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Abstract

How do children allocate their attention? There is too much information in the world to encode it 

all, so children must pick and choose. How do they organize their sampling to make the most of 

the learning opportunities that surround them? Previous work shows infants actively seek 

intermediately predictable information. Here we employ eye-tracking and computational modeling 

to examine the impact of stimulus predictability across early childhood (ages 3–6 years, n = 72, 

predominantly Non-Hispanic White, middle- to upper-middle-income), by chronological age and 

cognitive ability. Results indicated that children prefer attending to stimuli of intermediate 

predictability, with no differences in this pattern based on age or cognitive ability. The consistency 

may suggest a robust general information-processing mechanism that operates across the lifespan.

Infants and young children face the remarkable task of learning about the world by 

extracting relevant information from a complex environment. To do so, attentional resources 

must be allocated carefully to stimuli that provide the most useful information. Substantial 

research has shown that young children track and learn from contingencies and statistical 

regularities in their environment (Fiser & Aslin, 2001, 2002a, 2002b; Saffran, Aslin, & 

Newport, 1996; Tarabulsy, Tessier, & Kappas, 1996). Yet, there is still relatively little 

research quantifying how the statistical properties of incoming information impact attention.

Early work in this area proposed that infants preferentially attend to stimuli that are 

moderately discrepant from the infant’s prior knowledge (Kinney & Kagan, 1976). 
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Similarly, early theoretical work in the area of curiosity suggested that an optimal level of 

complexity may drive exploration (Berlyne, 1960). In line with these theories, recent work 

showed that in both visual and auditory domains, 8-month-old infants’ attention is best 

captured by information with intermediate predictability relative to previous observations 

(Kidd, Piantadosi, & Aslin, 2012, 2014). In these studies, infants viewed or listened to 

sequences of events, and eye-tracking was used to measure the event at which infants 

terminated attention to the sequence. The predictability of events in a sequence was 

quantified using an ideal learner model (see Experiment and Modeling Approach). Results 

revealed a U-shaped function relating stimulus predictability and attentional preferences 

(termed the “Goldilocks Effect”) such that infants were more likely to look away from 

stimulus events that were either highly predictable or highly unpredictable, and were more 

likely to attend to stimuli of intermediate predictability, both at the group and individual 

levels (Kidd, Piantadosi, & Aslin, 2012, 2014; Piantadosi, Kidd, & Aslin, 2014). These 

findings are in line with the long-standing theory that children construct knowledge by 

seeking material that is just beyond mastery (Piaget, 1970). No study, however, has 

examined the impact of stimulus predictability on attention post-infancy.

Extending investigation of this phenomenon into childhood is a critical next step for 

understanding whether the U-shaped pattern observed in infants represents a robust 

information-processing mechanism that operates beyond infancy. Early childhood is a time 

of rapid learning and development across higher-order skill domains. Higher-order cognitive 

abilities, such as executive functions, emerge and begin to differentiate (Anderson, 2002; 

Carlson, 2005; Zelazo et al., 2003). Specifically, between the ages of 2 and 6 years old, 

children experience rapid gains in their ability to regulate attention, including skills such as 

selective attention and attention switching (for a review, see Garon, Bryson, & Smith, 2008). 

It is possible that maturation in executive functioning abilities across the early 

developmental period relate to changes in attentional mechanisms that support information 

processing efficiency, such as the Goldilocks effect. Furthermore, in the United States, 

formal teaching and learning typically begin during early childhood, underscoring the 

importance of deepening our understanding of environmental factors and cognitive processes 

that contribute to optimal information-seeking behavior, attention, and learning during this 

developmental period. Finally, characterizing the impact of predictability on attention 

preferences in early childhood lays a foundation for investigating this phenomenon in 

clinical populations with characteristic deficits in attention and executive functioning, such 

as autism spectrum disorder and attention deficit/hyperactivity disorder (Craig et al., 2016), 

as these developmental disorders are commonly diagnosed in the early childhood period 

(Maenner et al., 2020; Visser et al., 2014).

The present study involved exploratory analyses quantifying the impact of predictability on 

visual attention in children ages 3–6 years, and additionally explored whether there is a shift 

in the impact of predictability on attention preferences with maturation across this age range. 

