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ABSTRACT
It is shown that form factors with the asymptotic behavior Ft) ~
exp(-ltlé) are a.consequence of the nonlinear bound state equation for the
wave function in the crossing-symmetric bootstrap model. This non-linear
equation incorporafes the notion that the constituent particles are, them-
selves, composite. The result is obtained both from the Schroedinger equation
~and the Bethé-Salpeter equation; in the latter case, it is argued that the

result should be valid for a wide class of interaction kernels.
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‘I wmmopucTION
| An increasiﬁg amoﬁnt of theoréticai.épeculatiOnl and experimental
 .evidence2Asuggests_the}pbssiﬁility that the form factors of the strongly
jlinteracting partiéleénafe‘deéreasing exponentially in the momentum transferi}
i. variaéle lt{%. Here we show that & particular dynamical model, the crossing
_symmetric bootstrap, may provide the explanation for this behavior.
The'cfossing'symmetry condition applied to the bound state equationv’

| .in a bootstrap'model results in a nonlinear integral equation. While this
' equafion appears ﬁoo_difficult to solve numerically or analytically; we can
A.Mstudj the self-consistency requirement imposed by this equatlon on the |
lu:asymptotlcvform of the wave-function in momentum space. Our result, which
Cwe obtain in a varlety of Schroedlnger and Bethe-Salpeter. equatlon models,
is that form factors with an asymptotic behavior F(t) ~ exp(- ]tlZ) are the
. only possible solutions of the bootstrap_gquations.

A consequence of the nonlinearity of the equations which we study

- is that the constituent particles enter into the dynamical equations in a

manner consistent with the requirement that they are themselves composite
“particles. It is then, perhaps, no surprise that we obtain our result since
'“a similar result was obtained recently by Stackl in a different model but one
‘.which also incorporated this requiremeht on the constituent particles. Stack

considers an infinite set .of linear"Schioedinger equations for the nucleon
.3_bound in the nucleon-pion channel the nth equation describes the binding of

" the n-l st pion to a nucleon whlch conS1sts of a bound state of a nucleon
: ~ core and n-2 pions. He solves the nﬁh equatlon in the limit n — « under the

"assumption that the wave function and the form of the potential between the



nth pion and the remaining;n—l body system is independent of n. This latter
 assumption seems fo us to be difficult to support, however, particularly
because one eXpects that és n increases and the constituent particle becomes
more and more composite then the form factor of that particle, and hence the
- potential which acts oh it, should fall off asymptotically with an increasing
power behavior in momentum space. One virtue of our more general nonlinear
. analysis is that this self-consistency between the pctential and the wave
function is automatically incorporated.

| In order to illustrate our model, we discuss first a scalar meson
théory with a K¢3'interaction. Let us consider the scattering amplitude for
meson-meson scattering with incoming momenta PysP, and outgoing momenta Q%
and assume that there exists a composite scalar meson in the two-meson
channel. We introduce a center-of-momentum (c.m.) variable, P, and relative
momentum variables p,q; defined by

P=p, +DP,=0q *+q | (1.1)

and

b,-D. 2"
e 1 1.9
p"’ 2 Jq"' 2 . (._ )

‘Then at the scalar meson pole in the direct channel (P2=M2) the Bethe-Salpeter
3

equation” in ladder approximation reads

> bl -
-1 N ) X
65t (Bp)x(p,p) = 2 [ SEX(BH) (1.3)
T et (oew)eu

and is 1llustrated graphically in Fig. l. Here X is the Bethe-Salpeter wave

function, G. is the product of the constituent particle propagators, M is a

0

coupling constant, and p is the constituent meson mass. The bootstrap

conditions can now be imposed by requiring that V2 = ue and that



- n = g (@) | oy gy
' Our modél‘consists in the replacement of the coupling constant A
'_by a form factér which_is determined frém the wave function, thus yielding
a nonlinear équatién., This equation (which has been digcussed most intensively
by Cutkosky and co-wdrkers5) reads

