understanding of their surroundings.

The assessment of NavCog involved six participants navigating a complex indoor

environment with the app’s assistance. This evaluation aimed to measure user satisfaction,

effectiveness, and system usability. The findings indicated positive outcomes, underscoring

the app’s potential advantages for those with visual impairments. Participants expressed

contentment with NavCog’s guidance, perceiving it as valuable for navigation. The

app’s accuracy and reliability garnered favorable feedback. Additionally, the user-friendly

interface contributed to a positive user experience. The study concluded that the NavCog

app exhibited promising performance in aiding visually impaired users during indoor

navigation tasks. Its ability to offer precise guidance, real-time localization, and audio

instructions showcased its relevance in addressing indoor wayfinding challenges faced by

individuals with visual impairments. Nevertheless, there is potential for enhancement.

For instance, incorporating a preview mode to offer a route overview before starting could

be beneficial. Furthermore, users expressed curiosity regarding potential errors after a

turn, so they could recover quickly. Additionally, the satisfaction level with Points of

Interest data varied, depending on their actions and personal preferences. For example,

some users found the provided information unrelated to navigation and useless.

5.2.1.2 NavCog3

The NavCog project was introduced in 2015, and since then, researchers have

been dedicated to enhancing the system in two primary aspects: 1. improving localization
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and 2. improving navigation accuracy and user interaction. In terms of localization, the

app’s next version presented in [4] optimizes the localization process for efficiency and

precision. The technique combines BLE beacon RSSI probability distribution estimation

with pedestrian dead reckoning (PDR) using smartphone IMU data. Through this fusion,

the method achieves an average localization accuracy of 0.68 meters in testing while

also minimizing beacon requirements and installation effort. This makes it a practical

and cost-effective solution for indoor localization. In the latest version, NavCog3, they

proposed a localization technique that employs a particle filter algorithm to enhance

navigation within complex indoor environments. In this method, the smartphone’s motion

sensors (accelerometer and gyroscope) provide data to estimate the user’s movement

and direction. The process begins by initializing particles across the building layout

as potential user starting positions. The particle filter predicts new particle positions

based on sensor data as the user moves. Bluetooth Low Energy (BLE) beacons emit

signals received by the smartphone, offering proximity information to known building

reference points. The particle filter compares predicted particle positions with beacon

data, assigning higher weights to aligned particles and lower weights to deviating ones.

Repeated iterations of this process adjust particle positions and weights, gradually

improving the estimate of the user’s location within the building. This approach enhances

indoor navigation, particularly for visually impaired users [76, 86, 87].NavCog3, like

its predecessor NavCog, uses speech as the primary method for navigation feedback.

However, it goes a step further by offering on-screen information for users who rely

on visual cues. The notable improvement in NavCog3 is the provision of precise turn

89



instructions, including advance "Approaching" notifications for upcoming turns. Users

receive guidance through a combination of vibrations and sound cues to ensure they follow

the correct heading effectively. Additionally, the system provides corrective guidance for

route deviations and offers information about nearby landmarks and Points of Interest

(POIs). Users can easily inquire about POIs through voice commands, enabling hands-

free interaction, which is crucial for individuals with visual impairments. On-demand

instructions allow users to access guidance by tapping the screen or using control buttons.

The instructions are customized based on the user’s navigation status, location, and

heading (Figure 5.3).

Figure 5.3: NavCog3 App, user interfaces [86]

The effectiveness of NavCog3 was assessed through three user studies. The

First Study involved 10 participants with visual impairments navigating a shopping

mall with NavCog3, resulting in successful navigation and highlighting the utility of
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semantic features for spatial awareness. In Study 2, 43 participants freely selected

destinations within a shopping mall and used NavCog3 for navigation, demonstrating

the system’s capacity to confidently guide users to their desired locations. Study 3

was conducted during a 4-day conference for visually impaired individuals, showcasing

NavCog3’s positive impact on venue navigation and participants’ independence, as

evidenced by feedback from questionnaires and interviews. These studies emphasized

its efficiency, which was attributed to the provision of turn-by-turn guidance, accurate

localization, and inclusion of semantic features, all contributing to the improved spatial

comprehension and orientation [87, 86].

5.2.1.3 VirtualNav

In recent times, researchers have been exploring alternatives to on-site assistance

for blind individuals. These options include gaining prior knowledge about routes and

environments through methods like spoken explanations, maps, or virtual experiences.

Tactile maps and 3D models let blind individuals explore physical spaces through

touch, offering accurate spatial understandings. Efforts have been directed at making

these solutions more accessible, using technologies like 3D printing and interactive

touchscreens [112, 38, 64, 43, 101]. A significant response to the issue of unclear maps

is virtual navigation, immersing users in computer-generated environments to enhance

mobility training and spatial comprehension. This incorporates sensory feedback like

sound and touch [59, 62]. Smartphone-based virtual navigation taps into existing location

services, allowing blind individuals access to real-world places. A virtual navigation app
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has been introduced in [42], aiming to explore the usefulness of virtually acquired route

knowledge in practical navigation, ultimately boosting confidence and performance in

unfamiliar settings. This app is built upon NavCog3, an iOS navigation app utilizing

graph-based route representations and featuring landmarks and points of interest to

ensure a consistent user experience. The VirtualNav application replicates NavCog’s

instructions while introducing extra functionalities for simulating navigation in a virtual

environment. The interface offers two navigation techniques: Virtual Leap and Virtual

Walk. With Virtual Leap, users can quickly traverse route elements like turning points

and landmarks, using swipes to reveal distances and instructions. Virtual Walk enables

simulated step-by-step walking, including adjustable pace and directional control through

swipes and phone rotation. The interface integrates more gestures for turns, stops, and

location info, mirroring VoiceOver commands for user familiarity and ease of interaction.

The user study was conducted to evaluate the virtual navigation application’s

effectiveness in transferring route knowledge to real-world navigation for blind individuals.

Fourteen participants engaged in the study by virtually learning two out of four routes

across a span of three days, followed by physically navigating these routes unassisted and

with an in-situ navigation tool. The study assessed the acquisition of route knowledge

through virtual navigation, its evolution, and its impact on independent real-world

navigation. Some participants rapidly grasped route essentials within a day, while others

gradually increased their understanding of both short and long routes, forming a solid

comprehension of route structures and important elements. The virtual exploration of

short routes enabled most participants to transfer their route knowledge to the real
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world and reach their destination unassisted. The performance of those using the virtual

navigation app was comparable to those using NavCog for shorter routes. However,

participants leaned more on NavCog for longer routes and less on prior virtual knowledge,

resulting in minor performance improvement. The study also revealed limitations and

challenges for future research. The route elements used in the study were manually

annotated and static, which may not account for dynamic changes in the environment.

Additionally, users encountered difficulties when they had to hold a smartphone in one

hand to ensure more accurate localization while grasping their primary navigation aid

with the other hand. Overall, the study demonstrated the potential of virtual navigation

apps for blind individuals but highlighted the need for further improvements and research

in this area.

5.2.1.4 ASSIST (Assistive Sensor Solutions for Independent and Safe Travel)

Previous studies such as GuideBeacon [21] and NavCog [3, 87, 86] have employed

BLE technology for turn-by-turn navigation and location services. Google Tango, using

3D sensors and computer vision, is also investigated, with projects like ISANA [65]

implementing context-aware navigation. A hybrid strategy has been adopted in the

development of ASSIST [77], combining BLE for coarse localization and an augmented

reality (AR) framework (initially Google Tango, now ARCore and ARKit) for precise

positioning. ASSIST application consists of two main components: location recognition

through hybrid sensors and map-based semantic recognition. These modules collaborate

to offer users sufficient information for successful navigation and a better understanding
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of their surroundings. The app does not aim to replace traditional aids used by visually

impaired individuals but rather to provide additional positional and situational insights

to enhance their travel experience. It utilizes floor plans to mark points of interest,

calculate distances, and annotate static environmental features. The system follows a

client-server structure for speed and scalability (Figure 5.4), with the app providing a

multimodal interface and the server holding essential data. This design enables ASSIST

to operate efficiently even in large indoor facilities and can function offline after data has

been downloaded.

Figure 5.4: ASSIST’s client-server structure. [77]

The ASSIST user interface is designed to meet the unique requirements of

individuals with visual impairments, offering a range of customization options to accom-

modate various levels of visual impairment and navigational abilities. It consists of three

main screens (Figure 5.5). The home screen serves as the starting point for users to
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access navigation tools, adjust feedback settings, and personalize their experience. The

navigation interface provides turn-by-turn instructions for indoor navigation, displaying

essential information such as current location, upcoming navigational points, and distance

to the destination, with customizable options to meet individual preferences. The voice

engine interface allows users to interact with the speech engine, adjusting speech rate,

volume, and language settings. ASSIST also employs a multimodal feedback system with

minimal, medium, and maximal levels, catering to various user needs and preferences

through a combination of auditory, vibrational, visual, and haptic cues.

