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Ronald R. Hermt

Inorganic Materials Research Division
- Lawrence Radiation Laboratory
and Department of Chemistry
University of California
Berkeley, California 94720

Abstract

A semiclassical expression for the phaée shift in the

~literature which 1s applicable even when a maximum exists

'in,the effective pbtential,is re-expressed in terms of
the simple JWKB phase -integrals. This expression may be
employed to calculate phase shifts from tables of reduéed
functions computed for a Lennard-Jones (12-6) potential.

Sample semiclassical calculations are compared with published

exact values; excellent qualitative and good quantitative

agreement 1s obtained.. Finally, the qualitative nature_of

the quantal correctiohs'to the classical total and differ-

ential cross sections and the collision lifetime is discussed.

TParﬁ of this work was completed while the author was a
doctoral candidate at Harvard University. Support of this

~phase of the study by the National Science Foundation is

gratefully achknowledged.



INTRODUCTION

In treating the elastic scattering of‘atOms or molecules
subjéct to'a.sphericaliy symmetric potential, a fdll partial
ﬁave quahfum mechanical caiculatioh can be prohibitedly time
consuming due to the large number of partiél waves which con-
_ tribute. On thé other hand, the information concerning the

intermolecular potential which is obtained from scattering

. ~experiments is often derived from the special gquantal features

1

which are observed.” It has proven possible to incorporate

the guantal efféctsvwhich have been observed into a modified

classical scattering theory through the development of a

semiclassical theory2

3

employing the "JWKB'" expression for

. the phase shift. The validity of the JWKB expression has

been examined by numerical comparison with the exact Quantal

4-8.

solution. In geﬁeral, the JWKB approximation is very good,

although it must be modified for low incident energies where

' : 6-8,10
" classically the phenomena of orbiting collisions is expected. ’

I3

The treatment given heré‘begins by examing the classi-

cal expressions for the'angle.of deflection and collision - .
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. 11fet1me near an: orbitlng s1ngular1ty ' A~semiclassical

1ncorporate the quantal features of tunnelllna and the

_kr uncertalnty pr1n01ple Table of reduced phase 1ntegrals

”ﬁﬁ?Vin’the Appendix; Semlclass1cal phase Shlfts, readily - calcu—:b

R lated from. these reduced Tables, are shown to be in excellent o

i.”fﬂiflnfquualltatlve and good quantitative agreement w1th publlshed

'ﬁ:“valued computed by solving Schrodlnger s equation. Finally, |

:’classically.

CLASSICAL ORBITING .

A Lennard Jones (12 - 6) potentlal is used throughout

Mf[thls paper to illustrate the procedure, but the methods are

;pappllcable to any potentlalg-'Varlables are reduced with

RN respect to the'depth‘of‘the minimum in the potential, e, and
”‘f“ahd u(x,L*) denote respectively the reduced energy, inter-

;zpotential,‘and effective_potential. The capacity parameter

20 e r 2
: m

he

;*L express1on for the phase shlft valld for 1nc1dent energles SR
;gf near a. max1mum in the effectlve potentlal prev1ously derlvedf
“{'by Ford,‘et. al.,l;-ls then're-expressed in terms of the JWKB .

"classiCal-phase iﬁﬁégrals With'simple correction terms which -

computed for the.Lennard#Jones (12 - 6) potential are given :

”.?Lposs1ble experlmental consequences'of the speclal resonance .

Tgfeatures'which appear‘in the phase shift are discussed semi- .

- its internuclear separation; r . The symbols K, x, L*, @(x);f"

nuclear separation, orbital angular momentum, intermolecular

ﬂ?Bséd;v—f—+f;—‘;_where,u denotes the reduced mass, and reduced .-

e e e

[,

i



.
angqlar momentum are related to the orbital angular momentum

L by

12~ 12 prs2
Figure 1 illustrates the effective potential for two values.

“of L* and defines some -of the nomenclature employed for

g =K - Ko < 0. For g > 0, the.turning point of the unbounded

motion is denoted Xy and Xy = Xz = Xg . ‘The parameters .

) : "no 2 .2 . .
Kor Xg» andvu = d°u/dx }xdgL .
of the relative maximum in u(x,L*) are of course functions of

* which characterize the nature

.L% oniy:_KO alwayé increases with L*; X decreases or remains
constant; and u” exhibits a‘more complex dependence. The
functional dependence of all three parameters on L* is deter?
_ﬁined by the intermolecular potential; Figs. 2, 3, and 4

‘illustrate the dependence of KO, X and u” on L* for the

O’
Lennard-Jones (12 - 6) potential,

d(x) = x - 2x7®

It is convenient to define a reduced external classipal

phase shift by
- o ' o
0 L , 2, 2 1
6X(K, L*) =‘/1[K-u]2 dx -jp [K-L*“/x%]12 dx, (1a)

Xz L*/K%

and a reduced iﬁternal classical phase integral by
IE(K,L%) =d/' [K-ul? dx . _ (1b)

X1

I3

For values of x within a distance s of X, the effective

C _potential may . be éxpanded for a fixed value of L* as
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Plot of the reduced effective potential

u =9 + L*z/xzzversus x for L* = 0.0 (lower curve)

._ and 1.127 (upper- curve).. The dashed curve is a

_parabolic fit to the maximum in the effective

potential.
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o  1Fig; 2. Pldt 6f the eﬁergy of the maximum (KO) and the

minimum (Km) in the effective potential vs. L*

for the Lennard-Jones (12-6) potential.
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Plot of the reduced curvature of the maximum in .
.the effective potential vs. L* for the Lennard¥
Jones (12-6) potential. The dashed line
indicates that u” must climb rapidly and reach.zero

at the critical point where L* = 1.397.
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u(g;tfj ;?KO(L*) +igu~(L*)t£j; x (1#)12 + 0(x - x_)°.

