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1. Introduction
Recent research has developed the idea of earthquake nowcasting, which uses state (“proxy”) variables to infer the 
current state of the earthquake cycle (Luginbuhl et al., 2019; Pasari, 2019a, 2019b, 2020; Pasari & Sharma, 2020; 
Rundle et al., 2016, 2018, 2019, 2020). An approach such as this is needed since the cycle of stress accumulation 
and release is not observable (Rundle, Donnellan et al., 2021; Rundle, Stein et al., 2021; Scholz, 2019). These 
first approaches to nowcasting have been based on the concept of natural time (Sarlis et al., 2018; Varotsos et al.,  
2001, 2002, 2011, 2013, 2014; Varotsos, Sarlis, et al., 2020; Varotsos, Skordas, et al., 2020).

A review of the current state of earthquake nowcasting, forecasting, and prediction is given by Rundle, Donnellan 
et al. (2021); Rundle, Stein et al. (2021). Perez-Oregon et al. (2020) have also shown that nowcasting methods 

Abstract Nowcasting is a term originating from economics, finance, and meteorology. It refers to the 
process of determining the uncertain state of the economy, markets or the weather at the current time by indirect 
means. In this paper, we describe a simple two-parameter data analysis that reveals hidden order in otherwise 
seemingly chaotic earthquake seismicity. One of these parameters relates to a mechanism of seismic quiescence 
arising from the physics of strain-hardening of the crust prior to major events. We observe an earthquake cycle 
associated with major earthquakes in California, similar to what has long been postulated. An estimate  of 
the  earthquake hazard revealed by this state variable time series can be optimized by the use of machine 
learning in the form of the Receiver Operating Characteristic skill score. The ROC skill is used here as a loss 
function in a supervised learning mode. Our analysis is conducted in the region of 5° × 5° in latitude-longitude 
centered on Los Angeles, a region which we used in previous papers to build similar time series using more 
involved methods (Rundle & Donnellan, 2020, https://doi.org/10.1029/2020EA001097; Rundle, Donnellan 
et al., 2021, https://doi.org/10.1029/2021EA001757; Rundle, Stein et al., 2021, https://doi.org/10.1088/1361-
6633/abf893). Here we show that not only does the state variable time series have forecast skill, the associated 
spatial probability densities have skill as well. In addition, use of the standard ROC and Precision (PPV) metrics 
allow probabilities of current earthquake hazard to be defined in a simple, straightforward, and rigorous way.

Plain Language Summary Earthquake nowcasting refers to the determination of hazard for major 
earthquakes at the present time, the recent past, and the near future. Nowcasting is an idea borrowed from 
economics, markets, and meteorology, where it has been frequently used. In this paper, we show that there 
is order hidden within chaotic earthquake seismicity using a very simple transformation of the data. Small 
earthquakes appear to transition from unstable stick-slip events that produce seismic waves, to stable sliding 
where no seismic waves are produced. Our hypothesis is that this transition is due to a material phenomenon 
called strain-hardening, that is frequently observed in laboratory rock mechanics experiments. The result 
is a state variable time series, computed over the last 51 years in California, that strongly resembles the 
long-anticipated cycle of stress accumulation and release. Using supervised machine learning techniques, 
we can optimize the two-parameter model. From that optimized model, we can rigorously calculate the 
probability of current hazard from major earthquakes. Extending these methods, we can also compute spatial 
hazard as well. The result is a new method for assessing earthquake hazard that may be useful for a variety of 
applications.
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can be extended to forecasting methods as well. These methods have begun to be applied in India (Pasari & 
Sharma, 2020), Japan (Nanjo, personal communication, 2020) and Greece (Chouliaras, personal communication, 
2019).

In a series of recent papers, Rundle and Donnellan (2020) and Rundle, Donnellan et al. (2021), Rundle, Stein 
et al. (2021) used small earthquake seismicity, together with machine learning, to produce earthquake nowcasting 
curves that mimic the cycle of stress accumulation and release. These methods were based on identifying corre-
lations present in the seismicity itself.

We note that other investigators have adopted a different approach to anticipating earthquakes using machine 
learning. Rouet-LeDuc et al. (2017) developed a prediction technique for acoustic emissions from events in labo-
ratory experiments on regular, nearly periodic stick-slip friction. They also applied a similar method for episodic 
tremor and slip events in the Pacific Northwest (Rouet-LeDuc et al., 2019), which are also relatively regular in 
time.