6 (,o)x(2,) = [ (e, )05 (2, %)

x X(G .5 40-20)[ (0-1)°-PIX(E 49,5 -pr2k) s
 and is illustrated in Fig. 2. The créssing symmetry is apéarent from the
diagram. Several variations of this equation will be studied in £his paper.;

It is instructive to see the connection between this nonlinear
‘. equation and the regquirement that the constituent particles be composite.
| "In Fig. 3 we show the first iteration of Eq. (1.4). The essential feature .
of Fig. 3 is that the exchanged particle in the kernel of the'iteraﬁed integnai-!
equation couples to the constituent particles with a composite particle verték  _i
function. Succeésive iterations of this equation generate "cobweb" graphs‘ |
which describe a relativistic generalization of-thé notion of "infinitely‘i‘
composite particle" intréduced by Stack.
| ‘A realistic bootstrap is éomplicated, of course, by the presence
of many two-particle channels and by the possibility of many different
particles which can be exchanged in the t and u channels. However, if all
particles have form factors with a common asymptotic behavior; then our argu-
| " ments which lead to an exp(-ltl’%) behavior should still be valid iﬁdependent

| of this complication.

We firststudy in Section II a simple non-relativistic model which



incorporates some ofrfhe esséntial Teatures of the more genéral equation
discussed above and demonstrate that the asymptotic form factor F(R) ~
exp(-,g]) is a consequence of the bound state equation. Then, in Section III,
we turn to a completely relativistic Bethe-Salpeter equation which contains
the simplification that one constituent particle is taken to be elementary.
Equation (1.4) is discussed in Section IV, where we argue that our result is
. still plausible in a model with no elementary particles. In Section V we
discuss the effect of higher order interaction kernels in the Bethe-Saipeter
model of Section III and demonstrate that for a wide class of kernels, our |
result is still valid. Finally, we conclude in Section VI by pointing out

. the difficulty in obtaining our result from dispersion relations.

II. NON-RELATIVISTIC "BOOTSTRAP"

We discuss in this sectibn a Schroedinger equation which incorporates
the nohlinearity'of the Bethe—Sélpetef equation described in the introduction
but which is considerably more transﬁafent both physically and mathematically.
In fact, our model is reminiscent of the Hartree-Fock approximation. Let us
suppose that we have a spinless, composite particle with mass m and a '"charge"
density o(r) given by | ; |
o) =¥ (xhv(z) . (2.1)
We wish to calculaté the wave funcﬁion of a bound state of this particle in
a point-source Yukawa potential which‘couples to the "charge" of the particle.
We require, however, that the bound staFe is spinless, has mass m, and, most
important, has a "charge" distribution ﬁh;ch is identical to that of the

" constituent particle. For our potential we therefore take

_mr!
v(g) = Madrte(ert) S (2.2)
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and the Schroedinger equation becomes
2oy a3kl (x)
@ -)(p) - /:a (1) V(k-p) = f —

/:13@& (qN(’g-g-g) (2.3)
(p-k)"+
We will usually neglect factors of (2n)3 etc. in this paper as they are
irrelevant to our results. It is convenient to make the change of variable
%’R —>5 on the r.h.s. of Eq. (2.3) which simplifies this equation to
§ &0 (ktp) ; \
E -v(p) = N — [Sar (g vrg) (2.4)

k +m

Cur object now is to show that the self-consistent asymptotic

 behavior foér the wave-function W(R) is given by

-a \/;)2

V(p) ~ e : (2.5)
. This will imply that the form factor, which is the Fourier transform of the
“charge" dehsity, has a similar asyﬁptotic behavior. The procedure will be

‘.to substitute various Qéymptotic forms into the r.h.s. of Eq. (2.4) and then

"to integrate to determine whether the ésymptotic behavior of the l.h.s. is

‘reproduced. We shall refer to ﬁave fuhctioné which do have this property as
' fself~gonsistent wave functions. ‘The q&estion might now be raised as to
whether the asymptotic hehavior 6f“the‘integrand determines the aéymptotic
behavior of the integrals in Eq. (2.&); We shall show in the course of our
’analysis that indeed it does.

