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ABSTRACT OF THE DISSERTATION 

 

Temporal gene expression during a critical time window following induction of LTP of mouse 

hippocampal CA3-CA1 synapses 

by 

Patrick Bon-Yung Chen 

University of California, Los Angeles, 2016 

Professor Kelsey C. Martin, Chair 

 

 Long-lasting forms of synaptic plasticity—the ability of synaptic connections to change 

in strength and numbers—are thought to underlie behavioral learning and memory. Long-term 

potentiation (LTP) is a persistent increase in synaptic strength that relies on new gene 

transcription and translation during an early, critical time window following LTP induction. 

Although many genes have been implicated in LTP through single-gene studies, a 

comprehensive understanding of the molecular changes necessary for LTP persistence remains 

missing. Furthermore, the temporal component of gene expression within this early time window 

remains unexplored. To address these questions, I first tested parameters that would affect 

detectability of differential gene expression following stimulation in mouse acute hippocampal 

slices. Next, I utilized a cell-type specific and cell-type inclusive whole-genome approach to 

profile the temporal pattern of gene expression following LTP induction and found that gene 
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expression within excitatory neurons of CA1 neurons was bidirectional and increased over time. 

The changes in gene expression were enriched for regulatory features in important regulatory 

regions, pointing toward coordinated regulation. I also found that gene expression changes 

occurred in non-neuronal cell-types following LTP induction. Following these conclusions, I 

then laid out a conceptual framework to guide other researchers in interpreting and presenting 

whole-genome data. Through this work emerges a clearer perspective of gene expression during 

LTP and of whole-genome methodologies. 
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“At all levels, the systems of life—from sociopolitical systems to solar systems—are repugnant 

and should be negated as MALIGNANTLY USELESS.” 

- Thomas Ligotti, Conspiracy Against the Human Race1 

 The question of human consciousness, and where it comes from, has plagued humanity 

since its early infancy. Throughout the entirety of our short existence on this planet, philosophers 

have exhausted their lives debating whether ethereal elements or divine beings are responsible 

for our species’ extreme self-awareness (dualism), or whether consciousness arises from nothing 

more than interactions within the physical realm (monism). With the refining of formal scientific 

disciplines (most notably the transition of philosophy of mind into neuroscience) the arguments 

in favor of dualism were convincingly refuted. In particular, destruction of brain tissue leads to 

profound changes in personality and memory—the very “soul” of an individual—indicating that 

the higher-order cognitive faculties unique to our species are nothing more than the specific 

arrangement of matter within the physical world. 

 The ability of the human race to create elaborate cultural constructions arising from and 

dedicated to our brain’s capacity to process information is unique to our species. However, every 

function of our brains is a mere expansion of identical processes occurring within “lower” 

organisms such as worms and flies. Every day we succumb to conscious and unconscious 

complex biological impulses that masquerade as choices. Thus, it is important to remember that 

our species is still just a speck on the evolutionary continuum and that our own false imaginings 

of self-importance in this world should be tempered by the perspective that human life is no 

more important than the existence of rocks, sand, or other inanimate objects in the physical 

world.  
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 Consciousness grants us the misfortune of being acutely aware of our own lack of 

importance in the universe; the universe will continue to exist quite nicely regardless of the fate 

of the human species. Most choose to delude themselves into positions of self-importance within 

the world, despite loud protests about our insignificance from our evolutionary history. The only 

release from the strings which consciousness dangles us is a separation from the mental 

constructs that tether us to our deluded self-importance. Things like God, family, and self must 

be recognized for what they are—a glamorous coat of paint slathered on the outside of a derelict 

vessel. 

 Understanding consciousness is a necessary first step in wrestling the reins of our 

thoughts from a foolishly unaware pilot and returning them to the equitable hands of nature. 

Although there is much debate as to all the considerations that truly define consciousness, one 

critical component of any conscious organism is its ability to self-reflect utilizing experiential 

memory. Thus, for our species’ self-edification, a detailed understanding of the biological events 

underlying memory processes will be critical for deconstructing the mysticism surrounding 

consciousness. 

 The initial discovery of brain regions that might be responsible for memory processes 

came from the human patient H.M. in the 1950s. H.M. suffered from severe seizures that 

originated in the brain structure known as the hippocampus; this necessitated the bilateral 

removal of patient H.M.’s hippocampi. After the operation, Scoville and Milner found that H.M. 

could no longer form new declarative memories and had partial retrograde amnesia for the three 

years prior to the operation, but could still remember older memories formed before this period2. 

This, along with other patients they observed with extensive hippocampal removal, led them to 
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conclude that the hippocampal formation of the brain was important for new memory formation. 

Further studies in other model systems confirmed the importance of the hippocampus for new 

memory formation3. These findings complimented the work from Karl Lashley in the 1930s that 

found very long-term memories are diffusively localized to the cortex. Lashley had removed 

increasing amounts of cerebral cortex following a learning paradigm in rats and found a 

correlation between the area of cortex removed and the ability of the rat to remember, but that 

the precise region of cortex removal was not important4. Taken together, these results indicate 

that the hippocampus is important for new memory formation while the cortex is important for 

the long-term storage of long-lasting memories. One inference from this is that the representation 

of memory within the hippocampus must somehow be transferred into the cortex. How this 

process occurs, and whether the cellular and physiological representation is similar or distinct 

between cortical and hippocampal representations, remains unclear. 

 Although these studies implicated the hippocampus as an important structure for new 

memory formation, an understanding of the physiological changes within the hippocampus that 

might underlie memory formation remained unclear. In the 1970s, Bliss and Lømo became the 

first to demonstrate a long-lasting, activity-dependent increase in synaptic strength in the 

hippocampus occurring in the perforant pathway of anesthetized rabbits that lasted for hours5. 

This was accomplished by repeatedly stimulating the perforant pathway with a strong train of 

stimulations in rapid succession (15 stimulations per second for 10 seconds). The long-lasting 

increase in synaptic strength came to be known as long-term potentiation (LTP), a form of 

synaptic plasticity. Synaptic plasticity is defined as the ability of synaptic connections to increase 

or decrease their strength for short (on the order of milliseconds) and long (more than days) 

periods of time. As a result of the duration of LTP occurring within the hippocampus and the 
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length of memory retention, it arose as an attractive physiological explanation for behavioral 

learning with the idea that induction of LTP within hippocampal circuits results in new memory 

formation. Of note is that following the pioneering work done on synaptic plasticity in the 

hippocampus, different forms of synaptic plasticity in different circuits (utilizing different 

mechanisms) within the brain have also been shown to underlie behavioral learning that is 

dependent on these circuits6,7. 

 The idea that memory could be further reduced beyond the level of physiological changes 

of synaptic plasticity was first convincingly demonstrated by the work from the laboratory of 

Eric Kandel. Using the model system of Aplysia californica to study a relatively simple learning 

event—gill-withdrawal sensitization following a tail shock8—in an intact preparation, the group 

first demonstrated that the temporal pairing of the firing of specific synaptic connections (which 

led to changes in synaptic strength) was responsible for the observed behavioral conditioning in 

the learning paradigm9. Following this, they demonstrated that the activity of cAMP signaling 

cascades and the cAMP response element-binding protein (CREB) transcription factor family 

was critical for the long-lasting synaptic changes that underlie learning by showing that blocking 

the activity of CREB-mediated transcription inhibited long (but not short) term plasticity10. In 

parallel, work in hippocampal LTP and hippocampal-dependent memory tasks in other systems 

demonstrated that new gene transcription and translation were required for the persistence of 

LTP and memory3,11. These results indicated that events at the molecular level were in fact able 

to explain the long-lasting changes in synaptic strength that underlie important memory 

processes. Interestingly, although the study of parallel molecular pathways underlying both LTP 

and memory supported the idea that the two were causally linked, only recently has this causality 

formally been demonstrated within the amygdala and hippocampus12,13. 
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 From this work emerged a consensus; new gene transcription and translation are required 

for the long-lasting (but not short-lasting) forms of both memory and LTP14. In particular, studies 

utilizing inhibitors of transcription and protein synthesis revealed that incubating hippocampal 

slices with inhibitors15, or injecting inhibitors into animals following a learning paradigm16,17, 

resulted in a loss of persistence of LTP or memory when these processes were inhibited within 

an early, roughly 2-3 hour early critical period. However, inhibition of transcription or 

translation at a later time point had no effect on LTP or memory15–18. This finding gave rise to 

the idea that an early, critical window of new gene expression was required for the persistence of 

LTP and memory. Later work has demonstrated that this dependency on new gene synthesis may 

not be limited to a strictly defined time window and instead depends upon stimulation strength 

and frequency17,18, though the implications of this have not been fully explored. 

 What are the identities of these genes that are expressed within this critical window 

following induction of LTP and memory? To address this, many labs have used unbiased whole-

genome approaches and candidate gene approaches to screen for genes that are functionally 

significant. Candidate gene approaches have identified immediate early genes such as Arc, c-

Fos, Npas4, and Egr1 as being critical for LTP and memory19–22; of note is that many of these 

genes are transcriptional regulators. However, few genes have been rigorously, mechanistically 

tested in the context of LTP, with most genes being implicated through a knockout (loss of 

function) or overexpression (gain of function) experiment. Whole-genome studies have also been 

carried out (see Chapter 4) to identify novel candidates following LTP induction and to 

understand the scope of molecular changes following LTP induction, yet very few studies using 

this approach follow through with functional validation. This is almost certainly because these 

studies identify a large enough number of differentially-regulated genes where functional 
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implication would not be feasible. To date, there remains no simple way to transition between 

the overwhelming quantity of broad genetic information provided by whole-genome studies to 

the narrow and mechanistic approach of single-gene studies. 

 Despite all of the studies implicating over a hundred candidates in the persistence of LTP, 

a unified understanding of the molecular processes underlying LTP persistence still is lacking23. 

This is due (in part) to biological heterogeneity in studying LTP (ie different brain regions, 

different stimulation paradigms, different models systems of LTP), and technical heterogeneity 

in interpreting studies (ie whole-genome studies use different criteria for significance—see 

Chapter 4). Furthermore, one of the fundamental questions regarding gene expression following 

LTP induction remains unexplored: few studies have attempted to characterize the temporal 

pattern of gene expression within this early, critical time window of gene expression for LTP 

persistence using either candidate or whole-genome studies despite the high probability that gene 

expression regulation is not static. 

 The work presented in this thesis explores a fundamental question regarding LTP and 

memory: what is the temporal gene expression pattern following LTP induction within the 

hippocampus? First, I established critical parameters to develop an experimental paradigm that 

was appropriate for unbiased, whole-genome experiments within acute hippocampal slices. 

Second, I utilized a cell-type specific method of profiling the gene expression changes within 

excitatory neurons of the hippocampal slices alongside a cell-type inclusive method to identify 

temporal patterns of differential expression following LTP induction. Finally, I assessed the 

status of whole-genome research in the field of LTP and memory and provide guidelines for 

improving the interpretation and accessibility of large datasets for other researchers.  
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Establishing the experimental parameters of the acute hippocampal slice preparation for gene 

expression studies 
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Introduction 

 Consistent detection of biological signal over background noise is an important 

consideration that can affect the sensitivity and the reliability of experimental results. In 

choosing an appropriate system to investigate the temporal gene expression pattern following 

induction of LTP, several factors need to be considered in parallel with the biological relevance 

of the system. The reliability and robustness of gene expression detection is strongly affected by 

both a highly-variable background expression level of genes between experiments, and a weak 

signal magnitude.  

 The acute hippocampal slice preparation is an appropriate system to study the molecular 

changes associated with long-lasting forms of synaptic plasticity, since this preparation preserves 

the physiological connections within the hippocampus while also allows induction of synaptic 

plasticity at a large number of synapses24. While this system has been used successfully to study 

molecular components of neural physiology, many variables25,26 have been shown to affect the 

health of the slice preparation. These variables and variables affecting other parameters may 

therefore affect the detection of changes in gene expression following induction of LTP. The 

effect size of some of these variables on gene expression could be so large that they would 

occlude detection of LTP-induced changes. In less extreme cases, the experiment-to-experiment 

variation due to these uncontrolled variables would diminish the signal of differential gene 

expression following LTP induction and would prevent discovery of all but the most robust 

changes in gene expression. For these reasons, elimination of variables that contribute to 

fluctuations in basal gene expression and utilization of methods that maximize the extent of LTP 



10 
 

induction across all synapses are critical for assessing the program of gene expression that gives 

rise to long-lasting forms of LTP. 

 In the studies described in this chapter, I test the effect of different variables on the 

sensitivity of detecting differential gene expression in acute hippocampal slices following LTP 

induction. I tested the effect of slice-induced injury and recovery times, electrical and chemical 

forms of LTP induction, and age on gene expression following LTP induction using different 

metrics for gene expression and found that all three variables had an appreciable effect. These 

results demonstrate the need to carefully consider variables in experimental paradigms to 

maximize signal-to-noise in gene expression assays. 

Slice-induced changes in phosphorylation of translational regulation pathways 

 The preparation of acute hippocampal slices involves physical injury to hippocampal 

tissue and the cells within. Following removal of the hippocampus, slices are prepared by cutting 

the hippocampus using a tissue chopper; this results in the severing of axonal and dendritic 

processes and, with enough time, leads to cell death. This treatment of the tissue has previously 

been shown to dramatically affect transcriptional upregulation of immediate early genes and 

receptors, without a corresponding change in protein levels27. Between the immediate effects of 

injury and the eventual death of the slice lies a period when the immediate injury-induced effects 

recover and cell death has not fully occurred. Thus, I set out to characterize the time-dependency 

of relevant gene expression signaling pathways following slicing of the hippocampus within an 

early window post-slicing. 

 To understand the effects of slicing on important gene expression regulation pathways, I 

measured the activation of the MAP kinase pathway, which is a key signaling pathway in cell 



11 
 

survival and gene expression28, following slicing at 30 min, 60 min, and 120 min post-slicing. In 

conjunction, I also measured the activation of the translation factor eIF4E following slicing at the 

indicated time points because the planned experiments with whole-genome sequencing utilized a 

system that measured changes in the ribosome-associated population of RNA. Activation of both 

the MAP kinase pathway and phosphorylation of translation factors are important for processes 

related to synaptic plasticity29, which makes establishing a low baseline for the activity of these 

pathways critical for maximizing the detectable signal from LTP induction.  

 Phosphorylation of the MAP kinases ERK1 and ERK2 leads to activation of these 

signaling pathways; activation of ERK1/2 in turn leads to activation of the translation initiation 

factor eIF4E through phosphorylation29. Immunoblotting with antibodies specific to 

phosphorylated forms of ERK1/2 (p-ERK1/2) and eIF4E (p-eFI4E) revealed a clear activation of 

both proteins (Fig 1a,b). ERK1/2 was most activated at 30 min, followed by a decrease at 60 min 

and 120 min. Although at 120 min post-slicing the activation was lower than at earlier time 

points post-slicing, it did not return to baseline. All three samples tested showed this pattern. A 

similar temporal trend was seen when immunoblotting for phospho-eIF4E in these same three 

samples, though there was greater variability in the time point at which peak activation occurred. 

Of the three samples tested, two showed peak activation at 60 min while one showed peak 

activation at 30 min. Nevertheless, all three replicates showed a return close to baseline levels of 

p-eIF4E activation at 120 min. One notable difference is that unlike p-ERK1/2 levels, p-eIF4E 

levels did approximate unsliced levels at this later time point. Taken together, these results 

confirmed slice-induced injury effects and revealed the time course for recovery. 
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Differential expression of immediate-early genes following different LTP stimulation 

paradigms 

 Widely-accepted induction protocols for LTP in the Schaffer collateral pathway 

connecting CA3 to CA1 of the hippocampus include both electrical stimulation patterns as well 

as chemical induction protocols30,31. However, different induction protocols may lead to different 

percentages of synapses being potentiated, which in turn would directly affect the detection 

sensitivity of differential gene expression. To understand whether an electrical or chemical 

induction protocol would lead to the greatest detectable increase in gene expression, I tested the 

upregulation of immediate early gene transcripts following LTP induction using an electrical 

LTP induction protocol consisting of 2x100 Hz stimulation and using a chemical LTP induction 

protocol (cLTP) involving elevation of cAMP followed by increased extracellular K+ and Ca2+ in 

0 Mg2+ artificial cerebral spinal fluid (ACSF).  

 To further increase the specificity of detecting gene expression within the relevant circuit, 

a number of different approaches were used. CA1 mini-slices, in which both CA3 and DG 

regions of the hippocampal slice were microdissected prior to resting, were used for electrical 

stimulation experiments to maximize detection of activity-dependent changes in gene expression 

by removing the contributions to RNA transcript levels from unpotentiated CA3 and DG cells. In 

contrast, cLTP was carried out on CA3/CA1 mini-slices, where only DG had been 

microdissected, because the selected cLTP protocol requires activity from CA3 neurons for LTP 

induction32. In conjunction with assaying differential gene expression from total RNA of 

hippocampal slices, I utilized a transgenic mouse system that allowed for purification of 
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ribosome-associated RNA from excitatory neurons (TRAP RNA)33,34, which minimizes the 

influence of gene expression from multiple cell-types. 