2. Data
The data we used for the analysis was downloaded from the USGS earthquake catalog [1]. Shown in Figure 1 are 
events having magnitude M > 3.29 for a region of 5° latitude × 5° longitude centered on Los Angeles.

In Figure 1a, the small black dots are all the events during the time period 1 January 1970 to 31 December 2022, 
superposed on the geography of the state, and the earthquake fault system (dark green lines). The blue circles are 
the events having magnitudes 6.9 > M ≥ 6.0. The larger red circles are all events having magnitudes M ≥ 6.9. The 
yellow star denotes a location for InSAR and GNSS observations that we discuss below.

In Figure 1b, we show the monthly number of earthquakes of all magnitudes as a function of time (light cyan 
vertical lines). In addition, Figure 1b shows the major earthquakes that occurred from January 1970 to 31 Decem-
ber 2022 as vertical lines and inverted triangles. Black dotted lines a black inverted triangles indicate earthquakes 
having magnitudes 6.9 > M ≥ 6.0, corresponding to the blue circles in Figure 1. Red dashed lines and red inverted 
triangles indicate earthquakes having M ≥ 6.9, corresponding to the red circles in Figure 1.

Note that the earthquake numbers are shown in the form Log10(1 + monthly number), the one being present to 
eliminate the singularity at Log10(0). Also, note that 1 month is defined as 4/52 years, equal to 0.07692 years. One 
can therefore think of this measure of time as a “lunar month.”

Most importantly, Figure 1b shows a dashed blue line labeled as “EMA” for “Exponential Moving Average.” This 
EMA curve is striking: it shows a cycle of higher activity following large mainshocks, followed by an increasing 
quiescence prior to the occurrence of the next mainshock. The higher activity just after mainshocks is of course 
due to the aftershocks. Quiescence prior to the mainshock has been pointed out by a variety of authors (e.g., 
Chouliaras, 2009; Kanamori, 1981; Rundle et al., 2011; Weimer & Wyss, 1994).

Furthermore, note that the EMA curve, discussed in more detail in the following section, uses a number of 
weights N = 36. Here N = 36 was selected based on a supervised machine learning method, using the area under 
the Receiver Operating Characteristic (ROC [2]) as a loss function.

The important point to note is that the EMA curve resembles an “upside down” version of the classic earthquake 
cycle of stress accumulation and release. This cycle has been discussed in many works on seismology, for exam-
ple, Scholz, 2019. It is this filtered time series to which we now direct our focus.

We improved the method by adding an additional parameter to the model, Rmin, which is an assumed minimum 
rate of small earthquakes occurring monthly. These two parameters, N and Rmin, represent a filter applied to the 
seismicity time series. Henceforth we refer to time series of this type as “state variable” time series, denoted by 
Θ(t). As we show in the following, values of the time series indicate the current state of the earthquake cycle in 
the region.

The addition of the parameter Rmin to the model is based on the hypothesis that a strain-hardening process occurs 
as the next mainshock is approached. This idea implies that there is a transition in small earthquake mechanics 
from unstable stick-slip early in the earthquake cycle to stable sliding (“silent earthquakes”) late in the cycle. 
These “silent” small earthquakes would not be observable by seismographs, but would contribute to the overall 
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crustal straining that would be observable by GNSS and InSAR observations. We discuss these issues in a later 
section.

3. Results
We first show some of the most important results. We emphasize that the model in this paper is trained on all 
the data, so results do not represent back tested “predictions.” This is in part due to the possibility of catalog 
completeness and uniformity issues prior to full automation of the seismic network, that occurred after about 
1980 (Hutton et al., 2010), a point that we discuss later.

Figure 2 shows the optimized ROC curve (a), the time series Θ(t) ≡ Log10(1 + Monthly Number) (b), and the 
“Precision” (PPV [2] c) of the time series. Note that Θ(t) is the optimized EMA time series from Figure 1b flipped 
“upside down” so that Θ(t) decreases at the time of the most recent major earthquake, then increases as the time of 
the next large earthquake is approached. This curve is very similar to other such time series found in our previous 
works (Rundle & Donnellan, 2020; Rundle, Donnellan et al., 2021; Rundle, Stein et al., 2021). In those works, 
we also pointed out that these time series are reminiscent of the cycle of tectonic stress accumulation and release.

