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Abstract 

Studies of bilingual language processing typically assign 
participants to groups based on their language proficiency and 
average across participants in order to compare the two groups. 
This approach loses much of the nuance and individual 
differences that could be important for furthering theories of 
bilingual language comprehension. In this study, we present a 
novel use of machine learning (ML) to develop a predictive 
model of language proficiency based on behavioral data 
collected in a priming task. The model achieved 75% accuracy 
in predicting which participants were proficient in both 
Spanish and English. Our results indicate that ML can be a 
useful tool for characterizing and studying individual 
differences. 

Keywords: repetition priming; translation priming; bilingual 
language processing; machine learning  

Introduction 

Studies of bilingual language processing have raised 

interesting questions about the nature of linguistic and 

semantic representations in semantic memory. Many open 

questions remain regarding the organization of multiple 

languages within the processing system, particularly the 

extent to which two languages share underlying conceptual 

representations and automatically activate one another during 

processing. Much of this research has relied on the use of 

priming paradigms to probe the size and nature of cross-

language priming effects, as a way to understand whether the 

bilingual processing system shares representations across 

languages, or whether concepts may be represented 

separately. Two competing models of bilingual language 

comprehension, the Bilingual Interactive Activation (BIA+) 

model (Dijkstra & van Heuven, 2002) and the Revised 

Hierarchical Model (RHM; Kroll & Stewart, 1994; Kroll, van 

Hell, Tokowicz, & Green, 2010), have been proposed to help 

account for varying priming effects observed across studies. 

One of the most common tasks used to probe the nature of 

bilingual language processing is cross-language translation 

priming. Masked repetition priming effects are well-

established within a speaker’s native language (Forster & 

Davis, 1984), particularly in the lexical decision task. By 

comparing the size of within- and across-language translation 

priming, researchers can begin to understand how effectively 

words in one language facilitate the same concept in their 

second language. Cross-language non-cognate translation 

priming effects have also been observed in cases where 

priming from a word in one language facilitates responses to 

that word’s translation in another language (e.g., Grainger & 

Frenck-Mestre, 1998). Translation priming effects tend to be 

bigger under certain circumstances: for example, in more 

proficient bilinguals, with longer prime durations, and with 

priming from L1 primes to L2 targets (rather than L2 primes 

to L1 targets), (see Schoonbaert, Duyck, Brysbaert, & 

Hartsuiker, 2009 for review).  

Research in this field has traditionally relied on recruiting 

groups of individuals with known language backgrounds and 

testing how priming effects manifest in these pre-established 

language proficiency groups. However, this existing 

paradigm is not without challenges. An individual’s language 

background is hard to effectively quantify, and individuals 

can vary widely in their second language proficiency even 

within relatively well-matched groups (for review, see van 

Hell & Tanner, 2012). Because the size or presence of 

priming effects depends heavily on correctly characterizing 

participants’ language background, it seems that efforts to 

establish a more individualized approach to data analysis 

could help the field identify more consistent findings, in turn 

advancing our understanding of the bilingual language 

processing system. 

The present study seeks to establish a novel approach to 

bilingual language comprehension research that capitalizes 

on individual differences rather than averaging over them. 

We are interested in trying to characterize an individual’s 

language background, without knowing it in advance, based 

on their behavioral responses in a cross-language priming 

task. Specifically, we utilize supervised machine learning 

techniques to identify patterns in response time data that may 

differentiate individuals who are proficient in the target 

language from those who are not. This approach represents a 

departure from traditional paradigms and leverages cross-
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disciplinary data analysis techniques to provide a potential 

new avenue for the study of bilingual language processing. 

In order to collect behavioral responses to words in a 

language an individual may not know, we employed a word-

length judgment task rather than lexical decision or semantic 

categorization. This task has been successfully used to elicit 

N400 priming in a bilingual population in which L1 and L2 

words were intermixed (Martin, Dering, Thomas, & Thierry, 

2009), indicating that the task could still allow for contact 

with the word’s semantics. Additionally, as in Martin et al. 

(2009), we intermixed trials from the two languages rather 

than using the more typical blocked design. This choice was 

made to make it less predictable at the trial level whether the 

upcoming word would be in a language the participant knew, 

thus further encouraging participants to access each word’s 

semantics. We predicted that we would see within-language 

repetition priming effects for the languages in which the 

participant was proficient. We also predicted that proficient 

bilinguals would show translation priming effects, whereas 

participants who were not proficient in the second language 

would not show these effects. Furthermore, exploratory 

machine learning analyses will allow us to test whether other 

aspects of the behavioral data could reliably predict an 

individual’s language proficiency.  

