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Efficient Approximation and Denoising of Graph
Signals Using the Multiscale Basis Dictionaries

1

2

Jeff Irion and Naoki Saito, Senior Member, IEEE3

Abstract—We propose methods to efficiently approximate and4
denoise signals sampled on the nodes of graphs using our overcom-5
plete multiscale transforms/basis dictionaries for such graph sig-6
nals: the hierarchical graph Laplacian eigen transform (HGLET)7
and the generalized Haar–Walsh transform (GHWT). These can8
be viewed as generalizations of the hierarchical discrete cosine9
transform and the Haar-Walsh wavelet packet transform, respec-10
tively, from regularly sampled signals to graph signals. Both of11
these transforms generate dictionaries containing an immense12
number of choosable bases, and in order to select a particular13
basis most suitable for a given task, we have generalized the best14
basis algorithm from classical signal processing. After briefly re-15
viewing these transforms and the best basis algorithm, we precisely16
prove their efficiency in approximating graph signals belonging to17
discrete analogs of the space of Hölder continuous functions and18
the Besov spaces. Then, we validate their effectiveness with nu-19
merical experiments on real datasets, in which we compare them20
against other graph-based transforms. Building upon this approx-21
imation efficiency of our transforms, we devise a signal denoising22
method using the HGLET and GHWT and again compare against23
other transforms. Our results clearly demonstrate the superiority24
of our transforms over those other transforms in terms of both25
approximation and denoising.26

Index Terms—Best basis selection, graph wavelets and wavelet27
packets, graph signal approximation and denoising, multiscale28
basis dictionaries on graphs.29

I. INTRODUCTION30

IN CLASSICAL signal processing, the signals considered31

possess simple, regular structures that are known a priori.32

Examples of such signals include audio, images, time series33

data, matrices, etc. All of these signals lie on regular grids, which34

makes it easy to exploit their underlying structure in order to35

analyze them. To this end, a number of highly successful tools36
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have been developed, with wavelets being one of the crowning 37

achievements. 38

Of course, as advancements in signal processing were being 39

made, so too were advancements made in computing power. 40

This made possible both the collection and processing of sig- 41

nals on a new domain: graphs. Here, a signal’s structure is no 42

longer confined to the equispaced, regularly connected domains 43

of classical signal processing. Such freedom allows for much 44

richer classes of signals to be considered and analyzed. 45

But this increased versatility does not come without chal- 46

lenges. Nearly all of the theory and tools developed for clas- 47

sical signals cannot be generalized easily, if at all, to signals 48

on graphs.1 Current methods must change and evolve, and new 49

methods must be developed. However, many of the questions 50

remain the same. How can we efficiently approximate a signal 51

on a graph? How can we quantitatively describe a signal? How 52

can we identify and remove noise from a signal on a graph? 53

In this work, we present strategies for tackling these questions 54

and more. Drawing motivation from concepts and techniques 55

used in classical signal processing, we develop new tools and 56

methods for analyzing signals on graphs which can rightly be 57

viewed as generalizations of classical techniques. 58

The organization of this article is as follows. In Section II, 59

we cover some basics of graph theory and recursive graph- 60

partitioning. We briefly review some transforms for signals on 61

graphs developed by other researchers, and then we provide 62

an overview of our own HGLET and GHWT transforms. In 63

Section III, we present theoretical and experimental results con- 64

cerning the use of the HGLET and GHWT for approximation of 65

signals on graphs. Then in Section IV, we demonstrate the effec- 66

tiveness of our transforms for denoising. The methods and tools 67

discussed herein are freely available in the MTSG Toolbox,2 68

which includes scripts for recreating Fig. 2–8 and Table I. The 69

experiments in this paper were performed on a personal laptop 70

with a 2.20 GHz Intel Core i5-5200U CPU with 12.0 GB RAM. 71

II. BACKGROUND 72

A. Graph Theory 73

Let G = (V,E) be an undirected connected graph. Let 74

V = V (G) = {v1 , v2 , . . . , vN } denote the set of vertices (or 75

1It has been proposed in [1] that one can generalize the Fourier transform
to the graph setting by using the Laplacian eigenvectors as a generalization of
the Fourier basis. However, as explained in [2], it is a mistake to interpret the
graph Laplacian eigenvalues and eigenvectors as the (squared) frequencies and
the Fourier basis functions, respectively.

2https://github.com/JeffLIrion/MTSG_Toolbox
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nodes) of the graph, where N := |V (G)|. For simplicity, we76

typically associate each vertex with its index and write i in77

place of vi . E = E(G) = {e1 , e2 , . . . , eM } is the set of edges,78

where each ek connects two vertices i and j, and M := |E(G)|.79

In this article we consider only finite graphs (i.e., M,N < ∞).80

Moreover, we restrict to the case of simple graphs; that is, graphs81

without loops (an edge connecting a vertex to itself) and mul-82

tiple edges (more than one edge connecting a pair of vertices i83

and j). We use f ∈ RN to denote a signal on G, and we define84

1 := (1, . . . , 1)T ∈ RN .85

We now discuss several matrices associated with graphs. The86

information in both V and E is captured by the edge weight87

matrix W (G) ∈ RN ×N , where Wij ≥ 0 is the edge weight be-88

tween nodes i and j. In an unweighted graph, this is restricted89

to be either 0 or 1, depending on whether nodes i and j are con-90

nected, and we may refer to W (G) as an adjacency matrix. In91

a weighted graph, Wij indicates the affinity between i and j. In92

either case, since G is undirected, W (G) is a symmetric matrix.93

We then define the degree matrix D(G) as the diagonal matrix94

with entries di =
∑

j Wij . With this in place, we are now able to95

define the (unnormalized) Laplacian matrix, random-walk nor-96

malized Laplacian matrix, and symmetric normalized Laplacian97

matrix, respectively, as98

L(G) := D(G) − W (G)

Lrw (G) := D(G)−1L(G)

Lsym(G) := D(G)−1/2L(G)D(G)−1/2 .

