UCLA

UCLA Previously Published Works

Title

Assessment of the genetic variance of late-onset Alzheimer's disease

Permalink

https://escholarship.org/uc/item/0bt5s6vc

Authors

Ridge, Perry G Hoyt, Kaitlyn B Boehme, Kevin et al.

Publication Date

2016-05-01

DOI

10.1016/j.neurobiolaging.2016.02.024

Peer reviewed

HHS Public Access

To whom correspondence should be addressed: Dr. John Kauwe, kauwe@byu.edu.

Author manuscript

Neurobiol Aging. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:

Neurobiol Aging. 2016 May; 41: 200.e13–200.e20. doi:10.1016/j.neurobiolaging.2016.02.024.

"To whom correspondence should be addressed: Dr. John Kauwe, kauwe@byu.edu.

"ADGC coauthors:
Perrie M. Adams¹, Marilyn S. Albert², Roger L. Albin³-5, Liana G. Apostolova⁰, Steven E. Arnold¹, Sanjay Asthana³-10, Craig S. Atwood³-10, Clinton T. Baldwin¹¹, Robert C. Barber¹², Michael M. Barmada¹³, Lisa L. Barnes¹⁴-4,15,-2¹, Sandra Bara¹³, 116, 117, Thomas G. Beach¹⁰, James T. Becker¹¹7, Gary W. Beecham¹8,-19, Duane Beekly²0, David A. Bennett¹-4,-2¹, Eileen H. Bigio²-2,-2³, Thomas D. Biq²-4,-2⁵, Deborah Blackeg²-6,-2¹, Bradley F. Boeye²-8, James D. Bowen²9, Adam Boxer³-0, James R. Burke³¹, Jeffrey M Burn³-1,-5, Joseph D. Buxbaum³2-3⁴, Nigel J. Cairims³5, Laura B. Cantwelj³6, Chuanhai Cao³¹, Chris S. Carlson³8, Cynthia M. Carlsson³, Regina M. Carrey³9, Minerva M. Carrasquill³40, Steven Carrol⁴¹, Helena C. Chiu²², David G. Clat²-3³, Jason Corneveaux⁴⁴, Paul K. Crane⁴⁵, David H. Cribbs⁴6, Elizabeth A. Crocco³³, Carlos Cruchaga⁴¹, Philip L. De Jager⁴8,.49, Charles DeCarl³0, F. Yesim Demirci¹³, Malcolm Dick³¹, Denis W. Dickson³⁰, Rachelle S. Doody-5², Ranjan Duara⁵³, Nilufer Ertekin-Taner⁴0,-3¹, Denis A. Evans⁵5, Kelley M. Faber⁵6¹, Thomas J. Fairchild⁵7, Kenneth B. Fallon⁴¹, David W. Fardo⁵¹-3. Marin R. Farlow³8, Steven Ferris⁵9, Tatiana M. Foroud⁵6, Matthew P. Frosch⁵0, Douglas R. Galasko⁵1, Marla Gearingo²-6, Daniel H. Geschwind⁵6, Bernardino Chetti⁵5 John R. Gilbert¹18a.¹19, Alison M. Goate⁴¹, Neill R. Graff-Radford³40,-54, Robert C. Green⁵7, John H. Growdon⁶8 Hakon Hakonarson⁶9, Ronald L. Hamilton⁻0¹, Kara L. Hamilton-Nelson¹8
John Hardy 1¹, Lindy E. Harrel¹³, Lawrence S. Honig³3, Ryan M. Huebinger²⁴, Matthew J. Huentelman⁴⁴4, Christine M. Hulette⁻¹5
Pardley T. Hyman⁶8, Gali P. Jarvit² for-7, Gregory A. Jicha¹8, Lee-Way Jin³9, Gyungah Jun¹1, Sal, M. Hyas Kamboh¹³3.
Anna Karydas³0, Mindy J. Kart≥²-5, John S.K. Kauwe³3, Jeffrey A. Kaye³4, 85, Ronald Kim³6, Neil W. Kowali³7, 83, Joel H. Krame³8, Walter A. Kukull³0, Brian W. Kunkle¹8, Frank M. LaFerla³1, James J. Lahô⁶, Eric B. Larson⁴4, P. Frank Martiniuk²8, Deborah ²Department of Neurology, Johns Hopkins University, Baltimore, Maryland, ³Department of Neurology, University of Michigan, Ann Arbor, Michigan, ⁴Geriatric Research, Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, Michigan, ⁵Michigan Alzheimer Disease Center, Ann Arbor, Michigan, Department of Neurology, University of California Los Angeles, Los Angeles, California, ⁷Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, ⁸Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison, Wisconsin, Department of Medicine, University of Wisconsin, Madison, Wisconsin, 10Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin, 11 Department of Medicine (Genetics Program), Boston University, Boston, Massachusetts, ¹²Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, 13 Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, ¹⁴Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, 15 Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois,

