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Abstract . 

We present a Lagrangian numerical method valid in any space dimension for ap­
proximating solutions to the Incompressible Euler Equation. The method is based on 
the canonical Hamiltonian formulation of incompressible flow. The method preserves 
at least three invariants of the flow: the kinetic energy, the impulse, and the angular 
momentum. We present numerical results which validate the method and elucidate the 
structure of the Hamiltonian variables in two and three dimensions. 

1 Introduction 

The description of the evolution of a system in ierms of a Hamiltonian is the basis for the 
study of many physical systems. Once a system is described in terms of a Hamiltonian 
many properties of the system can be determined by the symmetries of the Hamiltonian. 
Oseledets [1] introduced a canonical Hamiltonian for the incompressible Euler equations in 
any number of space dimensions for the case where the fluid has a constant density. The 
work of Oseledetswas based on the discrete Hamiltonian system introduced by Roberts 
[2] which asymptotically describes the evolution of vortex dipoles. In two dimensions the 
Hamiltonian structure introduced by Oseledets [1] is different from the point-vortex Hamil­
tonian structure introduced by Onsager [3]. 

In this paper we introduce two dimensional and three dimensional Lagrangian numerical 
methods based on the Hamiltonian formulation introduced by Oseledets. The numerical 
methods have several important properties which result from the fact that the methods 
are derived from an equation which has a Hamiltonian structure. The methods preserve 
the invariants: kinetic energy, impulse and angular momentum. Although we explicitly 
introduce the methods in two and three space dimensions, the numerical methods are valid 
in any number of dimensions and have the same basic properties. 

The Hamiltonian structure of incompressible fluid flow is described in tenp.s of a variable 
which we call the velicity. The velicity has units of velocity but satisfies an evolution 
equation which is similar to the evolution equation for the vorticity. If we make the analogy 
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between the magnetic field in magnetostatics [4] and the incompressible velocity field in fluid 
flow, the current density is analogous to the vorticity and the dipole density ( magnetization 
) is analogous to the velicity; for this reason we denote the velicity by M. 

2 Definition of the Velicity 

Consider the incompressible Euler's equation 

au vp 
-+u·Vu= --at p 

where u is the velocity, V . u = 0, p is the pressure and p is the density; we shall assume the 
density p = 1 for most of the paper. In two and three dimensions we define the vorticity w 
as 

w=Vxu ; 

the equivalent extension to higher dimensions is to interpret u as a I-form and w = du is 
the 2-form obtained by taking the differential of u [5]. The velicity M is then defined as 
any I-form (vector field) such that w = dM or in three dimensions such that w = V X M. 
Since du = dM (V X u = V X M ) we have that u and M are equivalent up to a gradient; 
that is 

M = u+ V</J , 

where </J is a scalar function. This is commonly known as the Helmholtz or Hodge decom­
position. The velocity u is uniquely determined from the velicity M by solving Poisson's 
equation 

t:..</J = V· M 

for </J to obtain u = M - V t:.. -1 {V . M}; that is we solve Poisson's equation for </J and use 
u = M - V</J. ' 

The evolution equation for M is given by 

aMi aUj 
7ft + u . V Mi = - Mj aXi (1) 

where we have used the implied summation convention and the subscripts indicate the 
Cartesian components of the vectors; this equation can be motivated ,by considering the 
evolution of the impulse in a fluid [6] and the velicity can be interpreted as an impulse 
density. IT we substitute Mi = Ui + ai</J into eq (1) we obtain that 

au + u. Vu = -V{!u2 + D</J} 
at . 2 Dt 

where D j Dt = a j at + U· V is the substantial or material derivative. With the identification 
that p = Hu2 + D</Jj Dt}, we see that eq (1) is equivalent to the incompressible Euler's 
equation. 

The velicity is, not unique; however, this proves to be useful since it is convenient to 
choose M differently for different circumstances. A possible choice for M initiallY,is,to take 
M(x,O) = u(x,O); however, unless the flow is steady M(x,t)::J u(x,t) at later times. 

