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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric Based Modal Regression Econometrics

by

Tao Wang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2022

Dr. Aman Ullah, Co-Chairperson
Dr. Weixin Yao, Co-Chairperson

Most research on nonparametric econometrics focuses on mean, median, or quantile regres-

sion while there is not too much research about regression methods on the basis of mode

value. This dissertation proposes three new models based on modal regression, in which the

dependence of the conditional mode of the response variable on the covariates is explored

and a kernel based objective function to simplify the computation is employed. In partic-

ular, this dissertation is made up of three essays. Chapter 1 provides an overview of the

dissertation. Chapter 2 proposes a control function approach to account for endogeneity

in a parametric linear triangular simultaneous equations model for modal regression, where

the conditional mode of the unobservable error term on explanatory variables is nonzero.

To motivate the developed control function method, a dynamic model of rational behavior

under uncertainty is introduced, in which the agent maximizes the present discounted value

of the stream of future modal utilities, and a modal Euler equation derived from the maxi-

mization model that the agent must satisfy in equilibrium is presented. In a general setting

that includes nonlinear time series models as a special case, Chapter 3 develops a novel lo-
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cal linear estimator of volatility function for nonparametric modal regression applied to the

squared residuals from the unknown mean regression, which is particularly useful to serve

as a risk indicator for skewed data or financial time series with heavy tails. To reduce the

variance of the nonparametric modal volatility estimator, a variance reduction technique

is introduced to achieve asymptotic relative efficiency while keeping the asymptotic bias

unchanged. Furthermore, to avoid the negative values of volatility, Chapter 3 introduces

a local exponential modal estimation. Chapter 4 investigates the estimation and inference

of modal regression near the boundary, establishing a theoretical foundation for regression

discontinuity designs based on mode value. Under the assumption of mode rank invariance,

a novel conditional mode treatment effect in the regression discontinuity designs is pro-

posed, which can be regarded as an attractive complement to the existing mean or quantile

treatment effect. The novel mode treatment effect suggested in Chapter 4 has a wide range

of applications in economics, statistics, social science, and other related fields, because it

can capture the “most likely” effect and be robust to outliers and heavy-tailed distributions.

Chapter 5 contains the conclusions. The newly proposed models based on modal regression

in this dissertation complement the mean, median, and quantile regressions and provide a

better central tendency measure when the data are skewed or heavy-tailed.
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Chapter 1

Introduction

The mean, median, and mode are three of the most commonly and popularly used location

measures and focus on different population characteristics. Each quantity has its own merit

and complements each other. Built on the ideas of mean and median, mean regression

and median regression have been extensively investigated and popularly used to model the

relationship between a dependent variable Y and covariates X. However, research about the

regression model built on the concept of mode (called modal regression) is rather limited and

has not received enough attention that it deserves, partly due to its computational difficulty.

Modal regression can supplement mean and median regressions and provide additional useful

information that existing regression models might miss, especially for multimodal or skewed

datasets. To broaden the scope of existent modal regressions, this dissertation investigates

three new models based on mode value.

Chapter 2 proposes a control function approach to account for endogeneity in

a parametric linear triangular simultaneous equations model for modal regression, where
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the conditional mode of the unobservable error term on explanatory variables is nonzero.

We adjust endogeneity with the residuals from the conditional mode decomposition of the

endogenous variable as controls in the structural equation, and develop a computation-

ally attractive two-step estimation procedure with the conditional mode independence re-

striction. Notably, in the first step, we construct the estimated modal residuals from the

reduced-form linear modal regression for the endogenous variable; in the second step, we

include the reduced-form residual nonparametrically as an additional variable and propose

a three-stage estimation method for the resulting semiparametric partially linear modal re-

gression model, which has not been fully investigated in the literature. The consistency and

asymptotic properties of the estimators for both the parametric and nonparametric parts

are rigorously established under generic regularity conditions, where we demonstrate that

the parametric estimator is (nh3)1/2-consistent (n is the sample size and h is a bandwidth)

and the estimation of the nonparametric component is oracle. To motivate the developed

control function method, we introduce a dynamic model of rational behavior under uncer-

tainty, in which the agent maximizes the present discounted value of the stream of future

modal utilities, and develop a modal Euler equation derived from the maximization model

that the agent must satisfy in equilibrium. We estimate the modal elasticity of intertem-

poral substitution directly from the stochastic Euler equation. We in the end construct

an adaptive least absolute shrinkage and selection operator technique for selecting instru-

mental variables and demonstrate the oracle property of the suggested penalized modal

regression model. Since mode is identical to mean with symmetric data, several remarks on

modal-based control function robust estimation are also addressed for completeness.
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In a general setting that includes nonlinear time series models as a special case,

Chapter 3 proposes a novel local linear estimator of volatility function for nonparametric

modal regression applied to the squared residuals from the unknown mean regression, which

is particularly useful for skewed data or financial time series with heavy tails. We show that

the proposed modal volatility estimator can be obtained asymptotically as well as if the

conditional mean regression function were given, assuming that the observations are from

a strictly stationary and absolutely regular process. Under mild regularity conditions, the

asymptotic distributions are also proven to be the same as those derived from independent

observations, but the convergence rate is slower than that in nonparametric mean regres-

sion. Moreover, we put forward a variance reduction technique in terms of modal volatility

estimator to attain asymptotic relative efficiency while maintaining the asymptotic bias

unchanged. For the purpose of avoiding the drawback of negative estimates, we in the end

discuss the extension of the method to local exponential modal estimation and demonstrate

that the suggested exponential modal volatility estimator shares exactly the same asymp-

totic variance as the local linear modal volatility estimator under some mild conditions, but

could have a smaller bias.

Chapter 4 investigates the estimation and inference of modal regression near the

boundary, establishing a theoretical foundation for regression discontinuity (RD) designs

based on mode value. Under the assumption of mode rank invariance, we propose a novel

conditional mode treatment effect (CMTE) in the RD designs, which is especially useful for

skewed or heavy-tailed data and can be regarded as an attractive complement to the existing

mean or quantile treatment effect. For the sake of exposition, we primarily concentrate on

3



the modal sharp RD design to convey the fundamental concept of CMTE. Analogously

to the estimators for the existent treatment effects in the RD designs, we approach the

modal regression function as nonparametric, develop a local boundary estimation procedure,

and show that the CMTE is identified under moderate assumptions. The consistency and

asymptotic properties of the suggested estimator are presented under certain regularity

conditions. To construct a trustworthy confidence interval, we develop an efficient bootstrap

procedure for practical application depending on undersmoothing. We also discuss several

extensions that are of either practical or theoretical importance, including the CMTE in

the modal fuzzy RD design.
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Chapter 2

Endogeneity in Modal Regression

2.1 Introduction

Modal regression, which seeks to identify the most probable conditional value (mode) of a

dependent variable Y ∈ R given covariates X ∈ RdX , denoted by Mode(Y | X), rather than

the mean or quantile used by traditional mean or quantile regression, has received increasing

attention in recent econometric practice. It can reveal a novel and intriguing data structure

that would otherwise be overlooked by conditional mean or quantile regression without the

use of any moment conditions. The Cauchy distribution, for example, is widely recognized

for not having a mean or variance. Consequently, the sample mean is a poor estimate that

is not consistent, but the mode can be estimated. Even in Bayesian econometric analysis,

the mode of the posterior distribution, if skewed, is considered as a Bayesian estimator

instead of the mean or median estimator. In comparison to existing mean and quantile

regressions, modal regression is more resistant to outliers and some forms of measurement

error, is applicable to clustered or inhomogeneous data, is capable of achieving consistent
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estimates for truncated data, and can provide shorter prediction intervals when the data

are skewed since with the same interval length, the interval around the conditional mode

encompasses more samples. Although quantile regression can offer more information about

the conditional distribution away from the centre, it cannot directly give the modal estimate

when researchers are primarily concerned with the “most likely” effect. These observations

suggest that modal regression can be served as a complement to the existing mean or

quantile regression. Notable works for estimating modal regression with multivariate data

by imposing certain modal structures and a unique global mode assumption onMode(Y | X)

include Lee (1989, 1993), Kemp and Santos Silva (2012), Yao and Li (2014), Chen et al.

(2016), Yao and Xiang (2016), Krief (2017), Ota et al. (2019), Kemp et al. (2020), Feng et

al. (2020), Zhang et al. (2020), Ullah et al. (2021, 2022), among others.1 Nevertheless, to

the best of our knowledge, there has not been any attempt to investigate the presence of

endogeneity in modal regression by permitting the conditional mode value of the unobservable

error term on the explanatory variable to be nonzero. It has been implicitly assumed by

all of the research in mode estimation that there is no endogeneity in models, which is

unnecessarily strong in practice and restricts the breadth of empirical applications of modal

regression to a few instances. A natural question then arises is how to identify modal

coefficients in the presence of such an endogeneity issue.

Endogeneity, resulting from measurement error, individual choice, or market equi-

librium, lies at the heart of many problems in econometrics and statistics, manifesting itself

1For univariateX (dX = 1), we can apply the nonparametric kernel density estimation method to estimate
mode, i.e., Mode(Y | X) = argmaxY fY |X(Y | X), where fY |X(Y | X) is the continuous conditional density
of Y given X. With a given X, it will be the same as maximizing the joint density of Y and X. However, such
a method is difficult to apply when the dimension of covariates is large owing to the “curse of dimensionality”.
Additionally, the kernel density estimation method cannot directly give an estimate of the marginal effect
unless we take the finite difference approximations. Thus, along the lines of the mean or quantile regression,
lots of research proposes estimating modal parameters with commonly imposed restrictions on the function
form of Mode(Y | X).
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in various instances, such as socioeconomic variables of education-wage and supply-demand.

In mean regression, endogeneity can be interpreted as either the nonindependence between

the explanatory variables and the error term or the nonzero value of the conditional expecta-

tion of the error term given covariates. However, the conceptual foundation of endogeneity

in modal regression is presently unsolved in the literature since modal estimation does not

require any moment constraints. Analogous to quantile regression, we in this paper in-

terpret endogeneity in modal regression as the nonzero value of the conditional mode of

error term given covariates. We point out that if the moments of the error term and ex-

planatory variables exist, we could also utilize the conventional definition of endogeneity in

mean regression to define endogeneity in modal regression. Generally, when endogeneity is

present in modal regression, the model will be sufficiently different from the one without en-

dogeneity to necessitate separate treatment, because the standard kernel-based estimation

method (defined in Section 2.3) will potentially produce biased and inconsistent estimators.

This negative result motivates us to fill the literature gap by allowing for the possibility of

endogeneity in modal regression and systematically studying its estimation procedure and

asymptotic behavior under weak conditions. To this end, we extend the control function ap-

proach (Smith and Blundell, 1986; Newey et al., 1999; Blundell and Powell, 2003), which is

essentially different from the traditional instrumental variable approach that forms moment

conditions for estimation, to a semiparametric partially linear modal regression version of

the triangular simultaneous equations model in order to deal with endogeneity. Notice that

the similar control function approach used to correct for endogeneity in mean and quantile

nonparametric structural models has been adopted by Newey et al. (1999), Ma and Koenker

7



(2006), Li et al. (2007), Su and Ullah (2008), Imbens and Newey (2009), Kim and Petrin

(2011), Chernozhukov et al. (2015), and references cited therein with the mean or quantile

independence restriction.

In comparison to the previous literature, we primarily make four important con-

tributions. The first is to parametrically incorporate endogenous regressors into the modal

regression and develop a control function estimation method to account for the endogeneity

of the regressors in the original structural equation. We do not restrict the functional form

of the control function to avoid any potential misspecifications, and novelly introduce a

mode independence condition (clarified in Section 2.2) to identify the model and retrieve

the parameters of interest. On this basis, we discuss briefly the extension of the proposed en-

dogeneity framework to nonparametric simultaneous model regressions as well. The second

is to establish a three-stage estimation method for a pseudo semiparametric partially linear

modal regression after including the estimated residual from the reduced form equation as

an additional variable into the structural equation. We thus contribute significantly to the

large and still growing literature on mode estimation,2 since there is no previous research

systematically investigating partially linear modal regression on estimation and asymptotic

behavior of both parametric and nonparametric estimators based on local linear approxi-

mation. The third is to propose a penalized modal regression model with an adaptive least

2The partially linear model, Yi = ZT
i γ + m(Vi) + ϵi (see model settings in Section 2.2 for the meaning

of each part), was initially introduced by Engle et al. (1986) to study the relationship between electricity
sales and temperature based on mean regression, and has attracted much attention from econometricians
in both theory and empirical applications since then; see Heckman (1986), Robinson (1988), Bhattacharya
and Zhao (1997), Krief (2017) to mention only a few. The partially linear modal regression is of interest for
several reasons. First, it can capture the nonlinear relationship between regressor and dependent variable
while avoiding the “curse of dimensionality” through the presence of a linear function. As the nonparametric
part liberates the model from strict structural assumptions, the estimate of γ is less impacted by model bias.
Second, it enables the parametric and nonparametric components to exist simultaneously in the model,
nesting both the linear modal regression with Vi = 0 and the nonparametric modal regression with Zi = 0.
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absolute shrinkage and selection operator (LASSO) to identify the relevant instrumental

variables, in which we shall show that irrelevant instruments will be estimated as zero as

if we knew they were. In empirical applications, it is common for researchers to collect

a large number of instrumental variables in order to improve the precision of estimators.

However, to our limited knowledge, there still lacks study on instrumental variable selection

in penalized modal regression with adaptive LASSO. The fourth is to construct a modal

Euler equation derived from a dynamic model of rational behavior under uncertainty, in

which the agent maximizes the present discounted value of the stream of future modal util-

ities. Such a modal Euler equation can be used to supplement the existing expected utility

models by revealing the distinguishing features of the data, as well as capturing the “most

likely” effect. Empirically, we utilize the suggested control function approach to account for

endogeneity to estimate the modal elasticity of intertemporal substitution (EIS) directly

from the stochastic Euler equation. According to the aforementioned contributions, the

newly proposed model in this paper highlights the attractiveness of modal regression and

opens up a wide range of potential applications for empirical work. Since the focus of this

paper is on modal regression (asymmetric data), we do not treat the case where modal

regression line is identical to mean regression line as the main analysis (symmetric data);

see Figure 2.1. Nonetheless, to illustrate the effectiveness of modal regression, we make

several remarks throughout the paper to show that with symmetrically distributed data,

the proposed estimation procedure can be regarded as a modal-based robust control func-

tion methodology that achieves mean estimators against outliers or aberrant observations

without sacrificing efficiency.

9



The content of this paper is organized as follows. In Section 2.2, we primarily

introduce model settings with endogeneity and outline the estimation framework using the

mode independence condition. In Section 2.3, we focus on developing a two-step estimation

procedure relying on local linear approximation to estimate a semiparametric partially linear

modal regression, as well as providing a modified modal expectation-maximization (MEM)

algorithm to simplify computations. In Section 2.4, we establish large sample properties

of the resulting estimators in different steps/stages under suitable conditions and discuss

bandwidth choice in practice utilizing asymptotic theorems. Several remarks on modal-

based robust estimators with symmetric data are provided as well. The results of Monte

Carlo simulations and applications to two real datasets of Rational Behavior under Modal

Utility Maximization and Colonial Origins of Comparative Development are reported in

Section 2.5 to show the necessity of correcting endogeneity in modal regression. The adap-

tive LASSO method for selecting relevant instruments for the proposed penalized modal

regression model is presented in Section 2.6. Conclusions and discussions are given in Sec-

tion 2.7. The additional results, including a Modal Asset Pricing Model and the numerical

results for the Return to Schooling dataset and modal-based robust estimation, are deferred

to the appendix, along with all technical proofs.

2.2 Econometric Framework

The modal regression model considered for the independent and identically distributed

(i.i.d.) observations {Yi, Xi, Zi}ni=1 from the random vector (Y,X,Z) has the following tri-

angular system with the parametric form

10




Yi = Xiβ + ZT

1,iγ + Ui (structural equation),

Xi = α+ ZT
i π + Vi (reduced form equation),

(2.1)

where Yi ∈ R is a real valued continuously distributed random scalar, Xi ∈ R is an en-

dogenous explanatory variable, Zi = (ZT
1,i, Z

T
2,i)

T ∈ RdZ is an observed vector of exogenous

explanatory variables in which Z1,i ∈ RdZ1 and Z2,i ∈ RdZ2 , Z2,i is a vector of excluded

instruments, Ui is the unobservable error term of the structural equation, Vi is the unob-

servable error term of the reduced form equation, which is interpreted as the deviation of Xi

from its conditional mode Mode(Xi | Zi), β and γ are 1×1 and dZ1 ×1 unknown structural

parameters of interest, respectively, and α and π are 1×1 and dZ ×1 unknown parameters,

severally.3 We use T to denote the transpose of a matrix or vector. The setup in (2.1)

is similar to the endogenous quantile regression considered in Li et al. (2007), with the

exception that we concentrate on modal regression. It should be noted that Ui and Vi are

allowed to be statistically dependent on each other according to the setting. As equations

in (2.1) are investigated under modal regression, we impose the following conditions

Mode(Vi | Zi) = 0 (almost surely)

because of the exogeneity of Zi and

Mode(Ui | Xi, Zi) ̸= 0 (almost surely)

according to the endogeneity of Xi. For identification, we do not include any constants

in the structural equation, and assume the standard rank condition that the dimension

3As the first paper dealing with endogeneity in modal regression, we restrict attention to the parametric
form for the purpose of exposition. However, the proposed control function technique can be extended to
other semiparametric/nonparametric models, which is straightforward but will raise a considerably compli-
cated identification and estimation problem; see Remark 2.2.4.
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dZ2 of Z2,i is equal to (or greater than) one and there exists at least one nonzero modal

coefficient for Z2,i (we further explain the identification for modal regression in Section 2.3).

For simplicity of exposition, we focus on the univariate case of Xi. However, the proposed

estimation procedure and asymptotic results in this paper can be easily extended to the

multivariate case, but with more complicated notations involved.

Figure 2.1: Data Distribution and Directed Acyclic Graph

To identify and estimate the modal parameters β and γ, based on the conditions

illustrated above, we further assume that the following equations are satisfied almost surely

Mode(Yi | Xi, Zi, Vi) = Xiβ + ZT
1,iγ +Mode(Ui | Xi, Zi, Vi)

= Xiβ + ZT
1,iγ +Mode(Ui | α+ ZT

i π + Vi, Zi, Vi)

= Xiβ + ZT
1,iγ +Mode(Ui | Vi, Zi)

= Xiβ + ZT
1,iγ +Mode(Ui | Vi),

Mode(Xi | Zi) = α+ ZT
i π

(2.2)

with the exclusion restriction of a mode independence of Ui on Zi conditional on Vi, in-

dicating that Vi is sufficient in evaluating the conditional mode Mode(Ui | Vi) such that
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Zi does not provide any extra information. This mode restriction suffices if Ui has an

equal mode for all values of Zi conditional on the error term Vi, which is analogous to the

usual orthogonality condition for a linear model considered in mean or quantile regression

(Ui | Xi, Zi ∼ Ui | Vi, Zi ∼ Ui | Vi in which ∼ indicates the equality of conditional distribu-

tions) (Newey et al., 1999; Blundell and Powell, 2004; Su and Ullah, 2008), but weaker than

the independence between Ui and (Xi, Zi) conditional on Vi. The triangular structure can

be explained more intuitively in Figure 2.1 through a directly acyclic graph, which clearly

shows that there are three pathways affecting dependent variable Y , while the effect of U

through Path 3 is indirectly influenced by variable V . Without accounting for the causal

effect of V on U , the modal estimators will be biased and inconsistent. Observe that the

crucial condition for estimating, as shown in Figure 2.1, is that Z affects X but does not

directly impact U . The specific motivating examples of (2.2) include estimation of return

to education and production functions. For example, Card (2001) discussed the control

function approach in the measurement of the causal effect of education on labor market

earnings, and argued that in certain instances, it is reasonable to assume that individual

ability (Ui) is a function of the schooling residual (Vi) .

Remark 2.2.1 Compared to the distributional independence restriction, the mode indepen-

dence assumption Mode(Ui | Vi, Zi) = Mode(Ui | Vi) is not very restrictive and is a natural

extension of the existing mean or quantile independence condition. Especially, Newey et al.

(1999) employed series approximations with the conditional mean independence to present

a two-step nonparametric estimator for a triangular simultaneous equation model; Li et al.

(2007) imposed the conditional quantile independence with series approximations for solv-
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ing the endogeneity in quantile regression models; and Su and Ullah (2008) made use of

the conditional mean independence to propose a local polynomial estimator for the nonpara-

metric simultaneous equations model. We emphasize that the imposed mode independence

assumption is intended to simplify computations and illustrations because it can alleviate

the “curse of dimensionality” to some extent. We can release this assumption and instead

allow the conditional mode of the structural error to depend on both the reduced residuals

and the instruments, which is a promising direction for future research but beyond the scope

of the present paper.