¹⁸The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida,

16 Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Phoenix, Arizona,

¹⁷Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,

¹⁹Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, ²⁰National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington,

²¹Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois,

²²Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois,

²³Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois,

²⁴Department of Neurology, University of Washington, Seattle, Washington,

²⁵ VA Puget Sound Health Care System/GRECC, Seattle, Washington,

²⁶Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts,

²⁷ Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts,

²⁸ Department of Neurology, Mayo Clinic, Rochester, Minnesota,

²⁹Swedish Medical Center, Seattle, Washington,

³⁰Department of Neurology, University of California San Francisco, San Francisco, California,

³¹Department of Medicine, Duke University, Durham, North Carolina, 31.5 University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas,

Assessment of the genetic variance of late-onset Alzheimer's

³²Department of Neuroscience, Mount Sinai School of Medicine, New York, New York,

³³Department of Psychiatry, Mount Sinai School of Medicine, New York, New York,

³⁴Departments of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York,

35 Department of Pathology and Immunology, Washington University, St. Louis, Missouri,

³⁶Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania,

³⁷USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida,

38 Fred Hutchinson Cancer Research Center, Seattle, Washington,

³⁹Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida,

40 Department of Neuroscience, Mayo Clinic, Jacksonville, Florida,

41 Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama,

⁴²Department of Neurology, University of Southern California, Los Angeles, California,

⁴³Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama,

44 Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona,

45 Department of Medicine, University of Washington, Seattle, Washington, 46 Department of Neurology, University of California Irvine, Irvine, California,

⁴⁷Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri,

48 Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry,

Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts,

⁴⁹Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts,

⁵⁰Department of Neurology, University of California Davis, Sacramento, California,

51 Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California,

52Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas,

⁵³Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, Florida,

54 Department of Neurology, Mayo Clinic, Jacksonville, Florida,

55Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois,

56Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana,

⁵⁷Office of Strategy and Measurement, University of North Texas Health Science Center, Fort Worth, Texas,

57.5 Sanders-Brown Center on Aging, Department of Biostatistics, University of Kentucky, Lexington, Kentucky,

⁵⁸Department of Neurology, Indiana University, Indianapolis, Indiana,

59 Department of Psychiatry, New York University, New York, New York,

60C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, Massachusetts,

61 Department of Neurosciences, University of California San Diego, La Jolla, California,

62 Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia,

63Emory Alzheimer's Disease Center, Emory University, Atlanta, Georgia,

⁶⁴Neurogenetics Program, University of California Los Angeles, Los Angeles, California,

65 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana,

⁶⁶Department of Neurology, Emory University, Atlanta, Georgia,

67 Division of Genetics, Department of Medicine and Partners Center for Personalized Genetic Medicine, Brigham and Women's

Hospital and Harvard Medical School, Boston, Massachusetts,

68 Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts,

69 Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania,

70 Department of Pathology (Neuropathology), University of Pittsburgh, Pittsburgh, Pennsylvania,

71 Institute of Neurology, University College London, Queen Square, London,

73 Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York,

74Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas,

75Department of Pathology, Duke University, Durham, North Carolina,

76 Department of Genome Sciences, University of Washington, Seattle, Washington,

77 Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington,

⁷⁸Sanders-Brown Center on Aging, Department Neurology, University of Kentucky, Lexington, Kentucky,

79 Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California,

80 Department of Biostatistics, Boston University, Boston, Massachusetts,

81 Department of Ophthalmology, Boston University, Boston, Massachusetts,

82 University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, Pennsylvania, 82.5 Department of Neurology, Albert Einstein College of Medicine, New York, New York

83 Department of Biology, Brigham Young University, Provo, Utah,

84 Department of Neurology, Oregon Health & Science University, Portland, Oregon,

85 Department of Neurology, Portland Veterans Affairs Medical Center, Portland, Oregon,

86 Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, 87 Department of Neurology, Boston University, Boston, Massachusetts,

88 Department of Pathology, Boston University, Boston, Massachusetts,

⁸⁹Department of Neuropsychology, University of California San Francisco, San Francisco, California,

disease

Perry G. Ridge^a, Kaitlyn B. Hoyt^a, Kevin Boehme^a, Shubhabrata Mukherjee^b, Paul K. Crane^b, Jonathan L. Haines^c, Richard Mayeux^d, Lindsay A. Farrer^e, Margaret A. Pericak-Vance^f, Gerard D. Schellenberg^g, John S.K. Kauwe^{a,**}, and Alzheimer's Disease Genetics Consortium (ADGC)*

