
The Adaptable IO System (ADIOS)

David Pugmire1, Norbert Podhorszki1, Scott Klasky1, Matthew Wolf 1, James
Kress1, Mark Kim1, Nicholas Thompson1, Jeremy Logan1, Ruonan Wang1, Kshitij
Mehta1, Eric Suchyta1, William Godoy1, Jong Choi1, George Ostrouchov1, Lipeng
Wan1, Jieyang Chen1, Berk Geveci2 Chuck Atkins2, Caitlin Ross2, Greg
Eisenhauer3, Junmin Gu4, John Wu4, Axel Huebl4, Seiji Tsutsumi5

Abstract The Adaptable I/O System (ADIOS) provides a publish/subscribe ab-
straction for data access and storage. The framework provides various engines for
producing and consuming data through different mediums (storage, memory, net-
work) for various application scenarios. ADIOS engines exist to write/read files
on a storage system, to couple independent simulations together or to stream data
from a simulation to analysis and visualization tools via the computer’s network
infrastructure, and to stream experimental/observational data from the producer to
data processors via the wide-area-network. Both lossy and lossless compression are
supported by ADIOS to provide for seamless exchange of data between producer
and consumer. In this work we provide a description for the ADIOS framework and
the abstractions provided. We demonstrate the capabilities of the ADIOS framework
using a number of examples, including strong coupling of simulation codes, in situ
visualization running on a separate computing cluster, and streaming of experimental
data between Asia and the United States.

1 Introduction

The Adaptable I/O System (ADIOS) was designed with the observation that applica-
tions almost universally read and write files from storage, and that this can be used as
an abstraction for access to data [13]. ADIOS is a middleware layer that sits between
the application and the computing system to manage the movement of data. This
middleware layer makes it possible for an application to write data to a target that is
determined at runtime. One possible target is traditional file storage. Other targets
are able to support in situ processing methods, and include a memory buffer on the
nodes where the application is running, or over the network to a memory buffer on
another set of resources. Applications (e.g., visualization and analysis codes) can

1Oak Ridge National Laboratory · 2Lawrence Berkeley National Laboratory · 3Kitware, Inc. ·
4Georgia Institute of Technology · 5Japan Aerospace Exploration Agency

1

2 Pugmire, et al.

read data from any of the file or in situ targets. A schematic showing examples of
these use cases in given in Figure 1. The advantage of this design is that the sharing
and movement of data is decoupled from the producer and the consumer, and can be
modified at runtime as needed. This advantage addresses several of the challenges
described in Section ?? of Chapter ??. Workflow execution is made easier when
data producers and consumers can be connected together without modifying the
source codes. Software complexity is reduced because the issues related to data ac-
cess across evolving systems are provided by the middleware layer. Better resilience
is possible because the producer and consumer need not run together in the same
memory space.

Fig. 1 Examples of ADIOS usage. In this example, the producer can write data to disk, to a
visualization process sharing the same resource as the simulation, to a separate set of nodes, or
across the network to a remote computing center.

In terms of the taxonomy described in Section ?? of Chapter ??, ADIOS can
be classified in the following ways. Integration type: Apart from the usage of the
ADIOS API for I/O, no additional instrumentation is needed by the application.
Proximity: The visualization can run on the same or different computing resources.
Access: The visualization can directly access memory in the simulation, or it can be
copied to a memory buffer on the same or on different computing resources.Division
of Execution: Synchronous or asynchronous are both possible, providing support for
both time and space division. Operation Controls: Human in the loop is possible
using both synchronous (blocking) or asynchronous (non-blocking) modes.

The ADIOS framework design was based on the goal to provide an I/O abstraction
for parallel and distributed applications that expresses what data is produced for
output and when that data is ready for output, or what data an application wants to
read and when[22, 23, 16]. This is achieved in ADIOS through the use of different
types of I/O engines. When an application writes a set of data, it uses the appropriate
engine (e.g., File engine, In situ engine, etc) to do the actual datamovement. Similarly
for a reader, it uses the appropriate Engine to request the data that it needs. For
flexibility, the types of engine used by producer and consumer can be specified in
a configuration file for runtime selection. In this way, applications that either read

The Adaptable IO System (ADIOS) 3

or write data need only select the appropriate output engine, and do not need to be
concerned with the implementation details needed to achieve scalable performance.

The separation of concerns, namely that an application only need to be concerned
about the data production and consumption but not how the data should be delivered,
allows for creating optimized ADIOS engines that all can work with the same
application code. Using the ADIOS interface makes application I/O scalable, a
primary goal of the ADIOS framework, which is designed to work well on the
largest supercomputers. ADIOS regularly runs on the largest supercomputers in the
world for applications that consume and produce multiple petabytes of data during
the course of a simulation run.

In this chapter we describe details of the ADIOS framework and how it can be
used for in situ visualization. In Section 2 we describe the I/O abstractions used
by ADIOS and how applications and visualization codes can use them. Section 2.1
provides a description of the engines provided by ADIOS and how they handle
the movement of data. Advanced features in ADIOS are described in Section 2.2,
followed by a discussion on the relative strengths of each engine and coding examples
in Sections 2.3 and 2.4. In Section 3 we describe the use of ADIOS for in situ
visualization with application partners, followed by some concluding remarks in
Section 4.

2 ADIOS I/O Abstraction

A parallel application that produces data uses ADIOS to define variables (n-
dimensional distributed arrays of a particular type) and attributes (labels associated
with individual variables or the entire output data set). It also specifies when the
data is available for output. The output is organized around output Steps, instead of
individual variables. A Step includes all the variables and attributes that are to be
sent to the target at once. There is nothing in the ADIOS interface that prescribes how
to handle the data (e.g. data aggregation among the processes, targeting a single file
or one file per process, handling multiple readers, and handling the disappearance of
a potential reader). These belong to the IO strategy and are implemented in various
ways by different Engines. The user can control the behavior of the application by
choosing a specific engine, and parameterizing it with available options.