The nowcast PPV [2]) is shown in Figure 2c. As discussed in the following, PPV is a quantitative measure of the 
success of nowcasting a large mainshock having M ≥ 6.75 within a future time window TW = 3 years.

The nowcasting process involves “predicting” that a large mainshock will occur during the future time window 
TW. One then tabulates the fraction of such time windows in which a large mainshock did occur. Success in this 
case is defined as the fraction of windows TW in which a large earthquake did occur divided by the total number 
of time windows, as a function of the current value of the state variable Θ(t). The two parameters in the model, 
N and Rmin, are optimized by use of the skill score of the Receiver Operating Characteristic (ROC), as shown in 
Figure 2a and discussed below.

At each value of Θ(t), such as the red dot in Figure 2b, the value of PPV can be calculated. The value corre-
sponding to the red dot in Figure 2b left is shown by the red dot in Figure 2c, with the value of 52.9% shown in 
the PPV plot at the right. Figures 2a and 2b are a frame from a movie that is available for downloading from the 
Supporting Information S1, and corresponds to the month beginning 27 March 1999, about 6 months prior to the 
M7.1 Hector Mine, California earthquake.

Figure 1. (a) Map of the region, 5° × 5° area centered on Los Angeles. Smallest blackdots represent earthquakes M > 3.29. Blue circles represent earthquakes M ≥ 6, 
red circles represent earthquakes M ≥ 6.9. Yellow star is the location of GNSS and InSAR data that is shown in Figure 4a. Monthly seismicity M > 3.29 as a function of 
time for the region in panel (a and b). Blue dashed line is the Exponential Moving Average (EMA) of the monthly seismicity rate with N = 36.
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Figure 2 shows that it is possible to build an optimized two-parameter model directly from the seismicity data, then 
compute the probability of major earthquakes by means of a rigorous process involving ROC methods. Improve-
ments in the model can be made as we discuss in the following, but at this time, we propose a simple, transparent 
model.

Corresponding to the temporal model, we can also construct spatial probability density functions (PDFs) or 
Relative Total Intensity IR(xi,t), indicating geographically where large earthquakes are most likely to occur. The 
basic assumption for these spatial calculations is that large earthquakes tend to occur at locations with the largest 
number of small earthquakes (Holliday et al., 2005, 2006a, 2006b, 2007; Lee et al., 2011; Rundle et al., 2002).

To compute these IR(xi,t) functions, we tesselate the spatial region into a local grid of boxes. The results are shown 
in Figure 3b for spatial probability densities IR(xi,t) for two different grid box sizes, 0.5° × 0.5°, and 1° × 1°, for 
the same month as in Figure 2. Note that the two IR(xi,t) functions are both normalized over the entire region to 
100%, after which the function 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴10 (1 + 𝐼𝐼𝑅𝑅 (𝒙𝒙𝑖𝑖, 𝑡𝑡)) is contoured.

A question arises as to which of the two IR(xi,t) functions is “better.” Visually, it might seem that the finer-scale 
grid boxes convey more information. However, as we will discuss in the following section, this question can be 
answered at least partially by computing the spatial ROC, shown in Figure 3a. The result is (apparently) that 
finer-scale (smaller grid box) spatial partitions tend to have worse skill.

As discussed previously, skill is computed as the area under the spatial ROC curve when built using all future 
earthquakes having magnitudes M ≥ 3.29 within the future TW = 3 years. The future earthquakes are shown 
as dots and circles in the images. With the ROC method, we show below that the IR(xi,t) function in Figure 3a 
(bottom, grid size: 1° × 1°) has better skill than Figure 3b (top, grid size: 0.5° × 0.5°).

3.1. Details of Method

3.1.1. Exponential Moving Average (EMA)

Consider a time series T(tj) representing the number of small earthquakes occurring in a month, that is indexed 
at regular monthly intervals j = 1 ,…, J. With justification discussed previously and below, we introduce a new 
parameter Rmin such that, if T(tj) < Rmin, we set T(tj) = Rmin.