Define Mode(Ui | Vi) = m(Vi) as a real-valued unknown function of Vi on R that

maps the reduced form error into the structural equation error, we have
Yi = Xiβ + ZT

1,iγ +m(Vi) + Ui −m(Vi)︸ ︷︷ ︸
new error term

,

Mode(Yi | Xi, Z1,i, Vi) = Xiβ + ZT
1,iγ +m(Vi),

(2.3)

which suggests that the parameters of interest can be recovered through a semiparametric

partially linear modal regression that has not been extensively considered in the litera-

ture of modal regression. To avoid introducing model misspecifications, we do not impose

any structural assumptions on the function form of m(·) (but it needs to satisfy certain

smoothness properties). As shown in (2.3), we correct for modal endogeneity by including

the estimate of Vi as an additional variable, which can be thought of as a variant of the

control function approach that handles endogeneity issue as an omitted variable problem.

Therefore, the new error term, Ui −m(Vi), is orthogonal to (Xi, Z1,i, Vi) in mode sense by

construction, implying that the conditional mode is equal to zero.

14



Remark 2.2.2 The instrument Zi is served to remove the exogenous variations away from

Xi in mode sense. As mode does not have the additive property in general, we cannot

apply the traditional two-stage least squares (2SLS) estimation method for modal regression.

However, analogous to quantile regressions with endogeneity, we can also use the “fitted

value” approach to recover the parameters of interest by imposing constraints on the mode

of the reduced-form error. To be more precise, we substitute Xi with α + ZT
i π + Vi to

obtain Yi = [α + ZT
i π]β + ZT

1,iγ + (Ui + βVi). With the assumption that the conditional

mode of the composite error term Ui + βVi is independent of Zi, i.e., Mode(Ui + βVi |

Zi) = Mode(Ui + βVi), we are able to consistently estimate β and γ and establish the

appropriate asymptotic properties, which can be treated as an alternative manner to address

endogeneity in modal regression. Although this approach is attractive due to the simplicity

of calculation, it imposes too strong assumptions on the error term. We note that the

assumption of independence between the composite error term and the instruments might

be challenging to maintain in practice, particularly when the reduced form error term is not

independent of the instruments (heteroskedasticity); see the relevant discussion in Blundell

and Powell (2004) and Li et al. (2007).

If the realizations of {Vi}ni=1 were observable, we could directly estimate the semi-

parametric modal regression (2.3) with the kernel-based objective functions (see Section

2.3 for more information). However, they are not observable in practice and must be sub-

stituted with consistent estimates. To that end, we propose a fairly simple but efficient

two-step estimation procedure for recovering the values of parameters of interest. In par-

ticular, in the first step, we construct the estimated modal residual V̂i from the reduced
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form equation using linear modal regression of the endogenous variable Xi on Zi. In the

second step, we correct the endogeneity bias by performing semiparametric partially linear

modal regression of Yi on Xi, Z1,i and V̂i based on local linear approximation,4 which is of

independent interest, but neither the asymptotic nor its finite sample properties have been

thoroughly investigated in the literature.

Due to the existence of different convergence rates of parametric and nonparamet-

ric components, the modal estimators in the second step can be formatted with a three-stage

estimation method to effectively rake the partially linear structure into account. Particu-

larly, in the first stage, the local linear approximation is adopted to transform the original

partially linear modal regression to a local linear modal regression. In the second stage, the

parametric coefficients are estimated by linear modal regression after plugging in the esti-

mator of the nonparametric part in the first stage. Finally , the parametric estimators from

the second stage are plugged into the original model to obtain the nonparametric modal

regression, and the estimators are obtained once more employing local linear approxima-

tion. The estimation of the modal regression coefficients in different steps/stages can be

easily achieved by virtue of a modified modal expectation-maximization (MEM) algorithm

introduced in Yao et al. (2012) and Yao (2013). We derive the limiting distributions of the

proposed estimators for both parametric and nonparametric components under mild condi-

tions. Perhaps not surprisingly, the asymptotic theorems for the proposed modal estimators

4In order to construct consistent estimators of the unknown parameters, extra care should be taken,
especially in light of the dominance of the parametric component of the model. The consistency of parametric
estimators in the first step is critical not just in and of itself, but also for the identification of modal coefficients
in the structural equation. Under certain mild bandwidth conditions, there should be minimal difference
between the model (in the second step) investigated in this paper and the partially linear modal regression
after replacing the unobservable {Vi}ni=1 with their consistent estimates. We demonstrate that our estimators
have the oracle property provided that the preliminary estimator converges sufficiently fast.
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stay the same as those for the oracle case where Vi and other components were known, pro-

vided the bandwidths from different steps/stages are chosen in an appropriate way to avoid

bias effects from previous step/stages. A similar oracle property for the modal estimator

has been observed in the fixed effects modal regression for panel data investigated by Ullah

et al. (2021). Especially, we argue that the parametric components can be estimated at

the usual parametric modal convergence rate, and conclude that the final stage nonpara-

metric component estimators have asymptotic bias and variance equivalent to those of the

nonparametric local linear modal estimators under some primitive conditions specified in

Section 2.4. We further discuss the choice of bandwidths for the newly proposed model in

practice according to the asymptotic results. To demonstrate the finite sample performance

of the resultant modal estimators, we present several numerical results, including Monte

Carlo experiments and empirical data analyses.5

Remark 2.2.3 To estimate the partially linear mean regression model, Robinson (1988)

proposed a two-step estimation method, in which the first step obtains a consistent estimator

of the unknown conditional mean function, and the second step estimates a simple linear

mean regression to recover the parameters by concentrating out the unknown function. Such

a method is convenient and powerful for dealing with semiparametric models. However, it

is not applicable to partially linear modal regression model because mode does not have the

additive property (i.e., Mode(Ui + Vi) ̸= Mode(Ui) +Mode(Vi)) in general, unless data are

subjected to a strict symmetric distribution, where mode is identical to mean. Nonetheless,

5We also present a modal asset pricing model in the appendix, where we solve the standard intertemporal
problem of a consumer-investor agent and consider a two-period economy with two assets. We then dispose
modal Euler equations derived from the maximization models that the agent must satisfy in equilibrium.
Such a model is considered from modal regression with endogeneity and can be estimated with the suggested
control function method, indicating the broad applicability of the proposed model.
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modal-based robust estimation in Remark 2.3.8 will be preferred in this case (symmetric

data) because of the faster convergence rate.

Furthermore, in empirical applications, researchers may have a large number of

instrumental variables but are unsure which ones to include in the analysis. It is undesirable

to retain irrelevant instrumental variables in the model since this may lead to decreased

modeling accuracy. As a result, a theoretically optimal method for instrumental variable

selection in the proposed modal regression model is necessary. In the regularization frame-

work, many different types of penalties introduced in the machine learning community

belonging to the group of shrinkage methodologies have been utilized to achieve variable

selection taking the form of “loss function + penalty”, but not too much attention has been

paid to the two-step control function model based on mode value. We then in the last sec-

tion of this paper concentrate on the first step equation for a regularization setting, where

we employ the adaptive LASSO method (Zou, 2006) to select relevant instruments with

probability tending to one (i.e., sparsity) and simultaneously estimate the nonzero modal

coefficients.6 We shall show that the irrelevant instruments are estimated to be zero as if

they were known. The asymptotic normality of the adaptive LASSO modal estimator is

established as well (i.e., oracle property in the sense introduced by Fan and Li (2001)).

Remark 2.2.4 (Nonparametric Simultaneous Modal Regressions) We in this pa-

per concentrate on the parametric form of modal regression for easy illustration. However,

the requirement of a pre-determined functional form can increase the risk of model misspec-

6We realize that Fan (2012) suggested an instrumental variable selection procedure for the traditional
2SLS estimation based on the adaptive LASSO method with a fixed number of variables. We primarily adopt
such a procedure as well to the proposed modal regression to construct a regularization framework, which
extends the usefulness of the adaptive LASSO beyond variable selection for mean or quantile regression.
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ification and lead to invalid estimates. In practice, it may be more realistic to investigate

nonparametric modal regression with endogeneity. To show the applicability of the devel-

oped econometric framework, we release the strict parametric assumption, consider a slight

extension of the model, and investigate the following equations
Yi = g(Xi, Z1,i) + Ui (structural equation),

Xi = h(Zi) + Vi (reduced form equation),

where g(·) and h(·) are real-valued (non-constant) functions satisfying certain smoothness

properties. The other model settings are identical to those in the paper. A similar equation

under the content of mean regression has been investigated by Newey et al. (1999) and Su

and Ullah (2008), demonstrating that g(·) is identified up to an additive constant if there

is no functional relationship between (X,Z1) and V . We are interested in estimating g(·)

and its derivatives based on modal regression. With the conditional mode independence

condition, we have

Mode(Yi | Xi, Zi, Ui) = g(Xi, Z1,i) +Mode(Ui | Vi),

which presents an additive structure and can be solved by the three-step estimation proce-

dure described below: (1) Produce a consistent estimate of h(Zi) by performing local linear

modal regression of Xi on Zi. Denote the estimate as ĥ(Zi) and calculate the estimated

residual V̂i, where V̂i = Xi− ĥ(Zi); (2) Obtain a consistent estimator of m(x, z1, v), denoted

as m̂(x, z1, v), by conducting local linear modal regression of Yi on Xi, Z1,i, and V̂i; (3)

Estimate g(x, z1) consistently up to an additive constant by ĝ(x, z1) =
∫
m̂(x, z1, v)dQ(v),

where Q(·) is a deterministic weighting function with
∫
dQ(v) = 1. The asymptotic proper-

ties can be established using the same arguments as in this paper, where we can show that
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the replacement of the unobserved residuals has no effect on the asymptotic properties of

the resulting estimators. Future research may provide relevant findings by examining this

expansion model in more depth.

2.3 Two-Step Modal Estimation

We in this section propose a two-step estimation procedure to satisfactorily recover the pa-

rameters of interest in (2.3), where the second step can be converted into a computationally

feasible three-stage estimation method, and describe the algorithm to numerically estimate

the models. Before presenting the suggested estimation procedure, we define the modal

estimator as follows.

Definition 1 Given kernel function K(·), bandwidth h, and the unique global mode as-

sumption for fY |X(Y | X), the modal estimator of θ with respect to modal function m(X, θ)

is defined as

θ̂ = argmax
θ

E[Lθ(X,Y )], where Lθ(X,Y ) =
1

h
K

(
Y −m(X, θ)

h

)

and θ belongs to a compact parameter space Θ.

The above definition is understandable from the machine learning perspective and

kernel density estimation. According to Feng et al. (2020), the modal estimator θ can be

defined as θ̂ = argmaxθ
∫
X fY |X(m(X, θ) | X)dfX(X), where fX(·) is the marginal density of

X. Given empirical observations, we can transform the density maximization problem over

some hypothesis spaces into a task of maximizing the kernel density function and effectively

achieve Definition 1. Let gε(ε) be the continuous density function of ε = Y − Mode(Y |
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X) = Y −m(X, θ). Under the maintained assumption of h such that h → 0 with sample

size increasing, we have

sup
ε∈R

|gε(ε)−
∫

K(w)gε(ε+ wh)dw| ≤ sup
ε∈R

∫
|gε(ε)− gε(ε+ wh)|K(w)dw

≤ sup
ε∈R

∫
|g(1)ε (ε)wh|K(w)dw = |g(1)ε (ε)|h

∫
|w|K(w)dw → 0,

(2.4)

where g
(1)
ε (ε) denotes the first derivative of gε(ε). Hence, there exists a modal parameter

θ that can maximize the density of ε, which establishes the underlying modal estimation

mechanism. Completely different from the bandwidth in nonparametric estimation deter-

mining the smoothness of the function, the bandwidth h in modal regression controls the

estimation of mode and the balance between robust estimate (h is treated as a constant)

and mode estimate (h depends on sample size).

In accordance with the above definition, we develop a two-step estimation proce-

dure to obtain modal estimates. The first step is the construction of estimated residuals

{V̂i}ni=1 in the reduced form equation using linear modal regression of Xi on Zi. Specifically,

we maximize the following global kernel-based objective function7

Qn(α, π) =
1

nh

n∑
i=1

ϕ

(
Xi − α− ZT

i π

h

)
, (2.5)

where ϕ(·) : R → R is a nonnegatively symmetric kernel, and h = h(n) → 0 as n → ∞ is

a sequence of positive bandwidth utilized in this step that depends on sample size n. To

prevent notation confusion, we suppress the n for all bandwidths used in this paper. As

stated in Yao and Li (2014) and Ullah et al. (2021), the choice of kernel function in modal

regression has less impact on the asymptotic behavior of estimators compared to the choice

7When π = 0, the objective function (2.5) becomes 1
nh

∑n
i=1 ϕ

(
Xi−α

h

)
, which is the kernel estimate of the

density function of Xi at Xi = α. Therefore, the maximizer of the preceding equation will be the mode value
of Xi. With n → ∞ and h → 0, it will converge to the mode of distribution of Xi under certain conditions
based on Definition 1, which is the fundamental concept of modal regression coefficient estimation.
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of bandwidth. We thus use ϕ(·) as a normal kernel to form a closed-form expression in the

M-Step of the following MEM Algorithm 1.8 The general conditions imposed on the kernel

function are discussed in Section 2.4. The solutions of (2.5), represented by α̂ and π̂, stand

for the first step estimators. We denote the estimator of the unknown error term Vi as

V̂i = Xi − α̂− ZT
i π̂.

Remark 2.3.5 (Identification) Before delving into the details of estimating, we give a

remark on the identification issue, which is essential for understanding the proposed modal

estimator and deriving the limiting distribution theory. In modal regression models, a nec-

essary (but not sufficient) condition for identification is that the number of population or-

thogonality conditions is at least as large as the number of model parameters, i.e.,

E

[
1

h3
Ziϕ

(
Xi − α− ZT

i π

h

)(
Xi − α− ZT

i π
)
|α=α0,π=π0

]
= 0,

where α0 and π0 are the true values of the parameters. Then, α0 and π0 are locally identified

if there exists a neighborhood of α0 and π0 within which only α0 and π0 satisfy (2.5). If

there are multiple solutions to these moment conditions, the parameters cannot be identified

without other restrictions. Furthermore, consistent with the sufficient condition in Chen

et al. (2014) for local identification in parametric models, we can achieve local identifica-

tion for modal regression if the partial derivative matrix of the left-hand side of the above

8We further illustrate the convenience of using normal kernel function here. Taking the first derivative
of the aforementioned kernel-based objective function with respect to π, we can obtain

1

nh3

n∑
i=1

Ziϕ

(
Xi − α− ZT

i π

h

)(
Xi − α− ZT

i π
)
|α=α̂,π=π̂= 0.

The above equation can be represented by the population version in Remark 2.3.5, which is the moment
condition in standard modal regression estimation. It is clear that the maximization of the modal regression
objective function is essentially a weighted least square problem. We can then use an iterative procedure to
obtain estimates, which builds the underlying mechanism of the MEM algorithm.
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moment condition with respect to the α and π parameters has full rank. The estimation

steps/procedures listed below are all subjected to the same set of arguments.

The second step is the estimation of semiparametric partially linear modal re-

gression of Yi on Xi, Z1,i and V̂i by imposing the conditional mode independence restriction

and treating V̂ as a nuisance parameter. The systematic investigation of this model is novel

in modal regression, which is not explicitly available in the literature. Thus, there is an in-

dependent interest in establishing estimation procedure and asymptotic theorems. Because

there exist both parametric and nonparametric components simultaneously in the model,

which should be estimated with modal parametric and nonparametric rates of convergence,

respectively, we propose the following three-stage estimation method to achieve the optimal

convergence rates under the assumption that the unknown function m(·) has a continuous

second derivative.

In the first stage, we apply local linear technique to approximate m(V̂i) for V̂i in

the neighborhood of v by substituting Vi with the residual from the first step and assuming

continuity and differentiability of the unknown function m(·)

m(V̂i) ≈ m(v) +m(1)(v)(V̂i − v)≡α1 + α2(V̂i − v),

in which m(1)(v) indicates the first derivative of m(v), “≈” denotes the approximation by

ignoring higher orders, “≡” means “is defined as”, α1 = m(v), and α2 = m(1)(v). We let

{β̃, γ̃, α̃1, α̃2} be the maximizers of the following local kernel-based objective function

Qn(β, γ, α1, α2) =
1

nh1h2

n∑
i=1

ϕ

(
Yi −Xiβ − ZT

1,iγ − α1 − α2(V̂i − v)

h1

)
K

(
V̂i − v

h2

)
,

(2.6)
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where K(·) : R → R is a nonnegatively symmetric kernel, h1 = h1(n) → 0 and h2 =

h2(n) → 0 are two sequences of bandwidths tending to zero as n increases, and h2 controls

the degree of smoothing as usual in nonparametric regression. For simplicity of calculation,

we also choose K(·) as a normal kernel in numerical analysis. We then have the initial

estimators of the parameters denoted as {β̃, γ̃, m̃(v), m̃(1)(v)}.

Because we only use data in a local neighborhood of v to estimate the global

parameters β and γ, the initial estimators β̃ and γ̃ do not have global convergence rates, as in

conventional semiparametric mean regression. Treating m̃(·) and V̂i as nuisance parameters,

we can further improve the convergence rates of the parametric component estimators using

all data in the second stage by plugging the initial estimator m̃(V̂i) from the first step

and maximizing the following global kernel-based objective function

Qn(β, γ) =
1

nh3

n∑
i=1

ϕ

(
Yi − m̃(V̂i)−Xiβ − ZT

1,iγ

h3

)
, (2.7)

where h3 = h3(n) is a sequence of bandwidths that tend to zero as the sample size n

approaches infinity. We denote the estimators of β and γ from (2.7) as β̂ and γ̂.

Remark 2.3.6 (Global Mean) In addition to the kernel-based objective function, we can

alternatively apply the following global mean method to obtain the final estimators of β and

γ in the second stage by taking advantage of the full sample information

β̂ = Mean(β̃(V̂i)) =

∫
β̃(V̂i)dW (v), and γ̂ = Mean(γ̃(V̂i)) =

∫
γ̃(V̂i)dW (v),

where W (·) is a deterministic weighting function with
∫
dW (v) = 1. We can then follow

the same proving procedures as in this paper to demonstrate that the estimators are
√
nh31-
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consistent and asymptotically normal under certain regularity conditions. The mechanism of

such a mean method is comparable to that of average marginal effect or derivative estimation.

In the last stage, we improve the efficiency of the estimator of the nonparametric

part by plugging in the previous parametric estimators. Since the parametric component is

estimated with a modal parametric convergence rate in the second stage, which is faster than

the fastest possible rate of convergence for the modal nonparametric component, it is feasible

to estimate the nonparametric part as asymptotically efficiently as if the parametric part

were known. We thereupon maximize the following local kernel-based objective function in

the same way that we do in fully nonparametric modal regression

Qn(α1, α2) =
1

nh4h5

n∑
i=1

ϕ

(
Yi −Xiβ̂ − ZT

i γ̂ − α1 − α2(V̂i − v)

h4

)
K

(
V̂i − v

h5

)
, (2.8)

where h4 = h4(n) and h5 = h5(n) are two sequences of positive numbers tending to zero,

named bandwidths, as n → ∞. Consistent with nonparametric estimation, the bandwidth

h5 controls the smoothness of the estimated function. We then have the final estimators

denoted as {m̂(v), m̂(1)(v)}, which are expected to be more efficient than the initial esti-

mators since we do not need to account for the uncertainty of estimating the parametric

component.

Remark 2.3.7 (B-Splines) We adopt the local linear approximation method because of

its attractive properties, such as high statistical efficiency, automatic boundary effect cor-

rections, and design adaptation (Fan and Gijbels, 1996). However, in addition to the

proposed two-step estimation procedure, popular spline methods (such as B-spline) with

good approximating properties can also be applied to estimate the modal coefficients. Espe-
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cially, let B(V̂ ) = (B1(V̂ ), · · · , Bq(V̂ ))T denote B-spline basis functions of order l, where

q = N + l + 1 and N is the number of interior knots. Then, m(V̂ ) can be approximated by

m(V̂ ) ≈ B(V̂ )Tλ, where λ is a q × 1 vector of unknown parameters. This implies that we

are able to obtain the estimators by maximizing the global kernel-based objective function

shown below

1

nhb

n∑
i=1

ϕ

(
Yi −Xiβ − ZT

1,iγ −B(V̂ )Tλ

hb

)
,

where hb = hb(n) → 0 is a bandwidth that depends on n. Thus, we can avoid estimating non-

parametric modal regression with the use of B-splines. Following the same proof procedures

for Theorem 2.4.6, it can be shown that the estimators of β, γ, and λ are
√
nh3b-consistent

and asymptotically normal under mild conditions.

The proposed modal estimators do not admit analytic expressions and require fea-

sible implementation through a numerical algorithm. To obtain the numerical solutions of

the aforementioned estimators, we develop a modified MEM Algorithm 1 based on Yao et al.