| COnsequently;:the reduced phase integrals’may be expreseed,'

. for small g, as:

. 1
JF K - L*Z/x )2 dx
L % f -
3 . + F(s,K,L*), ' (22.)
e Iz(K,Lf):‘f (K - u.)2'd_x‘ + F(S,K,L*)', e (2b)
. . ’ e . Xl e X . : .
L ,_‘.;j : Lo v :" 1
i and F(s,K,L*)~#-(f %;02 §~J;2 + leg/ur| L o
- 5% e {1n 5 +~/s l2g/u” ) - ln[( %) g J} (2c) -

¢.,:These expressions for 6 and 12 will not depend on the partlcu-l‘

“llar choice of s, prov1ded it is sufficiently small to ensure

vf'fQEQ“that the effectlve potential is adequately approx1mated by a .
'”1 parabola between Xy =S and Xy + S
o Expressions for the cla881cal collision lifetime and
hgideflectlon angle are now obtained’ by differentlatlnclz'qu. (2).
: Thgs, the colllsion lifetime for g < 0 is readlly shown to be

B

T(K,L*) = 75 - (= wrp/eu”)

i
2

Eq. (3) was derived for a fixed value of L*, and T, and u”

y” .aré functions of L*; 1 will depend on g as well, but. the
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energy'dependencerill be dominated for émall-g by the
1ogarithmic'singularity of the second term. A similar
'~ expression fdr g > 0 1s obtained with tﬁe nonéingular term ‘
 .-10 replacedlby an analogous term Ty and withAavslope to the
logarithmic siﬁgﬁlarity of 2(- p ri/eu")%.

In a similar manner, the deflection angle may be derived
from Egs. (2) after first relatiﬁg thé energy éeparation var-
iable g, which refers to‘fixed L*, to the angular momentum
displacement variable’pv= L* - L%, wﬁich refers to a fixed

K such that K = Ko(Lé)' To first order in p the relation is
g = - 2L% p/x" | | (2)
X p/%g |

and the deflection angle for fixed K and variable p is given

by :

: - N s o 2L% '
-x=xo+(- 4°>{1"+(p4/2u-") du‘]ln | 57 == elsp >0

x_un’l aL* X :
o ; . o
- , (52a)

. S . ?L* .2 - OL*
X=X +2 (‘— = ) [1>+ (p/2ur) 22 ] 1n|2- —2 o], p < O.

' ‘ _ -xou” o aL* - ur X '

The Variables'xo and X; are nonsingular functions of K and p;

‘x, is to be evaluated at L¥, but u” and du”/dL* are functions

of p. The singular behavior at very small p will be given by

X.::Xé—l—ao lnp, p>O ( )
o ' Sb

X = x{ + 2, 1n |pl, p <O,

where Xé and Xi are regarded as constants and the slope .,
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L .
2; Eq. (5b) agrees with the expression

13

equals [- 2L:/x§u"]
derived by Eisberg and Porter.
The expression for the classical lifetime, Eq. (3), is
expected to have a wider range of validify than does the
corresponding expression for the deflection angle, Eq. (5b), -
since Eq. (5a) is a more exact expression for finite p and
the correspondence between g and p expressed in Eq. (4) is
only approximate. ‘Hirschfelder, et al.l4 have compiled a
table of exact classical deflection angles for a Lennard-
Jones (12 - 6) potential. Empifically, it is found that these
exact values of x can be fit by Eq. (5b) over a range of
lpl ~ 0.05. Generally, the slopes found empirically deviafe
from the predictions of Eq. (5b) by about 10 to 30%. The
exact values do follow Eq. (Sa)-soﬁewhat more closely, regard-
‘ing Xo and Xy &s constants: this is illustrated in Fig. 5 for

K = 0.4.
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vs. the reduced angular momentum defect p. The points
are the exact values obtained by numerical integration
given in Ref. 14 for the Lennard-Jones (12 - 6) poten-
tial. The dashed lines are obtained from Egq. (5b) (Xé
and x! regarded as constants). The solid curves are
obtalfied from the more exact Eq. (S5a) (x. and x.
regarded as constants). The theoretical®curves were
fit to the exact points at p = -0.02 and +0.0172

(so0lid symbols) by adjusting Xgs Xbs Xi» 2nd X{.
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QUANTAL ORBITING 1 ,

_ Ford Hlll Wakano,-and Wheelerll have derlved a seml-'v“
' class1ca1 express1on for the phase shlft appllcable near a -
'ﬂi?t_imax1mum ;n&thaeffect;ye_potentlal which predicts the energy‘ﬁ

' dependence of the phase shift for a fixed Lé. SChrodihger:s_‘

“hcffltted to. the max1mum, this exact solution near the barier

'”““;max1mum was’ JOlned onto JWKB solutlons to the'left and right .

. of the barrler and the JWKB phases were ‘developed to first

"lr-power in the eneroy. By'expandlng.the«class;cal phase

'Tw_fflt is pos31ble to re- express the more exact express:Lon15 in
“°;?1f'ﬂﬁf{.terms of the classical 1ntegrals and an extended JWKB barrler
uﬁfﬁpenetratlon 1ntegral,'

X

1 1.3 SR :
8= B2 IS = B2 JF [u-=XK]2dx, g«<go
X2 ’ N . v . ’

i

w 1s the reduced energy dlsplacement parameter employed in

Ref 14 and is related to g by

;,The resultlng expression for the phase shift becomes

Cn(k,neB) = 3562 < nw) + ()

exp(-8) - 2 tan J

P

1ntegrals of Eqs . (2) to first‘power in the energy displace- .

