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A Test By Any Other Name: P-values, Bayes Factors and 
Statistical Inference

Hal S. Stern*

UC Irvine

Abstract

The exchange between Hoitjink, van Kooten and Hulsker (in press) (HKH) and Morey, 

Wagenmakers, and Rouder (in press) (MWR) in this issue is focused on the use of Bayes factors 

for statistical inference but raises a number of more general questions about Bayesian and 

frequentist approaches to inference. This note addresses recent negative attention directed at p-

values, the relationship of confidence intervals and tests, and the role of Bayesian inference and 

Bayes factors, with an eye towards better understanding these different strategies for statistical 

inference. We argue that researchers and data analysts too often resort to binary decisions (e.g., 

whether to reject or accept the null hypothesis) in settings where this may not be required.
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This issue of Multivariate Behavioral Research includes an exchange between Hoitjink, van 

Kooten and Hulsker (in press) (HKH) and Morey, Wagenmakers, and Rouder (in press) 

(MWR) on the appropriate use of Bayes factors for statistical inference. Their exchange 

focuses on whether to use default or subjective prior distributions, the proper calibration of 

default prior distributions, and the proper interpretation of Bayes factors. The exchange, 

along with the recent controversy surrounding the decision of Basic and Applied Social 

Psychology (BASP) (Tramifow and Marks, 2015) to ban p-values, raises a number of general 

questions about how to perform statistical inference. This article considers both standard and 

Bayesian approaches to statistical inference. It begins with a discussion of common 

criticisms of null hypothesis significance testing and p-values, considers the relationship of 

testing and confidence intervals, addresses the role of Bayesian inference and Bayes factors, 

and then concludes with some practical advice about statistical inference.

BASP and the banning of p-values

For purposes of discussion we focus throughout on the setting used by HKH and MWR in 

which a sample of size n is observed with Yi, i = 1, … , n independent and identically 

distributed as N(μ, σ2) random variables. Their contributions use an alternative 

parameterization (with the standardized effect size δ = μ/σ being the parameter of interest) 

*Address: Hal Stern is a Professor in the Department of Statistics, University of California, Irvine, Irvine, CA 92697, sternh@uci.edu. 
The author is grateful to the editor for comments that improved the presentation of material.

HHS Public Access
Author manuscript
Multivariate Behav Res. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Multivariate Behav Res. 2016 ; 51(1): 23–29. doi:10.1080/00273171.2015.1099032.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but this does not impact any of the discussion provided here. Attention is focused on the 

parameter μ which measures the scientific effect of interest (e.g., the excess (relative to 

chance) hit rate in the study of psi by Bem, 2011). Following HKH and MWR we initially 

focus on testing the null hypothesis that μ = 0. It is argued below though that the focus on 

significance testing (or later, on Bayes factors) rather than on estimation of effect sizes is 

problematic. The t-test of significance is commonly used to assess the null hypothesis Ho : μ 

= 0. To perform the t-test one first computes the t-statistic, , and then inference 

regarding Ho is based on the p-value which measures the probability that a study like this 

would yield a t-statistic as or more extreme than the observed statistic if the null hypothsis 

were true. Small values of the p-value suggest the observed data are unlikely under the null 

hypothesis and thus may call that hypothesis into question. It is common to compare the p-

value to some standard thresholds, e.g., α = .01 or .05 or .10, and then note that the observed 

difference is significantly different from zero (often just termed ”significant”) at the 

specified threshold if the p-value is smaller than the cutoff. We return to some negative 

consequences of this common practice below.

The p-value is a probability calculation giving the probability of an event (observing a more 

extreme t-statistic) under specific assumptions: the statistical model is correct and Ho is true. 

Probabilitiy calculations do not seem particularly objectionable. Why then would BASP ban 

p-values? Or more precisely why did the journal decide that ”… prior to publication, authors 

will have to remove all vestiges of the NHSTP (p-values, t-values, F-values, statements 

about “significant” differences or lack thereof, and so on).” (Tramifow and Marks, 2015, p. 