Consider, first, the asymptotic behavior

2
¥(p) ~ e . |  (26)
Substituting into Eq. (2.4) we obtain | o
2 . : '
: .2 3,8 (k+p) S22
pre %P “'fd ke2 2 ﬁ3qe aq”-al-g)” | (2.7)

k" 4m



We denote ‘
' 3. -aa®_-a(k-q)° '
F(g) = [adqeT® IR | o (2.8)
and write
F(r) = £2(z) (2.9)
tthere _
F(r) =b/&3ke15'£ F(x) (2.10)
and
| ' - [.3_ diager ~aq2 1,3/2 -rz/ua :
f('{) :ﬁ qe ~ o~ @ = (-a—) Ae . (2-11)
Inverting the Fourier transform we obtain
' -ak2/2 ‘
Substituting back into Eq. (2.7) we then have the condition
2
AP 3, ~a(k+R) Y
poe e “fd ke~ s (2.13)
k +m

Now, if the asymptotic behavior on the left and right sides of the above
equation were identical up to a polyncmial, we could then go back and try a
‘nevw asymptotic behavior W(R) o~ Pne-ap2 which for some n might be self-consistert.
This is not the case, however, as tﬁéAintegral in Eq. (2.13) can be evaluated
and from this equation we obtain the condition

pgeﬁapg ~ e"ape/3 . (2.14)
Thus the left hand side is clearly not reproduced since the coefficient in
"~ the exnonential is different. ‘.v" ; 2
Suppose, now, that we had replaced v(p) ~ e-ap2 by ¥(p) ~ e 8P
+ pne-bp2 where b > a and n is arbitrary. This wave function has the same
asymptotic behavior as that given by Eq. (2.6) but behaves quite differently

for finite p. We have verified that the same asymptotic behavior is obtained

for the integrals in Eq. (2.7) with this imput function as was obtained before.
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This can be. understood, quite generally, by recallmng that the large-p.
behavior of F(p) is determined from the small~r behav1or of f2(r and that
the large-k behavior of V(g) determines the small-r behav1or of f(g) in the
two Fourier transforms | |

F(R) = (a3 f2(£)e;E'£

2(5) = [ v | (2.15)
which arise in the evaluation of the faitung
r(p) = ﬁ3}: (¥ (5-p) (2.16)
appearing in Eq. (2;&). a o _ '

Now consider an asymptotic behavior of the form

3 - 2 ) ’ ‘ | . ‘
| ¥(p) ~ e Vp? - (2.17)
We substitute into Eq, (2.4)’and obtain the asymptotic integral equation,
3 -83‘ (k+ ) _ ) 2 - = 2
2o -anlp2 fd ke \/:13(_1“e al? -al(gk)?2 (2.16)
1Pt : :
" Defining
I
P(k) = fa3q e el e \%‘li) (2.19)
. we have A
F(k) =u/;13r'ei5‘£ () (2.20)
where - ' '
f(i)-=~/&3q elQ'E ¥ e * (2.21)
s
X o R m“(!"2+é.2)

Hence



<k>«(;;$> [
(&) e

“aﬁ : | - (2,22)

The essential point is that when this expression is substituted into Eq. (2.,18)

then‘the resu;ting integral on the right hand side 1s agein dvfaltung of

the same form which we calculated inEq.(2.19) Using our result , Ba. (2.22),

and teking the asymptotic limit P >, we obtain for the.right hand side of
(2.18) |

N - rowea - B N |
ﬁSk e &«‘f}; e (k+P) ‘_"235___0_ a Pa e a\/—P (2023)
K-+m” ,

which agrees exactly with the leading asymptotic behavior for the left hand
side of Eq. (2..1.8)'3 Thus the wave function with the asymptotic form given by
Eq. (2 17) 1is self-consistent.

Finally, consider the possible asymptotic behavior
¥(p) ~ *nd)™ o (2.2k)
for arbitrary, finite n 3 l. It is convenient to define the integrals

() = [BEnBy(pPed) (2.25)

which can be evaluated by again introducing Fourier transforms. We obtain the

S (D) u<5~“>- <8 >" (ab)(pa:}()a;i-b)) ae 2 2

o (gB)min: (m,n) - (2.26)

‘results
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which, when substituted into Eg. (2.4), yields the asymptotic equation

e B L (2.27)
Hence the asymptotic behavior given by Eq. (2.24) is not self-consistent.