(2012) and Yao (2013) that decomposes the optimization into E-Step and M-Step. We pri-

marily show the algorithms for (2.5) and (2.6), whereas (2.7) and (2.8) can be quantitatively

solved using the appropriate MEM algorithm with minor modifications as well. It is worth

noting that maximizing the kernel-based objective function is equivalent to maximizing the

log value of the related function. The monotone ascending property of the proposed MEM

algorithm can then be established along the lines of the classical EM algorithm by applying

Jensen’s inequality, which guarantees the convergence and stability of the algorithm. What

is more, owing to the use of shrinking bandwidths, the modified MEM algorithm may be
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Algorithm 1 MEM Algorithm

Equation (2.5)

E-Step. Calculate the weight w
(
i | α(g), π(g)

)
, i = 1, · · · , n with the preliminary estimates

of the modal parameters as

w
(
i | α(g), π(g)

)
=

ϕ
(
Xi−α(g)−ZT

i π(g)

h

)
∑n

i=1 ϕ
(
Xi−α(g)−ZT

i π(g)

h

) .
M-Step. Update

(
α(g+1), π(g+1)

)
with the weight calculated in the E-Step

(
α(g+1), π(g+1)

)
= argmax

α,π

n∑
i=1

{
w
(
i | α(g), π(g)

)
log

1

h
ϕ

(
Xi − α− ZT

i π

h

)}

= (Z∗TWZZ
∗)−1Z∗TWZX,

where g is the iteration indicator, Z∗ = (Z∗
1 , · · · , Z∗

n)
T with Z∗

i = (1 ZT
i )

T ,

X = (X1, · · · , Xn)
T , and WZ is an n × n diagonal matrix with diagonal elements

{w
(
i | α(g), π(g)

)
}ni=1.

Iterate. Given the initial values (e.g., mean regression estimates), iterate E-Step and

M-Step repeatedly until a stopping criteria is satisfied, i.e., ∥π(g+1) − π(g)∥ < 10−5.

Equation (2.6)

E-Step. Define κ = (β, γ, α1, α2). Calculate the weight w
(
i | κ(g)

)
, i = 1, · · · , n with the

preliminary estimates of the modal parameters as

w
(
i | κ(g)

)
=

ϕ

(
Yi−Xiβ

(g)−ZT
1,iγ

(g)−α
(g)
1 −α

(g)
2 (V̂i−v)

h1

)
K
(
V̂i−v
h2

)
∑n

i=1 ϕ

(
Yi−Xiβ(g)−ZT

1,iγ
(g)−α

(g)
1 −α

(g)
2 (V̂i−v)

h1

)
K
(
V̂i−v
h2

) .
M-Step. Update κ(g+1) with the weight calculated in the E-Step

κ(g+1) = argmax
κ

n∑
i=1

{
w
(
i | κ(g)

)
log

1

h1
ϕ

(
Yi −Xiβ − ZT

1,iγ − α1 − α2(V̂i − v)

h1

)}
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Algorithm 1 MEM Algorithm

= (X∗TWXX∗)−1X∗TWXY,

where X∗ = (X∗
1 , · · · , X∗

n)
T with X∗

i = (Xi, Z
T
1,i, 1, V̂i − v), Y = (Y1, · · · , Yn)T , and WX is

an n× n diagonal matrix with diagonal elements {w(i | κ(g))}ni=1.

Iterate. Given the initial values (e.g., local linear mean regression estimates), iterate E-Step

and M-Step repeatedly until a stopping criteria is satisfied, i.e., ∥κ(g+1) − κ(g)∥ < 10−5.

stuck at the local optima. To avoid the potential local maximum and achieve the global

favorable one, it is advisable to try different initial values in practice to select the best

optimal estimate by comparing the values of the target function (Ullah et al., 2021, 2022).9

Remark 2.3.8 (Modal-Based Robust Control Function) We in this paper investigate

the newly proposed modal regressions utilizing kernel-based objective functions augmented

with shrinking bandwidths, where we assume that the error distribution is skewed to enable

the mode to differ from the mean. It is observed that with the focus on the mean regression

version of (2.1) such that E(Vi | Zi) = 0 and E(Ui | Xi, Zi) ̸= 0, the proposed estimation

procedure in this paper can still be applied to account for outliers or aberrant observations but

with the conditions that bandwidths h, h1, and h3 are treated as constants (do not depend

on sample size n and can determine the degree of robustness and efficiency); see Yao et

al. (2012). Under suitable conditions, we can obtain more robust and efficient estimators

compared to mean estimators by choosing appropriate tuning parameters when the data

9When the MEM algorithm has been trapped in a local optimal area, a rather naive strategy would be
to keep iterating in the expectation that the algorithm will eventually locate the global maximum after a
large number of iterations. However, it is preferable to start with estimates obtained by other estimation
techniques, such as mean estimation, quantile estimation, or any other robust estimations.
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have a heavy-tailed error distribution or outliers. In addition, modal-based estimation will

be as asymptotically efficient as mean estimation when there are no outliers or the error is

normally distributed.10

The fundamental principle for modal-based robust control function estimation is

that given symmetric data, the modal regression line is identical to the mean regression line

Mode(Yi | Xi, Zi, Vi) = E(Yi | Xi, Zi, Vi)

= Xiβ + ZT
1,iγ + E(Ui | Vi)

= Xiβ + ZT
1,iγ +Mode(Ui | Vi),

Mode(Xi | Zi) = E(Xi | Zi) = α+ ZT
i π,

where the estimation procedure and kernel-based objective functions are exactly the same

as those previously described. Particularly, the estimators are obtained by maximizing the

corresponding kernel-based objective functions, with the bandwidths related to error terms

treated as constants. Such a modal-based estimation is capable of dealing with data contain-

ing outliers or heavy-tailed distributions under the content of the control function, which

has not previously been investigated in the literature. The convergence rates and asymp-

totic normality of the proposed modal-based robust estimators for both the parametric and

nonparametric parts are established without assuming any parametric form on the error dis-

tribution. The asymptotic results are shown to be completely different from those of modal

estimators, and the convergence rates are the same as those of mean regression; see Remarks

2.4.11, 2.4.12, and 2.4.15 for theoretical results and Appendix A for simulation results.

10If the noise follows a normal distribution, the least square estimator will be the most efficient estimator
of the regression coefficient. However, when the errors are heavy-tailed or contain outliers, the efficiency of
the least square estimator will be severely reduced. Although M-estimation and quantile estimation can be
applied to achieve robustness, they will lose efficiency when the data are from a normal distribution.
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2.4 Asymptotic Properties

We in this section provide a full characterization of the asymptotic behavior of the pro-

posed estimators in different steps/stages. To begin, we shall list certain notations that

will be utilized throughout the rest of the section. We define m(2)(v) = ∂2 [m(v)] /∂v2,

µj =
∫
wjK(w)dw, vj =

∫
wjK2(w)dw for j = 0, 1, 2, 3, and use g(c)(·) to denote the cth

derivative of density function g(·). For any vector or matrix A, let ∥A∥ = [trace(ATA)]1/2

be the Euclidean norm. We call that Tn(x) = T (x)+op(sn) (or Op (sn)) uniformly for x ∈ X

if supx∈X |Tn(x)− T (x)| = op (sn) (or Op (sn)), and use “
d→” and “

p→” to represent conver-

gence in distribution and probability, respectively. We define a function f(n) = O(1) if

there exist some non-zero constants c and N such that f(n)/c → 1 for n ≥ N . To facilitate

the derive of the consistency and asymptotic theorems for the proposed modal estimators

in a general framework, we impose the following regularity conditions.

C1 (Parameter Space) The true values of parameters α0, π0, β0, and γ0 are in the interior

of the known compact parameter space, which is a subset of R1 ×RdZ ×R1 ×RdZ1 .

C2 (Identification) The dimension of Z (dZ) is larger than that of Z1 (dZ1).

C3 (Smoothness) Define S(V ) as a function space in which m(·) ∈ S(V ) if m : V → R,

then m(·) has at least a continuous second derivative on an open set containing the

point v.

C4 (Kernel Function) The kernel functions ϕ(·) : R → R and K(·) : R → R are non-

negatively symmetric density functions with bounded support and integrate to one.

Furthermore,
∫
t2K(t)dt < ∞ and

∫
t2K2(t)dt < ∞.
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C5 (Conditional Density I) The conditional density function of V given Z denoted by

gV (· | Z) : R × RdZ → R is greater than zero and continuous at V for all V and Z.

Furthermore, gV (· | Z) is assumed to have the fourth continuous derivative and global

mode at zero, i.e., gV (· | Z) < gV (0 | Z) for all V ̸= 0 and Z. Also, 0 < inf gV (· |

Z) ≤ sup gV (· | Z) < ∞.

C6 (Conditional Density II) For a fixed point v, fV (v) > 0, where fV (·) is the marginal

density of V that is continuous at v, and gϵ(· | X,Z, V ) > 0 is continuous at ϵ for all

X,Z, V , where ϵ = Y − (Xβ + ZT
1 γ + m(V )) and gϵ(· | X,Z, V ) is the conditional

density function of ϵ. Furthermore, gϵ(· | X,Z, V ) is assumed to have the fourth con-

tinuous derivative and global mode at zero, i.e., gϵ(· | X,Z, V ) < gϵ(0 | X,Z, V ) for

all ϵ ̸= 0 and X,Z, V . Both fV (v) and gϵ(· | X,Z, V ) are bounded away from infinity.

C7 (Moment) There exists a constant s > 2 such that E(∥Z∥2s) < ∞ and E(|X|2s) < ∞.

The matrices J , Γ, JX , and Γ2 defined in the following theorems are negative definite.

The conditions listed above are relatively mild and can be satisfied in a variety

of practical situations; see the similar conditions used in Kemp and Santos Silva (2012),

Yao and Li (2014), and Ullah et al. (2021, 2022). C1 is an ordinary regularity condition

on parameters that is generally easy to verify. Moreover, compactness is not restrictive in

microeconometric applications and can be relaxed at lengthy arguments. C2 is the necessary

condition for identification, which is the same as the one used in Li et al. (2007). It states

that Z and Z1 may share some common components, but at least one non-overlapping

component must be present. C3 is a commonly used condition on the smoothness of the

unknown function in local linear estimation. It controls the precision in the approximation
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as the second derivative of m(·) impacts the bias asymptotically. It has been observed

that a higher-order bias can be achieved if we impose more restrictive conditions on the

smoothness of the function m(·). The bounded support in C4 imposed on kernel functions

is for the brevity of proofs and may be eased with certain integrability restrictions on the

tail of the kernel functions; for example, the normal kernel function is allowed. In this

paper, we choose the normal kernel function for ϕ(·) in theoretical analysis. Thus, we

do not include all of the regularity conditions for the general kennel functions here. The

details of the kernel conditions can be found in Kemp and Santos Silva (2012). C5 and C6

imply certain smoothness of distributions in the neighborhood of zero, which is necessary

for identification. More specifically, C5 is required for the first step estimation, while C6

is the regularity condition for the second step estimation. Both of them imply that the

conditional density of the error term has a well defined global mode at zero. It is to be

conceded that this assumption is utilized for illustrative purposes. When the population is

not homogeneous (i.e., clustered/inhomogeneous data), the proposed estimation procedure

can also be applied in a multimode environment, where the various modal solutions will be

found by starting from multiple initial values. C7 is the classic rank condition for ensuring

the existence of the asymptotic mean and variance for the proposed modal estimators by

placing restrictions on the moments of covariates. Unlike modal-based estimation in Remark

2.3.8, we do not need to impose any moments on the error terms for modal regression.

Remark 2.4.9 Bandwidths are critical parameters in the proposed estimation procedure

for reducing the bias from the previous step/stages to a sufficiently small order, so that the

bias can be neglected asymptomatically and the oracle property is achieved. This under-
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smoothing (goes to zero faster relative to the usual optimal bandwidth choice) is standard in

the semiparametric literature when the first stage estimates are employed in a second stage

parametric or nonparametric estimation. All conditions related to bandwidth sequences in

different steps/stages are specified for each of the theorems stated below. It is worth noting

that the i.i.d. assumption for the data {(Yi, Xi, Zi)}ni=1 in this paper is shared with many

prior analyses on control function literature. Nevertheless, it is inessential and can be relax-

ed to allow for some forms of stationary time series dependence, such as α-mixing in Su and

Ullah (2008), without affecting asymptotic results by imposing some restricted conditions.

We then discuss the asymptotic properties of the proposed estimation procedure.

The main results are to show that the estimators in different steps/stages are asymptotically

equivalent to infeasible estimators (without knowing the true values of some components).

As a result, the proposed procedure resembles many other kernel-based multi-stage non-

parametric procedures in that the first stage estimators do not contribute to the asymptotic

property of the final stage estimators. The limiting distributions for the first step estimators

are illustrated as follows.

Theorem 2.4.1 Under the regularity conditions C1-C5 and C7, with probability approach-

ing one, as n → ∞, h → 0, and nh5 → ∞, there exists a consistent maximizer θ̂ = (α̂, π̂T )T

of (2.5) such that

∥θ̂ − θ0∥ = Op

((
nh3

)−1/2
+ h2

)
,

where θ0 = (α0, π
T
0 )

T represents the true parameter vector.

Theorem 2.4.2 With nh7 = O(1) and Z∗ = [1 ZT ]T , under the same conditions as Theo-

rem 2.4.1, the estimator satisfying the consistency result in Theorem 2.4.1 has the following

asymptotic result
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√
nh3

(
θ̂ − θ0 −

h2

2
J−1M(1 + op(1))

)
d→ N

(
0,

∫
t2ϕ2(t)dtJ−1LJ−1

)
.

Furthermore, with the assumption that nh7 → 0, we have

√
nh3

(
θ̂ − θ0

)
d→ N

(
0,

∫
t2ϕ2(t)dtJ−1LJ−1

)
,

where J = E(Z∗Z∗T g
(2)
V (0 | Z)), L = E(Z∗Z∗T gV (0 | Z)), and M = E(Z∗g

(3)
V (0 | Z)).

The proofs of Theorems 2.4.1 and 2.4.2 are similar to those of Yao and Li (2014),

which investigated linear modal regression, so we omit them for brevity. Theorems 2.4.1

shows that the convergence rate of the first step estimators can be divided into two com-

ponents. The first component
(
nh3

)−1/2
reflects the convergence rate of the variance term,

while the second component h2 represents the convergence rate of the bias term. In com-

parison to mean estimation, modal estimation introduces an additional bias component due

to the capture of mode through kernel estimating. Theorem 2.4.2 indicates that the mean

squared error (MSE) optimal smoothing h is proportional to n−1/7, and that there is a trade-

off between the convergence rate and the asymptotic bias in the asymptotic normality of

modal estimators.11 By undersmoothing (limn→∞
√
nh7 → 0), we can successfully eliminate

the asymptotic bias at the expense of a slower convergence speed. With the MSE-optimal

bandwidth, the modal estimators in the first step have a limiting non-centered normal dis-

tribution with the convergence rate n−1/4, which is slower than that of mean estimators due

to the usage of a small portion of total observations around mode (controlled by bandwidth

h). Such a slower convergence rate is the price we need to pay for estimating the mode.

11The exact expression of the asymptotically optimal bandwidth by minimizing MSE is ĥMSE =
[3v2tr(J

−1LJ−1)/(MTJ−1J−1M)]1/7n−1/7. However, such an expression is less useful in practice since
it is tedious and difficult to estimate components in the expression to achieve the estimate of bandwidth.
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Remark 2.4.10 In order to conduct large sample statistical inference, it is necessary to

have consistent estimators for the asymptotic variance-covariance components J−1L(J−1)T ,

which can be estimated by a kernel estimator, denoted as Ĵ−1L̂(Ĵ−1)T . By undersmoothing,

the approximate (1− α) confidence interval for θ0 can be obtained as

{
θ̂−tα

2

(
(nh3)−1

∫
t2ϕ2(t)dtĴ−1L̂(Ĵ−1)T

)1/2
, θ̂+tα

2

(
(nh3)−1

∫
t2ϕ2(t)dtĴ−1L̂(Ĵ−1)T

)1/2}
,

where tα/2 denotes the upper α/2 quantile of the standard normal distribution. However,

this is not particularly convenient in practice owing to the complex structure of the com-

ponents and the requirement to nonparametrically estimate conditional densities with addi-

tional smoothing parameters. We practically can instead apply the bootstrap method to draw

S sets of n observations with replacement from {(Xi, Zi)}ni=1, say {(Xsi, Zsi)}ni=1, to obtain

a bootstrapped estimator θ̂∗ and carry out analytical inference subsequently. This type of

bootstrap procedure is generally consistent. Under regularity conditions, the asymptotic dis-

tribution of
√
nh3[θ̂− θ0] can be approximated by the limiting distribution of

√
nh3[θ̂∗ − θ0];

see Zhang et al. (2020).

Remark 2.4.11 (Modal-Based Robust Estimator (First Step)) We assume that

bandwidth h is a constant number/tuning parameter that is independent of sample size

n and that the error term Vi is symmetrically distributed. With the additional assumptions

that E{ϕ(1)
h (V )} = 0, E(ϕ

(1)
h (V )2) is finite for any h > 0, and there exists a constant C > 0

such that E{supX:|X−V |<C |ϕ
(3)
h (V )|} < ∞ (used to regulate the magnitude of the remain-

der in the Taylor expansion), the asymptotic theorem for the modal-based robust estimator

θ̂robust will be
12

12With constant bandwidths, the kernel-based objective functions are special M-type robust regressions.
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√
n
(
θ̂robust − θ0

)
d→ N

{
0,
(
E(ϕ

(2)
h (V ))

)−2
E(ϕ

(1)
h (V ))2 {Cov(Z∗)}−1

}
,

where θ̂robust is the local maximizer of (2.5), ϕh(·) = ϕ(·/h)/h, and ϕ
(c)
h (·) is the cth deriva-

tive of ϕh(·). Thus, the asymptotic variance of θ̂robust depends on the tuning parameter

h. The performance of the modal-based robust estimator can then be better than or at

least as good as the least square estimator by appropriately choosing h. The asymptotic

relative efficiency of the modal-based robust estimator over the least square estimator is

V ar(V )[E(ϕ
(2)
h (V ))]2E[(ϕ

(1)
h (V ))2]−1. The optimal tuning parameter should be chosen as

hopt = argmaxh[E(ϕ
(2)
h (V ))]2E[(ϕ

(1)
h (V )2)]−1, which is solely dependent on the derivatives

of ϕ(·). In practice, we can combine with the grid search method to select tuning param-

eter by numerically calculating the components in the aforementioned asymptotic relative

efficiency expression.

To appreciate the effect of the first step estimation on the second step, we rewrite

(2.6) as the following equation

1

nh1h2

n∑
i=1

ϕ

(
Yi −Xiβ − ZT

1,iγ −m(Vi)− (m(V̂i)−m(Vi))

h1

)
K

(
Vi − v + V̂i − Vi

h2

)
,

(2.9)

where m(V̂i)−m(Vi) = m(1)(V̄i)(V̂i−Vi), V̄i is between V̂i and Vi according to the first-order

Taylor expansion, and m(1)(V̄i) is the first derivative of m(·) with regard to Vi evaluated

The proof of the asymptotic result could be as simple as in M-type regression. Particularly, we can prove
the

√
n-consistency result by following the procedures for proving Theorem 2.4.5. After that, we have

0 =
1

n

n∑
i=1

Z∗
i ϕ

(1)
h

(
Vi − Z∗T

i (θ̂robust − θ0)
)

=
1

n

n∑
i=1

Z∗
i

{
ϕ
(1)
h (Vi)− ϕ

(2)
h (Vi)Z

∗T
i (θ̂robust − θ0) +

1

2
ϕ
(3)
h (Vi)

(
Z∗T

i (θ̂robust − θ0)
)2

+ op(1)

}
,

where the third component is also op(1). Since the bandwidth h is a constant, we can derive the theorem
directly from the central limit theorem and Slutsky’s theorem.

36



at V̄i. Even though the associated asymptotic results are available in the literature of

both linear and nonparametric modal regressions, none of them are directly applicable here

because we need to take into account the additional bias factor introduced by the previous

step, which is shown in (2.9). However, given fairly mild bandwidth conditions, it can be

demonstrated that the bias from the first step is asymptotically disregarded and does not

affect the convergence rate of the second step estimators. The following theorems establish

that the proposed first stage estimators converge at the optimal local linear modal regression

rate and have a limiting non-centered normal distribution.

Theorem 2.4.3 Under the regularity conditions C1-C7, with probability approaching one,

as n → ∞, h/h2 → 0, h1 → 0, h2 → 0, h22/h1 → 0, and nh2h
5
1 → ∞, there exist consistent

maximizers (η̃, m̃(v), h2m̃
(1)(v)) of (2.6) such that

i. |m̃(v)−m(v)| = Op

((
nh2h

3
1

)−1/2
+ h21 + h22

)
,

ii. |h2(m̃(1)(v)−m(1)(v))| = Op

((
nh2h

3
1

)−1/2
+ h21 + h22

)
,

iii. ∥η̃ − η0∥ = Op

((
nh2h

3
1

)−1/2
+ h21 + h22

)
,

where η̃ = (β̃, γ̃T )T , and η0 = (β0, γ
T
0 )

T is the true parameter vector.

