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Abstract

Background: Low birth weight in term-born individuals correlates with adverse cardiometabolic 

outcomes; excess glucocorticoid exposure has been linked to these relationships. We hypothesized 

that cortisol and adrenal androgens would correlate inversely with birthweight and directly with 

markers of cardiometabolic risk in school-aged children born extremely preterm; further, preterm-

born would have increased cortisol and adrenal androgens compared to term-born children.

Methods: Saliva samples were obtained at age 6 from 219 preterm-born children followed since 

birth and 40 term-born children and analyzed for dehydroepiandrosterone (DHEA) and cortisol. 

Cortisol was also measured at home (awakening, 30’ later, evening).

Results: For preterm-born children, cortisol and DHEA correlated inversely with weight and 

length Z-scores at 36 weeks PMA and positively with systolic BP. DHEA was higher in preterm-

born than term-born children (boys p<0.01; girls p=0.04). Cortisol was similar between preterm-

born and term-born at study visit; however, preterm-born children showed a blunted morning 

cortisol. In term-born children, DHEA correlated with BMI (p=0.04), subscapular, and abdominal 

skinfold thicknesses (both p<0.01).

Conclusion: Cortisol and DHEA correlated inversely with early postnatal growth and directly 

with systolic BP in extremely preterm-born children, suggesting perinatal programming. Blunted 

morning cortisol may reflect NICU stress, as seen after other adverse childhood experiences 

(ACEs).

Introduction

Abundant evidence supports the developmental origins of adult disease hypothesis that intra-

uterine growth restriction (IUGR) in term-born individuals can lead to a broad array of 

subsequent adverse outcomes, and that early glucocorticoid excess may underlie both IUGR 

and adverse long-term outcomes (1–5). Additionally, IUGR at term gestation has been 

linked to subsequent increases in adrenal androgen activity and polycystic ovary syndrome 

(6–8). The relationship of preterm birth and subsequent postnatal growth to these adverse 

outcomes is less clear, although data suggest that these individuals also are at higher risk for 

adverse outcomes linked to developmental programming, such as elevated blood pressure, 

insulin resistance, altered hypothalamic-pituitary-adrenal axis function, and increased 

adrenal androgen activity (9–11).
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Infants born extremely preterm have two experiences similar to those born IUGR at term 

gestation: growth restriction during a similar period of development (third trimester) and 

increased exposure to cortisol. Preterm infants are well documented to experience postnatal 

growth restriction. For example, a recent report from a large database of extremely preterm 

infants showed that the mean weight Z-score (weight-for-gestation) decreased from +0.05 at 

birth to −0.72 at discharge, and that 19.6% of the infants met their definition of growth 

failure at discharge, weight <10% for age (12). In addition, both term-born IUGR newborns 

and extremely preterm infants experience sustained elevations of cortisol beyond that of 

normally developing fetuses (2, 4, 13–15).

We hypothesized that cortisol and adrenal androgen concentrations would be inversely 

proportional to birthweight in children born extremely preterm, and would correlate with 

evidence of adverse cardiovascular and metabolic effects. Further, based on evidence from 

individuals born IUGR at term gestation, we hypothesized that extremely preterm birth 

would be associated with increased cortisol and adrenal androgen activity at school age 

compared to a reference cohort of term-born children (1–3, 6, 7).

In a large cohort of children who had been born extremely preterm (24–27 weeks GA), and 

in a reference cohort of children born at term gestation, we evaluated the relationship of 

preterm birth and perinatal factors to salivary cortisol and dehydroepiandrosterone (DHEA), 

a measure of adrenal androgen activity, at age 6 – 7. We then evaluated the relationship of 

cortisol and DHEA at age 6 – 7 to blood pressure and measures of adiposity. The preterm-

born children had been enrolled at birth into the Surfactant Positive Airway Pressure and 

Pulse Oximetry (SUPPORT) randomized controlled trial conducted by the Neonatal 

Research Network (NRN) of the Eunice Kennedy Shriver National Institute of Child Health 

and Human Development (NICHD) (16). During the original hospitalization, a subset of 

infants was enrolled in the Neuroimaging and Neurodevelopmental Outcomes (NEURO) 

study, to examine the relationship of neonatal neuroimaging to neurodevelopmental 

outcomes at 18–22 months corrected age and at 6–7 years (17). Partway through the 6 – 7 

year follow-up period, the National Heart, Lung and Blood Institute (NHLBI) funded this 

study of adrenal function and its relationship to clinical markers of cardiovascular risk. We 

measured salivary cortisol and DHEA in these children and also enrolled a reference group 

of 40 term-born children without known medical or psychosocial diagnoses.

Patients and Methods

Population:

Fifteen NRN sites participated. All institutional review boards approved the study, and 

children were enrolled after parental consent. Preterm-born children were eligible if they 

were enrolled in the SUPPORT NEURO study (ClinicalTrials.gov ID NCT00233324); 

perinatal data were obtained from the original study database. The school-age visit was 

scheduled to occur between 6 years 4 months and 7 years 2 months old. Children who were 

unable to undergo neurodevelopmental testing due to severe impairment (n=17) were not 

approached.
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A reference group of 40 term-born children was recruited from 5 NRN sites. Eligible 

children were, by parental report: (1) singletons, 5th-95th percentile birth weight and 37°

−416 weeks gestation; (2) 6 years 4 months to <7 years old; (3) 5th–95th percentile for height 

and weight; (4) never hospitalized >2 days; (5) without known medical problems; (6) never 

identified as eligible for special education, speech or physical therapy; (7) without a sibling 

with autism or mental retardation; and, (8) living with their birth parent(s).

Procedures:

Site examiners were trained in all measurement techniques. Blood pressure (BP) and 

anthropometric measures were obtained at the beginning of the visit, including weight, 

height, head and waist circumference, and triceps, subscapular, and abdominal skinfolds. 