1) where NHSTP in the quotation stands for null hypothesis significance testing procedure. 

It is true that p-values are often misinterpreted and abused (this is discussed further below) 

but that by itself does not seem like a compelling reason to ban them. The motivation for the 

ban is a concern with the logic that underlies significance testing and p-values. The question 

of interest in the testing framework concerns the relative likelihood of the null and 

alternative hypotheses given the experimental data. The difficulty is that this question can 

not be addressed by a calculation (the p-value) that assumes the null hypothesis is true. Of 

course, this concern is certainly not new. There have been many other critiques of this aspect 

of significance testing dating back at least as far as Berkson (1942), including many in 

psychology (Rozeboom, 1960; Cohen, 1994). Indeed, this is not the first attempt to ban p-

values. Chapter 1 of Kline (2013) includes a history of the controversy surrounding null 

hypothesis testing and several attempts to reform or ban that practice.

There are, in fact, a number of very good reasons to be concerned about the use of p-values. 

The logical difficuly described above is one important point. A significance test, and more 

precisely a p-value, can not say anything about the relative merits of two hypotheses (the 

null and alternative) when it is calculated assuming that one of the hypotheses is true. 

Another important problem is that misinterpretations and misunderstandings of the p-value 

are common. Many people continue to interpret the p-value as speaking to the likelihood of 

the null hypothesis which is impossible given its definition. A third concern is the heavy 

dependence of the p-value on the sample size. A study focused on a phenomenon 

characterized by a small effect size can yield low p-values (significant results) in large 

samples and on the other hand a large and potentially important effect may not be found 
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significant in a small sample. Another concern is that some investigators carry out a number 

of tests (e.g., using a range of outcome measures or a range of different statistical models) 

and then report a p-value without providing the context in which it was obtained (Simmons, 

Nelson, & Simonsohn, 2011).

Perhaps the biggest problem with p-values though is that the most common way in which 

they are used, a p-value is calculated and then compared to a threshold to determine 

significance, promotes a “binary” view of statistical inference that is not generally helpful. 

Others (e.g., Goodman, 1999) have written about the logical difficulties inherent in this 

common approach which combines significance testing (where the p-value is a measure of 

evidence regarding the plausibility of the null hypothesis) and the Neyman-Pearson view 

which chooses a significance level to control error rates as part of its hypothesis testing 

framework. I am especially concerned about the practical consequences of the combined 

approach. For many investigators results are either declared significant, in which case the 

researchers are likely to claim the effect is real and important, or the results are not 

significant, in which case researchers are likely to declare the null hypothesis must be true. It 

is this extreme “binary” view that in my opinion has done the most damage to science. It is 

problematic in many ways. A small p-value does not necessarily mean that an effect is 

practically important. It may merely reflect good fortune, particularly in an underpowered 

study. A large (non-significant) p-value implies that the data could easily have been 

observed under the null hypothesis. But of course the data could also have been observed 

under a range of alternative values of the parameter we are testing. Even top scientists in 

many fields miss this point and tend to dismiss findings that do not attain a desired level of 

significance. This observation stands behind the proposal to report a “counternull”, the non-

null effect size that would lead to the same p-value as the null hypothesis, in addition to the 

p-value (Rosenthal & Rubin, 1994). Though this proposal is not implemented often, 

practitioners would be wise to remember its message that both the null hypothesis and the 

alternative hypothesis can produce data that are “not significant”.