Methods 

This study was reviewed and approved by the Human Studies 

Board at Sandia National Laboratories. A total of 95 

participants were recruited via Amazon Mechanical Turk 

(AMT). To qualify for the task, the participants had to have 

an approval rate >95% for prior tasks completed on AMT. A 

subset of 40 participants also met AMT’s criteria for fluency 

in Spanish. Participants were paid $3-4 for their time. 

Materials 

The materials consisted of 30 Spanish nouns and their 

translations in English. The words were selected so that there 

were no special characters (accents, etc.) and no cognates or 

false cognates. We took care to select Spanish words that 

monolingual English speakers would be unlikely to 

encounter in their daily lives. Using information from the 

CLEARPOND database (Marian, Bartolotti, Chabal & 

Shook, 2012), the word lists were matched on length, 

frequency, and orthographic neighborhood size, as shown in 

Table 1. The orthographic neighborhood size across 

languages was minimized. 

 

Table 1: Matched Properties of the Two Word Lists 

 

 English Spanish 

Avg. Length 5.37 5.47 

Avg. Frequency 106.93 99.04 

Avg. English Orthographic 

Neighborhood Size 
6.77 0.77 

Avg. Spanish Orthographic 

Neighborhood Size 
2.27 5.43 

The words were paired in eight types of pairings: English-

English repetitions, Spanish-Spanish repetitions, English-

Spanish translations, Spanish-English translations, English-

English unrelated, Spanish-Spanish unrelated, English-

Spanish unrelated, and Spanish-English unrelated. There 

were a total of 240 pairs, with each word appearing in every 

possible pair type, four times as a prime and four times as a 

target. The word pairs were divided into four blocks of 60 

pairs each. Each target word appeared twice in each block, 

once as part of a related pair and once as part of an unrelated 

pair. The pairs were placed in the pseudorandom order so that 

the two pairs that contained the same target word appeared in 

different halves of the block. The pseudorandom order was 

constrained so that there were never more than four 

translation/repetition or unrelated pairs in a row, and never 

more than two pairs of the same type (e.g., Spanish-English 

translation) in a row. 

Procedure 

After reading and acknowledging the consent form, 

participants completed a short language proficiency 

questionnaire with questions that were similar to those in the 

Language Experience and Proficiency Questionnaire 

(Marian, Blumenfeld & Kaushanskaya, 2007). They were 

asked to list up to four languages that they know, first in order 

of dominance and then in order of acquisition. They were 

asked what percentage of the time they are currently exposed 

to English and Spanish, and how much total time they have 

spent living or traveling in countries where Spanish or 

English is the dominant language. Finally, they were asked to 

rate their level of proficiency in English and Spanish on an 

11-point scale ranging from “None” to “Perfect,” the age at 

which they began to acquire each language (infant, child, 

teen, adult, or never), and which factors contributed to them 

learning that language. The response options included 

interacting with family, interacting with friends, formal 

language classes, reading, language tapes/learning apps/self-

instruction, watching TV or movies, listening to the radio, 

and travel. 

After completing the questionnaire, participants were 

shown the task instructions and an example. They were told 

that they would see words in English and Spanish, and that 

the words would sometimes be repeated or followed by the 

same word in the other language. They were told to press the 

“B” key on the keyboard if the word had 5 letters or fewer 

and the “N” key if the word had 6 letters or more. They were 

instructed to respond as quickly as possible without making 

too many mistakes. Finally, the participants were told that 

there were four blocks of words with breaks in between, and 

that each block would take about two minutes to complete. 

When they were ready to begin, they clicked on a button 

labeled “Start Experiment.” The first six words that the 

participants saw were practice words and were not included 

in the analysis. The participants responded to every item, 

whether it was a prime or a target. 

1508



Behavioral Results 

A total of 13 participants were excluded from the analysis, 

either because they did not complete the entire task, they did 

not provide consistent responses to the questionnaire, or 

because their pattern of responses indicated that they were 

responding randomly rather than following the task 

instructions. Of the remaining 82 participants, 40 were from 

the group that met AMT’s criteria for fluency in Spanish and 

42 were from the group with no specific language 

qualification requirements. 