Skinfolds were measured twice on the right with a Lange Skinfold Caliper (Cambridge 

Scientific Industries, Inc., Cambridge, MD). If there was >2 mm difference, a third 

measurement was made, and the two measurements within 2 mm of each other recorded. 

Weight and height were measured twice using a standard upright scale. BP was measured 

twice 2 minutes apart, using standardized equipment and techniques recommended by the 

Task Force on Blood Pressure for Children (18).

Salivary cortisol was measured 4 times during the study visit: baseline (at beginning of 

visit), halfway through, after a break, and at the end. Kits were sent home to collect 3 

additional specimens to analyze diurnal patterns: awakening, 30 minutes later, and evening. 

To maximize adherence to the protocol, parents were given an instruction brochure with 

pictures to illustrate the procedures and a data sheet to enter the exact times of specimen 

collection. Two study visit specimens were analyzed for DHEA (beginning and end), and the 

results were averaged. Salivary DHEA rather than its sulfate (DHEAS) was chosen as the 

marker of adrenal androgen activity, because the concentration of DHEAS in saliva is flow 

rate dependent (19). Salivary hormone concentrations have been shown to correlate well 

with serum values (19, 20).

Whole, unstimulated saliva was collected by passive drool (21). If the child ate or drank 

anything <30 minutes before sampling, he/she rinsed out his/her mouth thoroughly before 

sampling; nothing was allowed by mouth <5 minutes before sampling. Samples were frozen 

at – 20°C, then shipped overnight to RTI International (Research Triangle Park, NC). All 

samples were sent to the Institute for Interdisciplinary Salivary Bioscience Research, where 

they remained at −80° C until assay. Samples were thawed, centrifuged and assayed in 

duplicate using commercially available immunoassays designed for use with saliva without 

modification to the manufacturer’s protocol (Salimetrics LLC, Carlsbad, CA). The test 

volumes were 50 and 25 microliters. Lower limits of detection were 5 pg/mL and .007 

mcg/dL for DHEA and cortisol respectively. Intra–and inter-assay coefficients of variation 

averaged less than 10% and 15%. The average of the duplicate assays was used in all 

statistical analyses.

Statistical analysis:

Because the study sample size was limited by the original study and the timing of this study, 

no formal pre-study sample size calculations were conducted; however, based on the 
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anticipated sample size of 209, the study would have at least 80% power to detect a 

correlation of cortisol with weight-for-age Z-scores ≥0.19 and 90% power to detect 

correlations of ≥0.22. Cortisol measures included (1) value on first awakening; (2) 

awakening response as a change from awakening to 30 minutes later, (3) diurnal variation 

measured as the slope of the change between awakening and evening samples, and (4) stress 

response measured as a difference over clinic-equivalent time periods in the area under the 

curve (AUC) between clinic and home measures, all evaluated on a log scale. DHEA 

measures were treated as a two-component outcome, DHEA detected or not (adrenarche 

initiation) and log measured concentration for those above detection. Standard intrauterine 

growth charts were used for deriving birth and 36-week growth percentiles and Z-scores 

(22). CDC growth charts were used for 18–22 months (https://www.cdc.gov/growthcharts/

cdc_charts.htm) and 6–7 years (https://www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf).

Differences between preterm-born and term-born groups across all measures were tested by 

chi-square, Fisher’s exact or Wilcoxon tests, as appropriate. The relationship of cortisol and 

DHEA to (1) perinatal factors (GA, BW-for-GA Z-score, and weight and length Z-scores at 

36 weeks postmenstrual age (PMA)); (2) markers of perinatal illness (ventilation days, NEC, 

BPD, Grade 3 or 4 intracerebral hemorrhage (ICH) or cystic periventricular leukomalacia 

(cPVL); (3) child and maternal characteristics (test age, sex, race, maternal education as a 

surrogate for socioeconomic status); and (4) BP and measures of adiposity (BMI, waist 

circumference, skin fold thickness) at 6–7 years were assessed using generalized linear 

models appropriate for the outcome. DHEA analyses were conducted using a two-

component Bernoulli, lognormal mixture model (23). Cortisol measures were analyzed 

using linear models for individual time points and linear mixed models for AUC. All models 

controlled for study center, GA or BW Z-score, sex, and time of day, adjusting for repeated 

measures among each subject. P-values did not adjust for multiple comparisons. Analyses 

were completed using SAS 9.4 (SAS Institute, Cary, NC).

Results

NEURO school-age study visits took place between July 2012 and August 2016. Children 

were enrolled in the adrenal function study beginning in December of 2013; 273 preterm-

born children were eligible, 247 families consented, and 219 children had at least one 

specimen obtained. Forty children were enrolled in the term-born AGA group and all had at 

least one specimen obtained at the clinic visit. A total of 1433 samples were obtained; 24 

were ineligible for analysis (singlet; insufficient sample), leaving 1409 samples. Of these, 

423 were home specimens (112 preterm-born and 29 term-born). The only significant 

difference between the overall group and those who returned home samples was that the 

education level achieved was higher in the mothers of the preterm-born group who returned 

home samples (p<0.03).

Table 1 shows maternal and infant characteristics. More term-born children were white, and 

their mothers had attained a higher educational level. These factors were included in all 

analyses. In the preterm-born group, the mean weight Z-score (weight-for-gestation) 

decreased from +0.13 to −1.50 by 36 weeks PMA, and 60% had a 36-week Z-score <10th 
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percentile (22). At age 6, the preterm-born children were shorter than the term-born children 

(p=0.05 for height; p<0.01 for height Z-score).

Table 2 shows the relationship of maternal and child factors to cortisol AUC. The AUC for 

cortisol in clinic was higher than the area under the equivalent time period of the home curve 

(p<0.001); however, there was no increase seen in response to the study visit. Cortisol AUC 

did not correlate with BW Z-score; however, it correlated inversely with 36 week weight and 

length Z-scores (Table 2; weight p=0.01(shown in Figure 1A), length p=0.03). These Z-

scores did not correlate significantly with individual cortisol values. Preterm-born children 

had a blunted morning cortisol compared to term-born children (Figure 2, p=0.02). Although 

evening values were lower in the preterm-born children, the difference was not significant. 