Confidence intervals

The journal BASP also has banned the use of confidence intervals. This decision is not too 

surprising given that there is a certain equivalence of testing and confidence interval 

procedures. A significance test of a hypothesized value for μ will produce a p-value less than 

a given threshold (say α) when a 100(1 – α)% confidence interval for μ excludes the 

hypothesized value. Thus a series of significance tests computing p-values for various 

hypothesized values of the parameter in question can provide the same information as a 

confidence interval and a single confidence interval tells us which values of the parameter 

would be found plausible in a series of significance tests. The reason given by the BASP 

editors for extending the ban to confidence intervals is similar to the argument for the 

significance testing ban. The single confidence interval being computed does not provide the 

kind of probabilistic guarantee that the editors of BASP believe is required for an appropriate 

inference. The frequentist argument that supports the confidence interval procedure 

guarantees that the specified proportion of the 1–α confidence intervals that we create will 

contain the true parameter value, but it is not possible to make a probabilistic claim for the 

one interval at hand. It is noteworthy that many other critics of signifcance testing and p-
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values actually encourage the use of confidence intervals (Wilkinson and the Task Force on 

Statistical Inference, 1999; Kline, 2013). I too believe that confidence intervals are valuable 

for a number of reasons. For one thing, in the simple setting considered here the t confidence 

interval corresponds to a Bayesian posterior interval for a diffuse (sometimes called non-

informative) choice of the prior distribution of the model parameters which means that the 

desired probabilistic interpretation is realistic in that case. In large samples the t-interval is 

approximately the same as a Bayesian posterior interval regardless of the prior distribution 

which again justifies the probabilistic interpretation. Most important for me though is the 

simple fact that confidence intervals provide a range of values of the population parameter 

that are compatible with the data. The range informs us about the magnitude of sampling 

variability (essentially providing information about sample size that is lacking in p-values) 

and it also encourages a focus on plausible values of the effect rather than focusing on 

proving/disproving a single hypothesis about the population parameter. Gelman and Stern 

(2006) and Cummings (2011) discuss several examples where valuable information is 

obtained from confidence intervals in situations where testing may produce difficult to 

interpret results.

Bayesian inference

Many researchers, including the authors of the two pieces that motivated this article, believe 

that the Bayesian approach to statistical inference is the most natural way to analyze data. 

The Bayesian approach avoids many of the concerns that have been raised here about 

significance tests. We briefly describe the approach here; additional information can be 

obtained from any number of texts including Carlin and Louis (2008), Christensen, Johnson, 

Branscum, and Hanson (2010), and Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 

(2013). The Bayesian approach to inference is characterized by the explicit use of 

probability distributions to draw inferences. In common with the standard frequentist 

approach to inference, there is a probability model (sometimes known as the data model or 

the sampling model) for observable quantities given underlying population parameters, often 

denoted p(y|θ). This is a Gaussian distribution for the Bem study. The Bayesian approach 

adds a prior probability distribution describing uncertainty about the underlying parameters 

of the sampling or data distribution, denoted by p(θ). Given these two distributions Bayes 

theorem provides the mathematical machinery needed to combine the information in these 

two distributions to obtain the posterior distribution of θ, p(θ |y) = p(y|θ)p(θ)/∫ p(y|θ)p(θ)dθ. 

The posterior distribution is a summary of what the data and prior information tell us about 

which values of θ are most plausible. Bayesian methods have been a part of the statistical 

methodology literature for many years but have increased dramatically in popularity over 

the last 30 years due to advances in computational algorithms and computational devices 

that have made it practical to study the posterior distribution via simulation (e.g., using 

Markov chain Monte Carlo methods) in situations for which an analytical solution is not 

practical. Computation is discussed in some detail in each of the references mentioned 

above.

Advocates of the Bayesian approach argue that it provides a natural framework for 

integrating a variety of sources of information about a quantity of interest. In its most basic 

form it combines information from a sample of data with a priori available information 
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about a population parameter value. More generally though the Bayesian framework also 

makes it easy to incorporate information about relationships among a set of parameters. For 

example, we might assume that the effects of individual classrooms in an education study 

can be modeled as draws from a population of possible classroom effects. In the Bayesian 

approach this leads to hierarchical models. The population distribution in the hierarchical 

model is sometimes known as a random effects distribution in other approaches to inference. 