For flows in unbounded domains it is convenient to choose the velicity so that it has 
compact support; if the vorticity is compact this can always be done (in two dimensions we 
must make the additional assumption that the flow has finite kinetic energy). We can show 
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this result via a simple construction. Assume that the support of the vorticity is inside of 
a ball of radius R centered at the origin. Outside of the ball the velocity can be written as 
u = - V¢ where ~¢ = 0, for some ¢. With this in mind we define a velicity Me as 

(2) 

where f is the unit vector in the radial direction. Me is compact since outside of the ball 
of radius R, Me = OJ we can show this by writing ¢ as a sum of spherical harmonics (in 
whatever dimension we are considering). By taking the divergence of eq (2) we find that 

if> = - J~ (f . u )dr , 

we see that ¢, the potential part of the velocity field, is the same as the if> in the relation 
M = U + V if>. Thus we have shown that another candidate for the velicity M is obtained 
by subtracting off the potential part of the flow field. 

If the velicity field is chosen initially to be compact it will remain compact for all later 
times; since from eq (1) velicity cannot be generated in the fluid. As is the case with the 
vorticity, the velicity can only be created at the boundaries of a fluid. In fact, generically, 
one can choose the velicity so that the support of the velicity coincides with the support of 
the vorticity. There are special cases, however, in which the support of the velicity must 
differ from the support of the vorticity; a symmetric jet or smoke ring for which the vorticity 
vanishes in the central region must have a nonzero velicity everywhere inside of the jet or 
smoke ring. 

A simple argument shows that the velicity must be nonzero at the center of a jet or 
smoke rip.g. Consider the circulation r == Ie U· drin the fluid, where the integral is taken 
about a closed curve C. Now consider a curve Co which encircles a smoke ring but lies 
outside of the support of the vorticity, such that the circulation will have some nonzero 
value roo One can show that for an arbitrary closed curve C, 

\ 

Consider calculating the circulation about Co using the velicity M instead of the velocity Uj 
one would obtain that the circulation of the smoke ring is zero if we could pick the support 
of the velicity to coincide with the support of the vorticity in this case. 

Having proven that the support of the velicity cannot coincide exactly with the support 
of the vorticity for all flows, we wish to argue that physically this is essentially what happens. 
Consider a sphere in an infinite fluid at rest initially, we can pick the velicity to be identically 
zero in this case. Let the fluid have a viscosity so that there will be vorticity generated at 
the surface of the sphere, but let the viscosity be small enough so that once the vorticity is 
generated there is essentially no diffusion of the vorticity. Now start accelerating the sphere 
through the fluid. The velicity and vorticity will be generated at the surface of the spherej 
the vorticity and velicity both flow with the fluid velocity so that for all later times the 
support of the vorticity will coincide with the support of the velicity. This is the generic 
situation for unbounded flows and thus the support of the velicity will be as small as the 
support of the vorticity in real flow situations, 

In the previous paragraph we considered the velicity in a viscous fluid, but eq (1) is 
valid only for Euler's equation; we now generalize eq (1) for the case of a viscous fluid. Let 
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the evolution of M be given by the equation: 

aAf· au' 
-a I +U·V'Mi = -Mja) +vtlMi 

t xi_ 
(3) 

By substituting Mi = Ui + ai<fJ, we can show that eq (3) is equivalent to the Navier-Stokes 
equation: 

au 1 2 D<fJ . 
- + U· V'u = -V'{-u + - - vtl<fJ} + vtlu 
at 2 Dt 

We see that the pressure becomes p = Hu2 + D¢>/ Dt - vtl¢>}. 
We now consider the inviscid equations again. Constant density incompressible fluid 

flows have many invariants. We wish to present some of those invariants in terms of the 
velicity .. 

- The first invariant we consider is the impulse of the fluid [7]. The impulse I is defined 
in three dimensions as 

I == ~ Jw r x w dx . 

We substitute w = V' x M and integrate by parts, assuming M is compact, which follows if 
w is, to find that 

I=~ [ rxwdx=JMdx 
2 JR3 

. this result also motivates describing the velicity as an impulse density. The generalization 
to any. number of dimensions is to define the impulse as 

1== J Mdx (4) 

one can show directly then from eq (1) that the impulse is an invariant the flow. This result 
is the motivation for describing the velicity as ali impulse density. . 

