
Lawrence Berkeley National Laboratory
LBL Publications

Title

Das ist der HAMMER: consistent new physics interpretations of semileptonic decays

Permalink

https://escholarship.org/uc/item/0bx0k5b6

Journal

European Physical Journal C, 80(9)

ISSN

1434-6044

Authors

Bernlochner, Florian U
Duell, Stephan
Ligeti, Zoltan
et al.

Publication Date

2020-09-01

DOI

10.1140/epjc/s10052-020-8304-0

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bx0k5b6
https://escholarship.org/uc/item/0bx0k5b6#author
https://escholarship.org
http://www.cdlib.org/

Eur. Phys. J. C (2020) 80:883
https://doi.org/10.1140/epjc/s10052-020-8304-0

Regular Article - Experimental Physics

Das ist der HAMMER: consistent new physics interpretations
of semileptonic decays

Florian U. Bernlochner1,a, Stephan Duell1,b, Zoltan Ligeti2,c, Michele Papucci2,3,d, Dean J. Robinson2,e

1 Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
2 Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
3 Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA

Received: 22 February 2020 / Accepted: 30 July 2020
© The Author(s) 2020

Abstract Precise measurements of b → cτ ν̄ decays
require large resource-intensive Monte Carlo (MC) samples,
which incorporate detailed simulations of detector responses
and physics backgrounds. Extracted parameters may be
highly sensitive to the underlying theoretical models used
in the MC generation. Because new physics (NP) can alter
decay distributions and acceptances, the standard practice of
fitting NP Wilson coefficients to SM-based measurements
of the R(D(∗)) ratios can be biased. The newly developed
Hammer software tool enables efficient reweighting of MC
samples to arbitrary NP scenarios or to any hadronic matrix
elements. We demonstrate howHammer allows avoidance of
biases through self-consistent fits directly to the NP Wilson
coefficients. We also present example analyses that demon-
strate the sizeable biases that can otherwise occur from
naive NP interpretations of SM-based measurements. The
Hammer library is presently interfaced with several exist-
ing experimental analysis frameworks and we provide an
overview of its structure.

Contents

1 Introduction .
2 New physics analyses

2.1 MC sample .
2.2 Reweighting and fitting analysis
2.3 R(D(∗)) biases from new physics truth
2.4 New physics Wilson coefficient fits

3 The Hammer library

a e-mail: florian.bernlochner@uni-bonn.de (corresponding author)
b e-mail: s.duell@physik.uni-bonn.de
c e-mail: ligeti@berkeley.edu
d e-mail: mpapucci@caltech.edu
e e-mail: drobinson@lbl.gov

3.1 Reweighting .
3.2 New Physics generalizations
3.3 Form factor generalizations
3.4 Rates .
3.5 Primary code functionalities
3.6 Code flow .

4 Conclusions .
A: Core elements of the Application Programming Interface

A.1: Building processes and events
A.2: Specifications
A.3: Histogramming
A.4: Processing .
A.5: Setting Wilson coefficients and form factors . . .
A.6: Retrieval .
A.7: Multithreading
A.8: Saving .
A.9: Reloading and merging

References .

1 Introduction

Precision analyses of semileptonic b-hadron decays typically
rely on detailed numerical Monte Carlo (MC) simulations
of detector responses and acceptances. Combined with the
underlying theoretical models, these simulations provide MC
templates that may be used in fits, to translate experimental
yields into theoretically well-defined parameters. This trans-
lation though can become sensitive to the template and its
underlying theoretical model, introducing biases whenever
there is a mismatch between the theoretical assumptions used
to measure a parameter and subsequent theoretical interpre-
tations of the data.

Such biases are known to arise in the analyses of semilep-
tonic decays of b hadrons, in particular, for the measurements
of the CKM element |Vcb|, and in the ratio of semitauonic

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8304-0&domain=pdf
mailto:florian.bernlochner@uni-bonn.de
mailto:s.duell@physik.uni-bonn.de
mailto:ligeti@berkeley.edu
mailto:mpapucci@caltech.edu
mailto:drobinson@lbl.gov

 883 Page 2 of 18 Eur. Phys. J. C (2020) 80:883

vs. semileptonic decays to light leptons, (see e.g. Refs. [1,2]
and Ref. [3], respectively),

R(Hc) = Γ (Hb → Hcτ ν̄)

Γ (Hb → Hclν̄)
, l = μ, e , (1)

where Hb,c denote b- and c-flavor hadrons. To avoid this, the
size of these biases need to be either carefully controlled
when experiments quote their results by reversing detec-
tor effects, or they can be avoided by using dedicated MC
samples for each theoretical model the measurement is con-
fronted with. In this paper we present the newly developed
tool, Hammer (Helicity Amplitude Module for Matrix Ele-
ment Reweighting), designed expressly for the latter purpose.

Semitauonic b hadron decays have long been known to be
sensitive to new physics [4–10], and were first constrained at
LEP [11]. At present, the measurements of the R(D(∗)) ratios
show about a 3σ tension with SM predictions, when the D
and D∗ modes are combined [12]. In the future, much more
precise measurements of semitauonic decays are expected,
not only for the B → D(∗)τ ν̄ channels, but also for the not
yet studied decay modes, Λb → Λcτ ν̄, Bs → D(∗)

s τ ν̄, as
well as involving excited charm hadrons in the final state.

All existing measurements of R(D(∗)) rely heavily on
large MC simulations to optimize selections, provide fit tem-
plates in discriminating kinematic observables, and to model
resolution effects and acceptances. Both the τ and the charm
hadrons have short lifetimes and decay near the interaction
point and measurements rely on reconstruction of the ensu-
ing decay cascades. To reconstruct the decay products, often
complex phase space cuts and detector efficiency dependen-
cies come into play, and the measurement of the full decay
kinematics is impossible due to the presence of multiple neu-
trinos. In addition, depending on the final state, a significant
downfeed with similar experimental signatures from misre-
constructed excited charm hadron states can be present. Isola-
tion of semitauonic decays from other background processes
and the light-lepton final states, then requires precise pre-
dictions for the kinematics of the signal semitauonic decay.1

Often the limited size of the available simulated samples,
required to account for all these effects, constitutes a domi-
nant uncertainty of the measurements, see e.g. [1,2,13].

In the literature on the R(D(∗)) anomaly, it has become
standard practice to reinterpret the experimental values of
R(D(∗)) in terms of NP Wilson coefficients, even though all
current ratio measurements were determined assuming the
SM nature of semitauonic decays. However, NP couplings
generically alter decay distributions and acceptances. There-

1 Further complications arise from interference among the different
spin states of the τ and among those of the charm hadron. Such effects
have sometimes been neglected, treating the τ and charm hadron as
stable particles, when simulations are corrected to account for more
up-to-date hadronic models.

fore, they modify the signal and possibly background MC
templates used in the extraction, and thus affect the mea-
sured values of R(D(∗)). This may introduce biases in NP
interpretations: preferred regions and best-fit points for the
Wilson coefficients can be incorrect; an instructive example
of this is provided in Sec 2.3.

Consistent interpretations of the data with NP incorpo-
rated requires dedicated MC samples, ideally for each NP
coupling value considered, which would permit directly fit-
ting for the NP Wilson coefficients. This approach is some-
times referred to as ‘forward-folding’, and is naively a com-
putationally prohibitively expensive endeavour. Such a pro-
gram is further complicated because none of the MC gen-
erators current used by the experiments incorporate generic
NP effects, nor do they include state-of-the-art treatments of
hadronic matrix elements.

In this paper we present a new software tool, Hammer,
that provides a solution to these problems: A fast and efficient
means to reweight large MC samples to any desired NP, or
to any description of the hadronic matrix elements. Hammer
makes use of efficient amplitude-level and tensorial calcu-
lation strategies, and is designed to interface with existing
experimental analysis frameworks, providing detailed con-
trol over which NP or hadronic descriptions should be consid-
ered. The desired reweighting can be implemented either in
the event weights or in histograms of experimentally recon-
structed quantities (both further discussed in Sect. 3). The
only required input are the event-level truth-four-momenta
of existing MC samples. Either the event weights and/or his-
togram predictions may be used, e.g., to generate likelihood
functions for experimental fits. Some of the main ideas of
Hammer were previously outlined in Refs. [14,15].

In Sect. 2 we demonstrate the capabilities of Hammer by
performing binned likelihood fits on mock measured and sim-
ulated data sets, that are created using the Hammer library,
and corrected using an approximate detector response. In
Sect. 3 a brief overview of the Hammer library and its capa-
bilities are given. Section 4 provides a summary of our find-
ings. Finally, Appendix A provides a detailed overview of
the Hammer application programming interface.

2 New physics analyses

We consider two different analysis scenarios:

1. In order to explore what biases may arise in phenomeno-
logical studies if NP is present in Nature, we perform an
illustrative R(D(∗)) toy measurement. This involves car-
rying out SM fits to mockups of measured data sets, that
are generated for several different NP models. The recov-
ered R(D(∗)) values are then compared to their actual NP
values.

123

Eur. Phys. J. C (2020) 80:883 Page 3 of 18 883

2. To demonstrate using a forward-folded analysis to assess
NP effects without biases, we carry out fits to (combina-
tions of) NP Wilson coefficients themselves, with either
the SM or other NP present in the mock measured data
sets.

The setting of these analyses is a B-factory-type environ-
ment. We focus on leptonic τ decays, but the procedures and
results in this work are equally adaptable to the LHCb envi-
ronment, and other τ decay modes or observables. In our
example we focus on kinematic observables important for
the separation of signal from background and normalization
modes. Fits using angular information may also be imple-
mented, see e.g. Refs. [16,17] for an example.

We emphasize that the derived sensitivities shown below
are not intended to illustrate projections for actual experi-
mental sensitivities per se. Such studies are better carried
out by the experiments themselves.

2.1 MC sample

The input Monte Carlo sample used for our demonstration
comprises four distinct sets of 105 events: one for each of
the two signal cascades B → D(τ → eνν)ν, B → (D∗ →
Dπ)(τ → eνν)ν and for the two background processes,
B → Deν and B → (D∗ → Dπ)eν. These are generated
with EvtGen R01-07-00 [18], using the Belle II beam
energies of 7 GeV and 4 GeV. The second B meson decay,
often used for identifying or ‘tagging’ the B B̄ event and
constraining its kinematic properties, are not included in the
current analysis for simplicity, but can be incorporated in a
Hammer analysis straightforwardly.