 At 60 min post-LTP induction, quantitative reverse-transcription PCR (qPCR) of Arc and 

c-Fos transcripts demonstrated that the cLTP induction protocol resulted in a much larger 

increase in differential expression than the electrical induction protocol for both TRAP and total 

RNA populations (Fig 2a,c,d). From the electrical stimulation results in Fig 2a, I detected 

virtually no differential expression of Arc and c-Fos in the TRAP RNA and small increases in 

the total RNA. The long 3’ UTR isoform of the Bdnf transcript did show a slight increase with 

electrical stimulation in both TRAP and total RNA populations. 

 Given the lack of detectible differential expression through electrical stimulation and the 

detection of upregulation of candidate genes at 60 min post-cLTP induction, I decided to focus 

on understanding the earliest time point when differential expression of Arc and c-Fos was 

possible following cLTP induction. I tested for differential expression of activity-dependent 

transcripts in the TRAP RNA population at a 15 min time point following cLTP induction and 

detected no differential expression at this time point (Fig 2b). However, at 30 min post-cLTP 

induction, I was able to detect changes in Arc and c-Fos in both the TRAP and total RNA 

populations (Fig 2c,d), indicating that 30 min was the earliest time point to consider collecting 

samples for whole-genome sequencing. Following this, I tested Arc and c-Fos differential 

expression at 120 min post-cLTP induction to confirm that differential expression was still 

detectable at this later time point. I found that, indeed, Arc and c-Fos levels were upregulated in 

both TRAP and total RNA populations at 120 min (Fig 2c,d), indicating this would also be 

suitable for whole-genome sequencing. Some of the samples shown here were used as samples 
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for TRAP and RNA sequencing in the following chapter. These results indicated that the 

chemical LTP induction protocol generated a much greater magnitude of differential expression, 

and that differential expression was detectable 30 min but not 15 min post-LTP induction. 

Age-dependent effects on LTP-induced gene expression 

 Age is a critical variable that influences the robustness of both memory and plasticity, 

with hippocampal slices from older mice experiencing significantly reduced magnitudes of 

LTP35. This suggested that the effect of aging on gene expression regulation in an unstimulated 

state could in turn influence the degree of differential expression that follows LTP-inducing 

stimulation. Because of this age-dependence, I wanted to identify the age ranges that were 

appropriate for obtaining a robust upregulation of gene expression. 

 To address this, I tested the induction of Arc and c-Fos in hippocampal slices following 

cLTP stimulation from mice that were 8-12 weeks old and 10.5-12 months old. I found that 

induction of TRAP RNA Arc and c-Fos expression in younger animals was significantly greater 

than in older animals (Fig 3). This finding indicated that controlling for age—specifically, 

utilizing animals that were younger—was important for maximizing the differential expression 

magnitude of gene expression. 

Discussion 

 Maximizing the signal of differential gene expression while minimizing background 

noise and variability is required for the accurate and reproducible detection of stimulus-induced 

changes in gene expression. In the context of whole-genome approaches, including RNA 

sequencing, the sensitivity of detection is critical for identifying subtle changes that may be 
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masked by a noisy, fluctuating background. The goal of these experiments was to minimize the 

variability between experimental replicates and to allow for a better-controlled experimental 

paradigm for studying the molecular changes following induction of LTP. Toward this end, I 

tested the effect of slice-induced injury recovery times, LTP induction protocols, and age on 

gene expression sensitivity in the context of LTP induction within acute hippocampal slices. 

 From studying the effects of slice-induced injury on phosphorylation of translation 

signaling pathways, I determined that a two-hour period of rest was optimal for the planned 

downstream experiments using RNA-seq. One limitation of these results is that p-ERK1/2 and p-

eIF4E levels at later time points were not examined; allowing the slices more time to recover 

may allow p-ERK1/2 levels to fall even lower. However, given the challenges in maintaining 

slice health over extended periods of time (since in addition to the recovery period, I wanted to 

monitor gene expression at 120 min after LTP induction), I reasoned that 120 min post-slicing 

was sufficient recovery time to differentiate between injury-induced and LTP-induced changes in 

gene expression. Importantly, the phosphorylation levels of eIF4E roughly returned to baseline, 

which would arguably be the most important observation for the planned downstream 

experiments examining gene expression changes at the ribosome-associated level from RiboTag 

mice. 

 Despite the striking observation that total RNA levels of transcripts such as Egr1, c-Fos, 

and GluA1 become and remain highly upregulated following slice-induced injury for hours (with 

no corresponding change in protein level)27, I was still able to detect upregulation of these 

transcripts by qPCR in the total RNA population following LTP induction. This suggests that the 

capacity for transcriptional regulation did not reach a ceiling from slice-induced injury. This 
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raises questions about the biological effect of transcriptional upregulation following LTP 

induction; given that there is a > 20-fold increase in c-Fos following slicing even after 2 hours of 

rest, and there is a ~4-fold increase above that following LTP induction, this would suggest that 

there is an 80-fold upregulation of c-Fos in an LTP-stimulated slice compared to unstimulated, 

uncut hippocampus. It would be interesting to test whether different recovery times, which 

would result in different levels of slicing-induced transcriptional upregulation, affected the 

degree of upregulation of immediate early genes following LTP induction. 

 In the experiments testing the effect of electrical induction of LTP on gene expression, 

excitatory post-synaptic potentials (EPSPs) were only measured for 15 minutes post-stimulation 

for each mini-slice and served as a proxy for measuring persistent LTP. EPSP measurements for 

the full 60 minutes post-induction would have been experimentally intractable, as each 

experiment required ~15 slices. 

 Even despite the fact that the mini-slices for electrical stimulation only contained CA1—

the site of LTP induction—while the cLTP mini-slices contained both CA3 and CA1, I detected 

a higher magnitude of differential expression by cLTP. This difference in magnitude detection is 

likely due to two factors. 1) Unlike cLTP induction where every synapse is potentiated, the 

electrical stimulation is limited by the dimensions of the stimulating electrode; the electrode I 

used may not have been able to stimulate every single Schaffer collateral fiber. 2) Despite the 

shared molecular pathways from cLTP and electrical LTP, the activation of signaling pathways 

may be greater by cLTP than by electrical stimulation, resulting in more robust changes. Further 

experiments examining the upregulation of activity markers in individual cells and counting the 
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fraction of activated cells over non-activated cells following these two LTP protocols would 

begin to separate the contribution from these two factors. 

 Age-related decline in hippocampal memory and plasticity is a well-established 

observation36. However, the ages tested in these experiments are younger than the age of animals 

where most age-related effects have been observed. The most striking effects at the level of both 

LTP induction and memory have been shown to occur starting at 1.5-2 years of age or older37,38, 

whereas these experiments demonstrated a significantly decreased magnitude of gene expression 

of immediate early genes at even 10.5 months of age. Interestingly, previous studies have shown 

that the receptors and ion channels underlying LTP change with age. One of the basic 

requirements for LTP in younger animals is signaling through activation of NMDA receptors39, 

but older animals can display normal levels of LTP induction through standard induction 

protocols despite requiring minimal NMDA receptor activation40. Instead, voltage-gated Ca2+ 

channels are upregulated in older animals41 and have a larger role in LTP of aged mice40. These 

changes in the requirements for LTP likely underlie the differences I observed at a gene 

expression level between younger and older mice. It remains unclear whether the cLTP protocol 

used in these experiments would elicit the same degree of LTP as in younger animals (which 

could explain differences in differential gene expression magnitude), or whether LTP is 

faithfully induced despite the smaller changes in gene expression. 

Concluding remarks 

 The variables tested here represent only a small fraction of the possible variables that 

affect gene expression following LTP in acute hippocampal slices. These variables were selected 

based on the assumption that they may have a significant impact on differential gene expression. 
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In theory, it would be possible to further test the effects of hundreds of other variables on gene 

expression during LTP induction in acute hippocampal slices and strenuously control for all of 

the ones that have an effect. Results from such a tightly-controlled system would be highly-

reproducible and contain high signal-to-noise, but would also risk becoming biologically-

meaningless. In practice, few studies are ever at risk for having too many controlled variables, or 

for having too detectable of a signal. However, in principle, this serves as a reminder that 

reproducibility and signal-to-noise are but some considerations—albeit important 

considerations—in designing experiments and interpreting scientific results. 

Materials and Methods 

Generation of RiboTag x Camk2a-Cre mice 

Both RiboTag and T29/Camk2α-Cre mice were purchased from Jackson Laboratories 

(RRID:IMSR_JAX:011029, RRID:IMSR_JAX:005359). 8-12 week old Ribotag x Camk2α-Cre 

double heterozygotes were used to prepare hippocampal mini-slices. In the experiments with 

older-aged animals, 10.5-12 month old animals were used. 

CA1 and CA3/CA1 mini-slice preparation 

400 µm thick hippocampal CA3/CA1 mini-slices were prepared from hippocampi of RT x 

Camk2α-cre double heterozygotes. The DG was microdissected following slicing for CA3/CA1 

mini-slices while both CA3 and DG were microdissected for CA1 mini-slices. Mini-slices were 

allowed to recover for 2 hours at 30°C in interface-type chambers with oxygenated (95% O2/5% 

CO2) artificial cerebrospinal fluid (ACSF) containing 124 mM NaCl, 4 mM KCl, 25 mM 

NaHCO3, 1 mM NaH2PO4, 2 mM CaCl2, 1.2 mM MgSO4, and 10 mM glucose. 
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For slice-induced injury time point experiments, dissected but unsliced hippocampus was snap 

frozen in dry ice, while slices were allowed to recover on an interface chamber for 30 min, 60 

min, or 120 min following slicing. Slices were then snap frozen and protein was purified using 

RIPA buffer (150 mM sodium chloride, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 

mM Tris) supplemented with protease and phosphatase inhibitors (Roche cOmplete protease 

inhibitor tablet and phosSTOP tablets). 

Immunoblotting of ERK1/2 and eIF4E following slicing 

Protein levels for each sample was quantitated using a BCA assay (BioRad), and ~20 μg was 

loaded onto SDS/PAGE gels containing 4% and 12% acrylamide for stacking and resolving gels 

respectively. Proteins were transferred to 0.2 μm nitrocellulose membranes using standard 

procedures. Membranes were blocked using Odyssey blocking buffer (LI-COR) for 1 hour and 

then incubated overnight in blocking buffer + antibody at 4oC. Tris-buffered saline containing 

0.05% Tween-20 (TBST) was used to wash antibody incubation for 3x 5 minutes. Fluorescent 

secondary antibody was incubated for 2-4 hours at room temperature, followed by another 3x 5 

minute TBST wash. Immunoblots were imaged using an Odyssey scanner (LI-COR) and images 

were analyzed using Image Studio Software (LI-COR). Fluorescence intensities were first 

normalized against Tuj1 intensity for each sample before comparing between slice time-point 

and unsliced. 

Primary antibodies used were: Rabbit anti ERK1/2 (1:1000, CST #9102), Mouse anti p-ERK1/2 

(1:1000, CST # 9106S), Rabbit anti eIF4E (1:1000, CST # 9742S), Rabbit anti p-eIF4E (1:1000, 

CST # 9741), Mouse anti Tuj1 primary antibody (1:2000, MMS-435P). Secondary antibodies 
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used were from LI-COR: IRDye 800CW Goat anti Mouse (LI-COR #926-32210), IRDye 680LT 

Goat anti Rabbit (LI-COR #926-68021). 

Electrical and chemical LTP induction protocols 

For electrical LTP induction, mini-slices were allowed to recover for 2 hours following slicing. 

Field excitatory postsynaptic potentials (fEPSPs) were evoked by stimulating Schaffer Collateral 

fibers and recorded in stratum radiatum of the CA1 region using ACSF-filled glass 

microelectrodes. The maximum fEPSP was first calculated, with all subsequent stimulation at 

half-max (usually ~5 mV). A baseline of 5-10 minutes was first established before stimulating 

with 2x100 Hz (2 trains of 100 Hz stimulation for 1 second, 10 seconds apart) to induce LTP. 

fEPSPs were recorded for 15 minutes following stimulation to ensure potentiation. pClamp 10 

(Molecular Devices) was used to analyze the recordings. Slices were then frozen at 60 min post-

induction for RNA purification. 

For chemical LTP induction, mini-slices were submerged in 50 µM forskolin (in normal ACSF 

containing 0.2% DMSO from addition of forskolin) for 5 minutes, followed by 30 mM KCl/10 

mM Ca2+/50 µM forskolin in 0 Mg2+ ACSF for 5 minutes. Control solution contained 0.2% 

DMSO in normal ACSF for 10 minutes. Slices were perfused with normal ACSF after LTP 

induction, with time 0 starting immediately after applying the K+/Ca2+/forskolin solution. Slices 

were snap frozen in crushed dry ice at the specified time points, and stored at -80°C until RNA 

purification. 

Immunoprecipitation (IP) and RNA purification of ribosome-loaded/total RNA 

populations 
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Frozen slices were homogenized using a pestle in IP buffer which contained 50 mM Tris-HCl pH 

7.4, 100 mM KCl, 12 mM MgCl2, 1% NP-40, 1 mM DTT, 200 U/mL Protector RNAse inhibitor 

(Roche), 1 mg/mL heparin, 100 µg/mL cycloheximide, cOmplete protease inhibitor tablet 

(Roche). Pre-conjugated HA beads (EZview Red Anti-HA Affinity Gel, Sigma, 

RRID:AB_10109562) were washed twice with IP buffer before use. After homogenization, the 

homogenate was centrifuged twice at 10,000x g at 4°C. 1/10 of the homogenate at this step was 

immediately placed into Trizol (Invitrogen) for total RNA extraction. The remaining homogenate 

was incubated with washed HA beads overnight at 4°C. The following day the beads were 

washed 3x in a high salt buffer composed of 50 mM Tris, 300 mM KCl, 12 mM MgCl2, 1% NP-

40, 1 mM DTT, and 100 µg/mL cycloheximide. RNA was eluted from the beads using 350 µL 

Buffer RLT + BME supplementation from the RNeasy Micro kit (Qiagen). Eluted IP RNA was 

column purified according to the kit protocol. Total RNA was purified through a combined 

Trizol and RNeasy kit protocol: after the spin gradient step in the Trizol purification, the aqueous 

layer was taken and mixed 1:1 with 100% EtOH and purified on a spin column. RNA 

quantification was done with the Qubit RNA HS assay (Thermo Scientific). 

Quantitative PCR for immediate early-gene quantitation following LTP induction 

SuperScript III with random hexamer primers (Invitrogen) was used to reverse-transcribe 20-50 

ng of TRAP or total RNA for basal and LTP samples. Technical triplicate reactions for each 

primer set using SYBR Green PCR Master Mix (Applied Biosystems) were prepared, with the 

cDNA being evenly divided into each reaction. Normalization of LTP and basal Ct values 

against Hprt1 was done before comparing fold-change of activity-dependent transcripts through 

relative Ct values. Basal/LTP samples where Hprt1 values were off by more than 0.75 Ct were 
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not considered. Some primer sequences were obtained from PrimerBank 

(http://pga.mgh.harvard.edu/primerbank) while others were designed to span exon-exon 

junctions. 

Figure legends 

Figure 2-1. Time course of slice-induced injury and recovery measured through phosphorylation 

of MAPK and eIF4E. a) Phosphorylated levels of MAPK and eIF4E over time for three samples. 

Total signal intensity of MAPK and eIF4E levels were first normalized to TUJ1 levels for each 

sample/lane. Ratios of phosphorylated MAPK and eIF4E over total levels of MAPK and eIF4E 

were then calculated. Ratios at each time point were then normalized to the unsliced 0 minute 

time point. b) Representative immunoblots of p-MAPK and total MAPK (left), and p-eIF4E and 

total eIF4E (right). 

Figure 2-2. Electrical and chemical LTP induction paradigms induce different magnitudes of 

upregulation of immediate-early genes. a) TRAP and total RNA changes at 60 minutes following 

2x100 Hz stimulation of CA1 mini-slices. qPCR was carried out for transcripts at 60 min post-

LTP and at 60 min in a time-matched DMSO-treated control; LTP levels were normalized to the 

basal control. b) TRAP RNA changes at 15 minutes following chemical LTP stimulation of 

CA3/CA1 mini-slices. c) TRAP RNA changes at 30, 60, and 120 minutes following chemical 

LTP stimulation of CA3/CA1 mini-slices. d) Total RNA changes at 30, 60, and 120 minutes 

following chemical LTP stimulation of CA3/CA1 mini-slices. All samples in a-d) were first 

normalized to Hprt1, an activity-independent transcript, before comparisons of basal and LTP. 