Theorem 2.4.4 With nh52h
3
1 = O(1), nh2h

7
1 = O(1), and ZX = [X ZT

1 ]
T , under the same

conditions as Theorem 2.4.3, the estimators satisfying the consistency results in Theorem

2.4.3 have the following asymptotic result

√
nh2h31

[


m̃(v)−m(v)

h2(m̃
(1)(v)−m(1)(v))

η̃ − η0

− Γ−1

(
h22
2
m(2)(v)E


µ2

µ3

µ2ZX

− h21
2

g
(3)
ϵ (0 | X,Z, V = v)

g
(2)
ϵ (0 | X,Z, V = v)
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E


µ0

µ1

µ0ZX


)
(1 + op(1))

]
d→ N

(
0,

gϵ(0 | X,Z, V = v)
∫
t2ϕ2(t)dt

fV (v)g
(2)
ϵ (0 | X,Z, V = v)2

Γ−1ΣΓ−1

)
.

If we allow nh52h
3
1 → 0 and nh2h

7
1 → 0, the asymptotic theorem becomes

√
nh2h31


m̃(v)−m(v)

h2(m̃
(1)(v)−m(1)(v))

η̃ − η0


d→ N

(
0,

gϵ(0 | X,Z, V = v)
∫
t2ϕ2(t)dt

fV (v)g
(2)
ϵ (0 | X,Z, V = v)2

Γ−1ΣΓ−1

)
,

where Γ = E


µ0 µ1 µ0Z

T
X

µ1 µ2 µ1Z
T
X

µ0ZX µ1ZX µ0ZXZT
X

 and Σ = E


v0 v1 v0Z

T
X

v1 v2 v1Z
T
X

v0ZX v1ZX v0ZXZT
X

.

We have a sort of oracle property here in that the asymptotic properties of the

first stage estimators are the same as in the feasible case where the residuals {Vi}ni=1 are

observed. The consistency of the first step estimators in Theorem 2.4.1 implies that the

estimated residuals satisfy |V̂i − Vi| = Op((nh
3)−1/2 + h2) = Op(n

−2/7), which actually

converges to zero faster than h21 = O(n−2/8) and h22 = O(n−2/8), and is the underlying

reason why the effect of V̂i on the asymptotic results for the first stage estimators is negligible

asymptotically. These observations indicate that the condition h/h2 → 0 is reasonable

considering from the perspective of MSE-optimal bandwidth rates. A similar oracle property

has been observed in the fixed effects modal regression for panel data investigated by Ullah

et al. (2021), where they proposed a pseudo-demodeing two-step method for estimating

modal coefficients. Compared to the linear modal estimators in the first step, as we only

use data in the neighborhood of v, the estimator η̃ is
√

nh2h31-consistent with an extra

38



bias caused by the estimation of nonparametric component. It is noticed that the bias will

converge to zero with undersmoothing (limn→∞
√
nh2h71 → 0 and limn→∞

√
nh52h

3
1 → 0).

Remark 2.4.12 (Modal-Based Robust Estimators (First Stage)) Similar to the re-

sults in Remark 2.4.11, we can build the asymptotic theorem for the modal-based robust

estimators with the assumption that the data are symmetrically distributed. To achieve ro-

bustness and efficiency, we treat bandwidth h1 as a tuning parameter (constant). Then,

if h2 → 0 as n → ∞ (nh2 → ∞), with conditions C1-C4 and the additional assump-

tions that E(ϕ
(1)
h1

(ϵ) | X,Z, V ) = 0 and E(ϕ
(2)
h1

(ϵ)2 | X,Z, V ), E(ϕ
(1)
h1

(ϵ)3 | X,Z, V ), and

E(ϕ
(3)
h1

(ϵ) | X,Z, V ) are continuous with respect to (X,Z, V ), we have13

√
nh2

[


m̃robust(v)−m(v)

h2(m̃
(1)
robust(v)−m(1)(v))

η̃robust − η0

− Γ−1h
2
2

2
m(2)(v)E


µ2

µ3

µ2ZX


]

d→ N
(
0,
{
G(h1)/F

2(h1)
}
Γ−1ΣΓ−1

)
,

where m̃robust(v), m̃
(1)
robust(v), and η̃robust are the modal-based robust estimators from (2.6),

F (h1) = E(ϕ
(2)
h1

(ϵ) | X,Z, V = v), and G(h1) = E(ϕ
(1)
h1

(ϵ)2 | X,Z, V = v). Consistent with

traditional nonparametric mean estimation,
√
nh2 consistency is achieved. The asymptotic

bias term is the same as in the local linear mean estimation because of the faster convergence

rate of the estimator in the first step, while the ratio of the asymptotic variance of the modal-

based robust estimators to those of the local linear mean estimators is given by V ar(ϵ |

X,Z, V = v)G(h1)/F
2(h1). Following Yao et al. (2012), we can demonstrate that the

infimum of the above ratio is equal to one for all h1 > 0, implying that the performance of

13As the convergence rate of the first step estimator is faster, the asymptotic theorem can be proved by
combining the results in Yao et al. (2012), Zhang et al. (2013), and the proof of Theorem 2.4.4 by treating
bandwidth h1 as a constant. We leave it out for the sake of brevity.
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the modal-based estimation is better than (the error distribution has heavy tails) or at least

as good as (the error follows a normal distribution) the local linear mean estimation. With

undersmoothing (limn→∞
√
nh52 → 0), the bias can be asymptotically ignored.14

To investigate the property of the second stage estimators, we rewrite (2.7) as

1

nh3

n∑
i=1

ϕ

(
Yi −m(Vi)−Xiβ − ZT

1,iγ +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)
, (2.10)

which shows that there exist two extra terms in the true objective function, namely, m(Vi)−

m̃(Vi) = Op(
(
nh2h

3
1

)−1/2
+ h21 + h22) = Op(n

−2/8) and m̃(V̂i)− m̃(Vi) = m̃(1)(V̄i)(V̂i − Vi) =

Op(
(
nh3

)−1/2
+h2) = Op(n

−2/7), needing to be taken into account, in which m̃(1)(V̄i) is the

first derivative of m̃(·) with respect to Vi assessed at V̄i. With mild regularity conditions on

bandwidths, these two additional components can converge sufficiently fast to be disregarded

asymptotically. Built on these, we then formally establish the following asymptotic results

for the second stage estimators.

Theorem 2.4.5 Under the regularity conditions C1-C7 and the additional bandwidth con-

ditions h/h2 → 0, h1/h3 → 0, and h2/h3 → 0, with probability approaching one, as

n → ∞, h3 → 0, and nh53 → ∞, there exists a consistent maximizer η̂ = (β̂, γ̂T )T of

(2.7) such that

∥η̂ − η0∥ = Op

((
nh33

)−1/2
+ h23

)
.

Theorem 2.4.6 With nh73 = O(1), under the same conditions as Theorem 2.4.5, the esti-

mator satisfying the consistency result in Theorem 2.4.5 has the following asymptotic result

√
nh33

(
η̂ − η0 −

h23
2
J−1
X MX(1 + op(1))

)
d→ N

(
0,

∫
t2ϕ2(t)dtJ−1

X LXJ−1
X

)
.

14Practically, h1 can be chosen in the same way (maximizing the asymptotic relative efficiency) shown
in Remark 2.4.11, while h2 can be obtained by minimizing the MSE of the modal-based estimators such
that h2,opt = (V ar(ϵ | X,Z, V = v)G(h1)/F

2(h1))
−1/5h2,mean, where h2,mean is the asymptotic optimal

bandwidth for the local linear mean estimation. With the requirement of undersmoothing, we can further
let h∗

2,opt = h2,opt × n−2/15.
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Furthermore, under the assumption that nh73 → 0, we have

√
nh33 (η̂ − η0)

d→ N
(
0,

∫
t2ϕ2(t)dtJ−1

X LXJ−1
X

)
,

where JX = E(ZXZT
Xg

(2)
ϵ (0 | X,Z)), LX = E(ZXZT

Xgϵ(0 | X,Z)), and MX = E(ZXg
(3)
ϵ (0 |

X,Z)).

The preceding two theorems indicate that although there is an endogeneity issue

and Vi has to be estimated preliminarily, we can achieve the optimal convergence rate of

parametric components as in the usual linear modal regression under appropriate conditions.

This finding is in agreement with the classical result for the partially linear mean regression

model. The conditions h1/h3 → 0 and h2/h3 → 0 indicate that h1 → 0 and h2 → 0 are

faster than h3 → 0 as n → 0, which is required to guarantee that the influence of the

bias term in the first stage is not carried over to the second stage. We emphasize that

the MSE-optimal rate of bandwidth h3 is n−1/7, which obviously converges faster than the

MSE-optimal rate n−1/8 for h1 and h2. To reconcile this contradiction, we need to impose

a restrictive condition on the bandwidths h1 and h2 in order to achieve the oracle property

(see the following discussions on bandwidth selection in practice). As with the previous

estimators, if we further impose the undersmoothing condition (limn→∞
√

nh53 → 0), the

estimator η̂ is shown to be asymptotically normal centered at the true value priced at a

slower convergence rate.

Remark 2.4.13 The results of Theorem 2.4.6 resemble many other kernel-based multi-

stage nonparametric procedures, in which the first stage estimators do not contribute to the

asymptotic variance of the current stage estimators due to undersmoothing. However, this
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is not the case in most parametric estimation problems; see Newey et al. (1999) and the

subsequent results for modal-based robust estimation in Remark 2.4.14, where the first stage

estimators do contribute to the asymptotic variance of the second stage estimators. On the

other hand, if we do not impose bandwidth constraints to ensure that the estimators from

the first stage converge faster, the convergence rate of η̂ will be dominated by m̃(v) and η̃,

which is slower than
√
nh33 and depends on bandwidths h1 and h2.

Remark 2.4.14 (Modal-Based Robust Estimators (Second Stage)) Because only

data in a local neighborhood of v are used to estimate the parametric parameters, after we

obtain the modal-based robust estimates from the first stage estimation, we can treat the non-

parametric part as known and estimate the parametric part with a constant h3 to improve

the convergence rate. Undersmoothing, like in modal regression, is necessary to asymptot-

ically ignore the bias from the previous stage and achieve
√
n-consistency and asymptotic

normality. Define

Γn = −
n∑

i=1

ϕ
(2)
h3

(ϵ)ZX,i(m(Vi)− m̃(Vi))
p→ Γ1.

Following the results in Remark 2.4.11, if nh43 → 0 and nh23/ log(1/h3) → ∞ as n → ∞, it

can be demonstrated that

√
n (η̂robust − η0)

d→ N
{
0,
(
E
{
ϕ
(2)
h3

(ϵ) | X,Z
})−2

Var
{
(ZXϕ

(1)
h3

(ϵ)− Γ1) | X,Z
}}

,

where η̂robust is the modal-based robust estimator from (2.7). The comments for Remark

2.4.11, including bandwidth choice, are also applied here. In contrast to modal regression,

the previous stage estimation now contributes to the asymptotic variance of η̂robust, reflected

by term Γ1. Similar results have been presented in Kai et al. (2011) for composite quantile

regression.
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Analogous to the previous stages, we can rewrite (2.8) as

1

nh4h5

n∑
i=1

ϕ

(
Yi −Xiβ̂ − ZT

1,iγ̂ −m(Vi)− (m(V̂i)−m(Vi))

h4

)
K

(
Vi − v + V̂i − Vi

h5

)
,

(2.11)

which indicates that the bias effect (m(V̂i) − m(Vi)) from the first stage still needs to be

accounted for, but can be asymptotically ignored as expected by imposing special conditions

on bandwidths to ensure m(V̂i) converges to the truth at a rate sufficiently fast. Taking the

estimation bias from the second stage into account, we have the following results for the

third stage estimators.

Theorem 2.4.7 Under the regularity conditions C1-C7 and the additional bandwidth con-

ditions h/h5 → 0 and h3/h5 → 0, with probability approaching one, as n → ∞, h4 → 0, h5 →

0, h25/h4 → 0, and nh5h
5
4 → ∞, there exist consistent maximizers (m̂(v), h5m̂

(1)(v)) of (2.8)

such that

i. |m̂(v)−m(v)| = Op

((
nh5h

3
4

)−1/2
+ h24 + h25

)
,

ii. |h5(m̂(1)(v)−m(1)(v))| = Op

((
nh5h

3
4

)−1/2
+ h24 + h25

)
.

Theorem 2.4.8 With nh55h
3
4 = O(1) and nh5h

7
4 = O(1), under the same conditions as

Theorem 2.4.7, the estimators satisfying the consistency results in Theorem 2.4.7 have the

following asymptotic result

√
nh5h34

[ m̂(v)−m(v)

h5(m̂
(1)(v)−m(1)(v))

− Γ−1
2

h25
2
m(2)(v)

µ2

µ3

− h24
2

g
(3)
ϵ (0 | V = v)

g
(2)
ϵ (0 | V = v)

µ0

µ1




(1 + op(1))

]
d→ N

(
0,

gϵ(0 | V = v)
∫
t2ϕ2(t)dt

fV (v)g
(2)
ϵ (0 | V = v)2

Γ−1
2 Σ2Γ

−1
2

)
.
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If we allow nh55h
3
4 → 0 and nh5h

7
4 → 0, the asymptotic theorem becomes

√
nh5h34

 m̂(v)−m(v)

h5(m̂
(1)(v)−m(1)(v))

 d→ N

(
0,

gϵ(0 | V = v)
∫
t2ϕ2(t)dt

fV (v)g
(2)
ϵ (0 | V = v)2

Γ−1
2 Σ2Γ

−1
2

)
,

where Γ2 =

µ0 µ1

µ1 µ2

 and Σ2 =

v0 v1

v1 v2

. With symmetric kernel K(·), m̂(v) and

m̂(1)(v) are asymptotically independent.

Theorems 2.4.7 and 2.4.8 show that under appropriate conditions, the final esti-

mators of the nonparametric component are asymptotically equivalent to the oracle case,

where the true values of the parametric parts were known. The conditions h/h5 → 0 and

h3/h5 → 0 indicate that h → 0 and h3 → 0 are faster than h5 → 0 as n → 0, which are used

to ensure the asymptotically negligible effect of the second stage estimation on the third

stage. It is noticed that the MSE-optimal rate for bandwidths h4 and h5 is n−1/8. Thus, in

practice h/h5 → 0 and h3/h5 → 0 are generally satisfied. Similar to the previous discussion,

the bias will vanish with undersmoothing (limn→∞
√
nh5h74 → 0 and limn→∞

√
nh55h

3
4 → 0).

Theorem 2.4.8 shows that the third stage estimators have the similar formality of asymp-

totic theorems as the first stage estimators (having the same convergence rate), whereas

they should be expected to have smaller asymptotic variances due to the use of known

information of parametric components. As a result, the efficiency is improved.

Remark 2.4.15 (Modal-Based Robust Estimators (Third Stage)) After obtaining

the
√
n-consistency for the parametric part with modal-based robust estimation, we can carry

out local linear estimation with the objective function (2.8) to update the estimator for the

nonparametric part. If we treat h4 as a constant and h5 → 0 as n → ∞ (nh5 → ∞),
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with the similar conditions in Remark 2.4.12, the asymptotic distributions of m̂robust(v)

and m̂
(1)
robust(v) estimated from (2.8) are

√
nh5

[ m̂robust(v)−m(v)

h2(m̂
(1)
robust(v)−m(1)(v))

−Γ−1
2

h25
2
m(2)(v)

µ2

µ3


]

d→ N
(
0,

G(h4)

F 2(h4)
Γ−1
2 Σ2Γ

−1
2

)
.

As the convergence rate in the second stage is faster, there is no effect of η̂robust on estimators

in the third stage. The comments for Remark 2.4.12 are also applicable here, demonstrating

that the major advantage of modal-based estimation over mean estimation is the competitive

asymptotic efficiency. Similar to the results in modal regression, the third stage modal-based

robust estimators are more efficient than the corresponding first stage estimators, since the

uncertainty in the parametric part does not need to be taken into consideration.

One practical issue concerning the implementation of the proposed estimation pro-

cedure is the selection of bandwidths. We note that there appear to be few results available

in the modal regression literature for data-driven bandwidth selection with optimal proper-

ties. Yao and Li (2014) and Ullah et al. (2021) suggested a plug-in method for bandwidth

choice based on minimizing the asymptotic MSE of modal estimators, which may not be

suitable for this paper due to the special conditions imposed on bandwidths. Precisely,

the above asymptotic theorems indicate that the bandwidths in different steps/stages are

required to satisfy different conditions to ensure that the asymptotic bias of the estimators

in previous step/stages converges to zero at a faster rate than in the current estimation

step/stage. Meanwhile, as the mode is capturing the “most likely” points, which is different

from mean estimation, the conventional cross-validation method based on the MSE criterion

is inapplicable. We thus propose a simple bandwidth selection procedure that combines the
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optimal bandwidth rates (reflecting in the following power numbers of bandwidths) and the

undersmoothing requirement.

It is worth noting that bandwidths h2 and h5 serve the same purpose (i.e., con-

trolling smoothness) as they do in nonparametric estimation. For simplicity, we follow a

rule of thumb to set

h2 = 1.06σ̂(V̂i)n
−0.15 and h5 = 1.06σ̂(V̂i)n

−0.13,

where σ̂(V̂i) is the standard deviation of variable V̂i, and 0.15 and 0.13 are from the MSE-

optimal convergence rates and undersmoothing requirement. For bandwidths h, h1, h3, and

h4, they play much important roles in estimation and can determine the number of estimated

modes. We work with the undersmoothing assumption on the bandwidths following Kemp

and Santos Silva (2012) to apply the grid search method to select a number of potential

bandwidths. Specifically, we obtain the mean regression residual first, and then select 50

bandwidth values ranging from 50MAD to 0.5MADn
−γhj (γh = 0.16, γh1 = 0.15, γh3 =

0.143, γh4 = 0.13), in which MAD is the median value of the absolute deviation of the mean

regression residual from the corresponding median value and γhj
is from the MSE-optimal

convergence rates and undersmoothing requirement. In empirical applications, we choose

bandwidths as

hj = 1.6MADn
−γhj .

It is important to note that while the above bandwidth selection method may not offer

global optimal estimates, it does provide a straightforward method for selecting bandwidths

in numerical analysis that has been shown to perform effectively. The issue of how to choose

optimal bandwidths with endogeneity in modal regression is an interesting one that merits

more investigation.
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Remark 2.4.16 One way to consider the cross-validation method for modal estimation is

based on the fact that with the same interval length, the interval around the conditional

mode should cover more samples. Taking first step estimation as an example, we can then

maximize the kernel-based objective function below to obtain a data-driven bandwidth

CV (h) =
1

n

n∑
i=1

ϕ

(
Y−i − α̂−i − ZT

−iπ̂−i

h̄

)
,

where −i represents “without the observation indexed by i” and α̂−i and π̂−i are the corre-

sponding modal estimators. Practically, we can choose h̄ as 0.05max|Yi−Yj |, i, j = 1, · · · , n.

The theoretical property of such modal cross-validation deserves further study in the future.

2.5 Numerical Examples

To further illustrate the newly developed estimation procedure in dealing with endogeneity

in modal regression and to support the theoretical developments for the proposed estima-

tors, we carry out two Monte Carlo simulations and three real data analyses, one of which

is presented in Appendix A. In all numerical studies, we deploy the normal kernel function

defined as 1√
2π
exp(−u2

2 ) for ϕ(·) and K(·) and choose bandwidths using the approach de-

scribed above. To elucidate the resultant modal-based robust estimators, we also conduct

a Monte Carlo experiment with different error distributions, as shown in Appendix A.

2.5.1 Monte Carlo Experiments

Two simulation experiments are given in this part to illustrate the finite sample perfor-

mance of the proposed estimators and are used to examine whether empirical evidence can

be established in support of asymptotic normality. The first Monte Carlo experiment has a
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nonparametric control function. The second set of Monte Carlo experiments uses the para-

metric control function but with different degrees of endogeneity. We use DGP to represent

the data generating process in this subsection. To display the behavior of the developed

estimators, we consider sample sizes of n ∈ {200, 400, 600, 1000}. In all simulations, a total

of M =200 simulation replications are conducted, and the data are i.i.d. draws in each

replication. For the sake of comparison, we also run the naive linear modal regression on

the structural equation directly. For each simulation, we concentrate on the coefficients

β and γ and compute the average values of estimates, the standard errors (SEs), and the

MSEs of all estimators considered in order to compare and evaluate the performance of the

proposed estimators, where

MSE(β̂) =
1

M

M∑
l=1

(β̂l − β)2 and MSE(γ̂) =
1

M

M∑
l=1

(γ̂l − γ)2

in which β̂l and γ̂l are the lth estimators, and β and γ are the true values.

DGP 1 At first, we generate data according to the following model that satisfies the

conditional mode independence assumption

Yi = Xiβ + Z1,iγ + Ui,

Ui = Vi + 4exp(−(Vi − 1)2) + 0.5[Ũi − 1],

Xi = α+ Z1,iπ1 + Z2,iπ2 + Vi,

where Z1,i, Z2,i, and Vi are drawn from the following multivariate normal distribution
Z1,i

Z2,i

Vi

 ∼ i.i.d.N




0

0

0

 ,


1 0 0

0 1 0

0 0 1



 ,

48



and Ũi is drawn from a skewed distribution 0.5N(−1, 2.52) + 0.5N(1, 0.52) with E(Ũ) = 0

and Mode(Ũ) = 1 (Yao and Li, 2014; Ullah et al., 2021). Without loss of generality, we only

consider the case of one instrumental variable Z2,i and denote the set of all instruments as

Zi = [Z1,i Z2,i]
T . The regressor Xi is correlated with the error term Ui through Vi, and the

instrumental variable set Zi is correlated with Xi but not with Ui to correct for endogeneity

in modal regression. The parameter values are set as (β, γ, α, π1, π2) = (1, 1, 1, 1, 1). We

then have Mode(Vi | Zi) = 0, Mode(Ũi | Zi) = 1, and the control function15

Mode(Ui | Vi, Zi) = Vi + 4exp(−(Vi − 1)2).

