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REVIEW

Aryl hydrocarbon receptor activation 
mediates kidney disease and renal cell 
carcinoma
Hui Zhao1, Lin Chen1, Tian Yang1, Ya‑Long Feng1, Nosratola D. Vaziri2, Bao‑Li Liu3, Qing‑Quan Liu3, Yan Guo4 
and Ying‑Yong Zhao1* 

Abstract 

The aryl hydrocarbon receptor (AhR) is a well‑known ligand‑activated cytoplasmic transcription factor that contrib‑
utes to cellular responses against environmental toxins and carcinogens. AhR is activated by a range of structurally 
diverse compounds from the environment, microbiome, natural products, and host metabolism, suggesting that AhR 
possesses a rather promiscuous ligand binding site. Increasing studies have indicated that AhR can be activated by 
a variety of endogenous ligands and induce the expression of a battery of genes. AhR regulates a variety of physi‑
opathological events, including cell proliferation, differentiation, apoptosis, adhesion and migration. These new roles 
have expanded our understanding of the AhR signalling pathways and endogenous metabolites interacting with 
AhR under homeostatic and pathological conditions. Recent studies have demonstrated that AhR is linked to car‑
diovascular disease (CVD), chronic kidney disease (CKD) and renal cell carcinoma (RCC). In this review, we summarize 
gut microbiota‑derived ligands inducing AhR activity in patients with CKD, CVD, diabetic nephropathy and RCC that 
may provide a new diagnostic and prognostic approach for complex renal damage. We further highlight polyphenols 
from natural products as AhR agonists or antagonists that regulate AhR activity. A better understanding of structur‑
ally diverse polyphenols and AhR biological activities would allow us to illuminate their molecular mechanism and 
discover potential therapeutic strategies targeting AhR activation.

Keywords: Aryl hydrocarbon receptor, Chronic kidney disease, Gut microbiota, Uremic toxins, Renal cell carcinoma, 
Natural products
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Background
The induction of a battery of genes encoding xenobiotic 
metabolizing enzymes in response to chemical damage is 
an adaptive response in many organisms. The aryl hydro-
carbon receptor (AhR) is a mediator of the toxic response 
of ubiquitous environmental pollutants such as halogen-
ated aromatic hydrocarbons, polycyclic aromatic hydro-
carbons and coplanar polychlorinated biphenyls [1–3], 
including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 
which has carcinogenic and teratogenic effects [4]. 
AhR is described as an environment-sensor period-aryl 

hydrocarbon receptor nuclear translocator-single minded 
(Per-ARNT-Sim) protein that belongs to a member of the 
family of basic helix-loop-helix transcription factors [5].

AhR signalling and its ligands
AhR signalling
AhR is a ligand-mediated transcription factor impli-
cated in the biological detoxification of ligands [6]. 
As shown in Fig.  1, under basal conditions, AhR is 
located in the cytoplasm in an inactive state as part 
of a complex formed with stabilizer proteins, includ-
ing 2 molecules of heat shock protein 90 (HSP90), one 
molecule of cochaperone p23 (P23) and one molecule 
of X-associated protein 2 (XAP2) [1]. When a ligand 
binds to AhR, the AhR/ligand/Hsp90/XAP2 complex 
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translocates into the nucleus and dimerizes with AhR 
nuclear translocator (ARNT). AhR is activated by a 
conformational alteration that exposes its nuclear 
localization sequence. After AhR is phosphorylated by 
protein kinase C, the AhR complex is translocated into 
the nucleus [7]. In the nucleus, the complex releases 

the protein so that it can bind to the ARNT through 
its Per-ARNT-Sim domain, leading to the AhR-ARNT 
dimer. This AhR/ARNT heterodimer is recognized by 
a DNA-specific site, 5′-GCGTG-3′, the DRE or XRE 
(dioxin- or xenobiotic-responsive element) sequence 
located within the promoters of target genes, and 

Fig. 1 AhR transcription in mammalian cells and the putative mechanism of AhR activation. The inactive form of AhR occurs in the cytoplasm as 
a complex with chaperone proteins, including HSP90, P23 and XAP2. Multiple exogenous and endogenous AhR ligands from the environment, 
diet, host metabolism and gut microbiome induce a conformational alteration in AhR, exposing the nuclear localization signal to activate nuclear 
shuttling. Once in the nucleus, AhR forms a heterodimeric complex, with ARNT binding to the XRE sequence motif 5′‑GCGTG‑3′. This induces 
the expression of its target genes, such as CYP1A1, CYP1A2, CYP1B1 and COX‑2, which are involved in the inflammatory response and xenobiotic 
metabolism. Furthermore, AhR mediates AhR repressor expression, abrogating the formation of the AhR/ARNT heterodimer and inhibiting its 
transcriptional activity. Moreover, AhR forms as a Cul4B‑based E3 ubiquitin ligase complex, inducing selective protein degradation. AhR regulation 
signalling can be controlled via nuclear export and subsequent AhR degradation through the ubiquitin–proteasome signalling pathway. In addition 
to this canonical pathway, signalling through AhR can also be mediated through interactions with other regulatory proteins, such as oestrogen 
receptor, NF‑κB and RB
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triggers their transcription, such as cytochrome 
P450, family 1, member 1A (CYP1A1); cytochrome 
P450, family 1, member 2A (CYP1A2); cytochrome 
P450, family 1, sub family B (CYP1B1); AhR repres-
sor (AhRR); and cyclooxygenase-2 (COX-2). AhR 
induces the expression of xenobiotic enzymes, such as 
cytochrome P450 genes, needed for the detoxication of 
AhR toxic ligands [1].

