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1.  Introduction
Numerical models of the coupled ocean-atmosphere-land system are routinely used to provide projections of 
near surface weather and climate on timescales ranging from short term weather forecasts, to seasonal-to-decadal 
climate predictions, to projections of long term climate change over the coming century. Given its relevance to 
humans and ecosystems that reside at the Earth's surface, one of the primary fields of interest from such models is 
near surface air temperature, at 2 m above the ground (referred to as T2m hereafter). While T2m is one of the most 
easily, and therefore most widely, measured meteorological quantities, it is not necessarily straightforward to 
simulate it with fidelity given its dependence on a multitude of factors including large scale meteorological influ-
ences, the representation of unresolved processes in the boundary layer, and interactions with the land surface.

Abstract  The Community Earth System Model (CESM) is widely used for the prediction and 
understanding of climate variability and change. Accurate simulation of the behavior of near surface air 
temperature (T2m) is critical in such a model for addressing societally relevant problems. However, previous 
versions of CESM suffered from an overestimation of wintertime T2m variability in Northern Hemisphere 
(NH) land regions. Here, it is shown that the latest version of CESM (CESM2) exhibits a much improved 
representation of wintertime T2m variability compared to its predecessor and it now compares well with 
observations. A series of targeted experiments reveal that an important contributor to this improvement is the 
local effects of changes to the representation of snow density within the land surface component. Increased 
snow densities in CESM2 lead to enhanced conductance of the snow layer. As a result, larger heat fluxes 
across the snow layer are induced in the presence of T2m anomalies, leading to a greater dampening of surface 
and near surface atmospheric temperature anomalies. The implications for future projections with CESM2 are 
also considered through comparison of the CESM1 and CESM2 large ensembles. Aligned with the reduction 
in surface temperature variability, compared to CESM1, CESM2 exhibits reduced ensemble spread in future 
projections of NH winter mean temperature and a smaller decline in daily wintertime T2m variability under 
climate change. Overall, this improvement has increased the accuracy of CESM2 as a tool for the study of 
wintertime T2m variability and change.

Plain Language Summary  A societally relevant quantity that is predicted by Earth System Models 
is near surface air temperature (T2m). Accurate simulation of this quantity requires accurate representation of 
atmospheric circulation, boundary layer processes and land-atmosphere interaction. Here we show substantial 
improvements in the representation of wintertime T2m variability in the latest version of the Community Earth 
System Model and isolate the roles of different aspects of the model development. Increases in the density 
of snow in the new model are shown to reduce T2m variability. Snow density governs the heat fluxes induced 
across the snow layer via conductance and increased snow density in the model has increased the ability of 
heat fluxes across the snow layer to dampen T2m variability. The implications of this change for future climate 
projections are explored and it is found that CESM2 exhibits a reduced uncertainty in future projections of 
mean T2m over Northern Hemisphere land regions, as might be expected given the reduced sampling uncertainty 
in T2m due to reduced internal variability. Furthermore, wintertime T2m variability is expected to decrease under 
climate change and this decrease is larger in the older version of the model that exhibited greater T2m variability 
in its historical simulation.
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surface temperature variability was 
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•	 �This improvement has arisen through 
an increase in snow density and 
associated snow conductance

•	 �A reduced ensemble spread and 
reduced decline in daily variance is 
also found in future projections of 
surface temperature with CESM2
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Interactions with the land surface are known to play an important role in summertime T2m variability when drier 
soils can exacerbate heat extremes by altering the proportion of incoming energy that is partitioned into latent 
heating (e.g., Durre et al., 2000; Fischer et al., 2007; Seneviratne et al., 2010; Vargas Zeppetello et al., 2020). In 
the wintertime, at extratropical latitudes where surface temperature variability is greatest, the advective influences 
of the large scale circulation are widely considered to dominate (e.g., Holmes et al., 2016). Indeed, a number of 
studies have examined the leading order characteristics of wintertime temperature variability by considering free 
tropospheric levels (e.g., 850 hPa), therefore assuming a relatively small influence of land-atmosphere coupling 
in shaping temperature distributions near the surface (Linz et al., 2019; Schneider et al., 2015). While many of the 
features of the wintertime surface temperature distribution can indeed be explained this way, it does not preclude 
the possibility that the details of land-atmosphere coupling may also be important in ultimately governing how 
temperature variability behaves near the surface during the winter. Indeed, a number of studies have demon-
strated the importance of temporal variability in snow cover or snow cover characteristics for winter and spring 
surface temperature variability via albedo effects and hydrologic effects on soil moisture (Diro et al., 2018; Dutra 
et al., 2011; Fischer et al., 2011; Xu & Dirmeyer, 2011).

The topic of this study is the representation of daily average wintertime T2m variability in the Community Earth 
System Model (CESM). The second generation version of CESM (CESM2) was released in 2018 (Danabasoglu 
et al., 2019). Compared to its predecessor, CESM1 (Hurrell et al., 2013), CESM2 includes major upgrades to 
most of its components. In particular, as the atmospheric component (the Community Atmosphere Model, CAM) 
transitioned from CAM5 to CAM6, almost every physical parameterization, except radiation, was upgraded 
(Bogenschutz et al., 2018; Danabasoglu et al., 2019). Similarly, as the land component (the Community Land 
Model, CLM) transitioned from CLM4 to CLM5, the representation of many existing processes was updated 
and the representation of many new processes was introduced (Lawrence et al., 2019). As will be shown below, 
CESM1 substantially overestimated wintertime daily T2m variability in the Northern Hemisphere (NH) high lati-
tudes and this bias has now been alleviated in CESM2. This is not a bias that developers had targeted during the 
development process. Rather, this improvement has emerged as a result of upgrades that had been implemented 
with other motivations in mind. The aim of this study, therefore, is to document this change, provide an expla-
nation of how this improvement has arisen and discuss the implications of this improvement for future climate 
projections.

As will be shown, changes in the representation of snow density in CLM5 are of central importance to this change 
in T2m variability, so we briefly describe CLM5's upgrades in snow density and density evolution but refer readers 
to van Kampenhout et al. (2017) for a more complete description. van Kampenhout et al. (2017) implemented 
the changes described below with the primary motivation of improving the representation of perennial snow 
and firn over the Greenland ice sheet, and elsewhere, where high winds and extreme cold temperatures prevail. 
However, the new parameterizations of snow density and densification have been implemented globally within 
the model and here we illustrate their collateral benefit on the representation of surface temperature variability 
over seasonally snow covered continental regions of the NH. Snow density in CLM is governed by both the 
density of fresh snow as it lands on the ground and the subsequent density evolution (or densification) in response 
to environmental factors. The representation of both fresh snow density and densification have changed in CLM5, 
as now described.

1.	 �Fresh snow density. In CLM4, the density of fresh snow varied as a function of temperature only, with higher 
densities at warmer temperatures (Figure 1a of van Kampenhout et al. (2017)). This temperature dependence 
obeyed a functional form that was derived from a single high elevation measurement site in Alta, Utah (Ander-
son, 1976). Given substantial differences between conditions at this site and conditions on the Greenland ice 
sheet, van Kampenhout et al. (2017) upgraded this parameterization in two ways. First, they added a linear 
dependence of fresh snow density on wind speed (Figure 1b of van Kampenhout et al. (2017)), motivated by 
the fact that windy conditions lead to enhanced breaking of snow crystals, a smaller effective snow grain size 
(Sato et al., 2008) and, therefore, an enhanced ability of snow crystals to pack tightly into a denser snow layer. 
Second, they modified the functional form of the temperature dependence of snow density to account for the 
fact that the crystal size gets smaller at very cold temperatures, leading to an inversion of density at the lowest 
temperatures. The overall dependence of fresh snow density on temperature and wind speed resulting from 
both these changes can be seen in Figure 1c of van Kampenhout et al. (2017) and demonstrates that there is 
now a greatly increased likelihood for fresh snow to be denser than it was in CLM4
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2.	 �Densification. Various processes lead to increased density of snow once it is on the ground and a number of 
changes to these processes have been made in CLM5. First, destructive metamorphism allows the snow to 
densify as water molecules move along the snow crystals through sublimation and condensation. In CLM, the 
rate of densification due to this process is dependent on temperature and then tapers off exponentially when 
the snow density reaches some specified upper limit. From CLM4 to CLM5, the value of this upper limit has 
increased from 100 kgm −3 to 175 kgm −3, which would allow this densification process to remain important 
up to higher densities. Second, snow can densify due to compaction associated with pressure from the snow 
layers above. In CLM5, a change has been made to the formulation of viscosity that is used to determine the 
rate of compaction by this process, which ultimately will reduce the densification due to compaction by over-
burden pressure - a change that was necessary to improve the representation of firn on the Greenland ice sheet 
(Section 3.4.2 of van Kampenhout et al. (2017)). Finally, in CLM5, a parameterization of the densification 
effects of drifting snow has been introduced. Drifting snow leads to higher densities as it causes the snow 
crystals to break, allowing them to pack more densely. A representation of this process has been introduced in 
a parameterized way in CLM5, with the densification being dependent on both the mobility of the snow and 
wind speed (Vionnet et al., 2012)

van Kampenhout et al.  (2017) showed that, over Greenland, enhanced near surface snow densities associated 
with these changes lead to improvements in sub-surface melt rates, in association with enhanced conductance 
and an improved vertical redistribution of melt. In addition, the changes to the representation of snow compaction 
by overburden pressure result in an improved representation of firn. Here, we will show that these changes, in 
particular the density of fresh snow, have also led to improvements in surface temperature variability over season-
ally snow covered NH land regions and we discuss the mechanisms behind this impact.