Table 2.1: Results of Simulations—DGP 1

Two-Step Estimation Naive Estimation

Sample Size β (SE) MSE(β) γ (SE) MSE(γ) β (SE) MSE(β) γ (SE) MSE(γ)

n=200 0.9067 (0.4580) 0.2174 1.0525 (0.5961) 0.3563 2.1171 (0.2419) 1.3061 -0.1066 (0.4891) 1.4626

n=400 0.9778 (0.3155) 0.0996 1.0443 (0.4236) 0.1805 2.1172 (0.2098) 1.2919 -0.1109 (0.4416) 1.4281

n=600 0.9502 (0.2339) 0.0569 1.0203 (0.3563) 0.1267 2.1307 (0.1605) 1.3043 -0.1141 (0.3516) 1.3641

n=1000 0.9742 (0.1756) 0.0314 1.0313 (0.2446) 0.0605 2.1757 (0.1757) 1.4130 -0.1599 (0.3645) 1.4776

True Value β = 1 γ = 1

The estimation results for β and γ are shown in Table 2.1, from which we can

see that the proposed estimation procedure work well for all sample sizes considered. The

linear modal regression estimators without addressing endogeneity (naive estimation) are

inconsistent with larger positive biases for β and negative biases for γ for all sample sizes

(columns 6-9 in Table 2.1), whereas the proposed two-step estimators (columns 2-5 in Table

2.1) can approximate the true values of parameters with reasonable biases. As expected,

with the sample size increasing, the biases for the naive estimators do not shrink toward zero

15According to the simulation setting, we can obtain the mean control function E(Ui | Vi, Zi) = Vi +
4exp(−(Vi−1)2)−0.5, which indicates the difference in control function between mean and modal regressions
when the data are skewed. In this section we do not compare the performance of modal regression to that of
mean regression. However, the interested readers are referred to Yao and Li (2014), Yao and Xiang (2016),
and Ullah et al. (2021, 2022) for more simulation examples about the comparisons of these two models in
terms of prediction performance.
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and remain substantial even when n is large, while the proposed estimators rapidly converge

to the true values of parameters and the standard errors shrink quickly. In addition, as a

result of undersmoothing, the variance of the new estimator dominates in MSE. Although

it is hard to gauge the convergence rate of the proposed estimators with undersmoothing

from the reported results, their MSEs decrease steadily with increasing sample size in all

cases.16 All of the results are in line with the asymptotic properties, implying that the

proposed estimators are indeed consistent.

Figure 2.2: Histograms and QQ Plots for Estimates (β)—DGP 1

To further illustrate the asymptotic behavior of the proposed estimators, we pro-

vide a visual comparison to a normal distribution by displaying the corresponding his-

tograms and quantile-quantile (QQ) plots for the simulated estimates of β and γ in Figures

2.2 and 2.3, respectively. The plots are all in accord with the theoretical results that the p-

rposed estimators are asymptotically normally distributed. The histograms for the sample

16We emphasize that although the finite sample performance of the proposed estimators is relatively good
according to the simulation results, the lack of data-driven choice of bandwidths could be a disadvantage of
the proposed estimation procedure, and shall be explored in a future study. In addition, Table 2.1 shows
that there exists some small bias in the proposed modal estimators. Such an issue can be addressed in more
depth using the bootstrap methodology for bias correction.
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estimates are centered at the true values of the population parameters. As the sample size

n increases, the points in the QQ plots match up along a straight line more, which indicates

that the asymptotic normal approximation becomes more precise for these two estimators.

Figure 2.3: Histograms and QQ Plots for Estimates (γ)—DGP 1

DGP 2 In this setting, we conduct simulation experiments with different degrees of endo-

geneity and generate data according to the model described below
Yi = Xiβ + Z1,iγ + Ui,

Xi = α+ Z1,iπ1 + Z2,iπ2 + Vi, i = 1, · · · , n,

where we set the parameter values as (β, γ, α, π1, π2) = (3, 2, 1, 1, 1) and draw Z1,i, Z2,i,

Vi, and Ui from the multivariate normal distribution with zero mean, unit variance, and

correlation coefficient ρ for Vi and Ui

Z1,i

Z2,i

Vi

Ui


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



0

0

0

0
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,
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in which ρ =0.2, 0.5, and 0.8 represent weak, middle, and strong endogeneity, respectively.

The different magnitude of the endogeneity strength is comparable to the setting in Su and

Ullah (2008). With normal distribution, it is then easy to verify that Mode(Vi | Zi) = 0,

Mode(Ui | Zi) = 0, and the control function Mode(Ui | Vi, Zi) = ρVi, which satisfies the

conditional mode independence restriction.17

Table 2.2: Results of Simulations—DGP 2

Two-Step Estimation Naive Estimation

Sample Size β (SE) MSE(β) γ (SE) MSE(γ) β (SE) MSE(β) γ (SE) MSE(γ)

ρ = 0.2

n=200 2.9935 (0.1515) 0.0229 1.9908 (0.1981) 0.0391 3.0594 (0.0959) 0.0127 1.9310 (0.1833) 0.0382

n=400 3.0083 (0.0941) 0.0089 1.9945 (0.1432) 0.0204 3.0680 (0.0674) 0.0091 1.9322 (0.1310) 0.0217

n=600 2.9976 (0.0824) 0.0068 1.9957 (0.1227) 0.0150 3.0617 (0.0572) 0.0071 1.9287 (0.1135) 0.0179

n=1000 2.9960 (0.0681) 0.0046 1.9956 (0.1077) 0.0116 3.0684 (0.0470) 0.0069 1.9222 (0.0933) 0.0147

ρ = 0.5

n=200 2.9974 (0.1367) 0.0186 2.0024 (0.1936) 0.0373 3.1777 (0.0835) 0.0385 1.8173 (0.1855) 0.0676

n=400 2.9958 (0.0995) 0.0099 2.0049 (0.1494) 0.0222 3.1647 (0.0677) 0.0317 1.8333 (0.1255) 0.0435

n=600 2.9890 (0.0851) 0.0073 2.0020 (0.1240) 0.0153 3.1654 (0.0527) 0.0301 1.8401 (0.1042) 0.0364

n=1000 2.9935 (0.0702) 0.0049 2.0116 (0.0965) 0.0094 3.1638 (0.0466) 0.0290 1.8426 (0.0828) 0.0316

ρ = 0.8

n=200 2.9512 (0.1813) 0.0351 2.0346 (0.2452) 0.0610 3.2595 (0.0705) 0.0723 1.7399 (0.1519) 0.0906

n=400 2.9858 (0.1142) 0.0132 2.0098 (0.1517) 0.0230 3.2629 (0.0542) 0.0720 1.7308 (0.1174) 0.0862

n=600 2.9976 (0.0828) 0.0068 1.9968 (0.1209) 0.0145 3.2617 (0.0393) 0.0700 1.7393 (0.0948) 0.0769

n=1000 2.9944 (0.0658) 0.0043 2.0079 (0.0984) 0.0097 3.2567 (0.0338) 0.0671 1.7398 (0.0696) 0.0725

True Value β = 3 γ = 2

Table 2.2 provides finite sample results for estimates of β and γ with different

values of ρ. The similar conclusions as those in DGP 1 can be drawn from the results.

Compared to naive linear modal regression without taking endogeneity into account, the

proposed estimation procedure has very nice finite sample properties even in small samples

when endogeneity is relatively strong. In particular, we note that as sample size increases,

17Different from DGP 1, according to the simulation setting in DGP 2, we can obtain the mean control
function E(Ui | Vi, Zi) = ρUi as well, which indicates the same control function for mean and modal
regressions given a symmetric dataset. However, since we are focusing on modal estimation with shrinkage
bandwidths, we do not compare the results to those of mean regression. The additional results with regard
to modal-based robust estimation are shown in Appendix A.
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both the bias and MSE of the proposed estimators decrease. However, when ρ is small,

indicating weak endogeneity in modal regression, the developed estimators provide better

performance than the naive estimators in terms of bias but worse performance in terms of

MSE with a small sample size (n = 200). It has been observed that the naive estimators

are biased in all cases and the magnitude of bias becomes larger as ρ increases, which is

consistent with the reality that endogeneity leads to biased estimates. The results highlight

that in the absence of a general guideline for testing endogeneity in modal regression, it

may have benefit to apply the two-step estimation procedure suggested in this paper with

relatively large data to avoid any potential misspecification stemming from endogeneity in

practice.

Figure 2.4: Histograms and QQ Plots for Estimates (β with ρ = 0.8)—DGP 2

We display histograms and QQ plots in Figures 2.4 and 2.5 in the same manner

as in DGP 1. Due to space limitations, we only list the plots for the case ρ = 0.8. The

appearances of the plots for the other two cases are similar, which are given in Appendix

A. Similar to the findings in DGP 1, the distributions appear to be symmetric around the
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true value in all designs. It is apparent that the figures indicate the asymptotic normality

of the proposed estimators, which is compatible with the theoretical results presented in

Section 2.4.

Figure 2.5: Histograms and QQ Plots for Estimates (γ with ρ = 0.8)—DGP 2

2.5.2 Empirical Analyses

We present three applications of the estimation results derived in Section 2.3. The first ap-

plication is to utilize the proposed estimation method to estimate EIS resulting from modal

utility maximization, where the agent maximizes the present discounted value of the stream

of future modal utilities rather than the traditional expected utilities. We in the second

example apply the proposed modal regression to study the effect of institutions that protect

property rights on economic performance, which was originally investigated in Acemoglu et

al. (2001). The third application reports the results of a simple analysis of return to school-

ing, which makes use of samples from Card (1995) to illustrate potential differences between

the proposed model and the existing regression models (shown in Appendix A). These three

examples demonstrate the bias in modal regression under endogeneity and show that the
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variables we focus on are economically relevant based on mode value after correcting en-

dogeneity. The empirical analyses also show that the proposed model can reveal certain

interesting data structures that existing regressions may ignore.

I. Rational Behavior under Modal Utility Maximization

For the purpose of fixing the idea of control function method proposed in this paper, we

initiate the use of modal preferences in a dynamic economic setting by developing a dynamic

model of rational behavior under uncertainty, in which the agent maximizes the present

discounted value of the stream of future mode utilities, and deriving a modal Euler equation

from the maximization model. In other words, the agent prefers a modal utility preference

rather than the expected utility as is often assumed. We then utilize the data from Yogo

(2004) to estimate the EIS from mode value, which is a parameter of central importance in

macroeconomics and finance measuring the responsiveness of the consumption growth rate

to the real interest rate; see Campbell (2003) for more information. The resulting Euler

equation from the modal utility maximization model is attractive because it can complement

the existing expected utility and quantile utility models to reveal distinguishing features of

the data and capture the “most likely” effect. Therefore, the modal utility preference

investigated here provides the microeconomic foundations for modal regression.

It is reasonable in practice to assume modal preferences as the agent may be more

concerned with maximization of the “most likely” utility, instead of the expected utility.

Particularly, the agent will prefer X over Y (X ⪰ Y ) iff Mode(U(X)) ≥ Mode(U(Y )) and

vice versa. It is important to emphasize that the modal preference is independent of the

utility function, as for any continuous and strictly increasing function U(·),
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X ⪰ Y ⇐⇒ Mode[U(X)]Mode[U(Y )] ⇐⇒ U (Mode[X])U (Mode[Y ])

⇐⇒ Mode[X]Mode[Y ].

(2.12)

Thus, in contrast to the expected utility maximizer that the concavity of U(·) implies risk

aversion, the function itself does not have any impact on the risk attitude of a modal

maximizer. However, when the utility function has more than one argument, it is not

suitable to apply the above invariance property to get rid of U(·).

On the basis of the previous discussions, we focus on a model that describes the

behavior of economic agents associated with the decision on intertemporal consumption

and savings across an infinity horizon economy, following the model framework in de Castro

et al. (2019) and de Castro and Galvao (2019). Define Ct as the amount of consumption

goods that an individual consumes in period t. The consumer owns xt units of the risky

asset with price p(dt), which pays dividend of dt, at the beginning of the period t. For the

sake of simplicity, the price of the consumption good is normalized to one. With wealth

[dt + p (dt)]xt, the consumer decides how many units of the risky asset xt+1 to save for the

next period and the consumption Ct. Then, the budget constraint is

Ct + p (dt)xt+1 ≤ [dt + p (dt)]xt, (2.13)

where the positivity restriction Ct, xt+1 ≥ 0 should be satisfied as well. Different from the

mean- or quantile-maximization, we retain the standard additive separability in time and

assume that the consumer maximizes

Mode

[ ∞∑
t=0

βtU (Ct) | Ω0

]
(2.14)

over an infinity horizon economy, where β ∈ (0, 1) is the discount factor, U : R+ 7→ R is

the utility function, and Ω0 is the information set at time t = 0. Following the procedures
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in the mean and quantile Euler equations to apply the recursive substitution, the consumer

maximizes the following modal objective function with budget constraint

U (C0) +Mode
[
βU (C1) +Mode

[
β2U (C2) +Mode [βU (C3) + · · · | Ω2] | Ω1

]
| Ω0

]
=Mode

[
Mode

[
Mode

[
U (C0) + βU (C1) + β2U (C2) + β3U (C3) + · · · | Ω2

]
| Ω1

]
| Ω0

]
=Mode∞

[ ∞∑
t=0

βtU (Ct)

]
.

(2.15)

In contrast to the mean Euler equation, we cannot substitute Mode∞ with Mode because

the law of iteration and linearity does not hold for mode. However, the above modal

expression is similar to the quantile expression in de Castro and Galvao (2019), where one

can show that the value function exists and is differentiable under regularity conditions.18

Remark 2.5.17 (Additive Property) The law of iteration does not apply to mode, in-

dicating that for any two σ-algebras Ωt ⊂ Ωt+1, in general, Mode[Mode(X | Ωt+1) | Ωt] ̸=

Mode(X | Ωt). Nevertheless, we can derive the following condition under which the additive

property is satisfied. Given the random variables W1 and W2, assume there exists a random

variable G and continuous and increasing functions g1 and g2 such that W1 = g1(G) and

W2 = g2(G). Then,

Mode(W1 +W2) = Mode(W1) +Mode(W2).

To demonstrate this, we define r(G) = g1(G) + g2(G). By virtue of the invariance property

of mode (Mode(g1(G)) = g1(Mode(G)) with a strictly increasing and continuous function

g1), we have Mode(W1 + W2) = Mode(g1(G) + g2(G)) = Mode(r(G)) = r(Mode(G)) =

18Combining with the value function, we have v (x0, d0) = ModeT
[∑T−1

t=0 βtU(Ct) + βT v(xt, dT )
]
. As

T → ∞, βT v(xt, dT ) → 0 when v is bounded. Such theoretical developments and derivations are of inde-
pendent interest. We will address these in detail in another ongoing research.
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g1(Mode(G)) + g2(Mode(G)) = Mode(g1(G)) +Mode(g2(G)) = Mode(W1) +Mode(W2).

Such an additive property is extremely useful for deriving the modal Euler equation; see

Remark 2.5.18.

Compared to the mean and quantile value functions, we have

v (xt, dt) = max
xt+1≥0

{U ([dt + p (dt)]xt − p (dt)xt+1) + βMode [v (xt+1, dt+1) | Ωt]} , (2.16)

where v(·) is a value function and the mode is taken conditional on the time t information

available to the econometrician. It indicates that the value function at time t is equal to the

utility of consumption at time t plus the discounted value of the mode of the value function

at time t+ 1. In equilibrium, the holdings are xt = 1 for all t. We then obtain

−p (dt)U
(1) (Ct) + βMode[U (1) (Ct+1) (dt+1 + p (dt+1) | Ωt] = 0, (2.17)

where U (1)(t) represents the first derivative of U with respect to t.

Remark 2.5.18 The above result is built on the equation that

∂Mode

∂x
[v(x, d)] = Mode

[
∂v

∂x
(x, d)

]
,

which holds true if ∂v(x,d)
∂d ≥ 0 and ∂2v(x,d)

∂x∂d ≥ 0. These two required equations imply that

v(x, d) and v(x′, d) − v(x, d) are increasing in d for x′ > x. According to the result in

Remark 2.5.17, we can write Mode(v(x + δ, d)) = Mode(v(x + δ, d) − v(x, d) + v(x, d)) =

Mode(v(x+δ, d)−v(x, d))+Mode(v(x, d)) for a sufficiently small δ. Then, following the def-

inition of derivative considering from limitation, it can be demonstrated that Mode(v(x, d))

is differentiable and the derivative is Mode
[
∂v
∂x(x, d)

]
.
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By defining the asset’s return as 1 + rt+1 ≡ dt+1+p(dt+1)
p(dt)

, we simplify the Euler

equation to

Mode

[
β (1 + rt+1)

U (1) (Ct+1)

U (1) (Ct)
− 1 | Ωt

]
= 0, (2.18)

which is a modal regression but with the endogeneity issue. Given a constant relative risk

aversion utility function U(C) = C1−γ/(1 − γ) and instruments Zt chosen from Ωt, the

Euler equation can be rewritten as

Mode
[
β (1 + rt+1) (Ct+1/Ct)

−γ − 1 | Zt

]
= 0, (2.19)

which is a conditional mode restriction in the form of our econometric modal regression

models with instrument variables.

Consistent with the quantile Euler equation, the modal Euler equation can be log-

linearized with no approximation error as well. It is observed that for a random variable

W with a unique global mode, Mode(ln(W )) = ln(Mode(W )) as ln(.) is strictly increasing

and continuous (“invariance” with respect to monotonic transformation).19 Define εt+1 =

β (1 + rt+1) (Ct+1/Ct)
−γ . We have Mode(εt+1 | Ωt) = 1 and

ln (1 + rt+1) = γln (Ct+1/Ct)− ln(β) + ln (εt+1) . (2.20)

The above equation indicates that

Mode(ln (1 + rt+1)− γln (Ct+1/Ct) + ln(β) | Ωt) = 0, (2.21)

where the parameter 1/γ is the standard measure of EIS implicit in the utility function.20

Note that the EIS in modal regression shares the same interpretation as in mean regression,

but considered from a mode viewpoint.

19As E(ln(W )) is not necessarily equal to ln(E(W )), the log-linearization will bring higher-order terms
to the equation when we act as if the natural logarithm could be interchanged with E(·).

20The reciprocal of γ is the coefficient of relative risk aversion under power utility. Based on this equation,
we can also estimate the discount factor from a mode perspective.
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Numerical Results: We use the aggregate level quarterly data from Yogo (2004)

to estimate EIS for Australia, Canada, France, Germany, Italy, Japan, Netherlands, Swe-

den, Switzerland, the United Kingdom, and the United States. The primary sources of

international data are Morgan Stanley Capital International and the International Finan-

cial Statistics of the International Monetary Fund. For the dataset, the real interest rate is

constructed using a proxy for the nominal short-term interesting rate, and real consumption

growth is the first difference in log real consumption per capita. The instruments for the

endogenous regressor consumption are twice lagged measures of real consumption growth,

nominal interest rate, inflation, and a log dividend-price ratio for equities.

Table 2.3: Estimates of the 1/EIS using the Interest Rate as Dependent Variable

Country Sample Period Two-Step Modal Naive Linear Modal Mean-2SLS

Australia 1970.3-1998.4 0.4647 0.1856 0.4906

Canada 1970.3-1999.1 -1.0070 -0.1661 -1.0374

France 1970.3-1998.3 -4.3545 -0.0562 -3.1177

Germany 1979.1-1998.3 -0.7838 -0.0213 -1.0541

Italy 1971.4-1998.1 -2.4578 -0.4153 -3.3401

Japan 1970.3-1998.4 -0.8375 -0.0054 -0.1841

Netherlands 1977.3-1998.4 -0.2740 -0.0732 -0.5260

Sweden 1970.3-1999.2 -0.1411 0.0357 -0.0956

Switzerland 1976.2-1998.4 -1.4561 -0.0807 -1.5637

United Kingdom 1970.3-1999.1 0.2760 0.2464 1.0604

United States 1947.3-1998.4 0.7170 0.4218 0.6833

The estimated results are shown in Tables 2.3-2.4, where we also report the naive

linear modal estimates and the mean-2SLS estimates for comparison. Because we are pri-

marily concerned with the magnitude of estimates, we do not provide standard errors.

However, they can be simply obtained by bootstrap method if researchers intend to con-

duct inference. It is observed that both modal and mean regressions can be utilized to
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capture the fact that 1/γ is relatively small. The estimates of γ from modal regression are

different from those from mean regression for most countries, which can be attributed to

the skewed datasets (Figure 2.6).