^aDepartment of Biology, Brigham Young University, Provo, UT, USA

^bDepartment of Medicine, University of Washington, Seattle, WA, USA

90 Department of Epidemiology, University of Washington, Seattle, Washington,

92Group Health Research Institute, Group Health, Seattle, Washington,

⁹¹ Department of Neurobiology and Behavior, University of California Irvine, Irvine, California,

⁹³ Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio,

⁹⁴ Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington,

⁹⁵ Department of Pathology, University of Michigan, Ann Arbor, Michigan,

⁹⁶Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland,

⁹⁷Department of Preventive Medicine, University of Southern California, Los Angeles, California,

⁹⁸ Department of Medicine - Pulmonary, New York University, New York, New York,

⁹⁹ Department of Neurology, University of Miami, Miami, Florida, 100 Department of Pathology, University of California San Diego, La Jolla, California,

¹⁰¹ School of Nursing Northwest Research Group on Aging, University of Washington, Seattle, Washington,

¹⁰² Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois,

¹⁰³ Department of Pathology, University of Southern California, Los Angeles, California,

¹⁰⁴ Department of Pathology, University of Washington, Seattle, Washington,

¹⁰⁵ Department of Neurology, Washington University, St. Louis, Missouri,

¹⁰⁶ Internal Medicine, Division of Geriatrics, University of North Texas Health Science Center, Fort Worth, Texas,

¹⁰⁷Department of Biostatistics, Mayo Clinic, Rochester, Minnesota,

¹⁰⁸ Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota,

¹⁰⁹ Michigan Alzheimer's Disease Center, Department of Neurology, University of Michigan, Ann Arbor, Michigan,

¹¹⁰ Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado,

¹¹¹ Arizona Alzheimer's Consortium, Phoenix, Arizona,

¹¹² Department of Psychiatry, University of Arizona, Phoenix, Arizona,

¹¹³Banner Alzheimer's Institute, Phoenix, Arizona,

¹¹⁴ Alzheimer's Disease Center, New York University, New York, New York,

¹¹⁵ Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas,

¹¹⁶ Gertrude H. Sergievsky Center, Columbia University, New York, New York,

¹¹⁷Department of Neurology, Columbia University, New York, New York, 117.5 Department of Epidemiology, Columbia University, New York, New York, 118 Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario,

¹¹⁹ Department of Neurology, University of Texas Southwestern, Dallas, Texas,

¹²⁰ Departments of Psychiatry, Medicine, Family & Community Medicine, South Texas Veterans Health Administration Geriatric Research Education & Clinical Center (GRECC), UT Health Science Center at San Antonio, San Antonio, Texas, 121 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana, 122 Department of Radiology and Imaging Sciences, Indiana, Indiana,

¹²² Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, Illinois,

¹²³ Department of Psychiatry, University of Southern California, Los Angeles, California,

¹²⁴ Cambridge Institute for Medical Research and Department of Clinical Neurosciences, University of Cambridge, Cambridge,

¹²⁵ Center for Human Genetics and Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville,

Tennessee, 126 Department of Pathology, Johns Hopkins University, Baltimore, Maryland,

¹²⁷ Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky,

¹²⁹ Department of Pathology & Laboratory Medicine, University of California Los Angeles, Los Angeles, California,

¹³⁰ Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Pathology, Columbia University, New York, New York,

¹³¹ Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, Illinois,

¹³² Department of Psychiatry & Behavioral Sciences, Duke University, Durham, North Carolina,

¹³³PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, Massachusetts,

¹³⁴ Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina,

¹³⁵ Department of Pathology, Oregon Health & Science University, Portland, Oregon,

¹³⁶ Evelyn F. McKnight Brain Institute, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida,

¹³⁷ Departments of Neurology, Pharmacology & Neuroscience, Texas Tech University Health Science Center, Lubbock, Texas,

Department of Neurology, Johns Hopkins University, Baltimore, Maryland,

²Department of Neurology, University of Michigan, Ann Arbor, Michigan.

^cDepartment of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA

^dGertrude H. Sergievsky Center, Department of Neurology and the Taub Institute on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA

^eDepartments of Biostatistics, Epidemiology, Medicine (Genetics Program), Neurology, and Ophthalmology, Boston University, Boston, MA, USA

^fDr. John T. Macdonald Foundation Department of Human Genetics, and The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA

⁹Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

Abstract

Alzheimer's disease (AD) is a complex genetic disorder with no effective treatments. More than 20 common markers have been identified, which are associated with AD. Recently, several rare variants have been identified in APP, TREM2, and UNC5C that affect risk for AD. Despite the many successes, the genetic architecture of AD remains unsolved. We used Genome-wide Complex Trait Analysis to 1) estimate phenotypic variance explained by genetics, 2) calculate genetic variance explained by known AD SNPs, and 3) identify the genomic locations of variation that explain the remaining unexplained genetic variance. In total, 53.24% of phenotypic variance is explained by genetics, but known AD SNPs only explain 30.62% of the genetic variance. Of the unexplained genetic variance, approximately 41% is explained by unknown SNPs in regions adjacent to known AD SNPs, and the remaining unexplained genetic variance outside these regions.