The simulations and observation-based datasets used in this study are described in Section 2. In Section 3, the 
changes in T2m variability between CESM1 and CESM2 are described and the role for changes in the representa-
tion of snow density is identified. In Section  4, a mechanistic understanding of the snow density influence 
is provided and in Section 5 the implications for future climate projections are assessed before discussion is 
provided in Section 6 and conclusions are drawn in Section 7.

2.  Model Simulations, Observation Based Datasets and Methods
2.1.  Model Simulations

We use of a range of pre-existing CESM simulations as well as newly performed simulations aimed at isolating 
the ultimate cause of the T2m variability change between CESM1 and CESM2. These are listed in Table 1 and use 
prescribed historical and future forcings of either the Phase 5 or Phase 6 era of the Coupled Model Intercompar-
ison Project (CMIP) and are performed with a 1.25 ° longitude × 1 ° latitude horizontal resolution and 32 layers 
in the vertical with a model top at ∼40 km. Each of these simulations vary in length and all of our analyses of the 
historical period will use years 1979–2014. The exception is some of the sensitivity experiments that only extend 
to 2005 and for these we use 1979–2005.

2.1.1.  Coupled Simulations

To explore the change in present day temperature variability and future projections between CESM1 and CESM2 
with fully coupled simulations we use the CESM1 large ensemble (LENS1, Kay et al. (2014)) and the CESM2 
large ensemble (LENS2, Rodgers et al. (2021)). LENS1 is a 40-member ensemble of coupled simulations using 
CESM1, initialized from 1920 and run under CMIP5 historical forcings to 2005 and forcings of the Representa-
tive Concentration Pathway 8.5 (RCP8.5), thereafter. LENS2 is a 100-member ensemble of coupled simulations 
using CESM2, initialized from 1850 and run under CMIP6 historical forcings to 2014 and forcings of the Shared 
Socioeconomic Pathway 3–7.0 (SSP3-7.0), thereafter. In LENS1, the ensemble members are initialized from 
the same state but with a random noise purturbation applied to the air temperature field to introduce ensemble 
spread (micro initialization). In LENS2, a mixture of micro and macro initializations are used, where “macro” 
refers to the initialization of members from different dates from the coupled pre-industrial control simulation. As 
detailed in Rodgers et al. (2021), some bug fixes and a change to the biomass burning emissions were introduced 
between the first and second 50 members of LENS2. However, since our focus here is primarily on sub-seasonal 
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variability, we do not expect these changes to have a substantial impact and we consider both sets together. 
Furthermore, at the time of writing, only 89 members were available, so 89 members are used.

2.1.2.  Prescribed SST Simulations

To isolate whether there is a role for the ocean and sea ice in T2m variability changes between CESM1 and CESM2, 
we compare the coupled simulations with two 10-member ensembles run with prescribed Sea Surface Temper-
atures (SSTs) taken from observations (GOGA simulations, referring to Global Ocean Global Atmosphere). 
GOGA1 uses CESM1 and extends from 1880 to 2017 with CMIP5 historical forcing prior to 2006 and RCP8.5 
forcing thereafter. The observed SSTs used in this ensemble are taken from ERSSTv4 (Huang et  al.,  2014). 
GOGA2 uses CESM2 and extends from 1850 to 2020 with CMIP6 historical forcing prior to 2015 and SSP3-7.0 
forcing thereafter. The observed SSTs used in this ensemble are taken from ERSSTv5 (Huang et al., 2017).

Name # members Length Description

LENS1 40 1920–2100 CESM1 large ensemble (Kay et al., 2014).

Coupled historical + RCP8.5 (after 2005)

LENS2 89 1850–2100 CESM2 large ensemble (Rodgers 
et al., 2021).

Coupled historical + SSP3-7.0 (after 
2014)

GOGA1 10 1880–2017 CESM1. Historical + RCP8.5 (after 
2005), ERSSTv4 SSTs

GOGA2 10 1850–2020 CESM2. Historical + SSP3-7.0 (after 
2014), ERSSTv5 SSTs

Sensitivity Experiments (all within the CESM2 codebase, using Hurrell et al. (2008) SSTs and BGC in CLM turned off)

  CAM6_CLM5 3* 1979–2014 Similar to GOGA2 but with different 
SSTs and land BGC turned off that is, 
these are standard “out-of-the-box” 
AMIP runs with CESM2.

  CAM5_CLM4 1 1979–2005 As CAM6_CLM5 but reverting CAM6 
back to CAM5 and CLM5 back to 
CLM4

  CAM6_CLM4 1 1979–2005 As CAM6_CLM5 but reverting CLM5 
back to CLM4

  CAM5_CLM5 1 1979–2005 As CAM6_CLM5 but reverting CAM6 
back to CAM5

  SNWDENS 2** 1979–2005 As CAM6_CLM5 but reverting the snow 
density and densification settings in 
CLM5 back to those in CLM4

Single column model (SCAM) experiments (all within the CESM2 codebase)

  SCAM6_CLM5_CLM5F 2 1979–2014 Large scale forcing from CAM6_CLM5 
and CLM5 as the land component

  SCAM6_SNWDENS_SNWDENSF 2 1979–2014 Large scale forcing from SNWDENS and 
CLM5 with reverted snow densisty 
and densification settings as the land 
component

  SCAM6_SNWDENS_CLM5F 2 1979–2014 Large scale forcing from CAM6_CLM5 
with reverted snow density and 
densification settings as the land 
component

Table 1 
Description of Community Earth System Model Simulations (*) Only Two of These Members are Used to Force the Single Column Atmospheric Model (SCAM) 
Simulations and Only One Is Used for the Detailed Surface Energy Budget Analysis (**) Only One of These Is Used for the Detailed Surface Energy Budget Analysis
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2.1.3.  Sensitivity Experiments

The above simulations will reveal that the ocean and sea-ice are not involved in the T2m variability change between 
CESM1 and CESM2 (see Section 3), so we will continue our investigations using uncoupled simulations with 
prescribed observation-based SSTs as listed in the middle section of Table 1. The following sensitivity experi-
ments are designed to isolate the relative roles of the atmosphere component (CAM), the land component (CLM) 
and ultimately which land surface parameterization changes are responsible for the land influence. In the tran-
sition from CESM1 to CESM2, CAM has evolved from CAM5 to CAM6 and CLM has evolved from CLM4 
to CLM5. We make use of a 3 member ensemble of simulations from 1979 to 2014 run with CESM2 using 
the “FHIST” component set and refer to this as CAM6_CLM5. These are “out-of-the-box” simulations with 
prescribed SSTs based on the Hurrell et al. (2008) data set and are essentially the same as GOGA2, but differ 
in the prescribed SSTs and also in land biogeochemistry (BGC), which was turned on in GOGA2 and is off in 
CAM6_CLM5. We use these rather than GOGA2 as our CESM2 baseline as the SSTs and BGC settings are 
consistent with those in the following sensitivity experiments.

CAM6_CLM5 will then be compared with a series of experiments in which various components or parameter-
izations are reverted back to those in CESM1 (to the extent possible) within the CESM2 codebase. In CAM5_
CLM4 the atmosphere component is CAM5 and the land component is CLM4 that is, both have been reverted 
back  to  their CESM1 components. In CAM6_CLM4, the atmosphere is CAM6 but the land is CLM4 that is, only 
the land component is reverted back. In CAM5_CLM5, the atmosphere has been reverted to CAM5 but the land 
is still CLM5 that is, only the atmosphere component is reverted back and CMIP5 forcings are used. Finally, we 
perform simulations using both CESM2 components (CAM6 and CLM5) but we revert only the snow density and 
densification settings back to those of CLM4. Specifically, this involves the namelist changes listed in Table 2 and 
we refer to these simulations as SNWDENS.