'Hsglment varlable g and comparlng w1th thls more exact express1on,’

-’F:'tan'l '[eXp(—e),tan J ] N .\..;. (Ba):'..'__

" equation was solved exactly for an inverted parabolic potentialng””'

-
1
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 where the refined phase integral is'defined as

1,

.”J(K,L*,B) = B2I (K,L*) —'w/z - h(w) + t(w). '(éb),

2
The cbrreqtion formula h(w) and transition formula t(w) are
defined as | |

h(w} =.o.5w(in[(w/e)2 + (1/4&)2]% - In(lwl/e)y, (9)
Cwith y = 1.78107 | o |
and '
_t(w)l= %_tan-l e™ | . (10)
and are plotted in Figs. 6 and 7 réspectively. |

Qualitatively, Egq. (8a) exhibits the proper behéyior.for
all energies.: Thﬁs,»for g >> 0,1t simply reduces to the
C1assicai value, |
: L

n = B2(6] + I,).
" The phenomena of tunnélling.islalso contained in Eq. (Ba)f
Thus, for g << 0, the contribution from the internal phase
is relatively constant, except when

tan J ~ 0.5 e—e, o | ' (11)
at which point an,iﬁcrement of m is quickly added to the
phase shift. For g ~ O, the increments of m from the internal
f.phase'are smoother and the infinite.rate of change of the

' phaée with g at'g = 0, which 1s predicted by the classical

~expressions, Eq. (2), is removed through the correction
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:_Fig.,G; Plot of the gquantal correction term h(w), Eq. (9),

© vVersus w.
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:functlon h( );. Recently, Curtlss and Powers16 17 have

v‘i,obtalned an expan81on of the phase shift in powers of h

(',;whlch 1ndlcates-that~the phase shift in the class1cal limit .-
fOr g < 0, where more than One'tarning point of“the‘classical“

umotion exist, is glven by the phase 1ntegrals over all classi-.

?_cally allowed regions This behavior is also exhlblted.by

':*h‘Eq. (8a) since the contribution from the t_an"l term is always

: 1

with m of the value B2I,.
Comparison with Other Work

By means of Egs. (4) and (8) the phase shift is readlly =

“'calculated for any set of values of B, K, and L* from the.

" graphs of K, (%), xo (L*), ur(L*); h(w), and t(w) glven in

;éFlgS. 2, 3, 4 6, and 7 and the tables of the reduced integrals |

-og(K,L*), I, (K,L*), and I, (K,L*) tabulated in the Appendlx.

2! 3

w"dSemiclassical.phase shifts evaluated by this procedure are

"1 compared with published exaot guantum mechanical.oalculationsp

"in~Figs. 8 and 9. The semiclassical correspondence between

“'3r'L*.and the partial wave quantum numbers £ was used,

zA+,§ - BILX.
In general, the agreement is seen to be very good. The
-4semiclassical expression tends to‘operestimate'the phase shlft
‘ atpvery small'values of B(B% 2 5). Expressions for correction
'fterms’to the semiclassical phase are known to become. important
9,19 '

T-at small values of B. However, the range of Validity of

Eq. (8a), B2 > 5, should include all atomic or molecular
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Comparison of the exact quantum mechanical phase
shifts of Ref. 7 (curves) with the semiclassical
expression, Eq. (8a) (symbols). The calculations

are for a Lennard-Jones (12-6) potential with

L* = 1-127, KO = 0-40080
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classical expression, Eq. (8a), for £ = 5 (circles),

6 (squares), and 7 (triangles).
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SCattefing partners which are likely:to,betstudied experi-
mentally.‘ Thus,‘evenffor the extreme case of H atoms scatter-
ing off a'heavyvtarget with € = 1 keal/mole and r, = ok, B'Ej is
about 9 and the semiclassical expfession may be used with
confidence-far qualitative and good approximate quantitative

predictions.t

Recently, Livingston8 has derived a semiclassical expres-

fSion for the phase shift, by an eléquent application of phase
.integral methods,'which 1s applicable to an attractive poten-
: tial where classically thréa turning points exist; he has gone
| on to compare the predictions of this expression with the
:qaantum calculations of Ref. 7. His expfession is similar to

| the Ford, Hill, Wakano, and Wheeler expressionll employed here.

In fact, it is possible to directly compare the present work
with Ref. 8,'since Fig. 3 compares our results with those

presented in_Ref{ 7. Numerical results presented in Ref. 8

 for g < O are in good agreement with those presented here

(K = 0.31, 0.35, 0.39, 0.40). Both semiclassical treatments

'reproducé the quantum calculations quite well for larger values

- of 4 and begin to fail for £ <10. The present results repro-

duce the undulations in the quantum calculations for g > 0

as well; Ref. 8 predicts the qualitatiVe structure for g > 0,

but the extent of the quantitative agreement is not discussed.

The'fesonances'in'the phase shift arise from paired virtual

levels in Ref. 8; while the gquantum calculations show no such

pairing effect. However, the "center-of-gravity" of a pair



; -atomic scattering.

- -20- -
-compareS'WellaWiihfthe positibn;Of'thejQuantum resonance;
" moreover, the. general ‘shape of the quantum resonance is

predicted semiquantitatively. - In this connection, no detailed

i comparison with the shape of the resonances in the quantum

calculations of Ref. 7 is presented here, and so it is not

Vpossible_tb directly‘compare wifh the reéults of Ref. 8 on

iaﬂ;'this point. " However, it should be pointed out that Eq. (Ba) -

V"predicts no pairing of the resonance levels and is in this

b respect in better agfeement with the quantum calculations.

'l >Finally, the equation derived in Ref. 8 predicts an infinite -
“:rate of change of with K (or L*) at an orbiting singularity.
3Iﬁ contrast, no such siﬁgularity in-dn/JdK: is exhibited by~ﬁhe'“'

‘ iVLEHWW'equation~employéd here; as discussed later, this point - -

- cbuld.be,of some importance to the computation of collision
lifetimes.

