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SEMICLASSICAL PHASE SHIFTS FOR 
LOW ENERGY "ORBITING"· COLLISIONS 

Ronald R. Hermt 

Inorganic Materials Research Division 
Lawrence Radiation Laboratory 

and Department of Chemistry 
University of California 

Berkeley, California 94720 

Abstract 

UCRL-17512 

A semiclassical expression for the phase shift in the 

literature which is applicable even when a maximum exists 

in. the effective potential is re-expressed in terms of 

the simple JWKB phase integrals. This expression may be 

employed to calculate phase shifts from tables of reduced 

functions computed for a Lennard-Jones (12-6) potential. 

Sample semiclassical calculations are compared with published 

exact values; excellent qualitative and good quantitative 

agreement is obtained. Finally, the qualitative nature of 

the quantal corrections to the classical total and differ-

ential cross sections and the collision lifetime is discussed. 

tPart of this work was completed while the author was a 
doctoral candidate at Harvard University. Support of this 
phase of the study by the National Science Foundation is 
gratefully achknowledged. 



.. 

-1-

INTRODUCTION 

In treating the elastic scattering of atbms or molecules 

subject to a spherically symmetric potential) a full partial 

wave quantum mechanical calculation can be prohibitedly time 

consuming due to the large number of partial waves which con-

tribute. On the other hand) the information concerning the 

intermolecular potential which is obtained from scattering 

experiments is often derived from the special quantal features 

which are observed. l 'It has proven possible to incorporate 

the quantal effects which have been observed into a modified 

classical scattering theory through the development of a 

semiclassical theory2 ,employing the "JWKB" expression for 

the phase shift. 3 The validity of the JWKB expression has 

been examined by numerical comparison with the exact quantal 

solution. 4 - 8 In ,genera~, ,the JWKB approximation is very good,9 

although it mustbe:mbdified for low incident energies where 
, 6-8 10 

classically the phenomena of orbiting collisions is expected. ' 

The treatment given here' begins by examing the classi-

cal expressions for the angle. of deflection and cOllision' , 
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lifetime .. near .ano·rbiting· singula.ri ti· ... A· semiclassical 

expression for the' :phase ·shi.ft valid for 'i~cident energies 

near a ma.ximum in.the effective potential,previously derived .... . .' 

byFord, et.· ~1.;111 'isthen re-expressed in terms of the JWKB 

classical· phase integrals with simple correction terms which' 

incorporate the quantal features of tunnelling and the 

uncertainty' principle .. Table of reduced phase integrals 

computed for the Lennard-Jones (12 - 6) potential are given 

'in the Appendix. Semiclas~ical ph~se shifts, readilyca~cu~. 
. . 

lated from. thes~ reduced Tables, are shown to be in excellent 
':.::- . ,t" 

~: quali tati ve and good' quanti tati ve agreement with published 

'valued . computed by solving Schrt5dinger I s equation. Finally, 

.' ' .. , ~, . ·.possible experimental consequences of the special resonance 
.' 

... ' ~.' '. ieatures ~hich appear in the phase~hift are discussed semi~ 
,';' .. " :'. 

'classically. 
• r \. ~ ' .. 

,"'. 

". " 

. ~". ' .. ' " 
~ , .' 

.. ":~' ... - :'; ~"!''t '; 
. .,:-:. 

CLASSICAL ORBITING 

A Lenna'rd-Jones (12 - 6) potential is used throughou.t 

this paper to illustrate the procedure, but the methods are 

•.. applicable to any potentiai; . Variables are reduced with 

respect to the depth of the minimum in the potential, E, and 

, its internuclear separation,' r~. The symbols K, x, L*, cp(x), 

and u(x,L;) denote respectively the reduced energy, inter-

nucl.ear·separation, orbital angular momentum, intermolecular 
'I .... >. ,:.'>. ~'; ;' :/,~: ... ~ 

effective. potential. The capacity parameter .::: ~~:·~o.·potential,. and 
. 2 

2\.L E. r 
'm 

"'. 

where. \.L denotes the reduced mass J and redu.ced 

.. ' ..... 
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angular momentum are related to the orbital angular momentum 

L by 

Figure 1 illustrate~ the effective potential for two values 

of L* and defines some of the nomenclature employed for 

g = K ..;. K < O. For g >' 0, the,turning point of the unbounded 
o ' " 

motion is denoted xl and x 2 = x3 = xo' The parameters 

K , x , and u" = d2u/dx2 , "'L"* which characterize the nature 
o 0 x6~ , . 

of the relative maximum in u(x,L*) are of course functions of 

L* only: Ko always increases with L*; Xo decreases or remains 

constant; and u ii exhibits a more complex dependence. The 

functional dependence of all three parameters on L* is deter-

mined by the intermolecular potential; Figs. 2, 3, and 4 

illustrate the dependence of Ko ' xo ' and u" on L* for the 

Lennard-Jones (12 - 6) potential, 

¢(x) x-12 - 2x- 6 

It is convenient to define ~ reduced external classical 

phase shift by 

CD 

6~ (K, L *) = J [K - u] t dx 

x3 

OJ 

-J 1 

L*/K2 

221 
[K-L* /x J2 dx, 

and a reduced internal classical phase integral by 

x 2 1 

= J [ K - u ] 2 dx . 

Xl 

For values of x within a distance s of x , the effective 
, 0 

potential may be expanded for a fixed value of L* as 

(la) 

(lb) 

! 
I 
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0~5 
____ ~~~---------------~Ko--------~ 

~::--~-------K--~ 

-......c:;--+---t-----+-- Km 

0.0 

'-0.5 

1.0 1.4 1.8 2.2 

Reduced Separation, x 

XBL 675-4007 

., . Fig. 1. Plot of the reduced effective potential 

u = cp + L*2/x 2 versus x for L* = 0.0 (lower curve) 

'.' " .... and 1,.127 J upper· curve). The dashed curve is a 
:~, " '. , 

... : '.~' .', . '.,~,.~ .. parabolic fit to the maximum in the effective 
, ." 

potential. 