Similarly, a reading application only declares what data it wants to retrieve from
a source, each process of the parallel application declaring what it needs, and when
it expects the data to be in its memory. The input is also organized around Steps, not
individual variables. The semantics of the ADIOS API ensure that a reader never
gets into an inconsistent state where portion of the data of some variables belong to
a certain step, and other portion to another step.

Analysis and visualization are typically data-hungry operations [7]. This makes
scalable access to data key. In an in situ environment, the ability to maintain clear
boundaries between simulation and analysis tasks can promote fault tolerance, inter-
operability, programmability and maintainability.

4 Pugmire, et al.

The flexibility of the data movement abstractions provided by ADIOS makes it
easy to integrate with analysis and visualization applications. The “file-like” API
provided by ADIOS allows seamless reads from disk, from memory, or streaming
over the network. Likewise, on the write side, outputs produced by analysis and
visualization applications can be written to disk, or shared with other applications
through memory or streamed over the network. The abstraction used by ADIOS
makes it easy to move data as it does something that the application is already doing,
namely, reading and writing from files.

The abstraction provides the same access to data regardless of where the data are
located, be it disk, memory or streaming. As examples, the VisIt [6] and ParaView [1]
visualization tools have support for reading data from ADIOS in this manner. Both
tools provide access to ADIOS data using a data reader plugin. The plugin reads
the ADIOS data and creates mesh-based data that can be visualized by the VisIt
and ParaView tools. An example of VisIt visualizing streaming data is described in
Section 3.3.

When visualization is used in an in situ environment, the ability to have clear
boundaries between the simulation and analysis and visualization, and rely on a
middleware layer for the sharing and exchange of data is valuable in a number of
ways. (1) It makes it much easier to reconfigure components in a workflow based
on the needs of the scientific campaign. (2) Fault tolerance is increased because the
simulation can be separated from the visualization. (3) The mechanism for sharing
data between producer and consumer can more easily be modified, changed or
replaced.

In the remainder of this section we describe ADIOS in more detail. In Section 2.1
and 2.2 we describe the ADIOS engines used to move data and some advanced topics
on reduction and data interpretation. In Section 2.3 we discuss the characteristics
of these engines and how they relate to visualization and analysis needs and costs.
Finally, in Section 2.4 we show some code examples of how ADIOS is used for both
data producers and data consumers.

2.1 ADIOS Engines

The mechanism in ADIOS for moving data is called an engine. An engine is tasked
with executing the I/O heavy operations associated with the movement of data.
Each engine supports a unified interface that allows data producers to put data,
and data consumers to get data. The details of moving the data between source
and destination are left to particular implementation details of each engine. ADIOS
provides a number of engines, which are described below.

The Adaptable IO System (ADIOS) 5

2.1.1 File-based Engines

ADIOS provides two types of engines for performing parallel IO of data to disk
storage.

BPFile Engine

The BPFile engine is the default engine for storage. The output file target is a
directory, which contains both metadata and data files. The number of files is tailored
to the capability of the file system, not to the number of writers or readers, which
ensures scalable I/O performance. The steps stored in a single file target, can be read
by other applications step-by-step simultaneously. Therefore, this engine can be used
for in situ processing through the file system.

HDF5 Engine

This engine can be used to write and read HDF5 formatted files. It uses the Parallel
HDF5 library, so it provides only a compatibility layer to process HDF5 files in
an ADIOS application workflow and is only as scalable as the HDF5 library itself.
Streaming access to data is not currently available, but will be available once it is
supported by HDF5.

2.1.2 Data Staging Engines

Data staging is a generic concept in ADIOS for providing concurrent access to
data to one or more consumers through memory or streamed over the network. It
can map onto both time and space division of the taxonomy in Chapter ??. Data
staging engines are typically used for doing in situ analysis and visualization and
code coupling. With staging engines, the data producer will write the data using
the ADIOS API. The data are then available to be read by the consumers using the
ADIOS API. Each staging engine has the ability to move the data in different ways,
which are described below.

Scalable Staging Transport (SST)

The most versatile and flexible staging engine uses either RDMA, TCP, UDP, or
shared memory to move data from a producer (parallel application) to other con-
sumers (multiple independent parallel applications). Consumers can come and go
dynamically without affecting the producer. The output step is buffered in the pro-
ducer’s memory, and readers pull out portions of the buffered data with RDMA
operations or communicate with a thread in the producer to receive it via TCP. The

6 Pugmire, et al.

requirement of all engines to always provide a consistent view of a step to a reader
may result in blocking the producer from progressing if the consumer is slower than
the producer. The SST writer engine aggregates metadata for every step, and shares
it with all readers. Readers then issue remote reading operations based on the I/O
pattern in metadata. This allows the I/O pattern to vary over time. SST also allows
readers to disconnect and reconnect while writers keep writing. To address different
application requirements, the SST buffering policy can be configured at run-time.
This includes keeping only the most recent step, buffering a fixed window of consec-
utive steps, or blocking until the step is consumed. In cases where strong coupling
is required between applications, the buffer limit can be set to 1, which ensures that
every step is consumed by the reader before the producer moves to the next data step.
For use cases like interactive visualization, buffering only the latest step is useful
since the user typically does not want to block the simulation while a particular time
step is explored. While SST aims to provide the flexibility for addressing various
application requirements, the fact that it manages metadata for every single step may
be overkill for uses cases where the metadata does not change frequently, or at all.

Insitu-MPI

This engine focuses on the speed of data movement for use cases where the metadata
is constant across the workflow and a singlemetadata aggregation at the first data step
will suffice. After this first step, each writer and reader knows the exact I/O pattern
and direct communication is performed using asynchronous send and receive oper-
ations using an MPI communicator. Since it uses MPI, the producer and consumer
applications must be launched within a single mpiexec command using the Multiple
Program Multiple Data (MPMD) mode. The engine directly sends the application
data to the consumer, hence, the producer is synchronized to the consumer at every
step to avoid modifying the data before it is received. For very large applications with
constant I/O patterns, the Insitu-MPI engine can provide CPU savings for metadata
management. However, since it must be launched in MPMD mode under MPI, the
flexibility of readers dynamically join or leave is not supported at run-time.