Error bars = 95% CI 
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Figure 2-3. Arc and c-Fos upregulation magnitude is significantly smaller in older mice at 60 

minutes following cLTP induction. CA3/CA1 mini-slices from young (8-12 week) and old (10.5-

12 month) mice were treated with cLTP and TRAP RNA was purified at 60 min post-LTP 

induction. Fold-change was calculated between Arc and c-Fos of LTP and basal time-matched 

controls, with normalization to Hprt1 first. Error bars = 95% CI. * = p < 0.05 
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Chapter 3 

Mapping Gene Expression in Excitatory Neurons During Hippocampal Late-Phase Long-Term 
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Introduction 

 Synaptic plasticity, the experience-dependent remodeling of neuronal connectivity, 

provides a means of storing memories in the brain42. Long-term potentiation (LTP) of 

hippocampal synapses, an activity-dependent, long-lasting increase in synaptic strength, provides 

an experimental model for investigating the cellular and molecular mechanisms underlying the 

formation of long-term hippocampal-dependent memories43. The late phase of LTP (L-LTP) can 

be differentiated from early LTP (E-LTP) by its requirement for RNA and protein synthesis 44,45. 

Previous studies have shown that pharmacological inhibition of transcription and translation 

within an early time window (< ~2 hours) after induction of LTP inhibits the persistence of LTP, 

but inhibition of transcription and translation at a later time point (> ~2 hours) has no effect on 

the persistence of L-LTP18,45–47. These observations are consistent with the idea that a critical 

early temporal window of new transcription and translation underlies the persistence of stimulus-

induced plasticity and memory48. Many activity-dependent and LTP-induced transcripts have 

been identified through candidate and whole-transcriptome approaches, with demonstrated 

functions for some of these genes during both LTP and memory49–51. In this study, we profiled 

the temporal pattern of gene expression specifically within excitatory pyramidal neurons 

following induction of Schaffer collateral (CA3 to CA1) hippocampal LTP. 

 The long-lasting changes in synaptic strength that occur after a learning event require the 

coordinated effort of multiple cell populations. Thus, excitatory neurons, astrocytes, and 

inhibitory neurons have all been shown to contribute to hippocampal LTP52,53. Single-cell RNA 

sequencing of individual neurons54 and cell-type specific RNA-seq55 have revealed large 

differences in the expression of transcripts between cell types within the brain. Previous studies 
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of hippocampal gene expression following LTP induction56–60 have not, however, differentiated 

between changes occurring in one cell population versus another. The presence of multiple cell 

types in the hippocampus diminishes the true extent of differential expression following LTP 

induction, as many transcripts are expressed in multiple cell types, yet may be regulated only in 

subsets of these cells. New methodologies have been developed in recent years for cell-type 

specific analysis of genome-wide changes. These include the promoter-dependent tagging of 

ribosomal proteins with a small protein tag61, which allows for downstream purification of the 

ribosome-associated RNA population within a genetically defined cell population from tissue 

composed of multiple cell types. 

 Here, we take advantage of Translating Ribosome Affinity-Purification Sequencing 

(TRAP-Seq34,62) and transcriptome profiling technologies (RNA-seq) to determine the time 

course of differential expression following LTP induction in a cell-type specific manner. We 

performed TRAP-seq of the ribosome-associated population of RNA purified from excitatory 

neurons in hippocampal CA3/CA1 mini-slices 30, 60, and 120 minutes following chemical 

induction of LTP. We identified 899 differentially-expressed (DE) transcripts by TRAP-seq 

across these time points. We found that upregulated and downregulated transcripts differed in 

their enrichment of biological functions, and that upregulated transcripts had significantly longer 

untranslated regions (UTRs) than downregulated transcripts. Furthermore, we detected an 

enrichment of specific RNA binding protein (RBP) motifs in the 3’ UTRs of upregulated 

transcripts. We found that different ensembles of transcripts were DE at each time point, with 

further temporal profiling of DE transcripts revealing clusters of temporally-regulated transcripts 

that were most prominently enriched in transcription-associated genes. While there was some 

overlap in the DE transcripts identified at each time point by TRAP-seq (from pyramidal 
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neurons) and RNA-seq (from all cell types), TRAP-seq detected both greater numbers of DE 

transcripts and greater magnitudes of differential expression at all time points. Transcripts DE 

exclusively in TRAP-seq were enriched for cell adhesion and cytoskeletal genes, while 

transcripts DE exclusively in RNA-seq were enriched for cytokine genes. Bioinformatic analyses 

of the RNA-seq DE transcripts identified some DE transcripts that were enriched in microglial 

and astrocytic cell types. Taken together, our results highlight the complexity and diversity of 

gene expression that occurs following LTP induction, and underscore the importance of 

considering both cell-type specificity and time after stimulation in determining the program of 

gene expression that gives rise to long-lasting brain plasticity and memory. 

 

Results 

 To monitor the temporal pattern of gene expression within excitatory pyramidal neurons 

following induction of Schaffer collateral LTP, we prepared acute hippocampal mini-slices 

(which only contain the CA3/CA1 region) from adult RiboTag mice34 (Fig. 3-1a). The RiboTag 

mouse expresses floxed HA-tagged ribosomal protein L22 (HA-L22) in cells expressing Cre 

recombinase, which allows for immunoprecipitation of ribosome-associated transcripts in a cell-

type specific manner34. We crossed the RiboTag mouse line with a transgenic mouse line 

expressing Camk2α-cre33, resulting in endogenous levels of expression of HA-tagged ribosomes 

exclusively within excitatory pyramidal neurons of our hippocampal mini-slices (Fig. 3-1b). We 

first tested the cell-type specificity of HA-L22 expression by immunoprecipitating ribosome-

associated RNAs from hippocampal tissue and measuring the expression of cell-type specific 

transcripts by quantitative RT-PCR (qPCR). As shown in Figure 1c, the excitatory neuron-

specific transcripts Arc and Camk2a were present in the affinity-purified RNA, but the inhibitory 



31 
 

neuron-specific transcript Gad1, astrocyte-specific transcript Gfap, and oligodendrocyte-specific 

transcript Cnpase were heavily de-enriched. These results indicated that TRAP-seq from 

hippocampal slices from these mice would be enriched for transcripts expressed in excitatory 

neurons. 

 To optimize identification of activity-dependent changes in gene expression, we also 

systematically reduced the variables in our experimental protocol. We first determined the 

optimal recovery time following slice preparation (2 hours) for induction of LTP, using qPCR to 

monitor injury-induced up-regulation of a set of positive control immediate early transcripts (Arc 

and c-Fos) and phosphorylation levels of ERK1/2 and eIF4E (Fig. 3-S1a). We next examined the 

effect of age on stimulus-induced gene expression, and found that the magnitude of LTP-induced 

upregulation of Arc and c-Fos expression was significantly greater in 2 month-old mice than in 

10.5 to 12-month old mice (Fig. 3-S1b). While the possibility of age-related decline in activity-

dependent gene regulation is of great interest for future studies, we chose to focus our efforts in 

this study on the LTP induced changes in ~2.5 month old mice to maximize signal to noise in 

RNA-seq and TRAP-seq experiments.  

 The use of mini-slices that only contained CA3/CA2/CA1 regions allowed us to identify 

changes in gene expression occurring specifically within the circuit undergoing plasticity. We 

tested a variety of stimulation paradigms to induce L-LTP of CA3 to CA1 synapses. We found 

that electrical stimulation of the CA3-CA1 synapses using 2x100Hz produced significantly lower 

amplitude changes in Arc and c-Fos expression as measured by qPCR than did chemical 

induction of LTP (data not shown). We chose a cLTP induction protocol that has been shown to 

be transcription- and translation-dependent (modified from Chotiner et al., 2003; see Materials 
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and Methods) and that produces LTP by triggering bursting of CA3 neurons, and thus involves 

synaptic mechanisms of LTP induction since removal of CA3 prevents LTP induction31. Slices 

were prepared from 10.5-12 week-old RiboTag mice. Immunohistochemistry using anti-HA 

antibodies revealed that ~95% of pyramidal neurons within CA1 stratum pyramidale expressed 

HA-tagged L22 (data not shown). Slices were allowed to recover for 2 hours before stimulation 

with the 10 minute cLTP induction protocol. Perfusion with artificial cerebrospinal fluid was 

then resumed for 30, 60 or 120 minutes before the slices were snap frozen for RNA 

immunoprecipitation/purification, library preparation, and RNA sequencing. We isolated both 

ribosome-associated RNA and total RNA from each set of mini-slices, and performed TRAP-seq 

to monitor changes in RNA association with ribosomes specifically in excitatory pyramidal 

neurons and total RNA sequencing (RNA-seq) to monitor changes in the whole mini-slice 

transcriptome. 

 

TRAP-seq: LTP-induced changes in ribosome-associated transcripts in CA3 and CA1 

pyramidal neurons 

 TRAP-seq results from the three biological replicates per time point were highly 

correlated (Pearson correlation coefficients of 0.99 for all time points; Fig. 3-S2). We assessed 

differential expression of transcripts using the Bioconductor package edgeR63. We considered a 

transcript significantly DE if the false discovery rate (FDR) was < 0.1 and absolute log2 fold 

change was > 0.4. We validated both differential expression and the fold-change cut-off by 

qPCR for 12 genes in an independently-generated biological replicate for the indicated time 

points (Fig. 3-S3). The number of DE transcripts identified by TRAP-seq was: 90 at 30 minutes, 
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353 at 60 minutes, and 592 at 120 minutes (Fig. 3-2a, Table S1), indicating a gradual increase in 

DE transcript numbers over time following LTP induction. A large number and fraction of DE 

transcripts were downregulated at the two later time points (20%, 50% and 40% at 30, 60, and 

120 minutes respectively; Fig. 3-2a). Comparison of the magnitude of the fold-change of 

transcripts over time revealed that many individual transcripts underwent a time-dependent 

increase in amplitude of down- or upregulation (more intense green and red signals in the heat 

map in Fig. 3-2b). 

 To better understand the biological implications of the directionality of differential 

expression, we examined the upregulated and downregulated transcripts showing the most 

significant changes by FDR. The most significant upregulated and downregulated transcripts 

encoded genes involved in diverse and distinct cellular and molecular processes, with 

upregulated transcripts encoding transcription factors and phosphatases, and downregulated 

transcripts encoding G protein coupled receptors, kinases, and metabolic pathway enzymes (Fig. 

3-2c). To further explore the possibility that transcripts whose association with ribosomes was 

upregulated and downregulated following LTP induction are functionally distinct, we tested for 

enrichment of functional gene pathways using Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway enrichment analysis (Table S2). We found that upregulated transcripts were 

enriched for genes involved in MAP kinase signaling, extracellular matrix interactions, cell 

adhesion, cytoskeletal regulation and RNA degradation (Fig. 3-3a, top), whereas downregulated 

transcripts were enriched for genes involved in metabolic pathways, neuroactive ligand-receptor 

interactions and calcium signaling (Fig. 3-3a, bottom).  
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 We next wanted to understand whether the differential expression of these groups of 

ribosome-associated transcripts could be in part explained by differences within key regulatory 

elements of the transcripts. Direct binding of specific classes of RNA binding proteins (RBP) in 

the 5’ and 3’ untranslated regions (UTRs) of mRNAs has been shown to regulate translation of 

transcripts64,65. Both the 5’ and 3’ UTRs of mRNAs are enriched for RBP binding sites compared 

to the coding region66, with longer UTRs likely containing greater numbers of binding sites for 

RBPs. We first asked whether UTR length was correlated with down or upregulated transcripts 

by comparing the lengths of UTRs between transcripts that were significantly down- or 

upregulated. We detected significantly longer 5’ and 3’ UTRs in upregulated transcripts as 

compared to downregulated transcripts (Fig. 3-3b). 5’ and 3’ UTRs were also significantly 

longer for upregulated transcripts as compared to previously-published brain-expressed transcript 

5’ and 3’ UTRs (from Kang et al., 2011; see Materials and Methods). Since a direct interaction 

between RBPs, ribosomes and the 3’ UTRs of mRNAs has previously been shown to affect 

translation of associated transcripts following neuronal depolarization68, we sought to determine 

whether specific RBPs play a role in the regulation of gene expression following LTP induction. 

To address this, we used a previously-published compendium of RBP motifs69 to test whether 

there was enrichment of specific RBP motifs in the 3’ UTRs of upregulated and downregulated 

transcripts compared to brain-expressed transcripts. As shown in Fig. 3-3c and Table S3, we 

found that U-rich motifs were significantly overrepresented in the 3’UTRs of upregulated 

transcripts, as were the binding motifs for several RBPs known to regulate RNA metabolism in 

neurons, including CPEB2 and 4 and Pum (Darnell and Richter 2012), Hu/Elavl proteins (Lee, 

Lee and Kaang, 2015), and Fus (Ling, Polymenidou and Cleveland 2013). Binding motifs for 

only two RNA binding proteins, Vts1p (yeast, mammalian Smaug or Samd4) and Fmr1, were 
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underrepresented in the 3’ UTRs of upregulated transcripts. A smaller number of significantly 

overrepresented motifs were present in downregulated transcripts (Table S3). Many of the RBPs 

in Table S3 were expressed within excitatory neurons from our TRAP-seq data, suggesting that 

RBP binding may serve as one mechanism of regulating transcript expression following LTP 

induction. 

 Our finding that the number of DE transcripts increased over time (Fig. 3-2a) led us to 

more carefully examine the temporal characteristics of differential expression following LTP 

induction. Although the general direction of change was consistent across time for most 

transcripts (Fig. 3-2b), there was only marginal overlap of significant DE transcripts between 

time points (Fig. 3-4a). Despite significant overlap of DE transcripts between time points (p < 

1.0-30 for paired time point overlap), the proportion of exclusively DE transcripts at their 

respective time points was 48% percent of DE transcripts at 30 minutes, 73% of DE at 60 

minutes, and 83% of DE transcripts at 120 min. To more rigorously characterize the temporal 

dynamics of differential expression following LTP induction, we utilized Short Term Expression 

Miner (STEM70) to group DE transcripts based on the similarity of their temporal expression 

patterns. Previous studies have shown that temporally co-regulated transcripts encode genes with 

related biological functions71,72; this approach would therefore increase the likelihood of 

detecting biologically significant processes related to LTP. STEM analysis revealed that most 

transcripts clustered into a temporal profile representing a general upregulation over time (cluster 

1, Fig. 3-4b, Table S4). The other two clusters contained transcripts that were largely 

downregulated over time (clusters 2 and 3, Fig. 3-4b, Table S4). We next tested for functional 

enrichment within the groups of transcripts associated with each cluster. To further increase the 

specificity of this analysis for processes related to LTP, we utilized a background gene list 
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derived from our TRAP-seq data that included transcripts with a minimal expression level of an 

average of 20 normalized reads across all samples. Gene ontology (GO) analysis revealed that 

cluster 1 was heavily enriched for processes involved in transcription and transcriptional 

regulation (Fig. 3-4c, Table S5), while GO analysis of clusters 2 and 3 revealed no significant 

enrichment. Genes within a selected enriched transcriptional regulation GO category (Fig. 3-4d) 

demonstrated a clear increase in log2 fold change over time; only a few of these transcription 

factors have been previously implicated in plasticity. Importantly, some of these genes fell below 

our significance criteria at individual time points but are included within significant STEM 

profiles, confirming that analysis of DE at multiple time points is more sensitive than single time 

point experiments in identifying co-regulated transcripts sharing biological functions. 

 In addition to TRAP-seq, we also purified and sequenced total RNA (composed of RNA 

from all cell types) from the same set of mini-slice homogenates used to generate RNA for 

TRAP-seq, allowing a direct comparison between the two techniques from a single biological 

sample (Table S6). Overall, more DE transcripts were identified by TRAP-seq compared to 

RNA-seq at every time point following LTP induction (Fig. 3-5a), though the time-dependent 

increase in DE transcript numbers and magnitude of differential expression we observed by 

TRAP-seq was also observed by RNA-seq (Fig. 3-5a, Fig. 3-S4). There was significant overlap 

of DE transcripts in TRAP-seq versus RNA-seq at each time point (p < 1.0-20 for overlap at each 

time point); however, the overlap was modest, with a smaller fraction of TRAP-seq DE 

transcripts being detected by RNA-seq at all time points. Another difference we observed was 

that unlike TRAP-seq, a majority of DE transcripts detected by RNA-seq at earlier time points 

was also DE at later time points (Fig. 3-S4, Fig. 3-4a). Differences in fold-change between RNA-

seq and TRAP-seq, and between time points, were validated by qPCR of a separate biological 
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replicate for both larger and smaller fold-change magnitudes close to our fold-change cutoff (Fig. 

3-S3). 