In addition to examining potential changes in attention allocation strategies with age, the 

present study also explored whether children’s attentional preferences shift with increases in 

cognitive ability. For the purpose of the present study, three brief measures of nonverbal 

cognitive abilities were selected that were potentially most relevant to implicit visual 

attentional preferences and predictability, due to their reliance on visual attention skills and 
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lack of verbal or social content. Specifically, measures consisted of two tasks measuring 

executive functioning skills (including selective attention/inhibitory control, and set shifting) 

and one measuring visual processing speed.

Given the rapid development of higher-order cognitive abilities across early childhood, it 

would be reasonable to expect that with increasing age and cognitive maturity, children 

might show a general shift toward preferring more complex, or less predictable, stimuli. This 

pattern of results would suggest that neural development or accumulated experience play a 

role in shaping attentional preferences for predictability. However, findings of consistency in 

the impact of predictability on attention across the age range of children in the study (3–6 

years old), and across levels of nonverbal cognitive ability, would provide support for the 

hypothesis that the drive to prioritize attentional resources for information at an intermediate 

level of predictability may represent a more automatic, low-level phenomenon.

Experiment and Modeling Approach

Many prior attempts to examine visual attention to stimuli varying in complexity or 

predictability have lacked a quantitative definition of complexity. The present study utilizes 

a formalized definition based on previous work by Kidd et al. (2012, 2014), in which the 

predictability values of sequential events were estimated according to an ideal learner model. 

This model represents a formal theory for how a learner might track incoming statistics and 

use this observed information to form probabilistic expectations about what sort of events 

are likely to occur in the future. The model thus allows us to compute how predictable or 

surprising an ideal learner would find an event to be, according to the model’s probabilistic 

expectations. Events that differ substantially from what the ideal learner model expected are 

very surprising, while events that are in line with the model’s expectations are very 

predictable. Previous work has employed similar probabilistic models for understanding 

learning (Griffiths & Tenenbaum, 2006; Téglás et al., 2011; Tenenbaum, Griffiths, & Kemp, 

2006). Here, we calculate predictability by taking the negative log probability of each event 

according to this model. This negative log probability value, also called “surprisal,” 

represents the information content of each stimulus event and quantifies the number of bits 

of information required for an ideal learner to encode the new stimulus based on previously 

observed stimuli (Shannon, 1948).

To further illustrate, imagine there are four possible visual events that can be observed by an 

ideal learner (see Figure 1). In this case, we assume a flat, uninformative prior belief before 

observing any stimuli, representing the learner’s belief that each event has an equal chance 

of occurring in the absence of direct evidence at the onset (i.e., events A, B, C, and D are 

equally likely). After observing each stimulus event, the ideal learner updates their belief 

about the true probability of each of the four events. After observing the six events depicted 

in Figure 1, the updated belief would be that a D event is most likely to occur next in this 

sequence, C and B events have intermediate probabilities of occurring next, and an A event 

is relatively unlikely to occur next. Therefore, if a D event is observed next, this stimulus 

event will have a low surprisal value (high predictability), whereas an A event occurring next 

would have a high surprisal value (low predictability). This example represents a unigram 
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version of the ideal observer model, but we can employ the same method to investigate 

whether children also track transitional statistics about incoming stimuli.

In the present experiment, eye-tracking was used to measure at which event in the sequence 

children looked away from the display. While many previous studies measure attentional 

preferences with mean looking time, the present study instead measured the likelihood that 

children looked away at each event to capture children’s real-time attentional behavior as 

informational content changes as the sequence unfolds. This allowed for characterization of 

children’s attentional behavior as a function of stimulus predictability, according to both 

unigram and transitional versions of ideal observer models. Previous work showed that both 

unigram and transitional statics predicted infants’ attentional preferences (Kidd, Piantadosi, 

& Aslin, 2012, 2014). Therefore, both unigram and transitional models were tested in the 

present study.

