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A familiar refrain heard during most campaigns is, “There’s too much money in politics!”  
Whether that is indeed the case or not, money certainly plays a key role in the American 
political process, whether in the form of campaign contributions from special interest 
groups, campaign contributions from individuals or other lobbying expenditures by 
special interest groups.  Furthermore, the amount of money explicitly tied into the 
political process through one of those three channels is undoubtedly increasing up to the 
present.  In the last full presidential election cycle (2003-04) the Democratic and 
Republican party raised a record setting $1.5 billion in campaign contributions alone.  
Ironically, this was the first election cycle in which the Bipartisan Campaign Finance 
Reform Act of 2002 which restricted campaign contributions was in effect.  Meanwhile 
special interest groups spent over $4 billion in various lobbying expenditures during the 
same two year period.i  The message is quite clear: there is a substantial amount of 
money in politics, and voters and politicians on both sides of the aisle have felt compelled 
to reform the giving process. 

Setting aside the issue of campaign finance, I concern myself with the other, 
larger component of money in politics, lobbying expenditures.  As long as government 
policies and regulatory actions can be targeted to distinct groups, these interests will have 
incentives to lobby the government for preferential treatment.  This is an inescapable 
feature of modern democracies, yet the public holds lobbyists in such a dim view that 
over nine out of ten Americans believe it should be illegal for lobbyists to give any item 
of value to politicians.ii  Grossman and Helpman (2001) cleanly identify three basic 
motives for lobbying – gaining access to politicians, providing credibility for favored 
policy positions, and direct influence on policy.  However, the effects of lobbying on 
policy (and ultimately social welfare) are ambiguous.  Targeted transfers may or may not 
be inefficient, while competition among special interest groups could potentially produce 
more or less efficient redistributive policies.  Given lobbyists’ key role in policymaking, 
their ever increasing expenditures, and the public’s poor opinion of them, political 
finance reform is an issue of central importance.  Ideally, we would like to reform 
spending in politics in a way to maximize social welfare.  If, however, our understanding 
of lobbying is flawed, then policy reforms may be inefficient at best, and socially 
detrimental at worst. 
 There is a very well developed theoretical literature on special interests and 
lobbying stretching back nearly a half century.  Olson’s (1965) seminal work identified 
obstacles to collective action and underscored the differences between individual and 
group interests, even among like-minded constituents.  Stigler (1971) suggested that 
lobbying, particularly with respect to regulation and redistribution, was motivated by rent 
seeking behavior, and this line of thought was more rigorously followed by Peltzman 
(1976) and Becker (1983).  Winston and Maheshri (2008) model interest group behavior 
in a dynamic setting, where an agency problem between special interests and the 
constituents that govern them can lead to inefficient methods of redistribution. 
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Broadly speaking, there have been two general approaches to describing special 
interest group (inter)action theoretically.  Becker (1983, 1985) models interest group 
competition between representative taxed and subsidized groups as a reduced form game.  
Special interests make expenditures on political pressure which in turn develop their 
political influence and generate rents from the government.  Grossman and Helpman 
(1996, 2001) and Grossman, Helpman and Dixit (1998) have applied the common agency 
model of Bernheim and Whinston (1986) to a strategic game between interest groups and 
politicians involving political contributions contingent on actual policies drives lobbying 
behavior. 

In both approaches, very little attention is given to the distribution of lobbying 
expenditures by interest groups.  This is unfortunate, because the distribution of lobbying 
expenditures (rather than the magnitude of these expenditures) is of first order concern to 
policy makers.  Broadening the base of political participation and dissuading or 
restricting one group from dominating all government interactions are priorities to 
political reformers.iii  Becker simply assumes away the distribution through the use of 
representative agents, and the structure of the common-agency model of Grossman and 
Helpman has a tendency to yield knife-edge strategies in which one group does all of the 
giving in equilibrium.  Neither of these theoretical results can be corroborated in lobbying 
data.  In fact, they are directly refuted.  The distribution of lobbying expenditures simply 
cannot be characterized by a single group taking full action, nor is it characterized by 
lumpy point masses of groups with different policy interests.  Instead, I note a 
conspicuous empirical regularity, namely that the distribution of lobbying expenditures 
follows a power law.  This casts serious doubt on the ability of strategic models of 
lobbying to generate realistic predictions. 

In general, the literature on the subject has relied too much on highly stylized 
models of decision making to describe special interest behavior.  In a recent survey on the 
state of political economy research, Timothy Besley (2004) notes that there is no clear 
correct theoretical framework for understanding special interest politics, and in fact 
“there is no reason to believe that any single theoretical approach will dominate.”  
Indeed, one of the goals of this paper is to provide a substantively new and different 
approach to understanding decision making by special interest groups.  I analyze the 
distribution of lobbying expenditures by special interests in all sectors and industries.  
While the main contribution is a theoretical description of a general set of processes 
consistent with specific behavior, I stress that all of the analysis is empirically motivated.  
That is, only after that lobbying expenditures follow a power law do I propose a new, 
spatial model of lobbying behavior that may be driven by general, plausible heuristics 
that special interests use to guide their actions.   