• 
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Plot of the energy of the maximum (K ) and the o 

minimum (~) in the effective potential vs. L* 

for 'the Lennard-Jones (12-6) potential. 
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Fig. 3. Plot of the reduced position of the maximum in 

the effective potential for the Lennard-Jones 

(12-6) potential. 
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Fig. 4. Plot of the reduced curvature of the maximum in 

the effective potential vs. L* for the Lennard~· 

Jones (12-6) po{ential. The dashed line 

indicates that u" must climb rapidly and reach. zero 

at the critical point where L* = 1.397. 
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Consequently, the red\1,ced phase integrals may be expressed, 

for small g" as: 
-'f 

OO(K'L*) x ',' 

, i' .,' ~ • 

,:' 

·~IOJ 
x +8 
0, ' 

, 

CD 
1 

(K - u)"2 dx -"j .. "(K 
, 1 ' 

, L~/K"2 " 

+F (s , K, L * ) , 

1 
u)"2 d~ + F(s,K,Li); 

.- ,.; 
·.i.... " .. : ..... , .', .. ~ 

(2a) 

(2b) 

, " 

"These expressions for O~ and I2 will not depend on the particu- , 
• .~. .. _ i. ,. ~ : .' • 

. ,'<:~ lar choice of s, provided ' it is sufficiently small to ensure 
" ,,;.: .. , 

',',,;' "that the effective potential is adequately approximated by a , 

" -

... .:.' . ." . 

: '. .." :~ ~ ..... ~ '. 
" -.;'-

parabola between x -s and x + so, o ' 0 

Expressions for the classical collision lifetime and 

12 ' - () I.' deflection angle are now obtained: by differentiating- , Eqs 0 ' 2 0 

.;: 

Thus, the collision lifetime for g < 0 is readily shown to be 

l' (K,L*') = l' -o 

Eq 0 (3) was der1 ve,d for a fixed value of L*, and 1'0 and ,u" 

are functions of L*; l' will depend on g as well, but the 
, ,0 

(3 ) 

,. 
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energy dependence will be dominated· for small g by the 

logarithmic singularity of the second term. A similar 

expression for g > 0 is obtained with the nonsingular term 

'To replaced by an analogous term 

logarithmic singularity of 2(- ~ 

'T. and with 
l 

2 1 
rm! SUff )2 • 

a slope to the 

In a similar manner, the deflection angle may be derived 

from Eqs. (2) after first relating the energy separation var

iable g, which refers to fixed L*, to the angular momentum 

displacement variable p = L* - L~, which refers to a fixed 

K ~uch that K = K (L*).To first brder in p the relation is o 0 

g = _ 2L* './ 2 o p xo (4 ) 

and the deflection angle for fixed K and variable p is given 

by: 

x Xo + (- :L Q 'f 1. + (p/ 2 u") d u,;] ln 
x u,,1 dL* 

o 

1 

2 2L~ 
u" -2- pI, p > 0 

xo 
(5a) 

(~ 2~~ )2 [1 
x u" , 

+ (p/2u") du." 

dL* 
] 

2 2L~ 
.. ln 1- -2- pI, p < O. 

U" x o o 

The variables 'Xo and Xi are nonsingular functions of K and p; 
I 

Xo is to be evalu.ated at L~, but u" and dU"/dL* are functions 

of p. The singular behavior at very small p will be given by 

X=X~ + a o ln p, p > 0 

(5b) 

X = Xi + 2ao ln Ipl, p < 0, 

where X~ and Xi are regarded as constants and the slope a o 
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*4 1 
equals [- 2Lo/xou"J~; Eq. (5b) agrees with the expression 

derived' by Eisberg and Porter!13 

The expression for the classical lifetime, Eq. (3), is 

expected to have a wider range of validity than does the 

correspohding expression for the deflection angle, Eq. (5b), 

since Eq. (5a) is a more exact expression for finite p and 

the correspondence between g and p expressed in Eq. (4) is 

only approximate. Hirschfelder, et al. 14 have compiled a 

table of exact classical deflection angles for a Lennard-

Jones (12 - 6) potential. Empirically, it is found that these 

exact values of X can be fit by Eq. (5b') over a range of 

Ipl ~ 0.05. Generally, the slopes found empirically deviate 

from the predictions of Eq. (5b) by about 10 to 30%. The 

exact values do follow Eq. (5a) sOIhewhat more closely, regard-

·ing Xo and Xi as constants: this is illustrated in Fig. 5 for 

K = 0.4. 

• 
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1.0 / 
/ / / 

K = 0.40 / / 
/ / /. 

/ / 
/ / 

/ / / 
/ / 

/' / 
/ / / 0 . / 

/ 0.0 / / 
Inside branch / . / 

/ P < 0 /. 
~ '/ 

Outside branch 

~ 
P > 0 

~ 

V 
0.01 .1' ,-

o 

-4.0 -3.0 -2.0 -1.0 1.0 

Angle of deflection, X 

• • • XBL 67~-4008 .. 
The angle of deflectlon near an orbltlng slngularlty 
vs. the reduced angular momentum defect p. The points 
are the exact values obtained by numerical integration 
given in Ref. 14 for the Lennard-Jones (12 - 6) poten
tial. The dashed lines are obtained from Eq. (5b) (X~ 
and X! regarded as constants). The solid curves are 
obtaifted from the more exact Eq. (5a) (X and X. 
regarded as constants). The theoreticalocurveslwere 
fit to the exact points at p = -0.02 and +0.0172 
(solid symbols) by adjusting Xo ' X~, Xi' and Xi' 
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: QUANTAL ORBITING: .,:, :> .. 

'. Ford,' Hilt:,wakan:o, arid Wheeler'
j
:1 have 'deri ved a semi':' 

.' 

classical expressionfor.the phase shift applicable near a 

maximum int'he,'effecti ve potential which predicts the energy': 

depend~n6e cif th~pha. se ~hift for a fixed L*. , 0 Schrt5dinger:s 

equation was solved exactly for an inverted parabolic potential 

: ..... :. .: ..... '. ·.£i tted to the maximum; this exact solution near the barier 
"'!.". 

. . ~ .. 
: ..... ' ........ . 

..'.;',: ... 
. 'maximum ~a's joined onto JWKB solutions to the left and right 

of the barrier and the .JWKB phases were developed to first 

'. :: ..... -... . .... 

power in the energy. By expanding the·classical phase 

inte.grals of Eqs. (2) to first power in the energy displace-~. ; .. 
,'." ~,.. . l: ... '.: .. .. ..... · ... :.1;· 

, ' '.' .... ment variable g and comparing wi ththis more exact expression; 
. . '15 

"'it is possible to r~-eipress the more exact expression ' in .' .. 

. ' .. " 

.terms of the classical integrals and 'an extended JWKB barrier 

penetration integral, 

. l' 

KJ.2 dx,' g < 0 

........ 

. . " ... ' .. e = - 7TW; . g> 0; (6) 
. ',' ... ) ... 

.... , w 'is 'the reduced energy displacement parameter' employed in 
;\ : .... ' .> . 