AhR activation is primarily recognized to mediate 
the expression of phase I and phase II drug metabo-
lism genes, including CYP1A1, CYP1A2, CYP1B1, 
UGT1A1/6 and sulfotransferase (SULT)1A1. Mount-
ing studies have demonstrated that the AhR pathway 
is associated with diverse physiological functions and 
disease processes, such as the regulation of T-cell 
differentiation and embryonic/foetal development, 
the mediation of oxidative stress and inflammatory 
responses [8–13]. In fact, traditional AhR signalling 
cannot explain all the cellular functions attributed 
to AhR. In addition to the canonical gene regula-
tion pathway, noncanonical AhR signalling has been 
described that includes crosstalk with other transcrip-
tion factors, including nuclear factor kappa B (NF-κB), 
nuclear factor-erythroid-2-related factor 2 (Nrf2), 
programmed death ligand 1 and activator protein 1 
(notably the RelA subunit), hypophosphorylated retin-
oblastoma protein, the corepressor oestrogen receptor 
and the progesterone receptor [14–16] (Figs. 1 and 2). 
Furthermore, cytosolic AhR can activate a myriad of 
other cytosolic proteins, including β-catenin, Smads, 
mitogen-activated protein kinase (MAPK) family 
p38, extracellular signal-regulated kinase (ERK) and 
Jun-NH2-terminal kinase (JNK) [17] (Fig. 2).

Ligands of activated AhR signalling
There is emerging evidence that chronic exposure to 
environmental chemicals via air and diet, particularly 
persistent organic compound pollutants such as TCDD 
or dioxin, causes side effects by ligand-activated induc-
tion of the AhR pathway [18–20] (Fig.  1). Moreover, 
there are also a myriad of endogenous AhR ligand candi-
dates, such as eicosanoids (e.g., lipoxin A4, bilirubin, and 
lipopolysaccharides), and a myriad of naturally occurring 
flavonoids (e.g., resveratrol and quercetin). These endog-
enous metabolites have been identified as weak AhR 
ligands due to their low affinity for AhR (e.g., bilirubin 
and indirubin). However, bilirubin can activate AhR at 
a certain concentration in certain disease states, such as 
jaundice [21]. Human AhR preferentially binds to indiru-
bin compared to mouse AhR [22].

AhR activation through low‑molecular‑weight uremic toxins
Metabonomics, which has been defined as “the quantita-
tive measurement of the dynamic multiparametric meta-
bolic response of living organisms to physiopathological 
stimulation or genetic modifications” [23, 24], is used 
as a comprehensive method to address changes in low-
molecular-weight metabolites (MW < 1000 Da) following 
disease, toxic exposure or variation in genetic function 
[25–28]. Mounting studies by using burgeoning meta-
bonomics have demonstrated that low-molecular-weight 
metabolites, such as cholesterols, amino acids, vitamins, 
lipids, carbohydrates, minerals and other compounds, 
play a critical role in health and diseases [29–33]. A num-
ber of novel or known metabolites have been used for 
disease diagnosis and prognosis, new drug discovery and 
toxicity evaluation [34–41].