Staging for Strong Coupling (SSC)

The SSC engine is also designed for applications that have constant metadata over
time. Similar to the Insitu-MPI engine, the SSC engine aggregates metadata once
on the first time step. The main differences between SSC and Insitu-MPI are that
SSC uses one-sided MPI communication and that the producer output is buffered.
The one sided MPI paradigm does not require the send and receive calls to be
paired. Instead, it allows direct access to remote memory of another process. The
buffering of application data, on the other hand, enables the producer to continue
with the computation while the data is transferred to the consumer. In very large scale
coupling use cases this approach saves the overhead of one side waiting for the other

The Adaptable IO System (ADIOS) 7

side to complete the send and receive pairs, and makes it possible for applications to
very quickly, and frequently exchange data.

DataMan

This engine focuses on providing good bandwidth over wide-area-networks (WAN.
It uses the publish and subscribe communication mechanism of the ZeroMQ library
and has been optimized specifically for long-distance low-latency data movement.
Unlike other staging engines, such as SSC described above, DataMan does not
guarantee that every data step is transferred. Instead, the subscriber is designed to
read only the latest data steps, while ignoring the previous steps. This saves the two-
way communications for checking step completion, which usually means several
hundred milliseconds in inter-continental data transfers. Because of this, the data
transfer latency is greatly reduced and can support near-real-time analysis better
than other engines over the WAN.

2.2 Advanced Data Management Services

ADIOS has a number of internal and external supports for advanced management
of data. These include data compression, and schemas for providing additional
information about ADIOS data to help downstream processing applications, such as
analysis and visualization to properly interpret the raw data.

2.2.1 Data Compression

ADIOS supports operators as a mechanism for performing calculations on the data
before it is written by an engine. A general purpose operator, called a Callback pro-
vides the user with the ability to perform arbitrary calculations and manipulations to
the data inside the engine. Data compression is provided in ADIOS using this mech-
anism. It provides support for a number of different lossless and lossy compression
methods, which are described below.

In the classical workflow for high-performance scientific simulations, the entire
data set is written to storage after generation. This will no longer be viable at the
exascale, simply because the amount of data will swamp the filesystem. To accel-
erate scientific discovery, we must prioritize information over data. It will be vital
to take advantage of a priori user information to prioritize the most useful data so
that I/O can be completed under standard HPC time constraints. (For example, on
Summit, jobs are limited to 24 hours.) One solution is data compression. ADIOS
supports storing or transporting data in compressed form to reduce the I/O cost
while preserving key information, which in turns speed up simulations or in situ
data analysis and visualization [5]. Enabling compression requires minimal devel-

8 Pugmire, et al.

opment effort from users. Simply specifying an operator for each variable enables
ADIOS to automatically compress or decompress at the point of data publication
or subscription. Lossless compressors such as BZip2 [25] preserve every bit of the
data, but compression ratios observed in practice are minimal. Lossy compressors
such as MGARD [2, 4, 3], SZ [10, 20, 26], and ZFP [21] provide much higher
compression ratios (usually more than an order of magnitude than lossless), but in-
formation is lost. However, most lossy compressors allow control of the loss through
parameters, which can be easily set in ADIOS. Also, as derived quantities in data
are particular important for scientific discovery, one of the compressors supported
by ADIOS, MGARD, can consider one or more relevant quantities of interest and
reduce the data so as to preserve these quantities. Furthermore, ADIOS supports the
meta-compressor Blosc which provides further lossless compressors (Zstd, Snappy,
BloscLZ, LZ4HC) as well as shuffle pre-conditioners. In GPU-centric applications,
using ADIOS with Blosc’s threaded-chunked compressor variants regularly trades
unutilized CPU-cycles for I/O speedup [15].

2.2.2 Schemas

Schemas provide the ability to annotate the semantics of the array-based layout of
data in ADIOS. These provide the meaning of each data array, and the relationship
between groups of arrays in an ADIOS file or stream. This capability makes it easier
for tools using ADIOS to be used together in, for example, a complex scientific
workflow. Two examples of such schemas are described below.

ADIS Visualization Schema

The Adaptable Data Interface for Services (ADIS) is a schema for describing mesh-
based data that are used by visualisation tools. ADIS uses a JavaScript Object
Notation (JSON) formatted strings to describe the content of ADIOS data. For
example, for ADIOS data arrays representing field data on a uniform grid, the ADIS
schema will specify that there is a uniformmesh of a given size, and the names of the
arrays in the ADIOS stream for each field and the association on the mesh (e.g., zone
centered, point centered, etc). For more complex mesh types, like unstructured grids,
ADIS specifies the names of the arrays for specifying the relevant mesh structures
(e.g., point coordinate values, cell information, etc).

ADIS also supports the creation of data sets from ADIOS in the VTK-m [24]
format. Given a schema, and anADIOSfile/stream,ADISwill read data fromADIOS
and construct the appropriate VTK-m data object.

The Adaptable IO System (ADIOS) 9

openPMD Schema

The Open Standard for Particle-Mesh Data Files (openPMD) is a schema for de-
scribing mesh- and particle-based data. Its primary focus is the exchange, archival
and replicability of scientific data via a minimal set of conventions and meta infor-
mation. The schema is defined in the so-called "base standard" and "extensions".
The former is agnostic of the data’s scientific domain and can be automatically
verified/parsed, visualized, scaled and dimensionally analyzed (describing units and
quantities). The base standard also providesmeans to document authorship, hardware
and software environments towards reproducible research. Based on this, standard-
ized meta-information in openPMD schema "extensions" add further meaning for
domain-scientists, e.g. by documenting algorithms andmethods that generated a data
set.

Contrary to visualization-focused and domain-specific schemas, openPMD is
a notion for scientifically self-describing data in general, providing a unified de-
scription for data in scientific workflows from source, over processing, analysis and
visualization to archival in (open) data repositories. openPMD is widely adopted in
plasma-physics, particle-accelerator physics, photon-science, among others.1

The schema can be added to data described via hierarchical, self-describing
(portable) data formats. Open implementations are available in C++, Python and
Fortran and currently range fromMPI-parallel ADIOS1, ADIOS2 and HDF5 library
backends to serial JSON files. The openPMD schema is versioned, citable and
developed on GitHub. Its release is version 1.1.0 and data files using the schema are
forward-updatable via lightweight meta-data transformations [14].