In each cascade, the b → clν decay is generated equidis-
tributed in phase space (“pure phase space”), instead of using
SM distributions. This reduces the statistical uncertainties
that can otherwise arise from reweighting regions of phase
space that are undersampled in the SM to NP scenarios in
which they are not.2

2.2 Reweighting and fitting analysis

Hammer is used to reweight the MC samples into two-
dimensional ‘NP generalized’ histograms (see Sect. 3), with
respect to the reconstructed observables |p∗

� | and m2
miss, the

light lepton momentum in the B rest frame and the total
missing invariant mass of all neutrinos, respectively. Both

2 For an actual experimental analysis one would instead use Hammer
to reweight SM MC samples. The correct statistical uncertainty of
the reweighting can be incorporated, using weight squared uncertain-
ties computed by the library. This information could be used, e.g., to
adaptively generate additional pure phase space MC in undersampled
regions.

variables are well-suited for separating signal from back-
ground decays involving only light leptons. In the cascade
process of the leptonic τ decay in B → D(∗)τν, the signal
lepton carries less momentum than the lepton from prompt
B → D(∗)�ν decays. Similarly, the missing invariant mass
of B → D(∗)�ν decays peaks strongly near m2

ν � 0, in con-
trast to B → D(∗)τν in which the multiple neutrinos in the
final state permit large values of m2

miss.
The B → D(∗) processes are reweighted to the BLPR

form factor parametrization [19], which includes predictions
for NP hadronic matrix elements using HQET [20–23] at
O(1/mc,b, αs).

Charged particles are required to fall in the Belle II angu-
lar acceptance of 20◦ and 150◦, and leptons are required to
have a minimum kinetic energy of 300 MeV in the laboratory
frame. An additional event weight is included to account for
the slow pion reconstruction efficiencies from the D∗ → Dπ

decay, based on an approximate fit to the pion reconstruc-
tion efficiency curve from BaBar data [1,24]. The analysis
assumes that the second tagging B meson decay was recon-
structed in hadronic modes, such that its four-momentum,
pBtag , is accessible. In conjunction with the known beam
four-momentum pe+ e− , the missing invariant mass can then
be reconstructed as m2

miss ≡ (pe+ e− − pBtag − pD(∗) − p�)
2,

and the four-momentum of the reconstructed lepton can be
boosted into the signal B rest frame. A Gaussian smearing
is added to the truth level m2

miss with a width of 0.5 GeV2 to
account for detector resolution and tagging-B reconstruction.
No additional correction is applied to |p∗

� |. Higher dimen-
sional histograms including the reconstructed q2 and the
D∗ → Dπ helicity angle may also be incorporated, but are
omitted here for simplicity.

Hammer can be used to efficiently compute histograms for
any given NP choice. The basis of NP operators is defined in
Table 1, with respect to the Lagrangian

L = 4GF√
2

Vcb cXY
(
c̄ ΓX b

)(
�̄ ΓY ν

)
, (2)

where ΓX (Y) is any Dirac matrix and cXY is a Wilson coef-
ficient. We shall generally write explicit Wilson coefficients
as cXY = SqXlY , VqXlY , TqXlY , where the S, V , T denotes
the Lorentz structure, and X , Y = L , R denotes the chirality.
In this simplified analysis, we assume that NP only affects
the b → cτν decays, and not the light-lepton modes.

In order to carry out Wilson coefficient fits, we wrap
the Hammer application programming interface with a
gammaCombo [25] compatible class. This allows one to use
Hammer’s efficient reweighting of histogram bins to gener-
ate the relevant quantities required to calculate a likelihood
function for the binned observables of interest. We then carry
out a fully two-dimensional binned likelihood fit in |p∗

� | and
m2

miss, assuming Gaussian uncertainties. The fit uses 12×12

123

 883 Page 4 of 18 Eur. Phys. J. C (2020) 80:883

bins with equidistant bin widths for |p∗
� | ∈ (0.2, 2.2)GeV

and m2
miss ∈ (−2, 10)GeV2. The fits determine either

R(D(∗)), or the real and imaginary parts of Wilson coeffi-
cients. The preferred SM coupling is determined simultane-
ously, in order to remove explicit dependence on |Vcb|.

We construct an Asimov data set [26] assuming the frac-
tions and total number of events in Table 2, following from
the number of events in Ref. [1,24]. In the scans, the total
number of events corresponds to an approximate integrated
luminosity of 5 ab−1 of Belle II collisions. We assume events
are reconstructed in two categories targeting B → D τ ν̄ and
B → D∗τ ν̄. A fit for the real and imaginary parts of a sin-
gle Wilson coefficient plus the (real) SM coupling thus has
2 × 12 × 12 − 3 = 285 degrees of freedom.

A sizable downfeed background from D∗ mesons misre-
constructed as a D is expected in the B → D τ ν̄ channel via
both the B → D∗ τ ν̄ and B → D∗ �ν̄ decays. This is taken
into account by partitioning the simulated B → D∗τν and
B → D∗�ν events into two samples: One with the correct
m2

miss = (pB − pD∗ − p�)
2 and the other with the misrecon-

structedm2
miss = (pB−pD−p�)

2, which omits the slow pion.
This downfeed reduces the sensitivity for the case that NP
couplings induce opposite effects on the B → Dτ ν̄ versus
B → D∗τ ν̄ total rates or shapes. In addition to semileptonic
processes, we assume the presence of an irreducible back-
ground from secondaries (i.e., leptons from semileptonic D
meson decays), fake leptons (i.e., hadrons that were misiden-
tified as leptons) and semileptonic decays from higher charm
resonances (i.e., D∗∗ states). The irreducible background is
modeled in a simplified manner by assuming 10 background
events in each of the 12×12 bins, totaling overall 1440 events
per category.

Figure 1 shows the impact on the fit variables of three
benchmark models that we use to investigate the effects of
new physics:

i) The R2 leptoquark model, which sets SqLlL � 8 TqLlL
(including RGE; see, e.g., Refs. [27,28]);

ii) A pure tensor model, via TqLlL ;
iii) A right-handed vector model, via VqRlL .

For the ratio plots in Fig. 1, we fix the NP Wilson coeffi-
cients to specific values to illustrate the shape changes they
induce in |p∗

� | and m2
miss. The R2 leptoquark model and ten-

sor model exhibit sizable shape changes. The right-handed
vector model shows only an overall normalization change for
B → D τ ν̄, with no change in shape compared to the SM,
because the axial-vector B → D hadronic matrix element
vanishes by parity and angular momentum conservation. For
B → D∗, both vector and axial vector matrix elements are
nonzero, so that introducing a right-handed vector current
leads to shape and normalization changes.

Fig. 1 The ratios of differential distributions with respect to the SM,
as functions of |p∗

� | and m2
miss, for various Wilson coefficient working

points. For more details see text

Fig. 2 The B → D τ ν̄ (top) and B → D∗τ ν̄ (bottom) distributions in
|p∗

� | and m2
miss in the Asimov data set. The number of events correspond

to an estimated number of reconstructed events at Belle II with 5 ab−1

Figure 2 shows the projections of the constructed Asimov
data set, as well as the distributions expected for the three NP
models. The latter have the same couplings as those shown
in Fig. 1.

123

Eur. Phys. J. C (2020) 80:883 Page 5 of 18 883

Table 1 The b → c�ν operator basis and coupling conventions. Also shown are the identifying Wilson coefficient labels used in Hammer. The
normalization of the operators is as in Eq. (2)

Current Label Wilson Coefficient, cXY Operator

SM SM 1
[
c̄γ μPLb

][
�̄γμPLν

]

Vector V_qLlL VqLlL
[
c̄γ μPLb

][
�̄γμPLν

]

V_qRlL VqRlL
[
c̄γ μPRb

][
�̄γμPLν

]

V_qLlR VqLlR
[
c̄γ μPLb

][
�̄γμPRν

]

V_qRlR VqRlR
[
c̄γ μPRb

][
�̄γμPRν

]

Scalar S_qLlL SqLlL
[
c̄PLb

][
�̄PLν

]

S_qRlL SqRlL
[
c̄PRb

][
�̄PLν

]

S_qLlR SqLlR
[
c̄PLb

][
�̄PRν

]

S_qRlR SqRlR
[
c̄PRb

][
�̄PRν

]

Tensor T_qLlL TqLlL
[
c̄σμν PLb

][
�̄σμν PLν

]

T_qRlR TqRlR
[
c̄σμν PRb

][
�̄σμν PRν

]

Table 2 The Asimov data set
components. The fractions were
motivated by Refs. [1,24]

B → Dτ ν̄ Category Fractions Events / ab−1

B → Dτ ν̄ 5.6% 800

B → D∗τ ν̄ 2.3% 325

B → D�ν̄ 49.4% 7000

B → D∗�ν̄ 40.6% 5750

Irreducible background 2.0% 288

B → D∗τ ν̄ Category Fractions Events / ab−1

B → D∗τ ν̄ 5.4% 950

B → D∗�ν̄ 93.0% 16500

Irreducible background 1.6% 288

2.3 R(D(∗)) biases from new physics truth

Many NP analyses and global fits to the R(D(∗)) measure-
ments – together with other potentially template-sensitive
observables, including q2 spectra – have been carried out by a
range of phenomenological studies (see, e.g., Refs. [27–39]).
As mentioned above, the standard practice has been to fit NP
predictions to the world-average values of R(D(∗)) (and other
data) to determine confidence levels for allowed and excluded
NP couplings. However, because the R(D(∗)) measurements
use SM-based templates, and because the presence of NP
operators can strongly alter acceptances and kinematic dis-
tributions, such analyses can lead to incorrect best-fit values
or exclusions of NP Wilson coefficients.

To illustrate such a bias, we fit SM MC templates to
NP Asimov data sets, that are generated with Hammer for
three different NP ‘truth’ benchmark points: the 2HDM
Type II with SqRlL = −2, corresponding to tan β/mH+ �
0.5 GeV−1; the same with SqRlL = 0.75i ; and the R2 lepto-
quark model with SqLlL = 8 TqLlL = 0.25 + 0.25 i . (These
models and couplings are for illustration; our goal here is
only to demonstrate the type of biases that may plausibly

be presumed to occur.) We replicate the fit of all existing
measurements, allowing the normalizations of the D and D∗
modes (and the light leptonic final states) to float indepen-
dently, without imposing e.g. their predicted SM relationship.
This fit leads to a best-fit ellipse in the R(D)– R(D∗) plane.