Table 2.4: Estimates of the EIS using the Interest Rate as Covariate

Country Sample Period Two-Step Modal Naive Linear Modal Mean-2SLS

Australia 1970.3-1998.4 0.0357 0.1209 0.0453

Canada 1970.3-1999.1 -0.3557 -0.1748 -0.3046

France 1970.3-1998.3 -0.2297 -0.1519 -0.0813

Germany 1979.1-1998.3 -0.1853 -0.0831 -0.4195

Italy 1971.4-1998.1 -0.1145 -0.1328 -0.0709

Japan 1970.3-1998.4 -0.2887 -0.0093 -0.0388

Netherlands 1977.3-1998.4 0.0600 -0.1805 -0.1481

Sweden 1970.3-1999.2 -0.0167 0.0116 -0.0018

Switzerland 1976.2-1998.4 -0.4845 -0.1688 -0.4883

United Kingdom 1970.3-1999.1 0.0481 0.1851 0.1666

United States 1947.3-1998.4 0.0145 0.1606 0.0597

Figure 2.6: Empirical Distribution of the Real Interest Data
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Figure 2.7: Empirical Distribution of the Real Consumption Growth

Concentrating on the EIS estimates (Table 2.4), we can see that the naive linear

modal estimator is biased, yielding values that are completely different from those of the

proposed estimator. For most countries, the developed modal estimates have the same signs

but different magnitudes as the mean estimates. When the data are nearly symmetrically

distributed (Figure 2.7), the differences between the proposed estimation and the mean-

2SLS estimation are small. However, the results show some substantial differences with the

skewed data, such as for France and the United Kingdom. Moreover, the modal estimate of

EIS for Netherlands differs significantly from the mean estimate. Particularly, modal esti-

mation gives a positive result, whereas mean estimation provides a negative one. Generally,

the value of EIS equal to one is of economic interest since it implies that the consumer’s

optimal consumption choice is a constant fraction of wealth. However, no country’s EIS
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is close to one when the modal Euler equation is estimated.21 All of these findings reveal

that the proposed modal regression with endogeneity can be served as an important tool

for studying economic behavior. We note that the estimates of EIS for Italy based on the

developed estimation method and the naive estimation method are quite similar. This may

imply that there is no modal endogenity issue in the Italy data, which urges the development

of an endogeneity test for modal regression.

II. Colonial Origins of Comparative Development

There exists a large number of literature emphasizing the role of institutions and property

rights in modern economic development. According to Acemoglu et al. (2001), countries

with better institutions, more secure property rights, and less distortionary policies will

utilize physical and human capital more efficiently to achieve a greater level of income.

They estimated the impact of institutions on economic performance through investigating

institutional differences among countries colonized by European. The main data they used

include the mortality rates of soldiers, bishops, and sailors stationed in the colonies between

the seventeenth and nineteenth centuries (em), the GDP per capita in 1995 (pgp), the

average protection against expropriation risk between 1985 and 1995 (avexpr), and the

latitude value (lat), where avexpr is the index from Political Risk Services that be used as

a proxy for institutions. To account for the endogeneity in avexpr, they used the mortality

rates expected by the first European settlers in the colonies as an instrument for current

institutions in these countries. We in this subsection shall reinvestigate their results from

21We only interpret the results from the difference between the modal and mean estimates, and do not pay
much attention to negative EIS values. Note that a negative EIS indicates convex utility, thus the estimate is
likely a statistical artifact. Havranek (2015) provided a meta-analysis of the literature in estimating EIS and
concluded that “the literature shows strong selective reporting: researchers discard negative and insignificant
estimates too often, which pulls the mean estimate up by about 0.5.”
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mode value by applying the proposed estimation procedure, where the main linear modal

regression is formulated as

log(pgp) = avexprβ + ZT
i γ + Ui, (2.22)

in which Zi is a vector of control variables. The coefficient of interest is β, which measures

the modal effect of institutions on income per capita.

The estimated results are shown in Table 2.5, where standard errors are in paren-

theses (bootstrap is applied with 200 replications to obtain modal regression standard er-

rors).22 For comparison, we report the results obtained from the proposed model in this

paper, the naive modal regression, and the mean regression with 2SLS estimation. Each set

of columns shows a different specification, with covariates and alternative samples that were

presented in Acemoglu et al. (2001). It can be seen that the estimates from naive modal

regression are obviously biased and the correction for endogeneity induces a large change

in the coefficients. Compared to the results of mean regression, in most cases, the proposed

modal regression indicates that there is a significantly stronger impact of institutions on

income per capita. The difference between modal and mean estimates is not very large,

which is due in part to the nearly symmetric data. This argument is also supported by the

robustness results in the appendix.

Although the proposed modal regression also demonstrates the large effect of in-

stitutions on economic performance, there are some differences between the results of modal

regression and those of mean regression in terms of other variables. Particularly, different

22The asymptotic limit explicitly defined in Section 2.4 cannot be directly applied in practice to calculate
the variance of the modal estimator due to the existence of numerous unknown quantities. Even though
these unknown terms can be estimated by the corresponding kernel estimators, we do not advocate this
approach for statistical inference, which requires the introduction of additional tuning parameters. Note
that, we can also make use of Bayesian inference techniques to approximate the distribution of a modal
estimator.
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Table 2.5: Regression with Endogeneity of Log GDP Per Capita

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Two-Step Modal

Avexpr 1.0658 1.0774 1.3377 1.2741 0.5573 0.5505 1.2823 1.4948 1.0350
(0.0207) (0.0248) (0.0345) (0.0332) (0.0222) (0.0246) (0.0385) (0.0492) (0.0134)

Lat -0.7763 0.8154 0.0614 -1.6060
(0.1428) (0.1622) (0.1612) (0.1530)

Asia dummy -1.2255 -1.4600
(0.0507) (0.0562)

Africa dummy -0.3110 -0.2534
(0.0383) (0.0408)

“Other” dummy -1.6909 -1.8631
(0.0986) (0.1012)

Naive Linear Modal

Avexpr 0.4962 0.4542 0.4689 0.4570 0.4632 0.4495 0.4050 0.3880 0.4475
(0.0094) (0.0092) (0.0104) (0.0107) (0.0126) (0.0133) (0.0078) (0.0076) (0.0096)

Lat 1.4175 1.5936 0.3756 0.7958
(0.1047) (0.1244) (0.1265) (0.0805)

Asia dummy -0.5223 -0.4755
(0.0301) (0.0310)

Africa dummy -0.8630 -0.8330
(0.0227) (0.0198)

“Other” dummy 0.2838 0.1705
(0.0502) (0.0479)

Mean-2SLS

Avexpr 0.9443 0.9957 1.2812 1.2118 0.5780 0.5757 0.9822 1.1071 0.9808
(0.1565) (0.2217) (0.3585) (0.3543) (0.0981) (0.1173) (0.2995) (0.4636) (0.1709)

Lat -0.6472 0.9385 0.0383 -1.1782
(1.3351) (1.4631) (0.8352) (1.7554)

Asia dummy -0.9242 -1.0471
(0.4003) (0.5246)

Africa dummy -0.4643 -0.4373
(0.3580) (0.4242)

“Other” dummy -0.9405 -0.9904
(0.8480) (0.9980)

Note: Model 1 and Model 2 are for base samples. Model 3 and Model 4 are for base samples without

Neo-Europes (the USA, Canada, Australia, and New Zealand). Model 5 and Model 6 are for base samples

without Africa. Model 7 and Model 8 are for base samples containing continent dummies. Model 9 is for

base samples with log output per worker as the dependent variable.
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from the results of mean regression, the coefficients for latitude in Model 2, Model 4, and

Model 8 are significant at the 5% significance level, which is consistent with the results of

many previous studies which found that latitude has a significant determinant of economic

performance, but contracted to the results in Acemoglu et al. (2001). The coefficient for

latitude in Model 6 is no longer significant after excluding all African countries from the

sample. This suggests that considering the “most likely” effect, latitude does not have a

significant effect on economic performance for countries other than those located in Africa

after we take the effect of institutions into account. In addition, for Model 7 and Model

8, when we add continent dummies to the modal regressions, it changes the estimated

effect of institutions, and the dummies are jointly significant at the 5% significance level.

This observation is in contrast to what Acemoglu et al. (2001) concluded in their paper,

indicating that based on mode effect the reason African countries are poorer is partly due

to cultural or geographic factors. The above results are also supported by the robustness

check in the appendix.

2.6 Penalized Modal Regression

In the first step of the proposed estimation procedure, we may have a large set of instru-

mental variables to use in practice and face the dimensionality curse of many instruments.

To circumvent this difficulty, a theoretically optimal method for instrumental variable selec-

tion for the proposed modal regression is necessary. We in this section provide an adaptive

LASSO (Zou, 2006) method to cull the weak instrumental variables to obtain more robust

results. The proposed procedure can automatically eliminate the irrelevant instrumental
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variables by setting the corresponding coefficients to zero, while simultaneously estimating

the nonzero modal coefficients by solving the kernel-based objective function. The proposed

regularization procedure is not only applicable to addressing the high-dimensional challenge

in the first step, but can also be used to estimate important covariate effects and select key

variables in the second step. For reasons of clarity of presentation, we concentrate on the

first step estimation in this section and assume that the number of variables is fixed.

It is straightforward to generalize the adaptive LASSO method to our case of modal

regression with the assumption that (2.5) is sparse,23 where the solutions of nonpenalized

modal regression are used as weights. The model framework is then specified as

Q(θ) = − 1

nh

n∑
i=1

ϕ

(
Xi − Z∗T

i θ

h

)
+ λn∥ŵ ◦ θ∥, (2.23)

where λn is a nonnegative regularization parameter used to control the shrinkage of pa-

rameter estimation, ŵ is a vector of nonnegative data-dependent weights, and ŵ ◦ θ =∑dZ+1
j=1 ŵj |θj | with ◦ denoting the Hadamard product. The resulting penalized modal es-

timator is denoted as θ̂P . We use a subscript n to denote the dependency of λn on the

number of observations. The values chosen for {ŵj}dZ+1
j=1 are crucial for guaranteeing the

optimality of the solution, which is set to be ŵj = 1/|θ̂j |γ for some appropriately chosen

0 < γ < 2 (see Remark 2.6.21). In practice, in order to leave the intercept unpenalized,

one can set ŵ1 = 0. As long as θ̂j ̸= 0 for every j, the function given by (2.23) is well

defined and strictly convex, allowing it to identify and estimate the nonzero effects of the

instruments to obtain the predicted residual values.

23The proposed penalized objective function can be easily generalized to handle nonparametric modal
regression in Remark 2.3.7 via basis expansion. We choose adaptive LASSO as it can possess the following
three properties in the estimator: unbiasedness, sparsity, and continuity by penalizing the coefficients of
different covariates at a different level by using adaptive weights. However, other penalty functions (i.e.,
smoothly clipped absolute deviation and minimax concave penalty) can also be applied here.
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Remark 2.6.19 The adaptive LASSO can be viewed as a generalization of the L1 or

LASSO penalty (Tibshirani, 1996). The LASSO modal estimator is obtained by the above

objective function when γ = 0. Nevertheless, the LASSO penalty is known to over-penalized

large coefficients and tends to be biased without possessing the oracle penalty. The adaptive

LASSO, on the other hand, can reduce estimation bias by allowing for different weights to

be used for different variables. Such flexibility in turn produces a relatively higher penalty

for zero coefficients and a lower penalty for nonzero coefficients.

Remark 2.6.20 In adaptive LASSO, the weight of the zero parameter approaches infinity,

while the weight of the nonzero parameter goes to a constant. We follow the tradition in

mean regression to choose θ̂ for adaptive weight in applications and set γ = 1. Furthermore,

due to the consistency of θ̂P , the term |θj |/|θ̂j | converges to I(θj ̸= 0) in probability as

n → ∞. As a result, in the asymptotic sense, the suggested adaptive LASSO procedure can

be considered as an automated implementation of best-subset selection.

To prove the asymptotic properties of the penalized modal regression, we assume

that the dataset {(Z∗
i , Xi)} consists of n observations from the following linear model

Xi = Z∗T
i θ + Vi = Z∗T

i1 θ1 + Z∗T
i2 θ2 + Vi (2.24)

without loss of generality, where Z∗
i = (Z∗T

i1 , Z∗T
i2 )T , θ = (θT1 , θ

T
2 )

T , Z∗
i1 ∈ Rs, Z∗

i2 ∈ RdZ+1−s,

and the true modal regression coefficients are θ2 = θ20 = 0 and θ1 = θ10 with each compo-

nent being nonzero. This means that the first s instrumental variables are relevant while

the remaining dZ +1− s are noisy instrumental variables. We then present the asymptotic

properties of the adaptive LASSO modal estimator, where we show that with fixed dZ the
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proposed method can lead to consistent instrumental variable selection, and the resulting

estimator can achieve the optimal modal convergence rate when the tuning parameter is

appropriately chosen. The results can be generalized to a large class of penalties as well.

Theorem 2.6.9 Under the same conditions in Theorem 2.4.2, let δn = h2 + (nh3)−1/2,

δ−1
n λn → 0, and δ

−(γ−1)
n λn → ∞, the penalized modal estimation can correctly identify all

zero elements, that is

P (θ̂P2 = 0) → 1.

With fixed dZ , the above theorem indicates that the proposed modal estimation

possesses sparsity with properly chosen λn, that is, the true set of relevant instruments can

be identified for the endogenous variable with probability tending to one. It is observed

that the original adaptive LASSO requires n(γ−1)/2λn → ∞ to satisfy the sparsity property,

while the proposed penalized modal estimation requires a heavier penalty δ
−(γ−1)
n λn → ∞

due to the use of mode.

Theorem 2.6.10 With nh7 = O(1), under the same conditions as Theorem 2.6.9, the

penalized modal estimator has the following asymptotic result

√
nh3

(
θ̂P1 − θ10 −

h2

2
J−1
1 M1(1 + op(1))

)
d→ N

(
0,

∫
t2ϕ2(t)dtJ−1

1 L1J
−1
1

)
.

Furthermore, under the assumption that nh7 → 0, we have

√
nh3

(
θ̂P1 − θ10

)
d→ N

(
0,

∫
t2ϕ2(t)dtJ−1

1 L1J
−1
1

)
,

where J1, L1, and M1 are the s × s submatrices of J , M , L corresponding to the nonzero

components of θ.
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Theorem 2.6.10 indicates that the proposed instrumental variable selection pro-

cedure enjoys the oracle property in the sense of Fan and Li (2001), that is, regardless of

the choice of the shrinkage tuning parameter, the variable selection procedure is consis-

tent and the estimators of coefficients achieve the optimal convergence rate as if the subset

of true zero coefficients were already known. The proposed penalized estimator also sat-

isfies asymptotic normality. We thus extend the oracle property of the adaptive LASSO

penalty to the context of penalized modal regression, which reduces model complexity while

improving model accuracy.

Remark 2.6.21 Because the proof of the preceding theorem requires the root-nh3 consis-

tency of θ̂, it is worth noting that any root-nh3 consistent estimator of θ0 can be applied as

the adaptive weight ŵj without changing the asymptotic properties of the adaptive LASSO

modal solution.

The choice of tuning parameter λn is critical for variable selection, where one of-

ten proceeds by finding estimators that match a range of corresponding values and then

identifying the preferred estimator using some criteria, such as various information-based

criteria with maximum likelihood penalized estimators. Notice that cross validation is a

common approach but is known to frequently result in overfitting, whereas Akaike informa-

tion criterion (AIC)-based methods are not consistent for model selection since they may

select irrelevant variables as n → ∞ (Wang et al., 2007). As is typical in high-dimensional

sparse modeling, we select λn by a Bayesian information criterion (BIC)-type procedure

λn,opt = argmin
λn

BIC(λn) = − 1

nh

n∑
i=1

ϕ

(
Xi − Z∗T

i θ̂P

h

)
+

log(nh3)

nh3
dfλn (2.25)
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considering changes in the criterion for the cases of overfitting or underfitting, where dfλn is

the degrees of freedom of the fitted model (the number of nonzero coefficients of θ̂ for modal

regression). Compared to the BIC in mean regression, we have modified the corresponding

results in the penalized modal regression framework. The first term of (2.25) can be treated

as an “artificial” likelihood since it exhibits certain essential properties of a parametric log-

likelihood, while the second term reflects the convergence rate of the modal estimator, where

the effective sample size is nh3.

Remark 2.6.22 (Consistency of BIC) To demonstrate the consistency of the BIC selec-

tion, that is, the probability of the selected model being equal to the true model asymptotically

approaches one, we can follow Wang et al. (2007) to study the BIC corresponding to esti-

mators that fail to select all of the significant variables and estimators that select too many

variables. More specifically, suppose ST denote the true model, Sλ indicate the set of the

indices of the covariates selection by the penalized modal regression with tuning parameter

λ, Ω− = {λ : Sλ ̸⊃ ST } denote the underfitted models, and Ω+ = {λ : Sλ ̸ ST } repre-

sent the overfitted models. Then, one can verify that P (infλ∈Ω−∪Ω+ BICλ > BICλn) → 1

under mild conditions. This means that we cannot asymptotically choose a λ that iden-

tifies an overfitted or underfitted model. Construct a sequence of reference tuning pa-

rameters λn = log(nh3)/
√
nh3 (i.e., λn → 0 and

√
nh3λn → ∞). Because the penalty

modal estimator θ̂Pλn
is exactly the same as the oracle estimator, it follows immediately that

P (BICλn = BICST
) → 1. As a result, we have P (Sλn,opt = ST ) → 1, indicating that if

the true model is contained within the set of candidate models, it can be guaranteed to be

selected by the proposed BIC criteria.
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Remark 2.6.23 (Post-Selection Estimators) Belloni and Chernozhukov (2013) pro-

posed an OLS post-LASSO estimator and showed that it outperforms the LASSO estimator

in reducing asymptotic risks associated with high-dimensional sparse models. Inspired by

this, after we obtain the penalized modal estimators, we can utilize them as the variable sel-

ection operators in the first step and revert back to the parametric modal regression to prod-

uce residual estimates, where we define the modal post-adaptive LASSO (BIC) estimator as

θ̂BIC = arg max
θ∈Sλn,opt

1

nh

n∑
i=1

ϕ

(
Xi − Z∗T

i θ

h

)
.

We emphasize that the aforementioned estimator does not outperform the penalized estima-

tor asymptotically, but the finite sample performances can be different.

To numerically solve the proposed penalized modal regression, we present a mod-

ified shooting algorithm based on Zhang and Lu (2007), where we optimize over one com-

ponent of the unknown parameter vector, fixing all other components. We approximate

the objective function using the Newton-Raphson update through an iterative least square

procedure; see Algorithm 1. Define Q(θ) =
∑n

i=1 ϕh(Xi − Z∗
i θ), Q̇j(θ) = ∂Q(θ)/∂θj , and

write θ as (θj , (θ
−j)T )T , where θ−j is the dZ-dimensional vector consisting of all θj ’s other

than θj . The modified shooting algorithm is then initialized by taking θ̂P = θ̂ and letting

λn,j = λn/|θ̂j |. With diagonal kernel weight WZ associated with w(i | θ(g)) (Algorithm 1),

the gth iterative stage follows

θ̂Pj =



λj−Q0

(Z∗j
i )

T
WZZ∗j

i

if Q0 > λn,j

−λj−Q0

(Z∗j
i )

T
WZZ∗j

i

if Q0 < −λn,j

0 if |Q0|λn,j ,

(2.26)
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where for each j = 1, · · · , dZ +1, we set Q0 = Q̇j(0, θ̂
−j,P
g−1 ). The penalized modal estimator

can be obtained by iteratively solving the above equations. Following Fu (1998), it can

be shown that the modified shooting algorithm is guaranteed to converge to the global

maximizer.

Remark 2.6.24 (dZ > n Setting) The setting considered in this section is that the num-

ber of modal regression parameters dZ is fixed, under which the regression parameter is

sparse in the sense that many of its elements are zero. In the future, it would be interesting

to investigate the case, where dZ grows at some rate of n, i,e, dZ = O(na), a > 1. With

growing dZ , sparseness generally refers to the proportion of zero parameters. One may fol-

low the results in Huang et al. (2008) to carefully derive conditions such that the modal

estimator is oracle in the sense of having the same large sample properties as an estimator

in which the zero components of the modal parameter were known a priori. Particularly,

when the number of variables exceeds the number of observations, the modal estimator is

not consistent and cannot be used in constructing weights ω̂j. We can propose to take

ω̂j = min(| ˆ̂θj |−γ , n1/2) with
ˆ̂
θj being an estimator of θ0j consistent with the rate an → 0

(e.g., LASSO modal estimator). Furthermore, with the dZ > n setting, it is necessary to

choose kn > log(nh3) to obtain model selection consistency with BIC.