2.3 Discussion

The number of engines available in ADIOS provides a large amount of flexibility
when selecting a configuration. Further, multiple executables can be connected using
the read/write API of an ADIOS engine to support a range of different types of
workflows. The example workflow in Figure 2 shows ADIOS (indicated with red
arrows) being used as the data movement mechanism for a number of tasks. It is
used to couple two simulations, in situ visualization on the HPC resource, in transit
visualization on a cluster in the HPC center, and transfer data over the WAN to
remote site for analysis. Additionally, data from a sensor/experiment is streamed
over the WAN for analysis that uses simulation results.

When designing a visualization workflow, the choice of engine for each com-
ponent is dependent on a number of factors. Broadly speaking these classes of
visualization are post hoc, in situ (time division), and in transit (space division).
Post hoc visualization is the traditional mode of visualization where the data are
read from disk. As discussed in Chapter ??, in situ visualization, while a broadly

1 Curated list available at https://github.com/openPMD/openPMD-projects

10 Pugmire, et al.

Fig. 2 Example workflow using ADIOS for simulation coupling, in situ visualization, in transit
visualization, and streaming of both simulation and experimental data over the WAN to a remote
site for analysis.

defined term, is for simplicity, the case where the visualization and simulation use
the same set of resources. In transit visualization uses two distinct sets of resources,
one dedicated to the simulation and the other dedicated to the visualization. The
network is used to transfer data between the two sets of resources. Below, we discuss
these three modes from the ADIOS and visualization perspectives and the impact of
choices made have on visualization functionality and performance.

2.3.1 ADIOS Perspective

From an ADIOS perspective, the following three characteristics are important: (1)
data access and movement, (2) fault tolerance, and (3) programmability.

Data Access and Movement

Data access is defined as how much of the total spatio-temporal data are available,
as the temporal range of data that are available. Data movement is the amount of
data that must be moved from producer to consumer.

• Post hoc: Has access to all the spatio-temporal data that have been saved.
However, the data movement cost is highest, and may restrict the amount of data
available.

The Adaptable IO System (ADIOS) 11

• In situ / time division: Has the highest access and lowest movement costs
for spatio-temporal data as resources are shared with the producer. Access to
multiple temporal steps requires additional on-node resources.

• In transit / space difision: Data access is configurable based on needs. The
dedicated resource can be sized to control the amount of spatio-temporal access,
as well as temporal range. Since datamovement occurs over the internal network,
it is much faster than I/O.

Fault Tolerance

Fault tolerance describes the relative robustness of the system with respect to faults
occurring in either the producer or the consumer.

• Post hoc:The consumer is independent from the data producer, so fault tolerance
is very high.

• In situ / time division:Because resources are shared, the producer and consumer
can impact each other. This includes faults, memory corruption, memory usage,
etc.

• In transit / space division: Like post hoc, the consumer is independent from
the data producer. Faults occurring on the dedicated nodes will not impact the
producer.

Programmability

Programmability describes the relative ease and flexibility of connecting a simulation
with visualization. This includes composing a workflow, connecting components in a
workflow, and modifying the underlying data movement mechanism. Since all three
classes of visualization use the same abstraction, the programmability is improved
by simply changing the engine used.

Table 1 provides a visual representation of the relative strengths of each ADIOS
engine with respect the characteristics described above. A score for each engine is
assigned based on how well the engine performs with respect to each characteristic
described above. A “ + ” signifies a favorable evaluation, “ − ” a less favorable
evaluation, and “0” for in between.

2.3.2 Visualization Perspective

From a visualization perspective, a different set of characteristics are important (see
for example, [17]).We discuss the following characteristics below: (1) scalability and
resource requirements, (2) interactivity, (3) fault tolerance, and (4) programmability.

12 Pugmire, et al.

Scalability and Resource Requirements

Scalability is defined as how efficiently the visualization task can use the allocated
resources. Resource requirements is defined as the need for additional resources
beyond that of the simulation.

• Post hoc: Has the flexibility to allocate resources suitable for the required tasks,
however I/O can slow for large data.

• In situ / time division: Since the visualization must run at the scale of the
visualization, the performance will depend on the operation. Communication
heavy algorithms could suffer poor performance at larger scales.

• In transit / space division: Has the flexibility to allocate resources suitable for
the required tasks. Since I/O is avoided, access to data can be much faster.

Interactivity

Interactivity is defined as the ability for a user to interact with the data, select regions
of interest, and plot the data to extract understanding.

• Post hoc: Because visualization is independent from the simulation, full inter-
activity is possible with all data available.

• In situ / time division: Visualization has full access to all of the data that are
available on the simulation resources. Due to limited available resources, the
temporal range of data could be limited. If the data are shared, the simulation
could be blocked while visualization occurs.

• In transit / space division: Visualization has full access to all of the spatio-
temporal data that are moved to the dedicated resources. Because the data are
not shared with the simulation, blocking can be avoided.

Table 1 Characterization of each ADIOS engine

Engine Type

ADIOS Characteristics BPFile HDF5 SST Insitu-MPI SSC DataMan

Spatial Access + + 0 0 0 0

Temporal Fidelity - - + + + 0

Temporal Range + + 0 0 0 0

D
at
a

Ac
ce
ss

&
D
at
a
M
ov
em

en
t

Movement - - 0 0 + 0

Fault Tolerance + + + + 0 +

Programability + 0 + + + +

The Adaptable IO System (ADIOS) 13

Fault Tolerance

As above, fault tolerance refers to the robustness of the visualization to avoid im-
pacting the simulation.

• Post hoc: Visualization is independent from the simulation, so fault tolerance is
very high.

• In situ / time division: Because resources are shared, it is possible for the
visualization task to negatively impact the simulation.

• In transit / space division: Like post hoc, the visualization is independent from
the simulation. Errors occurring on the dedicated nodes will not impact the
simulation.