 When collapsed across all time points, a total of 740 transcripts were DE only by TRAP-

seq, while 176 transcripts were DE only by RNA-seq and 159 were DE in both (Fig. 3-5b, Table 

S7). This indicated that only a subset of TRAP-seq and RNA-seq DE transcripts were shared, 

and that each technique identified different sets of transcripts. Interestingly, the three categories 

of genes—DE in both TRAP-seq and RNA-seq, DE in only TRAP-seq, or DE in only RNA-

seq—were enriched in distinct biological functions. DE transcripts in both TRAP-seq and RNA-

seq were enriched for transcription associated genes (Fig. 3-S5), DE transcripts in only RNA-seq 

were enriched for cytokine signaling pathways (Fig. 3-S5), while DE transcripts in only TRAP-

seq were enriched for cell adhesion and cytoskeletal genes (Fig. 3-5c). Of note, members of the 

cadherin and protocadherin families as well as members of several different classes of 

microtubule-binding and motor proteins (e.g. MAP2 and MAP1a/1b, Myo6 and Dnah2) were DE 

only within the TRAP-seq data. These families of genes are involved in biological processes 

important in LTP73,74, and certain DE transcripts in these enriched categories have been shown to 

be critical for excitatory transmission and LTP75,76.  

 Interestingly, transcripts known to be neuron-specific, such as Map2 and Map1b, were 

DE by TRAP-seq but virtually unchanged by RNA-seq. This raised the possibility that 

transcripts could be regulated differently at ribosome-associated and total RNA steady states; 

specifically, changes in the ribosome-associated population would not necessarily require 

corresponding changes in the total RNA concentration. To address this possibility using a more 

unbiased approach, we used a bioinformatics approach to identify neuron-enriched transcripts by 
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looking for transcripts whose basal expression was overrepresented by TRAP-seq as compared to 

RNA-seq (see Materials and Methods for details). We  confirmed the neuron-enriched 

expression of these transcripts using the Allen Brain Atlas (http://mouse.brain-map.org/); of the 

30 DE neuron-enriched transcripts that had detectable expression by the Allen Brain Atlas, only 

1 was excluded for being non neuron-enriched. We then compared differential expression of this 

set of transcripts in the TRAP-seq and RNA-seq data. From this, we identified 16 transcripts that 

were DE at comparable levels by both RNA-seq and TRAP-seq (mainly comprised of 

immediate-early genes that are rapidly transcriptionally/translationally upregulated49) and 43 

transcripts that were only DE by TRAP-seq (Fig. 3-6, Table S8). Taken together, the magnitude 

of differential expression of these transcripts by TRAP-seq was significantly greater than RNA-

seq, (Fig. 3-6, p < 0.0001; Wilcoxon signed rank test). This greater magnitude of differential 

expression was observed for both upregulated and downregulated transcripts.  

 Given that specific transcription factors have been shown to coordinate the transcription 

of multiple important transcripts for LTP and memory47, we next sought to determine whether 

DE transcripts identified through RNA-seq were coordinately regulated by distinct transcription 

factors. Using two separate bioinformatic approaches to assess enrichment of known targets or 

binding motif sequence enrichment—oPOSSUM-377 (Fig. S7a, Table S9A) and TRANSFAC78 

(Table S9B)—we identified CREB1 as the transcription factor with the most enriched binding 

sites, consistent with previous literature on the critical role of CREB1-mediated transcription 

following LTP induction79. Other transcription factors with highly enriched targets within our 

DE transcripts included STAT1 and EGR1, which have previously been implicated in 

plasticity80,81, and NFAT1 and MZF1 (Table S9A,B), transcription factors that have not been 

http://mouse.brain-map.org/)
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reported to be involved in neuronal plasticity but that are expressed in hippocampal tissue as 

determined by our RNA-seq data. 

To our surprise, the GO categories of DE transcripts identified only through RNA-seq 

included processes not generally associated with neurons (Fig. 3-S5). Specifically, we detected 

an enrichment of biological processes involved in immune functions, such as those involved in 

cytokine signaling pathways. This raised the possibility that the induction of LTP triggered DE 

of transcripts not only in neurons, but also in other cell types. To explore this possibility, we 

utilized published transcriptional profiles from individual cell types in the mouse brain55 to 

generate a list of transcripts that were enriched in neurons, astrocytes, myelinating 

oligodendrocytes, or microglia (see methods). We then determined the number of DE transcripts 

that were enriched in each cell type (Fig. 3-7b, Table S10). While most DE genes could not be 

attributed to a specific cell type, microglia had the highest number of cell-enriched DE 

transcripts (46 transcripts), including chemokine ligands and receptors. To further validate the 

cell-type specificity of gene expression following LTP induction, we stained for the significantly 

DE microglial gene Il1b by immunohistochemistry at 120 minutes post-LTP induction and 

detected significantly increased immunoreactivity of Il1b protein in microglia following LTP 

induction (Fig. 3-7c,d). These results suggest that a portion of the observed changes in total RNA 

were due to LTP-induced changes in the transcriptome of specific non-neuronal cell types. Taken 

together, these results underscore the need for cell-type specific studies of gene expression to 

understand the changes in gene expression that give rise to persistent forms of learning-related 

plasticity.  

Discussion 
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 Decades of research have aimed to identify the specific activity-dependent genes whose 

expression gives rise to long-term plasticity and long-term memory. Many activity-dependent 

immediate early genes such as Arc, c-Fos, and Egr1, were initially identified using subtraction-

cloning approaches comparing stimulated versus unstimulated hippocampi82. The development 

of microarray and next-generation sequencing technologies has permitted systematic and 

quantitative genome-wide analysis of the changes in gene expression that occur at various time 

points following the induction of LTP56–58,60. Our intent in this study was to use sensitive, 

genome-wide approaches to optimize the discovery of activity-dependent genes and to thereby 

provide a comprehensive picture of the changes in gene expression that occur in excitatory 

neurons following induction of plasticity. We utilized a cLTP induction protocol to ensure that 

the maximal number of synapses would be potentiated for downstream gene expression analysis, 

and used CA3/CA1 mini-slices to focus our transcriptome analyses specifically on the pathway 

undergoing plasticity. Cell-type specific TRAP-seq was used to focus on gene regulation 

specifically within excitatory neurons. Although analysis of gene expression following learning 

in the behaving animal might be considered more relevant to identifying the genes whose 

expression lead to long-term memory formation, the sparse encoding of memory within neural 

circuits83,84 reduces signal to noise and thus impedes the identification of activity-dependent 

alterations in gene expression. For example, we identified a total of 335 DE transcripts by RNA-

seq across all time points (Table S6), but a recent study utilizing RNA-seq to assay gene 

expression in hippocampus following fear conditioning 57 only identified 112 DE transcripts with 

more time points included and even less stringent criteria for differential expression than our 

study. In another recent publication using TRAP-seq to identify changes in ribosome-association 

of mRNAs in pyramidal cell dendrites following contextual fear conditioning, the variation 
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between the biological replicates within the control and fear-conditioned animals was as large as 

the variation between the control and fear-conditioned animals (Ainsley et al., 2014; also E.M. 

Schuman comment in PubMed Comments). We believe that using TRAP-seq to systematically 

detect DE genes following LTP induction in a reduced slice preparation provides a fruitful first 

step in identifying specific genes that can subsequently be studied during learning and memory 

in the animal.  

Temporal regulation of gene expression following LTP induction 

 Studies using transcriptional and translational inhibitors have given rise to the idea that 

changes in gene expression only during the first two hours following stimulation are critical to 

the persistence of hippocampal LTP (Fonseca et al., 2006; Frey et al., 1988; Nguyen and Kandel, 

1997; Nguyen et al., 1994). The results of our TRAP-seq and RNA-seq experiments call this idea 

into question. We observe a time-dependent increases in the number of DE transcripts, with the 

greatest number of DE transcripts detected at 120 minutes, a time point when LTP persistence 

has been reported to lose sensitivity to translational and transcriptional inhibitors. Our results add 

to a growing list of studies17,86–89 that challenge the idea of a relatively short and early time 

window in which gene expression is exclusively occurring. Transcripts DE only at 120 minutes 

could serve as novel markers for late-phase LTP, as current proxies for synaptic plasticity such 

as c-Fos and Arc are transcribed immediately following non-LTP inducing levels of activity, and 

are not always associated with long-lasting plasticity and memory (unpublished data, Kim et al., 

2010). Further studies examining the temporal patterns of gene expression during even later time 

points may provide greater insights into the temporal dependence of gene expression following 

LTP and learning. 
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 One unexpected aspect of temporal regulation that emerged from our TRAP-seq data was 

that a relatively small (but significant) fraction of transcripts was DE across multiple time points 

(Fig. 3-4a). This finding indicates that regulated ribosome association of mRNAs at later time 

points is not simply a continuation of regulated ribosome association at earlier time points, but 

rather that there are discrete rounds of differential ribosome association of transcripts following 

LTP induction. In contrast, RNA-seq showed a much greater proportion of temporal overlap 

between DE transcripts than TRAP-seq (Fig 3-4a, Fig. 3-S4), consistent with a more continuous 

pattern of transcriptional than translational regulation following LTP stimulation. This may be 

expected given the more dynamic kinetics of ribosome-association compared to total RNA 

regulation. 

Cell-type specificity of gene regulation underlying LTP 

 In this study, we measured differential expression occurring specifically within excitatory 

neurons following LTP induction using TRAP-seq, which revealed a large number of 

upregulated and downregulated DE transcripts that were not detected by RNA-seq from all cell 

types (Fig. 3-2, Fig. 3-5a). This difference can in part be explained by differences in cell-type 

composition, with RNA-seq detecting fewer DE transcripts due to a dilution effect from other 

cell types. For example, transcripts such as c-Fos are DE in neurons but are also highly 

expressed within astrocytes91 (and unpublished data), which would diminish the detectability of 

DE by RNA-seq relative to excitatory neuron-specific TRAP-seq. It is unclear whether DE of 

transcripts expressed within neurons also occurs within other cell types. Interestingly, our 

bioinformatic identification of cell-type enriched transcripts that were DE by RNA-seq suggests 

that differential expression occurs in non-neuronal cell types following LTP induction, though 
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most DE transcripts could not be ascribed to a single cell type using this approach. We detected 

46 microglia and 26 astrocyte-enriched transcripts that were differentially expressed in our RNA-

seq experiments, and demonstrated a corresponding microglial protein level expression change 

for the microglial-enriched transcript Il1b (Fig. 3-7b-d). Astrocytic functions have been shown to 

be important for LTP and memory52 and microglia have been shown to regulate activity-

dependent synaptic pruning92. In this context, our findings highlight the importance of analyzing 

gene expression in non-neuronal cell types during forms of synaptic plasticity such as 

hippocampal LTP.   

Gene expression regulation following LTP induction 

 Gene expression is a coordinated process involving multiple layers of regulation, 

including transcriptional and post-transcriptional, with changes in total RNA following LTP 

induction traditionally thought to be required for changes in protein level. RNA-seq measures the 

concentration of total RNA, which reflects transcriptional regulation as well as RNA stability, 

while TRAP-seq measures the concentration of ribosome-associated mRNAs, which reflects not 

only mRNA concentration but also post-transcriptional regulation at the level of ribosome 

association. The difference in 5’ and 3’ UTR lengths between upregulated and downregulated 

transcripts of the ribosome-associated mRNAs, and enrichment of specific RBP motifs within 

their 3’ UTR sequences (Fig. 3-3b,c), provide clues into the types of post-transcriptional 

regulation mechanisms that may underlie the upregulation and downregulation of these 

transcripts. Further analysis taking into consideration RNA secondary structural motifs, which 

are known to play critical roles in regulatory mechanisms such as RBP binding93, will be 
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important for identifying other mechanisms of post-transcriptional regulation following LTP 

induction.  

 We note that the fold-change magnitude of most DE transcripts was modest, with most 

transcripts not changing more than an absolute log2FC of 1. While transcripts undergoing larger 

fold-change differential expression are better targets for some types of downstream experimental 

analyses, and are easier to confirm using less quantitative methodologies, such as 

immunoblotting or immunohistochemistry, DE transcripts with smaller fold-changes may still 

play a critical role in LTP. Smaller fold-changes may in fact be expected for the fine-tuning of 

biological systems, such as during synaptic plasticity, rather than a complete overhaul, such as 

during developmental changes in cell fate. Importantly, despite the low magnitude of fold 

change, differential expression was highly reproducible, not only between biological replicates 

used for RNA-seq and TRAP-seq, but also in the biological replicates used for qPCR 

confirmation (Fig. 3-S2, 3-S3).  

 Local protein synthesis has also been shown to be critical for LTP, which can occur in a 

transcription-independent manner94. A number of the DE transcripts that were identified only by 

TRAP-seq have also previously been shown to be localized to dendrites95 (Table S11), raising 

the possibility that their differential expression occurs at the ribosome-associated level in 

dendrites as well as in cell somata. Thus, the magnitude of differential expression we detected in 

many of these DE transcripts may in fact be changing at greater levels specifically within 

subcellular compartments; this has been demonstrated with translation of Camk2α protein only 

occurring locally within dendrites following stimulation96. We also note that TRAP-seq may also 

incorporate measurements of ribosomal stalling—a mechanism used by FMRP to decrease rates 
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of translation97—which would affect the correlation of TRAP-seq changes and protein level 

changes for some of these transcripts. All of these issues highlight the necessity of better tools to 

dissect the different layers of regulation during LTP. For example, combining TRAP-seq with 

ribosome profiling provides a means of differentiation between ribosome stalling and procession, 

while methods like BONCAT allow for cell-type specific proteomic measurements of activity-

dependent changes in protein expression98.   

 When comparing the differential expression magnitude of neuron-enriched genes, we 

found that DE transcripts had significantly larger fold-change magnitudes at the ribosome-

associated level than the total RNA level. This may result from 1) the faster kinetics of 

ribosome-associated regulation compared to regulation of total RNA steady states; 2) the lower 

basal copy number of ribosome-associated transcript compared to total RNA copies; and/ or 3) 

distinct stimulus-induced post-transcriptional (and transcription-independent) regulation. Indeed, 

the fact that we detected such a large number of downregulated transcripts at all time points by 

TRAP-seq but not by RNA-seq (Fig. 3-2a and Fig. 3-S4) is consistent with the faster kinetics of 

ribosome association (as compared to regulation of total RNA levels). These results suggest that 

neuronal stimulation can regulate transcript translation independently of changes in transcript 

concentration, and focuses attention on activity-dependent translational regulation. This is 

consistent with studies of stimulus-induced gene expression in a homogenous cell population that 

revealed significantly greater changes in polysome-associated RNA than total RNA99. Although 

we were very conservative in our criteria of neuron-enrichment, we cannot fully rule out the 

possibility that there may be expression of these transcripts in non-neuronal cells. To 

systematically test the extent of differential regulation at the total RNA and ribosome-loaded 

level, cell-type specific total RNA analysis is needed for a direct global comparison of the 
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kinetics between the two RNA populations100. This type of analysis will likely require the 

development of new technologies that reduce the amount of starting material required for cell-

type specific RNA-seq. Thus, performing TRAP-seq without amplification required 20 

hippocampal slices per condition per replicate (40 per experiment per replicate), and adding cell-

type specific RNA sequencing using methods such as 4TU labeling (which labels only a fraction 

of RNA), would require an even greater number of animals per replicate, greatly reducing the 

feasibility of these experiments.  

Concluding remarks 

 The design and scope of this study was not to hand-select candidates and assay their 

function in LTP. Previous studies utilizing this approach have proven invaluable in implicating 

different molecules important for LTP, but a unified model of the molecular requirements for 

LTP is lacking23,101. The large degree of time-dependent differential expression of hundreds of 

transcripts encoding genes involved in diverse functions raises questions about the interpretation 

of single-gene studies in understanding mechanisms of LTP and memory. The results presented 

here paint a clear picture of the sprawling complexity of gene regulation, even within only a 

single cell type, following LTP induction. When studying a single gene within this large web of 

interconnected genetic pathways, manipulations of a single gene may have widespread 

consequences—even altering the entire molecular network that is involved in plasticity. Thus, 

experimentation with individual candidates should involve more rigorous follow-up profiling of 

the downstream consequences on gene expression within the cell. Our results would argue that 

detailed, naturalistic studies are necessary to first provide an important molecular blueprint by 

which candidate-based studies can be interpreted. 
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Materials and Methods 

Generation of RiboTag x Camk2a-Cre mice 

Both RiboTag and T29/Camk2α-Cre mice were purchased from Jackson Laboratories 

(RRID:IMSR_JAX:011029, RRID:IMSR_JAX:005359). 8-12 week old Ribotag x Camk2α-Cre 

double heterozygotes were used to prepare hippocampal mini-slices. 