Method

Participants

In all, 75 children ages 3;2–6;11 years were enrolled in the study between May 2018 and 

April 2019. Three participants did not yield sufficient usable eye-tracking data (see 

Procedure) and were excluded from analyses. The final sample included 72 children (49 

males and 23 females), with a roughly equal distribution of participants across the age span 

(Mage = 4.8 years, SD = 1.1; see Supporting Information for age distribution). Children were 

majority Non-Hispanic White (92%) from predominantly middle- to upper-middle-income 

families (93% with annual household income over $55,000) and were recruited from local 

hospitals and community events in the greater Rochester, NY area. Participants were 

screened for caregiver-reported developmental, learning, or mental health concerns, vision 

and motor deficits, and neurological problems. All procedures were approved by the 

university’s Institutional Review Board and informed consent for participation was obtained 

from each child’s legal guardian. Participants received financial compensation for 

participation. Study procedures took place across two visits.

Attention Preference Eye-Tracking Task

The present study aimed to test how the predictability of visual sequences of events in the 

environment influences attention preferences in young children. This task was based on 

similar tasks used with infants (Kidd et al., 2012, 2014), and was adapted for children ages 

3–6 years.

Stimuli

Children were presented with visual displays depicting sequences of events varying in 

predictability (Figure 2). The displays featured a large, colored rectangle with four windows. 

Each window was located in one of the four quadrants of the rectangle, and its position 

within the quadrant was randomized on each sequence to one of four locations within the 

quadrant. Novel objects were animated to pop in and out of the windows, one after another 

in sequence. Objects consisted of real images of unique, unfamiliar objects that were not 

easily nameable (to reduce semantic content). Each object was unique to each window. No 
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objects were repeated across event sequences. The number of possible objects (4) was 

chosen to be within the range children in the study’s age range are reasonably able to track 

(Alvarez & Franconeri, 2007). Each event in the sequence lasted 1,000 ms (500 ms “pop-

out,” 500 ms “pop-in”). Events were presented sequentially with no overlap or delay. Stimuli 

for the eye-tracking task were programmed in Python (see Kid Experimental Library in 

Python; KELPY, https://github.com/piantado/kelpy).

Procedure

This task was conducted using a table-mounted Tobii Pro T60XL eye-tracker (Tobii 

Technology, Inc., Falls Church, VA) in a partially darkened room. Experimenters and 

caregivers were directly outside of the room while the task was completed. Children were 

seated with their eyes approximately 23 in. from the monitor. At this viewing distance, the 

24-in. LCD screen was subtended 24 × 32 degrees of visual angle. A five-point calibration 

procedure was conducted at the onset of the experiment.

Participants were presented with the same set of 32 sequences of events, each consisting of 

30 possible events. The objects and sequence order were randomized across participants. 

Sequences varied in the probabilities of each of the four objects appearing in their respective 

windows, ranging from very simple (e.g., A, A, A, A, A, …) to more varied (e.g., A, B, D, 

A, C, . . .; see Supporting Information for details and full sequences. Full sequences also 

available at https://github.com/cubitl/attentionpredictability). Child-friendly music with no 

words was played quietly in the background to maintain participants’ engagement with the 

task, which was unrelated to the unfolding of visual event on the screen and thus not 

expected to systematically influence behavior event-to-event.

The primary outcome measure for each sequence was the probability value of the specific 

event at which the child looked away from the area covered by the colored rectangle (a 

“look-away”). Each sequence of events continued until either (a) the participant met the 

look-away criterion (i.e., gaze directed outside of the viewing area continuously for > 1,000 

ms) or (b) 30 s, the maximum duration of a sequence. Before the start of each new sequence, 

an attention-attracting stimulus was displayed on the screen until the child fixated on the 

center of the screen for 1,000 ms, at which point the next sequence was initiated. Children 

were prompted to take brief breaks between sequences as necessary to facilitate successful 

completion of the task. The amount of time children spent completing this task varied based 

on the amount of time they looked at the sequences as well as time required for breaks and 

ranged from 12 to 34 min. To maintain engagement, a simple cover task was inserted 

randomly between sequences of the main task. Children were only given instructions related 

to the cover task, and were informed they may also see other pictures appear on the screen 

that were different from the cover task. Importantly, children were never explicitly instructed 

to look at or attend to the screen.