Programmability

As above, programmability describes the ease of using visualization tools with
simulation data in a variety of configurations. This includes performing visualization
tasks within a workflow, connecting analysis and visualization tasks together, and the
ability to access data from different sources. Since all three classes of visualization
use the same abstraction, the programmability is improved by simply changing the
engine used.

Table 2 provides a visual representation of the relative strengths of each ADIOS
engine with respect the important visualization characteristics described above. As
above, a “ + ” signifies a favorable evaluation, “ − ” a less favorable evaluation, and
“0” for in between.

Table 2 Characterization of each ADIOS engine for visualization

Engine Type

Visualization Characteristics BPFile HDF5 SST Insitu-MPI SSC DataMan

Data - - + + + -

Communication + + + - - +

Sc
al
ab

ili
ty

Resource + + - + + -

Spatial - - 0 + + 0

Temporal - - 0 + + 0

Temporal Range + + 0 - - 0

In
te
ra
ct
iv
ity

Block Simulation + + + - - +

Fault Tolerance + + + + 0 +

Programability + 0 + + + +

14 Pugmire, et al.

2.3.3 In Situ Data Placement and the Associated Performance Implications

Placement (in-line, in-transit, hybrid methods) is an important aspect to consider
when planning for the use of in situ techniques. Performance can vary drastically
depending on what analysis operations are used, how often they are performed, and
at what scale they are performed. This performance difference is due primarily to the
scaling characteristics of the analysis algorithms in relation to that of the underlying
simulation, and can have a large effect on the overall cost of a simulation plus its
visualization and analysis components.

In a work by Kress et al. [18] they look specifically at the cost of performing
isocontours and ray tracing with parallel compositing both in-line and in-transit,
and observe large cost variations based on placement as the simulation was scaled.
Their work found that as the simulation was scaled to 16K cores, that visualization
algorithms suffered large slowdowns in-line. However, if the data was transferred
from the simulation over the network to a set of dedicated visualization nodes that
the visualization routines completed much faster. They bring up a couple of general
guidelines in that work: (1) if fastest time to solution is your goal at scale, moving the
data and performing the visualization in-transit is the best solution; (2) if the lowest
total combined cost of the simulation and visualization routines are the overall goal,
the solution becomes more complicated. In general though, as the simulation scales
if the visualization routines do not scale as well, moving the visualization routine
to a smaller in-transit allocation is the best choice. However, careful consideration
has to be given to how large of an in-transit allocation to reserve, and how often the
visualization should be performed. A follow on work [19] develops a cost model to
evaluate the use of in situ methods at scale.

2.4 Code Examples

This section contains examples using ADIOS to read and write data. The first
example, shown in Listing 1, illustrates how a simulation code would write output
data to disk using the BPFile engine. The engine type is specified in line 11.

The Adaptable IO System (ADIOS) 15

Listing 1 Example of simulation writing outputs to a file.
1 adios2::ADIOS adios(MPI_COMM_WORLD);
2 // Declare named IO process
3 adios2::IO io = adios.DeclareIO("output");
4
5 // Declare output type and size.
6 adios2::Variable<double> var =
7 io.DefineVariable <double >("var", globalDims , offset, localDims);
8
9

10 // Set engine output to BPFile
11 io.SetEngine("BPFile");
12 adios2::Engine engine = io.Open("output.bp", adios2::Mode::Write);
13
14 // Run Simulation
15 for(...)
16 {
17 double *data = Simulation();
18
19 engine.BeginStep();
20 engine.Put(var, data);
21 engine.EndStep();
22 }
23 engine.Close();

Listing 2 shows a program that reads data from the output file and performs
visualization on the data.

Listing 2 Example of a visualization program reading data from a file
1 adios2::ADIOS adios(MPI_COMM_WORLD);
2 adios2::IO io = adios.DeclareIO("input"); //Declare named IO process
3 io.SetEngine("BPFile");
4 adios2::Engine reader = io.Open("output.bp", adios2::Mode::Read);
5
6 std::vector<double> data;
7
8 while (reader.BeginStep(adios2::StepMode::Read) == adios2::StepStatus::OK)
9 {

10 adios2::Variable<double> var = reader.InquireVariable <double >("var");
11 if(var)
12 reader.Get<double >(var, data);
13 reader.EndStep();
14
15 Visualize(data);
16 }
17 engine.Close();

To change the simulation output mode from file based to the SST in situ mode, the
only change required in Listings 1 and 2, is to change lines 11 and 3, respectively,
from
io.SetEngine("BPFile");

to
io.SetEngine("SST");

The visualization program will now read the outputs produced by the simulation
from the ADIOS stream named "output.bp", which in this case, will be coming from
the SST engine in the simulation writer process. All of the engine types support by
ADIOS can be changed in this way.

16 Pugmire, et al.

An alternative to specifying engine type in the source code is to use a configuration
file, which is parsed at runtime and specifies the engines type and IO processes to
be used. Both XML and YAML are supported as configuration file formats. the only
change required in Listings 1 and 2, is to change line 1 from
adios2::ADIOS adios(MPI_COMM_WORLD);

to
adios2::ADIOS adios("config.xml", MPI_COMM_WORLD);

This allows the underlying data movement mechanism to be changed without
re-compiling anything.

Listing 3 Configuration file, "config.xml" for examples shown in Listing 1 and 2
1
2 <!-- adios2 config file in XML format -->
3 <?xml version="1.0"?>
4 <adios-config>
5 <io name="output">
6 <!-- engine type can be set at runtime: BPFile, SST, etc. -->
7 <engine type="BPFile">
8 </engine>
9 </io>

10 <io name="input">
11 <engine type="BPFile" />
12 </io>
13 </adios-config>

Listing 4 Alternative configuration file, "config.yaml" for examples shown in Listing 1 and 2
1 ---
2 # adios2 config file in YAML format
3
4 - IO: "output"
5 Engine:
6 # engine type can be set at runtime: BPFile, SST, etc.
7 Type: "BPFile"
8
9 - IO: "input"

10 Engine:
11 Type: "BPFile"

Basic XML and YAML configuration files for ADIOS are shown in Listings 3
and 4 respectively. Changing the "type" field on line 7 from "BPFile" to "SST" will
configure ADIOS to use the SST engine when the executables are run.