The next invariant we consider is the kinetic energy. From the fact that M = u + V' <fJ 

and V' . u = 0 and after an integration by parts we see that \ 

~ J u
2 

dx = ~ J M . udx (5) 

We can show that this is an invariant directly from eq (1). We have that 

! J ~u2dx = J U· ~; dx = J U· a:: dx 

- [ ai(ui'ujMj)dx = - [ (it· u)(u· M)da = 0 Jn . Jan 

where we have assumed the usual boundary conditions U· it = 0 for an Eulerian flow and it 
is the outward normal to the domain under consideration. 

The third invariant we consider is the angular momentum of the fluid [7]. The angular 
momentum n in three dimensions is defined as n == l J r x (r X w)d3 x. Substitution of 
w = V' x M and integration by parts yields immediately 

n = i j r X (r X w )d3 
X = J r X M d3 x 

The generalized invar~ant is defined as 

n == J(r AM)dx 

4 

(6) 
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which can be shown to be an invariant of the motion in any dimension directly from eq (1) .. 
The final invariant we consider is the helicity. The helicity 1/ is defined as 1/ == J (w . 'U )dx. 

An integration by parts yields immediately that 1/ = J(w· u)dx = J(w· M)dx. Oseledets [1] 
noted that in three dimensions the helicity density is a scalar invariant when it is written 
in terms of the velicity. Using the vorticity equation ow/at + 'U . Vw = w . Vu, and eq (1) 
we have immediately that 

D(w·M) = ° . 
Dt 

(7) 

We can generalize eq (7) to any number of dimensions by noting that in three dimensions 
vortex lines ev~lve as material curves in the fluid [8]. Thus in order to generalize eq (7) 
we consider the evolution of a material curve. Let x( a, t) denote the usual flow map which 
gives the position x at time t of the fluid particle which was located at position a at time 
t = 0. The Jacobian J of the flow map is given by 

ax, J .. __ 3 

'3 - oai 

Since ax / at = 'U we have immediately that 

oj 
at = J. V'U , 

where (J . VU)ij = JikOk'Uj (using the implied summation convention). Thus we obtain the 
important generalization of eq (7) that 

D(J ·M) = ° 
Dt ' 

(8) 

where (J . M)i = Mjoxj/oai.Thus we immediately obtain a solution for M in Lagrangian 
coordinates in terms of the Jacobian of the flow map: . 

M(a,t) = J-1(a,t)J(a,0)M(a, 0). , (9) 

where we have not assumed that the Jacobian at t = ° is the identity. The inverse in 
eq (9) exists for an times as long as it does initially since the flow is incompressible and 
therefore a I J I / fit = ° [81, where I J I denotes the determinant of J. In three dimensions 
the evolution of the velicity eq (9), is ina sense the inverse of the evolution of the vorticity, 
where . 

w(a,t) = J(a,t)J-1(a,0)w(a,0) 
1 . 

Equation (8) also has an interesting physical interpretation. If we consider a parametri­
zation such that initially the velicity is perpendicular to the surfaces al = constant, eq (8) 
shows that the surfaces evolve so as to remain perpendicular to the velicity. We use eq 

. (8) in presenting our numerical results in two dimensions by showing the evolution of the 
surfaces dx . M = OJ see figs (1-10). 

The numerical work presented here deals with constant density flows, however, before we 
conclude this section on background material for the velicity variable we wish to extend eq 
(1) to variable density flows. Variable density flows do not have the Hamiltonian structure 
introduced by Oseledets, however, the formulation of incompressible fluid mechanics in 
terms of the velicity is extremely useful and so we include the variable density equations 
here for completeness. 
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In order to derive an equation to describe the evolution of the velicity for variable density 
incompressible flows we follow the derivation of energy conservation following eq (5). Since 
kinetic energy is also conserved in variable density flows, the correct equation describing the 
evolution of the velicity should be identical to eq (1) with the addition of a term to account 
for the fact that gradients in the density generate vorticity in an incompressible flow. Also 
the Helmholtz decomposition must be modified appropriately. For variable density flows 
we relate the velicity M to the velocity u linearly as follows: 

V¢l 
M=u+­

p 
(10) 