We use 0 = λ0 ≤ λ1 ≤ . . . ≤ λN −1 to denote the sorted Lapla-99

cian eigenvalues and φ0 ,φ1 , . . . ,φN −1 to denote their corre-100

sponding eigenvectors, where the specific Laplacian matrix to101

which they refer will be clear from either context or superscripts.102

These matrices have been studied extensively, and we now103

highlight three key properties (further information can be found104

in [3], [4]). First, both L and Lsym are symmetric matrices and105

therefore their eigenvectors form orthonormal bases for RN .106

Second, Lrw and Lsym have the same eigenvalues, and their107

eigenvectors are related in the following way:108

φrw
l = D(G)−1/2φsym

l l = 0, 1, . . . , N − 1. (1)

From this, it is easily seen that the eigenvectors of Lrw109

are orthonormal with respect to the weighted inner prod-110

uct 〈, 〉D (G) ; that is, (φrw
l1

)∗D(G)φrw
l2

= δl1 ,l2 . Third, for all111

three matrices the smallest eigenvalue is zero, and for a con-112

nected graph all the other eigenvalues are strictly positive. Fur-113

thermore, for both L and Lrw the eigenvector associated to114

eigenvalue zero is the normalized constant vector:φ0 = 1/
√

N115

and φrw
0 = 1/

√∑N
i=1 di .116

B. Recursive Graph Partitioning117

In addition to serving as bases for signals on a graph, Lapla-118

cian eigenvectors can also be used for graph partitioning. For a119

connected graph G, Fiedler showed in [5] that an eigenvector120

corresponding to the first nonzero eigenvalue of the unnormal-121

ized Laplacian (i.e., φ1) partitions the vertices into two sets, 122

V1 =
{
i
∣
∣ φ1(i) ≥ 0

}

V2 = V \ V1 ,

such that the subgraphs induced on V1 and V2 by G are both 123

connected graphs. Thus, the Fiedler vector, as it has come to be 124

known, provides a simple means of bipartitioning. This result 125

also holds when using φrw
1 (which is equivalent to using φsym

1 , 126

since (1) reveals that the eigenvector entries will have the same 127

signs). Justification of this approach comes from the fact that 128

it yields an approximate minimizer of the bipartitioning crite- 129

rion called the RatioCut (or the Normalized Cut) when L (or 130

Lrw , respectively) is used [4], [6]. This result can be seen as a 131

corollary of the Discrete Nodal Domain Theorem [7], [8], and 132

by utilizing more of the Laplacian eigenvectors we can partition 133

the graph into more subgraphs. 134

A common strategy used to develop transforms for signals 135

on graphs, and one that we employ, is to utilize a hierarchical 136

tree. Unless the hierarchical tree is provided along with the 137

graph, it must be generated in one of two ways. The first is 138

to utilize a bottom-up clustering approach in which we start 139

with the individual vertices of the graph and recursively group 140

them together according to their similarity, as indicated by the 141

weight matrix W . The second method is to use a top-down 142

partitioning approach in which we start with the entire graph and 143

repeatedly partition it into subgraphs, typically in a manner that 144

strives to generate subgraphs that are roughly equal in size while 145

keeping similar vertices grouped together. We now set forth a 146

set of conditions for hierarchical trees. For some transforms 147

these requirements are stricter than necessary, but we maintain 148

them because the resulting trees are compatible with all of the 149

hierarchical tree-based transforms that we mention in Section 150

II-C ([9]–[16]), as well as our own HGLET [17] and GHWT 151

[18]. 152

Starting with notation, we use j to denote the levels of the 153

hierarchical tree, with j = 0 denoting the coarsest level and 154

j = jmax denoting the finest level. We use Kj to denote the 155

number of sets of vertices on level j of the tree, and we use 156

k ∈ [0,Kj ) to index these sets. We use V j
k to denote the kth set 157

of vertices on level j, and we set Nj
k := |V j

k |. We define Gj
k to 158

be the subgraph formed by restricting to the vertices in V j
k and 159

the edges between them. We often use the term “region” to refer 160

to a subgraph Gj
k , especially when the nodes of the graph lie in 161

R, R2 , or R3 because this emphasizes the spatial organization of 162

the subgraphs. In addition, we use the term “subregion” to refer 163

to a child subgraph. This notation is illustrated in the hierarchical 164

tree for a graph with N = 6 vertices in Fig. 1. 165

We impose the following four requirements for a hierarchical 166

tree: 167

i) The coarsest level is the entire graph; that is, G0
0 = G. 168

ii) At the finest level, each region is a single node; that is, 169

Njmax
k = 1 for 0 ≤ k < Kjmax = N . 170

iii) All regions on a given level are disjoint; that is, 171

V j
k ∩ V j

k̃
= ∅ if k �= k̃. 172

iv) Each region on level j < jmax containing two or more 173

nodes is partitioned into exactly two regions on level 174

j + 1. 175
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Fig. 1. An example of a hierarchical tree for a graph with N = 6 nodes that
conforms to our notation and requirements. The nodes encircled in red and
connected by dashed lines are “copies” of singleton nodes, which we include
because our HGLET and GHWT require that all N nodes of the graph are
present at each level j of the hierarchical tree.

Fig. 2. A demonstration of recursive partitioning on a subset of a dendritic tree
(the full tree is shown in Fig. 8. In (a)-(c), colors correspond to different regions.
In (d), each region is a single node, and as such all nodes are disconnected. The
level index: (a) j = 0; (b) j = 1; (c) j = 2; (d) jm ax = 12.