As 95% of the preterm-born children were exposed to antenatal glucocorticoids, we could 

not analyze the effect of that exposure on this finding.

Table 3 shows factors associated with measurable salivary DHEA and DHEA concentration. 

As anticipated, DHEA was not measurable at this age in all children (24). In children with 

measurable DHEA (71% preterm-born, 65% term-born), values were higher in preterm-born 

(boys p<0.01, girls p=0.04). Although values appeared lower in boys, the sex difference was 

not significant. For preterm-born, lower DHEA values were seen in white children (p<0.01), 

consistent with other reports (25). BW Z-score was not related to DHEA; however, weight 

Z-score at 36 weeks PMA was inversely related both to having measurable DHEA and to 

DHEA concentration (Table 3 and Figure 1B). Length Z-score was inversely related to 

DHEA concentration (p<0.01). Weight gain velocity between birth and 36 weeks PMA also 

inversely correlated with DHEA concentrations (p=0.03). Weight gain velocity after 36 

weeks PMA was not associated with cortisol or DHEA values.

Both cortisol and DHEA correlated significantly with systolic BP in the preterm-born 

children (Figure 1 C and D), but not the term-born reference cohort. In term-born children, 

measurable DHEA was associated with higher BMI (p=0.04), and increased subscapular 

(p<0.01) and abdominal (p<0.01) skinfold thickness measures.

Discussion

Based on previously published data from individuals born preterm or IUGR at term 

gestation, we had hypothesized that extremely preterm birth would result in increased 

cortisol and adrenal androgen concentrations at age 6 compared to term-born children (1–3, 

6, 7, 11, 26, 34). Our results were both more complex and physiologically compelling. 

Instead of higher cortisol values, preterm-born children demonstrated a blunted morning 

cortisol compared to term-born children.

Although this was an unexpected finding, it is consistent with more recently published work 

regarding the long-term impact of early life pain, institutionalization, adverse childhood 

experiences (ACEs), trauma, and sustained stress on dysregulation of the HPA axis, with 

physiologic and psychological consequences (27 – 33). One group of investigators recently 

reported that school-age children born very preterm had significantly lower levels of cortisol 

at awakening than term-born children (28), while another has shown that greater exposure to 
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painful procedures in the NICU correlated with lower morning cortisol values at age seven 

in preterm-born children (29, 30). Additionally, adults born extremely preterm have been 

shown to have a lower response to a social stress test (10). These findings may parallel 

outcomes after other experiences of significant stress. For example, children who 

experienced early rearing in an orphanage showed a blunted cortisol awakening response 

when tested between ages 7 – 15 (32). Additionally, the number of adverse childhood 

experiences (ACEs) has been reported to correlate inversely with hair cortisol in adults (31). 

Similar findings have been reported in individuals after trauma and in those with post-

traumatic stress disorder (33). The preterm-born children in our study were all <28 weeks 

gestation at birth and experienced long NICU stays likely to entail numerous painful and 

unpleasant procedures and sustained stress.

We did find, as we had postulated, that children born extremely preterm had higher salivary 

DHEA concentrations at age six than the term-born children. Low birth weight in term-born 

individuals has been associated with higher adrenal androgens later in life, as well as 

increased risk for hypertension and other features of the metabolic syndrome, in particular 

polycystic ovary syndrome (1, 2, 6, 11, 24, 34). The extra-uterine growth restriction 

experienced by these extremely preterm infants may have resulted in higher subsequent 

adrenal androgen concentrations, similar to intra-uterine growth restriction in infants born at 

term. Our findings are consistent with Meuwese and colleagues, who reported that young 

adults born very preterm showed elevated DHEAS and androstenedione, particularly when 

born small for gestational age (SGA) (11). We speculate that inconsistent data regarding the 

effect of preterm birth and birth weight on subsequent adrenal androgen secretion may be 

due to differences in gestational age, degree of illness, and/or growth between birth and 36 

weeks PMA (24, 26, 35).

We next hypothesized that birth weight would correlate inversely with cortisol and DHEA 

concentrations, as previously shown in IUGR term-born individuals (6, 8, 34). However, 

rather than birth weight, we found a significant inverse relationship between weight and 

length Z-scores at 36 weeks and both cortisol and DHEA concentrations. This relationship 

mirrors that of the IUGR infant at term, and may have the same etiology: growth restriction 

and increased exposure to cortisol during a similar period of development. Children born 

extremely preterm experienced progressive growth restriction through 36 weeks PMA: mean 

weight Z-score dropped from +0.13 at birth to −1.50 by 36 weeks PMA, and 60% of the 

infants had a weight below the 10th percentile (22).

During pregnancy, SGA fetuses have been reported to have higher cortisol values than AGA 

fetuses (4). In addition, placentas from pregnancies with growth-restricted fetuses show 

decreased 11-beta hydroxysteroid dehydrogenase Type 2 (11bHSD2), which normally 

inactivates maternal cortisol, thereby shielding the fetus from excess cortisol exposure (5). A 

reduction in 11bHSD2 activity results in more maternal cortisol reaching the fetus (3, 5). 

While we do not have cortisol values for these children during their initial hospitalization, 

previous studies have consistently found cortisol values in sick extremely preterm infants to 

be higher than normal fetuses of the same gestation. Median fetal values at 26 weeks 

gestation have been reported to be about 3mcg/dL (4, 13), while median concentrations 
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more than 3-fold higher have been reported in extremely preterm infants during the first 

postnatal weeks (14, 15, 36, 37).