CA3/CA1 mini-slice preparation and cLTP induction protocol 

400 µm thick hippocampal CA3/CA1 mini-slices were prepared from hippocampi of RT x 

Camk2α-cre double heterozygotes. The dentate gyrus was microdissected following slicing and 

mini-slices were allowed to recover for 2 hours at 30°C in interface-type chambers with 

oxygenated (95% O2/5% CO2) ACSF containing 124 mM NaCl, 4 mM KCl, 25 mM NaHCO3, 1 

mM NaH2PO4, 2 mM CaCl2, 1.2 mM MgSO4, and 10 mM glucose. LTP was induced by 

submerging slices in 50 µM forskolin (in normal ACSF containing 0.2% DMSO from addition of 

forskolin) for 5 minutes, followed by 30 mM KCl/10 mM Ca2+/50 µM forskolin in 0 Mg2+ 

ACSF for 5 minutes. Control solution contained 0.2% DMSO in normal ACSF for 10 minutes. 

Slices were perfused with normal ACSF after LTP induction, with time 0 starting immediately 

after applying the K+/Ca2+/forskolin solution. Slices were snap frozen in crushed dry ice at the 

specified time points, and stored at -80°C until RNA purification. 

Immunoprecipitation (IP) and RNA purification of ribosome-loaded/total RNA 

populations 

Frozen slices were homogenized using a pestle in IP buffer which contained 50 mM Tris-HCl pH 

7.4, 100 mM KCl, 12 mM MgCl2, 1% NP-40, 1 mM DTT, 200 U/mL Protector RNAse inhibitor 
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(Roche), 1 mg/mL heparin, 100 µg/mL cycloheximide, cOmplete protease inhibitor tablet 

(Roche). Pre-conjugated HA beads (EZview Red Anti-HA Affinity Gel, Sigma, 

RRID:AB_10109562) were washed twice with IP buffer before use. After homogenization, the 

homogenate was centrifuged twice at 10,000x g at 4°C. 1/10 of the homogenate at this step was 

immediately placed into Trizol (Invitrogen) for total RNA extraction. The remaining homogenate 

was incubated with washed HA beads overnight at 4°C. The following day the beads were 

washed 3x in a high salt buffer composed of 50 mM Tris, 300 mM KCl, 12 mM MgCl2, 1% NP-

40, 1 mM DTT, and 100 µg/mL cycloheximide. RNA was eluted from the beads using 350 µL 

Buffer RLT + BME supplementation from the RNeasy Micro kit (Qiagen). Eluted IP RNA was 

column purified according to the kit protocol. Total RNA was purified through a combined 

Trizol and RNeasy kit protocol: after the spin gradient step in the Trizol purification, the aqueous 

layer was taken and mixed 1:1 with 100% EtOH and purified on a spin column. For each 

biological replicate, four mice were used, with ~20 slices per treatment condition. TRAP 

purification yielded ~200 ng RNA per 20 mini-slices, and total RNA from 1/10 of this 

homogenate yielded ~400 ng RNA. RNA quantification was done with the Qubit RNA HS assay 

(Thermo Scientific). 

Immunohistochemistry of RiboTag x Camk2a-Cre mice 

Hippocampal slices were fixed in 4% PFA for 2 hours at room temperature, rinsed 2x with PBS, 

covered in HistoGel (Thermo Scientific), then paraffin-embedded. 4 µM thick paraffin sections 

were deparaffinized and underwent heat-induced antigen retrieval. Sections were permeabilized 

with 0.1% TX-100 at room temperature for 30 minutes, then blocked in 10% goat serum at room 

temperature for 60 minutes. Slices were incubated with mouse anti-HA antibody (Covance, 
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1:1000, RRID:AB_291263) and rabbit anti-MAP2 (Millipore, 1:2000, RRID:AB_91939) 

overnight at 4°C, and with secondary antibodies (1:2000) at 2 hours at room temperature and 

counterstained with Hoechst (1:1000).  

Rabbit anti-Il1b (Abcam, 1:200, RRID:AB_308765) was used to confirm a microglial DE 

transcript. Images were taken from control- and LTP-treated slices from two animals at the 120 

minute time point, with 3-4 slices per animal per condition. ROIs were drawn around staining 

from cell bodies and processes, and the mean pixel intensity was taken for each ROI using 

ImageJ software. Each data point represents one slice. Mann-Whitney nonparametric test was 

used to determine significance. 

Quantitative PCR for non-specific transcript depletion, cLTP induction, validation 

To assay depletion of non-specific transcripts, 50 ng of total RNA and TRAP RNA were reverse 

transcribed into cDNA using SuperScript III with random hexamer primers (Invitrogen). 

Technical triplicate reactions for each primer set (Gfap, Gad1, Cnpase) using SYBR Green PCR 

Master Mix (Applied Biosystems) were prepared, with the cDNA being evenly divided into each 

reaction. Percent de-enrichment was calculated by comparing relative Ct values between total 

and TRAP RNA samples for each set of primer. To assay LTP induction, 20 ng of total RNA and 

TRAP RNA for both basal and LTP conditions were reverse transcribed. Normalization of 

basal/LTP Ct values with HPRT1 was done before comparing fold-change of activity-dependent 

transcripts (Arc, c-Fos) through relative Ct values. To validate sequencing results, we collected a 

separate biological sample for both 60 and 120 minute time points and performed RT-qPCR for 

the indicated transcripts. Some primer sequences were obtained from PrimerBank 
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(http://pga.mgh.harvard.edu/primerbank) while others were designed to span exon-exon 

junctions. 

RNA sequencing library preparation and sequencing 

~150 ng of TRAP RNA and total RNA were used in the library preparation, with a total of 12 

samples per time point (biological triplicates for total basal/LTP and TRAP basal/LTP). RNA 

libraries were made using Illumina TruSeq RNA library preparation v2 kit. rRNA was first 

depleted from all samples using the Ribo-Zero Gold kit. Libraries were prepared according to 

manufacturer’s instructions, skipping the oligodT purification step. Single-end (30 minute time 

point) and paired-end sequencing (60 and 120 minute time points) was performed using the 

Illumina Hiseq2500 system. Both library preparation and sequencing were done at the UCLA 

Neuroscience Genomics Core. Read lengths were 64bp for single-end reads and 69bp for paired-

end reads, with an average of 45 million mapped reads per sample. 

RNA-seq, time-series, GO enrichment analysis 

RNA sequencing reads were mapped to the mm10 annotation of the mouse genome using STAR 

aligner 102 and differential expression analysis was done with edgeR 63. Reads were normalized 

by the trimmed-mean method for each time point before differential expression analysis. 

Significant differential expression used a cutoff of FDR < 0.1 and log2 fold-change of at least 

+0.4. Hypergeometric tests were used to determine significance of overlap between DE 

transcripts of different variables. 

http://pga.mgh.harvard.edu/primerbank
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Heatmaps were generated with gplots in R displaying all significant transcripts across all time 

points. The bottom 5% expressed transcripts (ie lowly expressed significant transcripts) were 

excluded as to minimize visual artifacts. 

KEGG pathway analysis of up and downregulated transcripts was done using WebGestalt with a 

whole genome background list. All functional category enrichment analyses considered an 

adjusted p-value < 0.05 after BH correction to be significant, with a minimum of 4 genes per 

category. Up and downregulated transcripts from all time points were included. 

Time series analysis was done with Short Time-series Expression Miner (STEM) 

(http://www.cs.cmu.edu/~jernst/stem/) using the fold-changes for transcripts that were 

significant in at least one time point. Gene ontology analysis was done using WebGestalt 

(http://bioinfo.vanderbilt.edu/webgestalt/) on the temporal profiles derived from STEM analysis. 

All transcripts that had at least an average read number of 20 normalized reads by TRAP-seq 

across all time points was used as the background transcript list. For enrichment of TRAP-seq, 

RNA-seq, or both TRAP-seq and RNA-seq DE transcript function, PANTHER 

(http://pantherdb.org/) was also used to identify enriched categories and the genes associated 

with them with a background list derived from RNA-seq expression levels of 20 normalized 

reads on average across all samples and time points.  

UTR length and RBP motif enrichment analysis 

Annotated 5’ and 3’ UTR lengths were obtained from BioMart using the Ensembl GRCm38 

build. In cases of multiple annotated UTRs for a given gene, the average was taken and used for 

resampling. The annotated UTRs of brain-expressed transcripts from Kang et al., 2011 were 

compared against downregulated and upregulated transcripts using a Wilcox ranked test. This 

http://www.cs.cmu.edu/~jernst/stem/
http://bioinfo.vanderbilt.edu/webgestalt/
http://pantherdb.org/
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was also completed with a mouse-specific brain-expressed transcript list103 that yielded similar 

results but is not shown here. A large majority of transcripts overlapped between the two brain-

expressed lists. 

RBP motif enrichment analysis was completed with a resampling approach using 3’ UTR 

sequences of brain expressed transcripts because RBP motifs were underrepresented in simple 

scrambling of UTR sequences. A total of 244 mouse RNA binding protein motifs (taken from 

Ray et al., 2013) were tested on the 3’ UTR of upregulated and downregulated transcript sets, 

against a background of brain-expressed transcripts. We identified the numbers of RBP binding 

sites for each RBP within all 3’ UTRs of our up and downregulated genes, and generated a 

distribution of chance RBP motif numbers by resampling 3’ UTRs from the brain-expressed list 

5000 times. We then compared the observed value against the distribution of expected numbers 

of RBP motif occurrences to generate a p-value. UTR length was accounted for during the 

resampling by fixing the total combined nucleotide length of all sampled UTRs to equal the total 

nucleotide length of all UTRs in up or downregulated transcript sets, as length variability had a 

measurable effect on the results. Significance criteria was p < 0.05 and a fold-enrichment > + 0.2 

Cell-type specific enrichment analysis 

We used the RNA-seq dataset from Zhang et al., 2014 to calculate cell type-enriched transcripts. 

It is important to note that the Zhang et al study was done in P7 mice, while our study was done 

in 10-12 week old mice. Using FPKM numbers for neurons, myelinating oligodendrocytes, 

astrocytes, microglia, and endothelial cells, we calculated a neuronal enrichment factor by 

comparing FPKM for a given cell type against all other cell types that are expressed in the 

hippocampus. For example, for astrocytes we used a formula of (astrocyte FPKM) / (neuron + 
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oligodendrocyte + microglia + endothelial cell FPKM) as a conservative way to determine which 

transcripts were astrocyte-enriched. We used an enrichment factor cutoff of 1.5 for all cell types. 

Transcripts we considered to be significantly DE in astrocytes had to be 1) astrocyte-enriched 

and 2) differentially expressed by a cutoff of FDR < 0.1 and a log2 fold-change of at least + 0.4.  

To determine neuron-enriched genes using TRAP-seq/RNA-seq data, we took the average of 

normalized basal read counts across all samples from all time points for each gene and found the 

ratio of TRAP-seq reads over RNA-seq reads. We considered a ratio of 1.5 to be neuron-

enriched; this was empirically a stringent cutoff for neuron-enrichment because many known 

neuron-specific genes such as MAP2 and Arc were excluded from our neuron-enriched list. This 

was done to avoid including transcripts that may be expressed at significant levels in other cell 

types. From this list, we included a 10-read minimum cutoff to ensure genes with inflated 

enrichment ratios were excluded. Significant DE transcripts by TRAP-seq were then identified 

from this list and included in the analysis. For transcripts that were DE across multiple time 

points (as was the case for many transcripts DE by both TRAP-seq and RNA-seq), we took the 

average fold-change across all significant DE time points. Significance testing between log2FC of 

TRAP-seq and RNA-seq was calculated using a Wilcoxon signed rank test. 

Transcription-factor binding analysis 

A list of enriched transcription factor targets and significantly enriched binding motifs was 

identified using oPOSSUM 3.0 (http://opossum.cisreg.ca/oPOSSUM3/) and TRANSFAC on 

BioBase respectively. Significant transcripts identified through total RNA sequencing at any 

time point were included in the analysis, with a background list of >20 average reads transcripts 

http://opossum.cisreg.ca/oPOSSUM3/
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at 120’ for oPOSSUM and >10 average reads for TRANSFAC. Graphical representation is for 

oPOSSUM results only, while results from both analyses are included in Table S9A,B. 
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Figure legends 

Figure 3-1. Expression and RNA purification of ribosome-associated transcripts is specific for 

excitatory neurons. a) Diagram of the experimental design and immunohistochemistry 

demonstrating mini-slice preparation. Red = HA, blue = Hoechst. Scale bar = 200 µm. b) HA-

tagged ribosomes are expressed in excitatory neurons (labeled with Map2 antibodies, top) but not 

astrocytes (labeled with Gfap antibodies, bottom) within hippocampal mini-slices. Scale bar = 20 

µm c) Immunoprecipitation and RNA purification of ribosome-associated populations from 
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hippocampal mini-slices de-enriches for astrocytic (Gfap), oligodendrocytic (Cnpase) and 

inhibitory neuron-specific (Gad1) transcripts, but captures excitatory neuron specific transcripts 

(Arc and Camk2a). IP RNA values were normalized against input RNA values to generate de-

enrichment ratios. n = 2 biological replicates, error bars = SEM. 

Figure 3-2. TRAP-seq of transcripts from excitatory neurons following LTP induction at 30, 60, 

and 120 minutes reveals increasing bidirectional differential expression over time. a) Increasing 

numbers of both upregulated and downregulated DE transcripts over time. b) Heat map of 

significant transcripts at all time points. Color key = log2 fold change. c) List of selected 

significantly downregulated and upregulated transcripts at 120’ post-induction with their 

respective log2 fold-changes. Transcripts selected by lowest FDR. 

Figure 3-3. Upregulated and downregulated transcripts differ in biological functions and in 5’ 

and 3’ UTR lengths, with upregulated transcripts enriched for specific RNA binding protein 

motifs. a) KEGG pathway enrichment analysis of upregulated and downregulated transcripts. 

The most significant pathways are shown. Red = upregulated, green = downregulated. Numbers 

represent number of DE transcripts per category. b) Distribution of 5’ UTR lengths and 3’ UTR 

lengths for upregulated (red) and downregulated (green) transcripts, along with UTRs of brain-

expressed transcripts and UTRs across the whole genome. p-values for comparison between up 

and downregulated 5’ UTRs = 6.996e-05, 3’UTRs = 0.001748. Brain-expressed transcripts have 

significantly longer 3’UTRs than the rest of the genome (Ramsköld et al., 2009). c) RBP motif 

enrichment in 3’ UTRs of upregulated transcripts when compared to 3’ UTRs of brain-expressed 

transcripts. Selected RBP motifs with highest or lowest enrichment and distinct motif sequences 

are shown. Gene symbols were converted to mouse homologs. 
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Figure 3-4. Minimal overlap of DE transcripts between time points and enrichment of 

transcription-associated genes within temporally co-regulated transcripts. a) Numbers of 

significant transcripts at each time point and shared transcripts between time points. b) STEM 

analysis grouping of significant differentially-expressed transcripts into three temporal profile 

clusters. Black line represents model temporal profile. c) Selected GO terms enriched in cluster 1 

transcripts. Numbers represent number of DE transcripts per category. Clusters 2 and 3 did not 

show enrichment for any GO terms when taken separately or combined. d) The log2 fold-

changes at each time point for genes belonging to the GO category “Regulation of transcription, 

DNA-dependent”. 

Figure 3-5. Marginal overlap of DE transcripts between TRAP-seq and RNA-seq at each time 

point, with a specific enrichment of cytoskeletal and cell adhesion genes identified in transcripts 

only DE in the ribosome-associated population. a) Overlap of significant transcripts at each time 

point between RNA populations. b) Numbers of transcripts that were identified in one or both 

populations, collapsed across time. c) Enriched functional categories within exclusively 

ribosome-associated DE transcripts, with genes corresponding to each category. Genes were 

assigned based on PANTHER annotation in conjunction with WebGestalt results. 

Figure 3-6. Neuron-enriched transcripts demonstrate significantly greater fold-change 

magnitudes by TRAP-seq than RNA-seq. Each point represents one transcript that was both 

neuron-enriched and DE by TRAP-seq. 

Figure 3-7. Enrichment of transcription factor binding in RNA-seq DE transcripts suggests 

potential regulators of differential expression, and some DE transcripts are enriched in non-

neuronal cell types. a) Transcription factor enrichment ordered by Fisher score, which represents 
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overrepresentation of transcripts containing motif over background levels. TRANSFAC analysis 

identifying motif overrepresentation within our significant transcripts was also performed (Table 

S9B). b) Numbers of DE transcripts that were enriched in each cell type (see methods). c) 

Representative immunohistochemistry for the microglial-enriched transcript Il1b demonstrating 

an increase in Il1b protein level (red) following LTP induction at 120’ d) Grouped data from Il1b 

immunostaining (n = 2 animals, 11 slices). Scale bar = 20 µm. Data points represent the mean 

pixel intensities from ROIs around cell bodies and processes from single slices. p = 0.0122, error 

bars = SEM. 