Keywords

Alzheimer's disease; Genetics; Genetic Variance

1. Introduction

Alzheimer's disease is the most common form of dementia, affects an estimated 5.3 million people in the United States, and is the only one of the top 10 causes-of-death with no disease-altering treatments (Ridge, et al., 2013a). The majority of affected individuals succumb to disease within seven years of diagnosis. As the disease progresses, affected individuals eventually require fulltime care, which exacts a substantial emotional and economic burden on families of affected individuals, and society at large. Currently, Alzheimer's disease costs the health care system in the United States more than \$200 billion annually (Alzheimer's, 2015). As the population ages, Alzheimer's disease incidence is expected to rapidly increase (projected to be 13.8 million affected individuals in 2050), which will cause tremendous suffering for affected individuals and their families, and health care systems worldwide (costs are expected to exceed \$1 trillion annually by 2050 (Alzheimer's, 2015)).

Alzheimer's disease can be classified as either early or late-onset, with the majority (>99%) of cases being late-onset. Early-onset Alzheimer's disease is characterized by autosomal dominant mutations in one of three genes (presenilin 1, presenilin 2, or amyloid precursor protein). The genetic architecture of late-onset Alzheimer's disease (AD) is more complex. To date, more than 20 distinct genetic loci have been implicated in AD by genome-wide association studies (GWAS) and linkage studies (Lambert, et al., 2013), and additional rare variants in several genes have been identified (Cruchaga, et al., 2014, Guerreiro, et al., 2012, Jonsson, et al., 2012). Despite these successes, the combined effects of these variants only explain a fraction of the total estimated genetic variance of AD (Ridge, et al., 2013b).

Solving the genetic architecture of AD (i.e. identifying the genomic variation that explains the remaining genetic variance of AD) may provide the necessary insights into disease processes to lead to the development of effective therapeutics. We recently analyzed AD datasets to determine how much genetic variance remained to be identified (Ridge, et al., 2013b). In this manuscript we report the results from an expanded analysis that improves our previous study in two ways. First, we used a more densely imputed dataset, and second, we incorporated common variants recently identified by GWAS and rare variants into the study design. We determined that approximately half of the estimated genetic variance of AD is unexplained by variants known to effect risk for Alzheimer's disease, and that remaining important variation is located throughout the genome.

2. Methods

2.1 Dataset

In this work we used a SNP dataset from the Alzheimer's Disease Genetics Consortium (ADGC). This dataset is the combination of 30 separate studies imputed by Naj et al. (Naj, et al., 2011) using the 1000 Genomes Project as reference panel (Genomes Project, et al., 2012). We combined and prepared the data by the following: 1) converted IMPUTE2/ SNPTEST (Howie, et al., 2011, Howie, et al., 2009) format files to PLINK (Purcell, et al., 2007) allele calls/best guess genotype (binary) format (uncertainty cutoff 0.1), 2) filtered SNPs imputed with low information (info<0.5) from each dataset, 3) used the default PLINK 1.9 (Purcell, et al., 2007) uncertainty cutoff of 0.1 (i.e. any imputed call with uncertainty greater than 0.1 was treated as missing), 4) removed duplicate SNPs from each dataset, 5) ensured each SNP had the same strand orientation and genomic coordinates in each dataset, 6) merged the datasets, 7) filtered the datasets using a minor allele frequency of 0.01 to retain common SNPs, and 8) used directly genotyped (not imputed) SNPs for identifying cryptic relatedness and for calculating PCs to account for population structure. There were 17,146 directly genotyped SNPs in common across all 30 studies, none of which were symmetrical. We used PLINK to LD-prune these SNPs using the following settings: maf 0.01, geno 0.02, indep-pairwise 1500 150 0.2. These steps resulted in an LD-pruned, directly observed and non-ambiguous dataset with 14,675 SNPs. Finally, we used KING-Robust to identify the 28,730 participants who were no more related than 3rd degree relatives (kinship coefficient 0.0442) and EIGENSTRAT (Price, et al., 2006) to calculate the first 10 principal components (PC) for the 28,730 unrelated participants using the QC'd, LDpruned directly observed set of SNPs common to all 32 studies. In summary, individuals

more closely related than third cousins were removed, 10 PCs calculated using EIGENSTRAT (Price, et al., 2006), and SNPs with a minor allele frequency (MAF) less than 0.01 were removed.