In addition, the Bayesian approach proves to be a natural framework for accommodating 

complications like unintentional missing data, order constraints on parameters, data that are 

censored or rounded off, etc. This is not to say that the Bayesian approach is uniquely able 

to handle such complications, only that in practice it seems reasonably straightforward to 

incorporate such issues into a comprehensive probability model. A final benefit of the 

Bayesian approach is that the posterior distribution enables a wide range of inferential 

statements to be made. One can summarize the posterior distribution by providing a 

summary measure (e.g., the posterior mean) for each parameter, or a posterior interval 

describing the range of plausible values for each parameter of interest. The posterior 

distribution also allows other questions of interest to be addressed (e.g., what is the 

probability that the parameter of interest is positive or what is the probability that one 

parameter is greater than a second parameter).

The previous paragraph presents some of the benefits of the Bayesian approach to inference. 

The primary source of controversy surrounding Bayesian methods for some researchers is a 

concern about how the prior distribution is specified. The discussions of HKH and MWR hit 

upon one of the main questions, whether to use problem-specific domain knowledge to 

specify a probability distribution that describes the user’s subjective a priori opinion 

regarding the unknown parameter or whether instead to rely on some sort of default 

(occasionally called objective) prior distribution. There is often at least some subject matter 

information that can be incorporated into a prior distribution. But many users are concerned 

that a wide range of subjective prior distributions might produce disparate or conflicting 

results and are drawn to the use of default prior distributions in the hope that they can 

produce a form of consensus analysis. Of course, in large samples the choice of prior 

distribution is much less important. In practice there is much more to to say about prior 

distributions; interested readers can refer to the Bayesian texts listed above.

Bayes factors

The discussion of Bayesian inference given above notes that there is considerable flexibility 

in how one summarizes the posterior distribution to provide desired inferences. This extends 

to allowing a probabilistic evaluation of the relative support for competing hypotheses if one 

adopts a testing framework. As described in the HKH article, the Bayes factor BF01 is the 

Bayesian approach used to compare two hypotheses Ho and H1 (e.g., Ho : μ = 0 and H1 : μ ≠ 

0). I must confess up front that I do not generally use Bayes factors in my applied work. I 

believe the posterior distribution provides the most relevant inferences for the population 

mean in a Bayesian analysis and generally report posterior intervals for the parameters of 

interest (e.g. for μ) as the summary. Despite this personal view, given that the Bayes factor 

is at the core of the HKH and MWR exchange I next briefly review the definition of the 

Bayes factor and provide my views on the questions considered by HKH and MWR.
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The Bayes factor measures the ratio of the marginal likelihood of the data under the null 

hypothesis, denoted p(y|Ho) and computed as p(y|Ho) = ∫ p(y|θ, Ho)p(θ |Ho)dθ where θ are 

the unknown parameters in the model Ho, and the marginal likelihood of the data under the 

hypothesis H1, denoted p(y|H1) and computed in analogous fashion. Formally the Bayes 

factor tells a user how to modify the a priori odds in favor of Ho relative to H1 in order to 

obtain the posterior odds in favor of Ho. If the BF01 is equal to 1 then the data provide equal 

support for the two hypotheses and there is no reason to change our a priori opinion about 

the relative likelihood of the two hypotheses, if BF01 is greater than 1 then the data provide 

support for the null hypothesis and we should increase the odds in favor of Ho, and if BF01 

is less than 1 then the data provide support for the alternative hypothesis and we should 

decrease the odds in favor of Ho. Of course, to fully utilize the Bayes factor and turn it into a 

posterior probability that the null hypothesis is true, one must first specify a prior probability 

on that proposition. Without a subjective prior distribution on the two competing 

hypotheses, the Bayes factor becomes a measure of evidence regarding the two hypotheses 

but does not tell us exactly what conclusion to draw. The Bayes factor has a significant 

advantage over the p-value in that it explicitly addresses the likelihood of the observed data 

under each hypothesis and thus treats the two symmetrically. (Recall the p-value assumed 

that Ho was true.)