Sequences were discarded prior to analysis if (a) the participant looked continuously for the 

full 30 s (11.8%), as the final event of the sequence in this case does not represent the point 

at which children stopped attending, (b) the participant looked for fewer than four events 

within a sequence, since so few observations is likely insufficient to establish expectations 

about the distribution of events in the sequence (18.0%), or (c) a false look-away (the eye-
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tracker temporarily stopped tracking the eyes while the child was still looking at the screen 

due to child movement), other equipment failure, or experimenter error (6.8%) occurred.

Participants yielded an average of 20.3 (SD = 4.5) useable sequences out of 32 possible 

sequences. Children attended to useable sequences for an average of 12.2 events (SD = 7.0) 

per sequence before looking away (see Supporting Information for details). Importantly, 

participants were not expected to look for all 30 items within a sequence, as the key outcome 

of interest was the predictability of the event at which participants looked away.

Measures of Cognitive Ability

Three cognitive measures from the NIH Toolbox Cognition Battery (Weintraub et al., 2013) 

were used to assess key areas of cognitive functioning, including attention, inhibitory 

control, set shifting, and processing speed (Anderson, 2002; Zelazo et al., 2013). Tasks 

included the Flanker Inhibitory Control and Attention Test (Flanker; selective visual 

attention, inhibitory control), the Dimensional Change Card Sort (DCCS; set shifting), and 

Picture Comparison Processing Speed (PCPS; processing speed). These tasks have been 

validated in young children in this age range, and have been shown to be sensitive to 

developmental changes in cognitive functions (Weintraub et al., 2013; Zelazo et al., 2013). 

Tasks were administered via a 9.7 in. touchscreen tablet at the second study visit.

For all three cognitive measures, analyses utilized the Uncorrected Standard Score, which 

represents a child’s score compared to the population mean across ages 3–85 years, 

facilitating comparison of cognitive ability across children of different ages. Performance 

data for all three measures indicated substantial variability in performance within the study 

sample, despite screening for developmental delays (see Supporting Information for 

performance data). For participants whose completion of the tasks was discontinued based 

on low performance on the practice trials (Flanker, n = 7; DCCS, n = 13), no standard scores 

were calculated. These participants were not included in analyses utilizing the tasks for 

which they did not receive scores.

Analytic Approach

Modeling and data analytic methods used to quantify predictability and examine the impact 

of predictability on attention preferences are based on methods used in previous studies of 

attentional preference in infants (Kidd et al., 2012, 2014). The probability value of each 

event in a sequence was quantified according to the ideal learner model using a Markov 

Dirichlet-Multinomial model, a probabilistic model that uses counts of observed events to 

calculate a posterior distribution for an underlying multinomial distribution of events (see 

Supporting Information for details). We built both a unigram and transitional version of the 

model to test both types of probabilistic expectations.

To examine the nature of the relation between predictability and attention preferences, the 

surprisal value (predictability) of each event was then compared with children’s probability 

of looking away from that event to yield the linking function. For visualizations of the 

linking function, a Generalized Additive Model (GAM; Hastie & Tibshirani, 1990) was fit to 

the data to visually examine the shape of a continuous linking function between 

predictability and likelihood of looking away. Separate GAM functions were fit to the data 
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to address each unique question. Importantly, these modeling methods do not attempt to 

force the linking function to fit a specific shape; rather, the shape of linking function is free 

to vary, allowing us to detect any potential pattern relating stimulus predictability and 

children’s likelihood of looking away (e.g., preference for novelty, preference for familiarity, 

preference for intermediate predictability, no impact of predictability on children’s 

attention).

To test the significance of the impact of predictability on look-away likelihood, Cox 

regression was used to account for the fact that once the child looks away they provide no 

more data on that sequence (Hosmer, Lemeshow, & May, 2008; Klein & Moeschberger, 

2005). The Cox regression controls for the baseline distribution of look-aways in the sample 

and accounts for the number of events into the sequence that the look-away occurred (as 

children are naturally more likely to look away the further they are into the sequence). 

Linear and quadratic surprisal terms were included in the regression as predictors of look-

away likelihood. Surprisal was centered and standardized before being squared. Model fit 

comparisons were conducted using the Akaike information criterion (AIC; Akaike, 1974).