We substitute eq (10) into eq (1) and require that the resultant equation have the form of 
the variable density Euler's equation. As expected we find we must add a term to eq (1) so 
that the resultant equation has the desired form. We find that M must satisfy 

aMi +u.VMj = _M. aUj _!u2alnp 
at ) aXi 2 aXi 

(11) 

Substitution of eq (10) into eq (11) yields 

au + u. Vu = _ VHpu
2 + D¢ljDt} 

at p 
(12) 

where we have used the continuity equation Dpj Dt = O. Thus we see for the general 
variable density case the pressure of the fluid is given by 

1 D¢l 
p= {_pu2 +_} 

2 Dt 

where now ¢l is defined by eq (10). Energy conservation now follows from eqs (10,11) and 
the continuity equation: . 

d j 1 2 - . -pu dx 
/' dt 2 

= j !u2aP dx + jPu. au dx 
2 . at at 

= - j !u2(u. Vp)dx + jPu. aM dx - jPu. a(V¢ljp) dx 
2 at at 

= - j u2(u.Vp)dx- j pu·V(u·M)dx- j{U.(M-u)}(u.VP)dx 

= .- f ai(pUiUjMj) dx = - f p( it . u)( u . M) da = 0 , Jo Jao 

where once again we assume u . it = 0 as the boundary condition for Euler's equation. 

3 The L.agrangian Numerical Method 

In this section we present the Lagrangian numerical methods which are valid in any number 
of dimensions for constant density incompressible fluid flows. We shall try to make the 
presentation independent of the dimension of the space. The methods are based upon 
a discretization of eq (1). The methods preserve three invariants of incompre'ssible fluid 
flow: kinetic energy, impulse, and angular momentum. In this paper we assume the fluid 
is in a unbounded domain. We shall deal with bounded domains in a future paper. The 
discretization is based on the discretization introduced and refined in [9, 10, 11,12, 13]. 

6 



" 

We wish to approximate the velicity field M(x, t) which evolves according to eq (1) with 
initial conditions M(x,O)i we denote our approximation to M as M. Given M(x,t) we 
associate the incompressible velocity field u(x, t) which is our approximation to u(x, t) and 
is related to M via the Helmholtz decomposition M = u+ V<jJ. We define an approximation 
to M(x, 0) and then evolve the approximation according to eq (1). 

We first define a mollification (blob) function h as 

1 
hex) = 6dfo(x/6) , 

where fo is a smooth function which has unit mass f fodx = 1, and whose first p - 1 
moments vanish J XO fodx = 0, for 0 < 1 a I:::; p - 1 

where a is the multi-index XO == X~l X:2 ... X~d and d is the space dimension. We define our 
initial approximation to M as follows: 

N 

M(x,O) = Lh(x - xi)mi (13) 
i=l 

where the Xi are equally spaced points on a regular mesh of spacing h, and mi == hd M(Xi' O)i 
points on an irregular mesh can be discretized appropriately, but for clarity we assume a 
regular mesh. The sum in eq (13) is over all points such that M(Xi'O) :I O. The convergence ,~ 

properties are given in [13] and the approximation in eq (13) converges with order p as h -+ 0 '1;: 

provided h = 6{3, where f3 < 1. The approximation to M at later times is defined by defining 
evolution equations for the Xi and mi and defining M(x, t) as: 

N 

M(x,t) =L hex - xi(t))mi(t) (14) 
i=l 

where the Xi satisfy 
dx' 
dt' = U(Xi) (15) 

and the mi satisfy 

(16) 

where the notation (mih denotes the k-th component of the vector mi and likewise for Xii 
the notation is somewhat complicated but the right hand side of eq (16) is the same as 
appears in eq (1). The velocity U is defined by , 

(17) 

and the fact that V . U = 0; we note that U is spatially as smooth as is h. We expect that 
M -+ Mash -+ 0 and therefore also u -+ U, as is proven for vortex methods in [11, 12, 13]; 
our numerical results indicate that this is indeed the case. 