,Totai Cross Sections .

Qualitatively, the undulations in the phase shifts'illds-;_}fu

' “‘undulations in the total cross section.. Sharp fluctuations

~ in the total cross section for energies close to resonance

with a metastable bound level are well known in nuclear

20 and have also beén discussed in treatments of

21,22

- scattering

The total cross section is readily .-

~evaluated from Eq. (Sa)gwith the ald of the optical theorem. -

v‘ﬂ:The‘resultSnaré most naturally expressed as

£

1,1~tfated in Figs. 3 and 4 are'expected to produce corresponding,_fs‘j;7h
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. Lo .
’ 4wr2, z o2 anly cos2n,, + e™tang (e™-2tand )sin n
Q= Qo + ;i'<2£+l){ W 2 2TTwW 2 X}.
BK 5 (e""=2tand )" + e“ "tan“Jd
1
(12)

where Q  is given by

el S & 2in,
Q, =—— Im . {12 (4+%) (1-e52T) +Z (£+3)(1-e )} :
BK - :
0 | by .

'\)TH

The term ni represents the external contribution to the phasé
shift and is given by the first three terms of Eq. (8a).
- The partial wave f, is chosénusdch that for 4 > 4, there

exlsts only one turning point of the classical motion and 7 = Ny

for all such 4. The choice of f, is dictated by the require-

ment that for [ < zl the phase shift be a smoothly varying

function of £, i.e. that n(£) exhibit no undulations. More-

over, Eq. (12) is strictly valid only for small values of g5

for barrier maxima Ko much greater thah_K, the faétor mw should

be replaced everywhere it appears in the argument of an expo-

vnenﬁial function by thevnegative of the barrier penetration

~integral, -0.

The dependence of QO on X is expected to bé smooth; it
éhould decrease monotonically with Iincreasing K, with possible
rather smooth glory undulationsl superimposed on this monotonic
decrease. in contrast, the second éndithird terms in Eq. (12)
are expected to lead to sharp fluctuations in the'depehdence
of Q.on K, arising ffom partial waves which sétisfy the

resonance condition expressed in Eg. (11). The qualitativé

LY
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.6 'er1c1n;of these‘resenances in Q(K )-iéfiiiestfeted'by‘Eq. (12)¥
"]; For g <. 0,. the ambient rather smooth”cehtfibution of thehﬂthf:
ifzpartlal wave to Q is given by~ (4wr2/BK) 2 4 + 1) sin2 ul ”

'va_n is near zero or a multiple of m, thls contrlbutlon w1ll

. “ﬁ{be small. Inith1s~case,_only the first resonant term of Eq..

(12) will;cdntribute appreciably and will result in a positive
"i-splke in Q,. since cos Zn ~ 1. This is exactly the behavior

fexpeéted qualitatlvely, In a similar manner, for Ny ~ /2,

3/m, etc., the'ambient external contribution will be a maximum
'i'wf and-a large negative spike in Q will appear at resonance. For -
Mtfn% ~ /4, 3T/4; 5#/4 ete., -sin Zﬁx'&'é'and a sudden increment“'

*“f“of T 1n the. phase shift should lead to sharp positive and

nenatlve splkes in Q Once again; this behav1or 1s exhlblted -

f”:?[by_Eq. (12), as now the second resonant term is dominant.

The breadﬂwofvthese spikes in the total cross sectlone
';ftiﬁiil decrease very rapidly as w pecomes more negative due
*Y:j'to the exponentlal dependence on the'barrief'penetration
'il,ivlntegral expressed in Eq. (12). Thus, forw ¥ - 1, these

sudden spikes will probably prove.experimentally unobservable,<w7

7;s1nce the measured'cross section is necessarlly an average over.“.a’

Lthe experlmental band pass of the velocilty selector employed
p:On the other hand, for w > 1, the width of these resonances
;s.will=become very,broad and merge into a colorless spectrum.
‘«3_Censequently,lobservable resonances'in Q are expected when

.. ‘the resonance condition is satlsfled for W ~ 0, 1.e. when

"'-f',*er<KO(/z>, g) ~ 0.46 or
: 1

L Ik (L), I¥) = BT (.64 + nm). (13)
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It is difficult to see how ﬁb formulate a more exdct require-
mént forAthe expected iocafion of the.resoﬁance contributions
to Q; For.w'~ O, the conSideratidn;of,the last paragraph
are not hélpful'because Ny is a rapidly varying function of
- K due to large contributions from the t(w) term. Thus, the
exact resonanﬁ enefgies can be predicted only by a numerical
aﬁaiysis for each case vased on Eq. (12) because of the

W, J, and Ny * Névertheless,

<simultanebus rapid variétion in e7T

Eq. (13) may be uséd to locate the approximate resonance

'enérgiesf " The absélute value of w is éxpectéd to be less than

unity at an observable resonance‘and‘this establishes a ﬁaxi¥

- mum uncertainty in the resonaﬁt enérgy ofli (-'2u"/B)%. |
The‘observable resonant energies fbr any capacity

parameter B are readily estimated from Eq. (13) and the

reducéd internal phase integral at maximum plotted ianig,

lQ; Vélues for résonance energies for H‘scattering 5ff of

23 evaluated in this

Hg, where B% 1s expected to be 25.9,
manner différ from the more acéurate Values deduced in
Ref. 22 (the present analysis prediets 0.53, 0.27, 0.12, 0.04,
© 0.007, whereas Ref. 22 prediéts'o.ed,'o.ze, 0.08, o;oz;.aﬁdjo.oos);‘
-this reflects the fdct that a Lennard-Jones (12-6) potential‘” 
is a poor description of the HgH molécule. Indeed, experif
mental observation of resonances in hydrogen scattering studies
together with isotopic.substifution may prove to be a sensi—