2.7 Concluding Remarks

The present paper, to the best of our knowledge, is the first work that analyzes the endo-

geneity issue in modal regression and systematically studies its statistical properties with

the conditional mode independence restriction. In particular, we introduce a computation-
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ally efficient two-step estimation procedure based on control function to estimate parametric

modal regression with endogeneity, followed by a three-stage estimation method for semi-

parametric partially linear modal regression with the estimated modal residual from the

reduced form equation in the second step. We derive the asymptotic properties for both

the parametric and nonparametric components, and show that a general linear modal re-

gression convergence rate can be obtained for the parametric component. Under reasonable

conditions, the estimation of the nonparametric component is oracle. We numerically esti-

mate the proposed model by virtue of a modified MEM algorithm. With two Monte Carlo

experiments and three empirical applications, we find the good finite sample performance

of the proposed estimation procedure for addressing endogeneity in modal regression, which

further indicates the importance of endogeneity correction and the practical value of the

proposed estimators. The modal Euler equation derived from modal utility maximization

is particularly interesting since it provides consumers with a new utility preference. The

results in the Colonial Origins of Comparative Development example based on mode value

reveal some differences compared to the results in Acemoglu et al. (2001), demonstrating

the necessity of considering modal regression to complement the existing mean or quan-

tile regression. We also discuss several potential model extensions in the paper, including

modal-based robust estimation to achieve robustness and efficiency for symmetric data.

To practically select the relevant instrumental variables, we develop an adaptive LASSO

method for the proposed modal regression.

This paper provides a number of promising areas for future work. For easy illus-

tration, we restrict the independence between the instruments and the mode value of the
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structural error conditional on the reduced residual. However, this assumption may not

hold in some economic settings and potentially rule out any additive functional relationship

in the model; see the models of demand or supply in Kim and Petrin (2011). We can release

this assumption and instead allow the conditional mode of the structural error to depend

on both the reduced residual and the instruments, i.e., Mode(Ui | Vi, Zi) = m(Vi, Zi). For

such a nonseparable case, we may need more complicated conditions for identification and

estimation. It is also of particular interest to propose a test for analyzing whether regres-

sors are endogenous in modal regression. Different from the traditional endogeneity test in

nonparametric mean or quantile regression, we can focus on testing the control function in

such a way that whether Mode(Ui | Vi) = 0 almost surely. In terms of the model setting in

this paper, under the null hypothesis such that there is no endogeneity in modal regression,

the unknown function m(Vi) will be zero, i.e., P (Mode(Ui | Vi) = 0) = 1, while under the

alternative hypothesis, we have P (Mode(Ui | Vi) = 0) < 1. All of these will be kept for

future research.
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Chapter 3

Modal Volatility Function with

Variance Reduction

3.1 Introduction

Conditional volatility estimation is of interest in its own right, which is crucial for sta-

tistical inference and plays as the key intermediate step in the estimation of economic or

financial quantities in practice, such as the analysis of growth curves, asset pricing practice,

or applications where the second moment is treated as a proxy for risk. During the last

four decades, there has been a substantial amount of literature concerning the estimation

of the volatility function in discrete time by taking the conditional variance derived from

the squared residuals as a latent variable without imposing any restrictive assumptions on a

parametric model. To quote a few of them, Pagan and Ullah (1988) proposed a Nadaraya-

Watson estimator of conditional variance to capture the relationship between volatility and
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economic factors; Fan and Yao (1998) suggested a local linear method for estimating the

conditional variance of a two-dimensional strictly stationary and absolutely regular process;

Ziegelmann (2002) used a nonparametric local exponential method to estimate the volatility

function to ensure nonnegativity; Yu and Jones (2004) introduced a likelihood-based local

linear estimation of the conditional variance function to incorporate the positivity of vari-

ance; Ziegelmann (2008) developed a least-absolute-deviations estimator of the conditional

variance function; and Mishra et al. (2010) proposed a combined semiparametric estimator

to include the parametric and nonparametric estimators of the conditional variance. For

other literature, we refer to the review paper written by Su et al. (2012) and the references

cited therein. However, all of the papers mentioned above are considered from either the

mean or median (quantile) regression estimator. When there are several outliers in the data

or the data is skewed, resulting in non-normally estimated standardized residuals, which

is a common characteristic of financial time series data, traditional nonparametric mean

estimators may lose robustness or have misspecification. Although the median (quantile)

estimator is resistant to outliers, it cannot directly exhibit how the “most likely” value of

volatility is affected by data (the median estimator will also lose efficiency with normally dis-

tributed data). For example, in the stock market, an investor may like to know more about

mode risk as opposed to mean or median risk. In addition, with fat-tailed distributions, it is

not guaranteed that certain moments of error will exist when errors are leptokurtic. Large

values might easily be due to the fat-tailed nature of the data and should not be attributed

entirely to increases in variance. As a consequence, it is important to construct a volatility

estimator that automatically adapts to skewed/tailed data.
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To reveal the whole characteristics of the volatility of data and complement the

existing mean or median volatility estimator, we propose a novel modal estimator for the

volatility function in a nonparametric heteroskedastic regression model by directly imposing

model assumptions on the conditional mode of volatility given covariate, which is not the

conditional variance. In the usual mean regression model, the volatility/variance function

is treated as the variance such that σ2(Xt) = E{(σ(Xt)εt − E(σ(Xt)εt)) | Xt}2 (see model

(3.1) for the meaning of each term) with conditions E(εt | Xt) = 0 and E(ε2t | Xt) = 1.

Analogous to this, we define modal volatility function in this paper as

σ2(Xt) = Mode{(σ(Xt)εt − E(σ(Xt)εt)) | Xt}2

with the conditions E(εt | Xt) = 0 and Mode(ε2t | Xt) = 1, where Mode(· | ·) denotes the

conditional mode value. This modal volatility, which measures the mode risk associated

with mean prediction, is of interest since it provides a plausible linkage between risk in

mode sense and expected return on financial assets. Such a modal volatility function is not

identical to the traditional variance function under heavy-tailed/skewed data circumstances,

especially in the case of infinite variance, where the mean estimate does not exist (i.e.,

Cauchy distribution). Instead, it is a more general “scale” measure, which is the primary

reason we refer to it as the volatility function; see Section 3.2 for more details.

In comparison to the mean, the mode is a significant numerical feature of the

dataset when the data have outliers or heavy-tailed/skewed distributions. It has the essen-

tial virtue of being resistant to distributional assumptions and making no prior conditions

about the symmetry of the innovation process. Such properties are particularly appealing

for financial applications, because it is well-accepted that financial time series data, such as
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portfolio returns and log returns, always exhibit a heavy-tailed and asymmetrical marginal

distribution, making mode a suitable indicator for releasing its feature. According to Ullah

et al. (2021, 2022), modal regression can be applicable to truncated or skewed data, present

new feature selection tools, provide better point prediction and shorter prediction intervals,

and reveal heterogeneous and clustering structures among the data (allowing the existence of

local modes). Furthermore, when the data are symmetrically distributed, where the modal

regression line is identical to the mean regression line, modal regression can overcome the

shortcoming of lack of robustness of mean regression to achieve robust estimators by adjust-

ing the bandwidth values;1 see the related discussions in Remark 3.2.33. These attractive

features make the study of modal regression considerably important. Recently, there has

been an increasing interest in applying modal regression to investigate data characteristics;

see Lee (1989, 1993), Kemp and Santos Silva (2012), Yao and Li (2014), Chen et al. (2016),

Yao and Xiang (2016), Zhou and Huang (2016), Krief (2017), Chen (2018), Li and Huang

(2019), Ota et al. (2019), Kemp et al. (2020), Ullah et al. (2021, 2022), among others. Built

on the aforementioned work, we are interested in applying nonparametric modal regression

on the volatility function for dependent samples to understand the local variability of data

from the perspective of the “most likely” value, where the exact parametric forms of the

mean regression function and volatility function are not predefined but both are assumed

1We in this paper concentrate on asymmetric data in order to capture the “most likely” effect. However,
it is well-known that the mode is identical to the mean for symmetric data, and the mode is resistant to
outliers and heavy-tailed distributions. Thus, compared to the mean estimator, the modal-based estimator
can achieve robustness and efficiency. We also discuss such a case in the paper and show that the presented
modal-based volatility estimator for dependent data has the same asymptomatic bias and variance as the
corresponding estimator for independent data under regularity conditions. Such an equivalence is important
because it allows extensions of efficiency arguments along the lines of those of Yao et al. (2012) to our
modal-based robust volatility estimator . Specifically, the developed modal-based volatility estimator could
be more efficient than the mean volatility estimator if the data contain outliers or have a heavy-tailed
distribution. The two estimators would share almost the same efficiency if the data indeed have a normal
distribution. This should be considered as a big advantage compared to other robust (median and maximum
likelihood-type) estimators, which will sacrifice efficiency with normally distributed data.

79



to be smooth.2 To our best knowledge, there is no literature that investigates the volatility

of data from the mode perspective for dependent samples.

Specifically, we aim at applying local linear modal regression to estimate the

volatility function under stationary α-mixing dependent samples and settle theoretical prop-

erties rigorously. The majority of volatility function research has concentrated on the case

of independent and identically distributed (i.i.d.) data, which is not necessarily valid in

empirical applications. There are numerous economic analysis problems involving high-

dimensional data or information network data, in which the data exhibit some kind of de-

pendence, such as Markovian chains, mixing sequences, long-range memory process, among

others (Ullah et al., 2022). In such cases, the statistical properties of the volatility estima-

tors presented in the papers considering i.i.d. samples may be changed. We noticed that

Wang and Tang (2016) investigated robust estimators by applying local M-estimation for

conditional variance in heteroscedastic regression models and utilizing Huber’s function for

estimation with dependent samples, which still belongs to the mean regression estimator.

This robust estimator is quite similar to the modal-based robust estimator considered in

our paper; see Remark 3.2.33. However, we can theoretically show that the modal-based

robust estimator is more efficient than the M-estimator. As far as we know, no attempt

has been made in the existing literature to apply nonparametric regression to estimate the

modal (and modal-based) volatility function for dependent samples. To fill this literature

2Mode is defined as the most frequent data point in a dataset, which can be achieved by maximizing
a conditional distribution fY |X(Y | X), in which Y is the dependent variable and X are covariates. In
practice, we have to utilize nonparametric density estimation for fY |X(Y | X) since the actual density
function is unknown; see Chen et al. (2016). However, such nonparametric density estimation is difficult to
implement with high-dimensional data. To deal with this issue, Kemp and Santos Silva (2012) and Yao and
Li (2014) suggested a kernel-based objective function for estimating the modal coefficient in a parametric
modal regression. In this paper, we prefer to choose nonparametric modal regression for its flexibility. We
can alternatively apply parametric modal regression based upon the GARCH family of models to estimate
the volatility function by imposing mode restrictions. Nevertheless, without theoretical reasons to identify
the model format, parametric modal regression is prone to misspecification.
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gap, we specify the dependence framework and divide the proposed estimation procedure

into two steps, where in the first step, we use local linear mean regression to obtain the

estimated squared residuals;3 then in the second step, we apply local linear modal regres-

sion on the mean squared residuals to achieve the modal volatility estimator. Generally,

the resulting modal estimator of volatility will carry additional bias and variance due to

the first step estimation. Nevertheless, under regularity conditions, we show that the novel

modal volatility estimator is fully regression-adaptive in the sense that we can estimate the

volatility function asymptotically as well as if the mean regression function were known,

implying that there is no loss in asymptotic efficiency due to the estimation of the unknown

mean regression function. A similar “adaptive” phenomenon has been observed in the mean

volatility estimator (Fan and Yao, 1998). In theoretical terms, compared to the local linear

mean volatility estimator, the modal volatility estimator has completely different asymp-

totic properties and would have a slower convergence rate, which is the cost we need to pay

in order to estimate mode (Parzen, 1962). Thus, estimating the unknown mean regression

function (with a faster convergence rate) no longer has any noticeable effect on estimat-

ing modal volatility, indicating that we do not need to undersmooth the mean regression

function in the first step to obtain a regression-adaptive modal volatility estimator in the

second step.

We also show a new and interesting result that the asymptotic theorem for the pro-

posed modal volatility estimator for stationary α-mixing dependent samples is the same as

that for independent samples under some mild conditions, which is intrinsic in nonparamet-

3In the context of financial time series, more attention is placed on the volatility function σ(·) rather
than on the mean function m(·). However, m(·) is not unimportant and cannot simply be set to zero; see
the discussion of impacts of m(·) on the volatility estimator in Remark 3.2.29.
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ric estimation for dependent samples; see Cai and Ould-Said (2003). The asymptotic mean

squared error (MSE) expression for modal volatility estimation follows from the asymptotic

theorem in the usual way. By minimizing MSE, the expression of the optimal bandwidths is

derived, which offers some guidance regarding how bandwidths should be chosen in practice.

To numerically estimate the proposed modal regression in the second step, we develop a

computationally attractive MEM algorithm based on Li et al. (2007) and Yao (2013) and

suggest a data-based bandwidth selection method for practically choosing bandwidths. Al-

though the idea of this volatility function estimator is not very new in nonparametric kernel

estimation, the application of nonparametric modal regression to the newly defined modal

volatility function is novel. To avoid the “curse of dimensionality” issue in the nonpara-

metric literature, we focus on the univariate predictor case throughout the paper. However,

all of the methods introduced in this paper can be easily extended to the multivariate

dimensional case at the price of more complicated expressions and discussions.4

Compared to parametric estimators, when the dimension of the covariates in-

creases, the variance of nonparametric estimators will increase as well due to the slower

rate of convergence. Also, as opposed to the mean estimator, the modal volatility estimator

has a slower rate of convergence due to the fact that only a small portion of total obser-

vations around the mode are used. Therefore, reducing the variance of the nonparametric

modal estimator becomes very essential and attractive. There exists a large number of re-

search investigating variance reduction issues in both theory and practice. One of which has

4If the proposed model is extended to the multivariate case, i.e., by including several period lags in the
conditional modal volatility equation, we may encounter the “curse of dimensionality” issue. In such a case,
one can restrict the form of the conditional mean and volatility functions to a lower dimension without losing
information to avoid the issue of the “curse of dimensionality”. For example, we can choose a single index,
a varying coefficient, or an additive partial linear structure for estimating, which is an interesting research
direction that is beyond the scope of this paper, and so we leave it for future research.
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played an important role is the variance reduction technique in nonparametric smoothing

proposed by Cheng et al. (2007) through forming a linear combination of a preliminary

estimator evaluated at nearby points. They demonstrated that the asymptotic MSE of the

estimator is improved considerably after variance reduction, and the amount of reduction

is uniform across different locations, regression functions, designs, and error distributions.

Since then, a large number of researchers have devoted effort to applying the same quadratic

interpolation method to reduce the variance of estimators. For example, Cheng and Peng

(2007) applied the variance reduction technique to multiparameter likelihood models to im-

prove the efficiency of the estimator and Chen et al. (2009) proposed a new efficient method

for estimating the conditional variance in heteroscedasticity regression models and applied

the variance reduction technique to improve the inference for the conditional variance. After

we obtain the modal volatility estimator, we generalize the variance reduction technique in-

troduced in Cheng et al. (2007) for modal regression to obtain a new variance reduced modal

volatility estimator , which has asymptotic relative efficiency by taking a linear combination

of the previous modal volatility estimator at three equally spaced points around the point of

estimation. Theoretical results under mild conditions indicate that the asymptotic variance

of the modal volatility estimator can be reduced by a known factor, while the asymptotic

bias remains unchanged by forcing the coefficients in the linear combination to fulfill the

corresponding moment conditions, which leads directly to a reduction in asymptotic MSE.

We further examine the variance reduced modal volatility estimator in the aspect of band-

width selection, where we show that the asymptotic optimal bandwidth can be achieved by

a simple constant factor adjustment of that from the local linear modal volatility estimator.
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Consequently, the bandwidth in practice can be obtained straightforwardly by utilizing the

corresponding bandwidth values found in the previous modal volatility estimator.

It is worth pointing out that although the local linear modal volatility estimator is

attractive, it cannot always be ensured to be nonnegative in finite samples.5 To avoid this

drawback and potentially improve the accuracy of the bias term, we in the end generalize the

proposed method to local exponential modal estimation, which can guarantee the positivity

of the volatility function by extending the results in Ziegelmann (2002), Yu and Jones

(2004), and Mishra et al. (2010). This exponential modal volatility estimator is not directly

equivalent to the local linear modal volatility estimator, but rather estimates the logarithm

of the volatility, thereby introducing an extra bias term. The provided theoretical results

show that the difference between the local linear and exponential modal volatility estimators

lies in the form of the asymptotic bias. Similar to the proposed local linear modal volatility

estimator, the exponential modal volatility estimator is asymptotically fully adaptive to the

unknown conditional mean regression function, i.e., its asymptotic property is not sensitive

to how well the conditional mean regression function is estimated. More generally, we

show that under certain conditions, the exponential modal volatility estimator can have a

smaller bias compared to the local linear modal volatility estimator and achieve a modal

parametric convergence rate. In this regard, the present paper also makes a contribution to

bias reduction for the modal estimator without any pilot parametric guide to capture some

roughness features of the unknown volatility function, which differs significantly from the

combined-estimation method in Mishra et al. (2010).

5Negative values for modal volatility in a real application indicate that the estimate of mean regression
in the first step might suffer from overfitting, because negative values can occur particularly in regions in
which data are sparse. It has been observed that the number of negative values decreases as sample size
increases, which means that the negative volatility estimates will not be a problem asymptotically.
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The structure of this paper is as follows. In Section 3.2, we investigate the modal

regression estimator for the volatility function under stationary α-mixing dependent sam-

ples. We present the asymptotic distributional theory for the resulting estimator under some

mild conditions, which provides guidelines for selecting reliable bandwidths in practice. We

also briefly discuss the modal-based robust volatility estimator for the sake of completeness.

Section 3.3 applies the variance reduction technique to improve the estimation of the modal

volatility function. Asymptotic properties and optimal bandwidths are provided. Section

3.4 contains the results of finite sample numerical studies, including two simulation studies

and two analyses of real datasets—Interest rate dataset and Motorcycle dataset. To avoid

negative values in the volatility function estimates, we in Section 3.5 extend the proposed

method to the local exponential modal volatility estimator and conduct some theoretical

comparisons with the suggested local linear modal volatility estimator. We conclude the

paper and present some potential future research in Section 3.6. The additional numeral

results as well as all technical proofs of the theoretical results are given in the appendix.

3.2 Modal Volatility Estimator

We in this section introduce a two-step residual-based procedure for estimating the modal

volatility function under a heteroskedastic regression model, where in the first step the non-

parametric estimation of the conditional mean regression function is obtained; then in the

second step, the local linear modal estimation is applied to the squared residuals for volatility

estimation. Under the assumption of a certain degree of smoothness on the modal regression

function, we present the asymptotic properties and derive the optimal bandwidths. The
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adaptiveness property to the unknown conditional mean regression Fan and Yao (1998)

established is also shared by the proposed local linear modal volatility estimator.

3.2.1 Local Linear Modal Estimation

Let {(Yt, Xt)}nt=1 be a two dimensional strictly stationary process having the same marginal

distribution as (Y,X) ∈ R2, where Xt ∈ R is Ft−1 measurable and can be the lag variable

of Yt ∈ R, and Ft−1 is the σ-algebra of events generated by {Xk}tk=−∞. Naturally, this

includes the scenario in which {(Yt, Xt)}nt=1 are i.i.d.. Let m(Xt) = E(Yt | Xt) be the

conditional mean regression function (location function) based on the past information and

σ2(Xt) > 0 (σ(Xt) > 0, ∀Xt ∈ R) for all Xt denote the volatility function (scale function)

of the stochastic process Yt depending on covariate, which are left unspecified and are

the subjects of statistical investigation in this paper.6 We then write the nonparametric

heteroskedastic regression model as

Yt = m(Xt) + σ(Xt)εt, t = 1, · · · , n, (3.1)

where {εt}nt=1 is a sequence of stochastic random variables with E(εt | Ft−1) = 0 and

Mode(ε2t | Ft−1) = 1. There are some notable features of the preceding model. To begin,

in contrast to most research, which assumes that E|εt|4+δ < ∞ for some δ > 0, we do not

need to impose high moment conditions on εt, comparable to quantile regression. When

Xt = Yt−1, (3.1) would include the nonparametric autoregressive conditional heteroskedastic

(ARCH) time series model (Engle, 1982) and AR(1) process with ARCH(1) errors as special

cases, indicating that both static and dynamic models are covered. If we let Yt = Xt+1−Xt

6We in this paper assume that volatility depends on covariate (heteroskedasticity). If σ2(·) is constant,
the model becomes homoskedastic. We can then apply the nonparametric kernel density estimation method
to obtain the corresponding modal volatility value. In particular, we maximize 1

nh

∑n
i=1 K

(
r̂t−a

h

)
, where h

is a bandwidth depending on sample sizes, r̂t is defined in the paper, and K(·) is a kernel function. The
numerical solution can be obtained by utilizing the mean-shit algorithm in Chen et al. (2016).
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and assume that εt are standard normals, then the model can be viewed as the discretized

version of the stochastic diffusion model dXt = m(Xt)dt + σ(Xt)dWt, where {Wt} is a

standard Brownian motion, including the geometric Brownian motion as in a stock price

model in option pricing and the Vasicek model for interest rates. Notice that (3.1) is also

of essential importance in financial econometrics, since it has the capability of accounting

for nonlinearity and conditional heteroskedasticity in the modeling of financial time series.

On the basis of the above settings, we can obtain

rt = σ2(Xt)ε
2
t = (Yt −m(Xt))

2, (3.2)

which is the primary focus of this paper. Instead of imposing moment restrictions, if the

mean regression function m(Xt) is known, the volatility function could be estimated directly

from a modal regression of the squared residual rt on Xt due to the fact that

Mode(rt | Xt) = σ2(Xt) = Mode((Yt −m(Xt))
2 | Xt), (3.3)

i.e., we replace r̂t in the objective function (3.6) with rt for estimating. We emphasize that

studying modal volatility estimation is necessary to supplement the existing mean variance

function because the mode of an arbitrary random variable is always (a) finite number(s).