We now construct u explicitly and prove the invariance of the kinetic energy, impulse 
and angular momentum of the numerical scheme. One can show that 

N 

u(x) = L{mjh(x - Xj) - (mj· V)V1/J(x - Xj)} (18) 
j=l 
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where 'I/J satisfies tl.'I/J = Is; for simplicitywe assume that Is is radially symmetric. Outside 
of the support of Is eq (18) gives a dipole field for the velocity induced by a single blob of 
velicity. We define the discrete kinetic energy H of the method as an approximation to the 
kinetic energy 1/2 I(M . u) dx; 

1 N 
H == -Lmk·u(Xk) 

2 k=l 
1 N N 

= - L L {(mj· mk)ls(xj - Xk) + (mj . Vj)(mk· Vk)'I/J(Xj - Xk)} (19) 
2 j=l k=l 

where V k indicates the gradient with respect to the Xk. In order to obtain the second 
equality in eq (19) we substituted eq (18) and used the fact that Vk1/J(Xj -Xk) =-Vj1/J(Xj­
Xk). We note that the discrete kinetic energy is finite because Is isa smooth function; this 
is in contrast to the singular form one obtains from Roberts' original work [2]. One can 
obtain the self-energy of a blob by evaluating the velocity at the origin for a single blob 
which is also located at the origin. One finds that the self-velocity Uo of the blob located 
at Xk is 

(20) 

where d is the space dimension. Thus we see that in the limit h _ 0 with h = 6/3 the 
self-velocity of a blob vanishes; for nonzero hand 6, however, Uo '=I 0; the self-energy then 
is 

h2d d - 1 2 
P 6d -UMkfo(O) , 

where we have included p the density of the fluid to make the self-energy dimensionally 
correct. 

The discrete system can be written as a Hamiltonian system if we observe that 

dXk = V H 
dt mA: 

, (21) 

and 
dmk = -V H 
dt XA: 

,. (22) 

where VmA:H and VXIcH indicate taking gradients with respect to the variables mk and Xk. 
By a direct computation eq (15) is identical to eq (21) and eq (16) is identical to eq (22). 

The preservation of the discrete invariants is an immediate consequence of the Hamilto­
nian structure of the system where H is identified as the Hamiltonian. The discrete kinetic 
energy is an invariant since dH/dt = 0 if the Hamiltonian does not explicitly depend on 
time [14]. Since the Hamiltonian is translation invariant we have that 

N 

I==Lmi (23) 
i=l 

is a constant of motion; we see that eq (23) is an approximation to the impulse I M dx. 
The third invariant n is an approximation to the angular momentum I x 1\ M dx, 

N 

n == LXi 1\ mi 
i=l 

8 
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and it is an invariant because the Hamiltonian is rotationally invariant. The fact that 1 and 
n are discrete invariants of motion can ,~so be verified directly by calculating [1, H] = 0 and 
[n,H] = 0 where 1 and n are defined byeqs (23,24) and [-,.] denotes the Poisson bracket 
[14]. 

It is interesting to note that this finite particle system describing incompressible fluid 
flow has the same invariants as N bodies interacting via a central force such as gravity. In 
particular the asymptotic motion of two velicity particles colliding is completely determined 
by the three invariants H, 1 and n. This observation and the Hamiltonian structure make 
an alternative description of incompressible superfluid Helium possible; we will address this 
in future work. 

4 Numerical Results 

In this section we present some numerical results obtained using the approximation de-., 
scribed in the previous section. We present results in both two and three dimensions. The 
results presented here are only meant to demonstrate the basic properties of the method and 
to validate it. In particular we do not advocate that the two dimensional method is better 
or worse than other two dimensional Lagrangian methods; however, we wish to emphasize' 
the fact that the methods are formally the same independent of dimension. Therefore once 
the method is developed in two dimensions it is simple to extend the method to any number 
of dimensions. In the work presented here we developed the three dimensional method first 
and modified it for two dimensions. In future work, however, which will include boundaries 
and viscosity, it will be much simpler to develop the'method in two dimensions where vi­
sualization is easier and then extend the method to three dimensions. The fact that the 
structure of the vorticity equations changes in going from two to three dimensions has made 
the development of three dimensional Lagrangian vorticity methods difficult. 