Supplemental figure legends 

Figure 3-S1. Slice-induced and age-dependent differences in activation of translational signaling 

pathways and immediate-early gene upregulation respectively. a) Upregulation of phospho-

ERK1/2 and phospho-eIF4E following cutting of hippocampal slices. Phospho levels were 

normalized to total levels at each time point. b) Upregulation (by TRAP) of immediate-early 

genes Arc and Fos in 10-12 week old mice and 10.5-12 month old mice (see methods for 

normalization). 

Figure 3-S2. Correlation between replicates of TRAP-seq (IP) and RNA-seq (X) at each time 

point and condition. Pearson correlation was generated from log normalized counts comparing 

replicates at one time point ie 30 min compared to other 30 min samples only. 

Figure 3-S3. qPCR validation of sequencing results. Every single candidate we tested is 

included here. a) Fold-changes of immediate early genes (IEG) by qPCR from a separate 

biological replicate compared with fold-changes from sequencing results. b) Fold-changes by 

qPCR of separate 60 and 120 minute biological replicates compared with sequencing results. c) 
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Fold-changes by qPCR of a separate 60 minute IP and total sample compared with sequencing 

results.  

Figure 3-S4. RNA-seq of total RNA following LTP induction shows an increase in both number 

of DE transcripts and magnitude of DE over time. a) Number of DE transcripts gradually 

increases over time, predominantly for upregulated transcripts. b) List of the most significantly 

DE transcripts at 120 minutes ordered by FDR, and their respective log2 fold-changes at 30, 60, 

and 120 minutes. c) Heat map of significant transcripts from all time-points and their fold-

changes. Color key represents log2 fold-change values. d) Large overlap of DE transcripts 

between early time points and 120 minutes.  

Figure 3-S5. Differential enrichment of biological functions in transcripts DE only by TRAP-

seq, only by RNA-seq, or by both. Gene ontology enrichment of transcripts was calculated using 

WebGestalt with a background transcript list derived from our RNA-seq expression levels. 
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Chapter 4 

Whole genome techniques in neuroscience: considerations for comparisons of transcriptome 

results across different studies 
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Introduction 

 The complexity of the brain has required an increasing specialization of neuroscientific 

domains or fields of study. From this stratification, great progress has been made in elucidating 

the functions of the nervous system at genetic, molecular, cellular, circuit and behavioral levels. 

However, successful attempts to unify findings between the fields have been largely lacking. 

One issue is that techniques and approaches used to study neuroscience at one particular level 

generate data that is incomprehensible to other levels. The demand for different tools to drive 

progress within a specific level of analysis of neuroscience has resulted in a polarization of 

understanding; researchers studying the same level may appreciate developments in their level, 

but outsiders are unable to understand the experimental results and are unable to critically 

consider the claims made of the research. The utility of this data is thus negatively impacted, as 

studies in other fields that are designed around the results may be based on blind faith in the 

presented interpretation rather than rigorous scientific rationale. Therefore, discussions about 

critical factors that would allow for a cross-discipline understanding of data will be important for 

the continued progress of neuroscience research. 

 This issue is best demonstrated by the growing popularity of whole-genome approaches 

in studies of the molecular and genetic processes underlying neuronal physiology and organismal 

behavior. Usually, these approaches aim to quantify expression of genes from cell-types, 

development profiles, or regions of the brain 54,55,67, or to quantify differences in expression of 

genes between two states (stimulated against unstimulated neurons, different cell-types, 

etc.)90,104. For example, in the field of hippocampal-dependent learning and synaptic plasticity, 

transcriptomic approaches are increasingly used to characterize the differential expression of 
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genes following induction of different long-term potentiation (LTP) protocols or memory 

training paradigms (see Table 4-1). The persistence of LTP and memory requires new gene 

expression44,45, making whole-genome methods (such as microarrays and RNA sequencing, or 

RNA-seq) an attractive strategy to identify critical genes underlying plasticity. An additional 

benefit of these approaches is that these methodologies identify not only individual 

differentially-expressed genes, but also elucidate broad molecular processes and networks that 

may be involved in synaptic plasticity. However, the variability of the reported results from 

whole-genome studies in the context of synaptic plasticity and physiology, and the difficulty in 

accessing the raw data, significantly limits the potential of genome-wide studies in understanding 

brain function. Two important and interrelated standards need to be implemented by the 

scientific community to overcome these limitations:  explicit, appropriate and standardized 

criteria for determining significance of data, and standardized, easily-accessible formats for 

presentation of primary, raw sequencing data. 

Standards for significance 

 Significance is widely associated with a 0.05 probability that the result is due to chance 

(p-value < 0.05), as this is the standard accepted by the scientific community to indicate that a 

finding is unlikely to be due to chance. However, the failure in understanding the importance of 

appropriate statistical tests, and the limitations of these tests, has affected the reproducibility of 

results across all fields of neuroscience105,106. For example, when testing for significant 

differences between two conditions for multiple variables at once (such as in electrophysiology 

when measuring conductance, post-synaptic potentials, mini frequencies, decay constants, etc.), a 

statistical threshold of p < 0.05 for each variable does not fit the widely-accepted criteria of a 
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finding above chance. As the number of variables tested increases, the probability of finding a 

false positive also increases. This is simply because when more measurements are made, there is 

a higher probability that one positive result is just due to chance. For example, when testing 100 

variables at once, one would expect that just by chance there would be 5 significant hits with a p 

< 0.05 cutoff. In other words, with an established p < 0.05 cutoff, while testing of one variable 

would have a 0.05 probability of a significant result being due to chance, two tests would have a 

0.1 probability, three tests a 0.15 probability, and so on. This is above the generally accepted 

probability of a chance result that would normally be accepted. Thus, a multiple comparisons 

adjustment needs to be applied107,108. This is particularly important for whole-genome studies, 

since these experiments effectively carry out statistical testing for differential expression of up to 

24,000 different genes. 

 Of the 25 articles included here56–60,85,109–127 that report differential expression following 

memory training or LTP induction paradigms, no two research groups determined differential 

expression of transcripts using the same metrics (Table 4-1). In both microarray and RNA-seq 

studies, basic considerations such as whether to include statistical testing, whether to correct for 

multiple comparisons in the statistical testing, and whether to incorporate any other cutoffs 

differed by research group. Both the lack of statistical testing and the lack of multiple 

comparisons corrections for these tests result in increased numbers of false positives when 

carrying out thousands of statistical tests. While a good portion of the studies in Table 4-1 have 

justified their criteria (or lack thereof) by validations through other means, it is unclear whether 

these validations are simply the most likely candidates to be differentially expressed (ie testing 

only the most differentially expressed genes) or whether they represent a true sampling of the 

detected differentially-expressed population. Many different analysis packages are now available 
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and widely used for the analysis of high-throughput data63,128 that correct for multiple 

comparisons, which should be heavily favored when selecting analysis pipelines for high-

throughput data. A nearly identical problem was experienced and addressed by the neuroimaging 

field129, which routinely deals with over 100,000 voxels per experiment and has learned the 

importance of multiple testing corrections. 

 Even after correcting for multiple comparisons, statistically significant noise is still 

common when comparing differences between conditions. One major source of noise derives 

from the severely underpowered nature of whole-genome experiments. Studies routinely utilize 

two or three replicates per condition and test for differential expression; for any other 

methodology this number of replicates would be considered insufficient. As a result, the 

expression levels of samples in one condition may be slightly greater than another just due to 

chance, and this difference may be considered statistically significant. Thus, although statistical 

corrections may alleviate some issues of false positives, it is insufficient for such low replicate 

numbers to account for them all. In support of this, a recent study tested 48 biological replicates 

of a two-condition experiment to compare results from low replicate numbers and high replicate 

numbers130. When randomly sampling three replicates from the 48, the study found a true 

positive rate of only 20-40% for three replicates relative to analysis done on all 48, even after 

multiple comparison corrections (of note, the authors found that a robust fold-change cutoff 

increased the fraction of true positive results to ~80%). Thus, even with proper statistical 

approaches, the severely underpowered nature of whole-genome studies makes them prone to 

false positive results. Replicates for the studies included in Table 4-1 were between 2 to 6 per 

study, falling well within the range of replicates that are highly susceptible to inaccurate 

interpretation of results. 
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 Another source of statistical noise is directly tied to the expression levels of genes, with 

lowly-expressed genes sometimes showing highly significantly differential expression. While the 

rough considerations for defining significance in current analysis pipelines include fold-change 

between conditions, variance between replicates, and expression level, the modeling of the data 

distribution fails at the extreme ends of any one of these criteria. When the observed distribution 

of the data falls well outside of the assumptions critical to the statistical modeling, results from 

significance testing are not interpretable. Lowly-expressed genes tend to have a much higher 

fold-change difference and higher proportional variance between replicates, resulting in 

increased numbers of false positives at this expression level. This effect is compounded by small 

replicate sizes. No studies included in Table 4-1 utilize an expression level cutoff, despite the 

inability of pure statistical analyses to properly account for these factors. 

 From this emerges a clearer picture of the considerations required to more rigorously 

analyze whole-genome data. I propose that all experiments utilizing whole-genome tools should 

take into consideration three factors when deciding on significance cutoffs, as a single cutoff is 

not sufficient to mitigate the number of false positives within datasets. An adjusted p-value 

cutoff, a fold-change cutoff, and an expression level cutoff should all be used to increase the true 

positive rate of experimental results. The exact cutoffs do not necessarily have to be the same 

between studies (as this will depend on the variance between replicates, number of replicates, 

etc. of each individual study), but some cutoff with these criteria should at least be included. One 

important note is that a fold-change cutoff for statistical significance is not indicative of a 

biological threshold for an effect, as smaller changes in important genes could still have a 

measurable biological impact. However, due to the small replicate numbers for most studies, 

difficulty in distinguishing between a false and true positive necessitates a fold-change cutoff to 
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minimize spurious results that arise purely from statistical noise. With these considerations, we 

may gain a more accurate characterization of the full molecular systems underlying complex 

neuroscientific processes, and move beyond studying only the most highly differentially-

expressed genes that have served as lynchpins for different fields. 

Accessibility of data 

 One of the attractive qualities of utilizing whole-genome approaches is the view that 

complex genetic and molecular pathways may help explain higher-level functions of the nervous 

system. Thus, making whole-genome data accessible (and interpretable) to researchers in all 

fields of neuroscience should be a priority. Currently, there are no standards for publishing large 

datasets that are generated from whole-genome studies. Individual studies parse their starting 

data into lists of genes they wish to discuss, and consequently only publish the parsed list of 

genes. Most of the gene tables end up in supplemental data, meaning that there is minimal or 

nonexistent editorial oversight by journals that publish the data. As a result, each list of genes 

published in a study has a variable list of qualifiers attached to it. Some lists include a 

combination of expression levels, fold-changes, and p-values, while others include nothing but 

the gene name and the qualifier referenced in the paper (see supplementary tables of Lee et al., 

2016 and Cajigas et al., 2012).  All of these values would have a profound impact on decisions 

regarding future experimentation, yet they are omitted in most studies. 

 A recent example of the highly limited nature of published data comes from a study that 

examined differences in gene expression between dorsal and ventral hippocampal neurons132. 

The published list of differentially-expressed transcripts between dorsal and ventral hippocampal 

gene expression only includes those genes with a fold-change greater than three. This high fold-
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change cutoff is quite rigorous, and serves the authors’ intent to only consider genes that are 

heavily enriched in one or the other hippocampal region for their studies. However, researchers 

interested in a specific gene or families of genes might find that a 3-fold cutoff may be too great, 

as an entire family of genes enriched by 2-fold would still be interesting and possibly 

functionally relevant. Researchers in other areas, such as physiologists or behavioralists, may 

instead want to look at specific genes and decide for themselves whether the degree of 

enrichment or non-enrichment is relevant to their own fields. This is not possible with a 

published gene list that only includes the authors’ criteria, but would be possible if the pre-

filtered data were accessible somewhere. Compounding the problem is the fact that every study 

has a different standard for significance, which makes a direct comparison between published 

study results impossible without acquisition and manipulation of the original data files. For labs 

that regularly analyze this kind of data, obtaining and using the raw data is still a hassle; for labs 

with no experience handling this data, this is nearly impossible. These issues limit the 

accessibility of whole-genome data for the researchers who may benefit the most from it, and 

limit their ability to critically consider the data for themselves. 

 One important point to emphasize is that statistical significance is not created equal. This 

becomes especially apparent when all replicate data is made available. While variability is taken 

into consideration when testing for significance, no statistical test can fully account for the 

variability if it is too large. Higher variability leads to an increase in the likelihood of a 

significant result being a false positive. But, aggregated or collapsed significance results hide this 

variance and may mislead the reader into believing a finding is more robust than it actually is. 

Journals are pushing to enforce scatterplots instead of plunger graphs for this very reason; whole-

genome data should be held to the same standard. No published data in Table 4-1 includes 
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individual replicate information, despite this being a critical determinant of significance. By 

publishing the expression levels of each replicate for each condition, others who use the data 

would be able to see the degree of reproducibility and decide for themselves whether it is 

appropriate for their own interests. 

 In theory, all of this information is contained within uploaded data to the GEO database 

run by NCBI. All of the raw data files—both raw sequencing files and unparsed output files from 

analysis pipelines (usually a table)—are uploaded from data that is published in journals. 

However, these files are not standardized in a meaningful way and are not interpretable for 

researchers with minimal bioinformatics background. In uploaded tables to the GEO database 

(and even in many published tables), there are ambiguous labels for the columns that supposedly 

contain the data that led to the authors’ conclusions. Each study’s spreadsheets are formatted 

differently and often do not include necessary descriptors for table contents. Many experiments 

also do not include individual replicate data in the raw data. Having an easily-interpretable table 

with all of the important values will be critical if others are to use this data. 

 One important consideration that is not fully addressed here is the effect of using 

different analysis pipelines to analyze data. The choice of analysis pipeline has a significant 

effect on the numbers of significant genes that are identified133,134. This difference between 

results likely arises from the differences between the assumptions made about the data by each 

analysis tool and how closely the assumptions match the experimental data. Thus, the 

appropriate tool must be considered on an experiment-to-experiment basis. Regardless, including 

the important information outlined above from even a single analysis package would be a large 

improvement over existing data accessibility. 
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 From this, a number of suggestions can be implemented to facilitate the access to and 

interpretation of whole-genome data. Published data should be carefully annotated and at a 

minimum should include a statistical metric, expression levels, and fold-changes for all genes 

listed in the supplementary tables. Raw data and data tables uploaded to GEO should be 

annotated appropriately, regardless of analysis pipeline used, so that others with minimal 

expertise can easily understand the information contained within the different columns produced 

from the analysis programs used. The raw data table should also include separated data from 

individual replicates for all genes in the genome. Implementing these suggestions will allow 

scientists from all areas of research to use the generated data and draw their conclusions based 

off their own critical examination. 

Concluding remarks 

 The explosion of high-throughput data has been and will continue to be invaluable in 

providing insight into the different functions of the brain. However, to prevent the needless 

redundancy of experiments and to expedite the discovery of new findings, the community must 

work to improve the standards by which it assesses the data, reports the data, and publishes the 

data, to help others use the data as well. Science is a collaborative endeavor by nature, and is 

increasingly requiring the efforts of multiple groups to rigorously tackle complex biological 

questions. It would be in the scientific community’s best interest to help each other in unraveling 

the mysteries of the brain by facilitating the communication of information between the 

neuroscientific disciplines.  
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 The results from the RNA-seq and TRAP-seq (Chapter 3) raise a number of important 

questions about gene expression during LTP and provide a framework for future experimental 

designs. The most obvious experiments to complete following this work would be to select 

candidates that have not been previously implicated in LTP (such as examining transcription 

factors that have not been implicated), or candidates belonging to functional categories that have 

been underexplored in the context of LTP (such as genes encoding metabolic functions), and 

determine if and how they act to influence LTP persistence. Beyond just examining gene 

expression changes in neurons, experiments should also use a combination of cell-type specific 

unbiased whole-genome approaches to identify gene expression changes in non-neuronal cell-

types alongside candidate gene studies to determine the function of these genes in non-neuronal 

cells. This would add to the ever-growing list of genes and cellular functions that play an 

important role during LTP induction. Perhaps with careful selection of interesting candidates, 

previously-unidentified important molecular processes will be revealed following LTP induction. 

However, given the numbers and temporal dependency of differentially-expressed genes, 

interpreting the results from these experiments in the context of LTP may prove challenging. 