2.1.4.  Single Column Atmospheric Model Experiments

To isolate the relative roles of local versus non-local influences of the snow density, we perform a series of 
experiments with the Single Column Atmospheric Model (SCAM) (Gettelman et al., 2019), all of which use 
CAM6 atmospheric physics (summarized in the bottom portion of Table 1). SCAM solves only for the column 
physics in the atmosphere and coupling with the land surface at a single grid point, while the influence of the 
large scale atmospheric circulation is prescribed by forcing data. In our case, this forcing data is taken from 2 
members from each of CAM6_CLM5 and SNWDENS at three NH snow-covered locations, two in Canada and 
one in Russia: Saskatoon (254°E, 52°N); Toronto (280°E, 44°N); and Siderovsk (83°E, 66°N). These locations 
were chosen at random to sample locations in the NH high latitudes where T2m variability has changed between 
CESM1 and CESM2. The SCAM experiments, therefore, consist of two members from 1979 to 2014 and we will 
refer to them as SCAM6_X_YF where X denotes the configuration of CLM being used (either CLM5 for using 
default CLM5 or SNWDENS with the snow settings reverted) and Y denotes the configuration of CLM in the 
CESM experiment that was used to generate the forcing data (either CLM5 if the forcing data comes from the 
CAM6_CLM5 simulations or SNWDENS if the forcing data comes from the SNWDENS simulations). SCAM 

CESM1 CESM2 Description

lotmp_snowdensity_method = ‘TruncatedAnderson1976‘ lotmp_snowdensity_method = ‘Slater2017’ Controls the density of 
fresh snowwind_dependent_snow_density = .false. wind_dependent_snow_density = .true

upplim_destruct_metamorph = 100.d00 upplim_destruct_metamorph = 175.d00 Controls the upper density 
limit for destructive 
metamorphism

overburden_compress_tfactor = 0.08d00 snow_overburden_compaction_method =  Controls viscosity 
used in overburden 
compaction and 
the drifting snow 
parameterization

‘Vionnet2012’

snow_overburden_compaction_method = 

‘Anderson, 1976’

Table 2 
A Summary of the Namelist Setting That are Relevant to Snow Density and Densification in Community Earth System Model Version 1 (CESM1) (Left), Community 
Earth System Model Version 2 (CESM2) (Middle) and a Description of What They Represent (Right)
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uses the Eulerian dynamical core for the vertical advection calculation, which is different from the Finite Volume 
dynamical core used in the 3-dimensional simulations with CAM. To initialize the land in SCAM, the same initial 
state that was used for the CAM simulations was interpolated onto the relevant grid point on the Eulerian grid. 
In order to prevent drift, aerosol species (mass and number) in these SCAM simulations are relaxed toward the 
seasonally varying climatology from the run that was used to provide the large scale forcing and temperature is 
relaxed toward that of the initial state. To limit the impact of this relaxation on T2m we increase the relaxation 
timescale from 2 days at the model top to 60 days at the surface.

2.1.5.  Coupled Model Intercomparison Project, Phase 6 (CMIP6) Simulations

We compare our CESM results with those from 20 models from CMIP6 that had daily T2m data available at the 
time of writing. These models are listed in the titles of Figure 13 and we use the data from the first member of 
each model from “historical” simulations for the period 1979–2014.

2.2.  Observation Based Datasets

We will compare daily T2m variability in CESM with that in three different observation-based products over the 
period 1979–2014: the Berkeley Earth Surface Temperature daily product (BEST, Rohde et al., 2013); station 
data from the Integrated Surface Database (ISD, Smith et al., 2011); and ERA5 reanalysis (Hersbach et al., 2020). 
BEST has been derived from station-based observations using the process described in Rohde et al. (2013) but the 
daily product is still considered “experimental” at the time of writing. For the ISD station data we use daily aver-
age T2m for stations that have more than 20 years of record within the period 1979–2014 and, of those, we only use 
the stations that have values for more than 80% of days. The majority of stations in ISD are located at airports and 
we have chosen this data set since it provides daily averages that are obtained from high time resolution sampling. 
ERA5 is the latest reanalysis product from the European Center for Medium Range Weather forecasts and it 
assimilates screen level temperature as well as snow depth and density (Hersbach et al., 2020). There is no perfect 
method to compare models with observations: station based data have the potential to be representing different 
spatial scales than the coarser model grid cells, while gridded products such as ERA5 and BEST may have errors 
related to the underlying methods used in producing them. We, therefore, use all three datasets to confirm the 
robustness of our conclusions as well as the validity of comparisons with each of these products. Temperature at 
850 hPa (T850) from ERA5 reanalysis is also used.

In Section 6 we provide a comparison of the behavior of surface fluxes between the model and both ERA5 and 
the FLUXNET2015 (Pastorello et al., 2020) data set. The ERA5 surface fluxes are determined from the forecast 
integration and as a result, have the potential to be subject to deficiencies in the underlying forecast model of 
ERA5. We, therefore, also diagnose the daily average T2m analysis increments for ERA5 as the difference between 
the analysis and the forecast. In practise this is computed as the average of two values: the difference between 
the analysis at time 06 hr and step 12 of the forecast that was initialized at 18 hr on the previous day; and the 
difference between the analysis at time 18 hr and step 12 of the forecast that was initialized at 06 hr of the same 
day. As such, these increments represent the extent to which the underlying forecast model of ERA5 drifts from 
reality over the course of a 12 hr forecast window.

For FLUXNET2015 we use: air temperature (FLUXNET2015 variable TA_F); sensible heat flux (FLUX-
NET2015 variable H_F_MDS); and Net Radiation (FLUXNET2015 variable NETRAD). We use the daily values 
which are the daily averages of half hourly measurements and we only use days where a given variable has a 
quality control flag of greater than 0.5 indicating that more than half of the values contributing to the daily aver-
age are either measured, or good quality gap filled data. Stations are only shown if they provide all three of these 
variables, have a record length of 10 years or more, and if the DJF averaged snow fraction at the location accord-
ing to CAM6_CLM5 is greater than 0.5, which leaves 10 stations with record lengths ranging from 10 to 17 years.

2.3.  Methods

The majority of our analysis will be performed using sub-seasonal anomalies, defined as follows. At each grid 
point, the seasonally varying daily climatology is determined by averaging over the years considered. The seasonal 
cycle is then defined as the first four harmonics of this seasonally varying climatology and this is subtracted 
from the daily values to produce the anomalies from the seasonal cycle. To further isolate the high frequency 
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variability from interannual variability or long term trends, when considering the December-January-February 
(DJF) season, we remove the mean anomaly from each DJF season to produce daily sub-seasonal anomalies. 
From now on, unless stated otherwise, we use T2m to refer to these sub-seasonal anomalies.

3.  The Change in Temperature Variability Between CESM1 and CESM2 and Its 
Cause
We begin by comparing the NH sub-seasonal DJF variance of T2m, over the 1979–2014 period, between the 
observations, CESM1 and CESM2 in Figure 1. It can be seen that BEST (Figure 1a), ISD (Figure 1b) and ERA5 
(Figure 1c) compare well in their observed estimates of T2m variance, although there is a tendency for BEST 
to show slightly reduced variance compared to the other products, particularly over central Russia and Alaska. 
Comparing Figure 1d with Figures 1a–1c makes clear that CESM1 had too much variance in T2m compared to 
observations (see also the difference plots in Figure S1 in Supporting Information S1 and in Figure 13 to be 
discussed in Section 6). Furthermore, a comparison of Figure 1e with Figure 1d demonstrates that CESM2 has 
greatly reduced T2m variance compared to CESM1, with the difference between them shown in Figure 1f. This 
reduction in variance is also consistently present in both the daily minimum and maximum T2m (Figure S2 in 
Supporting Information S1), so the reduction in variance from CESM1 to CESM2 is occurring throughout the 
day. In general, CESM2 is more comparable to the observations, although it does now appear to have too little 

Figure 1.  Sub-seasonal daily average T2m variance during December-January-February, 1979–2014. (a)–(c) show observational datasets: Berkeley Earth Surface 
Temperature daily product; Integrated Surface Database; and ERA5. (d)–(f) show the Community Earth System Model Version 1 large ensemble (LENS1), the 
Community Earth System Model Version 2 large ensemble (LENS2) and the difference between them. (g)–(i) show the CESM1 GOGA ensemble (GOGA1), the 
CESM2 GOGA ensemble (GOGA2) and the difference between them. The black circles in (i) indicate the three locations used throughout this study: Saskatoon; 
Toronto; and Siderovsk.
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variance over central Russia. The GOGA simulations with prescribed SSTs and sea ice exhibit the same differ-
ences between CESM1 and CESM2 as the coupled simulations (Figures 1g–1i) indicating that changes to the 
representation of the ocean or sea ice are not playing a role.

A more detailed comparison of the GOGA variability at three locations (Saskatoon, Toronto and Siderovsk, 
locations depicted by black circles in Figure 1i) is shown in Figure 2. We will continue to use these three loca-
tions throughout our analysis to build up an understanding of the cause behind this change in T2m variability. 
Figures 2a–2c demonstrate that this large reduction in T2m variance between CESM1 and CESM2 is primarily a 
wintertime feature, although it lasts longer in Siderovsk (Figure 2c) than in the Canadian locations (Figures 2a 
and 2b). While the reduction in variance is substantial throughout the whole winter season, it is largest in the 
early winter at each location, such that the peak wintertime variance is shifted later by a month or so in CESM2 
compared to CESM1. The summertime changes in variance are much more muted and exhibit a different spatial 
structure to those shown in Figures 1f and 1i (not shown) and we do not consider them further here.

Figure 2.  (a)–(c) Sub-seasonal variance of daily average T2m calculated across years and ensemble members for 1979–2014 of the GOGA1 and GOGA2 simulations for 
Saskatoon, Toronto and Siderovsk that is, the variance across 10 × 36 years. Shaded range depicts the 2.5th–97.5th percentile range of the variance for each day of the 
year determined from 1000 samples generated by bootstrapping with replacement an equivalent number of years to that in the 10 GOGA1/2 members and recalculating 
the variance. (d)–(f) Probability distributions (PDFs) of sub-seasonal daily average T2m for Saskatoon, Toronto and Siderovsk. (g)–(i) PDFs of daily average T850 for 
Saskatoon, Toronto and Siderovsk. Red = GOGA1, Blue = GOGA2. Black = observation based datasets (note that only ERA5 is used for T850). In (d)–(i) a Gaussian 
Kernel density estimate is used to depict the PDFs and the red and blue shading shows the minimum to maximum range across the 10 GOGA1 and GOGA2 ensembles, 
respectively.
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Probability distributions (PDFs) of T2m are shown for our three locations in Figures 2d–2f on a logarithmic scale 
to emphasize the tails of the distribution. At each location, the T2m distributions are broader at both ends of the 
distribution in CESM1 compared to CESM2 that is, in CESM1, cold extremes were colder and warm extremes 
were warmer. Furthermore, the shaded ranges in Figures 2d–2f which depict the range across the 10 GOGA 
members, demonstrate that the change that has occurred between CESM1 and CESM2 is highly significant. 
These PDFs also provide a more detailed view of what was already observed in Figure 1. That is, at the Canadian 
locations (Figures 2d and 2e) the CESM2 PDF of T2m is much more comparable to observed since CESM1 had 
too much T2m variability. At the Russian location (Figure 2f), it is less clear which of CESM1 or CESM2 is closer 
to observed as it depends somewhat on which observation-based product is being considered. However, we can 
conclude that CESM1 had too much variability at this location and CESM2 now likely has too little.