In Fig. 3 we show the recovered values, R(D(∗))rec,
obtained from this procedure, and compare them to the
actual predictions of the given NP truth benchmark point,
R(D(∗))th. For ease of comparison, we normalize the
R(D(∗)) values against the SM predictions for R(D(∗))SM.
The resulting recovered best fit ratios, defining R̂(D(∗)) =
R(D(∗))/R(D(∗))SM

2HDM (−2) : R̂(D)rec = 1.35(7) , R̂(D)th = 1.66

R̂(D∗)rec = 0.96(2) , R̂(D∗)th = 0.92

2HDM (0.75i) : R̂(D)rec = 1.24(7) , R̂(D)th = 1.48

R̂(D∗)rec = 1.01(2) , R̂(D∗)th = 1.02

R2 : R̂(D)rec = 1.24(7) , R̂(D)th = 1.48

R̂(D∗)rec = 0.92(2) , R̂(D∗)th = 0.85 .

123

 883 Page 6 of 18 Eur. Phys. J. C (2020) 80:883

Fig. 3 Top: Illustrations of biases from fitting an SM template to three
NP ‘truth’ benchmark models: the 2HDM type II with SqRlL = −2
(left), SqRlL = 0.75i (middle), and the R2 leptoquark model with
SqLlL = 8 TqLlL = 0.25+0.25i (right). The orange dot corresponds to
the predicted ‘true value’ of R(D(∗)) for the NP model, to be compared
to the recovered 68%, 95% and 99% CLs of the SM fit to the NP Asi-

mov data sets (with uncertainties estimated to correspond to ∼ 5 ab−1)
in shades of red. Bottom: The best fit regions for the 2HDM and R2
model Wilson coefficients obtained from fitting R(D(∗)) NP predic-
tions to the recovered R(D(∗)) CLs for each NP model. The shades
of red denote CLs as in the top row. The best fit (true value) Wilson
coefficients are shown by black (orange) dots

For two NP models, the recovered ratios from fitting the Asi-
mov data set exclude the truth R(D(∗))th values at � 4σ ,
and the other at 3σ . The recovered ratios show deviations
from the SM comparable in size (but in some cases a dif-
ferent direction) to the current world average R(D(∗)), and
much smaller than the deviations expected from the truth
R(D(∗))th values. This illustrates the sizable bias in the mea-
sured R(D(∗)) values that may be presumed to ensue from
carrying out fits with an SM template, if NP actually con-
tributes to the measurements. We emphasize that the degree
to which a particular NP model is actually affected by this
type of bias – including the size and direction of the bias –
may be sensitive to the details of the experimental framework
and is therefore a question that can only be answered within
each experimental analysis.

We also show in Fig. 3 the equivalent bias arising from
a naïve fit of the R(D(∗)) NP prediction that attempts to
recover the complex Wilson coefficient. This is done by
parametrizing R(D(∗))th = R(D(∗))[cXY], and fitting this
expression to the recovered R(D(∗))rec values. Explicitly,
one calculates CLs in the Wilson coefficient space via the
two degree of freedom chi-square χ2 = vT σ−1

R(D(∗))
v, with

v = (
R(D)th − R(D)rec , R(D∗)th − R(D∗)rec

)
. The result-

ing best fit Wilson coefficient regions similarly exclude the
truth values.

Thus, the allowed or excluded regions of NP cou-
plings determined from fits to the R(D(∗)) measurements
must be treated with caution, as these fits do not include
effects of the NP distributions in the MC templates. Sim-
ilarly, results of global fits should be interpreted carefully
when assessing the level of compatibility with specific NP
scenarios.

2.4 New physics Wilson coefficient fits

Instead of considering observables like R(D(∗)), for phe-
nomenological studies to be able to properly make inter-
pretations and test NP models, experiments should provide
direct constraints on NP Wilson coefficients themselves. For
example, this could be done with simplified likelihood ratios
that profile out all irrelevant nuisance parameters from, e.g.,
systematic uncertainties or information from sidebands or
control channels, or by other means.

123

Eur. Phys. J. C (2020) 80:883 Page 7 of 18 883

As an example, we now use Hammer to perform such a fit
for the real and imaginary parts of the NP Wilson coefficients,
using the set of three NP models in Sect. 2.2 as templates.
These are fit to the same two truth benchmark scenarios as in
Fig. 4: a truth SM Asimov data set; and a truth Asimov data
set reweighted to the 2HDM Type II with SqRlL = −2.

Figure 4 shows in shades of red the 68%, 95% and 99%
confidence levels (CLs) of the three NP model scans of SM
Asimov data sets. For the SM truth benchmark, the corre-
sponding best fit points are always at zero NP couplings. The
derived CLs then correspond to the expected median exclu-
sion of the fitted NP coupling under the assumption the SM
is true.

We further show in shades of yellow the same fit CLs for
the 2HDM truth benchmark Asimov data set. These latter fits
illustrate a scenario in which NP is present, but is analyzed
with an incomplete or incorrect set of NP Wilson coefficients.
Depending on the set of coefficients, we see from the Δχ2 of
the best fit points that the new physics might be obfuscated or
wrongly identified. This underlines the importance for LHCb
and Belle II to eventually carry out an analysis in the full
multi-dimensional space of Wilson coefficients, spanned by
the operators listed in Table 1.

3 The Hammer library

In this section we present core interface features and cal-
culational strategies of the Hammer library. Details of the
code structure, implementation, and use, can be found in the
Hammer manual [40]; here we provide only an overview.

3.1 Reweighting

We consider an MC event sample, comprising a set of events
indexed by I , with weights wI and truth-level kinematics
{q}I . Reweighting this sample from an ‘old’ to a ‘new’ the-
ory requires the truth-level computation of the ratio of the
differential rates

rI = dΓ new
I /dPS

dΓ old
I /dPS , (3)

applied event-by-event via the mapping wI
→ rIwI . The
‘old’ or ‘input’ or ‘denominator’ theory is typically the SM
plus (where relevant) a hadronic model — that is, a form
factor (FF) parametrization. (It may also be composed of
pure phase space (PS) elements, see App. A.2.) The ‘new’ or
‘output’ or ‘numerator’ theory may involve NP beyond the
Standard Model, or a different hadronic model, or both.

Historically, the primary focus of the library is reweight-
ing of b → c�ν semileptonic processes, often in multistep
cascades such as B → D(∗,∗∗)(→ DY) τ (→ Xν)ν̄. How-

Fig. 4 The 68%, 95% and 99% CL allowed regions of the three models
under consideration, from fitting the SM (red) and 2HDM type II (yellow
and with SqRlL = −2) Asimov data sets. (Top) R2 leptoquark model
with SqLlL = 8TqLlL ; (middle) NP in the form of a left-handed tensor
coupling; (bottom) NP in the form of a right-handed vector coupling

ever, the library’s computational structure is designed to be
generalized beyond these processes, and we therefore frame
the following discussion in general terms, before returning
to the specific case of semileptonic decays.

123

 883 Page 8 of 18 Eur. Phys. J. C (2020) 80:883

3.2 New Physics generalizations

The Hammer library is designed for the reweighting of pro-
cesses via theories of the form

L =
∑

α

cα Oα . (4)

where Oα are a basis of operators, and cα , are SM or NP
Wilson coefficients (defined at a fixed physical scale; mixing
of the Wilson coefficients under RG evolution, if relevant,
must be accounted for externally to the library). We specify
in Table 1 the conventions used for various b → c�ν four-
Fermi operators and other processes included in the library.

The corresponding process amplitudes may be expressed
as linear combinations cαAα . They may also be further
expressed as a linear sum with respect to a basis of form
factors, Fi , that encode the physics of hadronic transitions
(if any).3 In general, then, an amplitude may be written in
the form

M{s}({q}) =
∑

α,i

cα Fi
({q})A{s}

αi

({q}) , (6)

in which {s} are a set of external quantum numbers and {q}
the set of four-momenta.4 The object Aαi is an NP- and
FF-generalized amplitude tensor. In the case of cascades,
relevant for B → D(∗,∗∗)(→ DY) τ (→ Xν)ν̄ decays, the
amplitude tensor may itself be the product of several sub-
amplitudes, summed over several sets of internal quantum
numbers. The corresponding polarized differential rate

dΓ {s}

dPS =
∑

α,i,β, j

cαc
†
β Fi F

†
j

({q})A{s}
αi A†{s}

β j

({q}) ,

=
∑

α,i,β, j

cαc
†
β Fi F

†
j

({q})Wαiβ j , (7)

in which the phase space differential form dPS includes on-
shell δ-functions and geometric or combinatoric factors, as
appropriate.

3 In all b → c processes currently handled by Hammer (see Table 3
for a list) the form factors are functions of q2 = (

pHb − pHc

)2, or
equivalently of the dimensionless kinematic variable,

w = v · v′ = m2
Hb

+ m2
Hc

− q2

2mHbmHc

, (5)

with four velocities v = pHb/mHb and v′ = pHc/mHc . For decays
with multi-hadron final states, such as the τ → nπ , n ≥ 3, the form
factors are also dependent on multiple invariant masses of the final state
hadrons. Thus, b → cτν decays followed by with subsequent hadronic
τ decays involve at least two separate sets of hadronic functions at the
amplitude level.
4 The momenta of an event passed to the library must all be specified
in the same frame. The choice of frame is arbitrary.

The outer product of the amplitude tensor, defined as
W ≡ AA†, is a weight tensor. The object

∑
i j Fi F

†
j Wαiβ j

in Eq. (7) is independent of the Wilson coefficients: Once this
object is computed for a specific {q} – an event – it can be
contracted with any choice of NP to generate an event weight.
Similarly, on a patch of phase space Ω — e.g., the acceptance
of a detector or a bin of a histogram — the marginal rate can
now be written as

Γ
{s}
Ω =

∑

α,β

cαc
†
β

∫

Ω

dPS
∑

i j

Fi F
†
j

({q})W{s}
αiβ j

({q}) . (8)

The Wilson coefficients factor out of the phase space integral,
so that the integral itself generates a NP-generalized tensor.
After it is computed once, it can be contracted with any choice
of NP Wilson coefficients, cα , thereafter.

The core of Hammer’s computational philosophy is based
on the observation that this contraction is computationally
much more efficient than the initial computation (and inte-
gration). Hence efficient reweighting is achieved by

– Computing NP (and/or FF, see below) generalized
objects, and storing them;

– Contracting them thereafter for any given NP (and/or
FF) choice to quickly generate a desired NP (and/or FF)
weight.