The striking predictions by this model of the distribution of lobbying expenditures 
stand in stark contrast to the predictions by widely accepted strategic models in the style 
of Grossman and Helpman.  That fact corroborates my approach and implies an 
“impossibility theorem” of sorts with great policy relevance: practically no political 
reform of modest scale will have any effect on the shape of the distribution of lobbying 
expenditures.  Furthermore, the analysis shares key similarities to models of widely 
disparate phenomena in the physical, biological and social sciences; this cross-
disciplinary universality is intellectually satisfying in its own right. 
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 The paper is organized as follows.  In section II, I develop the theory of power 
laws and allude to their prevalence elsewhere in the scientific world.  In section III, I use 
actual data on US special interest groups to identify a broad, empirical regularity in the 
distribution of their lobbying expenditures, which naturally gives rise to a spatial model 
of the lobbying process laid out in section IV.  In section V, I discuss the policy 
implications of these findings and stress the superiority of this approach in describing 
aggregate special interest behavior relative to the stylized, strategic workhorse models in 
this field.  Supplemental mathematical background is provided in two appendices. 
 

 

Power Laws 

 

The term power law is given to a general class of distributions with a salient feature: 
scale invariance.  This feature possesses great intuitive appeal.  Consider some data 
generating process.  Then it is said to be scale invariant if the probability density of the 
data is similar at all scales.  That is, if we observed the density over some domain of the 
process and compared it with the density of another domain of the process which was 
scaled up (or down) by a constant factor, then the densities on the two domains would be 
proportional to one another.  In simpler terms, the same fundamental forces generate the 
data at all scales. 

Power laws are of great scientific interest in large part due to their universality.  
They appear so widely not only in physics, biology and earth sciences, but also in 
demography, economics, finance, and social networking (Newman 2006).  This list is by 
no means exhaustive.  Models of ferromagnetism, percolation and biological speciation 
(Yule 1925) imply power laws arising in substantively different settings by 
fundamentally different mechanisms.  Data on the intensity of solar flares (Lu and 
Hamilton 1991) and armed conflict (Roberts and Turcotte 1998) follow power laws, as 
does city growth (Gabaix 1999), firm size (Axtell 2001), stock market volatility (Gabaix 
et. al. 2003) and telephone call frequency (Ebel et. al. 2002). 
 This variety of different environments all gives rise to power laws, which are, in 
some sense limiting distributions of a general class of stochastic processes (those with 
scale invariance).  I broadly define two of power law generating processes as dynamic 
and spatial.  As the name suggests, dynamic processes evolve over time and often contain 
some component of a random walk.  For example, power laws can be deduced from 
stochastic accumulation or disintegration of different quantities (such as cities growing 
with random migration and biological genera fragmenting into new species through 
random mutation). 

Spatial processes, meanwhile, need not be dynamic and are intimately related to 
fractals.  The self similarity of fractals is broadly analogous to the scale invariance of 
power law distributions, and in spatial models, this invariant behavior arises at particular 
critical points (similar to the fractional dimension which a fractal occupies).  Examples of 
these spatial processes include percolation (as water boils, there is a point between the 
liquid and gaseous phase in which the sizes of bubbles are distributed according to power 
laws) and the evolution of forest fires (periodic, stochastic fires arrange smaller groups of 
trees in a specific manner until the entire forest is vulnerable to a single fire). 
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More formally, a probability density ( )xπ is scale invariant if  

( ) ( ) ( )bx g b xπ π=        (1) 

for all values of x and b, and some function g.  We say this distribution follows a power 
law, because it is necessarily the case that we can write the density as 

  ( )x Cx
γπ −=         (2) 

for some exponent γ and constant C.iv  As reflected by the functional form of equation 

(2), these distributions have a striking geometric property.  Namely, when plotted on 

logarithmic axes, the graph of ( )xπ will be a downward sloping straight line with slope 

γ− .  A graph of, ( )xΠ  the cumulative density of ( )xπ will be a downward sloping 

straight line with slope ( )1γ− + .v  The constant (or invariant) slope at all scales of the 

variable on the x axis echoes the notion of scale invariance. 
 To the empiricist, there is a simple test of whether data follows a power law or 
not.  One needs only to rank the variable of interest in the data in order of largest to 
smallest and then plot the logarithm of the value of the variable on the x axis and the 

logarithm of the rank of the variable on the y axis.  In some sense, this is a plot of ( )xΠ .  

If this plot yields a straight line, then the data follows a power law with an exponent 
roughly equal to the slope of the line minus one.  A precise maximum likelihood test of 
power law behavior can also performed.  Details are given in appendix A.  
 

 

General Empirical Findings 

 

According to the Federal Lobbying Disclosure Act of 1995, all lobbyists with 
expenditures exceeding $20,000 are required to file semi-annual reports with the Senate 
Office of Public Records.  All filings by lobbyists can be traced to individual clients 
(trade groups, unions, firms, etc.)  The Center for Responsive Politics has enumerated all 
lobbying expenditures by interest groups of over $20,000 annually beginning in 1998.  I 
use these data to explore the distribution of lobbying expenditures and to statistically test 
for scale invariance. 
 