Figure 5.5: ASSIST’s user interfaces: (a) Home screen interface, (b) Navigation interface,

and (c) Voice engine interface. [77]

The user study assessing ASSIST included two types of tests: a usability

study and a performance study. The usability study collected subjective user feedback

on the app’s helpfulness, safety, ease of use, and overall experience from blind and

95



visually impaired (BVI) participants. The performance study gathered objective data on

mobility by measuring walking speed, collisions, and navigation errors for both BVI and

blindfolded-sighted users. These studies utilized a Lenovo Phab 2 Pro with a built-in

Google Tango 3D sensor for instructions and vibrotactile feedback. The results highlighted

ASSIST’s effectiveness in enhancing indoor wayfinding, emphasizing its benefits in terms

of guidance, safety, and efficiency for BVI individuals. The research also stressed the

importance of customized user interfaces and the potential for further enhancements

in the application’s functionality, providing valuable insights for developing efficient

navigation solutions for individuals with visual impairments.

5.2.1.5 FIND (Friendly Indoor Navigation App for people with Disabilities)

FIND is an indoor navigation app for people with disabilities, including those

with visual, hearing, cognitive, or mobility impairments and older adults. The app’s

primary objective is to offer a comprehensive and inclusive interface catering to a wide

range of users. The study focuses on comprehending user requirements and subsequently

crafting the initial interface. Three distinct interfaces are tailored for various disabilities:

visually impaired, cognitive, hearing, and mobility impairments, and older adults. For

example, the interface for visually impaired users utilizes smartphone corners for navi-

gation, while individuals with cognitive, hearing, and mobility impairments, as well as

older adults, benefit from a simplified design and multimodal interaction. This interface

caters to the needs of users with various impairments, with a focus on customization and

feedback (Figure 5.6). The study involves evaluating interfaces for inclusivity through
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heuristic analysis and a focus group meeting with usability experts. Usability experts

engage in various tasks and interactions; their feedback helps refine the interfaces. The

research underscores the significance of creating an inclusive indoor navigation app

for people with disabilities, emphasizing continuous user testing among diverse groups

for improvements. This study offers valuable insights into designing and evaluating

user-friendly interfaces that prioritize usability principles and user input [93].

Figure 5.6: FIND’s user interfaces: (a) designed for people with visual impairment,

and (b, c, d) tailored for individuals with cognitive impairment ( (b) main menu, (c)

navigation start screen, (d) path to the restroom). [93]

5.2.2 Indoor WayFinding Apps without Maps

5.2.2.1 Easy Return: An App for Indoor Backtracking Assistance

This app addresses the limitations of existing indoor navigation technologies

that often rely on infrastructure like beacons or availability of the maps. It focuses on
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offering an independent indoor navigation solution for situations where infrastructure-

based positioning technologies might not be available. The app is designed to run on a

standard smartphone, particularly the iPhone, allowing users to carry it conveniently in

their pocket without disrupting their mobility aids. Additionally, users have the option

to control the app through a paired Apple Watch for seamless interaction. This approach

utilizes the iPhone’s inertial sensors to monitor steps and identify turns during indoor

navigation. Given that many buildings have right-angle intersections in their corridors,

the system concentrates on detecting ±90° turns. As users traverse a path, the app

records left and right turns as well as step counts, creating a simplified representation

of the route. The return path is essentially the inverse of the initial route. When users

retrace their steps, the system compares their current location with the recorded path

and delivers spoken directions based on remaining turns and step counts. The system’s

design is adept at handling potential issues such as step discrepancies or wrong turns,

ensuring accurate and reliable guidance throughout the journey.

The user study was conducted to evaluate the effectiveness and user-friendliness

of an easy return system designed for blind individuals. The study engaged six participants,

all of whom were visually impaired to varying degrees, some with residual light perception.

These experienced travelers were familiar with smartphones, except for one participant.

Following an introduction to the system’s functioning, they practiced until they were

at ease with its interface and tracking mechanism. Utilizing both an iPhone and an

Apple Watch, participants navigated diverse paths. The iPhone’s inertial sensors tracked

their steps and turns, while the Apple Watch served as the control interface. Post-trials,
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participants completed a questionnaire with a Likert scale and open-ended questions.

Participants found the system user-friendly and enjoyed controlling it via the Apple

Watch. Yet, one expert traveler rated the system marginally useful and didn’t rely

heavily on it. Feedback highlighted enhancements like recognizing various turn types,

marking multiple routes, and adding pause/resume capabilities. Participants envisioned

real-world benefits in places like shopping malls and exploring buildings. The system’s

performance showed a high success rate for return paths, especially in challenging or

distracting environments with three or four turns [29].

5.2.2.2 PathFinder

PathFinder is an innovative navigation system designed specifically for blind

individuals to navigate unfamiliar indoor environments without relying on maps. The

system uses a participatory design approach to investigate the types of useful informa-

tion for blind people when navigating an unfamiliar building. The study found that

intersections, directional signs, and textual signs provide the most useful information.

Building on these insights, the initial mapless navigation prototype of PathFinder was

developed. PathFinder is a suitcase-shaped robot equipped with a handle interface, an

RGBD camera, a high-resolution smartphone camera (iPhone 12 Pro), LiDAR, and an

audio feedback system to convey detection results to the user (Figure 5.7). Operating on

a map-less navigation algorithm, PathFinder guides users to the subsequent intersection

or hallway endpoint. It incorporates a sign recognition algorithm to read directional and

textual signs, enhancing user confidence. Through iterative design and feedback from
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five blind individuals, improvements were made to intersection and sign readings and the

handle interface. A "Take-me-back" function was also introduced based on the user’s

feedback. A study with seven blind participants compared PathFinder to their usual

aids, and results showed increased confidence and reduced cognitive load. While some

preferred prebuilt map-based systems, they recognized PathFinder’s value for various

buildings, offering a balance between usability and functionality. [60].

Figure 5.7: PathFinder, a Map-less Navigation System for Blind People [60]

Many existing indoor navigation systems heavily rely on the availability of a

building map. These systems employ various sensors, including BLE, WIFI, or cameras,

which demand pre-installation or continuous real-time usage during navigation. Cameras,

in particular, need a clear view of the environment. Given the labor-intensive nature of

infrastructure installation and the challenge of handling additional devices like cameras
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for individuals with visual impairments who are already holding a cane or guide dog

leash, we introduce our smartphone-based (iOS) WayFinding application. This system

operates with just the building map, utilizing the smartphone’s built-in sensors to

compute the shortest route from the current user’s location to the desired destination,

update the route as necessary during traversal, and provide accessible navigational

support to the user as they are following the route. Furthermore, in scenarios where

the building map is unavailable, we introduced the BackTracking application, building

upon the work presented in [29]. This system assists individuals with visual impairments

in retracing previously traveled paths (e.g., from the front entrance of a building to

a specific office room), facilitating their return to the original starting point. The

Backtracking app utilizes data recorded during the initial route traversal (way-in) to

generate support for users when walking back (return). To achieve this, the app gradually

aligns the partial return route with the original way-in route but in reverse. Notably,

both of these apps do not rely on data from the smartphone camera, allowing users to

conveniently keep their phones in their pockets, which is how the apps were tested in

our experiment. I will explain the WayFinding application in the following sections,

highlighting my primary contributions to this system. This includes insights into map

and graph representation construction, two distinct localization technologies enhanced

by particle filtering (completed by my colleague), interface design, and a comprehensive

description of our evaluation process. The evaluation involved a user study with seven

blind participants who tested both applications. Lastly, I will present the findings and

results from this study.
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5.3 The WayFinding System Components

5.3.1 Building the map

The WayFinding system requires the preparation of the building’s map to offer

navigation assistance. Similar to GPS navigation for outdoor areas, the WayFinding

system focuses on providing indoor turn-by-turn navigation, aiding individuals in nav-

igating through complex indoor layouts, such as office buildings. This assumes that

the building’s map is available and it constitutes a network of corridors intersecting

at various angles. The map is accessed offline and employed to construct the internal

graph structure utilized for navigation, incorporating details about landmarks or points

of interest.

5.3.1.1 Map creation

The initial phase of map creation involves obtaining a floor plan of the environ-

ment, essentially an image illustrating the arrangement of walls and doors and integrating

it into the WayFinding application. The digital building wall maps were generated by

tracing the original maps using the SIM web application [104]. A developer indicated

the map’s waypoint (WP) and point of interest (POI) locations. For our experiment, we

have selected three buildings within our UC Santa Cruz campus: Engineering Building

2 (E2), the Jack Basking Engineering Building, and the Physical Science Building. It’s

worth noting that our app can accommodate numerous maps, provided their floor plans

are accessible.
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5.3.1.2 Graph Representation

Similar to NavCog system [3], WayFinding characterizes the navigable area of

the map as a graph, composed of a collection of WayPoints (WP) and route segments.

WayPoints can be categorized as junction points, transition points, dead-end points,

or exit doors, and route segments connect two WayPoints bidirectionally when there’s

a walkable straight path between them. A route connecting any two WayPoints is a

sequence of interconnected route segments, which facilitates turn-by-turn navigation.