Results

Unigram and Transitional Models for Full Sample

The Cox regression for the unigram model (Table 1) yielded a significant quadratic effect (β 
= .061, z = 3.729, p = .0001) indicating a significant U-shaped association between 

predictability (surprisal) and attentional preferences, where children were most likely to 

continue attending to stimuli of intermediate predictability, and most likely to look away 

from stimuli of either relatively high or relatively low predictability (Figure 3A). The size of 

this effect was exp(β) = 1.063, which means that with each increase in squared surprisal by 1 

standard deviation from the mean, the likelihood of looking away increased by a factor of 

1.063. While this is a relatively small effect, it is highly significant (p = .0001). The linear 

effect of surprisal was also significant (β = −.071, z =2.942, p = .003), which indicates that 

the U-shaped function is not symmetrical around the mean, shifted toward lower surprisal 

values.

Results from the Cox regression for the transitional model (Table 1) showed a similar overall 

pattern as the unigram model, yielding significant quadratic (β = .058, z = 4.428, p < .0001) 

and linear (β = −.054, z = −2.238, p = .03) effects of surprisal (Figure 3B). The size of the 

quadratic effect was also relatively small (exp(β) = 1.060) but highly significant (p < .0001). 

The fits of the unigram and transitional models were compared using AIC values to 

understand whether either model better explained the relation between predictability and 

attention preferences. The absolute difference between AIC values for the unigram (AIC = 

18,351.3) and transitional (AIC = 18,350.7) models was < 2, which is considered strong 

evidence of no difference in model fit (Burnham & Anderson, 2004).

To examine the potential impact of other task-related factors that could influence look-away 

likelihood, additional Cox regression analyses were conducted with these factors as 

covariates. Covariates were selected based on task-related factors examined in infants (Kidd 

et al., 2012), and included whether this was the first appearance of the item in the sequence, 
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whether this event was the same as the previous event (repeated event), and the sequence 

number (indexing how far into the experiment the child was). Results from these analyses 

indicated that even when including these covariates, the quadratic surprisal term remained 

significant for both unigram and transitional models, and there was no difference in model 

fit between unigram and transitional models (see Supporting Information for details).

Taken together, these results suggest that young children are also tracking the statistics of 

both single events and pairs of events in their environment, and that there is a U-shaped 

association between predictability (surprisal) and attentional preferences such that children 

are least likely to look away for events of intermediate predictability.

Developmental Trajectory

The present study also explored potential changes in the impact of predictability on attention 

preferences across early childhood, which was done by examining changes based on both 

chronological age and cognitive ability level. Because analyses utilize group-level data, to 

maximize the ability to detect any possible differences with maturation, the sample was 

divided into two groups based on median splits for both chronological age and cognitive 

ability analyses.

Chronological Age

The sample was divided into two equal-sized groups based on a median split of 

chronological age (Younger [3.12–4.61 years, n = 36], Older [4.62–6.95 years, n = 36]). 

Younger and older children yielded a similar average number of useable sequences (M (SD) 

for Younger = 20.4 (4.6); Older = 20.1 (4.4)). Additionally, younger and older children 

attended to each useable sequence for a similar average of number of events before looking 

away (M (SD) for Younger = 11.7 (6.7); Older = 12.7 (7.4)). Separate GAMs for each age 

group were plotted to examine the association between predictability and attention 

preferences for each group according to both the unigram and transitional models (Figure 4). 

Visualization of these curves indicates overlap of 95% confidence intervals of the two 

GAMs across the length of the x-axis for both the unigram and transitional models, 

indicating no significant differences in the shape of the function linking attention 

preferences and predictability based on age. These results suggest that the U-shaped 

association between predictability and attention preferences is relatively stable across the 

age range of 3–6 years.

Cognitive Ability

In all, 69 out of the 72 children who yielded useable data on the eye-tracking task also 

completed at least one of the selected subtests from the NIH Toolbox Cognition Battery. 

Analyses utilized participants’ Uncorrected Standardized Scores, which represent each 

child’s performance compared to the general population mean and do not correct for age. 