One method for generating a suitable recursive partitioning176

of a graph is to repeatedly partition the graph and subgraphs177

according to the signs of their respective Fiedler vectors (see178

[2], [17]–[19] for details); this is illustrated in Fig. 2.179

Generating a recursive bipartitioning of a graph using Fiedler180

vectors is obviously not a novel idea – Simon discussed such181

a method already in [20]. What is novel is our use of such a182

recursive bipartitioning to generate overcomplete dictionaries183

of orthonormal bases for analyzing signals on the graph. That184

is, while [9]–[16] each generate a single wavelet-like basis for185

signals on the graph, we generate an entire dictionary of bases186

from which one can choose the particular basis that is best suited187

for the task at hand (e.g., via our generalization of the best basis188

selection algorithm). Moreover, our transforms are compatible189

with hierarchical trees generated using different approaches,190

such as the diffuse interface model of Bertozzi and Flenner191

[21] or the local spectral method of Mahoney et al. [22]. This192

flexibility is certainly advantageous, since graph clustering and193

partitioning are quite active areas of research and new algorithms194

continue to be developed.195

C. Previous Work196

A comprehensive review of transforms for signals on graphs197

can be found in [23]. In their review, Shuman et al. divide trans-198

forms into two general categories. The first category consists199

of those transforms that are based on the graph Fourier trans-200

form [1], which essentially uses Laplacian eigenvectors as the201

analogs of the complex exponentials in the classical Discrete202

Fourier Transform (DFT). Thus, these transforms rely upon a 203

notion of frequency. In contrast, the second category are those 204

methods which operate according to the connectivity of the ver- 205

tices. Our transforms fall into this latter group, so that is where 206

we shall focus our discussion (see [19, Sec. 2.3] for a more 207

in-depth review). 208

Using a hierarchical tree, several groups of researchers have 209

generalized the Haar wavelet transform to the graph setting [9]– 210

[12]. Recall that classical Haar scaling coefficients are scaled 211

averages of a function on an interval and that the wavelet coef- 212

ficients are the differences of these averages on the two subin- 213

tervals. Accordingly, each of these generalized Haar transforms 214

proceeds by assigning one “wavelet” coefficient to each of the 215

N − 1 parent (i.e., non-leaf) nodes in the hierarchical tree, which 216

is computed by taking the difference of the scaled averages on 217

its two children nodes. The remaining expansion coefficient is 218

the scaling coefficient on the root node of the tree, which is equal 219

to
√

N times the average of the signal over the entire graph. The 220

generalized Haar basis is orthonormal, and its coefficients range 221

in scale from local to global. 222

Along with these generalizations of the Haar basis, a num- 223

ber of other transforms also utilize a recursive partitioning 224

of a graph. Szlam et al. generate an orthonormal basis for 225

signals on graphs in two different ways [13]. Their first method 226

entails constructing the generalized Haar basis, smoothing the 227

basis functions using diffusion operators, and then performing 228

an orthogonalization procedure. Their second approach is to 229

generalize the local cosine dictionary on each subgraph using 230

the graph/manifold version of the folding and unfolding oper- 231

ators initially proposed by Coifman and Meyer for functions 232

on the real line (or on the regular 1-D lattice) [24]. Sharon and 233

Shkolnisky use a subset of the Laplacian eigenvectors and a re- 234

cursive partitioning tree to construct a multiresolution analysis 235

and consequently multiwavelet bases [14]. For a user-specified 236

constant m ∈ [1, N ], their orthonormal basis is such that (i) 237

all but m basis vectors are orthogonal to the first m Laplacian 238

eigenvectors of Lrw (G), and (ii) all but O(m) basis vectors 239

have small support. Another transform that utilizes a hierarchi- 240

cal tree is that of Rustamov [15], which is a generalization of the 241

average-interpolating transform of Donoho et al. for manifold- 242

valued data [25] to the setting of graphs. Rustamov and Guibas 243

developed a second transform [16], which is based on the lifting 244

scheme for classical wavelets (see, e.g., [26], [27]). 245

Of course, not all methods are based on a recursive partition- 246

ing of the graph. Jansen et al. have designed a wavelet transform 247

for signals on graphs that is based on the lifting scheme, with 248

the distinction that they are “lifting one coefficient at a time” 249

[28]. Coifman and Maggioni take a unique approach, using the 250

diffusion/random walk on a graph to build diffusion wavelets 251

[29] and diffusion wavelet packets [30]. The underlying idea is 252

that by taking dyadic powers of a diffusion operator U for which 253

high powers have low numerical rank, they are able to coarsen 254

the graph and construct a multiresolution approximation. 255

D. HGLET, GHWT, and the Best Basis Algorithm 256

Having reviewed existing transforms and techniques for sig- 257

nals on graphs, we will now briefly review our own contri- 258

butions: the Hierarchical Graph Laplacian Eigen Transform 259
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(HGLET) and Generalized Haar-Walsh Transform (GHWT),260