Ref. 14 and is related to gby 

w = [ - 2~".J g. (7 ) 

.,' 

':!:.')/ The resulting expression for the phase shift becomes: 

, ·.i~:~;'·~··; ,":", ~':. ,; 
.... : . .. 

~(K,L*,B) = Bl 6o _ h(w) + t(w) x 
.1·':'\, : .:. ! .' '. ".~ 

tan- l .[expf-e~ tanJ 
+ exp -8 - 2 tan (8a) . 

.. : 

': ..... 
'" '. " 

.,:'. .... 
..'. 

1,.;' 

j 
'j 
I 
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where the refined phase integral is defined as 

1 
J(K,L*,B) == B212(K,L*) - 7T/2 - h(w) + t(W). (Sb) 

The correction formula h(w) and transition formula t(w) are 

defined as 

with 'Y 

h(w) == 0.5w[ln[ (w/e)2 + (1/4ry)2]t - In( Iwl/e)}, (9) 

1.7Sl07 

and 

t tan -1 e7TW , (10 ) 

and are plotted in Figs. 6 and 7 respectively. 

Qualitatively, Eq~ (Sa) exhibits the proper behavior for 

all energies. Thus, for g » O,it simply reduces to the 

classical value, 
1 

11 == B2(6~ + 1 2 ), 

The phenomena of tunnelling is also contained in Eq. (Sa). 

Thus, for g « 0, the contribution from the internal phase 

is relatively constant, extept when . 

-8 tan J 'V 0.5 e , 
at which point an increment of 7T is quickly added to the 

(11) 

phase shift. For g 'V 0, the increments of 7T from the internal 

phase are smoother and the infinite rate of change of the 

phase with g at g == 0, which is predicted by the classical 

expressions, Eq. (2), is removed through the correction 
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I ',. ~'" ' . 

. '. ~.: :-.:' '~-.,.:, 

{ [ 2 2]"2 h(w) = w/2 In (w/e) + 0/4 y). -lnOwl/e)} 
h(-w) = - h(w) 

.... . ' Y=I.78107 ... 
0.08 

' ...... ," 

'.: :" . 0.06 
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,,: -:. " ,:, ",.1' ~." • 

:-. : .. ~ . 0.02 
, ~' ' 

..... , ' 

.. ':' 

" " 

, . -, .. ~,; .- . ~. ..'" . . 

".; ", .. ' 

w 
XBL 676-4112 

. Fig. 6. Plot of the quantal correction term h(w),·Eq. (9), 

versus·w. 
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Fig. 7 .. Plot of the transition term t(w), Eq.(lO), 

versus w. 



. ,,'" 
,.~ .' . , ... . 

-16-

·functionh(w).,. Recently, Curtiss and powers16 ,17 have 

~ ." 
.. -" 

, .' . . ~' .. , . , ..... 
',obtained an expansion of. the phase shift, in powers of h 

which indicate~ that the phase shift in the clas~ical limit, ;,',.:. ,. 

.. ,' .! " ...• .' , ~ 
. " .... " 

. ; ,,'. .'. ~ ',' 

..... ' .. 

'. . ~'. 

..... : .... 

for g < 0, where more than dne turning point of "the 'classical 

motion exist, is given by the phase integrals over all classi~: 
, . 

cally allowed regions. This behavior is also exhibited by 

,Eq. (Sa) since the contribution from the tan- l term is always 
'. ," 1 

<: with 7T of the value B2I 2 . 

Comparison with Other Work 

By means of Eqs. (4) ,and (S) the phase shift is readily 

...• , .' 

, calculated for any set of values of B, K, and L* from the· 

,graphs of Ko(L*), xo(L*), u"(L*); h(w), and t(w) given in 

;Figs. 2, 3, 4,'6, ~nd 7 and the tables of the reduced inte~rals 

,6~(K,L*), I 2 (K,L*), and I 3 (K,L*) tabulated in the Appendix . . , ~ 

, . Semiclassical. phase shifts evaluated by this procedure are 

compared with published exact quantum mechanical, calculations 

iri Figs. Sand 9. The semiclassical correspondence between 

'L* and the partial wave quantum numbers P, was used, 

l' .. 

p, +t = B2L*. 

In general, the agreement is seen to be very good. The 

.. semiclassical expression tends to overestimate the phase shift 
1 

,'at very small values of B(B2 < 5). 
"" 

Expressions for correction 

'>' !'. -, n 
'terms to the semiclassical phase are known to become· important 

,at small values of B. 9,19 However, the range of validity of 
• t· ':; .' 

.. 
• < , ... ~: .... /~ ..... : ... 

....... 1 
Eq. (Sa), B2 > 5, should include all atomic or molecular 

~~. "" 

,,', 

." 
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K 
. .., . . . . . . .. . ... . . 0.60 

A A A A A 0.45 

0.41 

0.40 

~"0.31 
I I 
I 

100 200 
P, 

XBL 675-4004 

~ Flg. S. Comparison of the exact quantum mechanical phase 

shifts of Ref. 7 (curves) with the semiclassical 

expression, Eq. (Sa) (symbols). The calculations 

are for a Lennard-Jones (12-6) potential with 

L* = 1.127, Ko = 0.400S. 
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scattering partners which.are likely to be studied experi-

mentally. Thus 3 even for the extreme case of H atoms scatter-

ing off a heavy target with € = 1 kcal/mole and rm 

about 9 and the semiclassical expression may be used with 

confidence for qualitative and good approximate quantitative 

predictions. 

RecentlY3 Livingston8 has derived a semiclassical expres-

sion for the phase shift3 by an eloquent application of phase 

integral methods 3 which is applicable to an attractive poten-

tial where classically three turning points exist; he has gone 

on to compare the predictions of this expression with the 

quantum calculations of Ref. 7. His expression is similar to 

the Ford., Hill., Wakano., and Wheeler expressionll employed here. 

In fact 3 it is possible to directly compare the present work 

with Ref. 8 3 since Fig. 3 compares our results with those 

presented in Ref. 7. Numerical results presented in Ref. 8 

for g < 0 are in good agreement with those presented here 

(K = 0.31 3 0.35 3 0.39 3 0.40). Both semiclassical treatments 

reproduce the quantum calculations quite well for larger values 

. of l and begin to fail for l <10. The present results repro-
'V 

. . 
duce the undulations in the quantum calculations for g > 0 

as well; Ref. 8 predicts the qualitative structure for g > 0 3 

but the extent of the quantitative agreement is not discussed. 