The large change in the PDFs of T2m between CESM1 and CESM2 (Figures 2d–2f) is not accompanied by a 
change in the PDF of temperature in the lower troposphere at 850 hPa (T850, Figures 2g–2i) and T850 in both 
CESM1 and CESM2 compares well with that in ERA5 at these three locations. So, we need to understand why 
this change in temperature variability, which is localized to near the surface, has occurred between CESM1 and 
CESM2.

3.1.  The Relative Roles of CAM and CLM

Having eliminated a role for the ocean or sea ice components in contributing to the T2m variability change, we are 
left with either CAM, CLM or some combination of the two as potential drivers of this change, so we now use the 
sensitivity experiments described in Section 2.1.3 to isolate their relative contributions. Figure 3b demonstrates 
that the difference in T2m variance seen between GOGA2 and GOGA1 (Figure 3a) can be reproduced within the 
CESM2 code-base by comparing CAM6_CLM5 with the simulation in which both the atmosphere and land have 
been reverted back to their CESM1 versions (CAM5_CLM4), as expected.

The role of CAM in this variance reduction can be isolated by taking the difference between CAM6_CLM5 and 
CAM5_CLM5 (Figure 3c) and the role of CLM can be isolated by taking the difference between CAM6_CLM5 
and CAM6_CLM4 (Figure 3d). Summing up the CAM and CLM contributions, reveals that they approximately 
add up to the total change seen between CESM1 and CESM2 (compare Figure 3e with Figure 3a or 3b or consider 
Figure 3h which shows the percentage of the overall variance change explained by the sum of the CAM and CLM 
contributions).

Figures 3c and 3d demonstrate that there is a role for both the CAM5 to CAM6 transition and the CLM4 to 
CLM5 transition in the reduction in T2m variance between CESM1 and CESM2. CAM is particularly important 
over Alaska and North West Canada and plays some role over Western Russia (Figures 3c and 3f). However, 
aside from over Alaska, the CLM4 to CLM5 transition is the dominant contributor and has resulted in a hemi-
sphere-wide reduction in variance over high-latitude NH land (Figures 3d and 3g).

Our primary focus from now on will be on understanding the reasons behind the CLM influence on T2m variabil-
ity, given its dominant influence. However, CAM does play a role, particularly over Alaska and in supplemental 
Figure 3 we show some analyses of simulations in which individual parameterizations within CAM6 are reverted 
back to those of CAM5, to further understand the origins of this change. This reveals that there is not one 
single parameterization that is responsible. However, the combination of changes to the deep convection scheme, 
orographic form drag and shallow convection scheme go a long way to producing the variance reduction seen 
over Alaska. The introduction of the new orographic form drag scheme has contributed to reduced variance over 
Alaska because it has resulted in a reduction in lower tropospheric meridional wind variance in that region (see 
Figure 7g of Simpson et al. (2020)). The reason behind the influence of the other two schemes is less apparent. 
Overall, it should be concluded that there is not one single reason behind the changes in T2m variance in CAM6 
compared to CAM5.

3.2.  The Influence of Snow Density on T2m Variability

Having demonstrated an important role for the CLM4 to CLM5 transition in the reduction in T2m variance in 
CESM2, we now investigate which particular CLM change is responsible. Comparing the change in variance in 
the transition from CLM4 to CLM5 (reproduced now in Figure 4a) with the difference between CAM6_CLM5 
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and SNWDENS (where CLM5 is used but the snow density and densification settings listed in Table  2 are 
reverted back to those in CLM4, Figure 4b) reveals that much of the reduction in T2m variance when using CLM5 
has resulted from the change in these snow density and densification settings. This is also clear when considering 
the T2m PDFs at our three locations (Figures 4c–4d). At each location, the T2m PDF of SNWDENS (green) is very 
similar to that of CAM6_CLM4 (red) and exhibits a much broader distribution than CAM6_CLM5 (red). Of 
these three locations, the only aspect that is not fully explained by the snow density settings is the changes to the 
warm tail at Toronto (Figure 4d) but, overall, the snow density and densification settings clearly dominate in the 
reduction in T2m variance that has been found in transitioning from CLM4 to CLM5.

The column average density of snow can be calculated by the sum of the snow ice and liquid water contents 
(CLM variables SNOWICE and SNOWLIQ) divided by the snow depth (CLM variable SNOWDP). Over NH 
land regions (except Greenland), this can be seen to have increased in CAM6_CLM5 compared to SNWDENS 
(Figures 5d–5f) as may be expected, given that the majority of the changes described in Section 1 would act 
to increase snow density. The DJF averaged snow fraction (Figures 5a–5c) is very similar in SNWDENS and 
CAM6_CLM5 and it is clear that the regions that show a reduction in T2m variance in the transition from CLM4 to 
CLM5 have a DJF averaged snow fraction of close to one that is, are snow covered for much of the winter season. 

Figure 3.  (a)–(e) Difference in sub-seasonal daily average T2m variance between (a) GOGA2 and GOGA1, (b) CAM6_CLM5 and CAM5_CLM4, (c) CAM6_CLM5 
and CAM5_CLM5 (the CAM influence), (d) CAM6_CLM5 and CAM6_CLM4 (the CLM influence), (e) the sum of panels (c) and (d). (f)–(h) show the percent 
difference between CAM6_CLM5 and CAM5_CLM4 explained by (f) Community Atmosphere Model alone that is, (CAM6_CLM5 − CAM5_CLM5) and (g) 
Community land model alone that is, (CAM6_CLM5 − CAM6_CLM4) and (h) the sum of panels (f) and (g). Percent differences are only shown where the magnitude 
of the total change in variance was greater than 5 K 2. Regions where the magnitude of the change in variance is less than 5 K 2 are shaded gray and in panel (h) the dark 
gray/light gray contours depict the 110% and 130% values.
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The seasonality of snow cover at our three locations can also explain their differing seasonalities of T2m variance 
change. Siderovsk is snow covered for much longer than the Canadian locations and sees substantial increases 
in snow density with the new snow settings from October through to April (Figure 5i) corresponding to the time 
in which T2m variance has reduced (Figure 2c). In Saskatoon and Toronto, reductions in T2m variance are seen 
between November and March (Figures 2a and 2b), corresponding to the time when snow is consistently present 
and there is an increase in snow density with the new snow settings (Figures 5g and 5h). In addition, the increase 
in snow density in CAM6_CLM5 compared to SNWDENS is not uniform throughout the winter. It is largest in 
the early winter, which can help to explain why the reduction in T2m variance is largest then, leading to a shift in 
the peak wintertime T2m variance to later in the season (compare Figures 5g–5i with Figures 2a–2c) Furthermore, 
spatially, the regions that see the largest reduction in T2m variance in Figure 4b (eastern Canada, particularly 

Figure 4.  (a) The difference in December-January-February (DJF) sub-seasonal T2m variability between CAM6_CLM5 and CAM6_CLM4 that is, the influence of 
changes in Community land model. (b) The difference in DJF sub-seasonal T2m variability between CAM6_CLM5 and SNWDENS that is, the influence of snow 
density and densification changes between CLM4 and CLM5. (c)–(e) DJF sub-seasonal T2m Probability distributions at Saskatoon, Toronto and Siderovsk for CAM6 
simulations with (blue) CLM5 (red) CLM4 and (green) CLM5 but with the old snow density and densification settings. (f)–(h) DJF sub-seasonal T2m PDFs at 
Saskatoon, Toronto and Siderovsk for single column model experiments with (blue) CLM5 and large scale forcings from CAM6_CLM5, (green) CLM5 with CLM4 
snow density and densification settings and large scale forcings from SNWDENS and (orange) CLM5 with CLM4 snow density and densification settings and large 
scale forcing from CAM6_CLM5.
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around Hudson's Bay and Northern Russia in the region to the south of the Kara sea) also correspond to where 
the snow density difference between CAM6_CLM5 and SNWDENS is the largest (Figure 5f).

3.2.1.  Local Versus Non-Local Influences

The snow density settings not only change the T2m variability, but also change the climatological average T2m, 
with the majority of regions that see a snow density increase (Figure 5f) also showing an increase in the mean T2m 
(Figure 5l). This raises the following question: does the snow density alter the T2m variance primarily by changing 
the behavior of the column physics or are there non-local influences through altered mean temperature gradients 
and/or circulation variability and the associated changes to temperature advection?