Fig. 2 AhR interacts with multiple other signalling pathways. AhR activates other cytosolic proteins, including β‑catenin, Smads, ERK, p38MAPK and 
JNK
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Declining renal function leads to the retention of vari-
ous metabolites [41–45] that are retained in the blood 
and various tissues instead of being excreted by the 
kidneys [46]. Thus, the retention of these metabolites 
contributes to a variety of diseases, especially chronic 
kidney disease (CKD) and cardiovascular disease (CVD) 
[47–50]. CKD leads to the retention of one of the most 
important metabolites, so-called uremic solutes. In 2003, 
the European Uremic Toxin Work Group classified 90 
uremic compounds [51]. The number of compounds/
metabolites has since been extended [51]. Uremic tox-
ins are classically categorized according to the physico-
chemical features affecting their clearance by dialysis: low 
water-soluble molecules (MW < 500  Da), larger middle 
molecules (MW > 500 Da) and protein-bound molecules 
[52]. Protein-bound uremic solutes are poorly removed 
through conventional dialysis. Among the uremic toxins, 
tryptophan-derived uremic toxins are of particular inter-
est because they are implicated in cardiovascular toxic-
ity and have been demonstrated to be potent AhR ligands 
[53, 54]. Tryptophan is an essential amino acid found 
in the diet. As shown in Fig.  3, 95% tryptophan can be 
metabolized via the kynurenine pathway, which is medi-
ated by the rate-limiting enzymes tryptophan 2,3-dioxy-
genase (TDO) and indoleamine 2,3-dioxygenase (IDO) 
[55]. TDO is highly expressed in the liver. IDO has two 
isoenzymes, IDO1 and IDO2. IDO1 expression has been 
demonstrated in most tissues [55]. The activity of IDO 
leading from tryptophan to kynurenine is reflected by 
the tryptophan/kynurenine ratio [56]. Serum trypto-
phan is decreased in CKD patients, whereas metabolites 
from the kynurenine pathway, including kynurenine, 
kynurenic acid, 3-hydroxykynurenine, anthranilic acid 
and quinolinic acid, are increased. Two other tryptophan 
metabolic pathways are the serotonin pathway, which 
produces melatonin, and the indolic metabolic pathway, 
which produces indolic compounds, including indoxyl 
sulfate (IS), indole-3-acetic acid (IAA) and indoxyl-β-d 
glucuronide (IDG) (Fig. 3). In the indolic pathway, tryp-
tophan is converted to indole through gut microbiota 
and absorbed into blood circulation [57] (Fig.  3). For 
instance, tryptophanase produced from Escherichia coli 
metabolizes dietary tryptophan to indole and its deriva-
tives [58]. In the liver, bacterial-derived indole is further 
metabolized to IS via human SULT1A1 [59]. Moreover, 
indole is oxidized to IS by microsomal CYP2E1 [60]. IAA 
is directly produced in the gut by tryptophan metabo-
lism or endogenously in tissue through tryptamine [60]. 
For example, tryptophan mono-oxygenase produced 
by Arthrobacter pascens and tryptophan decarboxylase 
produced by Clostridium sporogenes convert tryptophan 
into the AhR ligands IAA and tryptamine, respectively 
[61–63]. In the healthy state, the human gut microbiota 

carries out several activities to the body. Gut microbiota 
live in a commensal relationship with their host, pro-
tecting against pathogens, modulating the immune sys-
tem, and regulating endogenous lipid and carbohydrate 
metabolism, thus maintaining the nutritional balance 
[64]. An increasing number of recent studies have dem-
onstrated that alterations in gut microbiota are linked 
with a myriad of diseases, such as cancer, obesity, diabe-
tes, cardiovascular disease, inflammatory bowel disease, 
and kidney disease [65]. It is increasingly recognized that 
gut microbiota metabolism contributes to the generation 
of enormous uremic toxins [66–69].

Although uremic toxins contribute to various diseases 
associated with a variety of action mechanisms, some 
metabolites, such as aromatic hydrocarbon metabo-
lites and indole derivatives, have been demonstrated as 
endogenous AhR ligands and thus could evoke AhR acti-
vation [70]. Further study indicated that AhR seems to 
sense microbial insults and bacterial virulence factors, 
constituting a new AhR ligand [71]. Increasing evidence 
has also demonstrated that tryptophan metabolism-
derived uremic toxins such as IS, IAA and IDG are rec-
ognized as the most important endogenous AhR ligands 
and thus can trigger AhR activation [72, 73] (Fig. 3). IS, 
IAA and IDG can activate AhR signalling via direct bind-
ing to the AhR/Hsp90/XAP2 complex. Both IS and IAA 
upregulate eight genes of AhR, including CYP1A1 and 
CYP1B1 [74].

IS has been reported as one of the most important 
uremic toxins. A panel of indole derivatives includ-
ing tryptophan, indole, IS, IAA, and indole 3-metha-
nol as AhR ligands has been examined [59]. IS has 
been demonstrated as a potent endogenous ligand that 
selectively activates human AhR at nanomolar level 
in primary human hepatocytes, mediating the tran-
scription of multiple AhR genes, including CYP1A1, 
CYP1A2, CYP1B1, UGT1A1, UGT1A6, interleukin 6 
and serum amyloid A1. Furthermore, IS exerts a 500-
fold greater potency in the transcriptional activation of 
human AhR compared to mouse AhR [59]. Structure–
function findings have indicated that the sulfate group 
is an important factor for effective AhR activation. 
Ligand competition binding analyses have indicated 
that IS is a direct AhR ligand [59]. Previous studies 
have shown that IS suppresses endothelial prolifera-
tion, inhibits wound repair and triggers oxidative stress 
[72]. IS has been implicated in cardiovascular mortal-
ity and classical risk factors in CKD patients. Basal AhR 
level regulate podocyte function under normal circum-
stances, and upregulating AhR activation in podocytes 
by IS contributes to glomerular injury [75]. Activated 
AhR by IS triggers a proinflammatory phenotype, 
podocyte damage and glomerular injury both in  vivo 
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and in vitro [75]. Another study reported that increased 
IS affected iron metabolism in adenine-induced CKD 
mice by participating in hepcidin regulation via AhR 
and oxidative stress pathways [76]. Moreover, the acti-
vation of AhR mediated the IS-mediated upregulated 

expression of monocyte chemoattractant protein-1 
(MCP-1) in human umbilical vein endothelial cells 
(HUVECs) [77]. IAA is another important uremic 
toxin. IAA activates the AhR/p38MAPK/NF-κB signal-
ling pathway, which induces COX-2 expression, and 