The resonances in the phase shift arise from paired virtual 

levels in Ref. 83 while the quantum calculations show no such 

pairing effect. However 3 the "center-of-gravity" of a pair 
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·compares weli ,with the position.of·the· quantum resonance; 

moreover, the. general 'shape of the quantum resonance is 

predictedsemiquantitatively .. In this connection, no detailed 
.: .. ,",. ", 

'. . .': .. , 
' .. '. :' ~ .. 

• d , •••• 

. '",". 

, ,",', ~.' f' '", 

" ~'. ',: .. ~ , 

- ,'.' 

comparison with the shape of the resonances in the quantum 

calculations of Ref. 7 is presented here, and so it is not· 

possible. to directly. compare with the results of Ref. 8 on 

~ .. " this point ... However, it should be pointed out that Eq. (8a) 
. ~ . 
" I' .," , "i: ~ ~. t, .' -

predicts no pairing of the resonance levels and is in this 
.... 

. ;;'.,"'" respect in better agreement with the quantum. calculations. 
:,. . 

;.' '. 

- .' ~ ; 

" :" ...... 

. ~ 

": ," . 

~'" .. ' . 
", .' 

. ".:" 

Finally, the equation derived in Ref. 8 predicts an infinite' 

~;:r~t~ of change of~ with K (or L*) at an orbiting singularity. 

:In contrast, no such singularity in a~/aK'is exhibited by· the 

'.' . FHWW equation' employed here; as discussed later, this point . , . 

could .be of some importance to the computation of collision 

lifetimes. 

Total Cross Sections 

Qualitatively, the undulations in the phase shifts illus-. 

trated in Figs. 3 and 4 are expected to produce corresponding . 

· ... :·ui).dulations in the total cross section .. Sharp fluctuations 

in the total cross section fo~'energi~s close to resonance 

with a metastable bound level are well known in nuclear 

scattering20 and have also been discussed in treatments of 

atomicscattering.2l~22 The total cross section is readily 

;", ' 

evaluated from Eq. (8a) with the aid of the optical theorem. 

The r'esults:-are most naturally expressed as 

:~ ~. ". 

... . .~-' .', . 

. ' '".:'" . ~ - . 

. , :.:" , .. 

'. ' .... 
. : :1>~ 1.< :Y; 
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4'TlT 
2 £2 

Q Qo 
+ __ m L BK 

£1 

2 TrW 2 . TrW ( TrW ) • 

{
e tan J cos2T) +.e tanJ e -2tanJ Sln 

(2£+1) x 
(eTIW _2tanJ)2 + e 2TIw tan 2J 

(12 ) 

where Q is given by o 

4TIr2 
Q = __ m 1m 

o BK 

£ -1 1 , 

{i I( £~) (1_e2~T)) 
o 

The term T)x repr~sents the external contribution to the phase 

shift and is given by the first three'terms of,Eq. (Sa). 

The partial wave £2 is chosen such that for £ > 12 there 

eiis~ only one turning point of the classical motion and T) = T)x 

for all such £. The choice of £1 is dictated by the require

ment that for £ < £1 the phase shift be a smoothly varying 

function of £, i.e. that T)(£) exhibit no undulations. More

over, Eq. (12) is ,strictly valid only for small values of g; 

for barrier maxima Ko much greater than K, the factor TIW should 

be replaced everywhere it appears in the argument of an expo-

nential function by the negative of the barrier penetration 

·integral, -8. 

The dependence of Qo on K is expected to be smooth; it 

should decrease monotonically with increasing K, with possible 

rather smooth glory undulations l superimposed on this monotonic 

decrease. In contrast, the second and third terms in Eq. (12) 

are expected to lead to sharp fluctuations in the dependence 

of Q on K, arising from partial waves which satisfy the 

resonance condition expressed in Eq. (11). The qualitative 

" l. 
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origin 'of these resonances in Q(K)' is < illu~trated by Eq .. (12). 
. . . . . ' -

',', , 

.. . ~ . ", 
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For g < 0, the ambient; rather smooth, contribution of the £th' 

",;,:~"". p~;'tiai ' wa ve ,to Q is' gi ven by( 47fr~/BK) (2 ,£ + 1) sin 2 'l1
x

' 

•. ' .• ..".; ~ .:' J' 

/(; ...'. ,: ".'.; 
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If 'l1 . isn~ar zero or a multiple of 7f, this contribution will , x ' " 

be small.' In this case, only the first resonant term of Eq .', 

(12) will'contribute appreciably and will result in a positive 

spike in Q,~ since cos 2'l1x "",I. This is exactly the behavior 

. expected qualitatively. In a similar manner, for 'l1x "" 7f/2, 

3/7f, etc., the ambient external contribution will be a maximum 

and'alarge negative spike in Q will appear at resonance. For 
2' ' 

,",'l1x 'V 7f/4,37f/4; 57f!4, etc.,' sin 'l1x ~J and a sudden increment 

:,~"'of7f in the phase shift should lead to sharp positive and , 

negative spikes in Q. Once againj this beha vi'or is exhi bi ted 

'. by Eq. (12), as now the second resonant term is dominant. 
.:' . 

The breadth of these spikes in the total cross section. 

,will decrease very rapidly as w becomes more negative due 

to the exponential dependence on the barrier' penetration 

integral expressed in Eq. (12) . Thu's, for 'w "" 1, these < -
sudden spikes will probably prove ,experimentally unobservable, 

since the measured 'cross section is necessarily an average over 
. '. - . 

the experimental band pass of the velocity selector employed . 

•. 1' ' 

- ; 1 ~. 

,;.' 

" On' the other hand, for w ;;- 1, the width of these resonances 

will·become very broad and merge into a colorless spectrum. 
.. . ' , .~ . .,:. .•. -.' : ':' ,~ . 

,~' :c',', '~.'(;., "'~:r;:: ' ,Consequently, observable resonances in Q are expected when 
~". ~~. :"-', 

. 0 ,,\~'':': ~:"the resonance ,condition is satisfied for w "" 0, i. e. when . ' 

: . t· ',~ .... :' ,'_ ,',," 

" '.: : ~ . . . . .' 
.,:. 

--2
1 

!::: B (1 . 64 + n7f). (13 ) 

,'. 
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It is difficult to see how to formulate a more exact require-

ment for the expected location of the resonance contributions 

to Q. For,w ~ o~ the consideratiornof the last paragraph 

are not helpful because TJx is a rapidly varying function of 

K due to large contributions from the t(w) term. Thus~ the 

exact resonant energies can be predicted only by a numerical 

analysis for each case based on Eq. (12) because of the 

TrW . simul taneous rapid variation in e , 3:, and TJx ' Nevertheless ~ 

Eq. (13) may be used to locate the approximate resonance 

energies. The absolute value of w is expected to be less than 

unity at an observable resonance and this establishes a maxi-
1 

mum uncertainty in the resonant energy 0:( + (- 2u"/B)2. 