Finally, we confirmed our hypothesis that cortisol and DHEA concentrations would correlate 

with markers of cardiometabolic risk at age 6. For children born extremely preterm, 

increasing concentrations correlated with increasing systolic BP values (Figure 1, panels C 

and D). This correlation is noteworthy because blood pressure in childhood correlates with 

subsequent adult values (38). In the term-born children, the relationships visually appeared 

similar, but the correlations were not significant, perhaps due to the smaller sample size. In 

term-born children, higher DHEA correlated with measures of adiposity (BMI and skinfold 

thicknesses), consistent with previous reports (8, 39), also a risk factor for adverse 

cardiometabolic outcomes (2, 24).

We did not find an effect of weight gain velocity after 36 weeks, in contrast to some 

previous studies (8, 35). Our findings may differ for any of a number of reasons; for 

example, our cohort was born at a lower gestational age (mean 26 weeks), included very few 

infants born SGA, and experienced many morbidities of prematurity (16). We did not find an 

association with any specific perinatal morbidity; however, early growth failure may be a 

proxy for overall severity of illness. White race was associated with lower DHEA 

concentrations, as others have reported (25); this factor was included in all analyses. Older 

age at testing was associated with increased DHEA in the preterm-born cohort, but not in the 

term-born children, possibly due to a narrower testing window for the term-born children 

(SD of 0.20 years for term vs. 0.43 years for preterm). Adrenal androgen values increase 

gradually over time at this age, prior to the appearance of clinical signs of adrenarche (24).

Limitations of our study included the low number of extremely preterm-born children who 

were SGA (11; 5%), limiting our ability to assess the effect of birth weight <10th percentile 

on outcomes, and the low rate of return of home samples. Characteristics of the families that 

returned home samples were similar to those who did not, with the exception of a higher 

maternal educational level in families who returned samples. In addition, our term-born 

group was recruited for this study; therefore, detailed perinatal data were not available. We 

made every effort to recruit children without a history of medical or psychosocial diagnoses, 

to create a healthy reference cohort; however, because these children were quite healthy, 

differences between the two groups may have been accentuated. Strengths of the study 

include our large cohort of extremely preterm-born children with detailed perinatal and 18 – 

22 month data, and our research infrastructure, which provided specific training in obtaining 

anthropomorphic measurements and saliva specimens.

Our findings highlight the potential importance of growth restriction after extremely preterm 

birth as a contributing factor to adverse outcomes. Although growth to hospital discharge has 

improved for extremely preterm infants, maintaining adequate growth in sick preterm infants 

remains a challenge, resulting in significant growth restriction in the most immature patients, 

such as those in this study (12, 40). One often overlooked aspect of supporting postnatal 

growth and development in these infants is decreasing exposure to endogenous cortisol. One 

group of investigators has linked the total number of painful procedures experienced in the 

NICU, a proxy for the stress experienced, to alterations in the HPA axis in childhood, 
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including lower diurnal cortisol values at age 7 (29, 30). Interventions to decrease cortisol 

production in the preterm infant can include not only decreasing noxious experiences and 

environmental stressors (27, 41), but also increasing positive exposures, such as skin-to-skin 

care and other soothing interventions (41). Achieving the goal of sustaining appropriate 

postnatal growth in extremely preterm infants may have life-long ramifications.

In conclusion, we found that early postnatal growth restriction in infants born extremely 

preterm was associated with increased cortisol and DHEA at age 6 – 7 years. In turn, higher 

salivary cortisol and DHEA concentrations correlated with higher systolic BP in these 

children, suggesting future cardiovascular risk. We also found that infants born extremely 

preterm had blunted morning cortisol compared to a term-born reference group, similar to 

findings in other individuals who have experienced significant stress. Reducing stress in the 

neonatal intensive care unit could alter these outcomes, and studies are urgently needed.
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We are indebted to our medical and nursing colleagues and the infants and their parents who 

agreed to take part in this study. The following investigators, in addition to those listed as 

authors, participated in this study:

NRN Steering Committee Chairs: Alan H. Jobe, MD PhD, University of Cincinnati 

(2003–2006); Michael S. Caplan, MD, University of Chicago, Pritzker School of Medicine 

(2006–2011); Richard A. Polin, MD, Division of Neonatology, College of Physicians and 

Surgeons, Columbia University, (2011-present).
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Alpert Medical School of Brown University and Women & Infants Hospital of Rhode Island 

(U10 HD27904) – Abbot R. Laptook, MD; Angelita M. Hensman, MS RNC-NIC; Elisa 

Vieira, RN BSN; Emilee Little, RN BSN; Katharine Johnson, MD; Barbara Alksninis, PNP; 

Mary Lenore Keszler, MD; Andrea M. Knoll; Theresa M. Leach, MEd CAES; Elisabeth C. 

McGowan, MD; Victoria E. Watson, MS CAS.

Case Western Reserve University, Rainbow Babies & Children’s Hospital (U10 HD21364, 

M01 RR80) – Michele C. Walsh, MD MS; Avroy A. Fanaroff, MD; Deanne E. Wilson-

Costello, MD; Nancy S. Newman, RN; Bonnie S. Siner, RN; Arlene Zadell, RN; Julie 

DiFiore, BS; Monika Bhola, MD; Harriet G. Friedman, MA; Gulgun Yalcinkaya, MD.

Duke University School of Medicine, University Hospital, and Duke Regional Hospital (U10 

HD40492, M01 RR30) – Ronald N. Goldberg, MD; C. Michael Cotten, MD MHS; Kathryn 

E. Gustafson, PhD; Ricki F. Goldstein, MD; Patricia Ashley, MD; Kathy J. Auten, MSHS; 

Kimberley A. Fisher, PhD FNP-BC IBCLC; Katherine A. Foy, RN; Sharon F. Freedman, 

MD; Melody B. Lohmeyer, RN MSN; William F. Malcolm, MD; David K. Wallace, MD 

MPH.

Emory University, Children’s Healthcare of Atlanta, Grady Memorial Hospital, and Emory 

Crawford Long Hospital (U10 HD27851, RR25008, M01 RR39) – David P. Carlton, MD; 

Barbara J. Stoll, MD; Ira Adams-Chapman, MD; Susie Buchter, MD; Anthony J. Piazza, 

MD; Sheena Carter, PhD; Sobha Fritz, PhD; Ellen C. Hale, RN BS CCRC; Amy K. 