The numerical method has several unique features as a Lagrangian method besides the, 
obvious feature it shares with other methods; the fact that it produces a smooth velocity 
field u which is exactly divergence-free at every time. The first important feature is that the 
vorticity V x u is compact. Although this can be done for many methods in two dimensions, 
it is not possible to produce a compact vorticity field in three dimensions when the vorticity 
is used as the computational variable [6]. Another important feature of the method is the 
fact that discrete energy, impulse and angular momentum invariants are preserved. We 
observe that the preservation of these invariants causes the numerical method to preserve 
many of the important physical symmetries which are present in Eulerian flows; flows do 
not become unphysical because of numerical discretization artifacts. 

For the three dimensional calculations presented here we used the following blob func­
tion: 

21 {I, 
fo(x) = -3 ,1- 10(r -1/2)3 + 15(r - 1/2)4 - 6(r - 1/2)5, 

17r 0, ' 

where r =1 x I. For the two dimensional calculations we used 

fo(x) = 2. {1-lOr
3 + 15r

4 
- 6r

5
, ~f r ~ 1; 

211" 0, If r > 1, 

if r ~ 1/2; 
if 1/2 < r ~ 3/2; 
if r > 3/2, 

where, again r =1 x I. Both of the blob functions have continuous second derivatives. There 
is no particular reason for choosing the more complicated form for the three dimensional _ 
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blob function; choosing a form similar to the two dimensiopal case should work just as well 
and the formulas would be slightly shorter. The spatial derivative which must be calculated 
in eq (16) was evaluated exactly via eq (18). The velocity was also evaluated exactly via eq 
(18) using a direct summation technique. The equations of motion eqs (15,16) were solved 
exactly using fourth order Runge-Kutta. ,The error in solving the equations of motion was 
monitored by calculating the invariants H, I and !l. Since the kinetic energy H is positive 
definite, it proves to be the most sensitive measure of error in integrating the system and 
we choose our time step so as to preserve the kinetic' energy invariant to an accuracy of 
1 X 10-7• The impulse invariant and angular momentum invariant were constant to machine 
accuracy (1 X 10-15) due to the exact algebraic cancellation of those invariants. 

There are many things which can be done to improve the computational efficiency of 
the method, such as using a fast summation method [15, 16] to calculate the velocity, or 
introducing an approximation to calculate the spatial derivatives; however, in this paper 
we deliberately avoid any such approximations so that the basic method can be validated 
without the added complication of other numerical approximations. These improvements 
to the method will be addressed in future work. 

In the two dimensional calcula.tions, see figs (1-10), we present the results by showing the 
evolution of the surfaces which are perpendicular to M initially and remain perpendicular 
to M for all later times, as given by eq (8). We choose for the initial conditions a velicity 
field which points in they-direction and thus the surfaces ·in two dimensions are lines of 
constant y value; see figs (1,5). In figs (1-10) these surfaces are drawn by simply connecting 
the locations of the velicity particles which are originally on the same surface. The circles in 
figs (1,5) are additional Lagrangian markers chosen to help show the evolution of the fluid 
and to emphasize the fact that the initial velicity magnitudes are chosen radially symmetric, 
as is discussed below. 

The initial conditions for-the two dimensional calculations, M(x,O), is chosen to be a 
smooth dipole given in velicity variables as 

M
2
(x,0) = {1-10r3 + 15r4 

- 6r5
, ~f r ~ 1; 

0, If r > 1, 
(25) 

where r =Ixl, and M1(x,0) = O. This produces an initial velocity whIch is given by eq (18) 
for a single particle. From eq (20) we see that the velocity of the point at the origin should 
be 1/2, at least initially; from fig (1) and fig (2) this is seen to be the case, although the 
velocity of the curve bounding the support of the velicity is considerably slower. 

In figs (1-4) we show the results of approximating eq (25) with an initial grid with a 
spacing h = 0.05. This results in approximating eq (25) with 1245 points evenly spaced 
initially. We choose the smoothing parameter 0 = 0.4. In fig (3) we plot the direction of 
the velicity vectors mi at their locations. We see that indeed the approximate velicity field 
evolves so as to remain perpendicular to the surface on which it was perpendicular initially. 