Since the mathematical complexities of Eq. (2.4) have forced us tovﬂ
enploy & ﬁrial and error procedure for findihg acceptable asymptotic solutions,
our conclusions are ncm.as general as bne might hope. We can conclude that .-
. the asymptotic form V(p) ~ e;ané is a possible asymptotic solution whereas

the forms W(g) ~ e-ap2pn.and w(g) ~ (p2+p2)-n are not. In the following
. section we demonstrate that a similar result holds when the bootstrsp is

described by a Bethe-Salpeter equation which is a generalization of Eq. (2.4).

III. BETATIVISTIC BOOTSTRAP

Ih this section we treat the relativistic problem of a composite

 scalar particle, called the S-meson, which is a bound state of itself and an

elementary scalar meson, denated by o. Taking o exchange for the binding
mechanism, we have the following Bethe-Salpeter equation in ladder approxima-
“tion

[p%-n21 (P-p)2-nIx(p) = —~§;§l/auk X (k) (P-x)54n"Ix (p-k)  (3.1)
. (2n)

which is illustrated graphically in Fig. L. The variables P,p,k,f denote four-
' vectors throughoﬁt this section. This equation should have meaning only when
"+ the external S-meson momentum is evaluated on the mass shell. We note that
the equation incorpor&tes the physical requirement that the constituent S-meson -
is, itself, a composite particle; this is evident from Fig. 5 where we illus-
trate the first iteration of this equation. We havevmade the shﬁplification';

in Bq. (3.1) of assuming that the wave function depends only on the square of



the four-momentum of the o-meson and not on the remaining invariant which is
the square of the four-momentum of the off-shell S-meson.

We can proceed now as we did in the Schroedinger equation model,
except for the additional complexity associated with the Minkowski met~ic in
Eg. (3.1). When the asymptotic forms X(p) ~ e-&Jgé and W(p) ~ (p2+p2)_n are
substituted into Eq. (3.1) the Kernel is sufficiently well behaved fo allow a
Wick rotation of the fourth component of the momentum variable which yields an.
integral equation in a Euclidean space. (Care must be taken to define the waﬁe

-ep? p ma(pt)L/

function e and to carry out the Wick rotation on the appro-
priatc sheet.) However, with the asymptotic behaQior X(p) ~ e-apz the integral
in Eq. (3.1) is no longer well-defined. This is reflected in the fact that
one encounters essential singuiarities aloug the path of the Wick rotation.
To avoid (but not solve:) this problem, we take a3 our definition of the
integral in Eq. (3.1) the well-3efined integral which one obtains by writing
the equation from the outset in a Euclidean space.
Consider first the asymptotic behavior
X(p) ~ 7% (3.2)

and substitute into the asymptotic limit of Eq. (3.1) which reads

pX() ~ [a Bx(ex(en) (3.3)
We define
F(p) = ' 'kee-aer-a(p-k)a : : (3.4)
- Then
F(r) = £(r)g(r) (3.5)
where

; 2 2
f(r) =“/21)+k elke‘ré"&k = (%)2 e /14-8. (3-6)



and" _
' ’ ) ' N
g(r) = - 5= £(r) . - BTy
Hence we obtain
-2 > | :
i o - -
P(p) f R N R (3.8)
Referring to Eq. (3 3), we have the condition |
2 . ' .
4 - -
pe®® o p e ep /2 (3.9)

and we see that the wave function with an asymptotic behavior given by EqQ»
(3.2) is not self-consistent.