Hutchinson, MD; Maureen Mulligan LaRossa, RN; Yvonne Loggins, RN, Diane Bottcher, 

RN.

Eunice Kennedy Shriver National Institute of Child Health and Human Development – 

Stephanie Wilson Archer, MA.

Indiana University, University Hospital, Methodist Hospital, Riley Hospital for Children, 

and Wishard Health Services (U10 HD27856, M01 RR750) – Brenda B. Poindexter, MD 

MS; Gregory M. Sokol, MD; Heidi M. Harmon, MD MS; Lu-Ann Papile, MD; Abbey C. 

Hines, PsyD; Leslie D. Wilson, BSN CCRC; Dianne E. Herron, RN; Lucy Smiley, CCRC.

McGovern Medical School at The University of Texas Health Science Center at Houston and 

Children’s Memorial Hermann Hospital (U10 HD21373) – Kathleen A. Kennedy, MD 

MPH; Jon E. Tyson, MD MPH; Andrea F. Duncan, MD MSClinRes; Allison G. Dempsey, 

PhD; Janice John, CPNP; Patrick M. Jones, MD MA; M. Layne Lillie, RN BSN; Saba 

Siddiki, MD; Daniel K. Sperry, RN.

National Heart, Lung, and Blood Institute – Carol J. Blaisdell, MD, Victoria Pemberton 

RNC, MS, CCRC.

RTI International (U10 HD36790) – Abhik Das, PhD; Dennis Wallace, PhD; Marie G. 

Gantz, PhD; Jeanette O’Donnell Auman, BS; Jane A. Hammond, PhD; W. Kenneth Poole, 

PhD (deceased).
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Stanford University and Lucile Packard Children’s Hospital (U10 HD27880, UL1 RR25744, 

M01 RR70) – Krisa P. Van Meurs, MD; David K. Stevenson, MD; M. Bethany Ball, BS 

CCRC; Maria Elena DeAnda, PhD; Gabrielle T. Goodlin, BAS.

Tufts Medical Center, Floating Hospital for Children (U10 HD53119, M01 RR54) – Ivan D. 

Frantz III, MD; John M. Fiascone, MD; Elisabeth C. McGowan, MD; Anne Kurfiss, MPH; 

Brenda L. MacKinnon, RNC; Ellen Nylen, RN BSN; Ana Brussa, MS OTR/L; Cecelia 

Sibley, PT MHA.

University of Alabama at Birmingham Health System and Children’s Hospital of Alabama 

(U10 HD34216, M01 RR32) –Waldemar A. Carlo, MD; Namasivayam Ambalavanan, MD; 

Monica V. Collins, RN BSN MaEd; Shirley S. Cosby, RN BSN; Vivien A. Phillips, RN 

BSN; Kristy Domanovich, PhD; Sally Whitley, MA OTR-L FAOTA; Leigh Ann Smith, 

CRNP; Carin R. Kiser, MD.

University of California – San Diego Medical Center and Sharp Mary Birch Hospital for 

Women (U10 HD40461) – Neil N. Finer, MD; Donna Garey, MD; Maynard R. Rasmussen; 

MD; Paul R. Wozniak, MD; Yvonne E. Vaucher, MD MPH; Martha G. Fuller, PhD RN; 

Natacha Akshoomoff, PhD; Wade Rich, BSHS RRT; Kathy Arnell, RNC; Renee Bridge, 

RN.

University of Iowa (U10 HD53109, UL1 TR442, M01 RR59) – Edward F. Bell, MD; Tarah 

T. Colaizy, MD MPH; John A. Widness, MD; Jonathan M. Klein, MD; Karen J. Johnson, 

RN BSN; Michael J. Acarregui, MD; Diane L. Eastman, RN CPNP MA; Tammy L. V. 

Wilgenbusch, PhD.

University of New Mexico Health Sciences Center (R01 HL117764, U10 HD53089, M01 

RR997) – Robin K. Ohls, MD; Janell Fuller, MD; Conra Backstrom Lacy, RN; Rebecca A. 

Thomson, RN BSN; Sandra Brown, RN BSN.

University of Texas Southwestern Medical Center at Dallas, Parkland Health & Hospital 

System, and Children’s Medical Center Dallas (U10 HD40689, M01 RR633) – Pablo J. 

Sánchez, MD; Roy J. Heyne, MD; Charles R. Rosenfeld, MD; Walid A. Salhab, MD; Luc 

Brion, MD; Sally S. Adams, MS RN CPNP; James Allen, RRT; Laura Grau, RN; Alicia 

Guzman; Gaynelle Hensley, RN; Elizabeth T. Heyne, PsyD PA-C; Jackie F. Hickman, RN; 

Lizette E. Lee, RN; Melissa H. Leps, RN; Linda A. Madden, RN CPNP; Melissa Swensen 

Martin, RN; Nancy A. Miller, RN; Janet S. Morgan, RN; Araceli Solis, RRT; Catherine 

Twell Boatman, MS CIMI; Diana M Vasil, MSN BSN RNC-NIC.

University of Utah Medical Center, Intermountain Medical Center, LDS Hospital, and 

Primary Children’s Medical Center (U10 HD53124, M01 RR64) – Bradley A. Yoder, MD; 

Roger G. Faix, MD; Shawna Baker, RN; Karen A. Osborne, RN BSN CCRC; Carrie A. Rau, 

RN BSN CCRC; Sarah Winter, MD; Sean D. Cunningham, PhD; Ariel C. Ford, PsyD.

Wayne State University, Hutzel Women’s Hospital, and Children’s Hospital of Michigan 

(U10 HD21385) – Athina Pappas, MD; Beena G. Sood, MD MS; Rebecca Bara, RN BSN; 

Thomas L. Slovis, MD (deceased); Laura A. Goldston, MA; Mary Johnson, RN BSN.