To answer this question, we use the SCAM simulations summarized in Section 2.1.4 which allow us to isolate 
the relative roles of the column physics versus the non-local influences of changes in temperature advection. 
Comparison of the blue and green PDFs in Figures 4f–4h with those in Figures 4c–4e demonstrate that SCAM 
can reasonably well reproduce the increase in T2m variability seen with the older snow density settings when it is 
given both the change in snow density and the large scale forcing from the SNWDENS simulations that is, both 
local and non-local influences. The correspondence between the SCAM PDFs and the full 3D simulation PDFs 
is not perfect and there are a number of possible reasons for this: the different vertical advection scheme used in 

Figure 5.  (a)–(c) December-January-February (DJF) averaged snow fraction for SNWDENS, CAM6_CLM5 and CAM6_CLM5 − SNWDENS difference. (d)–(f) DJF 
average snow density for SNWDENS, CAM6_CLM5 and the CAM6_CLM5 − SNWDENS difference. (g)–(i) seasonal cycle of snow density at Saskatoon, Toronto 
and Siderovsk for (green) SNWDENS and (blue) CAM6_CLM5 (j)–(l) DJF climatology of T2m for SNWDENS, CAM6_CLM5 and CAM6_CLM5 − SNWDENS.
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SCAM and the relaxation of the aerosol species and temperature described in Section 2.1.4. Despite these imper-
fections, it is clear that SCAM can reproduce the leading order effect of the snow density changes at these three 
locations. We can, therefore, use it to parse out the relative influence of the local column physics versus non-local 
effects in producing the change in T2m variability.

The orange PDFs in Figures 4f–4h are for SCAM simulations where the large scale dynamics tendencies are 
from the CAM6_CLM5 simulation (i.e., the temperature tendencies from the large scale dynamics are derived 
from a simulation in which the new snow density settings were used) but locally, within SCAM, the snow density 
settings are reverted back to those of CLM4. In other words, these SCAM simulations only have the snow density 
influence on the column physics (the local influence) reverted back to that of CLM4. This completely reproduces 
the change in the T2m PDF that is found when reverting both the non-local and local influences back to those 
of CLM4 (green PDF) so it can be concluded that the important effects of the snow density changes are arising 
through influences on the column physics as opposed to the non-local effects of altered temperature advection.

4.  Understanding the Snow Density Influence on T2m Variability
Here, we explain how the increased snow density in CESM2 acts to reduce the T2m variability by consideration of 
the surface energy balance from two perspectives: (a) composites conditioned on T2m using the full 3D version of 
CESM and (b) lagged regressions onto T850 using SCAM. The surface energy balance can be written as

−𝐺𝐺 ↓ ≈ 𝐹𝐹 ↑ = −𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 ↓ + 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 ↑ + 𝑆𝑆𝑆𝑆 ↑ + 𝐿𝐿𝐿𝐿 ↑.� (1)

here G ↓ is the heat flux across the atmosphere-land interface that is, the heat flux into the snow when snow-cov-
ered or the ground otherwise, referred to as ground heat flux hereafter. So minus 1 times this quantity is equal to 
the net energy flux into the atmosphere (F ↑) which, to leading order, is equal to the sum of four surface energy 
fluxes: minus 1 times the net downward shortwave radiative flux (SWnet ↓); the net upward longwave radiative flux 
LWnet ↑; the upward sensible heat flux SH ↑ and the upward latent heat flux LH ↑. (Here, we use the surface  fluxes 
from the atmosphere component which include additional correction terms to account for the  melting of snow or 
freezing of rain as it hits the ground, depending on the surface temperature. So the left and right of Equation 1 are 
not exactly equal but, as will be shown, this residual is negligible.)

4.1.  T2m Conditioned Surface Energy Balance Composites

We begin by considering composites of the sub-seasonal anomalies in the surface energy balance at our three 
locations, conditioned on T2m (Figure 6). To produce these composites, DJF days are binned into 10 bins accord-
ing to their T2m values. The edges of these bins are determined from the CAM6_CLM5 distribution, which is the 
narrower distribution and they correspond to the 10 10-percentile ranges from that distribution, except for the 
coldest and warmest bins. For the coldest and warmest bins, instead of using the 0th-tenth percentile range and 
the 90th–100th percentile range, we use the first-10th and 90th-99th, to avoid large differences in composite mean 
T2m between CAM6_CLM5 and SNWDENS that can occur when sampling their very different distribution tails. 
The result is 10 composites of days ranging from cold to warm, which, by construction, have similar T2m values 
for CAM6_CLM5 and SNWDENS (Figures 6a, 6d, 6g). Note that all days from CAM6_CLM5 that lie between 
the 1st and 99th percentiles are incorporated into these composites, while many more days from SNWDENS that 
are colder than the first and warmer than the 99th percentiles of the CAM6_CLM5 distribution are neglected. 
The purpose is to assess, how does the surface energy balance differ between CAM6_CLM5 and SNWDENS on 
days when they have similar T2m?

The composites of G ↓ and F ↑ shown in Figure 6 (middle and right columns) indicate that, on cold days, there 
is a net upward energy flux from ground to atmosphere (G ↓ is negative, F ↑ is positive and − G ↓ ≈ F ↑) and 
the opposite is true on warm days. In other words, if these upward energy energy flux anomalies from ground to 
atmosphere are in the form of heat or radiation that will be absorbed in the lower atmosphere, they will dampen 
atmospheric temperature anomalies. Furthermore, there is a clear and systematic difference in the magnitude of 
these ground to atmosphere energy flux anomalies between CAM6_CLM5 and SNWDENS (compare Figure 6 
middle and right columns). With the new snow density and densification settings in CAM6_CLM5 (Figure 6 
right column) compared to the old snow settings in SNWDENS (Figure 6 middle column) there is a much larger 
upward energy flux anomaly from ground to atmosphere on cold days and a much larger downward energy flux 
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anomaly from atmosphere to ground on warm days (see also the difference in G ↓ and F ↑ between CAM6_CLM5 
and SNWDENS in the top row of Figure 7). In other words, the dampening effect of the energy flux from ground 
to atmosphere is stronger with the new snow settings than with the old snow settings, consistent with the reduced 
temperature variance in CAM6_CLM5 compared to SNWDENS.

Why would there be a bigger anomalous upward energy flux from ground to atmosphere when it is cold (and 
vice-versa when it is warm) with the new snow settings? Let us first consider the vertical structure of temperature 
throughout the atmosphere and the snow column for our coldest and warmest composite bins, shown in Figure 8. 
CLM5 can have up to 12 snow layers, but the maximum number at any of our three locations is 5. The number 
of snow layers can change at every timestep so, given the challenges of outputting timestep resolution fields 
globally, in Figure 8 the T2m composite analysis has been performed using the SCAM simulations in which we 
have output timestep level fields for these three locations. The composites are based on daily average T2m and 
the averages within the snow layers performed at timesteps when the snow layers exist. When it is anomalously 
cold/warm at the surface, the cold/warm anomalies within the snow become smaller with depth. In other words, 
a temperature gradient is induced across the snow layer. Such a temperature gradient would be accompanied by a 
heat flux across the snow layer (Fsno ↑, positive upward) by thermal conduction given by

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 ↑ = 𝜆𝜆
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (2)

Figure 6.  Composites of sub-seasonal daily average fields conditioned on T2m with composite bins based on the CLM5 T2m distribution (x axis). (a) T2m composites 
for Saskatoon for (blue) CAM6_CLM5 and (green) SNWDENS. (b) Composites of the net upward heat flux F ↑ and the ground heat flux G ↓ for Saskatoon for the 
SNWDENS simulation. (c) Composites of the net upward heat flux F ↑ and the ground heat flux G ↓ for Saskatoon for the CAM6_CLM5 simulation. (d)–(f) are as 
(a)–(c) but for Toronto. (g)–(i) are as (a)–(c) but for Siderovsk. Note. that CLM5 and SNWDENS are overlapping in panels (a), (d) and (g) by construction since this is 
showing composites of T2m conditioned on T2m.
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where ∂T/∂z is the vertical temperature gradient across the snow layer at depth, z, with z defined as positive 
downward and λ is the thermal conductivity of the snow (Lawrence et al., 2018, chapter 6). The formulation for 
the thermal conductivity in CLM is

𝜆𝜆 = 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 +

(

7.75 × 10
−5
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 + 1.105 × 10

−6
𝜌𝜌
2

𝑠𝑠𝑠𝑠𝑠𝑠

)

(𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎)� (3)

which follows Jordan  (1991) where coefficients are based on an empirical fit to laboratory-based data from 
Yen (1962). The thermal conductivity of ice (λice) is 2.29Wm −1K −1 and the thermal conductivity of air (λair) is 
0.023Wm −2K −1 and ρsno is the density of snow. So, the higher the density of the snow, the higher the conductivity.