Now consider the possible solution

a2
“X(p) ~ e &lg- (3.10) B
Defining ‘
. cad1® —anf (ol )2 .
F(p) sﬁ“k g (p-x)52 (3.11)
we have | ’ : ' |
F(r f 1p-rF(p) f(r)g(r) » . (3.12)
where , i
J . - "2
£(r) =ﬁuk e T, a2 _ ——5 575 (3.13)
| (x°+a°)
and
3 2
SECIECE (3.25)
Taking thé inversé Fourier transform of Eq. (3.12) we obtain the resuls
‘ 4 dper '
2/ d 6 f A d're® -
ro) - (2 ) ()| [ - (3.35)
32 \Gae ' r2+a2 -

Thus F(p) is given by the appropriste derivatives of an integral which is
familiar as the Feynman propagator in configuration space but here written as

a function'of the momentum variable. Hence
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_ 6 2),, ' :
d Y amt</(ia 2 ~apl
by
Comparing this expression with the l.h.s. of Eq. (3.3) we see that the expo-
- . nential is self-consistent, If we assume the asymptotic wave functicn

1 e—aJEE
JIp]

then, in addition, the polynomial multiplying the ekponential is self-consistert

(3.17)

X(p) ~

and we conclude that Eq. (3.10) provides an acceptable asymptotic form for the

wave function. Finally we have examined the asymptotic behavior

D -
y (3.18)

Since the mathematical procedures and the analogies with the non-relativistic

X(p) ~ (p°+a

problem should be clear by now to the reader, we simply state the result that
on the right hand side of Eq. (3.1) we obtain the asymptotic behavior
pe(p2+m?)-m which is inconsistent with the left hand side which behaves
asymptotically like pu(p2+m?)-m. It may appear to be possible to find a self-
consistent polynomial asymptotic behavior when spin complications are included.
However, 1t is easy to show that if the S-meson had spin-l/2 ﬁhen polynomial
asymptotic behavior is still unacceﬁtdble. Since the inverse propagator of the
S-meson appears on both the left and right hand sides of Eqg. (3.1) it is

unlikely that spin will affect our resﬁlt.

IV. NO-ELEMENTARY-PARTICLE MODEL
It might be argued that the results we have obtalned in the previous .
sections were a consequence of the artificiality of the point-source potential
&n the non-relativistic example and of the analogous elementary particle in

"the relativistic example. In these‘models, only the composite particle was



-
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treated crossingfsymmetfi§éily. So, here we investigate a model with no
- elementary particles.' One such model, illustrated in Fig. 2, was discussed
in the introduction. ‘A-practical difficulty Qitﬁ this model is that in the
asymptotic region'which we ﬁish to study, the integral equation contains at
leastione wave function in the integrand with all three legs off the mass-shell
This is in contfast to_the considerably simpler situation discussed in the
~ previous section where we could take the external S-mesons on the mass shell
and then determine the form factor as a function of the o-meson momentum which
- was allowed‘to vary off-shell. Therefore, we shall look again at a Schroe-
dinger equation model, but one in which the point-source of the potential in
(2.2) is replaced by another composite particle. |
) Let us suppose that we have two identical, spinless particles with ”
;bhargé'density
| o(z) = ¥ (h(x) (h.1)
whiéh form a spinless bound state with the identical "charge" density. Agein

we assume a Yukawa potential which couples to the "charge." Thus

| ez x|
V(r,ox,) = 8(x +xr,) d3r1:/:13r2'p(,{2'£2’)p(;{“l',{i"'l)te 5] .
(4.2)
In.momentum space, V(p) is given by
V() = - fd[ada" oV (g)\tf[(*yk) W (~p+q> ] (k.3)
. D 2 e
- and the Schroedinger equation takes the form
| 2

B mip) - [Prvey) (1.4)

The remarkable feature of Eas. (4.3), (4.4) is the factor of 1/2

2 2 .
which multiplies the variable p in W[(%Eﬁk) ] ana ¢[(%Ef5) ] under the integral



signs. To see the effect of this factor we first define

R(p) = [k w(xhvip/ang) - (4.5)
2

We now substitute the asymptotic form W(g) ~e ¥ and note ‘. from our

previous result in Eq. (2.22). that

AN 4
F(p) ~ p2e 2 V2 . . (L.6)

Therefore

| ) ot ap? |
V(p) = 3 Rz v e (4.7)
P +m P +m

and we recover the coefficient a in the exponential! The integral in Zq. (h.k)
can then be performed and we see from our result in Section II that the

exponentially falling form factor isiself~consistent. A more detailed calcu-
lation shows that the correct self-consistent asymptotic behavior is given by

-a\/PE 2
€ b

w(g) ~ /p". 1In addition, wave functions with the asymptotic behavior

W(g) ~ e-apepn Of (p2+u2)“n can be easily shown to be inconsistent with Eq.