3.3 Form factor generalizations

Similarly to the NP Wilson coefficients, it is often desirable
to be able to vary the FF parameterizations themselves. This
can be achieved directly within Hammer by adjusting the
choice of FF parameter values for any given parametrization.
However, because the impacts of the form-factors depend on
the kinematics of an event, they cannot be factored out of
the phase-space integral in Eq. (8). Full reweighting to a
different choice of form-factor parameters therefore requires
full recalculation of each event weight on the phase space
patch.

Instead, one might contemplate linearized variations with
respect to the FF parameters, that commute with the phase
space integration: For instance, variations around a (best-fit)
point along the error eigenbasis of a fit to the FF parameters;
or FF parametrizations that are linearized with respect to a
basis of parameters, such as the BGL parametrization [43–
45] in B → D(∗)�ν. To this end, an FF parametrization with
a parameter set {μ} can be linearized around a (best-fit) point,
{μ0} so that

Fi
({q}; {μ}) = Fi

({q}, {μ0}) +
∑

a

F ′
i,a

({q}, {μ0}) ea , (9)

123

Eur. Phys. J. C (2020) 80:883 Page 9 of 18 883

Table 3 Presently implemented amplitudes in the Hammer library,
and corresponding form factor parametrizations. SM-only parametriza-
tions are indicated by a ∗ superscript. Form factor parametrizations that

include linearized variations are denoted with a ‡ superscript. These are
named in the library by adding a “Var” suffix, e.g. “BGLVar”

Process Form factor parametrizations

B → D(∗)�ν ISGW2∗ [41,42], BGL∗ [43–45], CLN∗‡ [46], BLPR‡ [19]

B → (D∗ → Dπ)�ν ISGW2∗, BGL∗‡, CLN∗‡, BLPR‡

B → (D∗ → Dγ)�ν ISGW2∗, BGL∗‡, CLN∗‡, BLPR‡

τ → πν —

τ → �νν —

τ → 3πν RCT∗ [47–49]

B → D∗
0�ν ISGW2∗, LLSW∗ [50,51], BLR‡ [52,53]

B → D∗
1�ν ISGW2∗, LLSW∗, BLR‡

B → D1�ν ISGW2∗, LLSW∗, BLR‡

B → D∗
2�ν ISGW2∗, LLSW∗, BLR‡

Λb → Λc�ν PCR∗ [54], BLRS‡ [55,56]

Planned for next release

B(c) → �ν MSbar

B → (ρ → ππ)�ν BCL∗ [57], BSZ [58]

B → (ω → πππ)�ν BCL∗, BSZ

Bc → (J/ψ → ��)�ν EFG∗ [59], BGL∗‡ [60]

Λb → Λ∗
c�ν PCR∗ , ...

τ → 4πν RCT∗

τ → (ρ → ππ)ν —

where ‘a’ is one or more variational indices and ea is the
variation. In the language of the error eigenbasis case, F ′

i,a is
the perturbation of Fi in the ath principal component ea of
the parametric fit covariance matrix.

Defining ξa ≡ (1, ea) and Φi,a+1 ≡ (Fi , F ′
i,a), so that

Eq. (9) becomes

∑

a

ξaΦi,a = Fi +
∑

a′
F ′
i,a′ ea′ , (10)

then the differential rate

dΓ {s}

dPS =
∑

α,a,β,b

cαc
†
βξaξ

†
bU {s}

αaβb ,

U {s}
αaβb ≡

∑

i j

Φi,aΦ
†
j,b

({q})W{s}
αiβ j

({q}) , (11)

with U an NP- and FF-generalized weight tensor. The ξa are
independent of {q} and factor out of any phase space integral
just as the Wilson coefficients do. That is, an integral on any
phase space patch,

Γ
{s}
Ω =

∑

α,β,a,b

cαc
†
βξaξ

†
b

∫

Ω

dPS U {s}
αaβb . (12)

One may thus tensorialize the amplitude with respect to Wil-
son coefficients and/or FF linearized variations, to be con-
tracted later with with NP or FF variation choices (the latter
within the regime of validity of the FF linearization). Here-
after, the ξa are referred to as ‘FF uncertainties’ or ‘FF eigen-
vectors’ following the nominal fit correlation matrix exam-
ple.

3.4 Rates

In certain cases, it is also useful to compute and fold in an
overall ratio of rates Γ old/Γ new, or the rates themselves,
Γ new,old, may be required. For example, if the MC sample
has been initially generated with a fixed overall branching
ratio, Bnew, one might wish to enforce this constraint via an
additional multiplicative factor Bold/Bnew.

The different components computed byHammer are then:

(i) The NP- and/or FF-generalized tensor for (dΓ new
I /dPS)/

(dΓ old
I /dPS), via Eq. (11), noting that the denominator

carries no free NP or FF variational index. (The ratio rI
is then itself generally at least a rank-2 tensor.);

(ii) The NP- and/or FF-generalized rate tensors Γ old, new,
which need be computed only once for an entire sam-
ple. (These rates require integration over the phase space,

123

 883 Page 10 of 18 Eur. Phys. J. C (2020) 80:883

which is achieved by a dedicated multidimensional Gaus-
sian quadrature integrator.)

3.5 Primary code functionalities

The calculational core of Hammer computes the NP or FF
generalized tensors event-by-event for any process known to
the library (see Table 3 for a list), and as specified by ini-
tialization choices (more detail is provided in Sect. 3.6) and
specified form factor parametrizations. This core is supple-
mented by a wide array of functionalities to permit manip-
ulation the resulting NP- and FF-generalized weight tensors
as needed. This may include binning — equivalent to inte-
grating on a phase space patch — the weight tensors into a
histogram of any desired reconstructed observables, and/or
it may include folding of detector simulation smearings, etc.
Such histograms have NP- and FF-generalized tensors as bin
entries, and we therefore call them generalized or tensor his-
tograms. Once such NP- and FF-generalized tensor objects
are computed and stored, contraction with NP or FF eigenvec-
tor choices permits the library to efficiently generate actual
event weights or histogram bin weights for any theory of
interest.

The architecture of Hammer is designed around several
primary functionalities:

1. Provide an interface to determine which processes are to
be reweighed, and which (possibly multiple) schemes for
form factor parametrizations are to be used. This includes
handling for (sub)processes that were generated as pure
phase space, and the ability to change the values of the
form factor parameters.

2. Parse events into cascades of amplitudes known to the
library, and compute their corresponding NP- and/or FF-
generalized amplitude or weight tensor, as well as the
respective rate tensors, as needed.

3. Provide an interface to generate histograms (of arbitrary
dimension), and bin the event weight tensors — i.e.,
rIwI , as in Eq. (3) — into these histograms, as instructed.
This includes functionality for weight-squared statistical
errors, functionality for generation of ROOT histograms,
as well as extensive internal architecture for efficient
memory usage.

4. Efficiently contract generalized weight tensors or bin
entries against specific FF variational or NP choices, to
generate an event or bin weight. This includes exten-
sive internal architecture to balance speed versus memory
requirements.

5. Provide interface to save and reload amplitude or weight
tensors or generalized histograms, to permit quick repro-
cessing into weights from precomputed or ‘initialized’
tensor objects.

Examples of the implementation of these functionalities are
shown in many examples provided with the source code.

3.6 Code flow

A Hammer program may have two different types of struc-
ture: An initialization program, so called as it runs on MC as
input, and may generate Hammer format files; or an analysis
program, which may reprocess histograms or event weights
that have already been saved in an initialization run. Perti-
nent details of the elements of the application programming
interface mentioned below are provided in Appendix A, with
more details in the Hammer manual.

An initialization program has the generic flow:

1. Create a Hammer object.
2. Declare included or forbidden processes, via include

Decay and forbidDecay.
3. Declare form factor schemes, via addFFScheme and

setFFInputScheme.
4. (Optional) Add histograms, via addHistogram.
5. (Optional) Declare the MC units, via setUnits.
6. Initialize the Hammer class members with initRun.
7. (Optional) Change FF default parameter settings with

setOptions, or (if not SM) declare the Wilson coeffi-
cients for the input MC via setWilsonCoefficients.

8. (Optional) Fix Wilson coefficient (Wilson coefficient
and/or FF uncertainty) choice to special choices in weight
calculations (histogram binnings), via
specializeWCInWeights (specializeWCInHistogram
and/or specializeFFInHistogram).

9. Each event may contain multiple processes, e.g., a signal
and tag B decay. Looping over the events:

(a) Initialize event with initEvent. For each process in
the event:

i. Create a HammerProcess object.
ii. Add particles and decay vertices to create a pro-

cess tree, via addParticle and addVertex.
iii. Decide whether to include or exclude pro-

cesses from an event via addProcess and/or
removeProcess.

(b) Compute or obtain event observables – specific parti-
cles can be extracted with getParticlesByVertex

or other programmatic means – and specify the corre-
sponding histogram bins to be filled via fillEvent

Histogram.
(c) Initialize and compute the process amplitudes and

weight tensors for included processes in the event,
and fill histograms with event tensor weights – the
direct product of include process tensor weights –
via processEvent.

123

Eur. Phys. J. C (2020) 80:883 Page 11 of 18 883

(d) (Optional) Save the weight tensors for each event,
with saveEventWeights to a buffer.

10. (Optional) Generate histograms with getHistogram(s)

and/or save them with saveHistograms. NP choices are
implemented with setWilsonCoefficients, FF varia-
tions are set with setFFEigenvectors.

11. (Optional) Save the rate tensors, with saveRates to a
buffer.

12. (Optional) Save an autogenerated bibTeX list of refer-
ences used in the run with saveReferences.

By contrast, an analysis program (from a previously ini-
tialized sample, stored in a buffer) has the generic flow:

1. Create a Hammer object and specify the input file.
2. Load or merge the run header — include or for-

bid specifications, FF schemes, or histograms — with
loadRunHeader (afterinitRun). One may further declare
additional histograms to be compiled (from saved event
weight data) via addHistogram.

3. (Optional) Load or merge saved histograms withloadHis

tograms, and/or generate desired histograms withgetHi

stogram(s). NP choices are implemented with setWil

sonCoefficients.
4. (Optional) Looping over the events:

(a) Initialize event with initEvent.
(b) If desired, remove processes from an event with

removeProcess.
(c) Reload event weights with loadEventWeights.
(d) Specify histograms to be filled viafillEventHisto

gram.
(e) Fill histograms with event weights viaprocessEvent.