Watterberg et al. Page 11

Pediatr Res. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

1. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and 
cardiovascular disease in adult life. Lancet 1993; 341(8850):938–41. Review. [PubMed: 8096277] 

2. Reynolds RM, 2013 Glucocorticoid excess and the developmental origins of disease: two decades of 
testing the hypothesis—–2012 Curt Richter Award Winner. Psychoneuroendocrinology 2013. 38; 1
—11. [PubMed: 22998948] 

3. Cottrell EC, Holmes MC, Livingstone DE, Kenyon CJ, Seckl JR. Reconciling the nutritional and 
glucocorticoid hypotheses of fetal programming. FASEB J. 2012; 26:1866–74. [PubMed: 
22321728] 

4. Economides DL, Nicolaides KH, Linton EA, Perry LA, Chard T. Plasma cortisol and 
adrenocorticotropin in appropriate and small for gestational age fetuses. Fetal Ther 1988; 3:158–64. 
[PubMed: 2855870] 

5. McTernan CL, Draper N, Nicholson H, et al. Reduced placental 11beta-hydroxysteroid 
dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth 
restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 2001; 86:4979–83. 
[PubMed: 11600574] 

6. Ibáñez L, Potau N, Marcos MV, de Zegher F. Exaggerated adrenarche and hyperinsulinism in 
adolescent girls born small for gestational age. J Clin Endocrinol Metab 1999; 84:4739–41. 
[PubMed: 10599744] 

7. Francois I, de Zegher F. Adrenarche and fetal growth. Pediatr Res 1997; 41:440–442 [PubMed: 
9078549] 

8. Ong KK, Potau N, Petry CJ, et al. Avon Longitudinal Study of Parents and Children Study Team. 
Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J 
Clin Endocrinol Metab. 2004; 89:2647–51. [PubMed: 15181036] 

9. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-
analysis of preterm birth and later systolic blood pressure. Hypertension 2012; 59:226–34. 
[PubMed: 22158643] 

10. Kaseva N, Wehkalampi K, Pyhälä R, et al. Blunted hypothalamic-pituitary-adrenal axis and insulin 
response to psychosocial stress in young adults born preterm at very low birth weight. Clin 
Endocrinol (Oxf) 2014; 80:101–6. [PubMed: 23711202] 

11. Meuwese CL, Euser AM, Ballieux BE, et al. Growth-restricted preterm newborns are predisposed 
to functional adrenal hyperandrogenism in adult life. Eur J Endocrinol. 2010; 163:681–9. 
[PubMed: 20682633] 

12. Wells N, Stokes TA, Ottolini K, Olsen CH, Spitzer AR, Hunt CE. Anthropometric trends from 
1997 to 2012 in infants born at ⩽28 weeks’ gestation or less. J Perinatol 2017; 37:521–526. 
[PubMed: 28102852] 

13. Donaldson A, Nicolini U, Symes EK, Rodeck CH, Tannirandorn Y. Changes in concentrations of 
cortisol, dehydroepiandrosterone sulphate and progesterone in fetal and maternal serum during 
pregnancy. Clin Endocrinol (Oxf). 1991; 35:447–51. [PubMed: 1839975] 

14. Watterberg KL, Gerdes JS, Cole CH, et al. Prophylaxis of early adrenal insufficiency to prevent 
bronchopulmonary dysplasia: a multicenter trial. Pediatrics 2004; 114:1649–1657. [PubMed: 
15574629] 

15. Watterberg KL, Shaffer ML, Garland JS, et al. Effect of dose on response to ACTH in extremely 
low birth weight infants. J Clin Endocrinol Metab 2005; 90:6380–6385. [PubMed: 16159938] 

16. Finer NN, Carlo WA, Walsh MC, et al. Early CPAP versus surfactant in extremely preterm infants. 
New Engl J Med 2010; 362:1970–9. [PubMed: 20472939] 

17. Hintz SR, Vohr BR, Bann CM, et al. Preterm neuroimaging and school-age cognitive outcomes. 
Pediatrics 2018; 42 pii: e20174058.

18. National High Blood Pressure Education Program Working Group on High Blood Pressure in 
Children and Adolescents. The fourth report on the diagnosis, evaluation and treatment of high 
blood pressure in children and adolescents. Pediatrics. 2004; 114:555–576. [PubMed: 15286277] 

Watterberg et al. Page 12

Pediatr Res. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Granger DA, Schwartz EB, Booth A, Curran M, Zakaria D. Assessing dehydroepiandrosterone in 
saliva: a simple radioimmunoassay for use in studies of children, adolescents and adults. 
Psychoneuroendocrinology 1999; 24:567–79. [PubMed: 10378242] 

20. Ahn RS, Lee YJ, Choi JY, Kwon HB, Chun SI. Salivary cortisol and DHEA levels in the Korean 
population: age-related differences, diurnal rhythm, and correlations with serum levels. Yonsei 
Med J. 2007; 48:379–88. [PubMed: 17594144] 

21. Granger DA, Fortunato CK, Beltzer EK, Virag M, Bright MA, Out D. Focus on methodology: 
salivary bioscience and research on adolescence: an integrated perspective. J Adolesc 2012; 
35:1081–95 [PubMed: 22401843] 

22. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for 
preterm infants. BMC Pediatr. 2013; 13–59. [PubMed: 23347677] 

23. Moulton LH, Halsey NA. A mixture model with detection limits for regression analyses of 
antibody response to vaccine. Biometrics. 1995; 51:1570–8. [PubMed: 8589241] 

24. Voutilainen R, Jääskeläinen J. Premature adrenarche: etiology, clinical findings, and consequences. 
J Steroid Biochem Mol Biol 2015; 145:226–36. Review. [PubMed: 24923732] 

25. Girgis R, Abrams SA, Castracane VD, Gunn SK, Ellis KJ, Copeland KC. Ethnic differences in 
androgens, IGF-I and body fat in healthy prepubertal girls. Pediatr Endocrinol Metab 2000; 
13:497–503.