tive method of investigating the shape as well as the range

of the intermélecular potentiai.
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Fig. 10. Plot of the reduced internal phase integral at

maximum versus Ko‘
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Differential>dross Section
The nature of thé classical diffefential cross section
near an orbiting éingularity ahd avqualitative description
of the quahtal.correcfions expecféd is given in Ref. é.
" We wish to emphasize the point made in Ref. 2 that the role
of the correction function h(w) in Egs. (8) is to reméve the
infinite rate of change of,ég aﬁd Iz’with L* predicted
classically, Which leads to the classical singularity in the.
deflection function expressed in Egs. (5b). |
In analogy to the case of the total cross seétion,
-resonéncé effects will not be observable in the differential
cross section unless lw| < 1. Consequently, the number of
partiallanes where quantal correctiqnsvdue to the barrier
maxima are ekpected 1s readily estimated to be
YRS ‘a.onl.
where ag is the slope parameter in the classical deflection
ffunction, Eq. (5b). For a Lennard-Jones (12-6) potential,
ad'varies very little for values of K between 0.1 and 0.6
and is about O.S: Consequently, in analyzing the differ-
ential cross section near Qrbiﬁing, it will be necessary to
evaluate explicitly the contribution from only two or three
partial waves: the cbntribuﬁions from other paftial waves |
mayvbeAevaluated-by standard semiclassiéal techniques.2
| For scattering of H atoms, two or three partial waves
_ correspond to a spread in L* of about 0.1. Fig. 5 illustrates -
7'  that this is typiCally the range of validity of Egs. (5b).

Consequently, the exponential decrease with increasing angle



. }brahches).
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*expectedz in the classical dlfferential cross section for a

JV{: deflectlon functlon satlsfylnc Egs.: (5b) will be destroyed

n‘and the w1de angle scatterlng of H atoms should be entlrely

‘quantal._ In‘oontrast scatterlng of heaVler atoms, for

R 't o o
*-. which B2 > 200, should be described by the classical equations L

Jﬂ:(with_possible semiclassical interference between the two

2,1 In particular, in the chemical reactions of

-i'alkali metals with halogens, 1t has been proposed that all

"~-trajectories which pass over the rotational barrier react

'whlle the others scatter elastlcally e4

1

In these collisions .

511,B2 is very large, quantal correctlons should be negligible

'.f(except possibly at x = m), and only contrlbutlons from

“}Tp > O contribute to the elastic scattering so that the wide

"5ﬁ% ahglevelastic scattering should exhibit’the'expected exponen-

 tial fall-off to the extent that Eqs. (5b) ratheér than (5a)

"' adequately approximate x(L*).

Llfetlmes

The llfetlme or duration of a collision, T, has been

*”5Uodefined,quantum mechanically and is obtained from the derivative

25

_of the phase shift with respect to energy.“® "We limit our-

>a&7'fselves in this section to p01nt1ng out that the "quantal" or"
"f;.lmproved sem1c1ass1cal express1on for 1, obtained by differ- ;;f e

')i‘ entiating Eq. (8a), does not exhibit the dlvergence eXPressed"}:

.ftin-the.simple classical result, Eq. (3); this divergence is
hf:exactlyvcancelledfby the correction function h(w) which appears .

»% in Egs. (8). Thus, differentiation of Eg. (8a) leads to phase

4 .-.shifts with the correct quantal features, i.e., 7 is finite for

e e e



-

_ when the 1n01dent enervles Dass through values for whlch the;
“g_resonance condltlon expressed 1n Eq. (ll) is satisfied. Con-f:gf

26 -

j'rates , 27

and the thermodynamlcs of real gases which have_v'“'V
?ibeen formJlated in terms of the dlstrlbutlon in collision :
*Ellfetlmes may be ‘handled within the framework of a cla831calE'fﬂ
é?theory by employlnv Eq. (Ba) to incorporate the quantal ‘
ércorrectlons ' ‘ ' C
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APPENDIX '

REDUCED PHASE INTEGRALS FOR A LENNARD JONES (12-8)
- POTENTIAL

 Tables of:the reduced»phase integrals 6O(K L*) and

2(K L*) and of. the barrier penetration integral IS(K L*)

"rlfor a Lennard Jones (12-6) potential were prepared by numer-”

g:lcal,integration of Egs. (lb)and_jG) using 500 subintervals.

.. The effect of varying'the‘integration step size was investi-

;'7; gated for random values of K and L*. -Thus, values of

'“12(0 2, 1.0) and I,(0.2, 1. o) computed with 500 subintervals

were w1th1n 0.01%. of values computed with lOOO 5000, and
.”lO 000 subintervals.

- The externalﬂphase shift was evaluated by expressing

;f;Eq. (1a) as

® . . ‘ -
02(1,10) = [ (& - 1) - (x - 1230 ax

. . . ) _l %. ' 2 . 2 —é— "
+ L* cos (L*/K x3) - (Kx3 - IL*%)

. where it is understood that the c'os_l of a number greater than-

Q a unlty and the square root of negatlve numbers are both taken

as zero. In practlce, the upper limit of the integration was
taken as 20 rather than 1nfin1ty For most of the ‘entries
in the Table, thls results 1n neglible error; in the most

-extreme entry, K =20.05 and L* = 1.50, it results in less

"Eff than,l% error. The integration'was,performed by dividing the

_interval from x; to 20 into 5000 subintervals. Variation of

: !~‘j the number of intervals from 2000 to 8000.indicated that the

 ‘entries in Table I for high values of L* where 62 is relatively



Tt gy v,

'“ﬁw;29~”ﬁﬁf3eetf”¥7f79 4"7' '5v‘~i'F3f,f‘_fai'p
small may be 1n error by about l%. Furthermore, at hlgh

lvalues of L*'Wog should converge to the value predlcted by-'

ithe flrst Born approx1matlon,

62 (Born) = 3wK2/16L*5) R CoEE e R

gthls behav1or 1s 1ndeed found Entrles in the Table for ;
'hlgh values_of,L*'are wlth;n a few peroent of;the Born ;