The initial dataset contained 28,730 samples. In order to perform these analyses, we applied additional strict filters, specific to this research, to this dataset. First, we removed any individuals missing case/control status. Next, we removed any individuals missing one or more covariates (age, sex, PCs). Finally, we removed any individuals missing data for any of the 21 known Alzheimer's disease GWAS SNPs (Table 1, Supplementary Tables 1 and 2) or APOE. APOE ϵ 2 and ϵ 4 alleles were treated as a special case. The ϵ 2 and ϵ 4 alleles were directly genotyped for most of the individuals in the dataset, whereas others had imputed genotypes, and many had both. For these two alleles, if an individual was directly genotyped for these alleles, or if there was disagreement between the APOE genotypes by imputation and direct genotyping, we used the genotypes from direct genotyping. However, if only imputed genotypes were available for an individual then we used imputed genotypes. In summary, we removed any individual who was missing case/control status, age, sex, principal components, APOE genotype for the ϵ 2 or ϵ 4 allele, or genotype for any of the 21 known AD genes listed in Table 1, which resulted in 19,031 samples being removed. The final filtered dataset consisted of 9,699 individuals and 8,712,879 SNPs (Table 2).

We created several additional datasets using PLINK (Purcell, et al., 2007), and covariate files using custom scripts, based on different partitions from the original filtered dataset described above. First, we created a dataset containing only the two APOE SNPs. Second, we created a dataset with only SNPs from genomic regions of known AD SNPs (Table 1). For the purposes of this research, we defined a genomic region as the 50 kilobases upstream and downstream of each gene named in the primary publication reporting the association of different GWAS SNPs. For two different SNPs, rs9271192 and rs10498633, the original publication named two genes, HLA-DRB5 and HLA-DRB1, and SLC24A4 and RIN3, respectively. For each of these SNPs, we included both named genes. In addition to GWAS SNPs, we included genes that contain rare variants that affect risk for AD and APP, PSEN1, and PSEN2, which contain functional variants that cause early-onset AD and possibly harbor additional variants that affect risk for late-onset AD (Table 1). Finally, we counted the number of minor alleles of known GWAS SNPs for each individual and included the genotype counts in covariate files to be used when we wanted to control for known GWAS SNPs. So an individual could have a count of 0 (indicating the individual is homozygous for the major allele), 1 (indicating the individual is heterozygous for the minor allele), or 2 (indicating the individual is homozygous for the minor allele).

2.2 Genetic Analyses

We used Genome-wide Complex Trait Analysis (GCTA) (Yang, et al., 2011) to estimate phenotypic and genetic variances for different partitions of SNPs as described above. For each analysis, we controlled for age, gender, and PCs. For some of the analyses we also controlled for dosage of known AD GWAS SNPs (as described in the Results). For all analyses, we used a population disease prevalence of 0.13 (Association, 2012).

3. Results

We estimated the proportion of the total phenotypic variance explained by all SNPs in the combined dataset to be 53.24%. In order to determine the phenotypic variance explained by known GWAS SNPs with the strongest evidence for association with AD and the two APOE alleles, we controlled for each of these SNPs, and created an additional dataset with only the APOE alleles. Based on these analyses, we estimated the phenotypic variance explained by known GWAS SNPs to be 16%, of which 13% was explained by APOE, and almost 3% explained by other genes.

A total of 37% of phenotypic variance is tagged by SNPs in our dataset, but unexplained by known AD SNPs. To determine whether the unexplained phenotypic variance tagged by genetics is located adjacent to known AD SNPs or throughout the genome, we created an additional dataset with all SNPs located in regions of known AD SNPs (Table 1). We defined a region as 50 kilobases upstream and downstream of the named GWAS gene, or the gene harboring a rare variant. We found that 15% and 22% of phenotypic variance tagged by known disease SNPs is located in regions adjacent to SNPs that affect risk for AD, and outside these regions, respectively. In summary, of the remaining phenotypic variance that can be explained unknown SNPs, approximately 41% is located adjacent to known AD SNPs, and 59% in other genomic regions. Results are summarized in Table 3.

4. Discussion

Using data from 9,699 individuals and 8,712,879 SNPs we have carefully assessed the genetic variance for AD and the proportion of that variance that is accounted for by known markers and genes. Our results improve over previous studies in several ways. First, we have more than four times as many SNPs as the largest previous study (8.7 million vs. 2 million; (Ridge, et al., 2013b)). Second, we have been able to incorporate evaluation of additional recently discovered AD risk loci. Third, we have evaluated not just known markers, but gene regions associated with known markers to test the hypothesis that additional, possibly rare markers in regions of GWAS identified risk variants also impact risk for disease (Singleton and Hardy, 2011).