along with the best basis algorithm. Like many of the trans-261

forms covered in this subsection, the HGLET and GHWT uti-262

lize a recursive partitioning of the graph. (For a more thorough263

discussion of these three techniques, see [2], [17]–[19].)264

Using a recursive partitioning of the graph, the HGLET gen-265

erates an overcomplete dictionary whose basis vectors’ supports266

vary in size from a single node to the entire graph. We use φj
k ,l267

to denote the HGLET basis vectors, and we use cj
k,l to denote268

the corresponding expansion coefficients. As with the recursive269

partitioning, j ∈ [0, jmax] and k ∈ [0,Kj ) denote the level and270

region, respectively, to which a basis vector/coefficient corre-271

sponds. l ∈ [0, Nj
k ) indexes the vectors/coefficients from Gj

k .272

The basis vectors are formed by computing Laplacian eigen-273

vectors on subgraphs Gj
k and extending them by zeros to the274

entire graph; these may be the extended eigenvectors of L, Lrw ,275

or Lsym . A benefit of considering all three dictionaries is that276

we are able to construct a hybrid basis, as described in Remark277

2.1. In [2], we demonstrated the use of hybrid bases for simul-278

taneous segmentation, denoising, and compression of classical279

1D signals. The computational complexity of the HGLET is280

O(N 3), which is due to computing the full set of eigenvec-281

tors of the N × N Laplacian matrix on level j = 0. Of course,282

when such a cost is prohibitively expensive, one could per-283

form the HGLET only on subgraphs Gj
k with Nj

k ≤ Nmax < N284

nodes where Nmax is a user-specified number depending on285

the computational budget, in which case the cost is reduced to286

O(N 2
maxN).287

Like the HGLET, the GHWT uses a recursive partitioning of288

the graph to generate an overcomplete dictionary, but in this case289

the basis vectors are piecewise constant on their support. We use290

ψj
k ,l and dj

k,l to denote the GHWT basis vectors and expansion291

coefficients, respectively. As with the HGLET, j ∈ [0, jmax] and292

k ∈ [0,Kj ) denote level and region, respectively. In the case of293

the GHWT, we refer to l as the basis vector’s/coefficient’s tag,294

and it assumes Nj
k distinct values within the range [0, 2jmax−j ).295

We refer to coefficients with tag l = 0 as scaling coefficients,296

those with tag l = 1 as Haar coefficients, and those with tag297

l ≥ 2 as Walsh coefficients. Given a hierarchical tree with298

O(log N) levels, the computational cost of the GHWT is299

O(N log N).300

A key feature of the GHWT is that we can arrange the coeffi-301

cients in two ways. On each level j, we can group them by their302

k index, yielding the coarse-to-fine dictionary; this dictionary303

has the same structure as the HGLET dictionary. Alternatively,304

we can group them by their tag l to obtain the fine-to-coarse dic-305

tionary, the significance of which is that it affords us more bases306

from which to choose. Generally speaking, for a graph with N307

nodes, the HGLET, GHWT coarse-to-fine, and GHWT fine-308

to-coarse dictionaries each contain > 2N/2� choosable bases.309

(See [19, Table 6.1]; exceptions can occur when the recursive310

partitioning is highly imbalanced.)311

For the task of selecting one basis from the immense number312

of choosable bases, we have generalized the best basis algo-313

rithm of Coifman and Wickerhauser [31] for our transforms.314

The algorithm requires a user-specified cost functional, and the315

search starts at the bottom level of the dictionary and proceeds316

upwards, comparing the cost of the children coefficients to the317

cost of the parent coefficients. As justification of the term “best318

basis,” we have also generalized the corresponding proposition 319

of Coifman and Wickerhauser: 320

Proposition 2.1. [19, Ch. 6] Suppose that J is a cost func- 321

tional such that for all sequences {xi} and {yi} and integers 322

α < β < γ, 323

if J ({xi}i∈[α,β )
) ≤ J ({yi}i∈[α,β )

)

and J ({xi}i∈[β ,γ )
) ≤ J ({yi}i∈[β ,γ )

)
,

then J ({xi}i∈[α,γ )
) ≤ J ({yi}i∈[α,γ )

)
.

(2)

Given a signal f on a graph G and a hierarchical tree for the 324

graph, the set {bi}i∈[0,N ) of expansion coefficients returned by 325

the best basis algorithm is the set that minimizes J over all 326

choosable sets of coefficients in the dictionary (or dictionaries) 327

considered. (We refer the reader to [19] for the proof.) 328

Remark 2.1. The three HGLET dictionaries (using L, Lrw , 329

and Lsym ) and the GHWT coarse-to-fine dictionary all conform 330

to the same hierarchical structure. We can take advantage of this 331

by using a “hybrid” best basis algorithm in which we choose 332

different transforms to capture the various regions of the signal. 333

While the structure of the GHWT fine-to-coarse dictionary is 334

incompatible with the structure of the other four dictionaries, 335

we can select a best basis from the fine-to-coarse dictionary and 336

compare its cost to that of the GHWT coarse-to-fine best basis 337

or the hybrid best basis. 338

III. APPROXIMATION OF SIGNALS ON GRAPHS 339

A. Theoretical Results 340

Classical wavelets have been highly successful for approx- 341

imation and compression. Examples of their use include the 342

JPEG 2000 image compression standard [32] and wavelet or- 343

thogonal frequency-division multiplexing (OFDM), which is a 344

means of data encoding commonly used in digital communi- 345

cation [33]. As theoretical justification for their use, results on 346

approximation error bounds and wavelet coefficient decay rates 347

have been proven for signals of various types (e.g., Lipschitz, 348

Hölder, Sobolev, Besov, and bounded variation; see [34], [35] 349

and [36, Ch. 9]). 350

Proving similar results for signals on graphs is challenging 351

because we lack the concepts and tools used for classical signals, 352

but there have been some developments. For a graph equipped 353

with a hierarchical tree, Coifman et al. [11], [12], [37] define 354

a Hölder seminorm and use it to prove various results for the 355

graph Haar basis (which is a choosable basis from the GHWT 356

fine-to-coarse dictionary). They begin by using the hierarchical 357

tree to define a distance function between nodes of a graph: 358

d(m,n) := min{Nj
k

∣
∣m,n ∈ V (Gj

k )}.
Thus, the distance between two nodes is the size of the smallest 359

subgraph to which both nodes belong. For a constant 0 < α ≤ 1, 360

they define the Hölder seminorm of a function f on the graph 361

as 362

CH (f) := sup
m �=n

|f(n) − f(m)|
d(m,n)α

.

With these definitions in place, we now extend their result for 363

the generalized Haar transform to our own transforms. 364
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Theorem 3.1. For a graph G equipped with a hierarchical365

tree, suppose that a signal f is Hölder continuous with exponent366

α and constant CH (f). Then the coefficients with l ≥ 1 for367

the HGLET (with unnormalized Laplacian L) and the GHWT368

satisfy369

|cj
k,l | ≤ CH (f)(Nj

k )α+1/2

|dj
k,l | ≤ CH (f)(Nj

k )α+1/2 .