Figure 2. Receiver Operating Characteristic (ROC, (a), state variable time series (b), and Precision (PPV, (c). The figure represents frame 380 of a movie showing the 
time development of the nowcast. The movie is available in the supplementary material. The red dot represents the date for the frame, which was 27 March 1999. The 
vertical dashed red lines in (a) are the dates of the large earthquakes M ≥ 6.9, the vertical black dotted lines are the earthquakes M ≥ 6.0. Panel (c) represents the chance 
that an earthquake M ≥ 6.75 will occur during the following 3 years. The chance of such an earthquake M ≥ 6.75 at that moment is 52.9% as shown, both by the number 
in the green box and the red triangle at bottom. Skill is the area under the ROC curve in (a), which we find as 0.708. The no skill line is the diagonal line from lower 
left to upper right. Since the no skill area is obviously 0.5, this implies that the nowcast time series has significant skill. The cyan lines in (a) are ROC curves for 200 
random time series, whose mean is the diagonal no skill line. The dotted lines bracketing the no skill line from lower left to upper right represent the ±1σ value for the 
random time ROC series. More results are shown in Table 1.
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As described in Rundle and Donnellan (2021; [1]) the EMA averages over the preceding N times with a dimin-
ishing weight for more remote times in the past. More specifically:

�EMA(�) =

⎧

⎪

⎨

⎪

⎩

� (�0) �� = 0

�� (��) + (1 − �)� (�� − 1) �� > 0
 (1)

Here, 𝐴𝐴 𝐴𝐴 ≤ 1 represents the amount of weighting decrease. A higher value of 𝐴𝐴 𝐴𝐴 discounts older observations faster. 
The most common choice for 𝐴𝐴 𝐴𝐴 is in terms of the number of weights used is [1]: 

𝛼𝛼 =
2

1 +𝑁𝑁
 (2)

Figure 3. (a) Spatial ROC diagrams (a) for two grid box sizes, 0.5° × 0.5° and 1° ×  1°. (b) Spatial probability densities (PDFs). For the PDFs, the future earthquakes 
during the 3 years after 27 March 1999 are shown as circles on the maps. Smallest circles are for 4.9 ≥ M ≥ 4.0, next larger circles are for 5.9 ≥ M ≥ 5.0, next larger 
circles (blue) are for 6.9 > M ≥ 6.0, and largest circles (red) are for M ≥ 6.9. In the ROC curves in for the two PDFs in (a), the cyan curves are 48 spatial ROC curves 
evaluated at 1-year intervals beginning with 1970. The curves are evaluated using all earthquakes M > 3.29 for the following TW = 3 years. Thresholds are established 
for all values of the PDFs, and the values of TP, FP, FN, TN are computed, with the ROC curves being computed from those. Again, the dashed line from lower left to 
upper right is the no skill line. These and other data are listed in Table 1.
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3.1.2. Temporal Receiver Operating Characteristic

As discussed in Rundle and Donnellan (2020) and Rundle, Donnellan et al. (2021), Rundle, Stein et al. (2021), the 
ROC diagram, first developed with the advent of radar technology, uses a threshold varying from high to low (or 
low to high) values to classify the data into categories quantified in a “confusion matrix” or “contingency table.” 
These categories are True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). The 
ROC diagram is a plot of True Positive Rate TPR (“Hit Rate”) plotted as a function of False Positive Rate FPR 
(“False Alarm Rate”). The quantities TPR and FPR are defined as:

TPR = TP∕(TP + FN);FPR = FP∕(FP + TN) (3)

These quantities are defined using the state variable time series from Figure  2b, Θ(t) ≡ Log10(1  +  Monthly 
Number). Here we adopt the future time window TW = 3 years and classify all points on Θ(t) for a given threshold 
value into the four possibilities, TP, FP, FN, TN using the confusion matrix. The threshold is then varied over 
many values to produce an ensemble of confusion matrices. This then yields TPR(Th), which is a function of the 
threshold value Th, as an implicit function of FPR(Th).

The resulting temporal ROC is shown in Figure 2a for the time interval 1970–2022. The red curve is the ROC 
curve for Θ(t). The diagonal line from lower left to upper right is the “no skill” line. We also show as cyan lines 
ROC curves for 200 random time series by sampling randomly from Θ(t) with replacement (bootstrap method). 
The dashed black lines represent the standard deviation of the random time series.