Table 1.  Summary Statistics 

 

Variable Mean S.D. Min.  Max.  Data Source 

Annual lobbying expenditures 
(in thousands of dollars) 

315.8 981.4 10 30796.6 Lobbying Database, Center for 
Responsive Politics (CRP) 

      

Number of actively lobbying 
interest groups within industry 

77.38 101.4 4 767 Lobbying Database, CRP 

      

Number of industries 76     
      

Number of sectors 12     
     

Years in sample 1998-2006    

All monetary variables are in 2006 dollars. 
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Summary statistics for the lobbying data are provided in table 1.  The dataset is 

large and comprehensive; the large number of observations allow for very precise 
distributional estimates.  All monetary amounts are reported in 2006 dollars using the 
average CPI from the US Bureau of Labor Statistics.  Of particular note is the wide range 
of values that lobbying expenditures for individual interest groups assumes (from $20 
thousand to over $30 million).  The fact that these values span several orders of 
magnitude indicates that there is no “typical scale” of lobbying.  This is an important clue 
towards scale invariance.  Furthermore, there is great heterogeneity in the number and 
size of contributors in each industry.  If power law coefficients are similar across 
industries, then this could mean that the distribution of lobbying expenditures is unrelated 
to the underlying structure of who gives. 
 As explained above, there are two traditional ways to test whether expenditures 
follow a power law.  The first is a maximum likelihood estimate of the power law 
coefficient as derived in appendix A.  This is, by definition, the most efficient test of 
power law behavior; however, it only provides an unconditional, univariate estimator.  
The second is an OLS regression of log-rank of expenditures on log-expenditures.vi  The 
slope coefficient (in absolute value) in this regression represents the power law exponent.  
If it is estimated very precisely, then we can be confident that the data are generated by a 
power law process.  Although this is not technically the most efficient test of power law 
behavior, Gabaix and Ibragimov (2007) provide a simple correction – simply subtracting 

1
2

from the rank before running the regression – which materially improves the quality 

of the estimates. 
 The benefit of the latter approach is that it allows for simple multivariate analysis.  
More specifically, statistical tests of common power law exponents can be conducted 
simply even if the intercepts of the tails of the distributions are different.  If a common 
power law exponent is suspected for the lobbying expenditures of two different 
industries, then we can simply test the significance of the slope coefficient in a log-log 
OLS regression of the corrected rank on expenditures if we include industry specific 
fixed effects.  In addition, when dealing with panel data, it is possible to account for 
temporal effects as well. 
 

 Table 2.  Common OLS Power Law Exponent Estimates
vii

 
Left hand side variable is ln(industry rank – 0.5). 

Right Hand Side Variable(s) γ̂  S.E. Naïve S.E.
viii

 R
2
 

ln(industry share of 
expenditures) 

0.85 0.005 0.04 0.70 

Above plus year fixed effects 0.84 0.005 0.04 0.71 

Above plus sector fixed effects 0.81 0.005 0.03 0.87 

Above plus industry fixed 
effects 

0.80 0.005 0.03 0.92 

52929 observations     

 
 Estimates of the overall power law exponent for different specifications are 
provided in table 2.  This is a common exponent for all groups.  The key insight to take 
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away from this table is that the power law exponent is estimated extremely precisely as 
evidenced by the minuscule standard errors.  Furthermore, additional fixed effects do not 
materially change the estimate of the exponent very much although they help to explain 
more of the variation in the data.  This is extremely strong evidence of power law 
behavior in lobbying expenditures across industries. 
 Of course, the distribution of lobbying expenditures within industries is also of 
great interest.  Due to the large number (76) of distinct industries in the sample I do not 
provide exponent estimates for each industry.  However, all of these estimates are highly 
statistically significant with the most generous, naïve standard errors on the order of 4% 
of the estimates.  With such precisely estimated exponents, I can test whether the 
distribution of lobbying expenditures is well predicted by sector and industry specific 
fundamentals. 
  

Table 3.  Industry Level Power Law Exponents and Industry Structure 
 

Dependent variable is γ̂ as computed following the method of Gabaix and Ibragimov 

(2007) for each industry.  Yearly fixed effects are included in these regressions.  All 

estimates of γ̂ are highly significant at with over 99% confidence. 

 

Variable (1) (2) (3) (4) (5) (6) 

Number of active interest groups 
within industry* 

-0.02 
(0.03) 

-- -- -- -0.02 
(0.02) 

-- 

Total industry expenditures on 
lobbying (dollars)* 

-- 0.03 
(0.02) 

-- -- -- 0.03 
(0.02) 

Number of active interest groups 
within sector (thousands)* 

-- -- 0.001 
(0.08) 

-- 0.05 
(0.05) 

-- 

Total sector expenditures on 
lobbying (millions of dollars)* 

-- -- -- (0.06) 
(0.04) 

-- 0.01 
(0.03) 

Sector fixed effects Yes Yes No No Yes Yes 

Yearly fixed effects Yes Yes Yes Yes Yes Yes 

Num. Observations 684 684 108 108 684 684 

Standard Errors clustered by sector are provided in parentheses. 
* indicates variable has been transformed by natural logarithm. 
 