We report much higher genetic variance explained than previous reports. This is likely due to the significant increase in markers used in our analysis, including many more rare variants than previous work. Our estimate of the variance explained by APOE haplotypes is not significantly different from our previous report (p=0.17; 13.42% and 5.92%, respectively) (Ridge, et al., 2013b). However, inclusion of the recently reported markers from the IGAP GWAS (Lambert, et al., 2013) and rare variants discovered using other approaches has, as expected, accounted for a significant increase in variance explained by known markers (p=0.01; 16.3% compared to 7.78%) (Ridge, et al., 2013b).

By evaluating all SNPs in the regions surrounding known AD variants we have evaluated the hypothesis of the existence of pleomorphic risk loci proposed by Singleton and Hardy in 2011 (Singleton and Hardy, 2011). Such loci harbor both common and rare variants that alter risk for common disease. Our results clearly demonstrate that variation in the regions

surrounding known AD variants, but not including known risk variants, accounts for 29% of all genetic variance in AD, and 41% of remaining unexplained genetic variance. This suggests that variants in these known AD risk regions, which are not detectable with the study designs that have been applied to date, contribute significantly to variance in AD risk.

4.1 Conclusions

In summary, the results in Table 3 provide a clear assessment of our progress in understanding genetic variance in AD. The majority (69%) of genetic variance remains unexplained by known AD risk variants. Much of the remaining variance is accounted for by genetic variation near already identified AD risk variants, and other important genetic regions remain to be discovered. As we have discussed previously (Ridge, et al., 2013b) these are likely to be rare variants of varying effects and may also include gene*gene interactions. Novel approaches to leveraging whole genome and exome sequences in families (Cruchaga, et al., 2014, Guerreiro, et al., 2012, Kauwe, et al., 2013), or careful identification of candidate genes from other diseases (Guerreiro, et al., 2012) or biological work (Lu, et al., 2014), will also facilitate identification of additional variants. Such work is vital to the development of therapeutics and each gene represents a potential target for development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support for this project was provided by the National Institutes of Health (R01AG042611) and the Brigham Young University Department of Biology.

The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; NACC, U01 AG016976; NCRAD, U24 AG021886; NIA LOAD, U24 AG026395, R01AG041797; Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer's Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689-01); NIAGADS U24 AG041689; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG006781, UO1 HG004610, UO1 HG006375; Indiana University, P30 AG10133; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, MO1RR00096, UL1 RR029893, 5R01AG012101, 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG30146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718, AG07562, AG02365; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136; University of Wisconsin, P50 AG033514; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG041232 to AJM and MJH, The Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of Arizona and also includes samples from the

following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer's Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, Universitat de Barcelona. ADNI data collection and sharing was funded by the National Institutes of Health Grant U01 AG024904 and Department of Defense award number W81XWH-12-2-0012. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. We thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are exofficio ADGC members. Support was also from the Alzheimer's Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147) and the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program. P.S.G.-H. is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research.

References

- Alzheimer's A. 2015 Alzheimer's disease facts and figures. Alzheimer's & dementia: the journal of the Alzheimer's Association. 2015; 11(3):332–84.
- Association, A.s. Alzheimer's Association Annual Report: Alzheimer's disease Facts and Figures. 2012
- Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, Salat D, Rosand J. Genetic variation and neuroimaging measures in Alzheimer disease. Archives of neurology. 2010; 67(6):677–85. 67/6/677 [pii]. DOI: 10.1001/archneurol.2010.108 [PubMed: 20558387]
- Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature genetics. 1994; 7(2):180–4. DOI: 10.1038/ng0694-180 [PubMed: 7920638]
- Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O'Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Van Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ. Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Human molecular genetics. 2010; 19(16):3295–301. ddq221 [pii]. DOI: 10.1093/hmg/ddq221 [PubMed: 20534741]
- Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, Jeng AT, Cooper B, Skorupa T, Carrell D, Levitch D, Hsu S, Choi J, Ryten M, Hardy J, Ryten M, Trabzuni D, Weale ME, Ramasamy A, Smith C, Sassi C, Bras J, Gibbs JR, Hernandez DG, Lupton MK, Powell J, Forabosco P, Ridge PG, Corcoran CD, Tschanz JT, Norton MC, Munger RG, Schmutz C, Leary M, Demirci FY, Bamne MN, Wang X, Lopez OL, Ganguli M, Medway C, Turton J, Lord J, Braae A, Barber I, Brown K, Passmore P, Craig D, Johnston J, McGuinness B, Todd S, Heun R, Kolsch H, Kehoe PG, Hooper NM, Vardy ER, Mann DM, Pickering-Brown S, Brown K, Kalsheker N, Lowe J, Morgan K, David Smith A, Wilcock G, Warden D, Holmes C, Pastor P, Lorenzo-Betancor O, Brkanac Z, Scott E, Topol E, Morgan K, Rogaeva E, Singleton AB, Hardy J, Kamboh MI, St George-Hyslop P, Cairns N, Morris JC, Kauwe JS, Goate AM. Consortium, U.K.B.E; Alzheimer's Research, U.K.C. Rare coding variants in the phospholipase D3