Children were grouped into two roughly equal-sized groups based on a median split of task 

performance as measured by Uncorrected Standard Scores (“Lower Ability” included 

participants below and including the median; “Higher Ability” included participants above 

the median). Groups were created separately for each of the three measures, including 

Flanker (Lower Ability, n = 33; Higher Ability, n = 31), DCCS (Lower Ability, n = 26; 
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Higher Ability, n = 31), and PCPS (Lower Ability, n = 33; Higher Ability, n = 35). For each 

measure, separate GAMs for Lower Ability and Higher Ability groups were plotted to 

examine the association between predictability and attention preferences for each group 

according to unigram and transitional models (Figure 5). Visualization of these curves 

indicates overlap of 95% confidence intervals of the two GAMs across the length of the x-

axis for all measures, for both the unigram and transitional models. These findings indicate 

no significant differences in the shape of the function linking attention preferences and 

predictability based on cognitive ability, suggesting that the U-shaped association between 

predictability and attention preferences does not change significantly with increases in 

nonverbal cognitive abilities tested.

Discussion

The present study quantified the impact of predictability on visual attentional preferences in 

young children, and examined the developmental trajectory of this phenomenon across early 

childhood. Consistent with previous findings in infants, results revealed a U-shaped 

association between predictability and attention such that young children were most likely to 

maintain attention to stimuli of intermediate complexity and were more likely to terminate 

attention to highly predictable or highly unpredictable stimuli. Results also provided 

preliminary evidence that a “Goldilocks effect” may be consistent across development in 3- 

to 6-year-old children, both by chronological age and cognitive ability. This is the first 

evidence that the Goldilocks effect extends beyond infancy, suggesting that this attentional 

preference may be preserved across childhood and perhaps the lifespan.

Furthermore, this U-shaped association was significant for both unigram and transitional 

models of predictability, suggesting that children tracked both types of statistics in a task 

with minimal demands. It is likely that the optimal model of environmental probability 

impacting attention allocation would change based on task demands or in contexts where 

prior learning indicates certain statistics are more informative than others. Additionally, 

consistent with findings in infants (Kidd et al., 2012, 2014), the size of this effect for both 

models was small, though highly significant. This is expected, as many other stimulus 

factors also impact visual attention (e.g., salience, movement; Itti & Koch, 2001). The 

predictability of visual stimuli may also have greater influence on attention preferences in a 

task where tracking statistical properties of events improves performance.

Taken together, these findings contribute to our understanding of how statistical properties of 

information in the environment influence attentional patterns and subsequent learning across 

development. Young children are tracking probabilistic visual information in their 

environment and preferentially attending to intermediately predictable information. This 

implicit attentional strategy may serve as a domain-general mechanism prioritizing 

information that is optimal for learning, thereby maximizing cognitive efficiency in the 

complex natural environment. Given the sociocultural homogeneity of the present study 

sample, it will be critical for future work to examine this phenomenon in more diverse 

populations to better understand the generalizability of these findings. Another limitation of 

this work is that age and cognitive ability differences were examined cross-sectionally. 

Furthermore, median splits on age and cognitive ability were used in the present study due to 
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the paradigm and group-level analyses conducted, as they maximized our ability to observe 

any possible shift in attentional behavior with maturation. It may be valuable for future 

studies to explore potential subtle developmental changes in this attentional mechanism by 

estimating individual linking functions, as has been done in infants (Piantadosi et al., 2014). 

To draw meaningful conclusions from this sort of analysis would require collecting 

significantly more data from each individual, perhaps even using a variety of tasks or 

stimuli. However, to fully characterize the impact of predictability on attention across the 

lifespan, it will be important to extend this work to a broader age range and to examine 

individual developmental trajectories of this phenomenon.

Our findings have important implications for ongoing work in curiosity and learning, and the 

interaction of these processes across development. The present study demonstrated that in 

the absence of an explicit goal, young children across a range of ages beyond infancy and 

across cognitive ability levels track the statistical properties of incoming information, and 

modulate their attention to prioritize information that is intermediately predictable based on 

their prior observations. These results are consistent with long-standing theories in 

exploration and curiosity suggesting that learners select material that is neither too simple 

nor too complex, and therefore potentially optimal for learning (Berlyne, 1960). Our results 

demonstrate that across early childhood, an attentional preference for intermediate 

predictability is an organizing principle that guides what information children sample in 

their environment, contributing to our understanding of curiosity-driven learning processes 

(Kidd & Hayden, 2015; Oudeyer & Smith, 2016). Because the present paradigm did not 

directly measure learning, it will be important for future work to examine the impact of this 

attentional mechanism on downstream learning. Open questions remain as to whether 

learners vary in the extent to which predictability of incoming information impacts their 

learning, and which aspects of learning are facilitated by this phenomenon.