In table 3, I present alternative specifications of power law exponent regressions.  The 
idea behind these tests is to see whether sector and industry level lobbying information 
can shed any light on the power law distribution of lobbying expenditures.  The 
regressions are consistent and indicative of the fact that there is little predictive power in 
basic industry and sector level lobbying fundamentals.  The right hand side variables are 
transformed by natural logarithms to provide for the best fit possible.  Still, all 
coefficients are statistically insignificant.  While this is an admittedly rudimentary test – 
it is loosely proving a negative – it is surely indicative of the fact that the distribution of 
lobbying expenditures within industries is not governed by industry lobbying structure. 
 These results, broadly speaking, are well supported by the anecdotal evidence 
presented in table 4.  Here, I provide three examples of groups of industries with nearly 
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identical power law exponents.  In each group, there are a number of disparate industries 
from a wide variety of sectors, each of which assumes the same power law distribution.  
As an example, it is highly unlikely that electronics manufacturers, poultry and egg 
farmers and the clergy all have similar political access, costs and benefits of lobbying, 
and industrial structure, yet their lobbying expenditures are distributed nearly identically.  
This is highly suggestive that the aggregate lobbying behavior is governed by other 
forces common to all industries. 
 

Table 4.  Selected Industries Grouped by Industry Level Power Law 

Exponent
ix

 

 
This is not an exhaustive list of industries in the sample. 

γ̂  Industries 

0.68-0.71 TV/Movies, Pharmaceuticals, Food Products Manufacturing, Lodging 
Tourism, Home Builders, Printing and Publishing, Food Stores, Beer, Wine 
and Liquor, Oil and Gas, Forestry and Forest Products, Securities and 
Investments, Telecommunications, Savings and Loans  

  

0.78-0.82 Electronics Manufacturing, Trucking, Poultry and Eggs, Computers and 
Internet, Real Estate, Live Entertainment, Mining, Health Professionals, 
Clergy, Lawyers and Law Firms, Business Services, General Contractors, 
Dairy, Livestock 

  

0.98-1.07 Sea Transport, Fruits and Vegetables, Environmental Services, Fisheries 
and Wildlife, Lobbyists, Special Trade Contractors, Education, Non-profit 
Institutions 

All exponent estimates are highly statistically significant at over 99% confidence. 
 
 

A Spatial Model of the Lobbying Process 

 

 I have identified two general types of processes which give rise to power law 
behavior: those that are accumulative and those that are spatial.  In deciding how to best 
model lobbying decisions, I first rule out the former.  Accumulative processes are those 
in which growth rates of various quantities (in this case, levels of lobbying expenditures) 
are proportional to initial levels.  As time elapses, the distribution of these quantities then 
assumes a power law over some relevant domain, usually the rightmost tail of the 
distribution.   

One characteristic of accumulative processes that we would expect to observe is 
that the rank ordering of the largest variables tends to remain fairly stable over time.  In 
particular, those special interests who lobbied the most in a particular year would be 
almost certainly expected to be the ones who lobby the most in subsequent years.  A brief 
examination of the US data, however, soundly refutes this prediction.  The most active 
special interest group within an industry in a particular year is also the most active special 
interest group in the following year only 60% of the time.  If an interest group is one of 
the five most active groups within an industry, they are in the top five in the following 
year only 65% of the time.  If we expand the subsample, the probability that a top ten 
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most active special interest group maintains their top ten ranking in consecutive years 
rises only to 67%.  This casts serious doubt on an accumulative process driving lobbying 
behavior.x 

Spatial processes are less intuitively appealing in how they give rise to power law 
behavior, and mathematically, they can take on a number of forms.  I propose an 
extremely general class of spatial processes which do yield power law distributions.  
Underlying this explanation is the idea that special interest groups, while not necessarily 
acting completely independently of other competing groups, make their lobbying 
decisions based on simple heuristics, or “rules of thumb.”  Generally speaking, they can 
be described as follows:  
 

1. Interest groups give their money to their favorite politician and those 
politicians most similar to them.  They are less likely to give to politicians 
with vastly divergent policy positions.   

2. Interest groups give their money in support of their favorite policy 
prescription, and those policies most similar to their favorite.  They are less 
likely to support vastly different policy alternatives. 

 
These simple assumptions of what drives lobbying decisions can be nicely 

embedded in a policy space which captures the three motives – access, credibility and 
influence – for lobbying.  Consider a two dimensional square lattice where politicians are 
ordered along one dimension by their prior policy positions on a particular issue, and 
policy alternatives are ordered along the second dimension.  Lobbying can then be 
thought of as a process in which a special interest group puts money on particular squares 
of the lattice, with each chosen square representing a contribution to a particular 
politician for a particular policy alternative.  This compactly captures all three motives 
for lobbying.  Interest groups lobbying for access would place money on several squares 
corresponding to a particular politician.  Credibility for an interest group’s policy 
preferences could be signaled by money placed on several squares corresponding to a 
particular policy alternative.  Direct influence would be captured by money placed on 
squares corresponding to favored politicians and favored policies. 