- gene confer risk for Alzheimer's disease. Nature. 2014; 505(7484):550–4. DOI: 10.1038/nature12825 [PubMed: 24336208]
- Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. Genomes Project, C. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56–65. DOI: 10.1038/nature11632 [PubMed: 23128226]
- Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991; 349(6311):704–6. DOI: 10.1038/349704a0 [PubMed: 1671712]
- Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J. TREM2 Variants in Alzheimer's Disease. The New England journal of medicine. 2012; doi: 10.1056/NEJMoa1211851
- Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M, Amouyel P, Williams J. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature genetics. 2011; 43(5):429-35. ng.803 [pii]. DOI: 10.1038/ng.803 [PubMed: 21460840]
- Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3. 2011; 1(6): 457–70. DOI: 10.1534/g3.111.001198 [PubMed: 22384356]
- Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS genetics. 2009; 5(6):e1000529.doi: 10.1371/journal.pgen.1000529 [PubMed: 19543373]
- Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jonsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature. 2012; 488(7409):96–9. DOI: 10.1038/nature11283 [PubMed: 22801501]
- Kauwe JS, Ridge PG, Foster NL, Cannon-Albright LA. Strong evidence for a genetic contribution to late-onset Alzheimer's disease mortality: a population-based study. PloS one. 2013; 8(10):e77087.doi: 10.1371/journal.pone.0077087 [PubMed: 24116205]
- Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo

MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanche H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alperovitch A, Lathrop M, Amouyel P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature genetics. 2009; 41(10):1094–9. ng.439 [pii]. DOI: 10.1038/ng.439 [PubMed: 19734903]

- Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P. Mateo I. Owen MJ. Faber KM. Jonsson PV. Combarros O. O'Donovan MC. Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P. European Alzheimer's Disease, I., Genetic, Environmental Risk in Alzheimer's, D., Alzheimer's Disease Genetic, C., Cohorts for, H., Aging Research in Genomic, E. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature genetics. 2013; 45(12):1452– 8. DOI: 10.1038/ng.2802 [PubMed: 24162737]
- Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD, Schellenberg GD. A familial Alzheimer's disease locus on chromosome 1. Science. 1995; 269(5226):970–3. [PubMed: 7638621]
- Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, Bennett DA, Colaiacovo MP, Yankner BA. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014; 507(7493):448–54. DOI: 10.1038/nature13163 [PubMed: 24670762]
- Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H,

- Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature genetics. 2011; 43(5):436–41. ng.801 [pii]. DOI: 10.1038/ng.801 [PubMed: 21460841]
- Pericak-Vance MA, Bebout JL, Gaskell PC Jr, Yamaoka LH, Hung WY, Alberts MJ, Walker AP, Bartlett RJ, Haynes CA, Welsh KA, et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. American journal of human genetics. 1991; 48(6):1034–50. [PubMed: 2035524]
- Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics. 2006; 38(8):904–9. [PubMed: 16862161]
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics. 2007; 81(3):559–75. [PubMed: 17701901]
- Ridge PG, Ebbert MT, Kauwe JS. Genetics of Alzheimer's disease. BioMed research international. 2013a; 2013:254954.doi: 10.1155/2013/254954 [PubMed: 23984328]
- Ridge PG, Mukherjee S, Crane PK, Kauwe JS. Alzheimer's Disease Genetics, C. Alzheimer's disease: analyzing the missing heritability. PloS one. 2013b; 8(11):e79771.doi: 10.1371/journal.pone. 0079771 [PubMed: 24244562]
- Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993; 43(8):1467–72. [PubMed: 8350998]
- Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995; 375(6534):754–60. DOI: 10.1038/375754a0 [PubMed: 7596406]
- Singleton A, Hardy J. A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Human molecular genetics. 2011; 20(R2):R158–62. DOI: 10.1093/hmg/ddr358 [PubMed: 21875901]
- Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, Atwal JK, Sa SM, Yaylaoglu MB, Foreman O, Ortmann W, Rathore N, Hansen DV, Tessier-Lavigne M, Mayeux R, Pericak-Vance M, Haines J, Farrer LA, Schellenberg GD, Goate A, Behrens TW, Cruchaga C, Watts RJ, Graham RR. Alzheimer's Disease Genetics, C. A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death. Nature medicine. 2014; 20(12):1452–7. DOI: 10.1038/nm.3736
- Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. American journal of human genetics. 2011; 88(1):76–82. DOI: 10.1016/j.ajhg.2010.11.011 [PubMed: 21167468]

- The majority of Alzheimer's disease is unexplained by known Alzheimer's disease SNPs
- 41% of the remaining unexplained genetic variance is explained by SNPs located near known SNPs
- Known Alzheimer's disease markers only explain 31% of genetic variance

Table 1
Genes and/or SNPs that affect risk for Alzheimer's disease.