Fig. 3 Biosynthesis of AhR ligands from tryptophan metabolism. Tryptophan is metabolized into various AhR ligands. a In the gastrointestinal tract, 
various bacterial species in the microbiota can metabolize tryptophan to products with AhR agonistic effects. b Cruciferous vegetables produce 
the tryptophan metabolite glucosinolate via a hydrolysis reaction, yielding the AhR protoagonist I3C. In the stomach, I3C is metabolized by an 
acid‑condensation reaction to AhR ligands 6‑formylindolo(3,2‑b)carbazole (FICZ), DIM and LTr1. c Host metabolites such as IS and IAA, with AhR 
agonistic effect, are primarily derived from tryptophan metabolism through the kynurenine pathway, with other ligands generated by ultraviolet 
exposure and oxidative reactions. B1: indole‑3‑acetaldehyde; B2: S‑(indolylmethylthiohydroximoyl) l‑cysteine; B3: indolylmethyl thiohydroximate; 
TPH: tryptophan hydroxylase
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IAA increases the production of reactive oxygen spe-
cies both in vivo and in vitro [78]. Therefore, serum IS 
or IAA might be an independent indicator of cardio-
vascular events and mortality in CKD patients.

Other toxins from tryptophan metabolism reported as 
AhR ligands are from the kynurenine pathway. Kynurenic 
acid can induce the AhR signalling pathway in patients 
with CKD [79]. Moreover, 5/6 Nx rats exhibit high lev-
els of serum kynurenine and 3-hydroxykynurenine and 
significantly upregulated AhR and CYP1A1 mRNA 
expression in bone tissue compared to control rats [80]. 
Notably, the serum kynurenine level, the serum kynure-
nine/tryptophan ratio, and AhR and CYP1A1 mRNA 
expression are lower in 3-month-old 5/6 Nx rats com-
pared to 1-month-old 5/6 Nx rats [80].

AhR activation mediates renal damage
The AhR pathway is activated in CKD
Patients with CKD are exposed to a high level of uremic 
toxins, causing an increased risk of cardiovascular dis-
ease. A number of uremic toxins, such as IS, IAA and 
IDG, are agonists of AhR. The latest study demonstrated 
that AhR was activated in patients with CKD stage 3 to 
5D [81]. AhR-activating potential (AhR-AP) strongly cor-
relates with eGFR and IS concentration. The expression 
of blood AHR target genes, including CYP1A1 and AhRR, 
is upregulated in CKD patients compared to healthy con-
trols [81]. Further study demonstrated that 5/6 nephrec-
tomized (5/6 Nx) mice exhibited an increase in serum 
AhR-AP and an induction of CYP1A1 mRNA expression 
in the heart and aorta that were absent in  AhR−/− CKD 
mice [81]. Increased serum AhR-AP level and upregu-
lated CYP1A1 mRNA level in the aortas and hearts from 
WT mice have been observed after serial IS injection, but 
not in  AhR−/− mice [81]. Taken together, these results 
suggest that the AhR signalling pathway is activated in 
both mice and patients with CKD.

Another study demonstrated that indolic uremic sol-
utes upregulated tissue factor expression by an AhR-
dependent pathway in patients with CKD (stages 3-5D) 
compared to healthy controls, evoking a ‘dioxin-like’ 
effect. Elevated tissue factors were positively correlated 
with serum IS and IAA concentrations in patients with 
CKD (stages 3-5D) [74]. In HUVECs, IS and IAA treat-
ment further upregulated the expression of eight AhR 
genes: CYP1A1, CYP1B1, CYP1A2, transforming growth 
factor β-3, prostaglandin G/H synthase and cyclooxy-
genase, CDD-inducible poly(ADP-ribose) polymerase, 
chemokine (C–C motif ) receptor 7 and AhRR, the repres-
sor of AhR [74]. The involvement of AhR activation in 
tissue factor production has been clarified by siRNA 
inhibition and with the AhR inhibitor geldanamycin 
[74]. These findings were amplified in peripheral blood 

mononuclear cells. The expression and activity of tissue 
factors were also augmented by TCDD. In addition, the IS 
level is significantly correlated with both AhR and tissue 
factor activities in patients with end-stage renal disease 
(ESRD) [82]. IS activates the AhR pathway in primary 
human aortic vascular smooth muscle cells, and AhR 
interacts directly with and stabilizes tissue factor. The 
AhR antagonist inhibits tissue factor, enhances tissue fac-
tor ubiquitination and degradation, and inhibits throm-
bosis and endovascular injury [82]. Moreover, monocytes 
respond to IS through AhR signalling and consequently 
upregulate tumour necrosis factor alpha expression in 
ESRD patients [83]. Taken together, these findings indi-
cate that the activation of AhR is a key mechanism asso-
ciated with deleterious cardiovascular disease in CKD.