Listing 5 illustrates how to read ADIOS data using the Python high-level API.
ADIOS provides a “pythonic” interface of an iterable container of steps using a
generic “read” function that always return a numpy array for easy integration with
the Python data analysis ecosystem. Similarly, switching between Engines is done
through a parameter in the open function or using a config file as described above.

The Adaptable IO System (ADIOS) 17

Listing 5 Python High-Level API Read Example
1 import adios2
2
3 with adios2.open("euler.bp", "r", engine_type="BPFile") as fh:
4
5 for fstep in fh:
6
7 # retrieve current step
8 step = fstep.current_step()
9

10 # inspect variables dictionary in current step
11 step_vars = fstep.available_variables()
12 for name, info in step_vars.items():
13 print("variable_name: " + name)
14 for key, value in info.items():
15 print("\t" + key + ": " + value)
16 print("\n")
17
18 if(step == 0):
19 size_in = fh_step.read("size")
20
21 # read variables in current step
22 # returning a numpy array for easy integration
23 # with data science frameworks (e.g. pandas, scipy)
24 T = fstep.read("T")

3 Example Use Cases

In this section we demonstrate how the I/O abstraction and engines described above
in Section 2 can be used with different applications. These examples show how
ADIOS engines can be used in different ways to accomplish the in situ processing
required by a scientific campaign. The examples show how in situ can be used in both
shared and separate resource configurations, and also include an example where data
was streamed across the wide area network (WAN). In each example, we motivate
the purpose of each scientific example and how ADIOS was used to provide the
solution.

3.1 Strong Coupling in a Fusion Simulation

High-Fidelity Whole Device Modeling (WDM) of Magnetically Confined Fusion
Plasmas is among the most computationally demanding and scientifically challeng-
ing simulation projects. The ten-year goal is to have a complete and comprehensive
application that will include all the important physics components required to sim-
ulate a full toroidal discharge in a tokamak fusion reactor. The main driver is based
on the strong coupling of two advanced and highly scalable gyrokinetic codes, XGC
and GENE, where the former is a particle-in-cell code optimized for the treating the
edge plasmawhile the other is a continuum code optimized for the core. Applications

18 Pugmire, et al.

for additional physics are intended to be coupled in the future, e.g. ones for material
wall interactions or for high energy particles.

In the WDM workflow, the ADIOS BPFile engine is used to save check-
point/restart files, offloads variables for in situ analysis and visualization [8]. For
in-memory data exchange, the SST and Insitu-MPI engines are used for coupling of
the core and edge simulations [11]. To date, three-dimensional field information has
been shared between XGC and GENE, but a five-dimensional distribution function-
based coupling is now under development. Published results [8, 11] have all relied
on synchronous exchange, but asynchronicity will need to be explored in order to
mitigate blocking while data are not available. The ADIOS SSC engine is designed
to support the asynchronous WDM coupling workflow. ADIOS affords both perfor-
mant scalability as data sizes grow with increased dimensionality, as well as APIs
that support asynchronous operation.

3.2 Streaming Experimental Data

Fusion experiments provide critical information to validate and refine simulations
that model complex physical processes in the fusion reactor as well as to test and
validate hypotheses. Recent advances in sensors and imaging systems, such as sub-
microsecond data acquisition capabilities and extremely fast 2D/3D imaging, allow
researchers to capture very large volumes of data at high rates for monitoring and
diagnostic purposes as well as post-experiment analyses. For example, JET, the
world’s largest magnetic confinement plasma physics experiment in the UK, is
producing about 60 GB of diagnostic data per pulse [12]. A 2-D spatial imaging
system, called Electron Cyclotron Emission Imaging (ECEI), in KSTAR, Korea,
alone can capture 10 GB of image data per 10 second shot [28].

A system using ADIOS has been developed for KSTAR to support various data
challenges by executing remote experimental data processing workflows in fusion

Fig. 3 Fusion instability monitoring and mitigation workflow.

The Adaptable IO System (ADIOS) 19

science. It is one of the drivers for the development of the DataMan engine to support
science workflows execution over the wide-area network (WAN) for near-real-time
(NRT) streaming of experiment data to and from an experiment site and remote
computing resource facilities.

An example of KSTAR workflow is shown in Figure 3. This workflow is a multi-
level workflow in that each box consists of one or more sub-workflows, each of which
can be composed with ADIOS engines. One of the main goals is to stream online
fusion experiment data fromKSTAR inKorea to a computing facility inUSA in order
to perform various computational intensive analyses, such as instability prediction
and disruption simulation. While our previous effort [9] focused on building remote
workflows with data indexing, we are currently working on composing the KSTAR
workflow with DataMan. In this workflow, we use ADIOS’ DataMan engine to
move raw observational data as streams from Korea to the USA. Once data streams
arrived in a USA computing facility, we launch a set of analysis and visualization
workflows to perform denoising, segmentation, feature detection, and selection for
detecting any instabilities. Visualization results can be delivered back to Korea for
designing the next upcoming shots. In short, ADIOS engines enable researchers to
compose and execute workflows spanning local resources and remote large-scale
high performance computing facilities for NRT analysis and decision-making.

3.3 Interactive In Transit Visualization

The Japan Aerospace Exploration Agency (JAXA) has implemented various ways
for visualizing one of their CFD simulations, upacs-mc-LES. The visualization of
CFD data consists of both batch and interactive visualization. Batch visualization
is performed to create preset view images of the flowfield. Interactive visualization
is conducted by interactively using Visit to understand the physics of the flowfield.
While interactive visualization is not performed all the time during simulation, it is
essential to have the capability to launch and attach the visualization process to the
simulation when necessary, then to seamlessly detach when finished.