The observable resonant energies for any capacity 

parameter B are readily estimated from Eq; (13) and the 

reduced internal phase integral at maxi~um plotted in Fig. 

10. Values for resonance energies for H scattering off of 
1 23 where B2 is expected to be 25.9, evaluated in thiS 

manner differ from the more accurate values deduced in 

Ref. 22 (the present analysis predicts· 0.53, 0.27, 0.12, 0.04~ 

0.007~ whereas R~f. 22 predicts 0.60~ 0.26, o.bs, 0~02,.artdO.003); 

this reflects the fact that a Lennard-Jones (12-6) potential 

is a poor description of the UgH molecule. Indeed~ experi-: 

mental observation of resonances in hydrogen· scattering studies 

together with isotopic substitution may prove to be a sensi-

tive method of investigating the shape as well as the range 

of the interm61ecular potential. 
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Fig. 10. Plot of the reduced internal phase integral at 

maximum versus Ko' 
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Differential Cross Section 

The nature of the classical differential cross section 

near an orbiting singu.lari ty and a qu.ali tative description 

of the quantal corrections expected is given in Ref. 2. 

We wish to emphasize the point made in Ref. 2 that the role 

of the correction function h(w) in Eqs. (8) is to remove the 

infinite rate of change Of6~ and 12 with L* predicted 

classically~ which leads to the classical singularity in the 

deflection function expressed in Eqs. (5b). 

In analogy to the case of the total cross section~ 

resonance effects will not be observable in the differential 

cross section unless Iwl <1. Consequently~the number of 

partial waves where quantal corrections due to the barrier 

maxima are expected is readily estimated to be 

6£ < a -1 
rv 0 . 

where a o is the slope parameter in the classical deflection 

function~ Eq. (5b). For a Lennard-Jones (12-6) potential~ 

a o varies very little for values of K between 0.1 and 0.6 

and is abou.t 0.5', Consequently ~ in analyzing the differ-

ential cross section near orbiting~ it will be necessary to 

evaluate explicitly the contribution from only two or three 

partial waves: the contributions from other partial waves 

may be evaluated by standard semiclassical techniques. 2 

For scattering of H atoms~ two or three partial waves 

correspond to a spread in L* of about O.l~ Fig. 5 illustrates 

that this is typically the range of validity of Eqs. (5b). 

Consequently, the exponential decrease with increasing angle 
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. , expe~t~d ,in tha·classi6al.differentialcross section for a 
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. deflection function ~~ tisfying Eqs.:.·( Sb)' will be destroyed 

and' the wide an'gle scattering of H atoms shou.ld be entirely. 

· qU.antal. In contrast, scattering of heavier atoms, lor 
1 

which B2 > 200, should be described by the classical equations ""' . 

(with possible semiclassical interference between the two 
.' 2 1 

· branches).' In particular, in the chemical reactions of 

"alkali metals with halogens, it has been proposed that all 

. . . ,.:.:-.:... ·.trajectories which pass over the rotational barrier react 
'.... .' 24 

while the others scatter elastically. In these collisions 
1 

• ~.I· · B2 is very large,. quantal corrections shou.ld be negligible 

(except possibly atX = n), and only contributions from 

.. p > ° contrib.u.te to the elastic scattering so that the wide 
. .;: 

",;::' .... :;" angle elastic scattering should exhibit' the expected exponen-' 

. '. " · ,'., 

'.:. ' 

. :l . 

"": . 

"I ~. i· " .. 
i:", . 

· -;< (,; ' .. ~ .... 

";' " 

"', : 
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tial fall-off to the extent that Eqs. (Sb) rath~r than (Sa) 

. adequately approximate X(L*). 

Lifetimes 

. The lifetime or duration of a collision, ~, has been 

defined. qU.antum mechanically and is obtained from the deri va ti ve 

of the phase shift with respect to energy.2S 'We limit our

selves in ·this section to pointing out that the "quantal" or' 

improved semiclassical expression for.~, obtained by differ-

entiating Eq.(Sa), does not exhibit the divergence expressed 

'.::'. ',: in the simple classical result, Eq. (3); this divergence is . 
. , 

."~/. " :: "". . " '/, " . 

• ~<" ~".' ,. ", 

-. : ''''.' ~.: '. ,.' '.~', .' I, 

" :'.; '. . ." . .~.~ 
. " ._" ." i' <' . 

. " 

exact.lY cancelled by the correction function h (w) which appears 

in Eqs. (,S) • Thus, differentiation of Eq. (Sa) leads to phase 

<:'~'.·';'\:c.;" ;~;.:.shifts with the correct quantal fe~tures, i. e., ~ is 'fini te' for 
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all K and L* and Twill exhibit sharpflu.ctu.ations (resonances) 

when the incident ,energies pass through valu,es .. for which the' 

~esonance~ondit{onexpressed in Eq. (11)' is satisfied. Con,:",,· ., 

s~quenily, expressions for three-body' kinetic recombipation 

rates 26 and the thermodynamics df real ga~es27 which have 

been formulated in ter~s of the distribution in collision 
. , 

·lifetimes maybe. handled within the framework of a classical·· 

,theory by employing Eq. (Sa) to iricorporate the quantal 

corrections. 
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APPENDIX 

REDUCED PHASE INTEGRALS FORA LENNARD-JONES (12-6) 
POTENTIAL 

' . ./"""" ..... . 

"; '.", 

•.•• :.,. I" ,'., 

,': ... ,' .. 
' .. 

'. '; ,':! ' 
, . 

.:. 

" 

. Tables of' the reduced. phase integrals 6o (K,L*) and 
'. . x . 

~I2(K,L*) and of the barrier penetration integral I 3 (K,L*) 

. for a' Lennard":jones (12-6) 'potential were prepared by numer

. ; ieal integration of Eqs. (lb) and.3 6) using 500 subintervals. 

The effect of varying the integration step size was investi

gated for random values of K and L* .. Thus, values of 

1 2 (0.2, 1.0).and 13 (0.2,1.0) computed with 500 subintervals 
. . 

were within 0.01% of values computed' with 1000, 5000, and 
I -.' 

(10,000 subinterval's.' 

'''''. 

,". 

The external phase shift was evaluated by expressing 

. .Eq. (la) as 
OJ . 