(4ok4); the arguments cen be made analogously to those in Sections II and III.
It is seen then, that the replacement of the point-source potential‘

in Eq. (2.2) by another composite particle does not affect the validity of

our result. This makes it arpear plausible to us that if the c—mesonrin

Section III is replaced by a composite S-meson and the point vertex in Fig. L

replaced by a form factor, then our result should again be valid.

V. GENERALIZATION TO ARBITRARY INTERACTION KERNEL
We have found that the form factors of the strongly interacting
Nt ]

particles should behave asymptotically as F(%) ~ e ¥ . This result was

shown to be the consequence of a bootstrap model with a crossing-symmetric
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three-ﬁoint funétion and hence one which described thg’composite and consti-
'tuent partlcles in an identical manner. It is natural to inquire, now, as to
. the generallty of the result. | '

The bound state equétions.which we have considered up to this point
were only approximations to a reelistic theory because we treated the inter-
action kernel in ladder approximation. We give a plausibility argument now
which suggests that the restriction to single-particle-exchange forces can be
‘relaxed without destroying the self-consistency of the exponentially falling .
form factor. Let us return to the S and o-meson model of Section III and
consider the most general interaction kernel which contains one S-meson line
- and is of n®® order in the SSo vertex (see Fig. 6). We assume the asymptotic
behavior X(p) ~ e—aJEE)Jb as giveh by ‘Eq. (3.17) and write the asymptotic

Bethe-Salpeter equation which results from this interaction kernel as

.p X(p) ~fd k/d Pl“L/‘; P, keP (k,pln'u,pn)[x(k)x(pl)--~X<pn)']6u(k+1>l+---+pn-p)
(5.1)

oxr ’ """"_"'"" d’ k d ploou d p k P (k’Pl,to-)p )

-k eafo.? - Jm‘é
[e ¥ . & ! a J 5 (k+pl+e..+p -p) . (5.2)

JTiT.'f"T ~/T_T

This equation is illustrated in Fig. 6. Pn(k’Pl"°"pn) is a poljnomial in
the internal 6—meson momenta and consists of the product of the propagators‘
- for the internal o-meson lines which begin.and end within the shaded circle
in Fig. 6. We will assuﬁe a Ao3~interaction at all vertices within the

shaded circle and neglect those kernels with closed o-meson loops since they

lead to divergences which would be absent in a correct theory which treats the

¢



g-meson as composite. Then 1t can be shown that P consists of the product .
of n-1 propagators. Integratlng out the 8 function in Eq. (5.2) we obtain

for the r.h.s., denoted by F(p), the expression

= 2 -1
F(p) s h/; X d Ppees d p e Pn (k’Pl"'°’Pn~l)

(5.3)

- - N - malN owen o2
[e a2 e a pl? R P%-l e wJ(kal+.ee+pn_l p) J
\/—H{T ’ “ipll TN IP “‘li- “ "[TK+P1+"‘+Pn_l'Pl

n
which is just a sequence of faltungs of essentially the same form as those we
encountered in Section IIT. The first one, given by the integral around the

furthest closed loop to the right in Fig. 6, is of the form

l:' -aJpz . '&J(k"’pl"l"o oo +pn- l"p )2 v )+
Tpe1 = % Py 2 J T (5.4)
,pn l! ]k+pl+° ® °+Pn_l"Pl
which integrates'tO'give
Y=
v -wJ(k+pl+...+pn_2 p) (5.5)
Inﬂ-l (a4 J - ) 5“5
k+'pl+. .e +pn_2"P I
Substituting back into Eq. (5.3) we obtain for the second integration
. . -, .o ) - 2
\[ a* e P ~ (02, 72 :
n~ -2 2
n jlp 2! '\/‘lk'*'pl'!'ae.’*‘p ? pl ﬂk+pl+°°‘+pn_3—P!
(5.6)
. Continuing this’procedure we‘finally come to the last integral which is of the
form
' zl k2 v"a.‘/l_{? -&d (k"'o )2 i
F(p) = . | (5.7)