The coefficients with l ≥ 1 for the HGLET with Lrw and Lsym370

satisfy371

|cj,rw
k,l | ≤ Cj

k√
2
· CH (f)(Nj

k )α+1/2 + C̃j
k

∥
∥
∥f |V j

k

∥
∥
∥

D (Gj
k )

|cj,sym
k,l | ≤

√

Cj
k · CH (f)(Nj

k )α+1/2 +
√

Cj
k

∥
∥
∥f |V j

k

∥
∥
∥

2
,

where f |V j
k
∈ RN j

k denotes the restriction of f to the ver-372

tices in V j
k , and Cj

k and C̃j
k are constants that are independent373

from α.374

Proof. Below, we present the proof for the HGLET with L;375

the proof for the GHWT bound is identical, with cj
k,l and φj

k ,l376

replaced by dj
k,l and ψj

k ,l , respectively. Our proof follows that377

of [37], although here we use vectors and summations rather378

than functions and integrals. For the proofs for the HGLET with379

Lrw and that with Lsym , due to the page limitation, we refer the380

interested readers to our online supplementary note [38].381

For the coefficients from the HGLET with unnormalized382

Laplacian L and with tag l ≥ 1, we have383

|cj
k,l | =

∣
∣
∣
〈
f ,φj

k ,l

〉∣
∣
∣

=
∣
∣
∣
〈
f −

〈
f ,φj

k ,0

〉
φj

k ,0 ,φ
j
k ,l

〉∣
∣
∣

≤
∥
∥
∥f −

〈
f ,φj

k ,0

〉
φj

k ,0

∥
∥
∥

2
‖φj

k ,l‖2
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⎛

⎝
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n∈V j
k

∣
∣
∣
∣
∣
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∑
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∣
∣
∣
∣
∣

2⎞

⎠
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⎛

⎝
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n∈V j
k

∣
∣
∣
∣
∣
∣

∑

m∈V j
k

f(n) − f(m)
Nj

k

∣
∣
∣
∣
∣
∣
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⎠

1/2

≤
⎛

⎝
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k

∣
∣
∣
∣
∣
∣

∑

m∈V j
k

CH (f)d(m,n)α

Nj
k

∣
∣
∣
∣
∣
∣

2⎞

⎠

1/2

≤
⎛

⎝
∑

n∈V j
k

∣
∣
∣
∣
∣
∣

∑

m∈V j
k

CH (f)(Nj
k )α

Nj
k

∣
∣
∣
∣
∣
∣

2⎞

⎠

1/2

=

⎛

⎝
∑

n∈V j
k

(
CH (f)(Nj

k )α
)2

⎞

⎠

1/2

= CH (f)(Nj
k )α+1/2 . �

Sharon and Shkolnisky derive an n-term nonlinear approxi- 384

mation bound by defining a generalization of Besov spaces in the 385

graph setting [14]. For a fixed orthonormal basis {ϕl}N −1
l=0 and 386

a parameter τ ∈ (0, 2), they define the τ -measure of a function 387

f as 388

|f |τ :=

(
N −1∑

l=0

| 〈f , ϕl〉 |τ
)1/τ

. (3)

They note that for all signals, the τ -measure satisfies 389

‖f‖2 ≤ |f |τ ≤ N
1
τ − 1

2 ‖f‖2 .

They define discrete analogs of the Besov spaces as 390

Bτ,M := {f ∣∣ |f |τ < M and ‖f‖ = 1},
where 0 < τ < 2 and 1 ≤ M ≤ N

1
τ − 1

2 . Following the notation 391

of [34], let Pnf denote the best nonlinear n-term approximation 392

of f in the basis. Sharon and Shkolnisky prove the following 393

bound on the approximation error. 394

Theorem 3.2. [14] For a fixed orthonormal basis {ϕl}N −1
l=0 395

and a parameter 0 < τ < 2, 396

‖f − Pnf‖2 ≤ |f |τ
nβ

, (4)

where |f |τ corresponds to {ϕl}N −1
l=0 and β = 1

τ − 1
2 . 397

As the HGLET (with L and Lsym but not with Lrw ) and 398

GHWT yield overcomplete dictionaries of orthonormal bases, 399

this theorem applies directly to any basis we select from those 400

dictionaries; for the GHWT, this includes both the coarse-to- 401

fine and fine-to-coarse dictionaries. Furthermore, note that the 402

τ -measure satisfies the requirements (2) from Proposition 2.1 403

for our best basis algorithms. Therefore, we have the following 404

corollary. 405

Corollary 3.1. For a signal f , consider one or more dictio- 406

naries of orthonormal expansion coefficients (i.e., those corre- 407

sponding to the HGLET with L, the HGLET with Lsym , GHWT 408

coarse-to-fine, or GHWT fine-to-coarse). For τ ∈ (0, 2), using 409

the τ -measure as the cost functional for the (“hybrid”) best basis 410

algorithm yields the choosable orthonormal basis that minimizes 411

|f |τ and therefore has the best bound for nonlinear approxima- 412

tion error in (4). 413

Of course, this corollary does not tell us which τ -measure 414

should be used as the best basis cost functional in order 415

to achieve the best approximation bound in (4). Fortunately, 416

the best basis search is quick and inexpensive, and thus we 417

can perform the search over a range of τ values (e.g., τ = 418

0.1, 0.2, . . . , 1.9), obtaining a set of best basis coefficients for 419

each one. We can then specify a constant n (e.g., n = [0.1N ]) 420

and choose the particular τ and corresponding basis which min- 421

imizes the upper bound |f |τ /nβ . However, in practice this does 422

not always lead to the best choice of τ because the bound (4) is 423

not tight enough. 424

What we can do instead is to search over a range of τ values 425

and choose the particular best basis that yields the smallest 426

cumulative relative error. To do this, we find the N best basis 427

expansion coefficients for each τ and then compute a vector 428

of length N containing the relative approximation errors when 429

1, 2, . . . , N coefficients are retained. This is easily done for 430
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Fig. 3. Traffic volume data over a 24 hour period at intersections in the road
network of Toronto (N = 2202 nodes and M = 4877 edges).

orthonormal bases; for bases that are not orthonormal, this can431

still be accomplished in a simple manner by forming the N × N432

matrix of best basis vectors. We then take the sum of this vector433

of relative errors; in other words, letting Pnf denote the best434

n-term nonlinear approximation of f with respect to the basis,435

we compute436

cumulative relative error =
N∑

n=1

‖f − Pnf‖2/‖f‖2 . (5)