This arrangement provides a series of direct segments for straightforward walking and

turning, ensuring both efficiency and accuracy. In spaces where representation as one-

dimensional paths is not feasible, such as open spaces lacking any reference system (e.g.,

where there are no walls for guidance), users might deviate from the intended route [113].

To address this, we have strategically placed WayPoints to guide users effectively.

5.3.1.3 WayPoints

The various WayPoints (WPs) on different maps are defined by their name,

coordinates, and descriptions, indicating their junction type (L-junction, T-junction,

X-junction, open-space, or junction), exit-door, dead-end, or corridor. Each WayPoint

can serve as a starting/ending node, allowing users to initiate navigation from there or

reach it as their final destination. Alternatively, it can serve as a dead-end point. If the

user reaches this node and it’s not their destination, they should retrace their steps until

the system guides them to the correct path. The remaining WayPoints serve as junction

points or nodes within open spaces.
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By utilizing the optimal route generated by the system for user navigation,

I’ve implemented code to refine WayPoint descriptions, allowing for more detailed

differentiations. For instance, a door might be positioned in the middle of a corridor the

user is traversing, or an L-junction could be categorized as either a left or right L-junction.

At each time t, the localization algorithm (as will be discussed in Section 5.3.2 ) produces

an estimated location p(t) of the user. However, rather than directly using the 2-D

locations p, we consider the projected locations p̄(t) onto their associated route segments

(discussed in Section 5.3.3). This approach is justified by the nature of typical buildings

with networks of corridors. To determine the direction of a specific point relative to a

segment on which the user is positioned, I calculate the cross-product between vectors

formed by the line’s start point to the endpoint and the line’s endpoint to the given

point. This calculation yields three possible values: a "positive value" if the point is to

the right side of the segment, a "negative value" if the point is to the left side of the

segment, or "zero" if the point lies along the segment. When encountering a T-junction

scenario, I utilize the slopes of the connected nodes to determine the specific type of

T-junction. This involves calculating the slopes between the current WayPoint (WP) and

its three connected nodes within the T-junction arrangement. Subsequently, I identify if

the T-junction is rotated or not based on these calculated slopes of the connected nodes.

However, in the interest of simplicity and to avoid overwhelming users with unnecessary

details, we decided to provide users with a general notification of "T-junction" for both

rotated and regular T-junctions.
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5.3.1.4 Landmarks and Points Of Interest (POIs)

Landmarks and points of interest (POIs) play a crucial role in indoor navigation

for individuals with visual impairments. These elements provide necessary reference

points and contextual information that can aid blind users in navigating unfamiliar indoor

environments. Landmarks are distinctive features within a building that serve as easily

identifiable reference points. These can include elements like benches, couches, desks,

cabinets, or unique architectural elements like pillars and alcoves. By incorporating

landmarks into indoor navigation systems, blind users can receive cues that help them

orient themselves and understand their surroundings. On the other hand, points of

interest are specific locations within a building that hold importance for users. These

could be restrooms, elevators, staircases, exit doors, specific rooms, or coffee shops.

Integrating POIs into navigation systems allows blind users to receive information about

the proximity and direction of these important destinations. This feature boosts their

independence and confidence while traversing indoor spaces.

In the map creation process, a developer identifies the positions of landmarks

and corresponding descriptions. Subsequently, I determine the nearest segment from

the point as the corresponding segment for each landmark. Depending on the subject’s

orientation along that segment, I establish whether it lies on their right or left side to

provide appropriate notifications.
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5.3.1.5 Defining Routes For The Study

We have created a practice route within the E2 building to help participants

become acquainted with both applications. This route is relatively straightforward,

involving two turns and featuring a few landmarks along its 62.86-meter length (see

Table 5.1). We deliberately removed one segment from the graph, promoting the system

to determine a more complex shortest path from the established starting point to the

known endpoint (see Figure 5.8).
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Figure 5.8: Floor plan of the E2 building. Waypoints are shown in red, and traversability

graph edges are shown in gray. The start and end waypoints are marked with a square and

a star, respectively. The shortest path is shown with a thick dark gray line. Landmarks

are shown in blue and enumerated (see Table 5.1 for landmark listing).
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Landmark ID Landmark type
1 staircase
2 benches
3 office
4 benches
5 water fountain
6 staircase
7 benches
8 couches
9 staircase

Table 5.1: List of landmarks in E2 building.

Furthermore, we have established three routes on the second floor within

the Baskin Engineering building, each designed with distinct levels of complexity and

predetermined starting and ending points (see Figure 5.9). This building is situated a

short distance from the E2 building. Route R1W included one L-junction, two T-junctions,

and two X-junctions, with a total of 4 turns. On the other hand, R2W featured two L-

junctions, two T-junctions, and two X-junctions, incorporating 5 turns. R3W comprised

two L-junctions and two X-junctions, involving 4 turns. The corridor widths varied from

1.9 m to 6.0 m. The existing landmarks for these routes are detailed in Table 5.2. The

building was generally quiet, with few students and researchers occasionally encountering

in the corridors. All junctions of the routes were at 90 degrees. Additionally, a few

potentially challenging situations were incorporated into the routes, including a narrow

door (always kept open) that had to be traversed, a side staircase in a narrow corridor

that had to be avoided (Figure 5.24 (c)), multiple alcoves (recessed areas) that had to be

navigated (Figure 5.27 (b)), and a turn in a wide (10 m × 6 m) open space, partially
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visible in Figure 5.28 (b)).
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Figure 5.9: Floor plan of the Baskin Engineering (BE) building. Waypoints are shown

in red, and traversability graph edges are shown in gray. The start and end waypoints

are marked with a square and a star, respectively. The shortest path is shown with a

thick dark gray line. Landmarks are shown in blue and enumerated (see Table 5.2 for

landmark listing).
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Landmark ID Landmark type
1 alcove
2 benches
3 staircase
4 photocopiers
5 alcove
6 alcove
7 pillar
8 couches
9 pillar
10 pillar
11 door
12 cabinets

Table 5.2: List of landmarks in Baskin Engineering building.

Additionally, We selected three more routes of varying complexity within the

Physical Science building. These routes incorporate more open spaces to provide a

higher level of challenge (see Figure 5.10 and Table 5.3 for landmark listing). The choice

of the Baskin Engineering (BE) and Physical Science (PS) buildings is attributed to

their proximity and ease of access from the E2 building. This decision was made to

enhance convenience for visually impaired individuals. Table 5.4 provides a comprehensive

overview of the specifics of each established route.
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Figure 5.10: Floor plan of the Physical Science (PS) building. Waypoints are shown

in red, and traversability graph edges are shown in gray. The start and end waypoints

are marked with a square and a star, respectively. The shortest path is shown with a

thick dark gray line. Landmarks are shown in blue and enumerated (see Table 5.3 for

landmark listing).
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Landmark ID Landmark type
1 open space with couches
2 staircase
3 staircase
4 desks
5 staircase
6 staircase
7 couches
8 coffee shop
9 elevator

Table 5.3: List of landmarks in Physical Science building.

Path-Name Building Path’s Length (meters) Num. of Turns Num. of landmarks
Practice-Path E2 62.86 2 4

R1W BE 122.59 4 10

R2W BE 97.04 5 6

R3W BE 72.25 4 2

R4W PS 77.11 4 5

R5W PS 74.97 3 4

R6W PS 74.67 6 1

Table 5.4: Summary of Routes’ Characteristics.

5.3.2 Localization

Building on our prior work in [81], we used two distinct Pedestrian-Dead-

Reckoning (PDR) algorithms, Azimuth/Steps (A/S) and RoNIN (R) [45], integrated with

a particle filter for user localization and tracking (implemented by another researcher in

our group). RoNIN generates velocity vectors that can be integrated into displacement

vectors but face challenges in accurately estimating velocity for some users. To enhance

accuracy, we introduced personalized correction factors known as RoNIN scalers, derived

by dividing actual path lengths by RoNIN’s estimates.
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The A/S algorithm generates 2-D step vectors based on estimated length and

phone orientation. Constraints were implemented to refine step detection accuracy by

filtering out minor movements and reorientation using RoNIN thresholds for stationary

periods and avoiding consecutive steps within <0.4 seconds to prevent overcounting. In

our experiment, calibrated step lengths were established by dividing the path length by

the step count, following similar approaches in [84, 6]. Our analysis, including applying

our trained step-length calculator model to the WeAllWalk data set, showed that models

trained on sighted data didn’t predict step lengths accurately for blind walkers. Thus,

calibration became crucial due to unique challenges faced by blind individuals, such

as different gait patterns and noticeable side-to-side movements with tools like white

canes [44, 49, 30, 103, 81, 69]. The particle filter further refined step length, similar to [6],

enhancing accuracy in tracking blind individuals’ movements.