The two “rules of thumb” above imply that the squares which a particular interest 
group places money on (that is, the politicians to whom they lobby for particular policy 
alternatives) will always form a contiguous subspace of the lattice.  The number of 
squares, or politician-policy combinations, which are selected by the special interest is 
then proportional to the total amount spent on lobbying by the interest group. 

For a simple analogy, think of the politician-policy lattice as a large roulette table.  
Assuming that they have nonzero lobbying expenditures, special interests place some 
chips (spend money on lobbying) on that square which represents their bliss-points (their 
favorite politician in support of their favorite policy).  In addition, they place other chips 
on squares adjacent to their bliss-point.  The area of the roulette table covered in their 
chips is then proportional to their total lobbying expenditure. 
 I prove below that following the rules above, the distribution of the total number 
of squares upon which money is placed (total lobbying expenditures) follow a power law 
distribution for large enough areas (i.e., the right tail of the distribution).  In the proof 
below, the politician-policy space is continuous.  In the illustrative roulette table analogy 
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and forthcoming simulations, the politician-policy space is discrete, but if this discrete 
space is large enough then the intuition will follow to a good approximation.  Using the 
parlance of spatial models developed by physicists, I refer to lobbying a particular 
politician-policy combination as “shading” it (so named for coloring in squares on a 
lattice). 

Consider a process in which shaded regions, or clusters, of politician-policy space 
successively grow following a general probabilistic rule: at iteration n, each cluster grows 
stochastically.  The probability of growth decreases in some arbitrarily general manner so 
that as n gets large, the cluster stops growing with probability equal to one.  This shading 
process takes place Z times in parallel yielding Z individual clusters (representing the Z 
different interest groups making their lobbying decisions simultaneously).  I ask the 
following question: “What is the distribution of limiting cluster sizes that this process 
produces?”  Since clusters represent a sum of combinations for which the zth interest 
group has spent money lobbying for, I am really asking “What is the distribution of 
lobbying expenditures that this process produces?” 

To answer, I proceed in two steps.  First, I examine one particular cluster (interest 
group) and derive the limiting distribution of its size (lobbying expenditure).  Then I 
aggregate this distribution over all Z clusters in order to derive the approximate limiting 
distribution of the entire process.  Supplemental proofs are included in appendix B.  A 
word of caution is in order – the derivation below holds only for large clusters (large 
lobbying expenditures). 
 
Step 1.  Derivation of the limiting distribution of a single cluster 

The details of the shading process are as follows.  At the th
n iteration, the cluster 

stochastically increases by a factor of k, which is drawn from the density ( ),n k xΚ .  

Because clusters cannot decrease in size, 1k ≥ .  Also, because clusters do not grow 

without bound, k k≤ .  This density can vary across iterations, but I make two 
assumptions on it: 

( ) ( ) ( ),n n nk x k xκ χΚ = , and 

( ) ( ) ( )n nbx h b xχ χ=  for all b.xi 

The first assumption is that 
n

Κ is multiplicatively separable.  The second assumption is a 

technical condition which generalizes the scale invariance of the process.  It is satisfied 

by all functions ( ) b

n x axχ =  for instance.  The assumption that clusters stop growing 

with probability equal to one can now more formally be written as 

 ( )lim 1, 1n
n

x
→∞

Κ = . 

More simply, the probability that a cluster stays fixed (grows by a factor of 1) approaches 
1 as the process unfolds. 

Define an integer valued function nπ such that ( )n xπ is the probability that the 

cluster is of size x at iteration n.  Let ( ) ( )lim n
n

x xπ π
→∞

= .xii  I now show that π obeys a 

power law, or ( )x Cx
γπ −= for some values of the exponent γ and constant C.  By lemma 

1, this is equivalent to showing that ( ) ( ) ( )bx g b xπ π= .  It suffices to show that 



 

10 
 

 

( ) ( ) ( )1 1n nbx g b xπ π+ += ⋅  for large values of n and 1b ≤ .  I prove this by induction on n 

with two assumptions: the standard inductive assumption and that x is sufficiently large.  

In proving the base case (i.e., ( ) ( ) ( )j jbx g b xπ π= ⋅  for some j), I rely on a polynomial 

approximation.  Both the inductive step and base case holds best at large x. 

For the base case, I show that ( ) ( ) ( )0j jbx g b xπ π=  for some j.  This obviously 

does not hold for all functions jπ , but it does hold for a large, general class of functions.  

In particular, if for some j,  

( )
( ) 0

0 otherwise

j

j

P x k
x ππ

 ≤
= 


  

where Pπ  is some polynomial function then ( ) ( ) ( ) ( )1k k

j
bx P bx b P x o xπ ππ −= = + .xiii  For 

large enough x, the remainder term is dominated and the equality stands.  The base case is 
then satisfied using the function  

( )0

1

0 1

k
b b

g b
b

 ≤
= 

>
. 