In the group that met AMT’s criteria for fluency in 

Spanish, one participant rated his/her proficiency in reading 

Spanish at 7 (“Good”), and all of the other participants rated 

their proficiency at 8 (“Very Good”) or higher on the 0-10 

scale. Thirty-three of the participants in this group reported 

that Spanish was their dominant language and the first 

language they acquired. Three participants reported that 

English was their dominant language and the first language 

they acquired. Two participants reported that Spanish was the 

first language they acquired, but English was their dominant 

language. Two participants reported that English was the first 

language they acquired, but Spanish was their dominant 

language. All of the participants in this group reported that 

they had lived for at least one year in an area where Spanish 

is the predominant language (range 1-57 years, mean = 28.8 

years). They had spent an average of nine years living in areas 

where English was the predominant language (range = 0-54 

years). Thirty-three of the participants reported that they had 

spent more time living in predominantly Spanish-speaking 

areas than in predominantly English-speaking areas, and 17 

reported that they had never lived in an area where English 

was the predominant language.  

In the group of participants that was recruited without the 

use of AMT’s Spanish fluency qualification, all of the 

participants reported that English was their dominant 

language, and all but one of the participants reported that 

English was the first language they acquired (one person 

reported that their first language was Mandarin). There were 

21 participants who reported that they did not know any 

Spanish at all. Another 15 participants reported that they had 

learned some Spanish as a teen or adult, primarily through 

formal language classes or self-instruction, but they rated 

their Spanish proficiency at 3 (“Fair”) or below. Three 

participants reported that they began learning Spanish as 

teenagers and gave themselves intermediate fluency ratings 

(5-7). Finally, three participants rated their Spanish 

proficiency as 8 or higher. One of these participants reported 

that they started learning Spanish in infancy, one in 

childhood, and one as a teen. The participants reported that 

they had spent an average of 37.7 years living in 

predominately English-speaking areas (range 25-70 years) 

and an average of 3 years living or traveling in predominantly 

Spanish-speaking areas (range 0-23 years). 

For our analyses, we grouped all of the participants who 

rated their Spanish proficiency as 8 or higher into the 

“proficient” group, regardless of whether or not they had 

AMT’s qualification for Spanish proficiency. There were a 

total of 42 participants in this group, 39 from the batch that 

required the AMT Spanish qualification and three from the 

batch that did not. All of the participants who rated their 

Spanish proficiency at 7 or lower (40 participants) were 

placed in the “non-proficient” group. One of these 

participants was from the batch that required the AMT 

Spanish qualification and the 39 were from the batch that did 

not. 

We began with a traditional analysis of the priming effects 

for each experimental condition. The participants’ average 

response times were calculated for each condition. Only 

correct trials were included in the analysis. Trials with 

response times (RTs) of less than 200 milliseconds were 

excluded, as were trials with RTs that were more than three 

standard deviations higher than that participant’s mean 

response time (unless those trials had RTs that were less than 

6 seconds). A total of 111 trials out of 19,680 were excluded 

due to having unusually short or long response times. For 

each participant, the priming effect for each condition 

(English-English, Spanish-Spanish, English-Spanish, 

Spanish-English) was calculated by subtracting the average 

RT for the targets in the repetition or translation pairs from 

the average RT for the targets in the unrelated pairs. Figure 1 

shows the average size of the priming effects across 

participants. 

A 2 (Spanish Proficiency) x 4 (Priming Condition) 

ANOVA showed that there was a significant effect of 

proficiency group (F(1,240) = 16.77, p < .001), a significant 

effect of condition (F(3,240) = 90.04, p < .001), and a 

significant interaction between the two (F(3, 240) = 5.11, p < 

.01). The participants in the proficient Spanish group had a 

significantly larger priming effect than the other group for 

both the English-English (t(67) = 3.50, p < .001) and the 

Spanish-Spanish condition (t(67) = 3.59, p < .001). For the 

two cross-language conditions, neither group showed a 

priming effect and the two groups did not differ significantly 

from one another (all ts < 1.12, all ps > .13). 

 

 
 

Figure 1: The average magnitude of the priming effects. 

Error bars show the standard error of the mean. 

A Model of Bilingual Language Proficiency  

The priming effects (PEs) showed that there was a significant 

difference between participant groups in the English-English 
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and Spanish-Spanish priming conditions. A potential 

application of this result may be to learn a function that maps 

the priming effects of known participants to their 

corresponding proficiency labels so that we can use the 

priming effects from new participants to predict their 

proficiency.  