:6~(K,L*) =J.((K - U(X,L*),)t - (K - L*2/x2)t} dx 

x3 

where it is underst.ood that the cos- l of a number .greater than 

unity and the square root of negative numbers are both taken 

as zero. In practice, the upper limit of the integration was 

': taken as 20 rather than infinity. For most of the entries 
.. .... . " ,;, 

:;. ;' 
'. " 

~ • < ", 

, .,. 

'~ ~::.' '. >.- :.; .:-.: .:..~ . 
; . ,~ 

... • ';0 < '. 

. '" ..... :-
;, ,~:', ~. . , 

""" : ',.' 

... 
.~ '.' ... ' 

'.' '.' , 

• ,I .' 

.: " 

: .' 

in the Table, this. results in neglible error; in the most 

extreme entry, K ~. 0.05 and L* = 1.50, it results in less 

than 1% error. The integration .wasperformed by dividing the 

interval from x3 to 20 into 5000 subintervals. Variation of 

the number of intervals from 2000 to SOOO.indicated that the 

entries in Table I for high values of L* where 6~ is relatively 



small may , be j,n error by about 1%. 'Furthermore, at 'high 
,:;;. 

;,'" values ,of" L* ,6~ sh~uld converge to the value predicted by 

;; .. : .. ,," / .. " 

,-,';", .. 
': ~'.' 

, 

the, first Born approximation, 

6~ (Born) = (3nK2/16L*5); 

'this ,beha vior is, indeed found. Entries in the Table for 

high values ofL* are within a few percent of the Born 

" approximation. 
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REDUCED EXTERNAL PHASE INTEGRAL 

Values of K 

L* 0.050000 0.100000 0.150000 0.200000 0.250000 

0.05 -1.487291 -2.135351 -2.632697 -3.052002 ' -3.421429 
0.10 -0.953822 -1.410988 -1.762185 -2 .0~8393 -2.3194.23 
0.15 -0.679626 -1.050492 -1.336179 ' -1.577398 -1.790095 
0.20 -0.492343 ,-0.809429 -1.055038 -1.262867 -1.446337 
0.25 -0.349270 -0.626745 -0.843741 -1.028038 -1.191056 

0.30 -0.234466 -0.479202 -0.6'Z3590 -0.839642 -0.986971 
0.35 -0.140882 -0.355972 -0.531061 -0.681931 -0.816391 
0.40 -0.065365' -0.251430 -0.408963 -0.546454 -0.669780 
0.45 -0.006737 ' -0.161982 -0.302480 -0.427462 -0.540600 

, 0.50 ' 0.033190 ' -0.086702 -0.209968 ' -0.322851 -0.42'6385 

0.55 ·0.048247 -0.025136 -0.130087 ' -0.230797 -0.324951 
0,.60 ' 0.024026 0.022117 -0.062255 -0.150235 -0.234919 
0 .. 65 0.014428 0.052706 '-0.006828 -0.081014 -0.155889 
0.70 0.009450 0.059879 0.035929 -0.022332 -0.086542 
0.75 0.006513 0.032126 0.0633494 0.024825 -0.027384 

0.80 0.004639 0.020920 0.0691193 0.059095 0.021199 
0.85 0.003393 0.014640 0.039625 0.077274 0.057906 
0.90 0.002533 0.010670 0.026662 0.063232 0.080704 
0.95 0.001932 0.007979 0.019221 0.038781 0.082152 
1.00 ' 0.001487 0.006089 0.014375 0.027625 0.049666 

1.05 0.001158 0.'004743 0.011019 0.020637 0.034949 
1.10 0.000922 0.003725 0.008601 0.015863 0.026150 
1.15 0.000731 0.002966 0.006815 , 0.012432 0.020194 
1.20 0.000594 0.002394 0.005470 0.009930 0.015927 
1.25 0.000484 0.001937 0.004420 0.007997 0.012750 

1.30 ' 0.000399 0.001596 0.003628 0.006498 0.010349 
1.35 0.000330 0.001317 0.002991 0.005370 0.008482 
1.40, 0.000279' 0.001102 0.002489 0.004473 
1.45 0.000233 0.000927 0.002091 0.003726 
1.50 0.000189 0.000778 0.001778 0.003131 
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REDUCED EXTERNAL PHASE INTEGRAL (Cont'd.) 

Values of K 

L* 0.300000 0.350000 0.400000 0.450000 0.500000 
.. 

0.05 --3.755423 -4.062567 -4.348452 -4 .616963 -4 .870928 
0.10 -2.555448 -2.772520 -2.974581 -3.164372 -3.343890 

• 0.15 -1982490 -2.159480 -2.324263 -2.479061 -2.625497 
0.20 -1.612417 -1.765276 -1.907644 -2.041424 -2.168004 
0.25 -1.338804 -1.474906 -1.601745 -1.720988 -1.833856 

0.30 -1.120752 -1.244147 -1.359252 -1.467541 -1.570098 
0.35 -0.938824 -1.051963 - -1.157642 -1.257164 -1.351493 . 

" 0.40 -0.782512 -0.886956 -0.984696 -1.076871 -1.164331 
'0.45 -0.644579 -0.741257 -0.831959 -0.917658 -0.999094 
0.50 -0.522250 -0.611819 -0.696136 -0.776003 -0.852043 

0.55 -0.413046 . -0 A95900 -0.574250 -0.648713 -0.719787 
0.60. -0.315345 -0.391675 -0.464300 -0.533624 -0.600012 
0.65- -0.228583 -0.298458, -0.365494 . -0.429859 -0.491765 
0;70 -0.151089 -0.214302 -0.275657 -0.335037 -0.392480 
0.75 -0.083151 -0.139369 -0 .. 194865 -0.249174 -0.302125 

O.SO -0.024735 -0.073381 -0.122675 -0.171700 .,.0.220028 
0.85 0.023607 -0.016570 -0.059127 ":'0.102527 -0.146004 
0.90 0.060710 0.030550 -0.004440 . -0.041689 -0.079959 
0.95 0.084837 0.066843 0.040782 0.010493 -0.022036 
1.00 0.090064 0.090438 0~O75277 0.053247 0.027279 

1).05 0.058211 0.095853 0.097193 0.085358 0.067112 
1.10 0.040790 . 0.063815 0.100454 0.10448.7 0.096191 
1.15 0.030665 0.045000 0.066461 0.103401 0.111464 
1.20 0.023803 0.034087 0.047565 0.066810 0.103147 
1.25 0.018917 0,026613 0.036415 0.048894 0.065673 

1.30 0.015217 0.021259 _ 0.028672 0.037800 0.049141 
1.35 0.012436 0 .. 017245 0 .. 023080 0.030072 0.038500 
1.40 0.010268 0.014167 0;018880 0.024380 . 0.030901 
1.45 0.008545 0.011763 0.015586 0.020041 0.025253 
1.50 0.007147 0.009837 0.013005 0.016679 0.020886 

. .' 