Impenetrable walls on building floor maps notably enhance localization accuracy

when available [120, 32]. Particle filtering [102] represents the walker’s location using

statistics like the mean location. Each particle holds attributes like position, drift angle,

and step length (for A/S only), adjusted at each detected step. Weight adjustments

occur based on criteria, reducing weights for crossing walls, significant deviations from

the average position, or room entries, minimizing localization uncertainties.

The A/S and RoNIN algorithms utilize smartphone inertial sensors. While both

ran simultaneously, only one guided the user, serving dual purposes: a backup in case

of failure (required once during the experiment) and enabling comparative analysis of

localization data. They position users within a fixed "world" frame, aligning the Z-axis
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with gravity. Calibration aligned this frame with the floor plan’s frame. By assuming

known starting points and directions, we measured the angle between the reconstructed

path and the intended direction after 6 steps.

5.3.3 Segment Assignment

At every time step, whether it’s A/S with PF or RoNIN with PF, the localization

algorithm calculates the user’s estimated location as p(t). This data guides the app to

create a route to the destination and issue relevant notifications. Rather than using

the raw 2-D locations p, we use the projected locations p̄(t) onto the route segments, a

technique implemented by my colleague in our lab.

As users walk, we can safely project their location onto a corridor’s route

segment. Yet, at junctions, there’s a risk of localization errors leading to incorrect

assignments. To handle this, we implemented a mechanism: As long as a walker’s

projected location p̄ stays more than a set threshold T (in our case, 1.5 m) from any

intersecting junction, they stay associated with a route segment. When p̄ gets closer

than this threshold to a junction, the association with any segment becomes ambiguous,

disconnecting p from all segments (see blue arrows in Figure 5.11). Reassociating happens

when p projects onto a segment reaching a distance of T or more from the junction,

establishing a new segment association (see Figure 5.11).
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Figure 5.11: Segment Assignment Example: The walker’s path is illustrated using white

circles, while their projection onto assigned segments is denoted by grey circles. Segment

assignment is paused when the walker enters a circular area centered at the junction

(marked by the red circle) with a radius of T .

5.3.4 Routing

The WayFinding system utilizes a graph-based environment for routing, repre-

senting walkable areas as WayPoints connected by line segments (edges). Each edge’s

weight corresponds to the distance between its connecting points. The initial and final

points are predefined for all routes described in Section 5.3.1.5. While the system can

accommodate various starting and ending nodes, we intentionally selected these points for

consistency among subjects and to establish standardized routes. Our primary objective

is to determine the shortest path, whether from the initial starting point (before walking

begins) or from the user’s current location to the intended destination.

I utilized Apple’s GameplayKit toolkit for iOS development1. While primarily

designed for game-related tasks such as creating intelligent behaviors, pathfinding, and

simulations, it has found applications in solving pathfinding and graph-related challenges
1https://developer.apple.com/documentation/gameplaykit
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in non-gaming apps. To set up the graph, I created nodes based on predetermined

WayPoints and their respective positions. I established two-way connections between

nodes using edges, as subjects can move in both directions on the edges when a direct

path exists. The edge’s cost is equivalent to the Euclidean distance between the connected

points. To find the shortest path to the destination from the current position, I introduced

a new node representing the current position along its corresponding edge, connecting it to

the two existing nodes initially linked by the edge. I used the FindPath function to retrieve

the optimal path sequence from the current position to the destination, determined by the

Dijkstra algorithm. Dijkstra’s algorithm is widely employed for finding the shortest path

in a weighted graph. It starts from an initial node, systematically explores neighboring

nodes with the smallest known distances, and maintains sets of visited and unvisited

nodes. The algorithm selects nodes with the smallest known distance, updates neighbor

distances if shorter paths are found, and is effective for non-negative edge weights. In

cases where all edge weights are non-negative, it guarantees the shortest path discovery.

5.3.5 Turn-By-Turn Instructions

The WayFinding system offers turn-by-turn directions through speech instruc-

tions, facilitating hands-free engagement. Similar to [86], the WayFinding system visually

displays essential navigation information on the screen. This includes the map, a repre-

sentation of the graph featuring the shortest path highlighted, marked WayPoints and

landmarks, the user’s current position, and provided instructions. This dual approach

caters to users with varying degrees of visual ability: those who prefer auditory guidance
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and those who can benefit from visual cues. Moreover, the visual information serves the

purpose of application testing and monitoring (see Figure 5.12).

Figure 5.12: Sample screenshot displaying the information provided by the WayFinding

application.

The provision of accurate instructions for users to reach their destinations relies

on real-time location tracking. It’s crucial to acknowledge that, despite our efforts to

minimize errors using particle filters, there may still be location inaccuracies of up to

2-3 meters. Disregarding these errors when sending notifications can lead to significant

issues. For example, the app might send a notification right before it’s completely certain

about the user’s location at a junction. This situation is shown in Figure 5.13, where the

user’s actual location might be slightly in front of or behind the junction, potentially
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causing confusion about the correct turn. To overcome potential location inaccuracies,

our purposeful design approach entails providing advance notifications as users approach

a junction. This proactive strategy ensures that users haven’t reached the junction by

the time they receive the notification. While the concept is straightforward, its viability

was not immediately evident. Before the experiments, users are informed about this

approach and encouraged to start searching for the next available opening immediately

upon hearing the notification, either with their cane or dog. A key objective of our

experiments was to confirm the success of our participants in this task and to assess

their acceptance of this strategy. Extensive pre-experiment testing has validated the

effectiveness of this notification approach when the app detects the user is approximately

7 meters away from the next WayPoint. This approach also considers the common

behavior of individuals who continue walking while listening to notifications and may

advance by 2-3 meters before fully processing the information.

Collaborating with another researcher in our lab, we’ve defined distinct states

with different priorities. These states are governed by a state transition mechanism

that enables us to create accurate notifications to guide users through each step of their

navigation journey. The specific state is determined by the user’s current route and

position, focusing on factors such as the user’s location relative to the next WayPoint in

the route and nearby landmarks.
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Figure 5.13: Hypothetical junction scenario: The walker’s estimated location is denoted

by the gray-filled circles. The larger circles illustrate the expected radius of location

uncertainty. If the app identifies the walker at the junction center (top circle), the actual

location might fall anywhere within the dashed circle of uncertainty, which could be

before or after the junction. If the app places the walker at the lower circle, it confirms

that the walker’s actual location is indeed before the junction.

5.3.5.1 Notification Generation States

We are considering various states that the user may encounter. Note that in

case of conflict where a new state is triggered while a prior one is active, the ongoing

state continues except for the (S3) type state alerting the user of an upcoming turn,

as it takes priority due to its time-critical nature. It’s also essential to emphasize that

we avoid repeating the same notification, except for the (SW) type state. Additionally,

we prioritize designing navigation notifications to reduce cognitive load and minimize

distractions by delivering concise and short synthesized speech sentences.

• S1: The S1 state is initiated when the user enters a new route segment. The

specific content of the notification generated in the S1 state is determined by the
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upcoming WayPoint and the distance to that particular point. Here are examples

of notifications that may be issued in the S1 state:

– The next WayPoint is a junction: “Walk straight for about XX [meters/feet/steps].

Then, you will turn [left/right].” (see Figure 5.14 (a))

– The next WayPoint is the destination point: “Walk straight for about XX

[meters/feet/steps]. Then, you will approach your destination.” (see Fig-

ure 5.14 (b))

(a) (b)

Figure 5.14: Notifications triggered when the user enters a new segment, denoted by the

highlighted yellow box. (a) When the upcoming WayPoint is a junction. (b) When the

upcoming WayPoint is a destination point. The pink lines indicate the optimal route,

while the green lines track the user’s actual path. The cyan dot represents the user’s

projected location on the associated segment.

• S2: This state activates when the user is within 7 meters of a Non-Turning Junction
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(NTJ), where they should continue straight. Its purpose is to guide the user correctly

when they encounter this junction. In the S2 state, the notification message "Keep

walking straight" ensures the user proceeds through the upcoming junction without

making unnecessary turns. If both S1 and S2 states occur at the same time, the

instructions provided combine aspects of both to offer comprehensive guidance to

the user (see Figure 5.15).

(a) (b)

Figure 5.15: Notifications for passing through Non-Turning Junctions (NTJs), highlighted

within the yellow box for S2. (a) Activation of the S2 state, and (b) Activation of both

the S1 and S2 states. The pink lines indicate the optimal route, while the green lines

track the user’s actual path. The cyan dot represents the user’s projected location on

the associated segment.

• S3: The S3 state activates when the user is within 7 meters of a Turning Junction

(TJ), an open space, or a destination point. It generates precise instructions to

120



confidently guide the user through the upcoming turn or open space, based on the

nature of the next WayPoint (refer to Figure 5.16):

– The next WayPoint is a Turning Junction: ”At the upcoming [X, left/right L,

T] junction, turn [left, right].”

– The next WayPoint is an open space: ”When possible, turn [left, right]”

– The next WayPoint is a destination point: ”Approaching your destination.

Your destination is just ahead of you.” If the route ends at a wall or a closed

door, this notification is followed by: ”Please stop when you find a wall.”