REDUCED EXTERNAL PHASE INTEGRAL

~30~

Values of X

.250000

1.50

L* 0.050000 0.100000 0.150000 0.200000 0

0.05 -1.487291 -2.135351 -2.632697 =-3.052002 . -3.421429
0.10 -0.953822 -1.410988 -1.762185 =-2.058393 -2.319423
0.15 -0.679626 =-1.050492 ~-1.336179 " -1.577398 ~1.790095
0.20 -0.492343 -0.809429 ~1.055038 =-1.262867 ~-1.446337
0.25 =-0.349270 -0.626745 ~0.843741 ~-1.028038 -1.191056
0.30 -0.234466 -0.479202 -0.673590 -0.839642 -0.986971
0.35 -0.140882 -0.355972 -0.531061 ~-0.681931 =-0.816391
0.40 -0.065365 =~0.251430 -0.408963 -0.546454 -0.669780
0.45 -0.006737 =-0.161982 -0.302480 -0.427462 -0.540600
0.50 -0.033190 - -0.086702 ~0.209968 .-0.322851 -0.426385
0.55 -0.048247 -0.025136 -0.130087 =~ ~0.230797 -0.324951
0.60. 0.024026 0.022117 -0.062255 -0.150235 -0.234919
0.65 0.014428 0.052706 -0.006828 ~0.081014 -0.155889
0.70 0.009450 0.059879 0.035929 -0.022332 -0.086242
0.75 0.006513 0.032126 0.0633494 0.024825 -0.027384
0.80 0.004639 0.020920 0.0691193 0.059095 0.021199
0.85 0.003393  0.014640 0.039625 0.077274 0.057906
0.90 0.002533 0.010670 0.026662 0.063232 0.080704
0.95 0.001932 0.007979 0.019221 0.038781 0.082152
1.00 0.001487 0.006089 0.014375 0.027625  0.049666
1.05 0.001158 0.004743 0.011019 0.020637 0.034949
1.10 0.000922 0.003725 0.008601 0.015863 0.026150
1.15 0.000731 0.002966 0.006815. 0.012432 0.020194
1.20 0.000594 0.002394" 0.005470 0.009930 0.015927
1.25 0.0004 84 0.001937 0.004420 0.007997 0.012750
1.30 0.000399 0.001596 0.003628 0.0064 98 0.010349
1.35 0.000330 0.001317 0.002991 0.005370 © 0.008482
1.40. 0.000279° 0.001102 0.002489 0.004473

1.45 0.000233 0.000927 0.002091 0.003726

- 0.000189° 0.000778 0.001778 0.003131




Ca3ls

"REDUCED EXTERNAL PHASE INTEGRAIL, (Cont'd.)

Valueé

OC 0O00DO0O0C OO000CO 00000

N

of X -
IL* 0.300000 - 0.350000 0.400000 0.450000 0.500000
.05 +=3.755423 -4.062567 -4.348452 -4.616963 -4.870928
.10 -2.555448 -2.772520 =-2.974581 -3.164372 ~3.343890
.15 -1982490 ~2.159480 ~-2.324263 -2.479061 -2.625497
.20 =~1.81l2417 -1.765276 ~1.907644 -2.041424 -2.168004
.25 -1.338804  -1.474906 -1.601745 -1.720988 ~-1.833856
.30 -1.120752 -1.244147 -1.359252 -~1.467541 -1.570098
.35 =~0.938824 -1.051963 T -1.157642 -1.257164 -1.351493"
.40 ~-0.782512 .-0.886956 -0.984696 - -1.076871L ~1.164331
.45 -0.644579 -0.741257 -0.831959 - -0.917658 ~0.99909%
.50 =~0.522250  ~0.611819 -0.696136 -0.778003 -0.852043
.55 -0.413046 - -0.495900 -0.574250 -0.648713 -0.719787
.60. -0.315345 =-0.391675 ~0.464300 =-0.533624 -0.600012
.65 ~0.228583 ~-0.298458. -0.365494* -0.429859 -~0.491765
;70 -0.151089 -0.214302 -~0.275657 -0.335037 =-0.392480
.75 =-0.083151 -0.139388 -0.194868 -0.249174 -0.302125
.80 -0.024735 -0.073381 '-0.122675 =-0.171700 -0.220028
.85 0.023607 -0.016570 ~0.059127 -0.102527 =~0.146004
0.90  0.0860710 0.030550 -0.004440 .-0.0416892 =0.079959
0.95 0.084837 0.066843 0.040782 0.010493 -0.022036
1.00 . 0.090064 0.090438  0.075277 0.053247 0.027279
1,.05 0.058211 0.095853 0.097193 0.085358 0.067112
1.10 0.0407920 - 0.0863815 0.100454 0.104487 0.096191
1.15 0.030665 0.045000 0.066461 0.103401 0.111464
1.20 0.023803 0.034087. 0.047565  0.066810 0.103147
1.25 ° 0.018917 0.026613 0.036415 0.0488% 0.065673
.30 0.015217 . 0.021259 . 0.028672 0.037800 0.049141
.35 0,012436 0.017245 0.023080 0.030072 0.038500
40 0.010268 0.014167 0.018880 0.024380. 0.030901
45 ‘0.008545 0.011763 0.015586 - 0.020041 0.025253
.50 0.007147 - 0.009837 0.013005 0.016679 0.020886
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" REDUCED EXTERNAL PHASE INTEGRAL (Cont'd.)