.' .' '. "-1-./ " 

. "', 



-32- " 

REDUCED EXTERNAL PHASE INTEGRAL (.cont I d. ) 

Values of K 

L* 0.550000 0.600000 

0.05 -5.112483" -5.343287 
0.10 -3.514641 -3.677797 
0.15 -2.764794 -2.897905 .' 0.20 -2.288436 -2.403536 
0.25 -1.941272 -2.043959 

0.30 -1.667745 -1.761127 
0.35 -1.441365 -1.527356 
0.40 -1.247731 -1.327587 
0.45 -1.076840 -1.151353 
0.50 -0.924750 -0.994521 

0.55 -0.787881 -0.~53331 
0.60 -0.663782 -0.725202 
0.65 -0.551428 -0.609046 
0:70 -0."448084 -0.50196"8 
0.75 -0.353681 -0.403867 

0.80 -0.267458 -0.313807 
0.85 -0.189154 -0.231762 
0.90 -0.118579 -0.157164 
0.95 -0.055749 -0.090037 
1.00 -0.000975 -0.030566 

1.05 0.045228 0.020931 
1.10 0.081704 0.063646 
1.15 0.107169 0.096545 
1.20 0.117324 0.117487" 
1.25 0.092992 0.120768 

1.30 0.063715 0.084147 
1.35 0.048665 0.061166 
1.40 0.038546 0.047622 
1.45 0.031242 0.038187 
1.50 0.025792 0.031239 
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REDUCED INTERNAL PHASE INTEGRAL 

Values of K 

L* 0.050000 . 0.1000000 0.150000 0.2,00000 0.250000 

0.05 1.777593 2.288381 2.689304 3.031773 3.336248 
0.10 1.310392 1.632956 1.889031 2.109228 2.305889 

,~ 0.15 1.094113 1.334907 1.527664 1.694255 1.843570 
0.20 0.956153 1.149683 1.305488 1.440653 1.562137 
0.25 0.853415 1.016048 1.147364 1.261574 1.364432 

., 
0.30 0.769402 0.910514 1.024433 1.123631 1.213080 
0.35 0.696226 0.821910 0.922959 1.010922 1.090271 
0.40 0.629481 0.744149 0.835474 o ~ 914800 ' 0.986317 . 
0.45 0.565932 ' 0.673005 0.756799 0.829267 0.894490 

.' .,., 0.50 0.503475 0.606659 0.684814 0.751899 0.812089 

0.55 0.437908' 0.543334 0.617544 0.680462 0.736627 
0.57 0.404735 
0.58 0.389706 
0~59 0.377077 

'0.60 0.365486 0.481477 0.553514 O. ,613351 0.666348 

0.62 0.343921 
0.65 0.314319 . ,0.419380 0.491767 0.549687 0.600359 
0.67 0.295688 

'0.70 0.268882 0.352282 0.430444 0.487632 0.536683 
0.72 0.251588 0.317523 

0.73 0.243077 0.303164 
0.74 0.234647 0.290418 
0.75 0.226308 0.278558 0.368220 0.426606 0.474915 
0.77 0.209815 0.256532 
0.80 0.185515 0.226112 0.300999 0.365332 0.414090 

0.82 0.169563 0.206993 0.266157 
0.83 0.161651 0.197683 0.250703 
0.84 0.153782 0.188518 0~237327 
0.85 0.145948 0.179486 0.224994 0.301798 0.353262 
0.87 0.130388 0.161758 . 0.202214 

"V 
0.90 0.107283 0.135876 0.170917 0.290848 
0.91 0.099643 0.127414 0.160999 0.209171 
0~92 0.092025 0.119017 0.151276' 0.195346 
0.93 0.084433 ' 0.110687 0.141746 0.182712' 

'c- 0.94 0.076865 0.102416 0.132365 0.170800 

0·95 0.069321 0.094208 0.123125 0.159417 0.222584 
0.97 0.054295 0.077942 0.105009 0.137826 0.186754 
0.98 0.046815 0.069882 0.096111 0.127479 0.170927 
0.99 0.039353 0.061869 0.087316 0.117379 0.157189-
1.00 0.031908 0.053896 0.078606 0.107485 0.144496 . 



L* 

'1.01 
.1.02 
1.03 
1.04 
1.05 

1.06 
1.07 
1.08 
1.09 
1.10 

1.11 
1.12 
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REDUCED INTERNAL PHASE INTEGRAL, Cont'd. 

Va111es of K 

0.050000 0.1000000 0.150000 0.2000000 

0.024480 0.045964 0.069979 0.097780 
0.017076 0.038070 0.061420 0.088231 
0.009685 0.030211 0.052943 0.078842 
0.002310 0.022388 0.044529 0.069577 

0.014599 0.036178 0.060435 
r 

0.006840 0.0.27883 0.051403.-
0.019646 0.042470 . 
0.011459 0.033632 
0.003320 0.024879 

0.016211 

0.007612 

0.250000 

0.132517 
0.121054 
0.110000 
0.099281 
0 .. 088843 

0.078646 
0.068660 
0.058861 
0.049226 
0.039736 

0.030383 
0.021152 
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REDUCED INTERNAL PHASE INTEGRAL (Cont'd.) 

Values of K 

L* 0.300000 0.350000 0.400000 0.450000 0.500000 ',I > t 

0.05 5.613403 3.869661 4.109244 4.335115 4.549441 
0.10 2.485523 2.652068 2.808124 • 2.955526 3.095G20 

,~ 0.15 1.980326 2.107391 2.226666 2.339495 2.446869 
0.20 1.673644 1.777428 1.874990 1; 967394 2.055424 
0.25 1.458996 _ 1.547130 1.630076 1.708714 1.783696 

~ -, 

0.30 1.295407 1.372212 1.444556 1.513196 I 1.578687 
0.35 1.163343 1.231551 1.295834 1.356855 1.415106 
0.40 1.052171 1.113651 1.171604 1.226630 1.279172 
0.45 0.945050 - 1.010513 1.063301 1.113424 1.161286 

~. :; 0.50 0.867380 0.918935 0.967501 1.013599 1.057609 

0.55 0.788084 0.835987 0.881067 0.923826 0.964628 
0.60 0.714705 0.759611 0.801803 0.841776 0.879888 
0.65 o .-64B312 0.688830 0.728680 0.766371 0.802262 
O~ 70 0.580762 0.621332 0.659227 0.694985 0.72897-5 