The PDFs of snow density in Figures 8d–8f indicate that, in CLM5, the snow density is increased in each of 
the snow layers compared to the old snow settings. While, in reality, the conductance calculation is performed 
numerically at each of the individual snow layers, to diagnose the influence of the snow density changes we can 
attempt to simplify matters by instead approximating the snow column as a constant flux layer characterized by 

Figure 7.  Composites of daily average fields conditioned on daily average T2m with composite bins based on the CLM5 T2m distribution (x-axis). All panels show the 
difference between CAM6_CLM5 and SNWDENS for (left to right) Saskatoon, Toronto, Siderovsk. (a)–(c) Net upward heat flux F and ground heat flux G together 
with the diagnosed bulk flux across the snow (Fsno ↑, Equation 4) as well as the diagnosed bulk flux across the snow assuming a constant density equal to that of the 
CLM5 average 𝐴𝐴 (𝐹𝐹

∗

𝑠𝑠𝑠𝑠𝑠𝑠↑) . (d)–(e) Net upward heat flux decomposition into net longwave (LW), net shortwave, sensible heat flux (SH) and latent heat flux (LH). (g)–(i) 
The SH and the component of the sensible heat flux that can be explained by K (TS − TBOT) where K is derived from CLM5 (SH*) along with the difference between 
TS and TBOT (right axis) (j)–(l) Net long wave radiation LWnet and the contribution from the upward and downward components.
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the column averaged density 𝐴𝐴
(

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠

)

 and, therefore, column averaged conductance 𝐴𝐴 𝜆𝜆 . Returning to the full CAM 
simulations, as opposed to SCAM, we diagnose an approximate bulk heat flux across the snow layer according to

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 ↑ = 𝜆𝜆
𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(1)

Δ𝑧𝑧
� (4)

where TSNO(1) is the temperature of the top snow layer (CLM variable SNOTTOPL), TSL is the temperature at 
the top of the soil column (CLM variable TSL) and Δz is the snow depth (CLM variable SNOWDP). As before, 
the column averaged snow density is given by (SNOWICE + SNOWLIQ)/SNOWDP. Fsno ↑ is only calculated 
on days when the snow depth is greater than 5 cm and to deseasonalize this quantity which can have very sharp 
jumps at the seasonal edges, prior to fitting the first 4 harmonics to the seasonal cycle, Fsno is tapered to zero over 
a 30 day period after the end of March and before the beginning of November.

The difference in the T2m conditioned composite of Fsno ↑ between CAM6_CLM5 and SNWDENS is shown 
by the dark green lines in Figures 7a–7c and this corresponds very well to the difference in the upward energy 
flux from ground to atmosphere as a function of T2m between CAM6_CLM5 and SNWDENS. We can further 

Figure 8.  (top) Composites of temperature anomalies at various levels for (left) the coldest days (first-tenth percentile of the CLM5 T2m distribution) and (right) the 
warmest days (90th–99th percentile of the CLM5 T2m distribution). From top to bottom of each panel, the points depict the atmospheric temperature anomalies on 
model levels (assuming a surface pressure of 1000 hPa), the surface temperature TS, the temperature within the snow layers and the soil temperature. These composites 
are based on the single column model run with CLM5 as the land component and forcings from the CAM6_CLM5 simulations (SCAM6_CLM5_CLM5F, blue) and 
run with the old snow settings in the land components and forcings taken from the SNWDENS simulations (SCAM6_SNWDENS_SNWDENSF, green). Note. that 
the y-axis is not to scale and also since the number of snow layers varies at every timestep, different days contribute to the composites at different levels (bottom) 
Probability distributions of snow density in each layer at the timestep level, expressed as probability per 20 kgm −3 density bin, for (green) SCAM6_SNWDENS_
SNWDENSF and (blue) SCAM6_CLM5_CLM5F. From top to bottom shows the first to fifth snow layer and the fifth snow layer is never occupied with CLM5 at 
Saskatoon and Toronto.
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demonstrate that this change in Fsno ↑ has primarily resulted from the altered snow density by replacing 𝐴𝐴 𝜆𝜆 in 
Equation 4 with the time averaged conductance from CAM6_CLM5 in each case, thereby diagnosing the Fsno ↑  
for each day of each simulation that would occur if the snow density were constant and equal to that of the CLM5 
average (𝐴𝐴 𝐴𝐴

∗

𝑠𝑠𝑠𝑠𝑠𝑠↑ , light green in Figures 7a–7c). As expected, this does not correspond to the difference in Fnet ↑ 
between CAM6_CLM5 and SNWDENS, indicating that it is, indeed, the change in the snow density that is 
primarily responsible for the alterations to the heat flux across the snow.

Panels d–l in Figure 7 illustrate how the terms in the atmospheric surface energy balance are altered in associ-
ation with the difference in heat flux across the snow. The terms that exhibit a systematic difference between 
CAM6_CLM5 and SNWDENS are the net longwave radiation (LWnet ↑) and the sensible heat flux (SH ↑). On 
cold/warm days, both of these upward fluxes show a relative increase/decrease in CAM6_CLM5 compared to 
SNWDENS (Figures 7d–7f).

Consider SH ↑ first. As described in Neale et al. (2012) (Section 4.11.1), this is given by

𝑆𝑆𝑆𝑆 ↑ = 𝜌𝜌1𝑐𝑐𝑝𝑝
𝜃𝜃𝑠𝑠 − 𝜃𝜃1

𝑟𝑟𝑎𝑎𝑎
� (5)

where ρ1 is the density at the lowest model level, cp is the specific heat capacity of dry air at constant pressure, 
rah is the aerodynamic resistance calculated using Monin-Obhukov theory, θs is the potential temperature at the 
surface and θ1 is the potential temperature at the lowest model level. To assess the reason for the change in SH ↑,  
we simplify Equation  (5) and diagnose the following flux which assumes that SH ↑ is linearly related to the 
temperature difference between the surface and the lowest model level and neglects variations in the other param-
eters of (5) and in the pressure difference between the surface and the lowest atmospheric model level:

𝑆𝑆𝑆𝑆
∗ ↑ ∼ 𝐾𝐾(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 )� (6)

where TS is the surface temperature, TBOT is the temperature at the mid-point of the lowest atmospheric model 
level (∼50m above the ground) and K is empirically derived, via linear regression, from the daily values of SH ↑,  
TS and TBOT. The difference in SH* ↑ between CAM6_CLM5 and SNWDENS when using a single value of 
K, that was derived from CAM6_CLM5, is shown in teal in Figures 7g–7i. This matches rather well the actual 
change in SH ↑, particularly for Toronto and Siderovsk. The match is less perfect in Saskatoon, suggesting the 
approximations that go into (6) are less valid there. But overall, this indicates that the dominant reason for the 
altered SH ↑ is the change in the temperature difference between the surface and the lowest atmospheric model 
level (TS − TBOT, black in Figures 7g–7i) for a given T2m anomaly. With the new snow settings, at a given cold 
value of T2m the surface is relatively less cold than the atmosphere above, and associated with this is an enhanced 
SH ↑. The surface is relatively less cold than the atmosphere because of this enhanced heat flux across the snow 
in the presence of enhanced density and conductance. The opposite is true on warm days.

Considering now LWnet ↑, when it is cold/warm, there is a relative increase/decrease in LWnet ↑ in CAM6_CLM5 
compared to SNWDENS, and in this T2m conditioned composite view, this is primarily associated with a differ-
ence in the downward LW radiation (Figure  7 bottom). The upward longwave radiation will depend on the 
temperature of the surface which isn't very different between CAM6_CLM5 and SNWDENS by construction 
here since we have conditioned our composites on T2m. The downward LW radiation will depend on the temper-
ature in the atmospheric column above and clouds. It is the change in the clear sky fluxes that dominate in the 
LWnet ↑ anomalies (not shown) so impacts of changes in clouds are a secondary effect. This behavior of LWnet ↑ 
can be understood given the differences in the atmospheric temperature profile (see Figures 8a–8c for the SCAM 
profiles; the CAM profiles look similar and are not shown). With the new snow settings, to reach a given cold/
warm T2m value, the atmosphere in the column above has to be colder/warmer. This leads to CAM6_CLM5 exhib-
iting a relative reduction/increase in downward longwave radiation on cold/warm days compared to SNWDENS.

This change in the dependence of surface energy balance terms on T2m can be generalized to other locations in the 
NH by calculating the linear regression of the flux onto T2m and taking the difference in the regression coefficient 
between CAM6_CLM5 and SNWDENS. This is shown for F ↑, SH ↑ and LWnet ↑ in Figure 9. Across the snow 
covered regions of the NH it can be seen that in CAM6_CLM5 compared to SNWDENS, the slopes of F ↑, SH ↑ 
and LWnet ↑ against T2m are more negative, consistent with what was found in Saskatoon, Toronto and Siderovsk.
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4.2.  SCAM Regressions

To confirm the above arguments we also consider how the snow settings affect the evolution of the surface energy 
balance in the days leading up to and following a temperature anomaly. T2m is highly correlated with the 850 hPa 
temperature (T850) and, as shown in Figures 2g–2i, the T850 variability is unaffected by the snow settings. So, 
we consider lagged regressions of fields onto T850 and for this we use the SCAM simulations forced with the 
large scale circulation from the CLM5 simulations (i.e., SCAM6_CLM5_CLM5F and SCAM6_SNWDENS_
CLM5F). The SCAM simulations provide a cleaner picture because they are each effectively given the same 
weather with the only difference being the snow settings, but similar results are found for the CAM6_CLM5 and 
SNWDENS simulations, although they are much noisier (not shown).