We search over the range of τ values and select the basis which437

minimizes this sum. In terms of Fig. 4, we are selecting the τ438

that yields the smallest area under the relative error curve. As we439

will use this strategy often, we refer to it as the minimum relative440

error best basis algorithm. Note that we can use this method for441

the HGLET with Lrw even though the basis is not orthonormal442

with respect to the standard inner product. However, Theorem443

3.2 and Corollary 3.1 will not apply to the resulting basis.444

B. Experimental Results445

Having proven some theoretical approximation results for our446

transforms, we now present an experiment comparing our meth-447

ods to other transforms. For our signal, we use vehicular traffic448

volume data on the Toronto road network,3 as seen in Fig. 3. The449

data was collected over 24 hour windows (i.e., it is not the case450

that all intersections were monitored over the same 24 hour time451

span). Using the street names and intersection coordinates in-452

cluded in the data set, we generated the road network of Toronto.453

This graph and its corresponding signal are freely distributed as454

part of the MTSG Toolbox. We emphasize that this is a real data455

set, thereby avoiding the concern of designing a synthetic signal456

that is either unrealistic or biased towards certain transforms.457

In addition to the graph Haar basis, the graph Walsh ba-458

sis (i.e., level j = 0 of the GHWT coarse-to-fine dictionary),459

and the eigenvectors of the unnormalized Laplacian L(G) of460

3This information is made publicly available by the city of Toronto at
http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=417aed3c99cc731
0VgnVCM1000003dd60f89RCRD.

Fig. 4. Relative approximation error as a function of coefficients kept for the
Toronto traffic volume data set.

the entire graph, we compare our methods to two other graph 461

transforms. Granted, the transforms considered use a fixed ba- 462

sis while our methods involve adaptively choosing a basis from 463

an overcomplete dictionary, but this is the fairest comparison 464

we can make. The two transforms that we selected were the 465

graph-QMF [39] (which is based on the graph Fourier trans- 466

form; see [1]) and Laplacian multiwavelets [14]. As we men- 467

tioned in Section II-C, a parameter m needs to be specified for 468

these multiwavelets. We used two values, both of which are 469

used in example code that the authors provide: m = 10 and 470

m = N/20�. The cost of generating the multiwavelet basis is 471

O(m2N log N + T (N,m) log N), where T (N,m) is the cost 472

of computing the first m global Laplacian eigenvectors [14]; a 473

computational cost for the graph-QMF is not mentioned in [39]. 474

As for our own transforms, we use the HGLET best basis 475

(with unnormalized Laplacian L), the GHWT best basis, and 476

the hybrid best basis. For the hybrid best basis algorithm, we 477

consider all four dictionaries: HGLET with L, HGLET with 478

Lrw , HGLET with Lsym , and GHWT coarse-to-fine. In order 479

to avoid the need to specify a cost functional, we utilize the 480

minimum relative error best basis algorithm, which determines 481

the best τ -measure to be used as the cost functional. To generate 482

the partitioning tree for our transforms, we perform recursive 483

bipartitioning using the Fiedler vector of Lrw , as described in 484

Section II-B; we use this same method to generate the partition- 485

ing tree required by Laplacian multiwavelets. 486

Fig. 4 shows the relative approximation errors for the Toronto 487

data set as a function of the fraction of coefficients retained. The 488

best performances are achieved by the hybrid best basis4 and 489

the GHWT best basis (which originates from the fine-to-coarse 490

dictionary), with the hybrid basis performing better when fewer 491

than 19.7% of the coefficients are kept and the fine-to-coarse 492

GHWT best basis performing better thereafter. To explain why 493

this crossover occurs, we need to examine the structure of these 494

4In the hybrid best basis algorithm, we did not include the GHWT fine-to-
coarse dictionary as a possible choice, as mentioned in Remark 2.1. Although
the GHWT best basis has a lower cumulative relative error, we display the
results for the hybrid best basis so that the two can be compared.

http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=417aed3c99cc7310VgnVCM1000003dd60f89RCRD
http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=417aed3c99cc7310VgnVCM1000003dd60f89RCRD
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Fig. 5. The locations of the GHWT best basis coefficients within the fine-to-
coarse dictionary for the Toronto traffic data. (See [19, Sec. 5.2] for a detailed
explanation of this visualization.)

bases. Fig. 5 illustrates the levels of the selected GHWT coef-495

ficients from within the fine-to-coarse dictionary. By contrast,496

the hybrid best basis is actually the set of global eigenvectors497

of Lsym(G). Intuitively, this makes sense because we expect498

that intersections involving more streets will have more traffic499

volume, and the degree normalization of Lsym should help its500

eigenvectors to capture this. Since the vectors in this hybrid best501

basis are global in scale, this basis is well-suited for very sparse,502

coarse approximation of the signal, which is why it outperforms503

the GHWT best basis when fewer than 19.7% of the coeffi-504

cients are retained. However, the more localized basis vectors505

in the GHWT best basis enable it to better capture details on506

finer scales, and thus it surpasses the hybrid best basis after the507

19.7% mark.508

It is also important to note from Fig. 5 that the structure509

of the GHWT best basis differs radically from that of the510

Haar basis, which has one block of ≈ 2j coefficients on levels511

j = 0, 1, ..., jmax − 1. Recalling that the basis vectors are global512

on level j = 0 and become more localized as j increases, we see513

that the GHWT best basis has far more basis vectors with large514

supports. Furthermore, given that the number of oscillations in515

the basis vectors on a particular level j generally increases from516

left to right in this table, i.e., as l increases (see [18] and [19, Ch.517

5]), we note that the GHWT best basis contains basis vectors518

with much more oscillation than those in the Haar basis, which519

assume only two distinct nonzero values. Thus, the best basis520

algorithm validates what we would expect: more oscillatory521

basis vectors are advantageous for representing this signal.522

However, it is also necessary to have some basis vectors which523

are more localized, as evidenced by the fact that the Walsh basis524

is outperformed by the GHWT best basis and the Haar basis.525

This experiment demonstrates the effectiveness of adaptively526

selecting a basis for a signal on a graph, as opposed to using527

a fixed basis. It also illustrates some of the insights afforded528

by selected bases, such as whether the nature of the signal is529

smooth or oscillatory, or whether its features are local or global530

in scale.531

TABLE I
DENOISING RESULTS FOR THE NOISY VERSIONS OF THE TRAFFIC VOLUME

DATA FOR TORONTO (FIG. 6) AND THE DENDRITIC TREE

THICKNESS DATA (FIG. 8)