More generally, classification is a standard supervised 

machine learning (ML) task that follows a train and predict 

paradigm. During the training phase, labeled data is used to 

build a model (i.e., a learned function) that maps an input 

(typically numerical feature vectors) to an output (labels). 

During the predict phase, the model is used to infer the labels 

of new data (James, Witten, Hastie, & Tibshirani, 2013).  

An advantage of this approach is that ML algorithms can 

usually handle very high dimensional data (e.g., the 

individual PEs or RTs) compared with standard statistical 

analyses of behavior, which look at averages (e.g., average 

PE or RT for a particular condition).  A disadvantage of this 

approach is that ML algorithms are often considered “black 

boxes”, providing very little interpretability as to how the 

model arrives at its prediction.  

A linear Support Vector Machine (SVM), on the other 

hand, is a simple but successful ML algorithm that yields 

insights as to how the individual features (e.g., PEs and RTs) 

contribute to the predicted output (Boser, Guyon, & Vapnik, 

1992; Cristianini & Shawe-Taylor, 2000). In its simplest 

form, the objective of an SVM is to find a hyperplane that 

separates the labeled data into the two distinct classes 

(extensions for multiclass problems exist), while also 

maximizing the distance between the hyperplane and the 

nearest point from either group (hard-margin). The 

coordinates of the vector orthogonal to the hyperplane form 

the weights (coefficients) of the model. From the weights, it 

is possible to do two things. First, we can determine feature 

importance according to the relative magnitude of the 

weights. Second, new data items can be labeled depending on 

which side of the hyperplane they fall (computed by taking 

the dot product with the orthogonal vector).  

For our application, we use the Linear Support Vector 

Classification (LinearSVC) class available in Python’s 

Scikit-learn 0.23.1 with default parameters. Scikit-learn 

0.23.1 is used throughout our ML workflow for data 

preprocessing, feature engineering, and model validation  

(Pedregosa et al., 2011). 

Data Preprocessing 

Using the same criteria as in the prior section, participants 

were assigned proficiency labels based on their survey 

responses. Specifically, 42 participants were labeled as 

“proficient” in Spanish and 40 participants were labeled as 

“non-proficient” (English proficiency is assumed). 

Each participant was associated with a list of 240 RTs for 

each of the 240 target words in the experiment. Across all 

participants, the mean RT for the target words was 825 ms 

and the standard deviation was 231 ms. Target words with a 

mean RT that was more than three standard deviations above 

this mean were removed from the dataset for all participants. 

Only one target word was excluded based on this criterion, 

leaving us with 239 RTs for each participant. Then, to 

account for different baseline RTs for different participants, 

each participant’s RTs were normalized from 0 to 1.  

We note that this approach for preprocessing the data for 

input into the SVM differs from the approach for cleaning the 

data for the behavioral analysis. In the behavioral analysis, 

each participant’s data is cleaned by removing individual 

trials with incorrect responses and/or unusually short/long 

responses. Thus, each participant is left with a different set of 

RTs and PEs after cleaning the data. However, for input into 

the SVM, each participant must be represented by the same 

set of features, necessitating a different approach to removing 

anomalous data. 

Feature Engineering and Selection 

From the 239 normalized RTs, we construct feature vectors 

that are used as input into the SVM as follows. The first 

feature set simply represents the 239 normalized RTs. The 

second feature set represents the PEs. Each English target 

word appears in two PEs (English-English and Spanish-

English); similarly, each Spanish target word appears in two 

PEs (Spanish-Spanish and English-Spanish). Therefore, for 

the 60 target words in this study, we have 120 PEs. Because 

one target word was excluded, we are left with 119 PEs.  

Given a set of features, a standard next step in a machine 

learning workflow is to perform some type of feature 

selection technique to reduce the number of features, i.e. 

reduce the dimensionality. Reducing the number of features, 

particularly when the number of features exceeds the number 

of samples, can improve the accuracy of the model.  

Univariate feature selection is one of the simplest 

techniques to reduce the number of features and works by 

selecting the best set of features based on univariate statistical 

tests such as a chi-squared test or an ANOVA. We will use 

an ANOVA to compute the p-value between the label and 

features to select the m best features according to the lowest 

p-values.  

Model Validation  

In a deployed setting, we would apply our SVM model that 

has been trained on the 82 participants of known proficiency 

to make predictions on new participants of unknown 

proficiency. However, without validating the model first, it is 

not possible to know how good the new predictions are. 