ROC skill is represented by the area under the ROC curve. No skill is represented by the area of 0.5 under the 
diagonal no skill line. In Figure 3, the area under the red ROC curve for the time interval 1970–2022 is found by 
numerical integration to be 0.708, indicating the presence of significant skill.

Note that the values for N = 36 and Rmin = 30 were found by using the ROC skill as a loss function, and then 
optimizing these parameters with a supervised learning method.

Table 1 (top) indicates that the ROC skill has improved significantly in more recent times, a point that we will 
return to below. Table 1 also includes an entry for 1970–2022 in which Rmin = 0, demonstrating that even the 
one-parameter model (EMA with N = 36 weights) has ROC skill (0.665) better than random (0.5). The one-tailed 
p-statistics show that all skill scores are significant relative to random skill.

Temporal and Spatial ROC Skill

Time interval Temporal skill Rmin P-Stat

1950–2022 0.557 30 1.13 × 10 −2

1970–2022 0.708 30 <10 −5

1984–2022 0.759 30 <10 −5

1993–2022 0.925 30 <10 −5

1970–2022 0.657 0 <10 −5

Resolution Spatial skill Rmin P-Stat

0.5° × 0.5° 0.669 𝐴𝐴 ± 0.027 30 <10 −5

0.667° × 0.667° 0.702 𝐴𝐴 ± 0.020 30 <10 −5

1.0° × 1.0° 0.746 𝐴𝐴 ± 0.031 30 <10 −5

0.5° × 0.5° 0.626 𝐴𝐴 ± 0.029 0 <10 −5

1.0° × 1.0° 0.728 𝐴𝐴 ± 0.035 0 <10 −5

Note. (Top) Optimal examples have two parameters (N = 36 and Rmin = 30), but it can be seen that even one-parameter examples with Rmin = 0 have skill significantly 
better than random, which is 0.5, as seen by the one-tailed P-statistics in the table. (Bottom) Spatial Receiver Operating Characteristic (ROC) values for a series of 
spatial probability density functions. It can be seen that there is a tradeoff between spatial resolution and skill, with lower spatial resolutions having better skill than 
higher spatial resolutions. All of the examples in the table have significant skill, as seen by the one-tailed P-statistics. It can also be seen that even one-parameter 
examples with Rmin = 0 have skill significantly better than random. Another result from Table 1 is that the addition of the Rmin parameter offers only a relatively modest 
improvement in skill.

Table 1 
Temporal and Spatial Receiver Operating Characteristic (ROC) Values for a Series of Nowcast Examples
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3.1.3. Parameter Rmin

Recall that the nowcast parameters were obtained by training on all the data from 1970 to 2018. Rmin was computed 
by first computing:

� = 1
48 ∫

2018

1970
Θ
(

�′
)

��′ (4)

We then defined a parameter 𝐴𝐴 𝐴𝐴 , optimized using supervised learning with ROC skill as the loss function, to 
compute Rmin = 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 . Optimization yielded the value 𝐴𝐴 𝐴𝐴 = 18.

3.1.4. Relative Total Intensity Contours

Whereas the Θ(t) time series shown in Figure 2b uses all the M ≥ 3.29 earthquakes in the defined geographic 
region, the spatially gridded relative intensity time series IR(xi,t) consists of all time series in the ensemble of 
grid boxes. As shown by Rundle et al. (2002), Tiampo, Rundle, McGinnis, Gross, et al. (2002), Tiampo, Rundle, 
McGinnis, Klein, et al. (2002), and Holliday et al. (2005, 2006a, 2006b, 2007), large earthquakes tend to occur 
where the most small earthquakes occur. This fact provides the initial justification for the method.