However, the knockout of AhR leads to altered renal 
and hepatic phenotypes in both mice and rats [84]. AhR-
knockout mice show changes in hepatic function and 
liver patent ductus venosus. AhR-knockout rats exhibit 
alterations in the urinary tract, including bilateral renal 
dilation (hydronephrosis), secondary tubular and uroepi-
thelial degenerative alterations and bilateral ureter dila-
tion (hydroureter) [84]. Another study indicated that 
aromatic hydrocarbons can compensate for renal cell 
function by intervening with mitochondrial function and 
glutathione homeostasis and are involved in both mes-
enchymal and epithelial populations in nephrotoxicity to 
this heterogeneous class of chemicals [85]. In addition, 
AhR stimulation can represent a novel renoprotective 
effect likely involving the mobilization and recruitment 
of Tregs and stem cells to the injured kidney [86].

The serum IS level is between 7 and 343  μM (mean 
value: 120–140  μM) in chronic haemodialysis patients 
[87]. IS circulates in albumin-bound and free forms. 
In haemodialysis patients, approximately 90% of IS is 
bound to serum proteins, indicating that the free serum 
IS level is 12  μM, an effective level that leads largely to 
the induction of AhR activity in cultured cells [88]. The 
IS level is highest in the kidney and lower in the lung, 
liver and heart in nephrectomized rats [89]. Rats with 
chronic renal failure showed sixfold higher IS level in 
kidney tissues and 71  μM IS in kidney homogenate. If 
these findings reflect the kidney tissue IS level in patients 
with ESRD, it would be expected that AhR could be fully 
activated and that AhR activation would further enhance 
the expression of AhR target genes, such as CYP1A1, 
CYP1A2, CYP1B1 and COX-2. Another study indicated 
that CYP1A2 protein expression in the kidney and liver 
was greatly upregulated in rats with chronic renal failure 
[90]. In addition, TCDD can mediate hydronephrosis in 
mice [91]. TCDD toxicity is solely induced by AhR and 
thus could provide the clues for the inhibitory effects of 
elevated AhR activity mediated by high IS level.
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Free IS, not albumin-bound IS, can activate AhR. One 
study investigated the effect of albumin-bound and free 
IS on AhR activation using IS level observed in different 
stages of patients with CKD. An AhR-driven reporter 
assay showed that both IS forms mediated dose-depend-
ent AhR transcription in vascular smooth muscle cells 
[82]. IS level equivalent to those found in early stages 
of patients with CKD also increased AhR transcription, 
which was dose-dependently inhibited by the AhR antag-
onist CB7993113. Similarly, IS upregulated the expres-
sion of endogenous AhR target genes CYP1A1, CYP1A2 
and AhRR, all of which were abrogated by the AhR antag-
onist [82]. However, few studies have examined the effect 
of IS on AhR activity in renal proximal tubular cells. 
Taken together, these results show that upregulated AhR 
activity in the kidney may be associated with the high IS 
level in renal disease.

The AhR pathway is activated in diabetic nephropathy
Diabetic nephropathy has become a large global health 
problem. It has been reported that serum AhR transac-
tivating activity is higher in type 2 diabetic patients with 
diabetic nephropathy with microalbuminuria, macroal-
buminuria and ESRD than in subjects with normoalbu-
minuria [92]. Serum AhR ligands are correlated with the 
estimated glomerular filtration rate (eGFR), the serum 
creatinine level, systolic blood pressure, glycated hae-
moglobin and diabetic duration. High AhR transacti-
vating activity is an independent risk factor in diabetic 
nephropathy [92]. A study on streptozotocin-induced 
diabetic mice showed that AhR deficiency reduced the 
induction of COX-2/prostaglandin  E2, NADPH oxidase 
activity, oxidative stress, lipid peroxidation and N-Ɛ-
carboxymethyllysine [93]. N-Ɛ-carboxymethyllysine 
significantly enhanced AhR/COX-2 DNA-binding activ-
ity, protein-DNA reciprocity, gene regulation, and ECM 
accumulation in renal proximal tubular cells and mesan-
gial cells, which might be reversed by siRNA-AhR trans-
fection [93]. In addition, human kidney dysfunction 
occurring as a result of diabetic nephropathy has been 
indicated to lead to high serum IS level [59].