 Another critical avenue that has remained untouched is determining the effect of different 

stimulation paradigms on gene expression. Given that LTP is only one form of gene expression-

dependent synaptic plasticity, other forms of plasticity may require distinct genetic programs for 

their persistence135,136. For example, the natural extension from this study is to understand the 

effect of neuromodulators on gene expression during LTP, or to understand the effect of long-

term depression (LTD) inducing-stimulation on changes in gene expression. One longstanding 

question about LTP and LTD is: how do molecules engaged in both LTP and LTD-inducing 

stimulation act to affect synaptic strength in opposite ways137,138? The background expression 



83 
 

and activity of other genes may provide a completely different context between LTP and LTD 

and consequently may change the molecular/cellular functions of the molecules activated during 

both LTP and LTD. This in turn would lead to a differential effect on long-lasting physiological 

changes. 

 Experiments analyzing gene expression following a combination of different stimulations 

over some period of time would provide insight into a stimulation paradigm that more closely 

represents the stimulation patterns in an awake, behaving animal. Indeed, even the criticality of 

gene expression following LTP induction is not limited by time but by stimulation intensity18, 

demonstrating that stimulation following the previously-defined early, critical period of gene 

expression for LTP persistence can and does affect gene expression. With LTP or LTD induction 

experimental designs, there is generally a single period of time when the stimulation is given 

which is then followed by hours of recording the changes in synaptic strength using a test pulse 

of some low frequency. However, as the nervous system is constantly receiving inputs and the 

circuits involved in a given memory are constantly being activated to some degree, the 

subsequent inputs that a circuit receives after a memory has been formed (ie when LTP is 

induced) may alter gene expression differently than in a “naïve” circuit. For example, if LTD is 

first induced in the Schaffer collateral pathway of the hippocampus, and then followed by LTP 

induction, how would gene expression following LTP induction differ between this scenario and 

a scenario where LTD was not first induced? Using another example, LTP induction initially 

precludes further potentiation of synapses for a period of time (~3 hours), but later, synaptic 

strength can be potentiated even further with another round of LTP induction139. How would 

gene expression changes differ between the first round of LTP induction and the second round? 

To my knowledge, this question has remained wholly unaddressed. 
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 One intriguing observation is that even non-LTP-inducing stimulation leads to 

upregulation of immediate early gene expression critical for LTP140. Thus, what differentiates 

gene expression when comparing a strong stimulation that induces LTP against a weak one that 

does not? Two possibilities are: 1) the difference lies in the magnitude of differentially 

expression, or 2) the identities of genes differentially expressed are distinct; these possibilities 

are not mutually exclusive. Whole-genome approaches could be used to more accurately 

determine the differences in gene expression induced by two strengths of stimulation. Taking this 

concept to the extreme: is there any magnitude of stimulation that does not result in some form 

of new gene expression synthesis? With the observation that local protein synthesis can be 

influenced by spontaneous release of vesicles141, and the demonstrated importance of local 

translation in plasticity142, this would suggest that even the smallest quantal unit of 

neurotransmission can influence gene expression in a biologically meaningful way. Yet, this is 

complicated by the finding that LTP-inducing stimulation does not induce LTP unless given 

during the positive phase of hippocampal theta oscillations143. From this perspective, not even a 

strong stimulation can induce the necessary gene expression changes to induce LTP unless 

coordinated with the background theta oscillation. To truly begin to understand the finer scale 

gene expression that may be occurring in different forms of neuronal stimulation, more sensitive 

and temporally-controllable tools for identifying and profiling local translation events are 

required. This highlights the complexity and challenges in understanding the function of gene 

expression in both LTP and the nervous system as a whole. 

 A parallel question of reducibility exists for gene expression changes that are discovered 

from whole-genome experiments: how many of the identified gene expression changes truly 

matter for LTP? On one extreme, it is possible that all identified genetic changes are just 
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consequences of a single molecule acting as a supreme master regulator. On the other extreme, it 

is possible that every single genetic change is required for the expression of LTP, and missing 

any single one abolishes LTP. Both possibilities are equally impossible—the truth probably lies 

somewhere in between these two extremes. However, currently there is no easy way to reconcile 

the hundreds to thousands of genes that are identified in any differential expression experiment 

and functional testing on a candidate basis. The combinatorial effects of multiple genes on this 

scale would be impossible to predict, and careful manipulations of even single genes are 

challenging in the nervous system. Although something can be learned from single gene 

experiments, the following example illustrates some of the challenges and considerations that 

must be accounted for when interpreting single gene studies. 

 In the context of gene expression and LTP, there are two scenarios that could happen if a 

given gene is knocked out and LTP persistence is tested. One is that knocking out the gene 

removes the persistence of LTP. From this observation, one would conclude that the gene is 

critical and a “significant” molecule for LTP. But if the gene that was knocked out was a 

transcription factor144 or a phosphorylation site on a translation factor was removed145 (or 

theoretically even any gene), there would almost certainly be widespread changes in the entire 

molecular milieu with these manipulations. For example, the effects on LTP of knocking out 

transcription factor x might in fact be due to the actions of a completely separate transcription 

factor y that only binds in the absence of x; this aberrant binding is the true cause of the effect, 

yet without further experimentation one would conclude that x is a “memory molecule”. 

Conversely, knocking out a gene may have no effect on LTP persistence. From this observation, 

one would then conclude that this gene is not critical for LTP persistence. In reality, the 
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knockout may perturb the entire system in a way where functional compensation occurs146. Thus, 

the way a system can work does not mean it is the way the system does work normally. 

 Although demanding, the designing of experiments to challenge a scientist’s personal 

hypothesis and rule out likely alternative explanations is the cornerstone of science. Failure to do 

so is an example of the congruence bias147 in action, and is most likely one contributor to the 

issue of irreproducibility in science. Statistical problems in science are a major concern for 

reproducibility105,106 (see Chapter 4) alongside a highly political, often incomprehensible peer-

review system, but this is theoretically correctable with increased funding for replicate numbers 

and a more rigorous and transparent peer-review system. However, the risk of cognitive biases in 

scientific research is a far more difficult problem to root out148. In parallel with the congruence 

bias, scientists are affected by the Dunning-Kruger effect149, otherwise termed “the double 

burden of ignorance”: one is wrong about something and is unaware of his/her own wrongness. 

(An important note is that the Dunning-Kruger effect should not be thought of as occurring on 

the level of an individual, but instead should be thought of as occurring on the level of subject 

matter—we are all ignorant about something and unaware of this fact). As scientists we are 

trained to believe we are scholars of objectivity, but in reality we are just as susceptible to certain 

cognitive biases as anyone else. We are not above the influence of cognitive biases and we are 

also unable to recognize this fact—the Dunning-Kruger effect. Thus, it takes a significant 

amount of self-awareness and self-doubt to recognize when one may be wrong, and being aware 

of one’s limits of knowledge is critical for not overcommitting to wrong ideas. This is a major 

hurdle in educating all practitioners of science in being self-critical and objective. 
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 In conclusion, science is a difficult, lifelong endeavor that can be as wearisome as it is 

wondrous. What little incremental knowledge we may gain from this pursuit is, hopefully, 

“worth it” in the grand scheme of things. In some cases it is. In some case it is not. But, despite 

all the flaws in the practice and practitioners of science, science remains the best and only system 

by which to pry into the inner workings of the world.  



88 
 

References 

1. Ligotti, Thomas. The Conspiracy against the Human Race: A Contrivance of Horror. 1st 

pbk. ed. New York: Hippocampus Press, 2011. 

2. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. 

1957. J. Neuropsychiatry Clin. Neurosci. 12, 103–113 (2000). 

3. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, 

and humans. Psychol. Rev. 99, 195–231 (1992). 

4. Lashley, K. S. & Wiley, L. E. Studies of cerebral function in learning. IX. Mass action in 

relation to the number of elements in the problem to be learned. J. Comp. Neurol. 57, 3–

55 (1933). 

5. Bliss, T. V. P. & Lomo, T. LONG-LASTING POTENTIATION OF SYNAPTIC 

TRANSMISSION IN THE DENTATE AREA OF THE ANAESTHETIZED RABBIT 

FOLLOWING STIMULATION OF THE PERFORANT PATH. 331–356 (1973). 

6. Citri, A. & Malenka, R. C. Synaptic Plasticity: Multiple Forms, Functions, and 

Mechanisms. Neuropsychopharmacology 33, 18–41 (2008). 

7. Maren, S. & Baudry, M. Properties and mechanisms of long-term synaptic plasticity in the 

mammalian brain: relationships to learning and memory. Neurobiol. Learn. Mem. 63, 1–

18 (1995). 

8. Carew, T., Pinsker, H. & Kandel, E. R. Long-term habituation of a defensive withdrawal 

reflex in aplysia. Science (80-. ). 214, 864 (1972). 



89 
 

9. Hawkins, R. D., Abrams, T. W., Carew, T. J. & Kandel, E. R. A Cellular Mechanism of 

Classical Conditioning in Aplysia : Activity-Dependent Amplification of Presynaptic 

Facilitation. Science (80-. ). 219, 400–405 (1983). 

10. Dash, P. K., Hochner, B. & Kandel, E. R. Injection of the cAMP-responsive element into 

the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–

721 (1990). 

11. Davis, H. P. & Squire, L. R. Protein synthesis and memory: a review. Psychol. Bull. 96, 

518–559 (1984). 

12. Ramirez, S. et al. Creating a False Memory in the Hippocampus. Science (80-. ). (2013). 

13. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014). 

14. Squire, L. R. & Barondes, S. H. Variable decay of memory and its recovery in 

cycloheximide-treated mice. Proc. Natl. Acad. Sci. U. S. A. 69, 1416–1420 (1972). 

15. Frey, U., Frey, S., Schollmeier, F. & Krug, M. Influence of actinomycin D, a RNA 

synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in 

vitro. J. Physiol. 490 ( Pt 3, 703–711 (1996). 

16. Geller, A., Robustelli, F., Barondes, S. H., Cohen, H. D. & Jarvik, M. E. Impaired 

performance by post-trial injections of cycloheximide in a passive avoidance task. 

Psychopharmacologia 14, 371–376 (1969). 

17. Bourtchouladze, R. et al. Different Training Procedures Recruit Either One or Two 

Critical Periods for Contextual Memory Consolidation, Each of Which Requires Protein 



90 
 

Synthesis and PKA. Learn. Mem. 5, 365–374 (1998). 

18. Fonseca, R., Nägerl, U. V. & Bonhoeffer, T. Neuronal activity determines the protein 

synthesis dependence of long-term potentiation. Nat. Neurosci. 9, 478–480 (2006). 

19. Guzowski, J. F. et al. Inhibition of activity-dependent arc protein expression in the rat 

hippocampus impairs the maintenance of long-term potentiation and the consolidation of 

long-term memory. J. Neurosci. 20, 3993–4001 (2000). 

20. Fleischmann, A. et al. Impaired long-term memory and NR2A-type NMDA receptor-

dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci. 23, 9116–

9122 (2003). 

21. Ramamoorthi K, Fropf R, Belfort GM, Fitzmaurice HL, McKinney RM, Neve RL, Otto T, 

L. Y. Npas4 Regulates a Transcriptional Program in CA3 Required for Contextual 

Memory Formation. Science (80-. ). 20 (2011). doi:10.1088/0004-637X/736/2/160 

22. Jones, M. W. et al. A requirement for the immediate early gene Zif268 in the expression 

of late LTP and long-term memories. Nature 289–296 (2001). 

23. Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nat. 

Neurosci. 2, 597–604 (1999). 

24. Lein, P. J., Barnhart, C. D. & Pessah, I. N. Acute Hippocampal Slice Preparation and 

Hippocampal Slice Cultures. Vitr. Neurotoxicology 758, 115–134 (2011). 

25. Teyler, T. J. Brain slice preparation: Hippocampus. Brain Res.Bull. 5, 405–414 (1980). 

26. Watson, P. L., Weiner, J. L. & Carlen, P. L. Effects of variations in hippocampal slice 



91 
 

preparation protocol on the electrophysiological stability, epileptogenicity and graded 

hypoxia responses of CA1 neurons. Brain Res. 775, 134–143 (1997). 

27. Taubenfeld, S. M., Stevens, K. a., Pollonini, G., Ruggiero, J. & Alberini, C. M. Profound 

molecular changes following hippocampal slice preparation: Loss of AMPA receptor 

subunits and uncoupled mRNA/protein expression. J. Neurochem. 81, 1348–1360 (2002). 

28. Roskoski, R. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol. Res. 

66, 105–143 (2012). 

29. Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic 

plasticity. Nat. Rev. Neurosci. 5, 931–942 (2004). 

30. Nguyen, P. V & Kandel, E. R. Brief theta-burst stimulation induces a transcription-

dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. 

Learn. Mem. 4, 230–243 (1997). 

31. Makhinson, M., Chotiner, J. K., Watson, J. B. & O’Dell, T. J. Adenylyl cyclase activation 

modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-

dependent kinase II autophosphorylation. J. Neurosci. 19, 2500–2510 (1999). 

32. Chotiner, J. K., Khorasani, H., Nairn,  a. C., O’Dell, T. J. & Watson, J. B. Adenylyl 

cyclase-dependent form of chemical long-term potentiation triggers translational 

regulation at the elongation step. Neuroscience 116, 743–752 (2003). 

33. Tsien, J. Z. et al. Subregion- and Cell Type – Restricted Gene Knockout in Mouse Brain. 

87, 1317–1326 (1996). 



92 
 

34. Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex 

tissues. Proc. Natl. Acad. Sci. U. S. A. 106, 13939–13944 (2009). 

35. Bach, M. E. et al. Age-related defects in spatial memory are correlated with defects in the 

late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that 

enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. U. S. A. 96, 5280–5285 

(1999). 

36. Barnes, C. A. Long-term potentiation and the ageing brain. Philos. Trans. R. Soc. Lond. B. 

Biol. Sci. 358, 765–72 (2003). 

37. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory 

impairment in mice. Science (80-. ). 328, 753–756 (2010). 

38. Woodruff-Pak, D. S. et al. Differential effects and rates of normal aging in cerebellum and 

hippocampus. Proc. Natl. Acad. Sci. U. S. A. 107, 1624–1629 (2010). 

39. Liu, L. et al. Role of NMDA Receptor Subtypes in Governing the Direction of 

Hippocampal Synaptic Plasticity. Science (80-. ). 304, 1021–1024 (2004). 

40. Shankar, S., Teyler, T. J. & Robbins, N. Aging differentially alters forms of long-term 

potentiation in rat hippocampal area CA1. J. Neurophysiol. 79, 334–41 (1998). 

41. Veng, L. M., Mesches, M. H. & Browning, M. D. Age-related working memory 

impairment is correlated with increases in the L-type calcium channel protein ??1D 

(Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine 

treatment. Mol. Brain Res. 110, 193–202 (2003). 



93 
 

42. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive Neuroscience Review and the Study 

of Memory. Neuron 20, 445–468 (1998). 

43. Bliss, T. V & Collingridge, G. L. A synaptic model of memory: long-term potentiation in 

the hippocampus. Nature 361, 31–39 (1993). 

44. Frey, U., Krug, M., Reymann, K. G. & Matthies, H. Anisomycin, an inhibitor of protein 

synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. 

Brain Res. 452, 57–65 (1988). 

45. Nguyen, P. V, Abel, T. & Kandel, E. R. Requirement of a critical period of transcription 

for induction of a late phase of LTP. Science 265, 1104–1107 (1994). 

46. Alberini, C. M. The role of protein synthesis during the labile phases of memory: 

Revisiting the skepticism. Neurobiol. Learn. Mem. 89, 234–246 (2008). 

47. Alberini, C. M. Transcription Factors in Long-Term Memory and Synaptic Plasticity. 

Physiol. Rev 121–145 (2009). doi:10.1152/physrev.00017.2008. 

48. Huang, Y. Y., Nguyen, P. V, Abel, T. & Kandel, E. R. Long-lasting forms of synaptic 

potentiation in the mammalian hippocampus. Learn. Mem. 3, 74–85 (1996). 

49. Abraham, W. C., Dragunow, M. & Tate, W. P. The role of immediate early genes in the 

stabilization of long-term potentiation. Mol. Neurobiol. 5, 297–314 (1991). 

50. Benito, E. & Barco, A. The Neuronal Activity-Driven Transcriptome. Mol. Neurobiol. 51, 

1071–1088 (2015). 

51. Valor, L. M. & Barco, A. Hippocampal gene profiling: Toward a systems biology of the 



94 
 

hippocampus. Hippocampus 22, 929–941 (2012). 

52. Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory 

formation. Cell 144, 810–823 (2011). 

53. Ji, D., Lape, R. & Dani, J. a. Timing and Location of Nicotinic Hippocampal Synaptic 

Plasticity. Neuron 31, 131–141 (2001). 

54. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell 

RNA-seq. Science (80-. ). 347, 1138–42 (2015). 

55. Zhang, Y. et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia , 

Neurons , and Vascular Cells of the Cerebral Cortex. 34, 1–19 (2014). 