4 Conclusions

Precision measurements of b → cτ ν̄ decays require large
Monte Carlo samples, which incorporate detailed simula-
tions of detector responses and physics backgrounds. The
limited statistics due to the computational cost of these sim-
ulations are often a leading systematic uncertainty in the mea-
surements, and it is prohibitively expensive to generate fully
simulated MC samples for arbitrary NP models or descrip-
tions of hadronic matrix elements.

In this paper we described the Hammer library, and
illustrated its utility. Hammer allows the fast and efficient
reweighting of existing SM (or phase-space based) MC sam-
ples to arbitrary NP models. In addition, Hammer can be
used to change form factor parametrizations and/or incorpo-
rate uncertainties from form factors into experimental mea-
surements. Hammer provides a computationally fast way
for binned fits to generate predictions, and we implement

a demonstrative forward-folding fit to constrain NP Wilson
coefficients using this feature. Such a fit should be carried
out by experimental collaborations in future measurements to
provide reliable constraints on NP contributions in semilep-
tonic b → cτ ν̄ decays. The results will allow people out-
side the collaborations to make correct interpretations of the
data, which has not been possible to date without potentially
sizeable biases. To demonstrate this latter point, we carried
out toy NP analyses using SM fits to NP Asimov data sets,
and showed that sizeable biases can indeed occur. Hammer
is open source software and we are looking forward to the
experimental results and interpretations it will enable.

Acknowledgements Hammer has been developed with the active par-
ticipation and testing by many colleagues. We especially thank from
LHCb Julián García Pardiñas, Lucia Grillo, Donal Hill, Simone Mel-
oni, Adam Morris, Patrick Owen, and Luke Scantlebury-Smead, for
their extensive feedback, discussions, questions, and beta testing during
development. We similarly thank from Belle II Kilian Lieret, Thomas
Lueck, Felix Metzner, Markus Prim, and Maximilian Welsch. We thank
David Shih for discussions and comments on the manuscript. Thanks
are also due to all interested users on Belle, Belle II, BaBar, LHCb, and
CMS, for many helpful discussions, questions, testing, and feedback.
FB was supported by the DFG Emmy-Noether Grant No. BE 6075/1-1.
SD was supported by the German Ministry of Research and Science
(BMBF). ZL, MP and DR were supported in part by the Office of High
Energy Physics of the U.S. Department of Energy under contract DE-
AC02-05CH11231. We thank the Aspen Center of Physics, supported
by the NSF grant PHY-1607611, where parts of this work were com-
pleted. This work also used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DE-AC02-
05CH11231. FB thanks Kim Scott, Bob Michaud and Julie Michaud-B
for their hospitality, many good discussions and in general a great time
in Houston, where part of this paper was written.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: “Data is avail-
able upon request” (there is no real measured data discussed in the
manuscript, but we are happy to share the toy data / scripts)].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A: Core elements of the Application Programming Inter-
face

The user interface of the Hammer library provides four main
classes: the Hammer class itself; the Process and Particle

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 883 Page 12 of 18 Eur. Phys. J. C (2020) 80:883

Fig. 5 Schematic architecture of Hammer. The flow of user specified
choices or event data is shown by yellow arrows. Blue (green) arrows
denote the flow of calculational information, in particular amplitude,
weight or rate (form factor) tensors. Red arrows highlight the flow
of Hammer output, which may be saved or reloaded. Most internal
Hammer classes are not shown in this schematic

classes, used to create events; and the IOBuffer class used
for saving and loading precomputed objects. A schematic of
the architecture of Hammer is shown in Fig. 5.

In the following we describe various core parts of the
Hammer Application Programming Interface (API), with
many more details available in the code manual. The library
itself is implemented in C++, along with a Python3 wrap-
per of the API; we will consider here the C++ interface only.
This discussion is ordered by scope, rather than the typical
code flow. Further details can be found in the Hammer man-
ual [40].

A.1: Building processes and events

A typical decay cascade is contained in the library by the
Process class; an event may contain multiple Process

instances as e.g., is the case for a signal plus tag B-B̄
pair. Each cascade may be simply represented in graphi-
cal terms as a ‘process tree’, as shown in Fig. 6: Each par-
ticle in the cascade is assigned an index, and each decay
vertex is represented as a map from a parent index, to the
indices of all its daughters. Hammer assembles the pro-
cess tree through two methods Process::addParticle and
Process::addVertex. The former adds a Particle class
object – a momentum and a PDG code – to a container of
particles; the latter fills the map of each parent index to its
daughters for each decay vertex.

In the case of Fig. 6, the first two vertices of the cascade
may be built explicitly as follows:

Process proc;
size_t idx0 =

proc.addParticle(Particle{{E_0,
px_0, py_0, pz_0}, pdg_0});

Fig. 6 Example process tree for a decay cascade involving 10 particles
(numbers), 4 vertices (circles) and 3 edges (dark lines)

size_t idx1 =
proc.addParticle(Particle{{E_1,
px_1, py_1, pz_1}, pdg_1});

size_t idx2 =
proc.addParticle(Particle{{E_2,
px_2, py_2, pz_2}, pdg_2});

size_t idx3 =
proc.addParticle(Particle{{E_3,
px_3, py_3, pz_3}, pdg_3});

size_t idx7 =
proc.addParticle(Particle{{E_7,
px_7, py_7, pz_7}, pdg_7});

size_t idx8 =
proc.addParticle(Particle{{E_8,
px_8, py_8, pz_8}, pdg_8});

proc.addVertex(idx0, {idx1,idx2,idx3});
proc.addVertex(idx2, {idx7,idx8});

and so on. Particles and vertices need not be added in order;
helper functions are provided in the code examples for auto-
matically parsing HepMC files.

A.2: Specifications

TheHammer library contains an interpreter that maps a string
representation of a vertex – a vertex string – to all possible
charge conserving processes allowed by the specified particle
names. The interpreter uses the syntax that particle names are
parsed by a capital letter: the full list of names is provided
in the manual. (For example the vertex string "D*DPi" is
interpreted as all twelve possible D∗ → Dπ vertices, while
"D*+DPi" is interpreted as only the D∗+ → D+π0, D∗+ →
D0π+, and (the heavily CKM suppressed) D∗+ → D̄0π+
decay.)

The decay processes to be reweighed by Hammer are
specified via Hammer::includeDecay, which takes a sin-
gle vertex string or vector of vertex strings {V1, V2, . . . , Vn}
as an argument, and may be invoked multiple times. Each
includeDecay specification is inclusive and permits any
process tree whose full set of vertices contains all of

123

Eur. Phys. J. C (2020) 80:883 Page 13 of 18 883

{V1, V2, . . . , Vn}. The boolean logic applied byincludeDecay

is AND between each vertex string element, and OR between
separate invocations of includeDecay. For example

Hammer ham;
ham.includeDecay({"BD*TauNu",

"D*DGamma"});
ham.includeDecay({"BDMuNu"});

means ‘Reweight a process that either contains vertices
(B → D∗τν and D∗ → Dγ) or the vertex (B → Dμν)’.
Hence, e.g., B̄0 → (D∗+ → (D+ → K+π+π−)γ)(τ− →
�−νν) would be included. Recombination of radiative pho-
tons (produced during MC generation by PHOTOS) is han-
dled automatically by the library, and need not be specified in
includeDecay specifications. Processes may instead forbid-
den with the Hammer::forbidDecay method, whose speci-
fications are exclusive and forbids only process trees whose
set of vertices P equals {V1, V2, . . . , Vn}.

The Hammer library allows the user to specify multiple
form factor ‘schemes’ to be used in reweighting. A form fac-
tor scheme is a set of FF parameterization choices for each
hadronic transition involving form factors, and is labelled
by a ‘scheme name’. These schemes are set by the method
Hammer::addFFScheme, which takes a scheme name plus a
map from hadronic string representation to FF parametriza-
tion. The hadronic string follows the same syntax and uses
the same particle symbols as for vertex strings. For example,

ham.addFFScheme("Scheme1", {{"BD",
"BLPR"}, {"BD*", "BLPR"}};

ham.addFFScheme("Scheme2", {{"BD",
"BGL"}, {"BD*", "CLN"}});

declares two different FF schemes, choosing BLPR for both
B → D and B → D∗ form factors in "Scheme1", and a
mixture of schemes for "Scheme2". Separate histograms and
event weights are generated for each scheme name. The list
of available FF parametrizations are provided in Table 3. The
hadronic strings are charge sensitive, hence, e.g., {"B+D",
"BLPR"} versus {"B0D", "CLN"} assigns two different FF
parametrizations to charged and neutral B → D decays.
Specification of the form factor schemes used to generate
the MC sample, i.e., the denominator or input form factors,
must be specified in order for Hammer to be able to generate
the reweighting tensors. These schemes are specified by the
method Hammer::setFFInputScheme.

Units of the input MC sample may/should be specified via
Hammer::setUnits, for instance ham.setUnits("MeV").
The default is GeV.

The Hammer library permits the user to declare particu-
lar vertices, in either the denominator or numerator ampli-
tude, to be evaluated as pure phase space. This is achieved
by the method Hammer::addPurePSVertices, which takes
a set of string vertices as an argument, and an optional

enum WTerm taking values COMMON (default), NUMERATOR, or
DENOMINATOR. As an example

ham.addPurePSVertices({"TauMuNuNu",
"D*+DPi"});

ham.addPurePSVertices({"D*DGamma"},
WTerm::DENOMINATOR);

requests all τ → μνν and D∗+ → Dπ vertices in the numer-
ator and all D∗ → Dγ vertices in the denominator, to be
evaluated as phase space. How these requests are enforced is
subject to detailed rules explained in the manual. The library
employs the pure phase space definition

1
∏

k |{sk}|
∑

si ,r j

∣∣Ms1,...,sn;r1,...,rm

∣∣2 = 1 × (m6−2n) , (A.1)

where si (ri) are incoming (outgoing) quantum numbers,
|{sk}| is the number of states of sk , m is the mass of the
parent particle in the vertex, and n the number of daughters.

Once all specifications are declared (include histograms,
as below), containers are initialized byHammer::initRun().
After invocation of ham.initRun(), manipulation of the FF
default settings may be achieved via setOptions, which
takes YAML5 format arguments. For instance,

ham.setOptions("BtoDBGL: {ChiTmB2:
0.01, ChiL: 0.002}");

changes the two BGL outer function parameters from their
default settings. (Note that the YAML key for the relevant
FF class has a "to" inserted in the hadronic transition, e.g.,
"BtoDBGL", rather than "BDBGL", to make it clear we are
identifying settings for a particular class – the B → D BGL
class – and not a process.)