In figs (5-10) we show the results of approximating the same initial conditions, eq (25), 
with a grid spacing h = 0.025 and leaving 0 = 0.4. This results in 5013 particles, approXi­
mating the flow. In figs (5-9) we plot half of the surfaces J . M = 0 and in fig (10) we plot 
a third of the surfaces. In comparing figs (1-4) with figs (5-10) we see that the results have 
converged to the limiting value as h - O. Because of the large number of points necessary 
to perform the calculations it is not possible to show the convergence as'o - 0 as accurately 
except for extremely short times. 

In figs (11-16) we show the results of some generic three dimensional calculations. The 
lines shown in figs (11-16) are actual vortex lines of the continuous velocity field U. For 

10 



instance in fig (11) a Lagrangian curve C, initially a circle, is evolved with the fluid velocity 
u. At any desired time the vortex lines through C are calculated by numerically integrating 

, the vorticity field V' x u. Although there is no a priori numerical constraint which guar­
antees that the vortex lines which close initially will close at later times, we see that the 
approximation preserves this property in figs (11,12). No swirl is numerically introduced. 

The initial conditions for the calculations shown in figs (11-12) are those which produce 
a vortex ring of large radius R = 1, with constant vorticity inside the torus of small radius 
a = 0.4. We choose the velicity so that it initially has only a z component, which is given 
by 

{

(I + Ja2 - z2 - r)/2a, if (r - 1)2 + z2 :5 a2j 

M3(x,0) =Ja2 - z2/a, ,if z2 :5 a2 and r:5 1- Ja2 - z2 j 
0, elsewherej 

(26) 

where r2 = x 2 + y2. The velicity is normalized so that 1 M 1= 1 at the origin. We can verify 
that eq (26) produces the correct vorticity by taking the curl of the velicity; note that the 
velicity is continuous whereas the vorticity is discontinuous. 

The initial velicity eq (26) is approximated by 5696 points on a grid which is uniform 
in cylindrical coordinates r,8,z; the average spacing is h = 0.1 and 6 = 0.4. The vortex 
lines which are shown in figs (11,12) are those which intersect a circular curve of radius 
0.2 initially. Since the chosen initial conditions are not a steady state solution the vortex 
ring must evolve. Conservation of impulse and angular momentum prevent the ring from 
stretching in the radial direction. The ring evolves by stretching in the z direction while 
maintaining its cylindrical symmetry (see fig (12» and eventually forms a thin urn-like 
structure. There is no cylindrical symmetry assumed in the calculation once the initial 
conditions are chosen. 

In figs (13,14) we show the evolution of a flow in which the velocity has compact support 
inside of a torus. We choose a smooth velocity such that the support lies inside of a torus 
of large radius R = 1 and small radius a = 0.2. We define a divergenc~free velocity U in 
terms of toroidal coordinates p, 8, 4> as 

Uo = rx2f(px/a) 

Up = -nfXP cos(n8)f(px/a) 
T 

-nfxp
2 . ( XP ) r cos(n8) sm 4> 2f(px/a) + -;; !,(px/a) + P-op2 f(px/a) (27) 

where f is given by the right hand side of eq (25), X = 1 + fsin(n8), r2 = x2 + y2, 
p2 = (r - 1)2 + z2, n is an integer, and a, f and no are parameters. For the flow in 
figs (13,14) we choose a = 0.2, f = 0.0, and no = 25.0. We approximated the flow with 
5807 points, h = 0.05 and 6 = 0.4. In this example we choose M(x,O) = u(x,O) initially. 
Although the velocity does not have a compact support for later times the velicity does. In 
fig (13) we show a single vortex linej note that now the vortex lines do not close initially 
and therefore should not close at later times either. The vortex lines wrap around toriij a 
single vortex line eventually covering a particular torus. In fig (14) we show the evolution of 
the vortex line we showed initially in fig (13). Because of the complicated structure of the 
vorticity in this calculation it would be difficult to do a similar calculation with a vorticity 
based method. 