• S4: State 4 activates when the user enters a segment that requires them to "keep

left" or "keep right". These segments are pre-defined and labeled for precise

notification generation. The purpose of State 4 is to provide clear instructions,

ensuring the user remains on the correct side of the segment. This may involve

avoiding potential hazards like emergency showers or guiding the user through

extensive corridors and open spaces (see Figure 5.17). Both states 1 and 4 trigger

upon entering a new segment, so the S4 notification incorporates the S1 instruction.

121



(a) (b)

(c) (d)

Figure 5.16: Notifications for the S3 state when the user is in the proximity of a turning

point: (a) at an approaching junction or (b) at an upcoming open space. Additionally,

scenarios depict the user’s proximity to the endpoint: (c) approaching a wall signifying

the destination and (d) positioned within a corridor. The pink lines indicate the optimal

route, while the green lines track the user’s actual path. The cyan dot represents the

user’s projected location on the associated segment.
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(a) (b)

Figure 5.17: Notifications for situations where the user must keep left or right, highlighted

in the yellow box for S1+S4. (a) S4 is triggered because of emergency showers on the left

side, and (b) S4 is activated to guide the user to stay on the correct side of the segment

while navigating through a wide open space. The pink lines indicate the optimal route,

while the green lines track the user’s actual path. The cyan dot represents the user’s

projected location on the associated segment.

• SW (Wrong Direction): The SW state, or "Wrong Direction" state, activates when

the user has been consistently walking in the wrong direction for at least 4.5 meters.

The chosen length of 4.5 m was determined through trial and error in initial

experiments and aligns with the anticipated radius of localization uncertainty. This

state’s purpose is to alert the user to their incorrect path and prompt them to turn

around (see Figure 5.18 (a)). This helps prevent the user from deviating further

from the correct route and guides them back on track. If the user continues in the
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wrong direction for another 4.5 meters, the same notification is repeated. While

walking in the wrong direction, other states cannot be triggered. However, if the

user corrects their path and starts moving in the right direction, they transition to

the appropriate state, S1, triggering the relevant notification (see Figure 5.18 (b)).

Additionally, the system consistently aims to find the optimal route from the user’s

current location to the destination. If walking in the wrong direction reveals a new,

more efficient path to the destination, the system guides the user to follow this

newfound route (see Figure 5.18 (c)).

• S5: The S5 state activates when recognized pre-labeled landmarks are within

2 meters, serving as navigational references. Unlike approaching junctions, the

shorter distance threshold here is justified by the lower need for advanced notice

for nearby landmarks. Notifications inform users about these nearby landmarks,

detailing their location, type, and their left/right positioning concerning the user’s

walking direction (see Figures 5.19 (a) and (b)). Multiple landmarks within range

prompt notifications for each. This information enhances spatial awareness and

informs route decisions. These notifications hold the lowest priority and can only

be activated when no other states are active (Figure 5.19 (c)).
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(a) (b)

(c)

Figure 5.18: (a) The SW state is triggered when the user misses a turn and continues

walking straight. The system issues a notification to prompt the user to turn around.

(b) The user follows the notification and changes direction, successfully returning to the

correct route. (c) Despite the user’s continued wrong direction, the system adapts by

identifying a new optimal path and guiding them through the alternative route towards

the destination.
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(a) (b)

(c)

Figure 5.19: (a) The system notifies the user about a single nearby landmark. (b) The

user receives notifications about all nearby landmarks in proximity. (c) When landmarks

are located at the start of the segment, and S1 is triggered, the S1 notification takes

priority over the S5 notification.
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5.4 User Interface and Interaction

The WayFinding application operates in conjunction with two devices: an

iPhone carried in the participants’ pocket, and an Apple Watch paired with the iPhone.

The iPhone uses its inertial sensors for step tracking, turn detection (left or right),

velocity predictions via RoNIN, localization, routing algorithms, and generating guidance

messages. Participants used the Apple Watch for system control (initiating and concluding

navigation) and accessing information (requesting updated directions on demand). It’s

important to note that while the Apple Watch’s usage is optional, it provides participants

with full control over the experiment, eliminating the need to hold the phone in hand or

seek assistance from experimenters. The WayFinding phone application also includes

additional control keys for experimenter management throughout the study.

5.4.1 Watch Gestures for Controlling the System

Users have complete control over the system through the Apple Watch interface.

Prior to starting navigation, users can choose a route from a list. The list can be traversed

in both directions by swiping left or right on the Watch’s face, with the route’s name

audibly announced by VoiceOver for easy selection. As previously mentioned, route

selection also determines the starting and destination points for consistency among users

(see Figure 5.20). Once a route is chosen, navigation starts by rotating the crown in either

direction until hearing "Please start walking". At any point, users can halt navigation

by turning the crown until the announcement "process done" is made. The watch also
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provides auditory and haptic cues, including a "ding" sound, to indicate the initiation

and conclusion of navigation. This feature helps users easily identify the start and end of

their journey.

Figure 5.20: The route and ending WayPoint are changed once the user swipes right on

the watch. The name of the route is announced and highlighted within a yellow box.

Additional control buttons in the phone version of the app offer experimenters

customization options, including:

1. Enabling or disabling step detection beeping sounds.

2. Selecting the format for navigation instructions: meters, feet, or steps. When the

step-based option is chosen, the distance can be converted into the corresponding

number of steps using the user’s calibrated step length.
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3. Toggling the activation or deactivation of the calibration stage and the RoNIN

algorithm. Both are initially turned off.

4. Selecting whether to display the traveled path as a line, allowing control over how

the experiment’s progress is represented.

5.4.2 Watch Gestures for On-Demand Navigation Instructions

After initiating navigation, users can perform "swipe left" and "swipe right"

gestures on the watch’s face to access different information. Swiping left provides a

comprehensive summary of the entire path in terms of route segments and turns. This

gesture offers an overview of the route from the starting point to the destination. At

any point during navigation, users can request complete path instructions, which the

system tailors to their current location, guiding them through the remaining part of the

optimal path to their destination (see Figure 5.21). The "swipe right" gesture on the

watch serves to reiterate the most recent active state instruction, taking into account the

subject’s current location. It’s important to note that this action does not replicate the

S5 instructions related to landmarks or POIs; rather, it prioritizes the navigation-related

instructions.
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(a) (b)

Figure 5.21: Notifications for the "swipe left" gesture on the watch during navigation.

(a) The complete path is generated based on the optimal route from the starting point to

the destination, marked by a highlighted yellow box. (b) When on the route, performing

a "swipe left" gesture generates navigation instructions for the full path from the current

position to the destination point, also marked with a highlighted yellow box.

An additional watch gesture is designated for developer use, intended to be

employed only in rare and exceptional situations. In instances where a user has deviated

from the intended route and has extensively explored the surrounding area without

successfully retracing their path, the experimenter can assist them by guiding them to

the nearest WayPoint. This involves repositioning the user within the application and,
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if deemed necessary, switching between Localization algorithms such as RoNIN+PF

or A/S+PF. By holding down the watch screen for two seconds, developers enter

administration mode. Developers can navigate through WayPoints by swiping left

or right on the watch. Switching the localization algorithm to RoNIN is achieved with an

upward swipe, and a downward swipe allows the developer to reset the user’s position.

Once the user resumes walking, the system generates precise navigation instructions

based on the reset position to ensure accurate guidance.

5.5 Experiment

Before conducting the user study with blind participants, we performed tests

with blindfolded sighted individuals who used the app in combination with a long white

cane for navigation. These initial tests were aimed at identifying potential app issues,

including landmark positioning and determining the optimal number of landmarks to

avoid overwhelming users with information. Additionally, we used feedback from these

tests to refine the speech instructions provided at various route segments. Once we were

satisfied that both the WayFinding and BackTracking apps functioned effectively for

sighted individuals, we proceeded to invite blind participants for the actual user study.

During testing, participants initially followed three routes within the BE building

using the WayFinding app. They traversed route R1W (Figure 5.9 (a); length: 123m),

followed by route R2W (Figure 5.9 (b); length: 97m), and concluded with route R3W

(Figure 5.9 (c); length: 72m). It’s worth noting that each route’s endpoint corresponded
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to the starting point of the subsequent route, and all routes terminated at a closed

exit door location. When testing the Backtracking app, participants retraced the same

routes in the reverse order, with reversed directions. These routes were labeled as R1B,

R2B, and R3B. In practice, each participant first walked R1W, R2W, and R3W using

the WayFinding app, while the Backtracking app (installed on a different smartphone)

collected way-in data for each route. Subsequently, participants tested the Backtracking

app by traversing R3B, R2B, and R1B

Initially, we planned to include three routes within the Physical Science building

as well. However, after the first two participants completed the tests in the BE building,

they were already exhausted. Therefore, we made the decision to exclude the routes in

the Physical Science building from this user study.

5.5.1 Population

Seven participants took part in this experiment, and you can refer to Table 5.5

for an overview of their characteristics. All participants were blind, with the majority

having some residual light perception. They were experienced independent walkers.