Dendritic Tree Toronto
(8.00 dB) (7.00 dB)

HGLET (L ) Best Basis 20.85 dB (τ = 0.1) 8.96 dB (τ = 0.3)
Laplacian Eigenvectors (L ) 22.56 dB 8.26 dB
GHWT Best Basis 23.03 dB (τ = 0.9) 8.27 dB (τ = 1.0)
Haar Basis 22.68 dB 8.29 dB
Hybrid Best Basis 22.29 dB (τ = 0.3) 8.82 dB (τ = 0.3)
Walsh Basis 21.57 dB 8.14 dB
Graph-QMF 2.85 dB 8.09 dB
Multiwavelets (m = 10) 21.76 dB 8.61 dB
Multiwavelets (m = N/20�) 15.37 dB 7.47 dB

For Laplacian multiwavelets [14], we used the two values of m that were used
in the example code provided by the authors: m = 10 and m = N/20�; it
was not necessary to specify parameters for the Graph-QMF [39].

IV. DENOISING OF SIGNALS ON GRAPHS 532

Building upon their effectiveness for approximation, classi- 533

cal wavelets have also been applied to the task of denoising 534

with much success. The reasons why this works are because 535

(i) a basis that is efficient for approximation concentrates the 536

majority of a signal’s energy into a small number of large co- 537

efficients; and (ii) “Gaussian white noise in any one orthogonal 538

basis is again a white noise in any other (and with the same am- 539

plitude)” [40]. Based on these insights, Donoho et al. devised 540

wavelet shrinkage [41], which yields nearly optimal nonlinear 541

estimators. Their method is simple and straightforward: apply 542

the wavelet transform to the signal, soft-threshold the coeffi- 543

cients (excluding the scaling coefficients), and then reconstruct. 544

We employ this same strategy in order to denoise signals on 545

graphs using our transforms. Of course, a precursor step when 546

denoising with the HGLET and GHWT is to first select a best 547

basis. As with our approximation experiment, we do so by using 548

the minimal relative error best basis algorithm. 549

Consider a noisy signal g = f + ε, where f is the noise-free 550

signal and ε ∼ N (0, σ2I) is Gaussian noise. For the sake of 551

transparency, the formula that we use to compute the signal-to- 552

noise ratio is 553

SNR = 20 log10
‖f‖2

‖g − f‖2
.

We analyze the signal with the transform(s) of our choice and 554

select a basis using the minimal relative error best basis algo- 555

rithm. Having selected a basis, the next step is to threshold the 556

coefficients. For a threshold T > 0, we soft-threshold HGLET 557

expansion coefficients cj
k,l (and likewise for GHWT coefficients 558

dj
k,l) as 559

c̃j
k ,l =

{
cj
k,l if l = 0

sign(cj
k,l)(|cj

k,l | − T )+ otherwise.

A key aspect of this denoising procedure is to determine the 560

appropriate threshold T . To do this, we generate a curve of the 561

relative reconstruction errors (i.e., ‖g − ĝ‖2/‖g‖2 , where ĝ is 562

a reconstruction of g) in which we use the magnitudes of the 563

coefficients as thresholds; specifically, the smallest threshold is 564
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Fig. 6. The (a) original, (b) noisy, and (c) denoised versions of the traffic
volume data on the Toronto road network. The HGLET (L) best basis (τ = 0.3)
was used here. (d) Relative error and SNR curves, with the red line indicating
the selected threshold. The SNR values of (b) and (c) are 7.00 dB and 8.96 dB,
respectively.

zero and the biggest is the magnitude of the second largest co-565

efficient. For this task we use hard-thresholding, and thus the566

best n term nonlinear approximation of the signal corresponds567

to hard-thresholding with the (n + 1)st largest coefficient mag-568

nitude. An example of such a curve can be seen in Fig. 6(d),569

where the signal is a noisy version (7.00 dB) of the Toronto570

traffic data and the basis being considered is the HGLET best571

basis. Although we do not use it to denoise the signal, we also572

display a curve of the signal-to-noise ratios obtained by using573

soft-thresholding with each of the N coefficient magnitudes as574

the thresholds.575

Note the behavior of the two curves in Fig. 6(d): the SNR576

curve rises quickly as the threshold increases from zero, while577

the relative error curve starts dropping rapidly when the thresh-578

old decreases towards zero. After attaining its maximum, the579

SNR curve falls quickly to the SNR of the noisy signal580

(7.00 dB). In Fig. 8, we observe similar behavior for a noisy581

version of thickness data on a dendritic tree. The value of the582

signal at each node is the thickness of the dendrite at that point,583

as measured by Coombs et al. [42]. As we lower the threshold584

(i.e., proceed from right to left in the plots), the reconstruction585

error steadily declines while the threshold is relatively large.586

This is because, as mentioned at the start of this section, a basis587

that is efficient for approximation concentrates the majority of588

the signal’s energy into a small number of large coefficients.589

When the threshold is high, only a few coefficients are retained,590

which explains why the relative error curve is constant on the591

right side of the plot and fairly flat in the middle of the plot. On592

the other hand, there are a large number of small coefficients593

which capture the detail and noise in the signal. As the threshold594

decreases, more and more of these are retained, which explains595

the rapid decrease in the relative error of the reconstructions of596

the noisy signal.597

Fig. 7. (a) An illustration of the method that we use to determine a threshold
from the relative error curve. The curve seen here is a rescaled version of the
relative error curve for the Toronto traffic data (Fig. 6(d)). (b) A zoomed-in
version of (a).

Fig. 8. The (a) original, (b) noisy, and (c) denoised versions of the thickness
data on the dendritic tree. This denoising was done using the GHWT best basis
(τ = 0.9). (d) Relative error and SNR curves, with the red line indicating the
selected threshold.