The agency has a heterogeneous HPC system, the Supercomputer System Gen-
eration 2 (JSS2). The main computer is a Fujitsu supercomputer with FX100 CPUs
specialized for vector computations. Another cluster with x86 processors and GPUs
is available for visualization and GPU-based analysis. There is a shared Lustre file
system, which can be used for post-processing. An Ethernet and InfiniBand network
connects the two machines, but only a portion of the nodes can communicate be-
tween the two machines. Most of the nodes can only communicate with other nodes
on the internal network.

Batch visualization in post-processing is an easy way to produce movies of
preset 3D visualizations on the GPU cluster, but it is stressing the file system and
cannot support the largest simulations due to the I/O overhead. In situ visualization
based on LibSim [27] is another approach, where the main computer is used to
produce the images within the simulation code. In situ not only allows for producing

20 Pugmire, et al.

a movie without dumping all data to disk but it also allows for interactive data
exploration. ADIOS makes another approach feasible: in transit visualization where
the simulation data is streamed from the main computer to another application,
which in turn uses LibSim to create the visualizations. The visualization can be
performed either on the main computer or on the GPU cluster (see Fig. 4). In all
cases, Visit is used as the GUI for attaching to the visualization in case the user
wants to interactively explore the data set.

The main drawback of in situ visualization with LibSim, for interactive explo-
ration, is that the simulation process stops during interactive visualization. JAXA
users want the simulation to progress with the computation while they are looking
at a snapshot in time. In transit visualization using the ADIOS SST engine solves
that problem and is as easy to use as in situ visualization when launching them as
two separate applications together on the main computer in a single job.

Another advantage of in transit visualization (both for batch and interactive visu-
alization) is that the simulation is not affected by the visualization process in terms
of computing performance, nor by abnormal termination of the visualization pro-
cess. The simulation progresses independently from the visualization and therefore
the cost of visualization is amortized. On the other hand, data movement also has
a cost and this offsets some of the advantages. As discussed in Section 2.3.3, there
are trade-offs between the in situ and in transit approaches, and it depends on the
simulation size, data size and visualization cost in order to determine which ap-
proach works best. Therefore, JAXA wants to maintain and provide all approaches
to visualization for its users.

In transit visualization also provides the capability to use the GPU cluster for
the visualization. The main difficulty with using a separate machine is that two jobs
need to be submitted to two different machines and run at the same time. Current
job scheduling policies only support batch processing. Therefore, the only way to

Fig. 4 Two steps of staging of data necessary on the JAXA heterogeneous system for interactive
visualization. Simulation data is staged to a concurrent staging service on nodes that have network
connections to the GPU cluster. The data is further staged to the visualization server running on
the GPU cluster. The visualization client then visualizes the data. The visualization on the left
shows acoustic waves on the cross section and exhaust jet are visualized by normalized pressure
fluctuation and iso-surface of temperature, respectively.

The Adaptable IO System (ADIOS) 21

do interactive visualization on the GPU cluster is to submit an interactive job once
the simulation is running. This is fine for interactive visualization where the user
is present. Although ADIOS makes it possible to run the visualization application
immediately and let it wait for the connection to the simulation indefinitely, for a
batch visualization of an overnight job, this is still a waste of resources (on the GPU
cluster).

Lastly, note that using ADIOS in the simulation to output the data, the target
for the data can be a concurrent application for batch visualization on the main
computer, or an application on the GPU cluster for interactive/batch visualization, or
it can be the Lustre file system for storing data for post-processing. The visualization
application is also the same for all the three cases. It is only a matter of the runtime
setup and the choice of the ADIOS Engine to run any of these cases.

4 Conclusion

ADIOS was designed from the observation that the API describing traditional I/O
to the file system could be abstracted to describe more complicated data move-
ment. Since applications almost always read and/or write data to storage it becomes
straightforward to replace the traditional I/O mechanism with an abstraction layer
that supports much more complex movement of data with minimal changes to the
flow of execution.

In this chapter we have described the high level design of the ADIOS library
as well as a description of the currently available engines. We also provided a
comparative discussion on each engine and discussed their strengths, weaknesses,
and where each is most suitable. To provide some concrete examples of how ADIOS
has been used in practice, we described a number of experimental and simulation
examples that use ADIOS in their workflow for in situ processing and visualization.

5 Acknowledgements

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

References

1. J. Ahrens, B. Geveci, and C. Law. Visualization in the paraview framework. In C. Hansen and
C. Johnson, editors, The Visualization Handbook, pages 162–170, 2005.

22 Pugmire, et al.

2. M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky. Multilevel techniques for compression
and reduction of scientific data—the univariate case. Computing and Visualization in Science,
19(5-6):65–76, 2018.

3. M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky. Multilevel techniques for compression
and reduction of scientific data—the multivariate case. SIAM Journal on Scientific Computing,
41(2):A1278–A1303, 2019.

4. M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky. Multilevel techniques for compression
and reduction of scientific data-quantitative control of accuracy in derived quantities. SIAM
Journal on Scientific Computing, 41(4):A2146–A2171, 2019.

5. J. Chen, D. Pugmire, M. Wolf, N. Thompson, J. Logan, K. Mehta, L. Wan, J. Y. Choi, B. Whit-
ney, and S. Klasky. Understanding performance-quality trade-offs in scientific visualization
workflows with lossy compression.

6. H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller,
C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel,
D. Camp, O. Rübel, M. Durant, J. M. Favre, and P. Navrátil. VisIt: An End-User Tool For
Visualizing and Analyzing Very Large Data. In High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, pages 357–372. Oct 2012.

7. H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. H. Weber, and E. W.
Bethel. Extreme scaling of production visualization software on diverse architectures. IEEE
Computer Graphics and Applications, 30(3):22–31, 2010.

8. J. Y. Choi, C. Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta, M. Ainsworth, B. Allen,
F. Cappello, M. Churchill, P. Davis, S. Di, G. Eisenhauer, S. Ethier, I. Foster, B. Geveci,
H. Guo, K. Huck, F. Jenko, M. Kim, J. Kress, S. Ku, Q. Liu, J. Logan, A. Malony, K. Mehta,
K. Moreland, T. Munson, M. Parashar, T. Peterka, N. Podhorszki, D. Pugmire, O. Tugluk,
R. Wang, B. Whitney, M. Wolf, and C. Wood. Coupling exascale multiphysics applications:
Methods and lessons learned. In 2018 IEEE 14th International Conference on e-Science
(e-Science), pages 442–452, Oct 2018.