Gene	Disease SNP	Effect of Minor Allele
GWAS SNPs with Strongest Evidence:		
BIN1 (Biffi, et al., 2010, Naj, et al., 2011)	rs744373	Risk
CLU (Lambert, et al., 2009)	rs11136000	Protective
ABCA7 (Hollingworth, et al., 2011)	rs3764650	Risk
CR1 (Lambert, et al., 2009)	rs3818361	Risk
PICALM (Corneveaux, et al., 2010, Naj, et al., 2011)	rs3851179	Protective
MS4A6A (Hollingworth, et al., 2011, Naj, et al., 2011)	rs610932	Protective
CD33 (Hollingworth, et al., 2011, Naj, et al., 2011)	rs3865444	Protective
MS4A4E (Hollingworth, et al., 2011, Naj, et al., 2011)	rs670139	Risk
CD2AP (Hollingworth, et al., 2011, Naj, et al., 2011)	rs9349407	Risk
HLA-DRB5/HLA-DRB1 (Lambert, et al., 2013)	rs9271192	Risk
PTK2B (Lambert, et al., 2013)	rs28834970	Risk
SORL1 (Lambert, et al., 2013)	rs11218343	Protective
SLC24A4/RIN3 (Lambert, et al., 2013)	rs10498633	Protective
DSG2 (Lambert, et al., 2013)	rs8093731	Protective
INPP5D (Lambert, et al., 2013)	rs35349669	Risk
MEF2C (Lambert, et al., 2013)	rs190982	Protective
NME8 (Lambert, et al., 2013)	rs2718058	Protective
ZCWPW1 (Lambert, et al., 2013)	rs1476679	Protective
CELF1 (Lambert, et al., 2013)	rs10838725	Risk
FERMT2 (Lambert, et al., 2013)	rs17125944	Risk
CASS4 (Lambert, et al., 2013)	rs7274581	Protective
Linkage Studies (Common SNPs only):		
APOE (\$\varepsilon 2\$ and \$\varepsilon 4\$) (Corder, et al., 1994, Pericak-Vance, et al., 1991, Saunders, et al., 1993)	rs7412/rs429358	Protective/Risk
Rare and Other SNPs:		
APP (Goate, et al., 1991, Jonsson, et al., 2012)	Multiple	Both
PSEN1 (Sherrington, et al., 1995)	Multiple	Risk
PSEN2 (Levy-Lahad, et al., 1995)	Multiple	Risk
EPHA1 (Hollingworth, et al., 2011, Naj, et al., 2011)	rs11771145	Protective
TREM2 (Guerreiro, et al., 2012)	rs75932628	Risk
UNC5C (Wetzel-Smith, et al., 2014)	rs137875858	Risk

GWAS SNPs in the top section of the table are described as "known GWAS SNPs" in the text. All SNPs in the table were included in analyses of phenotypic variance in regions of known AD SNPs.

Table 2

Demographics of the dataset used in this research.

	Mean Age	Cases	Controls	Totals
Male	77.79	1605	2358	3963
Female	77.57	2272	3464	5736
Totals	77.70	3877	5822	9699

Author Manuscript

Table 3

Summary of Results.

SNP Set	Proportion of Phenotypic Variance Explained (Standard Error) Proportion of Genetic Variance Explained	Proportion of Genetic Variance Explained
Variance explained by all SNPs in the dataset	53.24% (0.0448)	100%
Variance explained by known AD SNPs:		
Total variance explained by known AD SNPs *	16.30% (0.0448)	30.62%
APOE ($\varepsilon 2$ and $\varepsilon 4$ alleles)	13.42% (0.0447)	25.21%
All known GWAS SNPs, except APOE SNPs	2.88% (0.0448)	5.41%
Variance explained by undiscovered AD SNPs:		
Total variance explained by unknown AD SNPs	36.94% (0.0448)	69.38%
SNPs in regions of known Alzheimer's disease SNPs **	15.24% (0.0348)	28.63%
SNPs outside regions of known Alzheimer's disease SNPs 21.69% (0.0373)	21.69% (0.0373)	40.74%

 $_{\rm N}^*$ Known GWAS SNPs refers to SNPs in top part of Table 1

Includes regions for all SNPs listed in Table 1. Regions are defined as +/- 50 kilobases from the gene named in Table 1. Regions estimates were calculated using all SNPs in the region except the known AD SNP.