HKH (in press) address three issues that they see arising in applications of the Bayes factor 

in psychology, using the one-sample example described above as motivation. In that setting 

a requirement for forming the Bayes factor is a prior distribution for the parameter μ (or the 

standardized effect size μ/σ) under the alternative hypothesis that it is not zero. HKH and 

MWRfocus their attention on a prior distribution that is Gaussian with mean zero and for 

which the only unspecified parameter is the standard deviation (their τ). The first issue 

raised by HKH concerns the frequent use of default prior distributions rather than subjective 

prior distributions, the second issue concerns how to choose the default prior distribution (or 

more precisely the key parameter(s) of the default prior distribution) if one opts to go that 

route, and the third issue concerns interpretation of the Bayes factor. HKH and MWR both 

seem to agree on the issues associated with the choice of subjective or default prior 

distribution, although they disagree on how best to proceed in the specific example at hand. 

Thus, I do not discuss this issue further here.

For the second and third issues HKH propose to use frequency properties of the Bayesian 

method to assist in calibrating the default prior distribution and in selecting thresholds for 

interpreting the Bayes factor. Their approach is discussed further below but it is worth 

noting that this is not the first time frequency calculations have been proposed for use by 

Bayesian analysts. Rubin (1984) argued that there are frequency calculations that can be 

justified as being relevant to Bayesian analysts to assure that their inferences are calibrated 

correctly or to assist with evaluating the assumptions of their model. Similarly, Little (2006) 

argued for Bayesian inference but endorsed careful assessment of models using frequentist 

ideas. In a medical context Berry (2004) showed how Bayesian methods can be used to 

design clinical trials while controlling standard frequentist operating characteristics if that is 

desired.
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To address HKH’s second issue, we suppose that the default normal prior distribution is 

chosen and then ask how to choose the standard deviation τ. HKH propose a form of 

frequentist calibration; the standard deviation should be chosen so that the Bayes factor has 

specified frequentist properties. They give a couple of example calibration rules, one (their 

definition 2) being to choose the standard deviation such that the probability the Bayes 

factor is greater than one (favors the null) is high (say .95) if the null hypothesis is true. I 

share MWR’s concern about this type of calibration. In automating the application of the 

Bayes factor in this way HKH are reproducing some of the problematic issues associated 

with traditional hypothesis testing.

When it comes to interpreting the Bayes factor after one has chosen the appropriate prior 

distribution, HKH are concerned about the various scales that have been proposed (see, e.g., 

Kass and Raftery, 1995). It is easy to understand their concern about automatic use of Bayes 

factors cutoffs. After all the use of .05 as a strict cutoff in significance testing was identified 

earlier as a key problem with significance testing. HKH propose the use of frequentist 

operating characteristics of the Bayes factor procedure to assist with interpretation. They 

generate simulated Bayes factors under the assumption that the null hypothesis is true and 

then again under a specific alternative hypothesis (or a series of different alternative 

hypotheses). Given an observed Bayes factor a researcher can use these simulations to 

determine the likelihood of observing such a value of the Bayes factor under the null and 

alternative cases. Though correct, the HKH approach seems like a great deal of work to help 

refine the interpretation of an observed Bayes factor, work that I do not believe that I would 

find useful in my applied work. The Bayes factor is a measure of evidence and comes with a 

natural interpretation – a Bayes factor (BF01) of 1/1000 for example multiplies ones prior 

odds in support of the null hypothesis by 1/1000 and thus indicates very strong evidence in 

favor of the alternative hypothesis for all but the most committed supporters of Ho. The 

ambiguity of larger values less than one for the Bayes factor (i.e., 1/5, 1/10, 1/20) is 

informative as it indicates the data supports the alternative but that one’s conclusion will 

depend on one’s prior opinion about the relative likelihood of the two hypotheses being 

considered. I believe that this is consistent with what Kass and Raftery (1995) describe. I do 

not believe they or others suggest the use of strict cutoffs for decision making. Here HKH’s 

desire to force the Bayes factor into a decision regarding the “correct” hypothesis is creating 

a binary decision where it may not be required. It is the adoption of this binary view of the 

world instead of choosing to focus on the magnitude of effects that leads to the HKH 

concerns. Summarizing Bayesian inferences by a posterior distribution rather than insisting 

on a binary decision would elimiinate the need for the proposed fix.