Findings from the present study also suggest next steps in efforts to identify neural systems 

involved in attention, curiosity, and learning. Consistency in the attentional preference for 

intermediate predictability across development suggests that this phenomenon may be 

related to basic neural processes, such as mechanisms striving to maintain optimal arousal of 

the neural system (Aston-Jones & Cohen, 2005; Cools & D’Esposito, 2011; McGinley, 

David, & McCormick, 2015; Yerkes & Dodson, 1908). Future work examining possible 

neural underpinnings of this attentional preference could aid in linking the role of this 

attentional preference to other aspects of cognition (Turk-Browne, Scholl, & Chun, 2008).

Finally, predictability of visual events in a sequence is just one of many aspects of stimulus 

complexity, and this phenomenon has only been examined in highly controlled, laboratory-

based experimental tasks. Additional work is necessary to gain a more sophisticated 

understanding of the combined impact of various types of complexity on how children 

allocate attention in the natural environment. It will also be important to explore other 

environmental factors that may impact the optimal level of predictability for capturing 

attention (e.g., distracting environments, social interactions). Continued work in this area 

will deepen our understanding of typical cognitive development, and provide a foundation 

for exploring potential deviations from this process in developmental disorders (e.g., autism 

spectrum disorder, attention deficit/hyperactivity disorder).
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Figure 1. 
Schematic of the ideal learner model. A uniform prior is combined with observed events to 

form expectations about the likelihood of upcoming events.
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Figure 2. 
Example of progression of eye-tracking task.
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Figure 3. 
Look-away likelihood as a function of (A) unigram and (B) transitional surprisal 

(predictability). Curves represent the fit of a Generalized Additive Model (with 95% 

confidence intervals) linking predictability to probability of looking away. Low values on the 

y-axis indicate increased attentional preference, whereas low values on the x-axis indicate 

increased predictability (decreased surprisal). Dots represent raw data binned into 5 bins (± 

SE) equally spaced across the x-axis. Vertical lines on the x-axis represent count of data 

points collected at each predictability value.
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Figure 4. 
Look-away likelihood as a function of (A) unigram and (B) transitional surprisal 

(predictability) for younger and older groups. The curves represent the fit of separate 

Generalized Additive Models for each age group (with 95% confidence intervals), linking 

predictability to probability of looking away separately for each group. Dots represent raw 

data binned into 5 bins (± SE) equally spaced along the x-axis. Vertical lines on the x-axis 

represent count of data points collected at each predictability value.
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Figure 5. 
Look-away likelihood as a function of (A, C, E) unigram and (B, D, F) transitional surprisal 

(predictability) for Lower Ability and Higher Ability groups for NIH Toolbox tasks. 

Measures included Flanker Inhibitory Control and Attention Test (Flanker), Dimensional 

Change Card Sort (DCCS), and Picture Comparison Processing Speed (PCPS). Curves 

represent the fit of separate Generalized Additive Models (with 95% confidence intervals) 

linking predictability to probability of looking away separately for each group. Dots 
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represent raw data binned into 5 bins (± SE) equally spaced along the x-axis. Vertical lines 

on the x-axis represent count of data points collected at each predictability value.
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Table 1

Cox Regression of the Effect of Predictability on Attention Preferences

Covariate Coef (β) exp (β) SE (β) z p

Unigram model

 Linear surprisal −.071 0.931 .024 −2.942 .003**

 Quadratic surprisal .061 1.063 .016 3.729 .0001***

Transitional model

 Linear surprisal −.054 0.948 .024 −2.238 .03*

 Quadratic surprisal .058 1.060 .013 4.428 1 × 10−5***

Note. For each regression model, linear and quadratic effects were entered simultaneously. Surprisal was centered and standardized to have a mean 
of 0 and a standard deviation of 1 before being squared.

*
p ≤ .05.

**
p ≤ .01.

***
p ≤ .001.
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