We then defined a quantity 𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝒊𝒊, t) |𝐸𝐸𝐸𝐸𝐴𝐴 , where 𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝒊𝒊, t) |𝐸𝐸𝐸𝐸𝐴𝐴 is the exponential moving average (N = 36) of 
𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝑖𝑖, t) and 𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝑖𝑖, t) is required to have a lower bound Rmin (xi) = 𝐴𝐴 𝐴𝐴𝐴𝐴 (𝒙𝒙𝒊𝒊) . Here 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑖𝑖) is the mean of 𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝒊𝒊, t) 

over the years 1970–2018. The values of 𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝒊𝒊, t) |𝐸𝐸𝐸𝐸𝐴𝐴 were then plotted and contoured as in Figure 3. 𝐴𝐴 𝐴𝐴 is the 
same parameter as used in the global Rmin. We then normalized 𝐴𝐴 𝐴𝐴𝑅𝑅 (𝒙𝒙𝒊𝒊, t) |𝐸𝐸𝐸𝐸𝐴𝐴 over space to 100%, so that it repre-
sents a spatial probability density.

We found that the addition of the lower bound Rmin (xi) only modestly improves the skill of the spatial 
contours, as determined from the spatial ROC diagrams in Figure  3a. As for the temporal skill, we also 
found that using only the EMA for the spatial contours still produced a nowcast with skill better than random 
(Table 1 bottom).

3.1.5. Spatial Receiver Operating Characteristic

Using the same procedure as for the temporal ROC (Figure 3), we apply a varying spatial threshold (“waterline”) 
and compute spatial TPR and FPR, as was done in Holliday et al. (2005). The results are shown for the two grid 
box sizes, 0.5° × 0.5° and 1° × 1° (Figure 4). It can be seen that the grid box size 1° × 1° has higher skill than 
the 0.5° × 0.5° grid box size.

The ROC curves in Figure 3 were computed at 1-year intervals from 1970 to 2018, producing the 48 cyan-colored 
curves. Similar to the temporal ROC, a future time interval TW = 3 years was used, and the skill was computed 
using all future events with M ≥ 3.29 within TW. The red curve is the mean of the 48 cyan-colored curves. Using 
the skill obtained by integrating the area under the 48 cyan-colored curves, we find the mean skill and standard 
deviation over the 48 years.

ROC skill for the curves in Figure 3, together with some additional calculations, are shown in Table 1 (bottom). 
There we include calculations for 3 different grid sizes, including one-tailed P-statistics, from which it can be 
seen that the at higher spatial resolutions, the skill is worse. We find a tradeoff between skill and spatial resolu-
tion. The P-statistics show that all skill scores are significant relative to random (no) skill.

We also include calculations in which we assume 𝐴𝐴 𝐴𝐴  = 0 for the two grid sizes. It can be seen that while skill is 
not as high as for nonzero 𝐴𝐴 𝐴𝐴 , there is spatial skill nonetheless. Nonzero 𝐴𝐴 𝐴𝐴 does improve skill, but only modestly.

4. Summary and Discussion
We again emphasize that we have trained the two-parameter model on all the data from 1970 to 2018. Thus, the 
results are meant to illustrate consistency of model with data, rather than being a validation study with disjoint 
training and test data.

As discussed previously, we have proposed a two-parameter model, using N weights for the exponential moving 
average, and the bias term Rmin. The parameter Rmin improves ROC skill significantly for the temporal skill, but 
only modestly for the spatial ROC skill. We now discuss the physical motivation for including Rmin.
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We find that this minimum earthquake rate Rmin becomes important in the lead-up to the large earthquakes 
as (presumably) the regional tectonic stress increases prior to the next large earthquake. This process is simi-
lar to the laboratory observed process of strain-hardening (Kandula et al., 2019) or strain-stiffening (Jiang & 
Srinivasan, 2013). In the former, more of the deformation is taken up by inelastic (plastic) straining as failure 
is approached. In the latter the laboratory rock sample becomes increasingly rigid, leading to a transition from 
unstable stick-slip on microcracks to stable sliding. In either case, the stable slip or plastic straining is modeled 
by the excess rate Rmin.

Transition from unstable stick-slip to stable sliding has been observed in laboratory friction experiments 
(Beeler, 2004; Beeler et al., 2001; Chen & Lapusta, 2009; Dieterich, 1986; Heslot et al., 1994). It is seen as the 
stiffness of the testing machine increases, as well as in experiments in failure in triaxial stress experiments and 
for observations of seismicity.