For the inductive step, I show that the proposition holds at iteration j+1 assuming that it 
holds at iteration j, which was just proven in the base case.  First, note that 

 ( ) ( )1 1

1

,j j j

x
x k x dk

k
π π

∞

+ +

 
= Κ 

 
∫ .     (3) 

Evaluating ( )1j bxπ + and substituting in for ( )1 ,j k bx+Κ I can rewrite equation (3) as  

( ) ( ) ( )1 1

1

,j j j

bx
bx h b k x dk

k
π π

∞

+ +

 
= Κ 

 
∫ .      (4) 

Now, substituting the base case, I can simplify equation (4) as ( ) ( ) ( )1 1j jbx g b xπ π+ += , 

where ( ) ( ) ( )0g b g b h b= .  This completes the proof. 

Note that I go through induction to refrain from making the much stronger 

assumption that the limiting distribution π is well approximated by a polynomial.  I 
simply assume that at some iteration j, the density of cluster sizes are well approximated 
by a polynomial.  In other words, at some point, the system becomes “scale free,” in the 
sense that the inductive hypothesis begins to hold.  This is similar to a “continuous phase 
transition” in physics, in which observable quantities obey power law distributions as 
conditions reach a certain point.  Since this holds for large values of x, the right tail of the 
distribution of cluster sizes approximates a power law. 
 
Step 2.  Derivation of the limiting distribution of Z clusters 

Now, assume there are Z processes going on in parallel (that is, Z interest groups 
are making their lobbying decisions).  Then the zth process generates limiting clusters 

according to the distribution ( ) z

z zx C x
γπ −= .  The question posed is equivalent to 

computing ( )xΠ , the probability that a cluster from any of the Z processes is of size x.  

In the interest of full generality, suppose that the coefficients 
z

C are distributed according 

to some density f (with cumulative density F) and that the function K is defined in such a 
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way for each of the interest groups that the exponents 
z

γ are distributed according to 

some density g.  We can say a few things about this density G.  First of all, it takes 

nonzero values only for 0γ > .xiv  Let us assume that it also takes nonzero values only 

forγ γ≤ .xv  Then G is roughly equal to 

 ( )
( ) 0

0 otherwise

G
P

G
γ γ γ

γ
 ≤ ≤

= 


      (5) 

Where 
G

P is a polynomial approximation in the specified interval. 

 The aggregate density of clusters is given by  

  ( ) ( )
0 0

x Cx g d dF

γ
γ γ γ

∞

−Π = ∫ ∫ .      (6) 

Using the approximation from equation (5), equation (6) neatly simplifies to 

( )x C x
γ ′−′Π = , where the primes indicate new constants.xvi  This is simply a statement of 

the fact that the aggregate density of clusters follows a power law.   
 Admittedly, this result is proven only for the right tail of the distribution, and is an 
aggregate approximation.  Still, it is illustrative of the general class of processes which 
could give rise to observed power laws.  
 

 

Discussion 

 

This formulation of lobbying behavior has significant and unique implications, both for 
academics and policy makers.  For the former group, this modeling technique is a 
significant departure from the standard game theoretic approach to modeling lobbying 
and other complex decision making.  For the latter group, this model implies that 
standard political reforms which target lobbying expenditures are not likely to have any 
effect on the distribution of lobbying within and across industries.  In some sense, they 
are doomed to fail since they do not address the appropriate determinants of lobbying 
decisions. 
 I repeatedly stress that this approach is empirically driven.  It is only in response 
to the inability of existing models of special interest groups to describe aggregate 
lobbying trends that I posit this spatial approach.  More precisely, the evidence on 
aggregate lobbying expenditures is simply inconsistent with any reasonably simple Nash 
equilibrium in lobbying decisions.  As such, I depart from that solution concept and 
instead provide an alternative mechanism for lobbying expenditures based on sensible, 
general heuristics rather than strategic optimization of well defined objectives.  The 
spatial model described above predicts the power law in lobbying expenditures that is 
borne out of the actual data.  In contrast, existing common agency based models tend to 
either predict atomistic distributions of lobbying expenditures where one dominant group 
spends all of the money in an industry, or all groups spend equally.  Neither of these two 
equilibria are well supported by the data. 
 Furthermore, the existence of this observed power law should be of great interest 
to policy makers.  Recall from tables 3 and 4 that the power law exponent in each 
industry does not seem to be correlated with industry fundamentals.  In some sense, this 
is a statement that the relative distribution of lobbying expenditures is not a function of 
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the costs and benefits of lobbying for groups in a particular industry.  (As stated before, it 
would be a stretch at best to claim that the costs and benefits of lobbying for the clergy 
are in the same proportion as they are for electronics manufacturers and poultry farmers.)  
That is not to say that the costs and benefits of lobbying do not affect decisions by special 
interest groups; on the contrary, lower costs and higher benefits are likely to be 
associated with greater lobbying activity by special interest groups.  However, the 
relative distribution of expenditures is likely to remain unchanged.  As this is a quantity 
of first order importance to policy makers, the implication is clear: policies which seek to 
affect the shape of the distribution of lobbying expenditures by altering the costs and 
benefits of lobbying are likely to fail. 
 A natural question is then, “What sorts of policies could have an impact on the 
shape of the distribution of lobbying expenditures?”  First of all, remember that the 
spatial mechanism only generates a power law in lobbying expenditures in the right tail 
of the distribution (for large amounts of expenditures).  Hence, if the costs of lobbying 
became so onerous relative to the benefits that special interest groups dramatically 
reduced their activity, then the mathematical approximations in the model would grow 
tenuous.  So very extreme policies aimed at curbing influence could in fact have the 
effect of reshaping the distribution of lobbying expenditures.  Secondly disaggregating 
the legislative process could also have a similar effect.  By this, I mean that having more 
individual votes on appropriations and regulations could conceivably change the 
politician-policy space from a two dimensional manifold to a multi-dimensional 
manifold.  One of the implicit assumptions in this model of lobbying is that politicians 
and policies can be ordered in a manner consistent with single peaked preferences (this 
ensures that clusters are connected subspaces).  With a complicated multidimensional 
policy space, it becomes increasingly likely that interest groups’ preferences are no 
longer single peaked over all policies. 
 