Therefore, a cross-validation test is usually performed first, 

in which part of the labeled data is withheld during training 

and used to test (validate) the performance of the model 

during prediction. Many methods exist to split the data into 

train/test sets. Perhaps most common is the k-fold cross 

validator, which splits the data into k consecutive folds. Each 

fold is then used once as the test (validation) set, while the 

remaining k – 1 sets form the training set. We use k = 5 and 

perform 10 runs of each of the cross-validation experiments.  

Finally, the model (i.e. m best features) with the highest 

mean balanced accuracy score is selected. The balanced 

accuracy is defined as the average accuracy obtained on each 
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class (non-proficient, proficient) and is used in place of 

accuracy when there is a class imbalance (Brodersen, Ong, 

Stephan & Buhmann, 2010). 

Results Using Priming Effect Size 

We begin with prediction results using the PEs as the 

features. Figure 1 shows the mean and standard deviation  

(SD) of the balanced accuracy as a function of the m best PE 

features used to train the SVM. We achieve the highest 

accuracy of 0.68 (SD = 0.11) with m = 98 features. For 

comparison, an accuracy of 0.62 (SD = 0.10) is achieved 

using the average PEs as features.  

 

 
Figure 1: Mean and standard deviation of the balanced 

accuracy as a function of the m best priming effect (PE) 

features used to train the SVM. Best performance (mean 

accuracy = 0.68) is achieved at m = 98. 

 

In Table 2, we also show the mean and the standard 

deviation (parentheses) of the confusion matrix for the best-

performing model using m = 98 features. The confusion 

matrix shows the class-level prediction accuracy. From these 

results, we can see that the model predicts the non-proficient 

participants with slightly higher class accuracy than the 

proficient participants. 

 

Table 2. Mean and standard deviation (parentheses) of the 

confusion matrix for the best performing PE model. 

 

  Predicted Group 

 
 

Spanish 

Proficient 

Non-

proficient 

Actual 

Group 

Spanish Proficient 0.61 (0.16) 0.39 (0.16) 

Non-proficient 0.26 (0.16) 0.74 (0.16) 

 

We would also like to understand how the different PEs 

contributed to the proficiency prediction of the SVM. Figure 

3 plots the mean values for the two metrics for significance 

for each of the 119 PE features. The SVM weights correspond 

to weights after feature selection. If a feature is not chosen it 

is given a weight of 0. In general, the features with the highest 

SVM weights also have small p-values. This result supports 

the intuition that features with lower p-values should also 

contribute more predictive power (higher weights) to the 

SVM model. Interestingly, three of the top four most 

predictive features (by either metric) correspond to the words 

CUELLO, LLUIVA, and PILLOW. All three of these words 

are six letters long and contain the digraph ‘ll,’ which was 

considered to be a distinct letter in the Spanish alphabet prior 

to 2010 (Real Academia Española, 2010). In our word length 

task, participants were asked to press one button for words 

that were five letters or shorter and another for words that 

were six letters or longer. Given this task and the relatively 

recent removal of ‘ll’ from the Spanish alphabet, these three 

words may have been tricky for the proficient Spanish 

speakers. It is notable that the model identified these three 

stimuli as the ones that were most effective for differentiating 

between the two groups of participants. 

 

 
Figure 3: Priming effect (PE) feature significance. Features 

with low p-values (significant according to the univariate 

statistical test) and high coefficients (significant according 

to the model) are the most predictive. 

Results Using Response Times (RTs)  

Next, we repeat our analysis using response times (RTs) as 

features for the SVM. Figure 4 and Table 3 show the 

prediction performance the SVM classifier using RTs as 

features. Overall, we achieve better performance using RTs, 

compared with using PEs, as features. We achieve the highest 

balanced accuracy of 0.75 (SD = 0.09) with m = 175 features. 

For comparison, a balanced accuracy of 0.66 (SD = 0.11) is 

achieved using the average RTs as features.  

 

 
Figure 4: Mean and standard deviation of the balanced 

accuracy as a function of the m best response time (RT) 

features used to train the SVM. Best performance (mean 

accuracy = 0.75) is achieved at m = 175. 
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Table 3. Mean and standard deviation (parentheses) of the  

confusion matrix for the best performing model. 

 

  Predicted Group 

 
 

Spanish 

Proficient 

Non-

proficient 

Actual 

Group 

Spanish Proficient 0.74 (0.15) 0.26 (0.15) 

Non-proficient 0.23 (0.13) 0.77 (0.13) 

 

As with the PEs, we would like to understand how the 

individual features contribute to the ability of the SVM to 

predict participant proficiency. Figure 5 plots the p-value and 

the mean SVM weight for each of the 239 RT features. Once 

again, in general, RT features with higher SVM weights have 

smaller p-values, indicating that features with lower p-values 

tend to contribute more predictive power (higher weights) to 

the SVM model.  