By default the library computes the total rate (or looks up a
partial width) the first time each unique vertex is encountered
in a run. This behavior may be disabled, e.g., if the required
integration is multidimensional and time consuming, via
ham.setOptions("ProcessCalc: {Rates: false}").

To permit full flexibility in FF settings, duplication of the
same FF class is permitted and may be invoked by adding a
token to a FF parametrization name in addFFScheme, sepa-
rated by an underscore. For instance, one may declare

ham.addFFScheme("Scheme1", {{"B+D",
"BGL_1"}, {"B0D", "BGL_2"},...});

ham.addFFScheme("Scheme2", {{"BD",
"BGL_3"},...});

This example allows independent manipulation of the BGL
parameterization for each of the charged versus neutral
modes in the same scheme, or between different schemes:
AfterinitRun, a succeedingham.setOptions("BtoDBGL_2

:...") would affect only the neutral B parametrization in
"Scheme1".

5 See yaml.org.

123

https://yaml.org

 883 Page 14 of 18 Eur. Phys. J. C (2020) 80:883

Various other additional specification features are pro-
vided by the library, including e.g. specialization of Wilson
coefficients to a particular global choice in the event ten-
sor weight calculations. Specifications may also be declared
through a card interface, as shown in demo...card.cc
example programs provided with the source code.

A.3: Histogramming

Histograms of arbitrary dimensionality may be created by
the Hammer library. In general, histogram bins contain event
weight tensors (or direct products of them if there multiple
processes in the event).

A histogram is declared by Hammer::addHistogram,
which takes as arguments a name string and either: a vec-
tor of dimensions, a bool for under/overflow and a vector of
ranges; or a vector of bin edges and a bool for under/over-
flow. The method addHistogram does not create a single
histogram, but rather a histogram set: A separate histogram
is created for each unique event cascade and in turn for each
FF scheme name specified by addFFScheme. For instance

ham.addHistogram("q2VsEmu", {20, 15},
false,{{3.,12.},{0,2.5}});

ham.addHistogram("q2VsEmu",
{{3.,5.,9.,12.},{0,1,2.5}}, true);

The first declaration creates a histogram set each with 20×15
bins, no under/overflow, binned uniformly over the respec-
tive ranges 3–12 and 0–2.5 (in appropriate units). With ref-
erence to the above addFFScheme example, this histogram
set contains one histogram for each combination of either
"Scheme1" or "Scheme2" with each unique B → D decay
cascade. The second declaration similarly creates a set of
3×2 histograms with non-uniform bins and additional under-
/overflow bins.

Filling of histograms for a specific event is performed by
Hammer::fillEventHistogram, which takes the histogram
name and the values of the observables corresponding to each
histogram dimension. For example, ham.fillEventHisto
gram("q2VsEmu", {4., 0.5}) fills the appropriate bin
element for the "q2VsEmu" histograms belonging to the event
being processed, and fills the relevant histograms for each
declared FF scheme name. (Invocations offillEventHisto
gram must occur before Hammer::processEvent, discussed
in Sect. A.4 below.) If fillEventHistogram is not invoked
for a particular histogram for a particular event, the events
tensor weight is not added to the histogram. When the under-
/overflow bool is set to false, events outside the bin ranges
are ignored by fillEventHistogram.

Computation of the weight-squared uncertainties is off by
default. This may be enabled globally via the options setting
ham.setOptions("Histos: {KeepErrors: true}"). How-
ever, for computational speed and/or memory efficiency, it

may be instead enabled or disabled for individual histograms
via Hammer::keepErrorsInHistogram, which takes the
name of the histogram as an argument, and a bool. For
instance

ham.keepErrorsInHistogram("q2VsEmu",
true);

enables weight-squared computation for this particular his-
togram. This method should be invoked before initRun.

Various additional histogramming methods are provided
by the library, that enable histogram compression, projection,
and Wilson coefficient or FF specialization. These permit
reduction of memory requirements or speed enhancements,
and are detailed in the manual.

A.4: Processing

An event may contain multiple instances of Process, in
order to account for the fact that a single event may
feature, e.g., two B decay processes. The Event class
is initialized by Hammer::initEvent(), which may take
an optional initial event weight (this can also be set by
Hammer::setEventBaseWeight). Process instances are
added by Hammer::addProcess(proc) which also returns
a hash ID of the process. If the process is not allowed accord-
ing to the includeDecay or forbidDecay specifications, the
returned hash ID is zero, and the process is not added to the
relevant Event containers.

Once a process is added, it is automatically initialized,
which chiefly involves: calculating the signatures of each
vertex in the decay cascade; identifying the various subampli-
tudes making up the cascade, as well as relevant form factor
parametrizations and vertex decay rates, for both the numer-
ator/output and denominator/input; and calculating the total
rate for the vertex (this is done only the first time each unique
vertex is encountered, i.e., only once per run per unique ver-
tex and per FF scheme). The amplitude tensors and form
factors are not computed, however, until the invocation of
Hammer::processEvent.

Once all processes are added and relevant histograms (if
any) have been denoted to be filled, the weights are actually
computed and added to the histogram (if any) bins by invoca-
tion of processEvent. A pseudo-example on a single event
with a set of processes might look like

ham.initEvent();
bool isAllowed = false;
//Create a set of Process, via

addParticle and addVertex
for(Process& proc: processes){

auto procID = ham.addProcess(proc)
if(procID != 0){

//Calculate observables, fill
histograms

isAllowed = true;
}

123

Eur. Phys. J. C (2020) 80:883 Page 15 of 18 883

}
if(isAllowed){ ham.processEvent(); }

which might be emplaced in a larger loop over a set of events.

A.5: Setting Wilson coefficients and form factors

Once processEvent is completed, the event weight may
be retrieved by Hammer::getWeight, that takes the FF
scheme name. For instance ham.getWeight("Scheme1")

computes the currently loaded event weight for the cur-
rently specified WCs and FFs. The latter may be set
via Hammer::setWilsonCoefficients and setFFEigen

vectors.
The method setWilsonCoefficients takes a string that

identifies which operator WCs are being set, and either a
vector of the WC values or a map. The default WC settings
are the SM. A typical example of the usage of this method is

ham.setWilsonCoefficients("BtoCTauNu",
{{"S_qLlL", 1.},

{"T_qLlL",0.25}});

where the first argument specifies b → cτν four-Fermi WCs
are being set, and the second argument is astd::map<std::
string, std::complex<double>> of each WC to its
desired value. The full list of WCs and their definitions is
supplied in the manual. An optional third argument is the
WTerm enum, that declares whether the evaluation should be
applied to the numerator and/or denominator (numerator by
default). As an alternative, one may instead pass as second
argument a std::vector<std::complex<double>>, cor-
responding to the ordered basis

{"SM", "S_qLlL", "S_qRlL", "V_qLlL",
"V_qRlL", "T_qLlL", "S_qLlR",

"S_qRlR", "V_qLlR", "V_qRlR",
"T_qRlR"},

with the conventions for these WCs shown in Table 1.
It is important to note that the setWilsonCoefficients

method, when taking a std::map, produces incremental set-
tings changes. A subsequent invocation ham.setWilson

Coefficients("BtoCTauNu", {{"S_qLlL", 0.5}})will
result in S_qLlL = 0.5 and T_qLlL = 0.25. The method
resetWilsonCoefficients resets the corresponding WCs
to the default SM values.

The FF eigenvectors are (re)set via the method Hammer::

setFFEigenvectors (resetWilsonCoefficients) in a
similar way, identifying the FF eigenvectors to be set via
the FF class prefix such as "BtoD" and the parametrization
name. A typical example of the usage of this method is

ham.setFFEigenvectors("BtoD*",
"BGLVar",
{{"delta_a1", 0.1},

{"delta_b1",-0.05}});

See the manual for definitions of currently implemented FF
variational classes (typically denoted with a suffix "Var").

A.6: Retrieval

Once all events or histograms have been processed (or
reloaded from a file, see Sect. A.9), the user may retrieve a
specific histogram with the methodHammer::getHistogram,
that takes a histogram name and a FF scheme name. NP
choices must be specified first viasetWilsonCoefficients,
as must FF uncertainties via setFFEigenvectors. For
example,

auto histo =
ham.getHistogram("q2VsEmu","Scheme2");

would contract the bin weights with the specified NP Wilson
coefficients (and FF eigenvectors, if any) for each histogram
in the "q2VsEmu" histogram set with FF scheme "Scheme2",
and then combines them together into a single final his-
togram. This contracted histogram output histo is a (row-
major) flattened vector of BinContents structs. This struct
has members sumWi, sumWi2 and n for sum of weights, sum
of squared weights and number of events in the bin, respec-
tively. (By contrast, the method getHistograms extracts all
histograms of a specific name and scheme, producing a map
of event hash IDs to histogram for all available "q2VsEmu"

histograms with the FF scheme "Scheme2".)
Integrated rates or partial widths for a specific vertex may

be retrieved via Hammer::getRate. The vertex is specified
via either a vertex string, or the parent and daughter PDG
codes, plus an FF scheme. (Partial widths are returned in the
units specified by Hammer::setUnits; the default is GeV.)
For example

ham.getRate(511, {-413, -14, 13},
"Scheme2");

ham.getRate("B0D*-MuNu", "Scheme2");

both return the partial width for the B0 → D∗−μ+ν ver-
tex, using the form factor parameterization specified in
"Scheme2", and whatever WCs or FF uncertainties have been
specified. (The getRate method is charge conjugate sensi-
tive, so the vertex string must specify sufficient charges to
make the vertex charge unique. For example, writing just
"B0D*MuNu" would correspond to not only B0 → D∗−μ+ν,
but also the very heavily suppressed B0 → D+μ−ν̄.)
The method getDenominatorRate similarly returns the
partial width according to the specified denominator/input
FF parametrization chosen in setFFInputScheme, and the
denominator/input WCs or FF eigenvectors.

A.7: Multithreading

The library has the ability to perform lock-free paral-
lelization of the getHistogram(s) and getWeight eval-

123

 883 Page 16 of 18 Eur. Phys. J. C (2020) 80:883

uations. This requires use of the thread local methods
setWilsonCoefficientsLocalandsetFFEigenvectors

Local to set the desired WC or FF uncertainties. These
...Localmethods take the same syntax assetWilsonCoeff
icients andsetFFEigenvectors, but with different behavi
our: They do not set the values incrementally from the cur-
rent settings, but always increment from the SM and zero FF
uncertainties, respectively. Global values of the WCs or FF
variations are unaffected by the ...Local methods.