AhR is associated with the RAS
The renin-angiotensin system (RAS) plays a key role in 
the progression of CKD. Several studies have indicated 
that AhR is associated with the RAS. For example, IS 
reduces the expression of the Mas receptor in the aor-
tas of normotensive and hypertensive rats [94]. Another 
study demonstrated that IS downregulated the expres-
sion of the Mas receptor via AhR/NF-κB and mediated 
cell proliferation and tissue factor expression in human 
aortic smooth muscle cells. Ang-(1-7) suppressed IS-
mediated tissue factor expression and cell proliferation 

by inhibiting phosphorylated ERK1/2 and NF-κB [94]. 
In addition, the expression of the Mas receptor is down-
regulated in the kidneys of rats with CKD [95]. IS induces 
the downregulation of the expression of the Mas recep-
tor through the OAT3/AhR/STAT3 signalling pathway in 
proximal tubular cells [95]. The IS-mediated downregula-
tion of the Mas receptor is involved in the upregulation 
of transforming growth factor beta 1 in proximal tubular 
cells. Another study indicated that IS induced the aor-
tic expression of prorenin receptor and renin/prorenin 
via organic anion transporter 3-induced uptake, reac-
tive oxygen species production and AhR and NF-κB p65 
activation in vascular smooth muscle cells [96]. The IS-
induced activation of the prorenin receptor promotes 
tissue factor expression and cell proliferation in vascular 
smooth muscle cells [96].

The AhR pathway is activated in urinary system‑associated 
cancers
The AhR pathway is involved in carcinogenesis [97]. It has 
been demonstrated that AhR is mainly expressed in the 
nuclei of advanced clear cell renal cell carcinoma (RCC) 
and tumour-infiltrating lymphocytes, and its expression 
correlates with the stage of the pathological tumour and 
the histological grade [98]. Matrix metalloproteinases 
(MMP) belong to a family of zinc-dependent endopepti-
dases and are considered as therapeutic targets for renal 
diseases [99]. AhR activation upregulates the mRNA 
expression of its target genes CYP1A1 and CYP1B1 and 
promotes invasion by upregulating the mRNA expression 
of MMP-1, MMP-2 and MMP-9 and downregulating the 
mRNA expression of E-cadherin in human RCC cell lines, 
including 786-O and ACHN [98]. Furthermore, a siRNA 
for AhR downregulated CYPs and inhibited cancer cell 
invasion accompanied by the downregulation of MMP in 
786-O cells [98]. These findings indicate that AhR regu-
lates cell RCC invasion involved in tumour immunity. 
The same study group showed that nuclear AhR expres-
sion was also significantly related to pathological T stage, 
histological grade, invasion and lymph node involvement 
in patients with upper urinary tract urothelial carcinoma 
[100]. AhR expression is considered an independent pre-
dictor of disease-specific survival. T24 UC cells induced 
by TCDD showed the upregulated mRNA expression of 
AhR, CYP1A1 and CYP1B1 accompanied by the upreg-
ulated mRNA expression of MMP-1 and MMP-9 and 
enhanced T24 cell invasion [100]. Furthermore, T24 cells 
transfected with a siRNA for AhR showed the down-
regulated mRNA expression of AhR, CYP1A1, CYP1B1, 
MMP-1, MMP-2 and MMP-9 and indicated decreased 
invasion ability [100]. Taken together, these findings indi-
cate that AhR plays an important role in the invasiveness 
of cancer cells and can serve as a prognostic biomarker 



Page 8 of 14Zhao et al. J Transl Med          (2019) 17:302 

and potential therapeutic target for patients with urinary 
system-associated cancers.

Natural products such as AhR agonists or antagonists 
in kidney disease and renal cell carcinoma
Organic anion transporting polypeptides and organic 
anion transporters play a key role in renal uremic toxin 
elimination. Solute carrier organic anion transporter 
family member 4C1 (SLCO4C1) is the only organic anion 
transporting polypeptide expressed at the basolateral side 
of human renal proximal tubular cells, and it modulates 
uremic toxin excretion. Human SLCO4C1 overexpres-
sion in rat kidneys promotes renal uremic toxin excretion 
and lowers cardiomegaly, hypertension and renal inflam-
mation in renal failure [101]. Statin induces SLCO4C1 
expression via AhR by binding to the XRE at its promoter 
region [101]. Statin administration promotes the elimina-
tion of uremic toxins and mitigates organ damage in a rat 
renal failure model. MicroRNAs play an important role 
in the cellular defence mechanism. It has been reported 
that miR-125b is transcriptionally activated by Nrf2 and 
could be an inhibitor of the AhR repressor in cisplatin-
induced mice, which contributes to protecting the kidney 
from acute kidney injury [102].