Values of K

L* 0.550000 = 0.600000

.05 =5.112483 -5.343287
.10 =3.514641 -3.677797
.15 -2.76479%4 -2.897905
.20 -2.288436 ~-2.403536
.25 =1.941272 -2.043959

.30 -1.667745 -1.761127
.35 ~=1.441365 -1.527356
40 -1.247731 -1.327587
45 =-=1.076840 -1.151353
.50 =-=0.924750 -0.994521

.55 -0.787881 ~-0.853331
.60 -0.663782 -0.725202
.65 -0.551428" ~-0.609046
.70 =0.448084 -0.501968
.353681 -0.403867

.80 -0.267458  ~-0.313807
.85 -0.189154 - -0.231762
.90 -0.118579 -0.157164
.95 -0.05574°9 ~-0.090037
.00 =-0.000975 -0.030566-

-3
ul
1
(©]

.05  0.045228 0.020931

10 0.081704 0.063646

15  0.107169 0.096545

20 0.117324 0.117487 .
25  0.092992 0.120768

.30 0.0B3715 0.084147

.35  0.048665 0.061166

.40 0.038546 - 0.047622

.45 0.031242 0.038187

.50 O

.025792 0.031239
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'REDUCED INTERNAL PHASE INTEGRAL

oNoNoNoNe)

HOOOO - 00000 00000 . 00000 00000 OCO0Od 600000

» 00

Values of K

L* 0.050000 0.1000000 0.150000 0.200000 0.250000
.05 1.777593 2.288381 2.6859304 3.031773 3.336248
.10 1.310392 1.632956 1.889031 2.109228 2.305889
15 1.094113 0 1.334907 1.527664 1.694255 1.843570 ..
.20 0.956153 1.149683 1.305488 1.440653 1.562137
.25 0.853415 1.016048 1.147364 1.261574 1.364432
.30 0.769402 0.910514 - 1.024433 1.123631 1.213080
.35 0.6896228 0.821¢210 0.922959 1.010922 1.090271
40 0.629481 0.744149  0.835474 0.914800 . 0.988317.
.45 0.565932  0.673005 0.756799 0.829267 0.894490
.50 0.503475 0.606659 0.684814 0.751899 0.812089
.55 0.437908 0.543334 0.817544 0.680462 0.736627
.57 0.404735
.58 0.389706
.59 0.377077 .
.60 - 0.365486 0.481477 =~ 0.553514 0.613351 0.666348
.82 0.343921 - ' .
.85 (0.314319° . 0.418380 0.491767 0.549687 0.600359
.67 0.295688 , _ :
.70 0.268882 0.352282 0.430444 0.487632 0.536683
.72 0.251588 0.317523 :
T3 0.243077 0.303164
.74 0.234647 0.290418 .
.75 0.226308  0.278558 0.368220 - 0.4268608 . 0.474915
77 0.209815 0.256532
.80 0.185515 0.226112 - 0.300999 - 0.365332 0.414090
.82 0.189563 0.206993 0.266157
.83 0.181651 - 0.197683 0.250703
.84 0.153782 0.188518 0.237327
.85 0.145948 0.179486 0.22499% 0.301798 0.353262
.87 0.130388 0.161758 - 0.202214
.90 0.107283 0.135876 0.170917 0.290848.
.91 0.099643 0.127414 0.160999 0.209171 '
.92 0.092025 0.119017 0.151276 0.195346
.93 0.084433 - 0.110687 0.141746 - 0.18271l2°
.94 0.076865 - 0.102416 0.132365 0.170800
.95 0.0869321 0.094208 0.123125 0.159417 0.222584
97 0.054295 0.077%942 0.105009 0.137826 . 0.186754
.98 0.046815 0.069882 0.096111 0.127479 0.170927
.99 0.039353 0.061869 0.087316 0.117379 0.157189-

0.031908 0.053896 0.078606 0.107485  0.144496 -




. REDUCED INTERNAL PHASE INTEGRAL, Cont'd.

34

Values of K

e e e ] e ey

L* ‘0.050000 ° 0.1000000  0.150000  0.2000000 0.250000
.01  0.024480 0.045964 0.069979  0.097780 0.132517
.02  0.017076  0.038070 0.061420 0.088231 0.121054 -
.03  0.009685  0.030211 0.052943  0.078842 0.110000
.04  0.002310 0.022388 0.044529  0.069577 0.099281
.05 ' 0.014599 0.036178 0.060435 0..088843
.06 0.006840 0.027883  0.051403 0.078646
.07 0.019646  0.042470 . 0.068660
.08 0.011459 0.033632 0.058861
.09 0.003320 0.024879 0.049226
.10 , 0.016211 0.039736
1 0.007612 ~ 0.030383
12 : 0.021152
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REDUCED INTERNAL PHASE INTEGRAL (Cont'd.)

Values of K

FHREHE HEFHE HOO00 00000 00000 00000

HEHEP HEREEE

¥ 0.300000  0.350000 0.400000 - 0.450000 0.500000
.05 B.613403 3.869661 4.109244 4.335115 4.549441
.10  2.485523  2.6852068 2.808124 . 2.955526  3.095620
.15  1.980326  2.107391 2.226666 2.339495 2.446869
.20  1.673644  1.777428 1.874990 1.967394  2.055424
.25  1.458996 - 1.547130 1.830076 1.708714 1.783696
.30 1.295407 1.372212 . 1.444556 1.513196 , 1.578687
.35 1.163343 - 1.231551 1.295834 1.356855 1.415106
.40  1.052171 1.113651  1.171604 1.226630 1.279172
.45  0.945050 © 1.010513 1.063301 1.113424 1.161286
.50  0.867380 0.918935  0.967501 1.013599 1.057609
.55 0.788084 © 0.835987 0.881067 0.923826 - 0.964628
.60  0.714705 0.759611 0.801803 0.841776 0.879888
.65 0.648312 0.688830 0.728680 0.766371  0.802262
.70 0.580762 0.621332 0.659227 0.694985 0.728975
.75  0.517716  0.556810 0.593152 0.627330 0.659740
.80 0.456280 0.494373  0.529538 0.562457  0.593570
.85  0.395749 . 0.433395 - 0.4687792 0.499781 0.529877
.90 0.335198 0.373154 0.407269 0.438685 0.468050
.95  0.273239  0.312791  0.347294  0.378578  0.407537
.00 0.206553 0.251004 0.287072 0.318866  0.347840
.03  0.155255