Practical advice

The HKH/MWR discussion in this issue of the journal is important. Though the details of 

the exchange are likely to be primarily of interest to Bayesian data analysts, the exchange in 

fact raises more substantial issues about statistical inference. My own view is that 

psychologists too often ask questions in the form of hypothesis tests when the questions 

might be more usefully addressed with effect sizes and interval estimates. There can be no 

doubt that there are scientific questions that require a decision as to whether to accept a 

particular hypothesis – clearly this is the case in a medical study designed to decide whether 
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to continue applying an existing treatment or adopt a new one. I do not however believe that 

hypothesis tests are always or even generally required in psychology. Understanding the size 

of the effect that has been observed and the role of sampling variability are the basic 

elements of a data analysis. In my own research I tend to present such results by 

summarizing the posterior distribution of a Bayesian analysis. Others may prefer to present 

confidence intervals based on a frequentist analysis. In either case, the binary decision 

regarding a specific null hypothesis, if needed, should occur only after we understand what 

the data are telling us about the effect under study. It is important to emphasize that this is 

not a new message; it has been made offen in the psychology literature over the years (e.g., 

Wilkinson et al, 1999; Cummings, 2011).

Earlier in this article I questioned the decision of BASP to ban the p-value and all other 

traces of significance testing. I continue to believe that this is a misguided and extreme 

reaction to the fact that people occasionally misinterpret p-values as being more than just a 

measure of evidence about Ho. In place of significance testing, the editors of BASP suggest 

greater use of descriptive statistics and effect sizes, more graphical displays of the 

distribution of the data, and larger sample sizes (Tramifow and Marks, 2015). These 

recommendations echo the suggestions of earlier groups, e.g., the Task Force on Statistical 

Inference (Wilkinson et al., 1999). The first two of these are outstanding suggestions and 

should be a key part of scientific data analyses. Indeed, I would especially emphasize the 

second suggestion. Figure 1 presents two data displays comparing hypothetical data for 

treatment and control groups in a randomized study. The left hand panel presents the data in 

a form that is all too recognizable to readers of many popular and highly regarded journals. 

For each group the height of the bar represents the mean and the vertical bar extending up 

from the top of the bar gives the standard deviation of the distribution (or occasionally the 

standard error of the mean). The right hand panel shows the mean as a horizontal line 

superimposed on the observed data values. It is natural to ask how we ended up with so 

many people choosing to display their data in the form presented at the left rather than the 

form presented at the right? The proposal that investigators should use bigger samples is an 

easy one to support but often difficult to execute because of funding. For this reason I 

believe it is important that any publication provide information about the amount of 

sampling variabiality that is present. Confidence intervals and Bayesian posterior intervals 

are excellent ways to communicate this information.

The articles in this issue focus attention on the critical role of statistical inference (p-values, 

Bayes factors, confidence intervals, posterior distributions) in scientific analyses and the 

importance of avoiding errors in the application of such tools. Before ending this article 

however it is worth repeating a critical point recently made by Leek and Peng (2015). 

Scientific studies involve much more than the statistical analysis stage. There are numerous 

other points in the research process as well. We should also be scrutinizing experimental 

design, data collection, data editing, preliminary data analyses, and the choice of statistical 

models (see, e.g., Funder, Levine, Mackie, Morf, Sansome, & West, 2014; Wilkinson et al., 

1999). At each step in the research process errors can be made that negatively impact the 

scientific enterprise. Researchers should be careful to avoid such errors and to use the best 

available methods for understanding the magnitude of the effects under study.
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Figure 1. 
Data display for a hypothetical treatment (trt) and control (ctl) group comparison. The figure 

on the left shows a vertical bar for each group with the height of the bar equal to the sample 

mean and with a vertical bar extending one standard deviation above the mean. The figure 

on the right shows data points in each group with horizontal line indicating position of the 

sample mean. Points have been jittered horizontally to make it easier to see multiple similar 

observations.
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