A.8: Saving

Hammer provides the ability to store header settings, gener-
ated event weights, histograms, and/or rates in binary buffers
for later retrieval and reprocessing. These buffers are built
on the cross-platform serialization library flatbuffers6:
The buffer structsHammer::IOBuffer andHammer::RootIO

Buffer permit writing/reading of Hammer internal objects
using C++ binary files and ROOT trees, respectively.

In order to save a buffer, an ofstream outfile
must first be designated. For example, ofstream outFile

("./DemoSave.dat",ios::binary). The methods
Hammer::saveRunHeader,saveEventWeights,saveRates,
saveHistogram may be used to save: specification settings
(like includeDecay etc; the process weight(s) of the event
currently loaded in memory (this should be invoked inside
an event loop, after processEvent); the computed rates;
and histograms. Each of these methods returns a IOBuffer,
which can be stored as sequential records in the buffer via an
ostream operator. For example,

outFile << ham.saveRunHeader();
outFile << ham.saveHistogram("q2VsEmu");

writes the declared run header, with all its settings, into an
IOBuffer and passes it as a record into the buffer, and then
does the same for the histogram "q2VsEmu". The record
types are labelled by an char enum Hammer::RecordType

with values UNDEFINED = ’u’, HEADER = ’b’, EVENT =

’e’, HISTOGRAM = ’h’, HISTOGRAM_DEFINITION = ’d’,
and RATE = ’r’. A histogram is always saved sequen-
tially as a definition record then the histogram data record.
The saveHistogram method may optionally take additional
arguments – such as an FF scheme name – in order to save
only part of an entire histogram set; see the manual for further
details.

Saving a buffer in ROOT format is achieved by pass-
ing the IOBuffer output of the save... methods into a
RootIOBuffer, that may then be stored in a ROOT TTree.
Explicit implementations of this functionality are provided
in various demo...root.cc example programs.

6 google.github.io/flatbuffers.

A.9: Reloading and merging

Buffer records may be loaded from a declared ifstream

infile into an IOBuffer via an istream operator. For exam-
ple,

ifstream inFile("./DemoSave.dat",
ios::binary);

Hammer::IOBuffer
buf{Hammer::RecordType::UNDEFINED,
0ul, nullptr};

inFile >> buf;
ham.loadRunHeader(buf);

attempts to load the first buffer record as a run header
(returning false if this record is of a different type).

It is the responsibility of the user to curate the logic and
order under which a buffer is saved and then read. For exam-
ple, if a block of histograms have been saved before a set of
rate records, then

while(buf.kind != Hammer::RecordType::RATE)
{
if(buf.kind ==

Hammer::RecordType::HISTOGRAM) {
ham.loadHistogram(buf);

}
if(buf.kind ==

Hammer::RecordType::HISTOGRAM_
DEFINITION){ham.loadHistogram
Definition(buf);
}

inFile >> buf;
}

would read through the buffer, with the methodHammer::load

Histogram loading all the histograms, and Hammer::load

HistogramDefinition all the histogram definitions, that
are found before reaching the block of saved rates. The
method loadRates behaves similarly to loadHistogram.

Once an object is loaded, it behaves just as the originally
computed instance. So one may invoke getHistogram for a
reloaded histogram as described in Sect. A.5.

Event weights can be reloaded via loadEventWeights.
This permits recreating the original event loop provided
initEvent and processEvent are called appropriately. For
example, on a block of saved event records

while(buf.kind ==
Hammer::RecordType::EVENT) {
ham.initEvent();
ham.loadEventWeights(buf);
double q2 = ...; //Calculate q^2 from

known kinematic event information
ham.fillEventHistogram("Q2", {q2});
ham.processEvent();
inFile >> buf;

}

would permit reprocessing of saved event weights into a
newly created "Q2" histogram.

123

https://google.github.io/flatbuffers/

Eur. Phys. J. C (2020) 80:883 Page 17 of 18 883

Loading a buffer in ROOT format is achieved by read-
ing the RootIOBuffer stored in a TTree into an IOBuffer

that can be passed to the load... methods. Explicit imple-
mentations of this functionality are provided in various
demo...root.cc example programs.

In order to permit parallelization of initialization runs,
the load... methods accept an additional bool, to specify
whether to merge the buffer contents with existing objects in
memory (true), or overwrite them (false, default). Merg-
ing of histograms occurs if two histograms are loaded with
a matching name. This merging is additive for histograms
in each histogram set with the same FF scheme and hash
IDs, and otherwise results in the new unique histograms
being appended to the existing histogram set. (If one wishes
instead to overwrite a histogram one may instead first invoke
removeHistogram, and then reload the desired components
of the histogram set.)

The methods loadEventWeights and loadRates behave
similarly. For weights (rates) with matching hash IDs, merg-
ing permits appending of process weights (rates) computed
with new form factor schemes to the process weights (rates).
Finally, loadRunHeader permits merging of two sets of
header specifications into their union. More details are pro-
vided in the manual.

References

1. BaBar Collaboration: J. P. Lees et. al., Measurement of an Excess
of B̄ → D(∗)τ−ν̄τ Decays and Implications for Charged Higgs
Bosons, Phys. Rev. D 88, 072012 (2013), arXiv:1303.0571

2. Belle Collaboration: M. Huschle et. al., Measurement of the
branching ratio of B̄ → D(∗)τ−ν̄τ relative to B̄ → D(∗)�−ν̄�

decays with hadronic tagging at Belle, Phys. Rev. D92 072014,
(2015). arXiv:1507.03233

3. Particle Data Group: M. Tanabashi et. al., Review of Particle
Physics, Phys. Rev. D 98, 030001 (2018). (See the Vcb-Vub review
at http://pdg.lbl.gov/2018/reviews/rpp2018-rev-vcb-vub.pdf.)

4. P. Krawczyk, S. Pokorski, Strongly Coupled Charged Scalar in B
and t Decays. Phys. Rev. Lett. 60, 182 (1988)

5. P. Heiliger, L.M. Sehgal, Semileptonic Decays of B Mesons into
τντ . Phys. Lett. B 229, 409–417 (1989)

6. J. Kalinowski, Semileptonic Decays of B Mesons into τντ in a
Two Higgs Doublet Model. Phys. Lett. B 245, 201–206 (1990)

7. B. Grzadkowski, W.-S. Hou, Solutions to the B meson semileptonic
branching ratio puzzle within two Higgs doublet models. Phys.
Lett. B 272, 383–390 (1991)

8. Y. Grossman, Z. Ligeti, The Inclusive B̄ → τ ν̄X decay in
two Higgs doublet models. Phys. Lett. B 332, 373–380 (1994).
arXiv:hep-ph/9403376

9. M. Tanaka, Charged Higgs effects on exclusive semitauonic B
decays. Z. Phys. C 67, 321–326 (1995). arXiv:hep-ph/9411405

10. W. D. Goldberger, Semileptonic B decays as a probe of new
physics, arXiv:hep-ph/9902311

11. ALEPH Collaboration: D. Buskulic et. al., Measurement of the
b → τ−ν̄X branching ratio, Phys. Lett. B 298, 479–491 (1993)

12. HFLAV Collaboration: Y. S. Amhis et. al., Averages of b-hadron,
c-hadron, and τ -lepton properties as of 2018, arXiv:1909.12524

13. LHCb Collaboration: R. Aaij et. al., Measurement of the ratio of
branching fractions B(B̄0 → D∗+τ−ν̄τ)/B(B̄0 → D∗+μ−ν̄μ),
Phys. Rev. Lett. 115, 111803 (2015), arXiv:1506.08614. [Adden-
dum: Phys. Rev. Lett. 115, no.15, 159901 (2015)]

14. Z. Ligeti, M. Papucci, D.J. Robinson, New Physics in the Vis-
ible Final States of B → D(∗)τν. JHEP 01, 083 (2017).
arXiv:1610.02045

15. S. Duell, F. Bernlochner, Z. Ligeti, M. Papucci, D. Robinson,
HAMMER: Reweighting tool for simulated data samples, PoS
ICHEP2016, 1074 (2017)

16. D. Hill, M. John, W. Ke, A. Poluektov, Model-independent method
for measuring the angular coefficients of B0 → D∗−τ+ντ decays.
JHEP 11, 133 (2019). arXiv:1908.04643

17. D. Bečirević, M. Fedele, I. Nišandžić, A. Tayduganov, Lepton Fla-
vor Universality tests through angular observables of B → D(∗)�ν

decay modes, arXiv:1907.02257
18. D.J. Lange, The EvtGen particle decay simulation package. Nucl.

Instrum. Meth. A 462, 152–155 (2001)
19. F.U. Bernlochner, Z. Ligeti, M. Papucci, D.J. Robinson, Combined

analysis of semileptonic B decays to D and D∗: R(D(∗)), |Vcb|, and
new physics. Phys. Rev. D 95, 115008 (2017). arXiv:1703.05330

20. N. Isgur, M.B. Wise, Weak Decays of Heavy Mesons in the Static
Quark Approximation. Phys. Lett. B 232, 113–117 (1989)

21. N. Isgur, M.B. Wise, Weak Transition Form-factors Between Heavy
Mesons. Phys. Lett. B 237, 527–530 (1990)

22. E. Eichten, B.R. Hill, An Effective Field Theory for the Calculation
of Matrix Elements Involving Heavy Quarks. Phys. Lett. B 234,
511–516 (1990)

23. H. Georgi, An Effective Field Theory for Heavy Quarks at Low-
energies. Phys. Lett. B 240, 447–450 (1990)

24. BaBar Collaboration: J. P. Lees et. al., Evidence for an excess of
B̄ → D(∗)τ−ν̄τ decays, Phys. Rev. Lett. 109, 101802 (2012),
arXiv:1205.5442

25. LHCb Collaboration: R. Aaij et. al., Measurement of the CKM
angle γ from a combination of LHCb results, JHEP 12, 087 (2016),
arXiv:1611.03076

26. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae
for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554
(2011). arXiv:1007.1727. [Erratum: Eur. Phys. J. C73,2501(2013)]

27. I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, N. Košnik, Physics
of leptoquarks in precision experiments and at particle colliders,
Phys. Rep. 641, 1–68 (2016), arXiv:1603.04993