Notably, P6 was in the process of transitioning from using a guide dog to using a long

cane and relearning cane usage. Additionally, P5 had a hearing impairment and used

hearing aids. In terms of mobile devices, all participants, except for P7, used iPhones;

P7 used a cell phone with a physical keypad. It’s worth noting that only P1 frequently

used a smartwatch (Apple Watch). Table 5.5 also includes the calibrated step length

values obtained during the initial calibration phase, along with the average step length
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derived from the particles at the end of the trials (note that step length was introduced

as a state in the Particle Filter starting from P4). Note that the step lengths obtained

from the particles at the end of the trials were either smaller than or equal to the step

lengths measured during calibration for the same participant. As mentioned earlier, this

can be attributed to the easy, straight corridor used for calibration, where users could

confidently walk with longer steps.

user Gender Age Blindness Mobility aid
Step length (cm) Step length (cm) RoNIN Preferred

(calibration) (final) multiplier units
P1 F 73 L Dog 48 – 0.96 Steps
P2 M 69 B Cane 51 – 1.08 Feet
P3 M 53 B Cane 54 – 1.14 Feet
P4 F 69 B Cane 51 44 1.0 Feet
P5 M 75 L Cane 44 41 1.21 Meters
P6 F 76 L Cane 40 40 1.11 Steps
P7 F 72 L Dog 63 58 1.08 Feet

Table 5.5: Characteristics of the participants in our study. In the "Blindness" column,

"B" denotes blindness from birth, while "L" signifies later onset. The "Step length (final)"

column represents the average step length value calculated at the end of the trials by

averaging values. Please note that the particle filters included step length as a state

starting from P4.

5.5.2 Experimental Settings

After obtaining their consent, we provided each participant with a detailed

explanation of both apps and their functionalities. We encouraged them to ask questions if

anything was unclear. We emphasized the importance of notifications regarding upcoming

turns, assuring participants that they would receive advance notice. We clarified that,

upon receiving such notifications, they should be prepared to identify the first available
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opportunity to make the turn, whether it’s nearby or a few meters down the path.

The initial step in our application testing process is the calibration of two

critical parameters: the user’s step length and the RoNIN scaler factor. This calibration

process is vital to ensure precise distance measurements. We conduct this calibration

in a designated corridor within the E2 building, conveniently located near our office,

where participants are welcomed. During the calibration phase, we maintain a consistent

path length of approximately 38.25 meters. Participants are instructed to walk this

predefined path while counting their steps by the app. By dividing the path length by

the recorded step count, we determine the user’s specific step length. Simultaneously,

we apply regression to calculate the RoNIN multiplier. This is achieved by dividing the

actual path length by the length calculated by RoNIN, as explained in Section 5.3.2.

Subsequently, we accompanied participants to the practice trial’s starting

location. Each participant was equipped with two iPhones placed in their pants pockets,

and we had previously requested that they wear pants with pockets on the day of the

experiment. These iPhones served different roles: the iPhone 12 ran the WayFinding app,

while the iPhone XR recorded way-in data for the initial WayFinding trials. Additionally,

participants wore a wireless bone conduction headset (Shokz OpenRun) to receive app

notifications, and they had an Apple Watch Series 8 to interact with the apps. We

ensured that the VoiceOver settings, including speed and sound volume, were adjusted to

their preference before commencing the practice trial. Furthermore, we inquired about

their preferred units for receiving directions, such as meters, feet, or steps, and configured

the apps’ parameters accordingly (see Table 5.5). Before and during the practice trial,
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we encouraged participants to become familiar with the watch’s swipe left and right

gestures and their various functionalities both before and after navigation started. All

participants quickly adapted to these gestures, although there was initial confusion for P2,

who initially interpreted "right" or "left" as referring to the axis of his left arm (where he

wore the Watch), i.e., in a direction orthogonal to the forearm rather than parallel to it.

Participants navigated the practice route using the WayFinding app, and upon reaching

their destination, they retraced the route in reverse using the BackTracking app.

Participants were provided with the option to disable the sound of detected

steps. However, all participants chose to keep the step sound enabled, with some

mentioning that it reassured them about the system’s proper functioning. We also asked

if participants wanted to receive notifications about nearby landmarks (a few landmarks

were announced during the practice trial). All participants decided to continue receiving

landmark notifications. Initially, we had the landmark option disabled for P1, thinking it

might overwhelm participants with excessive information. However, following feedback

from P1, we decided to include this option in the app and let participants make the

choice.

After completing the practice path, participants were guided to the Baskin

Engineering building, where the actual experiment took place, specifically starting at the

initial point of the first route (R1W). The routes are described in Section 5.3.1.5. At the

beginning of each trial, participants were led to the route’s starting point and properly

oriented. Following this, they were reminded of the instructions on how to choose the next

route from the list by swiping left and right on the watch’s face. After selecting the route,
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they were instructed to rotate the Watch’s crown to launch the app (Figure 5.22 (a)).

Additionally, participants were asked to swipe left on the Watch to receive an overview

of the entire route (Figure 5.22 (b)). With these instructions, participants began walking.

Upon reaching the destination, they stopped the app with the Watch’s crown and had

the option to take a break. Afterward, participants were repositioned at the starting

point of the next route, which coincided with the endpoint of the previous route. They

were carefully oriented before beginning the next route. Experimenters maintained a

safe distance from participants throughout the trials to avoid influencing their routing

decisions.

After completing their traversal of the final route, R3W, using the WayFinding

app, participants were asked to retrace the three routes in reverse order using the

BackTracking app. During this transition, participants received new headsets and

Watches, which were the same models as the ones they had been using. They were

instructed to replace their old devices with these new ones since both devices could

be paired with only one iPhone at a time. This switch was necessary because the

Backtracking app ran on a different iPhone than the WayFinding app. Additionally, we

equipped participants with foot sensors attached to their feet to record foot data. Another

phone was used to collect the inertial data from the phone, which was synchronized

with the foot sensors. This data was utilized in a separate project related to step length

prediction with blind users (results are presented in Chapter 4, Section 4.5.2).
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(a) (b)

Figure 5.22: Participants interacting with the WayFinding app via Apple Watch: (a)

Participant P6 initiates the app by rotating the crown at the initial point of R1w. (b)

Participant P7 swipes left after starting the app to hear a complete preview of Route

R3w.

To ensure the apps’ performance during the trials, we employed screen mirroring

through the ApowerMirror app to display the iPhone’s screen on the smartphones carried

by the experimenters. Given that our apps were intended to run in the foreground, we

utilized the Guided Access utility found in iOS Accessibility settings. This approach

helped prevent unintended button presses or gestures when the phones were stored in

the participants’ pockets.

Upon completing their last trial, which involved traversing route R1B with the
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Backtracking app, participants and experimenters returned to the initial building. At

this point, participants were invited to take part in a questionnaire that included the ten

System Usability Scale (SUS) questions and several open-ended questions.

5.5.3 Observations and Results

Table 5.6 presents the duration of successfully completed routes, and indicates

instances where administrative resets were necessary, or participants received verbal

guidance from the experimenters. It also distinguishes trials in which participants missed

turns but were able to reorient themselves with the assistance of the app’s instructions.

We activated the administrative mode for route R1W for participants P1, P2,

and P3, as denoted by the "R" marker in the table. In the case of P1, we switched the

localization algorithm from A/S to RoNIN after encountering issues with A/S accurately

tracking the participant (Figure 5.24 (a), blue line). As for P2 and P3, we performed

manual resets to position them at the nearest WayPoint within the app. For all three

users, the remainder of the routes were completed without any issues (except for P1 in

R2W, as will be discussed later).

It’s essential to highlight that, for the first three participants, the step length

value (si) was not yet integrated into our particle filter implementation (Section 5.3.2).

Consequently, A/S relied solely on the step length measured during calibration. Route

R1W is among the most challenging routes in our study, primarily due to the initial

segment. This segment is characterized by its considerable length, exceeding 40 meters,

as well as its narrow width and the presence of several obstacles, including benches and
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Route

User
P1 P2 P3 P4 P5 P6 P7

R1W 261 (R,E) 355 (R) 297 (R) 216 271 223 206

R2W 304 (E) 209 134 163 211 262 171

R3W 125 170 98 127 144 139 330

Table 5.6: Summary of WayFinding Route Experiments. Reported durations (in seconds)

for successfully completed routes. Gray background indicates participants who missed

turns but completed the route with app guidance. R denotes a system reset requirement,

while E indicates route completion with verbal input from the experimenter.

staircases located on the right side. Participants received explicit instructions not to

climb the stairs when encountering them (Figure 5.24 (c). This caution led participants to

take substantially shorter strides compared to their calibration settings. By the time they

reached the corridor’s end, the accumulated length error had become significant, making

tracking challenging, even with particle filtering. For P1, we successfully addressed the

issue by transitioning to RoNIN, which resulted in excellent performance (Figure 5.24 (a),

red line). However, it’s worth noting that RoNIN faced occasional challenges in the

same area, as it couldn’t effectively track P2 ((Figure 5.24 (b), red line)). After we

incorporated step length values into the particle filtering process, this problem ceased to

occur. Consequently, we were able to utilize A/S with success for all other participants

(see Figure 5.23).
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(a) (b)

(c)

Figure 5.23: (a)–(c) Recorded route R1W using A/S (blue line) and RoNIN (red line)

for (a): P4, (b): P5, and (c): P7.
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(a) (b)

(c)

Figure 5.24: (a)–(b) Recorded route R1W using A/S (blue line) and RoNIN (red line)

for (a): P1. (b): P2. (c) Synchronized screenshot of the app and P4’s perspective, as

he notices the staircases on his right side. The notification generated by the app is

highlighted within an orange box. Experimenters reminded him to avoid ascending the

stairs.