Support for this application to earthquakes can be seen in both InSAR and GNSS observations of deformation 
prior to major earthquakes in California. In Figure 4 we show the surface deformation from Sentinel InSAR 
(a) and GNSS data (b) in at a point having latitude 35.57°, longitude −117.68°, near the epicenter of the M7.1 
Ridgecrest, California earthquake of 5 July 2019, over the years from 2015 to 2019 (yellow star in Figure 1). 
The InSAR data were processed using the LiCSBAS package (Lazecký et al., 2020; Morishita, 2021; Morishita 

Figure 4. Surface deformation from Sentinel InSAR (a), and GNSS data (b) at a point having latitude 35.57, longitude −117.68, near the epicenter of the M7.1 
Ridgecrest, California earthquake of 5 July 2019, over the years from 2015 to 2019 (yellow star in Figure 1, Cerro Coso Community College—CCCC). Using 
LiCSBAS, a spatial-temporal filter was applied that is high-pass in time and low-pass in space with a Gaussian kernel that is identical to filters used in other time series 
InSAR software packages such as StaMPS. The spatial filter width used is 2 km and the temporal filter width used is 0.16 years. After applying the filter, the velocity 
computed is 4.9 mm/yr. The fact that the deformation over the years prior to the Ridgecrest event is linear suggests that small earthquakes did not stop or decrease with 
time. When compared to the decrease in small seismic earthquakes prior to the large earthquakes seen in Figure 2, it suggests that there was a transition from unstable 
stick-slip events to stable sliding. This is because unstable events can only be seen with seismometers, whereas both unstable and stable slip can be observed with 
geodetic data.
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et al., 2020; [3]). Note that the frame ID is 064A_05410_131313, and other details can be found at the COMET 
Sentinel InSAR portal [4]. The GNSS data were processed at JPL by Heflin et al. (2020) [5]. Additional GNSS 
data for the 4 April 2010 M7.2 El Mayor Cucupah earthquake also shows the same lack of anomalous precursory 
deformation. Examples of these data are shown on the ESSOAR archive [6] under the Supporting Information.

Aside from seasonal fluctuations in the InSAR displacement, the trends are linear, showing no sign of the type 
of quiescence implied by the seismically observable data. This fact suggests an approach to potentially locate the 
epicenter of an impending earthquake, by comparing the trend in surface deformation, observed by InSAR and/
or GNSS, to the trend in Benioff strain due to the unstable slip-slip, small earthquakes. These observations might 
be focused on the areas of higher probability density seen in Figure 4.

Note that to calculate the velocity from the InSAR images, we adopt the following procedure. The velocity is 
computed using the method of small baseline inversion. Specifically, a stack of unwrapped interferograms is used 
to calculate the incremental displacements which are the displacements between two consecutive times. Then, in 
order to get the cumulative displacements and form the displacement time series, the incremental displacements 
are simply summed up for each acquisition. The velocity is then derived from the time series using the least 
squares method. Looking at the time series and ignoring the seasonal effects which manifest themselves as an 
increase in displacement during the Winter times and a decrease in the Summer time, we are able to observe a 
steady linear trend in displacement leading up to the earthquake.

As a final remark, we have found that the mean rate of small earthquakes has been highly variable in time, 
generally increasing. This time dependence could be explained either by the physical processes generating the 
earthquakes changing over time, or alternately by incompleteness of the catalog prior to the full implementation 
of the digital observation network in the mid-1990s. Hutton et al. (2010) have a discussion of the completeness 
level that is informative in this regard. Further refinements of the method presented here might include taking 
account of this time dependence, but this is a subject that we leave to future research.

Data Availability Statement
Python code that can be used to reproduce the results of this paper can be found at a GitHub repository (DOI: 
https://doi.org/10.5281/zenodo.7186635) [6]. Data for this paper was downloaded from the USGS earthquake 
catalog for California, and are freely available there. The Python code mentioned above can be used to download 
and model these data for analysis [6].

Note:

1.  https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average (accessed 3/9/2022)
2.  https://en.wikipedia.org/wiki/Receiver_operating_characteristic (accessed 3/9/2022)
3.  https://github.com/yumorishita/LiCSBAS (accessed 3/9/2022)
4.  https://comet.nerc.ac.uk/comet-lics-portal/ (accessed 3/9/2022)
5.  https://sideshow.jpl.nasa.gov/post/series.html
6.  https://github.com/jbrundle/OptimizingEarthquakeNowcasts/tree/main
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