 

Conclusion 

 

In recent years, research in political economy has become almost singularly focused on 
strategic models of behavior which generate well defined Nash equilibria.  While this is 
certainly of value in providing a systematic approach to understanding interactions 
between political actors, it often fails to describe adequately aggregate behavior in a 
manner consistent with empirical observations.  I provide an alternative approach to 
modeling lobbying decisions based on simple, sensible heuristics instead of strategic 
optimization.  While I say very little about how individual interest groups will act, I can 
make predictions of aggregate behavior which are very well supported by actual lobbying 
data. 
 My empirical contributions are clear: I identify a power law in lobbying 
expenditures, and I provide evidence suggesting that the shape of the distribution of these 
expenditures is uncorrelated with industry fundamentals and industry specific costs and 
benefits of lobbying.  The policy implications of these facts are that most modest 
lobbying reforms will have little effect on the relative amounts spent by interest groups 
on lobbying; hence, they will fail at one of their primary objectives. 
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 Broadly defined extensions to this research are twofold.  First, I believe that this 
paper underscores the importance of basing theoretical models in the social sciences on 
actual empirical observations.  If predictive power is a standard by which economic 
models are to be judged, then this is incumbent.  Second, while equilibrium concepts 
based on optimization of well defined objectives often perform admirably to describe 
many economic phenomena, they do not have a monopoly on explanatory ability.  
Echoing Timothy Besley, they are just one of many tools which we can use to understand 
the world. 
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Appendix A 

 

This derivation of the maximum likelihood estimate of the power law exponent is in the 
spirit of (Newman 2006). 
 

Consider the arbitrary power law density ( )x Cx
γπ −= .  In order to estimate the 

power law exponent, we need to identify the minimum scale at which the power law 

arises.  Often times, this is simply the smallest observation in the sample, denoted minx . 

Because any probability density must integrate to 1, we can determine the coefficient C 
as follows: 

( )
min

min

11
1 x

x

C
Cx dx xλ γ

γ

∞
∞

− −= =
−∫ , therefore 

( ) 1

min1C x
γγ −= − , and  

( )
min min

1 x
x

x x

γ
γ

π

−
 −

=  
 

.      (A1) 

We are trying to compute a maximum likelihood estimate of the parameter γ , or 

( )
1

ˆ arg min ;
n

ML i

i

x
γ

γ π γ
=

= ∏ . 

As is often the case, it is easier to take logarithms and minimize the log-likelihood 
function.  Plugging in equation (A1) and taking logs, we have 

( ) ( )min

1 min

ˆ arg min ln 1 ln ln
n

i
ML

i

x
n n x

xγ

γ γ γ
=

  
= − − −  

  
∑ .  (A2) 

Setting the derivative of the argument with respect to γ equal to zero, we get 

  
1 min

ln 0
ˆ 1

n

i

iML

n x

xγ =

 
− = 

−  
∑ , so 

1

1 min

ˆ 1 ln
n

i
ML

i

x
n

x
γ

−

=

  
= +   

  
∑ ,      (A3) 

which is in fact identical to equation (3) in the text. 
 

Estimating the standard error on ˆ
ML

γ is done by computing the width of the 

likelihood function as a function of the parameterγ .  First, we exponentiate the argument 

in equation (A2) to obtain the (non log-)likelihood function.  For clarity, let min

n
a x= , and 

let
1 min

ln
n

i

i

x
b

x=

 
=  

 
∑ , neither of which are functions of the .  Then we can rewrite the 

likelihood function as ( )1
nb

ae
γ γ−= −l .  To obtain the variance of 

ML
γ , 2

ML
σ , we first 

need to compute the mean and the mean square ofγ , which are respectively given by 
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2

ML
σ  is then simply equal to the difference of (A4) and (A5), or 

2

1n

b

+
.  Substituting back 

for b, this gives us 

  ( )
2

2

1 min

1 ln
n

i
ML

i

x
n

x
σ

−

=

  
= +   

  
∑ .     (A6) 

For large values of n, 1n n+ ≅ , so we can rewrite equation (A6) neatly in terms of the 

parameter estimate ˆ
ML

γ given in (A3) as 

( )
2

2
ˆ 1

ˆ ML

ML
n

γ
σ

−
= ,       (A7) 

which is again identical to equation (4) in the text. 
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Appendix B 

 

Lemma 1.  For any differentiable ( )xπ , ( )x Cx
γπ −=  if and only if ( ) ( ) ( )bx g b xπ π=  

for all b and functions g. 
 