26. Finken MJ, van der Voorn B, Heijboer AC, de Waard M, van Goudoever JB, Rotteveel J. 
Glucocorticoid programming in very preterm birth. Horm Res Paediatr 2016; 85:221–31. 
[PubMed: 26943327] 

27. Victoria NC, Murphy AZ. The long-term impact of early life pain on adult responses to anxiety and 
stress: Historical perspectives and empirical evidence. Exp Neurol 2016; 275 Pt 2:261–73. 
[PubMed: 26210872] 

28. Maurer N, Perkinson-Gloor N, Stalder T, et al. Salivary and hair glucocorticoids and sleep in very 
preterm children during school age. Psychoneuroendocrinology 2016; 72:166–74. [PubMed: 
27434634] 

29. Brummelte S, Chau CM, Cepeda IL, Degenhardt A, Weinberg J, Synnes AR, Grunau RE. Cortisol 
levels in former preterm children at school age are predicted by neonatal procedural pain-related 
stress. Psychoneuroendocrinology 2015; 51:151–63. [PubMed: 25313535] 

30. Grunau RE. Neonatal pain in very preterm infants: long-term effects on brain, neurodevelopment 
and pain reactivity. Rambam Maimonides Med J 2013; 29:4:e0025.

31. Kalmakis KA, Meyer JS, Chiodo L, Leung K. Adverse childhood experiences and chronic 
hypothalamic-pituitary-adrenal activity. Stress 2015; 18:446–50. [PubMed: 25783196] 

32. Leneman KB, Donzella B, Desjardins CD, Miller BS, Gunnar MR. The slope of cortisol from 
awakening to 30 min post-wake in post-institutionalized children and early adolescents. 
Psychoneuroendocrinology 2018; 96:93–99. [PubMed: 29920425] 

33. Steudte-Schmiedgen S, Kirschbaum C, Alexander N, Stalder T. An integrative model linking 
traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair 
cortisol findings. Neurosci Biobehav Rev 2016; 69:124–35. [PubMed: 27443960] 

34. Tenhola S, Martikainen A, Rahiala E, Parviainen M, Halonen P, Voutilainen R. Increased 
adrenocortical and adrenomedullary hormonal activity in 12-year-old children born small for 
gestational age. J Pediatr 2002; 141:477–82. [PubMed: 12378185] 

35. Kerkhof GF, Willemsen RH, Leunissen RW, Breukhoven PE, Hokken-Koelega AC. Health profile 
of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol 
Metab. 2012; 97:4498–506. [PubMed: 22993033] 

36. Huysman MW, Hokken-Koelega AC, De Ridder MA, Sauer PJ. Adrenal function in sick very 
preterm infants. Pediatr Res 2000; 48:629–33. [PubMed: 11044483] 

37. Ng PC, Lam CW, Lee CH, et al. Reference ranges and factors affecting the human corticotropin-
releasing hormone test in preterm, very low birth weight infants. J Clin Endocrinol Metab 2002; 
87:4621–8. [PubMed: 12364445] 

38. Xi B, Zhang T, Li S, et al. Can pediatric hypertension criteria be simplified? A prediction analysis 
of subclinical cardiovascular outcomes from the Bogalusa Heart Study. Hypertension 2017; 
69:6sz91–696.

Watterberg et al. Page 13

Pediatr Res. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Corvalán C, Uauy R, Mericq V. Obesity is positively associated with dehydroepiandrosterone 
sulfate concentrations at 7 y in Chilean children of normal birth weight. Am J Clin Nutr 2013 2; 
97:318–25. [PubMed: 23283497] 

40. Stoltz Sjöström E, Öhlund I, Ahlsson F, et al. Nutrient intakes independently affect growth in 
extremely preterm infants: results from a population-based study. Acta Paediatr 2013; 102:1067–
74. [PubMed: 23855971] 

41. Sanders MR, Hall SL. Trauma-informed care in the newborn intensive care unit: promoting safety, 
security and connectedness. J Perinatol. 2018; 38:3–10. [PubMed: 28817114] 

Watterberg et al. Page 14

Pediatr Res. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The relationship of cortisol and DHEA to Z-scores for weight at 36 weeks postmenstrual age 

in children born extremely preterm (Panels A and B, significant for both cortisol (0.85 

(0.75,0.96), p=0.01) and DHEA (0.78 (0.63,0.95), p=0.02) and to systolic blood pressure in 

children born extremely preterm (—) and in those born at term (––––) (panels C and D), 

significant for preterm-born (cortisol 1.09 (1.00, 1.18), p=0.04; DHEA 1.24 (1.01, 1.51), 

p=0.04), but not term-born children (cortisol 1.11 (0.86, 1.43), p=0.39; DHEA 1.12 (0.81, 

1.55) p=0.48), possibly due to a smaller sample size.
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Figure 2: 
Cortisol concentrations during clinic visit (A) and at home (B) for extremely preterm born 

(—) and term-born children (––––). Preterm-born children had blunted morning cortisol 

values (1.09 (1.00, 1.18), p=0.02), with geometric mean values 22% lower on awakening 

and 10% lower at 30 minutes than term-born children.
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Table 1:

Characteristics of patients (values mean±SD, median [25th-75th percentile], or n (%))

Neonatal characteristics Preterm born N=219 Term-born N=40 P-value

Birth weight (BW, grams) 877±190 3463±464 <0.01

 BW < 10th %ile (n, %) 11(5) 3 (8) 0.47

Gestational age (GA, weeks) 26.4±1.03 39.3±0.95 <0.01

BW for GA Z score 0.11±0.99 0.13±0.89 0.51

Male sex (%) 116 (53) 20 (50) 0.73

Race (% white) 137 (63) 33 (83) 0.02

Antenatal steroids (%) 207 (95) 0 (0) N/A

 Any/complete course 178 (81) 0 (0)

Neonatal complications

 Necrotizing enterocolitis 14 (6) 0 (0)