28. M. Freytsis, Z. Ligeti, J.T. Ruderman, Flavor models for B̄ →
D(∗)τ ν̄. Phys. Rev. D 92, 054018 (2015). arXiv:1506.08896

29. J. Aebischer, J. Kumar, P. Stangl, D.M. Straub, A Global Likelihood
for Precision Constraints and Flavour Anomalies. Eur. Phys. J. C
79, 509 (2019). arXiv:1810.07698

30. P. Asadi, D. Shih, Maximizing the Impact of New Physics
in b → cτν Anomalies. Phys. Rev. D 100, 115013 (2019).
arXiv:1905.03311

31. D. Bardhan, D. Ghosh, B-meson charged current anomalies: The
post-Moriond 2019 status. Phys. Rev. D 100, 011701 (2019).
arXiv:1904.10432

32. S. Bhattacharya, S. Nandi, S. Kumar Patra, b → cτντ Decays: a
catalogue to compare, constrain, and correlate new physics effects,
Eur. Phys. J. C 79, 268 (2019), arXiv:1805.08222

33. C. Murgui, A. Peñuelas, M. Jung, A. Pich, Global fit to b → cτν

transitions. JHEP 09, 103 (2019). arXiv:1904.09311
34. A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata, E. Venturini,

Anatomy of b → cτν anomalies. JHEP 11, 187 (2018).
arXiv:1805.03209

35. D. Buttazzo, A. Greljo, G. Isidori, D. Marzocca, B-physics anoma-
lies: a guide to combined explanations. JHEP 11, 044 (2017).
arXiv:1706.07808

36. M. Blanke, A. Crivellin et al., Addendum to “Impact of polar-
ization observables and Bc → τν on new physics explanations

123

http://arxiv.org/abs/1303.0571
http://arxiv.org/abs/1507.03233
http://pdg.lbl.gov/2018/reviews/rpp2018-rev-vcb-vub.pdf
http://arxiv.org/abs/hep-ph/9403376
http://arxiv.org/abs/hep-ph/9411405
http://arxiv.org/abs/hep-ph/9902311
http://arxiv.org/abs/1909.12524
http://arxiv.org/abs/1506.08614
http://arxiv.org/abs/1610.02045
http://arxiv.org/abs/1908.04643
http://arxiv.org/abs/1907.02257
http://arxiv.org/abs/1703.05330
http://arxiv.org/abs/1205.5442
http://arxiv.org/abs/1611.03076
http://arxiv.org/abs/1007.1727
http://arxiv.org/abs/1603.04993
http://arxiv.org/abs/1506.08896
http://arxiv.org/abs/1810.07698
http://arxiv.org/abs/1905.03311
http://arxiv.org/abs/1904.10432
http://arxiv.org/abs/1805.08222
http://arxiv.org/abs/1904.09311
http://arxiv.org/abs/1805.03209
http://arxiv.org/abs/1706.07808

 883 Page 18 of 18 Eur. Phys. J. C (2020) 80:883

of the b → cτν anomaly”. Phys. Rev. D 100, 035035 (2019).
arXiv:1905.08253

37. W. Altmannshofer, P. S. Bhupal Dev, A. Soni, RD(∗) anomaly: A
possible hint for natural supersymmetry with R-parity violation,
Phys. Rev. D 96, 095010 (2017), arXiv:1704.06659

38. D. Bečirević, I. Doršner et al., Scalar leptoquarks from grand uni-
fied theories to accommodate the B-physics anomalies. Phys. Rev.
D 98, 055003 (2018). arXiv:1806.05689

39. A. Angelescu, D. Bečirević, D.A. Faroughy, O. Sumensari, Clos-
ing the window on single leptoquark solutions to the B-physics
anomalies. JHEP 10, 183 (2018). arXiv:1808.08179

40. F. Bernlochner, S. Duell, Z. Ligeti, M. Papucci, D. J. Robinson,
“An introduction to hammer: Helicity amplitude module for matrix
element reweighting.” hammer.physics.lbl.gov

41. D. Scora, N. Isgur, Semileptonic meson decays in the quark
model: An update. Phys. Rev. D 52, 2783–2812 (1995).
arXiv:hep-ph/9503486

42. N. Isgur, D. Scora, B. Grinstein, M.B. Wise, Semileptonic B and
D Decays in the Quark Model. Phys. Rev. D 39, 799–818 (1989)

43. B. Grinstein, A. Kobach, Model-Independent Extraction of
|Vcb| from B̄ → D∗�ν. Phys. Lett. B 771, 359–364 (2017).
arXiv:1703.08170

44. C.G. Boyd, B. Grinstein, R.F. Lebed, Model independent deter-
minations of B̄ → Dl ν̄, D∗l ν̄ form-factors. Nucl. Phys. B 461,
493–511 (1996). arXiv:hep-ph/9508211

45. C.G. Boyd, B. Grinstein, R.F. Lebed, Precision corrections to
dispersive bounds on form-factors. Phys. Rev. D 56, 6895–6911
(1997). arXiv:hep-ph/9705252

46. I. Caprini, L. Lellouch, M. Neubert, Dispersive bounds on the shape
of B̄ → D(∗)�ν̄ form-factors. Nucl. Phys. B 530, 153–181 (1998).
arxiv:hep-ph/9712417

47. J. H. Kuhn, E. Mirkes, Structure functions in tau decays, Z. Phys.
C 56 (1992) 661–672. [Erratum: Z. Phys.C67,364(1995)]

48. O. Shekhovtsova, T. Przedzinski, P. Roig, Z. Was, Resonance chiral
Lagrangian currents and τ decay Monte Carlo. Phys. Rev. D 86,
113008 (2012). arXiv:1203.3955

49. I.M. Nugent, T. Przedzinski, P. Roig, O. Shekhovtsova, Z. Was,
Resonance chiral Lagrangian currents and experimental data
for τ− → π−π−π+ντ . Phys. Rev. D 88, 093012 (2013).
arXiv:1310.1053

50. A.K. Leibovich, Z. Ligeti, I.W. Stewart, M.B. Wise, Semileptonic
B decays to excited charmed mesons. Phys. Rev. D 57, 308–330
(1998). arxiv:hep-ph/9705467

51. A.K. Leibovich, Z. Ligeti, I.W. Stewart, M.B. Wise, Model inde-
pendent results for B → D1(2420)�ν̄ and B → D∗

2 (2460)�ν̄

at order ΛQCD/mc,b. Phys. Rev. Lett. 78, 3995–3998 (1997).
arxiv:hep-ph/9703213

52. F.U. Bernlochner, Z. Ligeti, D.J. Robinson, Model independent
analysis of semileptonic B decays to D∗∗ for arbitrary new physics.
Phys. Rev. D 97, 075011 (2018). arXiv:1711.03110

53. F.U. Bernlochner, Z. Ligeti, Semileptonic B(s) decays to excited
charmed mesons with e, μ, τ and searching for new physics with
R(D∗∗). Phys. Rev. D 95, 014022 (2017). arXiv:1606.09300

54. M. Pervin, W. Roberts, S. Capstick, Semileptonic decays of heavy
lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005),
arxiv:nucl-th/0503030

55. F.U. Bernlochner, Z. Ligeti, D.J. Robinson, W.L. Sutcliffe, Precise
predictions for Λb → Λc semileptonic decays. Phys. Rev. D 99,
055008 (2019). arXiv:1812.07593

56. F.U. Bernlochner, Z. Ligeti, D.J. Robinson, W.L. Sutcliffe, New
predictions for Λb → Λc semileptonic decays and tests of
heavy quark symmetry. Phys. Rev. Lett. 121, 202001 (2018).
arXiv:1808.09464

57. C. Bourrely, I. Caprini, L. Lellouch, Model-independent descrip-
tion of B —> pi l nu decays and a determination of |V(ub)|. Phys.
Rev. D. 79, 013008 (2009). arXiv:0807.2722. [Erratum: Phys. Rev.
D82, 099902 (2010)]

58. A. Bharucha, D.M. Straub, R. Zwicky, B → V �+�− in the Stan-
dard Model from light-cone sum rules. JHEP 08, 098 (2016).
arXiv:1503.05534

59. D. Ebert, R. Faustov, V. Galkin, Weak decays of the Bc meson to
charmonium and D mesons in the relativistic quark model. Phys.
Rev. D 68, 094020 (2003). arxiv:hep-ph/0306306

60. T.D. Cohen, H. Lamm, R.F. Lebed, Precision Model-Independent
Bounds from Global Analysis of b → c�ν Form Factors. Phys.
Rev. D 100, 094503 (2019). arXiv:1909.10691

123

http://arxiv.org/abs/1905.08253
http://arxiv.org/abs/1704.06659
http://arxiv.org/abs/1806.05689
http://arxiv.org/abs/1808.08179
http://arxiv.org/abs/hep-ph/9503486
http://arxiv.org/abs/1703.08170
http://arxiv.org/abs/hep-ph/9508211
http://arxiv.org/abs/hep-ph/9705252
http://arxiv.org/abs/hep-ph/9712417
http://arxiv.org/abs/1203.3955
http://arxiv.org/abs/1310.1053
http://arxiv.org/abs/hep-ph/9705467
http://arxiv.org/abs/hep-ph/9703213
http://arxiv.org/abs/1711.03110
http://arxiv.org/abs/1606.09300
http://arxiv.org/abs/nucl-th/0503030
http://arxiv.org/abs/1812.07593
http://arxiv.org/abs/1808.09464
http://arxiv.org/abs/0807.2722
http://arxiv.org/abs/1503.05534
http://arxiv.org/abs/hep-ph/0306306
http://arxiv.org/abs/1909.10691

	Das ist der HAMMER: consistent new physics interpretations of semileptonic decays
	Abstract
	1 Introduction
	2 New physics analyses
	2.1 MC sample
	2.2 Reweighting and fitting analysis
	2.3 R(D(*)) biases from new physics truth
	2.4 New physics Wilson coefficient fits

	3 The Hammer library
	3.1 Reweighting
	3.2 New Physics generalizations
	3.3 Form factor generalizations
	3.4 Rates
	3.5 Primary code functionalities
	3.6 Code flow

	4 Conclusions
	Acknowledgements
	A: Core elements of the Application Programming Interface
	A.1: Building processes and events
	A.2: Specifications
	A.3: Histogramming
	A.4: Processing
	A.5: Setting Wilson coefficients and form factors
	A.6: Retrieval
	A.7: Multithreading
	A.8: Saving
	A.9: Reloading and merging

	References