Figure 10 shows lagged regressions onto T850 for a variety of fields, multiplied by minus one so that we will 
consider how these fields evolve as T850 becomes cold. By construction, the T850 anomalies are −1 for each 
case at day 0 and the snow settings do not alter how T850 evolves into and out of that cold state, as expected 
(Figures 10a–10c). However, accompanying that T850 anomaly at lag zero, is a colder T2m anomaly with the old 
snow settings (green) than with the new snow settings (blue; Figures 10d–10f). As T2m starts to get colder, the 
new CLM5 snow settings result in a larger net upward flux from ground to atmosphere (red in Figures 10g–10i) 
which is very well explained by the diagnostic bulk heat flux across the snow layer (Equation  4, green in 
Figures 10g–10i). At negative lags, the sensible heat flux dominated the enhanced upward flux from ground 
to atmosphere with the new snow settings (Figures 10j–10l, orange) and this can be reasonably well explained 
by the change in the TS − TBOT difference using Equation 6 with K derived from the SCAM6_CLM5_CLM5F 
simulation (Figures 10m–10o, turquoise). So, as the cold anomalies in the lower atmosphere increase, the surface 
does not become as cold with the new snow settings because of the enhanced upward heat flux across the snow, 
TS is relatively warmer than TBOT and the upward sensible heat flux increases, which will act to reduce the cold 
temperature anomalies in the atmospheric layers above, although Figures 2g–2i suggests that by the 850 hPa 
level, this has a minimal effect on temperature variance. The difference in the net upward longwave radiation lags 
the sensible heat flux by about a day (Figures 10j–10l, red) and it then dominates in the altered surface energy 
balance at positive lags. In this lagged regression view, since the T2m is not constrained to be the same in each 
case like it was in the T2m conditioned composites above, a difference in the upward LW radiation dominates. 
The surface has not become as cold with the new settings and so, compared to the old settings, there is a relative 
upward longwave flux during times when T850 becomes cold.

To summarize, the T2m conditioned composites of the surface energy balance in the full version of the model 
and the lagged regression of surface enery balance terms onto T850 in the single column model, paint a similar 
picture. From the perspective of what happens when it gets cold (with the opposite being true for when it gets 
warm), a cold anomaly in the lower atmosphere and at the surface that has not yet penetrated down to affect the 
ground temperature below, will induce a larger anomalous upward heat flux across the snow layer with the new 
snow settings, since the snow density and conductance are higher. This enhanced heat flux across the snow will 
prevent the surface (at the top of the snow) from becoming as cold as it would have with the CLM4 snow settings 
and is balanced by both a relative upward sensible heat flux and upward longwave radiative flux from ground 

Figure 9.  The change between the new snow settings and the old snow settings in the slope of the linear regression of a given flux against T2m for (a) net upward energy 
flux from ground to atmosphere (F ↑), (b) sensible heat flux (SH ↑) and (c) net longwave radiation (LWnet ↑). The gradient is only shown for land points where the 
December-January-February averaged snow fraction is greater than 0.5 and other land regions are shaded in gray.
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to atmosphere, which will dampen the atmospheric temperature anomalies aloft. The increased heat flux across 
the snow layer, therefore acts to dampen temperature anomalies at the surface and lower atmosphere, leading to 
reduced surface air temperature variance.

5.  Implications for Future Projections
Future projections of the mean change in NH land surface temperatures under anthropogenic forcing are subject 
to considerable uncertainty due to internal variability (e.g., Deser et al., 2012) and this uncertainty has been quan-
tified specifically for LENS1 by a number of studies (e.g., Kay et al., 2014; Thompson et al., 2015). Of course, the 
magnitude of this uncertainty as simulated by a model will depend on that model's representation of internal vari-
ability and since we have seen that the characteristics of daily T2m variability are different between CESM1 and 
CESM2, this motivates an assessment of differences in the uncertainty in forced climate projections due to inter-
nal variability between LENS1 and LENS2. For this, we consider the ensemble spread in Future − Past differ-
ences in DJF averaged T2m for LENS1 and LENS2, using the period 1979–2014 for the “Past”. Since CESM1 

Figure 10.  Lagged regressions onto 850 hPa temperature using Single Column Atmospheric Model (SCAM) with forcing taken from CLM5, multiplied by minus 1 to 
represent anomalies that accompany cold temperatures at 850 hPa. (a)–(c) 850 hPa temperature for SCAM run with (blue) CLM5 and with (green) CLM5 with snow 
density and densification settings reversed (SNWDENS). (d)–(f) T2m for (blue) CLM5 and (green) SNWDENS. (g)–(h) (red) the net upward heat flux from ground 
to atmosphere (green) Fsno, which is an estimate of the upward flux of heat across the snow layer given by the conductance times the temperature gradient between 
the upper most layer of the snow and the soil (j)–(l) the various components of the surface energy balance (yellow) sensible heat flux (red) longwave radiation (blue) 
shortwave radiation (purple) latent heat flux (m)–(o) the sensible heat flux (orange) and the sensible heat flux estimated using Equation 6 where K is derived from 
CAM6_CLM5 using linear regression.
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and CESM2 have different climate sensitivities and the large ensembles are run under different forcing scenarios, 
rather than using the same time period for the “Future” in each case, we examine time periods when LENS1 
and LENS2 have similar changes in global mean surface temperature. This is achieved by finding the 30 year 
period in LENS1 (which is under the higher forcing scenario) when the global mean surface temperature increase 
compared to 1979–2014 is the same magnitude as that for years 2070–2099 of LENS2. This period turned out to 
be 2060–2089. So, for LENS1, the future is 2060–2089 and for LENS2 it is 2070–2099.

First, the future projected change in snow density is rather different between CESM1 and CESM2 
(Figures 11a–11c). In particular, in the regions in which CESM2 has a large increase in present day snow density 
compared to CESM1 (around Hudson Bay and south of the Kara sea, Figure 5f), the future projections of snow 
density exhibit a decline in LENS2 (Figure 11b), while they showed an increase or near zero change in LENS1 
(Figure 11a). We speculate that the reason for this is the inversion of the dependence of density on temperature 
included in CLM5 - at very cold temperatures, the snow is now denser, so as the temperature warms, we may 
expect the density in very cold regions to decrease (see Section 1 and Figure 1c of van Kampenhout et al. (2017)). 
For the mean projected T2m change, the ensemble spread in LENS1, as measured by the across-member variance 
in Future − Past differences, was very large in Alaska, Central Canada and South-Central Russia, in particular 
(Figure 11d). In LENS2, the variance in the Future − Past difference across ensemble members has reduced 
considerably in these regions (Figures 11e and 11f). Many things are different between LENS1 and LENS2 which 
precludes a definitive attribution of changes in ensemble spread to the factors that have given rise to the altered 
daily T2m variability. But, it seems likely that in these regions, the reduced internal variability in daily T2m in 
CESM2 is translating into a reduced uncertainty in future projected climate change. Lower day-to-day variability 
in T2m means that there will be a lesser role for the internal variability “noise” in the climatological averages that 
are being examined here, leading to lower spread among the ensemble members (e.g., Thompson et al., 2015). 
It is clear that other things are happening around the sea ice edge, particularly in Northern Russia, such that 
reduced internal variability is not translating into reduced uncertainty in future climate projections. This may be 

Figure 11.  A comparison of the Community Earth System Model Version 1 and the Community Earth System Model Version 2 large ensembles for December-
January-February. (a)–(c) Future − Past difference in snow density for LENS1, LENS2 and the difference between LENS2 and LENS1. (d)–(f) The variance, across 
ensemble members, in the Future − Past difference of T2m for LENS1, LENS2 and the difference between LENS2 and LENS1. (g)–(i) The Future − Past difference in 
the daily variance of T2m for LENS1, LENS2 and the difference between them.
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because other aspects related to the representation of sea ice have changed between CESM1 and CESM2 (e.g., 
DeRepentigny et al., 2020).

Future projections are also characterized by a reduction in daily T2m variability in the NH wintertime 
(Figures  11g–11h), related to the fact that the Arctic exhibits relatively amplified warming compared to the 
mid-latitudes, which reduces the temperature variability associated with meridional advection (Holmes 
et al., 2016; Schneider et al., 2015; Screen, 2014). A reduction in daily T2m variability is found in the future 
projections in both LENS1 and LENS2, but this reduction in variability is larger in LENS1 (Figures 11g–11i). 
Because the T2m variability associated with given atmospheric circulation anomalies is larger in CESM1 than it 
is in CESM2, there is more variability to lose as the meridional temperature gradient weakens and the variability 
in thermal advection is reduced.

6.  Discussion
Throughout this analysis we have considered the influence of all of the snow settings listed in Table 2 together. 
While we have not decomposed the relative contributions of these parameters further with full CAM simulations, 
additional SCAM simulations in which we only revert the settings of fresh snow density back to those of CLM4 
reveal that this reproduces the difference in temperature variability from CLM5 that is found when all snow 
settings are reverted (Figure S4 in Supporting Information S1).

We have diagnosed that T2m variability has improved in CESM2 through comparison with observations, but 
diagnosing whether T2m variability has improved for the right reasons is more challenging. First, snow density 
was generally considered to be too low in CESM1 and so the increase in snow density in CESM2 is likely 
an improvement. van Kampenhout et  al.  (2017) demonstrated reduced biases in Greenland snow density and 
Lawrence et al. (2019) argued that the denser snow over Alaska was more in-line with observation based esti-
mates. However, demonstrating more generally whether the snow density is now correct is a challenge given the 
lack of global snow density measurements. Second, we can take some comfort in the fact that CESM2 now has 
an improved representation of T2m variability while apparently also correctly simulating the variability in temper-
ature in the free troposphere (as indicated by the T850 PDFs in Figures 2g–2i). This gives us some confidence 
that the changes in land-atmosphere coupling through the snow density are not compensating for a bias in free 
tropospheric processes.