9. J. Y. Choi, K. Wu, J. C. Wu, A. Sim, Q. G. Liu, M. Wolf, C. Chang, and S. Klasky. Icee:
Wide-area in transit data processing framework for near real-time scientific applications. In 4th
SCWorkshop on Petascale (Big) Data Analytics: Challenges and Opportunities in conjunction
with SC13, volume 11, 2013.

10. S. Di and F. Cappello. Fast error-bounded lossy hpc data compression with sz. In 2016 ieee
international parallel and distributed processing symposium (ipdps), pages 730–739. IEEE,
2016.

11. J. Dominski, S. Ku, C.-S. Chang, J. Choi, E. Suchyta, S. Parker, S. Klasky, andA.Bhattacharjee.
A tight-coupling scheme sharing minimum information across a spatial interface between
gyrokinetic turbulence codes. Physics of Plasmas, 25(7):072308, 2018.

12. J. Farthing, T. Budd, A. Capel, N. Cook, A. Edwards, R. Felton, F. Griph, and E. Jones. Data
management at jet with a look forward to iter. In International Conference on Accelerator and
Large Experimental Physics Control Systems, 2006.

13. W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J. Choi,
K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta,
G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi, N. Thompson,
S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky. ADIOS 2: The adaptable input output
system. a framework for high-performance data management. SoftwareX, 12:100561, July
2020.

14. A. Huebl, R. Lehe, J.-L. Vay, D. P. Grote, I. F. Sbalzarini, S. Kuschel, D. Sagan, F. Pérez,
F. Koller, and M. Bussmann. openPMD: A meta data standard for particle and mesh based
data.

15. A. Huebl, R. Widera, F. Schmitt, A. Matthes, N. Podhorszki, J. Y. Choi, S. Klasky, and
M. Bussmann. On the scalability of data reduction techniques in current and upcoming HPC
systems from an application perspective. Lect. Notes Comput. Sci., 10524(4):15–29, 2017.

16. S. A. Klasky, M. D. Wolf, M. Ainsworth, C. Atkins, J. Y. Choi, G. Eisenhauer, B. Geveci,
W. F. Godoy, M. B. Kim, J. M. Kress, T. M. Kurc, Q. G. Liu, J. S. Logan, A. B. Maccabe,

The Adaptable IO System (ADIOS) 23

K. V. Mehta, G. Ostrouchov, M. Parashar, N. Podhorszki, D. Pugmire, E. D. Suchyta, L. Wan,
and R. Wang. A view from ornl: Scientific data research opportunities in the big data age.

17. J. Kress et al. Loosely coupled in situ visualization: A perspective on why it’s here to stay.
In Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, ISAV2015, pages 1–6, New York, NY, USA, 2015. ACM.

18. J. Kress,M. Larsen, J. Choi,M.Kim,M.Wolf, N. Podhorszki, S. Klasky, H. Childs, andD. Pug-
mire. Comparing the efficiency of in situ visualization paradigms at scale. In International
Conference on High Performance Computing, pages 99–117. Springer, 2019.

19. J. Kress,M. Larsen, J. Choi,M.Kim,M.Wolf, N. Podhorszki, S. Klasky, H. Childs, andD. Pug-
mire. Opportunities for cost savings with in-transit visualization. In ISC High Performance
2020. ISC, 2020.

20. X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello. An efficient transformation scheme for lossy
data compression with point-wise relative error bound. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER), pages 179–189. IEEE, 2018.

21. P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions on visualization
and computer graphics, 20(12):2674–2683, 2014.

22. Q.Liu, J. Logan,Y.Tian,H.Abbasi,N. Podhorszki, J.Y.Choi, S.Klasky,R. Tchoua, J. Lofstead,
R. Oldfield, et al. Hello ADIOS: the challenges and lessons of developing leadership class
I/O frameworks. Concurrency and Computation: Practice and Experience, 26(7):1453–1473,
2014.

23. J. Logan, M. Ainsworth, C. Atkins, J. Chen, J. Y. Choi, J. Gu, J. M. Kress, G. Eisenhauer,
B. Geveci, W. Godoy, M. B. Kim, T. Kurc, Q. Liu, K. V. Mehta, G. Ostrouchov, N. Podhorszki,
D. Pugmire, E.D. Suchyta, N. Thompson,O. Tugluk, L.Wan, R.Wang, B.Whitney,M.D.Wolf,
K. Wu, and S. A. Klasky. Extending the publish/subscribe abstraction for high-performance
i/o and data management at extreme scale. Bulletin of the IEEE Technical Committee on Data
Engineering, 43(1), 3 2020.

24. K. Moreland, C. Sewell, W. Usher, L.-T. Lo, J. Meredith, D. Pugmire, J. Kress, H. Schroots, K.-
L. Ma, H. Childs, M. Larsen, C.-M. Chen, R. Maynard, and B. Maynard. Vtk-m: Accelerating
the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and
Applications, 36:48–58, 05 2016.

25. J. Seward. bzip2 and libbzip2. avaliable at http://www. bzip. org, 1996.
26. D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving lossy compression for

scientific data sets based on multidimensional prediction and error-controlled quantization.
In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
1129–1139. IEEE, 2017.

27. B.Whitlock, J.M. Favre, and J. S.Meredith. Parallel In SituCoupling of Simulationwith a Fully
Featured Visualization System. In T. Kuhlen, R. Pajarola, and K. Zhou, editors, Eurographics
Symposium on Parallel Graphics and Visualization. The Eurographics Association, 2011.

28. G. Yun, W. Lee, M. Choi, J. Kim, H. Park, C. Domier, B. Tobias, T. Liang, X. Kong, N. Luh-
mann Jr, et al. Development of kstar ece imaging system for measurement of temperature
fluctuations and edge density fluctuations. Review of Scientific Instruments, 81(10):10D930,
2010.