.04  0.139487 . -

,05. 0.125655 0.184581 0.225205 0.258660 . 0.288286
.08 0.089190- 0.134125 |

.09 0.078026 0.116992

.10 0.087199 0.102581 0.158263 0.196525 -0.228037
.13 0.036273 0.065162 0.106156

14 0.026374  0.053767 . 0.089839

.15  0.016643  0.042737 0.075632 0.128121  0.165280
.16 - 0.007083 . 0.032008 0.062515

17 0.021536  0.050122 o

.18 0.011289 0.038273 0.074135

19 0.026860 0.059219

.20 0.015789 0.045627 0.093807
.21 0.005024 . 0.032866

.22 0.020733  0.055254 -
.23 0.009062 0.040150 -
.24 | 0.026404
.25 0.013518




‘REDUCED INTERNAL PHASE INTEGRAL (Cont'd.)
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Values of K

HHEHEHKH FHHEHE HO000 00000 00000 00000

L* 0.550000  0.600000
.05  4.753870 4.949688
10 3.229435 3.357772
.15 2.549547 2.648120
.20 2.139684 - 2.220641
.25 1.855519 ~ 1.924576
.30 1.641459 1.701845
.35 1.470962 1.524717
.40 1.329567 1.378079
45  .1.207196 1.251395
.50  1.099819 . 1.140454
.55 1.003749 © 1.041399
.60 0.916407 0.951537
.65 ~ 0.836619 0.869647
70 0.761470 0.792673
.75 0.690667 - 0.720323
.80 " 0.623185 0.651528
.85 0.558426 0.585679
.90 0.495776  0.522148
.95 0.434697 0.460405 -
.00 0.374745 0.400032 "
.05 0.315349 0.340512
.10 0.255934 0.281408
.15 0.195413 0.221937
.20 0.131636 0.160982
.25 0.050684 0.095366
.26 010334 86..

.27 0.018703

.28 0.005090

.29 0.025424
.30 0.009592
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Values of K

 REDUCED BARRIER INTEGRAL

0.200000

PHEFF HFREHEHEE HFHEOOO 00000 00000 00000 O00000. 00000

L 0.050000  0.100000  0.150000 0.250000
.57  0.003374
.58  0.019403
.59  0.035673 ,
.60 0.05219%
.62 0.085917
.65 0.138248. -
.87 0.174278
.70 0.230009 |
.72 0.268262  0.008522
.73 0.287728 0.024762
.74  0.307411  0.041206.
.75  0.327290 0.057848
.77 0.387729 = 0.091743
.80  0.429994  0.144106 |
.82  0.472369 - 0.180008  0.004530
.83  0.494052 0.198271  0.020897
.84  0.515943 ° 0.216730 0.037453
.85 0.538046 0.235398 0.054200
.87 0.582831  0.273344  0.088277 .
.90 0.651649 0.331846  0.140865
.91 0.675022 0.351752 0.158792 0.019154
.92 - 0.698647 0.371891 0.176931 0.035893
.93 0.722517 0.392226 0.195262 0.052893
.94 0.746384  0.412840 0.213806 0.069949
.95 . 0.770838 0.433650 0.232565 0.087274
.97  0.820522 0.476002 0.270742  0.122536  0.005630
.98  0.845766  0.497564 0.290180 0.140484  0.022446
.99  0.871308 0.519297 0.309839 0.158640 0.039462
.00  0.897211 0.541488 0.329748 0.177024 - 0.056685 .
.01  0.923516 0.563906 0.349925. 0.195638 0.074116
.02 0.950280 -0.586572 0.370379 0.214494 0.091760
.03 0.977735 0.609786 0.391105  0.233592 - 0.109632.
.04 1.005980 0.633358 0.412163 0.252957 0.127734
.05 0.657406  0.433580 0.272610  0.146081
.06 0.682396 0.455398 0.292558 0.164686 -
.07 0.477655 0.312825  0.183560
.08 0.500674 .0.333525  0.202732
.09 0.524760  0.354657 0.222226
.10 0.376352  0.242089
11 0.398895 0.262371
1.12 0.283181




REDUCED BARRIER INTEGRAL (Cont'd.)
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HEFPR HEPHER PR R

‘Values of K
L¥  0.300000 0.350000 0.400000  0.450000 . 0.500000
203 0.006927
.04  0.024031
.05 0.041352
.06 0.058902
.07 0.076688 ~
.08 = 0.094722 .0.002398 "
.09 0.113026 -0.019756
.10 0.131816 0.037358
.11  0.150518 0.055223
.12 0.169769 0.073365
.13 0.189428 0.091814 0.006727
.14  0.209567 0.110604 0.024524
.15  0.230344 .0.129775 0.042618
.16 0.252098 0.149407 0.061042
.17 0.169624 0.079842
1.18 0.190654 0.099083 0.018829
1.19 : 0.118860 0.037331
1.20 0.139393  0.056260
1.21 0.161184  0.075710
1.22 0.095839 - 0.0193885
1.23 0.517029 0.038570
1.24 0.058395
1.25 0.079164
REDUCED BARRIER INTEGRAL (Cont'd.)
Values of K
L* 0.550000 - 0.600000
1.25 0.008318 ’
1.26  0.025909
1.27  0.046365
1.28 0.068392
1.29 © 0.017766
1.30 0.039334
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