 

 
Figure 5: Response time (RT) feature significance. Features 

with low p-values (significant according to the univariate 

statistical test) and high coefficients (significant according 

to the model) are the most predictive. 

 

We also examined which participants were misclassified in 

the highest-performing version of the model. Interestingly, 

there were six proficient Spanish speakers who reported that 

they started learning English before learning Spanish and that 

English was their dominant language. Four of those 

participants were consistently misclassified by the model, 

which placed them in the non-proficient group 90-100% of 

the time. Another participant in this group was misclassified 

30% of the time. Only one participant in this category was 

always classified as being proficient in Spanish, and that was 

also the only participant who reported that they learned both 

English and Spanish beginning in infancy. The others in this 

subset began learning Spanish later in childhood or as 

teenagers. Although some of these participants may have 

simply overstated their Spanish proficiency, this pattern 

suggests that age of acquisition could be a key factor in the 

RT effects that are identified by the model. 

Discussion 

This study employed a repetition and translation priming 

paradigm to test the efficacy of using machine learning 

techniques to characterize an individual’s language 

proficiency based on priming data. Our analyses showed 

within-language repetition effects for both languages, with 

priming effects that were larger for proficient Spanish 

speakers. However, we observed no priming effects for 

translations, suggesting that our effects were driven by the 

wordform and/or response priming, rather than semantic 

priming. On the surface, these findings may provide weak 

support for the RHM model (Kroll & Stewart, 1994) because 

we do not see facilitation between translation equivalents 

even for people who are proficient in both languages. 

However, our experimental paradigm and non-semantic task 

may have encouraged shallow processing. Unlike a classic 

priming paradigm, where participants see a prime and then 

respond to a subsequent target, the participants in our task 

responded to every word with no differentiation between 

primes and targets. Due to this design and the intermixing of 

within-language and cross-language pairs, the participants 

may have been less likely to make predictions about which 

word would come next, which could reduce the effect of 

semantic priming. In future research, we plan to test blocked 

designs where all of the targets in each block are in the same 

language and a more traditional priming paradigm in which 

participants passively read the primes and respond only to the 

targets. We predict that those changes to the experiment 

structure will produce larger semantic priming effects for 

proficient bilingual participants reading translated pairs. 

Our machine learning analyses showed that a model trained 

on reaction time data and priming data can predict whether 

an individual participant is proficient in Spanish with high 

accuracy. Interestingly, for this dataset, predictions based on 

priming effects were slightly less successful than predictions 

based on the RTs alone (68% versus 75% prediction 

accuracy). Even though the experimental task may have 

encouraged shallow processing, the participants who 

acquired Spanish beginning in infancy displayed patterns of 

response times that differentiated them from the other 

participants. The model also revealed specific words that 

were more predictive of proficiency than others, indicating 

that this approach could also be fruitful for item analyses. 

This study has several limitations. Most importantly, we 

based the proficiency labels on the self-reports on anonymous 

online participants. The majority of the participants (39 of 42) 

who reported high proficiency in Spanish also had a Spanish 

fluency qualification from Amazon Mechanical Turk, which 

provides some external verification of their proficiency. 

However, it is not clear what criteria are used to assign that 

qualification. In future research, it would be useful to assess 

the model’s performance against measures of language 

proficiency that are more objective than self-reporting. 

The word length judgment task that we used also has 

limitations. We were constrained to using a task that all 

participants could complete whether they understood Spanish 

or not. In future work, we aim to develop new tasks that can 

be completed without knowledge of the target language but 

that encourage semantic processing. 

Overall, this study demonstrates that machine learning 

techniques can support a more individualized approach to 
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data analysis in studies of bilingualism or other individual 

differences. Rather than simply averaging data from all of the 

participants within each group and comparing the two groups, 

the ML approach allows us to develop a predictive model to 

classify participants based on their language proficiency, as 

instantiated in the data they produced. This can be used to 

identify groups of participants with different proficiency 

levels, rather than assigning participants to groups in 

advance, or to explore differences among participants with 

similar levels of proficiency. Finally, machine learning can 

be used to identify the specific stimuli that are most 

predictive of participant proficiency. All of these factors 

enable new approaches to the study of bilingualism. 
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