JT «fl'fc-nl



This”is precisely the inﬁegrai we encounter in.the ladder aéproximation to
the kernei-an& we obtein for the r.h.s. of Eq. (5.2) the asymptotic expression
F(p) ~ pke'a P"M1p[ which reproduces the behavior on the l.h.s.

We are tempted to speculate that the exponentially falling form
factor is asymptotically self-consistent in the relativistic, no-elementary-
particle bootstrap model with an arbitrary interaction kernel. EHowever, even
in the ladder approximation (see Eq. (1l.4)), the absence of an elementary or |
bare vertex in the relativistic bound state problem forces one to treat a
nonlinear equation in which the unknown wave function depends on three invar-

iants. We defer speculation on this question until a further investigation.

VI, CONCLUDING REMARKS

Our discussion has been limited to off-shell dynamical models for

~ composite particles. Can our results be obtained from dispersion relations?

Consider the elastic-unitarity eQuation for the form factor

‘ . '

ImF ,(s) = o(s)T, (s)F (=) (6.1)
2 £ 4

~where pf{s) is a kinematic factor and Tz(s)'is the partial wave scattering

amplitude. When Eq. (6.1) is substituted into the dispersion relation

' ® ImF (s')
| = -J: 1 -—-—-‘-e—-——-— -2
FORT YR o (62)
we obtain the wéll~known.result
- w ds'®,(s?) | « '
- L IR AN 6.
F,(s) = exPLJ; STs } (6.3)
where_sﬁ is the élastic phase shift. In analogy to Eq. (1.4) it would appear

natural to approximete T,(s) in Eq. (6.1) by the scattering amplitude in Born

approximation but with the coupling constant replaced by the form factor



appearing in Eq. (6.1). Thus we set

7,(s) ~jdz Pﬂ(z)z ) | (6.1)

t-m

-aﬂt[e

where F(t) .~ e

As emphasized by Mandelstam,7 it is difficult to obtain a falling
form factor on the l.he.s. of Eq. (6.3). The reason is that the asymptotic
behavior of F(s) is determined by the asymptotic value of the phase shift and
exponentially falling form factors would result from Eq. (6.3) only if
Gz(m) = o, Now, it is known that in potential scattering the condition
aﬂ(m) = » is generally possible only with a singular repulsive potential.

Since the Fourier transform of e'ayjt,-is (r2+a2)‘5/2, however, Tﬁ(g),_as

given by Eq. (6.4), cértainly does not correspond to a singular potential.

Thus we do not obtain self-consistency between the input form factor in FEq.
(6.4) and the form factor obtained from Eg. (6.3) if the former is exponentially
falling.

To conclude, we apologize to the reader for the rather crude mathe-
matiéal methods which have been employed in this paper. We hope that the
results which we have obtained here will inspire others to develop sharper
tools which will ailow a deeper exploration into the basic nonlinear ecuations

of strong interaction physics.
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FIGURE CAPTIONS
Bethe~Salpeter equafion in ladder approximation with elementary
constitﬁents. The solid circle designates the Bethe-Salpeter wave
function.
Crossing-symmetric, nonlinear, Bethe-Salpeter equation in ladder
approximétion. o

First iteration of Eq. (l.4) i1llustrating that the constituents are,

- themselves, composite.

Bethe-Salpeter equafion in ladder approximation with a composite-
constituent S-meson (solid line) and an elementary-constituent o-
meson (Qotted line). .

First iteration of ﬁé, (3.1).

Bethé~Salpeter equation with arbitrary interaction kernel of nth
order in the S-S-o vertex and with one S-meson line. The  shaded

circle represents an arbitrary interaction among the n+2 c-meson

lines.
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Figs. 4, 5, and 6
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