- 0.75 0.517716 0.556810 0.5.93152 0.627330 0.659740 

0.80 0.456280 0.494373 0.529538 0.5624.57 0.593570 
0.85 0.395749 0.433395 0.467792 0.499781 0.529877 
0.90 0.335198 0.373154 0.407269 0.438685 0.468050 
0.95 0.273239 0.312791 0.347294 0.378578 0.407537 
1.00 0.206553 0.251004 _ 0.287072 0.318866 0.347840 

1.03 0.155255 
1.04 0.139487 
1.05- 0.125655 0.184581 0.225205 0.258660 0.288286 
1.08 0.089190 0.134125 
1.09 0.078026 0.116992 

1.10 0.067199 0.102581 0.158263 0.196525 0.228037 
1.13 0.036273 0.065162 0.106156 
1.14 0.026374 0.053767 0,.089839 
1.15 0.016643 0.042737 0.075632 0.128121 0.165280 
1.16 0.007063 0.032008 0.062515 

v 1.17 0.021536 0.050122 
1.18 0.011289 0.038273 0.074135 
1.19 0.026860 0.059219 

,:~. 
1.20 0.015789 0 .. 045627 0.093807 
1.21 0.005024 0.032866 

1.22 0.020733 0.055254 
1.23 0.009062 0.040150 
1.24 0.026404 
1.25 0.013518 
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RED-UCED INTERNAL PHASE INTEGRAL (Cont I d. ) 

Values of K 

L* 0.550000 0.600000 

0.05 4.753870 4.949688 
0.10 3.229435 3.357772 

{ 
0.15 2.549547 2.648120 
0.20 2.139684 . ·,2.220641 
0.25 1.855519 1.924576 

0.30 1.641459 1.701845 
0.35 1.470962 1.524717 
0.40 1.329567 1.378079 
0.45 1.207196 1.251395 
0.50 1.099819 1.140454 

0.55 1.003749 - 1.041399 
0.60 0.916407 0.951537 
0.65 0·.836619 0.869647 
0'.70 0.761470 0.792673 
0.75 0.690667 . 0.720323 

0.80 0.623185 0.651528 
0.85 0.558426 0.585679 
0.90 0.495776 0.522148 
0.95 0.434697 0.460405 
1.00 0.374745 0.400032 . 

1.05 0.315349 0~340512 
1.10 0.255934 0.281408 
1.15 0.195413 0.221937 
1.20 0.131636 0.160982 
1.25 0.050684 0.095366 

1.26 0;;-033486·. 
1.27 0.018703 
1.28 0.005090 
1.29 0.025424 
1.30 0.009592 

/ 
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REDUCED BARRIER INTEGRAL 

Values of K 

L* 0.050000 0.100000 0.150000 0.200000 0.250000 

0.57 0.003374 

• 0.58 0.019403 
0.59 0.0356.73 
0.6.0 0.052194 
0.6.2 0.085917 

0.6.5 0.138248. 
0.6.7 0.174278 
0.70 0.230009 
0.72 0.26.826.2 0.008522. 
0.73 0.287728 0.024762 

0.74 0.307411 0.041206. . 
0.75 0.327290 0.057848 
0·.77 0.36.7729 0.091743 
0.80 0.429994 0.144106. 
0.82 0.47236.9 . 0.180008 0.004530 

0.83 0.494052 0.198271 0.020897 
0.84 0.515943 0.216.730 0.037453 
0.85 0.538046. 0.235398 0.054200 
0.87 0.582831 0.273344 0.088277 
0.90 o .6.516.49 o .331846. 0.14086.5 

0.91 0.6.75022 0.351752 0.158792 0.019154 
0.92 0.6. 986.47 0.371891 0.176. 931 0.035893 
0.93 0.722517 0.392226. 0.19526.2 0.052893 
0.94 0.746384 0.412840 0.213806. 0.06.9949 
0.95 0.770838 0.4336.50 0.23256.5 0.087274 

0.97 0.820522 0.476.002 0.270742 0.122536. 0·.0056.30 
·0.98 0.84576.6. 0.4 9756.4 0.290180 0.140484 0.022446. 
0.99 0.871308 0.519297 0.309839 0.1586.40 0.03946.2 
1.00 0.897211 0.541488 0.329748 0.177024 0.056.6.85 

·1.01 0.923516. 0.563906. 0.349925 0.1956.38 0.074116. 

v 1.02 0;950280 0.586.572 0.370379 0.214494 0.09176.0 
1.03 0.977735 0.6.09786. 0.391105 0.2.33592 ' 0.1096.32· 
1.04 1.005980 0.6.33358 0.41216.3 0.252957 0.127734 

- 1.05 0.6.57406. 0.433580 0.2726.10 0.146.081 
1.06. 0.6.82396. 0.455398 0.292558 0.16.46.86. 

1.07 0.4776.55 0.312825 0.18356.0 
1.08 0.5006.74 ,0.333525 0.202732 
1.09 0.52476.0 0.3546.57 0.222226. 
1.10 0.376.352 0.242089 
1.11 0.398895 0.26.2371 

1.12 0.283181 
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REDUCED BARRIER INTEGRAL (Cont'd.) 

Values of K 

L* 0.300000 0.350000 0.400000 0.450000 0.500000 

L·,·03 0.006927 
1.04 0.024031 
1.05 0.041352 
1.06 0.058902 
1.07 0.076688 

1.08 0.094722 .0.002398 
1.09 0.113026 ·0.019756 

.1.10 0.131616 0.037358 
1.11 0.150518 0.055223 
1.12 0.169769 0.073365 

1.13 0.189428 0.091814 0.006727 
1.14 0.209567 0.110604 0.024524 
1.15 0.230344 .0.129775 0.042618 
1.16 0.252098 0.149407 0.061042 
1.17 0.169624 0.079842 

1.18 0.190654 0.099083 0.018829 
1.19 0.118860 0.037331 
1.20 0.139393 0.056260 
1.21 0.161184 0.075710 
1.22 0.095839 0.019386 

1.23 0.117029 0.038570 
1.24 0.058395 
1.25 0.079164 

REDUCED BARRIER INTEGRAL (Cont'd.) 

Values of K 

L* 0.550000 0.600000 

1.25 
1.26 
1.27 
1.28 
1.29 
1.30 

0.006318 
0.025909 
0.'046365 
:0.068392 

0.017766 
0..039334 

• 

'., 
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