Certain cells in Table 5.6 are shaded in gray to indicate trials where participants
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completed the trial successfully but occasionally had to retrace their path, as instructed

by the WayFinding app, due to missed turns. Instances where users missed can be found

in Figures 5.23 (b–c), 5.24 (b), 5.26, and 5.25 (b). Subsequent analysis, using both

recorded video footage and app data, revealed the underlying causes for these missed

turns. Regarding P7, who missed turns across multiple routes, it’s worth mentioning

that she was walking quite fast with her dog. By the time the notification concluded

and she processed it, she had already passed the junction. Also, while navigating route

R3W, P7 mistakenly entered a small open room shortly after starting the trial (as shown

in Figure 5.25 (a)). Afterward, she missed several turns within the same route, even

making the same mistake multiple times, before eventually finding the correct final route

segment and reaching her destination (Figure 5.25 (b) and (c)). Some missing turn

instances were attributed to external distractions, like interaction with passersby (P5

in R1W), or the participants being engaged in conversation when the notification was

delivered (P2 in R2W; Figure 5.26 (a)). P6 missed a turn while traversing an open space

in R3W(Figure 5.26 (b)). Potentially due to the absence of a nearby wall, she may have

been uncertain about the precise turning point and continued until she sensed a wall to

the right. By then, the app prompted her to turn around and get back on the correct

route. On a single occasion (P6 in R2W), the app issued a notification just after the

participant had gone past the junction, resulting in her missing the turn. This occurred

because the localization algorithm briefly underestimated her position. Nonetheless, upon

receiving the subsequent notification to turn around, she adeptly managed to navigate

the missed turn.
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(a) (b)

(c)

Figure 5.25: (a): P7 entering the room by mistake short after starting the route R3w.

(b): Recorded R3W path traversed by p7 using A/S (blue line) and RoNIN (red line). (c):

Synchronized screenshot of the app and P7’s perspective, as she is turning around after

hearing the ”SW notification” that she is walking in the wrong direction. The notification

generated by the app is highlighted within an orange box.
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(a) (b)

Figure 5.26: Recorded paths using A/S (blue line) and RoNIN (red line). (a): P2, R2W.

(b): P6, R3W.

Participants who used long canes demonstrated a proactive response to early

notifications about upcoming turns. They tended to approach the wall on the side where

the turn was expected, using their canes to tap the wall until they found an opening (as

shown in Figure 5.27 (a)). In certain instances, there was an alcove (a recessed area in the

wall) positioned just before or after the corridor junction. This caused a few participants

to temporarily pause in the alcove before eventually finding their way out and continuing

along their path (Figure 5.27 (b). An interesting deviation from this pattern was observed

in the case of P2. Unlike the others, P2, an experienced independent traveler, employed

a distinct mobility technique. Instead of scanning the ground in front of him, P2 used

his cane to periodically tap the floor surface. He relied on the resulting sounds to make

judgments about nearby surfaces. When alerted to an upcoming junction, he would
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move closer to the corresponding side of the corridor (without tapping the wall) until he

detected the presence of an opening to his left or right. At that point, he would execute

a 90◦ turn into the opening. However, while he was traversing the R3W route, he missed

a turn and had to retrace his steps following the system’s guidance. He later commented,

”I knew where that was exactly”, suggesting he might have recognized the opening during

his initial attempt.

(a) (b)

Figure 5.27: (a) P6 walks along the wall, searching for an opening to turn in route R1W.

(b) In route R3W, P5 encountered an alcove on the right side after the last turn but

managed to find his way.

The two participants with guide dogs exhibited distinct behaviors compared to

those using canes, and each subject displayed unique characteristics. In theory, users can

verbally communicate instructions like ’left’ or ’right’ from the app to their dogs, as dogs
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are usually trained to comprehend these directions. However, P1 and P7 each adopted

different approaches.

In the case of P1, she walked slowly, and the dog was guiding her cautiously.

For example, in route R1W, she told the dog to turn ”right” for the second turn, and

since there was an alcove with the room’s door in it, the dog decided to guide her into the

room (Figure 5.28 (a)). The experimenter had to intervene to help her find her position,

as marked ”E” in Table 5.6. It is possible that if P1 had been using a cane, she could

have explored to the left and right to find a way out of the alcove. The other issue was,

upon receiving instructions through the app, she frequently needed to repeat the turn

commands to her dog until it complied, and at times, she had to guide the dog gently.

For instance, in another trial, R2W, the experimenter had to provide verbal assistance.

At the start of R2W, they missed the initial turn because, by the time she commanded

her dog to turn ”right” after the notification, they had already passed the intersection.

They correctly retraced their steps as advised by the app. However, when she instructed

a ”left” turn to return to the route, the dog declined and proceeded straight towards the

exit door. To prevent them from leaving the building, we intervened. It took some time

before P1 persuaded her dog to walk along that corridor again (Figure 5.28 (b)). After

the study concluded, P1 mentioned that her dog might have felt nervous due to the trial

circumstances.

As mentioned earlier, P7, on the other hand, was walking at a fast pace with her

dog. This speed might have led her to pass by a junction without making the intended

turn until she had heard the app’s notification in its entirety, to then receive the ”turn
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around” notification (Figure 5.25 (c)).

(a) (b)

Figure 5.28: (a): P1’s Dog guided her to the alcove after the second turn in R1W; the

experimenter helped her when she felt stuck there. (b): P1 repeated the turn right

command to her dog while it was reluctant to turn.

Both A/S and RoNIN algorithms successfully tracked participants along most

of the routes, except for the initial segment of R1W involving the first three partici-

pants. This occurred before adding the adaptive step length mechanism, as mentioned

earlier. Occasionally, the reconstructed path showed some slight deviations, such as

cutting corners (Figure 5.23 (a), RoNIN), or momentary overshooting of the location

(Figure 5.24 (b), A/S). However, our Particle Filtering implementation’s drift tracking

mechanism appeared to function well in these trials, mitigating such issues. Notably, both

algorithms successfully traced the complex path taken by P7 in R3W (Figure 5.25 (b)).
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5.5.4 Questionnaire and Feedback

Table 5.7 presents the participants’ responses to the System Usability Scale

questionnaire, which was administered upon the completion of the trials. The question-

naire consists of 10 questions, each offering five response options ranging from ”Strongly

agree” (5) to ”Strongly disagree” (1). The total score, following the SUS methodology

proposed by [11], was recorded as 80.36. While there is an ongoing debate surrounding

the interpretation of SUS scores [12], this score aligns with a percentile rank of 90%

when compared to the score distribution documented in [88]. It’s important to note

that participants provided responses to the SUS questions and open-ended questions

considering both the WayFinding and BackTracking apps, rather than answering each

question separately for each individual app.

Question
User

P1 P2 P3 P4 P5 P6 P7 Mean

1. I think that I would like to use this system frequently. 3 4 1 5 5 5 4 3.86
2. I found the system unnecessarily complex. 2 1 1 2 2 4 1 1.86

3. I thought the system was easy to use. 4 4 5 5 5 5 5 4.71
4. I think that I would need the support 1 1 1 1 4 3 1 1.71

of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated. 4 2 1 5 4 5 5 3.71

6. I thought there was too much inconsistency in this system. 3 3 1 1 2 4 1 2.14
7. I would imagine that most people would learn 3 3 5 4 5 5 5 4.29

to use this system very quickly.
8. I found the system very cumbersome to use. 2 1 1 1 2 1 1 1.29

9. I felt very confident using the system. 4 4 3 5 4 5 5 4.29
10. I needed to learn a lot of things before 2 1 1 2 1 4 1 1.71

Table 5.7: System Usability Scale (SUS) responses. The overall SUS score [11] was 80.36.

Below is a list of open-ended questions, along with a summary of the responses:

• Do you think that the system always knew your location? The majority

of participants responded with variations of "yes, most of the time," with P7
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indicating 99% accuracy and P1 reporting 80% accuracy. However, P2 and P3

answered "No". P2 mentioned occasional incorrect localization, while P3 felt that

localization accuracy depended on walking style.