 Bronchopulmonary dysplasia 70 (32) 0 (0)

 Days of ventilation 7 (2, 27) 0 (0) N/A

 Severe ICH or cPVL* 18 (8) 0 (0)

 Late onset sepsis 61 (28) 0 (0)

 Severe retinopathy 23 (11) 0 (0)

Length at 36 weeks (cm) 42.8±2.8

 Length <10th %ile (n, %) 131 (73) N/A N/A

 Z-score −1.87±1.09

Weight at 36 weeks 2156±362

 Wt <10th %ile (n, %) 115 (60) N/A N/A

 Z score −1.51±0.90

Head Circumference at 36 weeks 31.2±1.6

 HC <10th %ile (n,%) 71 (39) N/A N/A

 Z-score −1.09±1.07

Maternal characteristics

Maternal education

 Did not complete high school 53 (25) 0 (0) <0.01

 Completed high school 66 (31) 2 (5)

 Some post-secondary 51 (24) 1 (3)

 Completed college 32 (15) 19 (49)

 Any graduate education 11 (5) 17 (44)

Diabetes 13 (6) N/A N/A

Hypertension 53 (24) 3 (8) 0.03

Characteristics at follow up

Child test age (years) 6.9±0.43 6.7±0.20 0.51

Height (cm) 119.7±6.9 121.7±5.3 0.04

 Z score −0.17±1.23 0.40 ±0.93 <0.01

Weight (kg) 22.8±4.7 23.0±3.5 0.53

 Z score −0.17±1.18 0.12±0.88 0.08

Pediatr Res. Author manuscript; available in PMC 2019 June 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Watterberg et al. Page 18

Neonatal characteristics Preterm born N=219 Term-born N=40 P-value

BMI 16.0±2.5 15.5±1.5 0.30

Waist/height ratio 0.48±0.06 0.46±0.03 0.06

Skinfolds (mm)

 Triceps 9.64±4.37 8.66±2.52 0.83

 Abdominal 8.96±6.11 7.28±3.94 0.21

 Subscapular 6.64±3.92 5.90±2.36 0.49

Blood pressure (mmHg)

 Systolic 101.5±8.9 97.3±10.3 0.19

 Diastolic 63.3±8.1 62.6±7.5 0.99

Salivary DHEA pg/ml (median, 25–75%)

 All children 17.6 [3.1–43.4] 10.3 [0.0–22.9] 0.01

  Boys 17.0 [0.0–40.4] 7.0 [0.0–13.5] <0.01

  Girls 17.7 [0.0–47.7] 16.8 [5.0–45.7] 0.75

 Number of samples positive (n, %) 290(71) 51 (65) 0.31

  Boys 152 (70) 22 (55) 0.06

  Girls 138 (72) 29 (76) 0.61

 Salivary DHEA ≥ 5pg/mL, all children 29.2 [14.8–54.4] 18.2 [11.2–31.3] <0.01

  Boys 28.2 [14.3–47.7] 12.6 [9.0–20.6] <0.01

  Girls 32.4 [15.1–60.1] 23.1 [13.4–50.3] 0.04

*
severe ICH: intracranial hemorrhage grade III or IV; cPVL: cystic periventricular leukomalacia
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Table 2.

Associations between patient characteristics (adjusted for center, time of clinic visit, sex and birthweight Z-

scores) and area under the curve (AUC) for all cortisol values.

Characteristic

Preterm born Term born

Estimate (95% CI) P-value Estimate (95% CI) P-value

Gestational age 0.98 (0.92,1.05) 0.59 0.92 (0.71,1.20) 0.53

Male 1.04 (0.91,1.19) 0.57 1.01 (0.65,1.57) 0.96

White 0.87 (0.75,1.01) 0.07 0.87 (0.49,1.54) 0.62

Maternal education 1.13 (0.98,1.30) 0.09 1.40 (0.84,2.35) 0.19

Maternal hypertension 1.03 (0.86,1.22) 0.76 1.17 (0.47,2.91) 0.72

Maternal diabetes 0.99 (0.73,1.33) 0.92 --- ---

Perinatal factors:

 BPD 1.02 (0.88,1.19) 0.76 --- ---

 ROP 0.96 (0.76,1.22) 0.76 --- ---

 NEC 1.03 (0.78,1.37) 0.83 --- ---

 Severe ICH/cPVL 1.00 (0.77,1.30) 0.98 --- ---

Birth Weight Z-score 1.04 (0.96,1.14) 0.33 1.25 (0.98,1.60) 0.08

36 week Weight Z-score 0.85 (0.75,0.96) 0.01 --- ---

36 week Length Z-score 0.91 (0.84,0.99) 0.03 --- ---

36 week HC Z-score 1.00 (0.92, 1.08) 0.96 --- ---

Weight gain velocity

 Birth to 36 wks 0.06 (0.00,0.98) 0.05 --- ---

 36 wks - 18–22 mos 1.33 (0.46,3.79) 0.59 --- ---

 2 yrs to study visit 0.95 (0.30,3.03) 0.93 --- ---

Adiposity measures:

 BMI 1.01 (0.98,1.04) 0.66 0.98 (0.81,1.19) 0.86

 Waist:height ratio 1.16 (0.32,4.23) 0.83 0.01 (0.00,167.58) 0.34

 Skinfold thickness

  Triceps 1.01 (0.86,1.19) 0.88 1.87 (0.71,4.90) 0.19

  Subscapular 1.02 (0.86,1.22) 0.81 2.38 (0.88,6.45) 0.08

  Abdominal 0.99 (0.88,1.11) 0.85 1.77 (0.90,3.46) 0.09

Blood pressure

 Systolic 1.09 (1.00,1.18) 0.04 1.11 (0.86,1.43) 0.39

 Diastolic 1.05 (0.96,1.14) 0.33 0.98 (0.72,1.33) 0.90

Test age 1.04 (0.87,1.25) 0.65 0.89 (0.28,2.88) 0.85
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