In the calculation shown in figs (15,16) we again choose an initial velocity given by eq 
(27) with compact support and pick M = u initially. The choice of parameters is a = 0.2, 
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£ = 0.25, n = 1 and no = 25.0. The difference between the initial conditions in fig (15) 
and those in fig (13) is that in fig (15) we vary the small radius of the torus as a function 
of 8, the angle around the torus. Thus as we see in fig (13) the vortex lines now change 
their pitch and radius as they wrap around the toroidal surface. In fig (16) we show the 
evolution of the vortex line shown originally in fig (15). Once again we see that performing 
a similar calculation in vorticity variables would be difficult. We wish to emphasize that 
the three invariants: kinetic energy, impulse and angular momentum are discrete invariants 
of the calculations shown here. ' ' 

5 Conclusions 

We have presented a Lagrangian numerical method which approximates the incompressible 
Euler's equation in any number of space dimensions and preserves the three important in­
variants: kinetic energy, impulse and angular momentum. We have presented calculations 
which validate and show the convergence of the numerical method. Although the results 
shown here are only meant to validate the method, some of the advantages of basing the 
numerical method on the Hamiltonian formulation of incompressible flow is apparent from 
the complex structures we have been able to calculate in three dimensions. Work is un­
der way to improve the Lagrangian algorithms so as to handle flows with boundaries and 
viscosity. We are adding other numerical approximations to increase the computational ef­
ficiency of the method. We have also developed a finite difference code based on the velicity 
formulation which has similar properties to the Lagrangian methods [17]. 
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7 Figure Captions 

Figure 1. The Initial Material Surfaces. The material surfaces are shown which are orthog­
onal to the velicity field for a grid spacing of h = 0.05. Each surface is at the position of 
the initial discretization. The circles are additional Lagrangian markers inserted to aid in 
the visualization of the flow. 

Figure 2. The Evolution of the Material Surfaces. The evolution of the material surfaces 
are shown, h = 0.05. 

Figure 3. The Direction of the Velicity Field. The direction of the velicity field is shown, 
demonstrating that "it evolves so as to stay perpendicular to the material surfaces. 

Figure 4. The Evolution of the Material Surfaces. The further evolution of the material 
surfaces are shown for h = 0.05. 

Figure 5. The Evolution of a Dipole with Higher Resolution. The initial surfaces 
dx . M = 0 are shown for the initial velicity field with h = 0.025. Only half of the surfaces 
are shown. 

Figure 6. The Evolution of the Material Surfaces. The further evolution of the material 
surfaces is shown for the higher resolution calculation h = 0.025. This figure should be 
compared with fig (2). 

Figure 7. The Evolution of the Material Surfaces. The further evolution of the material 
surfaces is shown for the higher resolution calculation h = 0.025. This figure should be 
compared with fig (4). 
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Figure 8. The Evolution of the Material Surfaces. The further evolution of the material 
surfaces is shown for the higher resolution calculation h = 0.025. The magnitude of the 
velicity is larger in regions where the surfaces are closer together and smaller in regions 
where the surfaces separate as can be seen from eq (9). 

Figure 9. The Evolution of the Material Surfaces. The further evolution of the material 
surfaces is shown for the higher resolution calculation h = 0.025. We have removed the 
inner Lagrangian markers which were originally circularly shaped. ' 

Figure 10. The Evolution of the Material Surfaces. The further evolution of the m~terial 
surfaces is shown for the higher resolution calculation h = 0.025. We show only a third of 
the surfaces corresponding to the original discretization whereas in figs (5-9) we show half 
of the surfaces. 

Figure 11. The Evolution of a Vortex Ring of Constant Vorticity. The vortex tube 
corresponding to a small radius of 0.2 is shown in a vortex ring of radius 0.4. 

Figure 12. Deformation of a Vortex Ring. The highly deformed stage of a vortex tube 
is shown after it has evolved from an initially toroidal shape. 

Figure 13. An Initially Swirling Flow. The initial shape of a vortex line is shown in a 
swirling flow. 

Figure 14. The Evolution of a Swirling Flow. The evolved state of the vortex line shown 
in fig (13) is shown at a later time. 

Figure 15. A Swirling Flow of Variable Radius. The initial shape of a vortex line in a 
swirling flow of variable radius is shown. 

Figure 16. The Evolution of Swirling Vortex Line. The vortex line is shown which has 
evolved from the one shown in fig (15). 
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