Natural products in the clinic have been regarded as 
an alternative therapy for the prevention and treatment 
of a myriad of diseases worldwide [103–107]. Natural 
products also continue to provide a protean and unique 
source of new bioactive lead candidates for drug discov-
ery [108–115]. Numerous studies have demonstrated a 
variety of natural product-derived compounds that can 
directly activate or inhibit AhR [116–119]. As early as the 
1970s, several studies reported that the ligands of AhR 
from vegetable extracts or vegetable-derived materials 
mediate CYP1A1 activity [120, 121]. As shown in Fig. 3, 
members of the cruciferous family, such as broccoli, 
brussels sprouts, white cabbage and cauliflower, have rich 
sources of glucobrassicin or glucosinolate conjugates that 
produce indole-3-carbinol (I3C) and indole-3-acetoni-
trile (I3AC) by using enzymatic cleavage during masti-
cation [122, 123]. I3C and I3AC can bind to and activate 
AhR. Indolo[3,2,-b]carbazole (ICZ) and 3,3′-diindolyl-
methane (DIM) are two major acidic condensation prod-
ucts of I3C. ICZ has a higher affinity for the AhR ligand 
compared to other natural products [124]. 3,3′-Diindolyl-
methane is an established AhR agonist [124]. Glucosi-
nolate conjugates can activate AhR in mice and humans 
[121, 125]. After consumption, glucosinolates undergo 
hydrolysis, transferring I3C, ICZ, DIM and ([2-(indol-3-
ylmethyl)-indol-3-yl]  indol-3-ylmethane (LTr1), which 
serve as AhR agonists [121]. These compounds are 
involved in gut AhR expression needed for the main-
tenance of innate lymphoid cells and intraepithelial 

lymphocytes. These findings demonstrate an important 
link between dietary factors, AhR and intestinal immu-
nity. Subsequently, studies demonstrated that a number 
of compounds from natural products, such as I3C, cur-
cumin, quercetin, resveratrol, 7,8-dihydrorutacarpine, 
dibenzoylmethanes and carotinoids (canthaxanthin, 
astaxanthin and β-apo-8′-carotenal), could competitively 
bind to AhR and/or mediate the expression of AhR-
dependent genes [116, 117, 123, 126].

Polyphenols are widespread compounds throughout 
the plant kingdom [127]. They are characterized by using 
a classic phenol ring chemical structure. According to the 
phenol ring amounts in compounds and the approach 
they use, polyphenols are divided into 5 categories: fla-
vonoids, phenolic acids, stilbenes, lignans and tannins 
[128]. Flavonoids and phenolic acids are the most abun-
dant polyphenols in the daily diet and can be further 
divided into several categories based on the oxidation 
degree of the oxygen heterocycle, including flavonols, 
flavanols, flavanones, flavones, isoflavones, proanthocya-
nidins and anthocyanins [128]. Flavonoids from natural 
products constitute the largest category of AhR ligands 
[117, 129, 130]. Flavonoids, such as kaempferol, (–)-epi-
gallocatechin gallate, luteolin, myricetin, epigallocat-
echin, morin, galangin, eriodictyol, tangeritin, apigenin 
and naringenin, are mostly AhR antagonists, but some 
of them, including chrysin, baicalein, quercetin, diosmin, 
icaritin, tangeritin, and tamarixetin, are AhR agonists 
[116, 117, 126]. In addition to interplaying with AhR, 
many flavonoids are also substrates for CYP1A1. These 
flavonoids are widely distributed in medicinal plants, 
fruits, vegetables and teas, and flavonoid concentra-
tions in human blood are in the low micromolar range, 
levels sufficient to inhibit/activate AhR [116]. Thus, it is 
not surprising that the extracts of many natural products 
exhibit AhR agonist and/or antagonist activity. Therefore, 
natural products commonly include AhR ligands or natu-
ral products that can be transformed into AhR ligands, 
and as such, flavonoids are the largest class of natural 
AhR ligands that are available for humans and animals. 
Mounting evidence has demonstrated that polyphenols, 
especially flavonoids, as modulators of AhR, are widely 
used for the regulation of the intestinal immune system 
and tumour treatment [116–118, 131, 132], but only sev-
eral studies have reported that natural products regulate 
AhR in kidney damage.

Aristolochic acids, such as aristolochic acid I (AAI) and 
aristolochic acid II, with the structure of nitrophenan-
threne carboxylic acids, are the main active component of 
Aristolochia species [133]. Aristolochic acids were known 
to possess anti-inflammatory properties until the first 
case of nephropathy was found in Belgium, which is now 
regarded as aristolochic acid nephropathy (AAN) [134]. 
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AA exposure was recently implicated in Balkan endemic 
nephropathy and associated with urothelial cancer 
[135, 136]. The mechanism revealed that AAI-mediated 
nephrotoxicity is associated with deficient liver-specific 
NADPH-cytochrome P450 reductase, and the induction 
of CYP1A significantly lowers AAI-induced kidney tox-
icity [134]. Baicalin significantly alleviates AAI-mediated 
kidney toxicity via AhR-dependent CYP1A1 and CYP1A2 
induction in the liver [137]. Tanshinone I promotes AAI 
metabolism and prevents AAI-mediated kidney injury 
by the induction of hepatic CYP1A1 and CYP1A2 in vivo 
[138].