• Do you think that the system gave you the correct directions? P4 through

P7 responded with an affirmative ”yes”. P2 believed the system provided accurate

directions most of the time, similar to P1, who responded around 80% of the time.

P3’s response was, ”Yes when it knew what it was doing”.

• The system often gives turning directions (such as “at the next junction,

turn right”) with some advance notice, which means that you need to

find the turn using your cane/dog. Was this a problem for you? All

participants indicated that this was generally not an issue, with some offering

specific feedback. P1 mentioned, ”Once I got used to it, I sort of got it”. P2

remarked that it wasn’t a problem unless there were obstacles he could potentially

bump into when moving closer to the wall in preparation for the turn. It’s worth

noting that P2 had a distinctive approach using the cane and chose to walk farther

from the wall. P4 shared that it created a problem, only once while traversing R2B

using the BackTracking app, when she made a right turn too soon. P6 expressed

that, while not a significant problem in itself, it would have been preferable if the

notification timing were more ”consistent”, meaning the prompts always occurred

at the same distance from the junction. However, due to localization errors, this

distance often varied. P7 noted that this was the only aspect of the system that
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didn’t meet her expectations in terms of accuracy.

• Were the notifications understandable? Too many notifications? Too

few? All participants expressed that the notifications were either ”fine” or ”just

right”. P2 explained more, mentioning that the system delivered the exact type

of information he required: it offered an approximate distance to the upcoming

turn and provided a heads-up just before the turn. P1 expressed a desire to

know if there were any doors to open. However, it’s important to clarify that

the routes in the study did not require participants to open doors. There was

a single open door in the middle of one corridor that they should have passed

during the trial. As previously mentioned, landmark notifications were intentionally

disabled for P1, so she did not receive a notification about it. Regarding landmark

notifications, P2 believed that the number of landmark notifications during the

trials was appropriate. However, he noted that if he was particularly focused on

the route, he might prefer fewer notifications. In contrast, both P4 and P6 had

highly positive feedback regarding landmark notifications. For example, P6 cited

specific announcements like ”staircase on the left’ and ”benches on the right” as

examples of useful information. Similarly, P4 showed great enthusiasm for the

landmark notifications and believed they could be practical in real-life situations.

She mentioned scenarios like feeling thirsty and wanting to know if there was a

drinking fountain nearby. She also pointed out that landmark notifications could

be especially helpful for first-time visitors, with the option to disable them once
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they become more familiar with the environment.

• Was it easy for you to use the Watch? Every participant, with the exception

of P2, expressed that they found it easy. P2 described it as an ”adventure” but also

mentioned that with a bit more practice, he would have become more proficient at

using the Watch gestures.

• What would you like to have in this app that is not already there? P1

inquired about how to locate the starting point and ensure the correct direction when

beginning a route. P3 suggested the ability to scroll through a route description one

step at a time. In the current implementation, a left swipe provides a description

of the remaining route but doesn’t allow the user to pause and review each step.

P4 wished to manually add landmarks as needed, such as when passing a location

of interest. Both P2 and P5 said that they would like to have more contextual

information about the space they are visiting. Additionally, P5 indicated an interest

in knowing their current facing direction, as it would be particularly valuable when

feeling disoriented, providing them with independence in such situations, and

reducing the need for external assistance.

• Did you notice any difference between the WayFinding system and

the BackTracking system? Overall, the participants noted a high level of

consistency between the two apps. P5 and P7 even went as far as to suggest

that if they hadn’t been informed about their distinctiveness, they might not have

been able to tell that they were different apps. On the other hand, P2 and P3
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were somewhat disappointed by the inconsistency in unit usage between the two

apps. It’s important to note that, for the first three participants (P1 to P3), the

BackTracking app initially provided distances only in units of steps due to an

implementation mistake. This issue was subsequently corrected for the following

users.

• Do you think that using this app would make you feel safer or more

confident when traveling alone in a new place? [Asked for each app sepa-

rately.] With the exception of P3, all participants responded with an enthusiastic

”yes”. P3, however, considered the potential use of the Backtracking app in scenarios

like navigating a conference with multiple tables in a large hall, such as when going

to the restroom and returning to the same table. P2 imagined employing the

app for navigating unfamiliar locations, particularly in vast complexes such as

medical buildings. He expressed a preference for having a menu that could help

him refine his destination selection. Even if the app couldn’t guide him to the

precise destination, he saw value in it bringing him closer to his intended location.

P4 found value in the WayFinding app even for familiar buildings, like a large office

complex she recently started visiting. She shared an experience about navigating

this building where, while pausing to plan her route, she was approached by several

bystanders offering unwelcome assistance. An app like this could be invaluable in

moments of uncertainty like that. She added it can also help reduce the cognitive

load of tracking her position and navigating, allowing her to focus on other tasks,
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which is particularly useful in noisy environments. P5 noted that the apps helped

him build a mental map of the entire route, eliminating the need to memorize the

entire path because the apps provided prompts as he moved along it.

5.6 Conclusions

Inertial-based localization is advantageous for our indoor navigation application

targeting visually impaired individuals. It operates independently of external infrastruc-

ture and doesn’t require users to hold the smartphone, which is crucial as they often

have a hand occupied with a cane or dog leash. Previous inertial sensor-based wayfind-

ing systems for visually impaired individuals utilized the "user as a sensor" method

to counter localization errors caused by accumulated drift [25, 6]. While effective in

uncertain situations [82], this approach places a significant burden on users who must

detect landmarks. We explored the feasibility of a WayFinding system relying solely on

inertial sensor data, without user input. Our findings suggest its viability, especially in

buildings with interconnected corridors.

Inertial systems relying on dead-reckoning can introduce significant localization

errors. To address this, the WayFinding app used particle filtering to maintain route

consistency with the building layout. Our study environment featured a mix of narrow

and wide corridors along with spacious open areas, resembling typical public spaces

like office buildings, schools, and health centers. However, in larger complexes like

airports or vast shopping malls, inertial-only navigation systems could face challenges.
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Within expansive open spaces, particles disperse uniformly, limiting the Particle Filter’s

effectiveness in mitigating drift. In our study environment, corridor junctions were limited

to 90◦ intersections.

We conducted a user study with 7 blind participants, including 5 cane users

and 2 relying on guide dogs. Users found the Watch interface user-friendly, even if

unfamiliar with SmartWatches, resulting in positive feedback. In real-life scenarios,

users might need to remove their phones for tasks like calls or messages. A/S assumes

fixed phone orientation, whereas RoNIN, without this constraint, suits natural phone

interactions better. The study confirmed inertial-based wayfinding feasibility, with all

users completing the routes. Qualitative trajectory analysis (as shown in Figures 5.23-

5.25) did not indicate a clear winner, suggesting that both techniques can be effective

with a well-implemented particle filter.

Our system offers advanced notifications to guide users when approaching

junctions. One aim of our study was to assess the feasibility and acceptance of this

mechanism. Previous research, such as the work in [2] on sonification techniques, has

explored effective methods for ensuring that pedestrians initiate their turns at the correct

moment. While these techniques are suitable for more accurate localization systems like

BLE beaconing [78], our system’s reliance on inertial sensing, with its inherent localization

errors, necessitates early notifications. Although we verified the mechanism performance

in pre-experiment tests, we were still uncertain whether blind participants would struggle

to locate the exact junction or if they’d find this approach bothersome. However, we were

pleased to observe that, overall, participants navigated these situations successfully, even
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when facing structural obstacles, such as being stuck in an alcove while searching for an

opening. Additionally, participants expressed in their responses to the 3rd open-ended

question that advance notification wasn’t a problem. The positive usability scores from

the System Usability Scale (SUS) responses further indicate overall satisfaction with

the interface design. However, it’s crucial to acknowledge potential limitations, such as

instances where two close openings exist on the same side of a corridor, which may lead

to confusion. In such cases, the system can enhance user clarity by providing additional

contextual information, like notifying the user about the presence of two junctions and

recommending the second one.

The primary limitation of our approach is the requirement for users to initiate

a route from a specific starting point and continue in a predetermined direction. This

initial phase is essential to align the user’s path with the floor plan frame. The identical

requirement exists in prior research on inertial-based wayfinding [25, 6], arising from the

inherent dead-reckoning characteristics of this method. Two potential solutions could

address this challenge. One option involves utilizing the ”user as a sensor” paradigm,

where users begin their journey from an easily identifiable location, such as the main

entrance of a building, or from a distinctive landmark, like the base of a staircase, and

receive guidance to walk straight ahead from there. Creating a hybrid system that uses

visual data, potentially through automated landmark recognition [17], to make occasional

corrections using computer vision techniques when necessary for determining the user’s

location and orientation could be an alternative. After these adjustments, users can

resume using the inertial system for tracking by keeping their phones in their pockets.
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Finally, we were encouraged to learn from our participants that the tested

apps produced feelings of increased safety and confidence in their independent travel.

Although we acknowledge the existing system limitations, this feedback, combined with

the positive SUS questionnaire scores, reinforces the significant potential of our proposed

technology as a practical navigation aid.
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