Proof.  The “only if” proposition is trivially true with ( )g b b
γ−= .  We now prove the 

reverse direction.   
 

Set 1x = .  Then ( )
( )
( )1

b
g b

π

π
= , so ( )

( ) ( )
( )1

b x
bx

π π
π

π
= .  As this holds for all values of b, 

we can differentiate both sides with respect to b to get ( )
( ) ( )

( )1
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x bx

π π
π

π

′
′ = .  

Setting 1b = , we have ( )
( )
( )

( )1

1

x
x

x

π π
π

π

′
′ = .  But this is a simple, separable first order 

differential equation with solution ( )
( )
( )
1

ln ln ln
1

x x C
π

π
π

= +
′

.  Exponentiating both sides, 

we get ( )x Cx
γπ −= , where 

( )
( )
1

1

π
γ

π
= −

′
, and the proof is complete. 

 

It is actually sufficient for the “if” proposition to hold only for 1b < .  Suppose 

( ) ( ) ( )bx g b xπ π= for 1b < .  Define 
1

1c
b

= > .  Then the following is true: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2x x
g b x bx b g b g b cx

b b
π π π π π
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. 

Hence, ( )
( )

( )
( )

2

g b
cx x

g b
π π= .  More succinctly, ( ) ( ) ( )cx h c xπ π= where 
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( )
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2
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−

−
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As a postscript, we can solve for the coefficient C by setting 1x = , finding ( )1C π= . 
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i Campaign figures are from the Federal Election Commission.  Lobbying expenditures 
come from the Lobbying Database maintained by the Center for Responsive Politics.  
The lobbying expenditures only count contributions over $20,000, hence this is a lower 
bound.  All monetary values hereafter are in 1996 dollars. 
ii In addition, two thirds of Americans believe that lobbyists should not be allowed to 
contribute to political campaigns.  According to an ABC News/Washington Post poll 
conducted on January 5-8, 2006. 
iii Senator John McCain, cosponsor of the McCain-Feingold Bipartisan Campaign 
Finance Reform Act himself stresses, “Our law was not designed to lower spending in 
elections… It was, however, designed to ensure that the money political groups spend in 
federal elections is limited to reasonable, small contributions from individuals.” (USA 

Today, November 4, 2004). 
iv For a proof of this assertion, see Lemma 1 in the appendix. 
v Plotting the cumulative density is superior to plotting a histogram of the density itself 
since cumulative distributions do not discard any data that would have been lost in the 
binning process. 
vi Instead of using log-expenditures on the right hand side, power law exponents are 
sometimes better estimated using log-share of expenditures as the independent variable.  
For a brief discussion, see Gabaix (1999). 
vii Parameter estimates and standard errors are calculated following the method of Gabaix 
and Ibragimov (2007) for the OLS estimates. 
viii Naïve standard errors are simply the traditional OLS standard errors clustered by 
industry. 
ix Parameter estimates are calculated following the method of Gabaix and Ibragimov 
(2007) for the OLS estimates. 
x This also provides evidence against the most disarmingly simple explanation of the 
observation of power law behavior in lobbying expenditures.  Axtell (2001), among 
others in a tradition dating back to the 1950s, notes that firms sizes within US industries 
follow power laws.  One might think that if firms spend an amount on lobbying directly 
proportional to their size, then the power law observed in this paper would be a simple 
artifact of market structure.  This is easily refuted by the fact that the rankings of large 
firms tend to remain quite stable from year to year, whereas the rankings of active special 
interest groups vary considerably, as explained above.  Recently Rossi-Hansberg and 
Wright (2007) have shown that the distribution of establishment (firm) sizes in the 
American economy does not – and should not be expected to – follow a power law. 
xi Note that together these two assumptions imply that ( ) ( ) ( ), ,n nk bx h b k xΚ = Κ . 
xii By assumption, π is a finite function since clusters stop growing with probability one.   
xiii We define jπ in pieces because any polynomial approximation of a positive function 

of x must approach infinity for large x, but the probability that the process generates an 
infinitely large cluster being must be zero.  This piecewise definition is ok because we 

need only prove the assertion for 1b > . 
xiv This is because ( )z xπ  is a probability density, hence it must integrate to 1. 
xv This is empirically sensible because power law densities are rarely observed in nature 
to have exponents larger than 3. 
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xvi With a polynomial representation of the density g, the power law functional form is 
preserved over successive integrations by parts. 
xvii In calculating the mean and mean square of γ , we assume that 1γ > .  Looking at 

equation (A3), it is clear that this must be the case for any maximum likelihood estimate 
of γ . 