Concluding remarks
Initially, AhR was discovered as a chemical-sensing sig-
nalling molecule that mediated the toxic responses from 
environmental pollutants. In recent years, increasing 
studies on AhR ligands have testified an unparalleled 
expansion from exogenous toxic responses to many 
biology- and medicine-related fields, such as cancer, 
immunity regulation, cardiovascular disease and kidney 
disease. AhR signalling exhibits a variety of biological 
functions that have expanded its classical transcriptional 
function into the regulation of the cytosolic signalling 
pathway and possesses novel endogenous ligands that 
can bind to and activate AhR-dependent gene expres-
sion. Although the recently reported AhR ligands have 
expanded greatly, many related studies of AhR are still 
rigorously challenging, and great effort should be made 
in the future.

First, the structural identification of AhR ligands could 
provide insight into novel exogenous and endogenous 
ligands of AhR. Although fractionation approaches of 
biological samples could not identify many endogenous 
ligands in the past, the latest development of high-
throughput, rapid and sensitive metabolomic approaches 
provides avenues for the identification, isolation, and 
characteristics of new AhR ligands from trace amounts of 
complex matrices and biological samples. Metabolomics 
and lipidomics have been successfully utilized to discover 
and identify a variety of novel endogenous AhR ligands, 
especially aromatic hydrocarbon-containing metabo-
lites (uremic toxins), in both animal models and patients 
with CKD [50, 139–143]. Overall, characterization of the 
spectrum of endogenous AhR ligands will provide novel 
molecular and biochemical mechanisms by which ligands 
can induce AhR activation.

Second, natural products have been extensively used 
for the prevention and intervention of a myriad of dis-
eases worldwide. Investigators revealed an intriguing 
trend in drug development beginning in the 21st century: 
a return to nature as a source of novel potential agents 
[144, 145]. Natural products possess a wide range of 

bioactivities and were a continuous source of novel drug 
leads that contributed to approximately 46% of drugs 
approved by the Food and Drug Administration from 
1981 to 2014 [146–149]. The abovementioned studies 
have demonstrated that flavonoids are AhR antagonists 
or agonists. Flavonoids are widely distributed in natu-
ral products such as medicinal plants, fruits, vegetables 
and teas. To date, more than 15,000 flavonoids have 
been identified from natural products [150]. Due to their 
importance in the regulation of AhR activity, great effort 
should be made to further investigate the regulation of 
flavonoids on AhR activity. A better understanding of 
their chemical structures and AhR biological activity will 
be of importance to uncover their further potential as 
therapeutic drugs and their molecular mechanism.

Third, uremic toxins from tryptophan metabolism and 
dioxins from environmental pollutants activate the AhR 
signalling pathway. These toxins induce leukocyte acti-
vation and endothelial dysfunction, causing thrombosis 
and inflammation as well as enhanced vascular oxidative 
stress. Uremic toxins from tryptophan metabolism that 
activate AhR explain how these toxins contribute to CVD 
in CKD patients. These mechanisms of toxicity of uremic 
toxins may provide new potential therapeutic approaches 
targeting AhR activation. Although a number of experi-
ments have explored the relationship between AhR activ-
ity and various kidney diseases by analysing the target 
genes of AhR in both animal models and patients with 
CKD, AhR in kidney disease is still in its infancy com-
pared with cancer and immune disease. A large number 
of metabolites, especially uremic toxins, have been iden-
tified by high-throughput metabolomics, although the 
number is apparently insufficient. Further studies should 
be performed on the effect of novel metabolites on AhR 
activity. In addition, the AhR pathway can interact with 
the Wnt/β-catenin, transforming growth factor-β/bone 
morphogenetic protein and Notch signalling pathways 
as well as tyrosine kinase receptor pathways, including 
vascular endothelial growth factor receptor, keratino-
cyte growth factor receptor and epidermal growth factor 
receptor, in several human diseases [118]. Many stud-
ies have well documented that the transforming growth 
factor-β/bone morphogenetic protein, Wnt/β-catenin, 
Notch signalling and tyrosine kinase receptor pathways 
are involved in CKD [151, 152]. Few studies have dem-
onstrated whether AhR can interact with these signalling 
pathways in kidney disease.

Finally, regardless of the promising translational and 
clinical applications of AhR, most of the knowledge cur-
rently available about its physiopathological function has 
been demonstrated by using animal models, which have 
led to certain limitations for the direct transfer of achieve-
ments into patients. Great effort will surely focus on the 



Page 10 of 14Zhao et al. J Transl Med          (2019) 17:302 

validation of data from animal experiments to clinical 
application in the future, and system biology, including 
genomics, transcriptomics, proteomics, metabolomics and 
lipidomics, will most likely play an important role in stud-
ies on AhR. These are exciting areas for future studies. It is 
very likely that future studies will provide new diagnostic 
and prognostic approaches for complex human diseases 
and may establish new therapeutic strategies targeting AhR 
activation.
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