As we see from Figs. 6(d) and 8(d), the peak SNR occurs 598

soon after the relative error starts to drop quickly as the thresh- 599

old decreases toward zero. The intuition here is simple: we want 600

to retain the coefficients that capture detail in the signal while 601

thresholding those which capture the noise; without threshold- 602

ing, these coefficients ultimately lead to a relative reconstruction 603

error of zero and the original SNR value of the noisy signal. Em- 604

pirically, we have found the following elbow detection scheme 605

to work well for determining a threshold, which we illustrate 606

in Fig. 7 using the case of the HGLET best basis relative error 607

curve for the noisy Toronto traffic data (Fig. 6). First, we draw 608

a line (shown in green) from the first point on the relative error 609

curve to the last. We then find the point on the curve with the 610

largest orthogonal distance from this line. We repeat the process 611

a second time, drawing a line from this point to the first point 612

(shown in red) and finding the point on the relative error curve 613
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with the greatest orthogonal distance from that line. This point614

on the relative error curve (again shown in red) is the threshold615

that we use for denoising. The reason why we iterate this elbow616

detection scheme twice is because we seek a threshold that is617

lower than that at which the relative error curve starts to drop618

rapidly towards zero. We do not iterate a third time because619

doing so would drive the threshold too low, causing too much620

of the noise to be retained.621

At this point we now formally describe our denoising ex-622

periments. We consider two signals: the traffic volume data623

for Toronto (Fig. 6(a)) and thickness data on the dendritic tree624

(Fig. 8(a)). We add Gaussian noise to these signals such that the625

signal-to-noise ratios are 7.00 dB for the Toronto traffic data and626

8.00 dB for the dendritic tree; the resulting signals are displayed627

in Figs. 6(b) and 8(b), respectively. (Lower SNR values for both628

signals were investigated, but in such cases it was found that629

the noise obscured the signal and denoising was infeasible.) We630

recursively partition the graphs using Fiedler vectors of Lrw ,631

as described in Section II-B, and we analyze the noisy signals632

using each of the three HGLET variations (L, Lrw , and Lsym )633

and the GHWT. Using the minimal relative error best basis al-634

gorithm, we compute the HGLET (L) best basis, the GHWT635

best basis, and the hybrid best basis selected from the three636

HGLET dictionaries and the GHWT coarse-to-fine dictionary.637

For comparison, we also consider the Haar basis, the Walsh638

basis (i.e., level j = 0 of the GHWT coarse-to-fine dictionary),639

the eigenvectors of the unnormalized Laplacian L(G) of the640

entire graph, the graph-QMF transform, and Laplacian multi-641

wavelets. For each of these bases we generate a relative error642

curve, and from this curve we determine the threshold using the643

aforementioned elbow detection scheme. We soft-threshold the644

coefficients (leaving coefficients with l = 0 unchanged), recon-645

struct the signal, and compute the SNR.646

Figs. 6(d) and 8(d) show the results of our threshold selec-647

tion method for the relative error and SNR curves of the noisy648

Toronto and dendritic tree data sets. These curves correspond to649

use of the HGLET (L) best basis for the Toronto traffic data and650

the GHWT best basis for the dendritic tree data. The denoised651

signals are displayed in Figs. 6(b) and 8(b). In addition to these652

results, a summary of the full results from this experiment can653

be found in Table I.654

These experimental results demonstrate the effectiveness of655

the HGLET and GHWT, along with the best basis algorithms,656

for denoising signals on graphs. It is worth noting that for both657

of these signals, the GHWT best basis originated from the fine-658

to-coarse dictionary. An advantage of this dictionary is that,659

unlike the coarse-to-fine and HGLET dictionaries, it contains660

choosable bases for which basis vectors from different levels661

have overlapping supports. Thus, global basis vectors can cap-662

ture the general characteristics of the signal while localized basis663

vectors contribute the finer scale details. We also note that for664

the Toronto traffic data the HGLET (L) best basis performed665

better than the hybrid best basis selected from the dictionaries666

that include the HGLET (L) dictionary. Why did this happen667

in this case? While this could be because the chosen threshold668

for the hybrid best basis was not optimal, the real answer is that669

the best basis algorithm merely finds the basis that minimizes670

its cost functional, which in this case is based on the τ -norm of671

the expansion coefficients, where 0 < τ < 2, and the relative 	2672

errors. When we compute the relative 	2 errors, the noise-free 673

signal f is not available. Hence, for the best basis selection we 674

must use the relative 	2 errors between the noisy observed sig- 675

nal and the denoised signal that is constructed using the bases 676

in our dictionaries. In contrast, the SNR values in Table I were 677

computed using the noise-free signals and the denoised signals. 678

As the best basis algorithm is not privy to the noise-free sig- 679

nal, there is no guarantee that it will select the optimal basis 680

for maximizing SNR, which explains this seemingly impossible 681

result. 682

Remark 4.1. Our denoising strategy using the HGLET and 683

GHWT dictionaries can be generalized to cope with non- 684

Gaussian noise. To properly handle such noise models, how- 685

ever, it is necessary to consider precise statistical models of the 686

coefficients and adopt a level-dependent thresholding scheme 687

as suggested, e.g., in [43], [44]. 688

V. CONCLUSION 689

In this article, we precisely proved the efficiency of our 690

HGLET and GHWT transforms, in conjunction with the best 691

basis selection algorithm, for approximating signals on graphs 692

belonging to discrete analogs of the space of Hölder continuous 693

functions and the Besov spaces. We then proposed quite natural 694

methods to approximate and denoise a given graph signal and 695

performed numerical experiments. Our transforms performed 696

favorably when pitted against various other transforms for the 697

real signals on graphs we used. Indeed, such direct comparisons 698

between methods are especially important as the field of signal 699

processing on graphs continues to advance and mature. In future 700

work we plan to showcase the versatility and advantages of our 701

graph-based transforms on certain classical problems such as 702

signal segmentation and matrix data analysis where the conven- 703

tional non-graph-based methods encounter difficulty. 704
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