56. Coba, M. P., Valor, L. M., Kopanitsa, M. V., Afinowi, N. O. & Grant, S. G. N. Kinase 

networks integrate profiles of N-methyl-D-aspartate receptor-mediated gene expression in 

hippocampus. J. Biol. Chem. 283, 34101–34107 (2008). 

57. Cho, J. et al. Multiple repressive mechanisms in the hippocampus during memory 

formation. Science (80-. ). (2015). 

58. Ryan, M. M. et al. Temporal profiling of gene networks associated with the late phase of 

long-term potentiation in vivo. PLoS One 7, 1–14 (2012). 

59. Lee, P. R., Cohen, J. E., Becker, K. G. & Fields, R. D. Gene expression in the conversion 

of early-phase to late-phase long-term potentiation. Ann. N. Y. Acad. Sci. 1048, 259–271 

(2005). 

60. Park, C. S., Gong, R., Stuart, J. & Tang, S. J. Molecular network and chromosomal 



95 
 

clustering of genes involved in synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 

30195–30211 (2006). 

61. Heiman, M., Kulicke, R., Fenster, R. J., Greengard, P. & Heintz, N. Cell type-specific 

mRNA purification by translating ribosome affinity purification (TRAP). Nat. Protoc. 9, 

1282–91 (2014). 

62. Heiman, M. et al. A Translational Profiling Approach for the Molecular Characterization 

of CNS Cell Types. Cell 135, 738–748 (2008). 

63. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139–

140 (2009). 

64. Lebedeva, S. et al. Transcriptome-wide Analysis of Regulatory Interactions of the RNA-

Binding Protein HuR. Mol. Cell 43, 340–352 (2011). 

65. Pascale, A., Amadio, M. & Quattrone, A. Defining a neuron: Neuronal ELAV proteins. 

Cell. Mol. Life Sci. 65, 128–140 (2008). 

66. Wilkie, G. S., Dickson, K. S. & Gray, N. K. Regulation of mRNA translation by 5’- and 

3'-UTR-binding factors. Trends Biochem. Sci. 28, 182–188 (2003). 

67. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 

(2011). 

68. Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: A link between RNA 

localization and stimulation-dependent translation. Neuron 32, 683–696 (2001). 



96 
 

69. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. 

Nature 499, 172–177 (2013). 

70. Ernst, J. & Bar-Joseph, Z. STEM: a tool for the analysis of short time series gene 

expression data. BMC Bioinformatics 7, 191 (2006). 

71. Tornow, S. & Mewes, H. W. Functional modules by relating protein interaction networks 

and gene expression. Nucleic Acids Res. 31, 6283–6289 (2003). 

72. Di Giovanni, S. et al. In Vivo and in Vitro Characterization of Novel Neuronal Plasticity 

Factors Identified following Spinal Cord Injury. J. Biol. Chem. 280, 2084–2091 (2004). 

73. Correia, S. S. et al. Motor protein-dependent transport of AMPA receptors into spines 

during long-term potentiation. Nat. Neurosci. 11, 457–66 (2008). 

74. Tai, C. Y., Kim, S. A. & Schuman, E. M. Cadherins and synaptic plasticity. Curr. Opin. 

Cell Biol. 20, 567–575 (2008). 

75. Osterweil, E., Wells, D. G. & Mooseker, M. S. A role for myosin VI in postsynaptic 

structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005). 

76. Yamagata, K. et al. Arcadlin is a neural activity-regulated cadherin involved in long term 

potentiation. J. Biol. Chem. 274, 19473–19479 (1999). 

77. Kwon, A. T., Arenillas, D. J., Worsley Hunt, R. & Wasserman, W. W. oPOSSUM-3: 

advanced analysis of regulatory motif over-representation across genes or ChIP-Seq 

datasets. G3 (Bethesda). 2, 987–1002 (2012). 

78. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene 



97 
 

regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006). 

79. Deisseroth, K., Bito, H. & Tsien, R. W. Signaling from synapse to nucleus: Postsynaptic 

CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 

16, 89–101 (1996). 

80. Barbosa, A. C. et al. MEF2C, a transcription factor that facilitates learning and memory 

by negative regulation of synapse numbers and function. Proc. Natl. Acad. Sci. U. S. A. 

105, 9391–9396 (2008). 

81. Bozon, B., Davis, S. & Laroche, S. Regulated transcription of the immediate-early gene 

Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and 

memory formation. Hippocampus 12, 570–577 (2002). 

82. Nedivi, E., Hevroni, D., Naot, D., Israeli, D. & Citri, Y. Numerous candidate plasticity-

related genes revealed by differential cDNA cloning. Nature 363, 718–722 (1993). 

83. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking 

underlying a form of associative learning. Science 308, 83–88 (2005). 

84. Chawla, M. K. et al. Sparse, environmentally selective expression of Arc RNA in the 

upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 

579–586 (2005). 

85. Ainsley, J. a, Drane, L., Jacobs, J., Kittelberger, K. a & Reijmers, L. G. Functionally 

diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience. 

Nat. Commun. 5, 4510 (2014). 



98 
 

86. Bambah-Mukku, D., Travaglia, A., Chen, D. Y., Pollonini, G. & Alberini, C. M. A 

positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory 

consolidation. J. Neurosci. 34, 12547–59 (2014). 

87. Katche, C., Cammarota, M. & Medina, J. H. Molecular signatures and mechanisms of 

long-lasting memory consolidation and storage. Neurobiol. Learn. Mem. 106, 40–47 

(2013). 

88. Taubenfeld, S. M., Milekic, M. H., Monti, B. & Alberini, C. M. The consolidation of new 

but not reactivated memory requires hippocampal C/EBPbeta. Nat. Neurosci. 4, 813–818 

(2001). 

89. Bekinschtein, P. et al. Persistence of Long-Term Memory Storage Requires a Late Protein 

Synthesis- and BDNF- Dependent Phase in the Hippocampus. Neuron 53, 261–277 

(2007). 

90. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. 

Nature 465, 182–187 (2010). 

91. Arenander, A. T., de Vellis, J. & Herschman, H. R. Induction of c-fos and TIS genes in 

cultured rat astrocytes by neurotransmitters. J. Neurosci. Res. 24, 107–14 (1989). 

92. Schafer, D. P. et al. Microglia Sculpt Postnatal Neural Circuits in an Activity and 

Complement-Dependent Manner. Neuron 74, 691–705 (2012). 

93. Ricci, E. P. et al. Staufen1 senses overall transcript secondary structure to regulate 

translation (Supplemental). Nat. Publ. Gr. 21, 26–35 (2013). 



99 
 

94. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-

induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996). 

95. Cajigas, I. J. et al. The Local Transcriptome in the Synaptic Neuropil Revealed by Deep 

Sequencing and High-Resolution Imaging. Neuron 74, 453–466 (2012). 

96. Ouyang, Y., Rosenstein,  a, Kreiman, G., Schuman, E. M. & Kennedy, M. B. Tetanic 

stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein 

kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–

7833 (1999). 

97. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic 

function and autism. Cell 146, 247–261 (2011). 

98. Müller, A., Stellmacher, A., Freitag, C. E., Landgraf, P. & Dieterich, D. C. Monitoring 

Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS One 10, 

e0145451 (2015). 

99. Tebaldi, T. et al. Widespread uncoupling between transcriptome and translatome 

variations after a stimulus in mammalian cells. BMC Genomics 13, 220 (2012). 

100. Gay, L. et al. Mouse TU tagging: A chemical/genetic intersectional method for purifying 

cell type-specific nascent RNA. Genes Dev. 27, 98–115 (2013). 

101. Lisman, J., Lichtman, J. W. & Sanes, J. R. LTP: perils and progress. Nat. Rev. Neurosci. 

4, 926–929 (2003). 

102. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 1–7 (2013). 



100 
 

doi:doi: 10.1093/bioinformatics/bts635 

103. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to 

neuronal vulnerability from loss of TDP-43 splicing of an intron within the 3′ untranslated 

region of its own transcript, thereby triggering nonsense mediated RNA degradation. (147 

words). Nat. Neurosci. 14, 459–68 (2011). 

104. Saha, R. N. et al. Rapid activity-induced transcription of Arc and other IEGs relies on 

poised RNA polymerase II. Nat. Neurosci. 14, 848–56 (2011). 

105. Button, K. S. et al. Power failure: why small sample size undermines the reliability of 

neuroscience. Nat. Rev. Neurosci. 14, 365–76 (2013). 

106. Ioannidis, J. P. A. Why most published research findings are false. PLoS Med. 2, 0696–

0701 (2005). 

107. Benjamini, Yoav Hochberg, Y. Controlling the False Discovery Rate : A Practical and 

Powerful Approach to Multiple Testing Author ( s ): Yoav Benjamini and Yosef 

Hochberg Source : Journal of the Royal Statistical Society . Series B ( Methodological ), 

Vol . 57 , No . 1 Published by : 57, 289–300 (1995). 

108. Dunn, O. J. Multiple Comparisons Among Means. J. Am. Stat. Assoc. 56, 52–64 (1961). 

109. Inokuchi, K., Murayama,  a & Ozawa, F. mRNA differential display reveals Krox-20 as a 

neural plasticity-regulated gene in the rat hippocampus. Biochem. Biophys. Res. Commun. 

221, 430–436 (1996). 

110. Luo, Y. et al. Identification of maze learning-associated genes in rat hippocampus by 



101 
 

cDNA microarray. J. Mol. Neurosci. 17, 397–404 (2001). 

111. Cavallaro, S., D’Agata, V., Manickam, P., Dufour, F. & Alkon, D. L. Memory-specific 

temporal profiles of gene expression in the hippocampus. Proc Natl Acad Sci USA 99, 

16279–16284 (2002). 

112. Donahue, C. P. et al. Transcriptional profiling reveals regulated genes in the hippocampus 

during memory formation. Hippocampus 12, 821–833 (2002). 

113. Leil, T. a., Ossadtchi, A., Cortes, J. S., Leahy, R. M. & Smith, D. J. Finding new candidate 

genes for learning and memory. J. Neurosci. Res. 68, 127–137 (2002). 

114. D’Agata, V. & Cavallaro, S. Hippocampal gene expression profiles in passive avoidance 

conditioning. Eur J Neurosci 18, 2835–2841 (2003). 

115. Leil, T. a, Ossadtchi,  a, Nichols, T. E., Leahy, R. M. & Smith, D. J. Genes regulated by 

learning in the hippocampus. J Neurosci Res 71, 763–768 (2003). 

116. Robles, Y. et al. Hippocampal gene expression profiling in spatial discrimination learning. 

Neurobiol. Learn. Mem. 80, 80–95 (2003). 

117. Levenson, J. M. A Bioinformatics Analysis of Memory Consolidation Reveals 

Involvement of the Transcription Factor c-Rel. J. Neurosci. 24, 3933–3943 (2004). 

118. Keeley, M. B. et al. Differential transcriptional response to nonassociative and associative 

components of classical fear conditioning in the amygdala and hippocampus. Learn. Mem. 

13, 135–142 (2006). 

119. Wibrand, K. et al. Identification of genes co-upregulated with Arc during BDNF-induced 



102 
 

long-term potentiation in adult rat dentate gyrus in vivo. Eur. J. Neurosci. 23, 1501–1511 

(2006). 

120. Håvik, B. et al. Synaptic activity-induced global gene expression patterns in the dentate 

gyrus of adult behaving rats: Induction of immunity-linked genes. Neuroscience 148, 925–

936 (2007). 

121. O?Sullivan, N. C. et al. Temporal change in gene expression in the rat dentate gyrus 

following passive avoidance learning. J. Neurochem. 101, 1085–1098 (2007). 

122. Kawaai, K. et al. Analysis of gene expression changes associated with long-lasting 

synaptic enhancement in hippocampal slice cultures after repetitive exposures to 

glutamate. J. Neurosci. Res. 88, 2911–2922 (2010). 

123. Ploski, J. E., Park, K. W., Ping, J., Monsey, M. S. & Schafe, G. E. Identification of 

plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral 

amygdala. J. Neurochem. 112, 636–650 (2010). 

124. Ryan, M. M., Mason-Parker, S. E., Tate, W. P., Abraham, W. C. & Williams, J. M. 

Rapidly induced gene networks following induction of long-term potentiation at perforant 

path synapses in vivo. Hippocampus 21, 541–553 (2011). 

125. Barnes, P., Kirtley, A. & Thomas, K. L. Quantitatively and qualitatively different cellular 

processes are engaged in CA1 during the consolidation and reconsolidation of contextual 

fear memory. Hippocampus 22, 149–171 (2012). 

126. Vogel-Ciernia, A. et al. The neuron-specific chromatin regulatory subunit BAF53b is 

necessary for synaptic plasticity and memory. SUPP. Nat. Neurosci. 16, 552–61 (2013). 



103 
 

127. Peixoto, L. et al. Survey and Summary: How data analysis affects power, reproducibility 

and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Res. 43, 

7664–7674 (2015). 

128. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq 

experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–78 (2012). 

129. Bennett, C. M., Baird, A. a., Miller, M. B. & Wolford, G. L. Neural Correlates of 

Interspecies Perspective Taking in. J. Serendipitous Unexpected Results 1, 1–5 (2010). 

130. Schurch, N. J. et al. Evaluation of tools for differential gene expression analysis by RNA-

seq on a 48 biological replicate experiment. Arxiv 1–31 (2015). 

doi:10.1093/bioinformatics/btv425 

131. Lee, J. A. et al. Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-

Related Genes. Neuron 89, 113–128 (2016). 

132. Cembrowski, M. S. et al. Spatial Gene-Expression Gradients Underlie Prominent 

Heterogeneity of CA1 Pyramidal Neurons Article Spatial Gene-Expression Gradients 

Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons. Neuron 89, 351–368 

(2016). 

133. Seyednasrollah, F., Laiho, A. & Elo, L. L. Comparison of software packages for detecting 

differential expression in RNA-seq studies. Brief. Bioinform. 16, 59–70 (2013). 

134. Soneson, C. & Delorenzi, M. A comparison of methods for differential expression 

analysis of RNA-seq data. BMC Bioinformatics 14, 91 (2013). 



104 
 

135. Lindecke, A. et al. Long-term depression activates transcription of immediate early 

transcription factor genes: Involvement of serum response factor/Elk-1. Eur. J. Neurosci. 

24, 555–563 (2006). 

136. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for Rapid Dendritic Protein Synthesis in 

Hippocampal mGluR-Dependent Long-Term Depression. Science (80-. ). 288, 1254–1256 

(2000). 

137. Bramham, C. R. et al. The Arc of synaptic memory. Exp. Brain Res. 200, 125–140 (2010). 

138. Abraham, W. C., Christie, B. R., Logan, B., Lawlor, P. & Dragunow, M. Immediate early 

gene expression associated with the persistence of heterosynaptic long-term depression in 

the hippocampus. Proc. Natl. Acad. Sci. U. S. A. 91, 10049–10053 (1994). 

139. Frey, U., Schollmeier, K., Reymann, K. G. & Seidenbecher, T. Asymptotic hippocampal 

long-term potentiation in rats does not preclude additional potentiation at later phases. 

Neuroscience 67, 799–807 (1995). 

140. Wisden, W. et al. Differential expression of immediate early genes in the hippocampus 

and spinal cord. Neuron 4, 603–614 (1990). 

141. Sutton, M. a, Wall, N. R., Aakalu, G. N. & Schuman, E. M. Regulation of dendritic 

protein synthesis by miniature synaptic events. Science 304, 1979–1983 (2004). 

142. Martin, K. C. & Zukin, R. S. RNA Trafficking and Local Protein Synthesis in Dendrites: 

An Overview. J. Neurosci. 26, 7131–7134 (2006). 

143. Hölscher, C., Anwyl, R. & Rowan, M. J. Stimulation on the positive phase of 



105 
 

hippocampal theta rhythm induces long-term potentiation that can Be depotentiated by 

stimulation on the negative phase in area CA1 in vivo. J. Neurosci. 17, 6470–6477 (1997). 

144. Hummler, E. et al. Targeted mutation of the CREB gene: compensation within the 

CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. U. S. A. 91, 5647–51 

(1994). 

145. Costa-Mattioli, M. et al. eIF2α Phosphorylation Bidirectionally Regulates the Switch from 

Short- to Long-Term Synaptic Plasticity and Memory. Cell 129, 195–206 (2007). 

146. Granger, A. J., Shi, Y., Lu, W., Cerpas, M. & Nicoll, R. A. LTP requires a reserve pool of 

glutamate receptors independent of subunit type. Nature 493, 495–500 (2013). 

147. Wason, P. C. On the failure to eliminate hypotheses in a conceptual task. Q. J. Exp. 

Psychol. 12, 129–140 (1960). 

148. Let’s think about cognitive bias. Nature 526, 163–163 (2015). 

149. Kruger, J. & Dunning, D. Unskilled and unaware of it: how difficulties in recognizing 

one’s own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77, 

1121–34 (1999). 

 