A third line of reasoning that would give us confidence that T2m variability is now represented correctly would be 
if the behavior of the surface fluxes in association with T2m variability were now improved relative to observations. 
We attempt such an analysis in Figure 12 but rather than leading to definitive conclusions, this illustrates some 
of the challenges when comparing with observation-based surface fluxes. Figures 12a–12c show the slope of the 
linear regression line of SH ↑ against T2m that is, as was shown in Figure 9b for CAM6_CLM5 − SNWDENS. 
Recall that we had found that in CAM6_CLM5 compared to SNWDENS this gradient is more negative that is, 
when it gets cold, there is an enhanced SH ↑ and vice-versa. If this were an improvement, we would hope to see 
a slope of SH ↑ against T2m that was too positive for SNWDENS and is now improved in CAM6_CLM5. This is 
broadly what is seen in Figures 12b and 12c, which show the bias in this regression slope relative to ERA5 for 
CAM6_CLM5 (b) and SNWDENS (c). The bias relative to FLUXNET2015 is overlayed in these panels in the 
dots. Figure 12c shows a regression slope of SH ↑ in SNWDENS that was too positive and in CAM6_CLM5 this 
bias has been reduced (Figure 12b), although a positive bias in the slope still remains over much of Russia and 
now there are some portions of Canada that exhibit a negative bias.

In Figures 12d–12f, the result is less compelling. Here we show the slope of the regression of net upward radi-
ation (LW ↑ − SW ↓) against T2m. These patterns are dominated by LW ↑ so it is closely related to the LW ↑  
regression slope that was shown in Figure  9c but we use net radiation here since it was available for more 
FLUXNET2015 stations. Our analysis in Figure 9c had demonstrated that the LW ↑ regression slope had become 
more negative in CLM5 compared to SNWDENS, so we would hope to see here a positive bias in the slope for 
SNWDENS (Figure 12f) and this bias now being alleviated in CAM6_CLM5 (Figure 12e). Over Canada, there 
is some indication of this: the slope was too positive before, now there is an inconsistent sign of the bias over 
Canada and some indications that while things might have improved over much of the region, it may have gone 
too far in the opposite direction around Hudson's Bay. Over Russia, however, the bias in the regression slope has 
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worsened. SNWDENS started off with a negative bias in the slope over Russia (Figure 9f) and it has now become 
more negative that is, more biased (Figure 12e).

The comparison with ERA5 radiative fluxes, therefore, is not very compelling. But, of course, the ERA5 radiative 
fluxes are model-based and could suffer from issues in the underlying forecast model. Indeed, we find a rather 
systematic role for analysis increments in constraining T2m in ERA5 (Figures 12g-12i). The regression slope of 
the analysis increments against T2m is positive across the NH (Figure 12g). This means that on warm days, the 
analysis increments are acting to make it warmer (Figure 12h) and on cold days the analysis increments are acting 
to make it colder (Figure 12i). Or in other words, on warm days, the underlying forecast model is drifting to 
colder temperatures than it should and on cold days, it is drifting to warmer temperatures than it should and these 
anomalies can be of the order of ∼1K over the 12 hr forecast window for days at the tail end of the T2m distribution 
(Figures 12h and 12i). It is, therefore, unclear whether the ERA5 surface fluxes can really be regarded as the truth. 
There is some support for increased bias in the behavior of net radiation in CAM6_CLM5 from the two Russian 
FLUXNET2015 stations (Figure 12e, dots), but with only two locations, confidence is lacking.

Overall, this analysis is somewhat inconclusive. We have to be cautious when considering the ERA5 surface 
fluxes to be the truth given the important role for analysis increments in shaping the ERA5 T2m distribution. 
There is some indication that the change in behavior of SH ↑ as a function of T2m with the new snow settings is 
an improvement (Figures 12a–12c) but there is also some indication that, over Russia, the change in behavior of 
the radiative fluxes with the new snow settings is actually a degradation.

Finally, Figure 13 illustrates whether other models in the CMIP6 archive overestimate wintertime T2m variability 
in a manner similar to CESM1. Sub-seasonal T2m variability during DJF is shown for 20 models. Here, it can be 

Figure 12.  (a)–(c) Regression slope of sensible heat flux (SH ↑) onto T2m over Northern Hemisphere land regions for (a) ERA5 reanalysis, (b) The difference between 
CAM6_CLM5 and ERA5 reanalysis and (c) the difference between SNWDENS and ERA5 reanalysis. The circular points depict the equivalent regression slopes for 
the FLUXNET stations in (a) and the difference relative to the fluxnet stations in (b) and (c). Regions where the December-January-February averaged snow fraction in 
CAM6_CLM5 is less than 0.5 are masked out in gray. (d)–(f) are as (a)–(c) but for net radiation (LW ↑ − SW ↓). (g) Shows the regression slope of the ERA5 analysis 
increments onto T2m. (h) Shows the ERA5 analysis increment on days that fall into the 90th-99th percentile range of the CAM6_CLM5 distribution and (h) shows the 
ERA5 analysis increment on days that fall into the first to tenth percentile range of the CAM6_CLM5 distribution that is, equivalent to the warmest and coldest bins 
used in Figures 6–8.
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seen that an overestimate of T2m variability is, by no means, ubiquitous across the models in the CMIP6 archive. 
There are, however, several models that do exhibit daily T2m variability that is much too high in a similar manner 
to CESM1: BCC-ESM1; CanESM5; FGOALS-f3-L; FGOALS-g3; IITM-ESM; IPSL-CM6A-LR, TaiESM1. 
Some of these models are directly related to CLM4 and for the others there are a variety of possible reasons for 
this bias and further investigation into this is beyond the scope of this study, but our experience based on CESM 
suggests that investigation by these modeling groups into their representation of snow density may prove useful.

7.  Conclusions
In earlier versions of CESM, there was a substantial overestimate of wintertime daily T2m variance over snow 
covered regions of the NH and here we have demonstrated that this bias has largely been alleviated in CESM2. 
The primary cause of this improvement is a change in the representation of fresh snow density that was imple-
mented in the transition from CLM4 to CLM5. Surface energy balance arguments have been used to infer the 
mechanisms whereby this snow density change affects T2m variability. Increased snow density in CLM5 leads to 
enhanced conductance of the snow layer. As a result, when the surface gets cold, an enhanced upward heat flux is 
induced across the snow which will dampen the surface temperature variability and the variability in near surface 
air temperatures above. Similarly, when it gets warm, an enhanced downward heat flux will be induced across the 
snow, taking heat away from the surface and, again, dampening surface and near surface temperature variability. 

Figure 13.  The bias in sub-seasonal December-January-February T2m variance relative to Berkeley Earth Surface Temperature daily product for 1979–2014 for (top) 
LENS1 and LENS2 and (remaining panels) 20 models from CMIP6 that had daily average T2m data available (The models marked with a* are using a land model which 
is related to CLM4 or CLM4.5).
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The result is an overall reduction in T2m variability in CESM2 that is more aligned with observed. An attempted 
comparison with observed surface fluxes to assess whether CESM2 is getting T2m variability correct for the 
correct reasons has proven somewhat inconclusive given the lack of direct observations of surface fluxes and a 
more in-depth analysis of reanalysis and station-based surface fluxes as well as snow density itself is warranted. 
However, it is at least reassuring that CESM2 now captures both the free tropospheric temperature variability and 
the near surface temperature variability with fidelity suggesting there is not some compensation between errors 
in the atmospheric circulation influences and the land-atmosphere coupling influence.

This change in T2m variability has implications for future projections and we have shown that accompanying the 
reduced T2m variability is a reduced ensemble spread in future projections of mean T2m change in the CESM2 large 
ensemble compared to the CESM1 large ensemble over NH high latitudes. In addition, CESM1 which had greater 
NH wintertime variability in T2m in its historical simulation, exhibited a larger decline in T2m variability under 
climate change than CESM2 now does. Overall, a fortuitous result of changes in snow density that were imple-
mented with other motivations in mind has now made CESM2 a more accurate tool for studies of NH wintertime 
temperature variability and change.

Data Availability Statement
The Community Earth System Model Version 1 (CESM1) and Community Earth System Model Version 2 
(CESM2) large ensemble simulations as well as the Global Ocean Global Atmosphere (GOGA) simulations 
are freely available (see https://www.cesm.ucar.edu/projects/community-projects/LENS/ for the CESM1 large 
ensemble, https://www.cesm.ucar.edu/projects/community-projects/LENS2/ for the CESM2 large ensem-
ble an https://www.cesm.ucar.edu/working_groups/CVC/ for the GOGA simulations. The Berkeley Earth 
Surface Temperature daily data are available from http://berkeleyearth.org/data/, ERA5 is available for down-
load from the Copernicus Climate Change Services at https://www.ecmwf.int/en/forecasts/datasets/reanaly-
sis-datasets/era5 and the Integrated Surface Database station data can be downloaded from https://www.ncei.
noaa.gov/data/global-summary-of-the-day/archive/ and the FLUXNET2015 data can be downloaded from 
https://fluxnet.org/data/fluxnet2015-dataset/. The data required to reproduce the figures in this manuscript can 
be found at https://doi.org/10.5065/80jh-za14 and the analysis codes used to produce this data and to produce the 
figures can be found at https://github.com/islasimpson/snowpaper_2022. Other data from these simulations can 
be made available from Isla Simpson on request.
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