Especially, when the error terms are Cauchy random variables or other random variables

with heavy-tailed distributions, the mean regression might be inapplicable, as the variance

may not exist. Accordingly, the modal volatility provides a more natural dispersion measure

than the mean variance for the non-Gaussian case.

Remark 3.2.25 The model settings in this paper can be considered as a generalization of

the Qualitative Threshold ARCH model proposed in Gouriéroux and Monfort (1992), but

with a focus on modal estimation, where Yt =
∑J

l=1 αjI(Yt−l ∈ Aj)+
∑J

l=1 βjI(Yt−l ∈ Aj)εt,
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{Aj}Jj=1 with fixed J denotes a partition of the set of values for Y , I(·) represents indicator

function, and (αj, βj) are unknown parameter vectors and matrices, respectively. In addi-

tion, the assumption Mode(ε2t | Ft−1) = 1 distinguishes our model from existing volatility

models that impose the conditional mean or median assumption. It is not strict to enforce

such a conditional mode restriction. A similar median condition for the nonparametric

least-absolute-deviations estimator of the volatility function has been utilized in Ziegelmann

(2002), such that Median(ε2t | Ft−1) = 1.

Remark 3.2.26 If we are intend to estimate σ(Xt)εt instead of σ(Xt), as in the ARCH

case investigated in Koenker and Zhao (1996), it is not necessary to impose the condition

on Mode(ε2t | Ft−1). Also, if we are interested in σ2(x) when Mode(ε2t | Ft−1) is unknown

and Mode(ε2t | Ft−1) ̸= 0, we must specify the form of the scale function σ(·), otherwise,

the model is unidentifiable. In this case, an estimate of the mode value of εt is needed in

order to recover the estimate of σ(·). In practice, we can estimate εt using the residuals

(Yt − m̂(Xt))/σ
′(Xt), where m̂(·) is from (3.4) and σ′(·) is an estimate of σ(·); see Akritas

and Van Keilegom (2001) for the detailed method.

In reality, the value of the conditional mean regression function m(Xt) is unknown,

indicating that m(·) plays the role of a nuisance parameter that must be estimated first.

A natural approach is to apply the nonparametric regression estimator, in which the local

linear estimation technique is utilized to cope with m(Xt), though it will be clear that the

estimation can be generalized to any linear smoother (e.g., polynomial regression, smoothing

splines, and wavelet). Suppose that the second derivative ofm(·) is continuous in the domain

of X, x is a given point in the domain, and Yt is in the support of the conditional density of
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Y , based on Taylor expansion, we then have m(X) ≈ m(x)+m(1)(x)(X−x) for X in a local

neighborhood of x and m(1)(x) is the first derivative of m(·) with respect to x. Throughout

the paper, the notation A ≈ B represents A = B(1+ o(1)). After that, we get the following

least squares problem

(â(x), b̂(x)) = arg min
a(x),b(x)

n∑
t=1

{Yt − a(x)− b(x) (Xt − x)}2K
(
Xt − x

h

)
, (3.4)

where a(x) = m(x), b(x) = m(1)(x), K(·) : R → R is a bounded and symmetric kernel

function, and h = h(n) > 0 is a sequence of positive numbers tending to zero as n → ∞,

which is referred to as bandwidth. The kernel K(·) and the bandwidth h determine the

shape and width of the local neighborhood. Defining â(x) and b̂(x) as estimators from (3.4),

the local linear estimators of m(·) and m(1)(·) are simply

m̂(x) = â(x) =
Tn,0Sn,2 − Tn,1Sn,1

Sn,2Sn,0 − Sn,1Sn,1
and m̂(1)(x) = b̂(x) =

Tn,1Sn,0 − Tn,0Sn,1

Sn,2Sn,0 − Sn,1Sn,1
,

respectively, where Sn,l1 =
∑n

t=1Kh (Xt − x) (Xt − x)l1 , l1 = 0, 1, 2, Tn,l2 =
∑n

t=1Kh(Xt−

x) (Xt − x)l2 Yt, l2 = 0, 1, and Kh(·) = K(·/h)/h. The asymptotic bias and variance results

for m̂(x) are standard and can be established under certain regularity conditions (Fan and

Gijbels, 1996). In particular, the asymptotic bias is

Bias{m̂(x)} =
1

2
h2m(2)(x)

∫
u2K(u)du+ op(h

2 + (nh)−1/2)

with m(2)(·) denoting the second derivative of m(·), and the asymptotic variance is

Var{m̂(x)} =
Var (Y | X = x)

nhfX(x)

∫
K2(u)du+ op((nh)

−1 + h4),

where fX(·) represents the density of X. It is worth pointing out that the first step esti-

mation error in m̂(·) must be controlled in the asymptotic analysis of the proposed modal
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volatility estimator. Especially, we need to impose the high-level condition that the cho-

sen mean estimator satisfies |m(x) − m̂(x)| = Op(ϑn) for some rate parameter ϑn → 0.

Nonetheless, because the convergence rate of the mean estimator is faster than that of the

modal estimator, we can take the results from the first step mean estimation without further

processing.

Remark 3.2.27 We can also obtain the estimate of rt by directly estimating the condi-

tional expectation of squared responses and setting r̂t = ĝ(Xt) − m̂2(Xt), where ĝ(Xt) is

the nonparametric kernel-type estimate of E(Y 2
t | Xt). The same mean convergence rate as

the one from (3.4) is exhibited in this estimator. However, as pointed out by Fan and Yao

(1998), such a direct estimation method may result in a very large bias, and the estimator is

not asymptotically design adaptive to the estimation of m(·). It may also produce a negative

estimate of the volatility function, particularly if different smoothing parameters are utilized.

After obtaining m̂(x), we consider a residual-based modal estimator of the con-

ditional volatility, in which the volatility function is estimated by performing a modal

regression of the estimated squared residuals r̂t = (Yt − m̂(Xt))
2 against Xt. In order to

take advantage of the modal estimator and ease the structural assumptions in parametric

models, instead of fitting the squared residuals against Xt via mean or parametric regres-

sion, we estimate the volatility function σ2(Xt) by employing Taylor expansion, such that

Mode(rt | Xt) = σ2(Xt) ≈ σ2(x) + (∂σ2(x)/∂x)(Xt − x) (3.5)

for Xt in a local neighborhood of x. After that, we can obtain the following objective

function7

7The maximum of the kernel-based objective for estimating modal coefficients is originated from non-
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Qn(α1(x), α2(x)) =
1

nh1h2

n∑
t=1

ϕ

(
r̂t − α1(x)− α2(x)(Xt − x)

h1

)
K

(
Xt − x

h2

)
, (3.6)

where α1(x) = σ2(x), α2(x) = ∂σ2(x)/∂x, ϕ(·) : R → R is a standard kernel density

with bandwidth h1 = h1(n) (control the number of estimated modes) such that h1 → 0

as n → ∞, and K(·) : R → R is a rescaled kernel function associated with bandwidth

h2 = h2(n) (control the distance between observations) such that h2 → 0 as n → ∞. With

bounded kernel functions, the bandwidths h1 and h2 play an important role in estimating

dependent observations because the dependency can be controlled with observations in

a small window; see the discussions associated with Theorem 3.2.12. Although we can

utilize different kernels for the mean regression function and the volatility function, we

choose to use the same kernel K(·) here for simplicity. We cannot, however, employ the

same bandwidths for mean and modal regressions due to differences in convergence rates.

The aforementioned objective function then leads to the residual-based modal estimators

σ̂2(x) = α̂1(x) and ˆ̇σ2(x) = α̂2(x).

Remark 3.2.28 Local linear approximation is popular in many contexts due to the advan-

tages in boundary behavior (i.e., the boundary adjustment is not necessary) and estimating

regression derivatives (Fan and Gijbels, 1996). Nonetheless, as previously discussed, such

an estimate cannot guarantee the positive value of volatility in finite samples. To avoid

negative values in practice, in addition to the exponential estimate developed in Section 3.5,

we can apply the theoretically less satisfactory local constant modal estimator

parametric density estimation, where ϕ(·) is used to target the mode value of the error term and K(·) is
applied to control the smoothness of the modal volatility function. We can also interpret modal estimation
by utilizing a distance-based loss function such as h−1

1 (1 − ϕ(Y − Xβ)h−1
1 ) and Mode(Y | X) = Xβ. We

will need an additional kernel function K(·) for nonparametric modal regression. As stated in Yao et al.
(2012), the choice of kernel functions is not very crucial empirically or theoretically compared to the choice
of bandwidths. We choose the standard normal kernel for all kernels in this paper to make computation
easier.
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α̂1 = argmax
α1

1

nh1h2

n∑
t=1

ϕ

(
r̂t − α1

h1

)
K

(
Xt − x

h2

)
,

where the estimation algorithm (or using the mean-shift algorithm) and asymptotic theorems

shown below are still valid but with a little bit of notation change.

Remark 3.2.29 The developed methodology provides a broadly applicable framework for

constructing different volatility estimators across a wide range of diverse settings. The

volatility defined in this paper is consistent with the classical definition in mean case, which is

to measure variability from the average or mean but in mode sense. If we consider employing

modal estimators in both stages, i.e., to estimate both the location function and the volatility

function, we then need to slightly change the model settings without imposing any restrictions

on moment conditions. To be more specific, let {(Yt, Xt)} be a two-dimensional strictly

stationary process, having the same marginal distribution as (Y,X). Then, we can write

Yt = m(Xt) + σ(Xt)εt, where Mode(εt | Ft−1) = 0, Mode(ε2t | Ft−1) = 1, Mode(Yt | Xt) =

m(Xt), and

σ2(Xt) = Mode{[Yt −Mode(Yt | Xt)]
2 | Xt} > 0.

In such a case, the defined modal volatility is to measure variability from the mode over a

given period of time in mode sense. The properties of Mode(Yt | Xt) = m(Xt) can be esta-

blished following the procedures in this paper. The undersmoothing in the first step, on the

other hand, is required to achieve the adaptiveness property of the modal volatility estimator.

Unlike local linear mean regression, there is no closed-form expression of the max-

imizers of (3.6), so the modal-optimal estimator should be found using numerical optimiza-

tion techniques. We apply a modified MEM algorithm (Algorithm 2) including expectation
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step (E-Step) and maximization step (M-Step) to solve it (Li et al., 2007; Yao, 2013). Be-

cause of the usage of a Gaussian kernel, the estimator in M-Step with log-maximization

bears a close resemblance to the least squares estimator. Consistent with the conventional

Algorithm 2 MEM Volatility Algorithm

E-Step. Calculate the weight π
(
t | α(g)

1 , α
(g)
2

)
, t = 1, · · · , n, with the preliminary estimates

of the modal parameters as

π
(
t | α(g)

1 , α
(g)
2

)
=

ϕ

(
r̂t−α

(g)
1 −α

(g)
2 (Xt−x)

h1

)
K
(
Xt−x
h2

)
∑n

t=1 ϕ

(
r̂t−α

(g)
1 −α

(g)
2 (Xt−x)

h1

)
K
(
Xt−x
h2

)
∝ ϕ

(
r̂t − α

(g)
1 − α

(g)
2 (Xt − x)

h1

)
K

(
Xt − x

h2

)
.

M-Step. Update
(
α
(g+1)
1 , α

(g+1)
2

)
with the weight calculated in the E-Step

(
α
(g+1)
1 , α

(g+1)
2

)
=arg max

α1,α2

n∑
t=1

{
π
(
t | α(g)

1 , α
(g)
2

)
log

1

h1
ϕ

(
r̂t − α1 − α2(Xt − x)

h1

)}

=(X∗WXX∗)−1X∗TWX r̂,

where g is the iteration indicator, X∗ = (X∗
1 , · · · , X∗

n)
T with X∗

t = (1, Xt − x), r̂ =

(r̂1, · · · , r̂n)T , and WX is an n × n diagonal matrix with π(t | α(g)
1 , α

(g)
2 ) as diagonal el-

ements.

Iterate. Given the initial values, iterate E-Step and M-Step repeatedly until a stopping

criteria like ∥κ(g+1)−κ(g)∥ < η for some η > 0 with some approximate norm ∥·∥ is satisfied,

where κ(g+1) = (α
(g+1)
1 , α

(g+1)
2 ).

Note: For the purpose of simplicity, we suppress x for α1(x) and α2(x) in the algorithm.
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EM algorithm, the kernel-based objective function is not decreased after a MEM iteration

as a result of the convergence property, i.e., Qn(α
(g+1)
1 , α

(g+1)
2 ) ≥ Qn(α

(g)
1 , α

(g)
2 ). According

to Yao and Li (2014) and Ullah et al. (2021), it cannot be guaranteed that the MEM

algorithm will converge to the global maximizer. Therefore, it is much important to re-start

the algorithm with different starting points (i.e., local linear mean or quantile estimates)

to choose the best optimal value by comparing the value of the objective function. The

algorithm may also diverge owing to numerical instability, which can be caused, for example,

by a poor selection of the bandwidths (h1 and h2). Consequently, a maximum number of

iterations that the algorithm may be allowed to run must be specified. Finally, we emphasize

that the precondition for the MEM algorithm to obtain modal estimates is to let h1 → 0;

by contrast, allowing h1 → ∞ will result in the MEM algorithm producing mean estimates;

see Remark 3.2.33.

Remark 3.2.30 The major difference between the mean regression by lease squares and the

modal regression by MEM algorithm lies in the weight π(t | α(g)
1 , α

(g)
2 ) used in the E-Step.

For the mean regression, each observation is given an equal weight 1/n, whereas the weight

π(t | α(g)
1 , α

(g)
2 ) depending on current estimates allows modal regression to reduce the effect

of observations far away from the modal regression curve to achieve robustness, which is

one of the advantages of modal regression over mean regression.

Remark 3.2.31 (Modal-Based Robust Volatility Estimator) We in this paper in-

vestigate the modal volatility estimator on the basis of the premise that the mode is not

identical to the mean (otherwise the proposed estimation procedure is not the most efficient

one). When data are symmetrically distributed, the modal regression line shall be identical
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to the mean regression line. In addition, as a central tendency measure, the mode is robust

to outliers and abnormal observations (due to the requirement of no moment conditions),

whereas the least squares estimate method is not the most effective one in the presence of

outliers or heavy tails. In many areas of economics and finance, empirical studies have

disclosed heavy-tailed distributions. The tails of high-frequency financial time series, for

example, may be significantly heavier than those of Student-t distributions. Borkovec and

Klüppelberg (2001) revealed that the stationary distribution of Yt may have a heavy tail of

the Pareto type and hence Yt may not have a finite second moment despite the fact that

E(ε2t ) < ∞. These phenomena indicate that modal regression can be treated as an alterna-

tive way to obtain the nonparametric robust estimation of the conditional variance function,

which can be further used to construct confidence intervals for the mean function. If we as-

sume

E(ε2t | Ft−1) = Mode(ε2t | Ft−1) = 1,

the finite fourth moment of εt exists, and the bandwidth h1 is a constant (tuning parameter

not depend on sample size), the residual-based estimator obtained from (3.6) can be referred

to as the modal-based robust volatility estimator. The underlying mechanism is that with the

use of a Gaussian kernel, for large value of h1, 1− exp(−u2/h1) ≈ u2/h1, and therefore the

suggested modal-based estimator is equivalent to the least squares estimator in the extreme

case. For a small value of h1, large values of u will result in a small impact on the estimator.

The asymptotic property of such a modal-based robust volatility estimator is given in Remark

3.2.33, which is shown to be more efficient than, or at least as efficient as, that obtained

through mean estimation.
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3.2.2 Asymptotic Properties

The majority of previous studies concentrate on the asymptotic behavior of modal esti-

mators with independent data. Our objective is somewhat different in that we consider

dependent data and treat the mean regression function in the first step as a nuisance pa-

rameter. To make it easier to understand the asymptotic theorems that follow, we introduce

some notations that will be used throughout the remaining part of this paper. We define

modal residual ϵt = rt −Mode(rt | Xt), σ̈
2(x) = ∂2

[
σ2(x)

]
/∂x2, µj =

∫
wjK(w)dw, and

vj =
∫
wjK2(w)dw, j = 0, 1, 2, 3. We call Tn(x) = T (x) + op(sn) ( or Op (sn)) uniformly

for x ∈ X if supx∈X |Tn(x)− T (x)| = op (sn) ( or Op (sn)). To express convergence in a dis-

tribution, we use the symbol “
d→”. The integral

∫
is taken over (−∞,∞) unless otherwise

specified. To derive the consistency and asymptotic theorems of estimators from (3.6), we

impose several regularity conditions that are listed below.

C1 (Kernel Function) The kernel functions ϕ(·) and K(·) are both nonnegatively sym-

metric continuous density functions with bounded support, each of which is integral

to one. Moreover,
∫
s2+δϕ2+δ(s) < ∞ and

∫
s2+δK2+δ(s) < ∞ with probability one,

where δ ∈ [0, 1) is a constant.

C2 (Regression Function) The mean regression function m(·) and the volatility function

σ2(·) both have at least a continuous second derivative on an open set containing the

point x.

C3 (Density Function) For a fixed point x, fX(x) is greater than 0 and continuous at x,

and gϵ(ϵ | x) > 0 is continuous at ϵ, where gϵ(ϵ | x) is the conditional density function
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of ϵ given x. In addition, the joint density of Xt and Xj is bounded for all j ≥ t+ 1.

gϵ(ϵ | x) is assumed to have the fourth continuous derivative and gϵ(ϵ | x) < gϵ(0 | x)

for all ϵ ̸= 0, where g
(c)
ϵ (· | x) denotes the cth derivative of gϵ(· | x).

C4 (Mixing Process) {(Yt, Xt)} is a stationary α-mixing process, and the mixing coef-

ficient ρ(n) = supA∈F0
−∞,B∈F∞

t
|P (A ∩ B) − P (A)P (B)| tending to zero for n → ∞

satisfies
∑

n≥1 n
γ(ρ(n))δ/(2+δ) < ∞ for some γ > δ/(2 + δ), where δ is given in C1

and F is the σ-algebra of events generated by the random variables {(Yt, Xt)}. More-

over, there is a sequence of positive integers dn such that dn → ∞, dnh1h2 → 0, and

h41h
−(2+2δ)/(2+δ)
2

∑n
k=dn

[ρ(k)]δ/(2+δ) = o(nh−1
2 h−3

1 ).

C5 (Moment) There exists a constant s > 2 such that E(|X|2s) < ∞, and E(|Yt|δ | Xt) <

∞ for some δ > 2.

While these conditions may appear to be a little bit verbose at first sight, they

are actually rather common in practice. The bounded support in C1 imposed on kernel

functions is for the sake of conciseness of proofs, and the Gaussian kernel is allowed (Ullah et

al., 2021, 2022), which corresponds to the default kernel used in this paper. The symmetric

assumption is quite common. If this is not the case, points equidistant from x could be

assigned different weights, which is not really attractive in reality. C2 is a commonly

used condition on the smoothness of the nonparametric functions in local linear fitting. It

regulates the precision of the approximation since the second derivatives of m(·) and σ2(·)

impact the bias. Note that the bias can be further reduced with fitting polynomials of a

higher order, leading to an increase of the variability. C3 implies a certain smoothness of

gϵ(ϵ | ·) in the neighborhood of zero, which is necessary for identification. It imposes that the
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conditional density of ϵ has a well defined global mode at zero; see Kemp and Santos Silva

(2012) and Ullah et al. (2021, 2022). This unique global mode assumption is being made

for a simple illustration. When the population is not homogeneous, the proposed method

can also be applied to the multimode setting. C4 is the standard requirement for α-mixing

process, which determines the mixing properties of the process under investigation. It is

reasonably weak (milder than the standard mixing process where the coefficient decreases

at a geometric rate) and is known to be satisfied by many stochastic processes (Cai and

Ould-Said, 2003), for instance, the ARMA processes generated by absolutely continuous

noise. When {(Yt, Xt)} is independent in which δ = 0, the results in this paper also hold.

C5 is the classic rank condition placing restrictions on the moments of covariate to ensure

the existence of the asymptotic mean and variance. For modal regression, we do not need

to impose moment conditions for Yt. However, in the first step, we need this condition

to achieve the conditional mean estimate. In the case of utilizing modal estimation on

both steps, the condition δ ≥ 2 can be extended to δ > 0, allowing consequently that

E(Y | X) = ∞. We can then substitute Y by a truncated variable Y − since the mode is

not affected by truncation. All conditions related to bandwidths to control the effects of

the dependence of the mixing processes on showing asymptotic normality are listed in the

following relevant theorems.

Naturally, one might wonder whether estimating σ2(x) with the estimated value r̂t

rather than the true value rt would result in some additional asymptotic errors. In answer

to this query, we present the following asymptotic theorems and establish the adaptiveness

property for the proposed modal volatility function.
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Theorem 3.2.11 Suppose that x is such that x±h2 is in the support of fX(x). Under the

conditions C1-C5, with probability approaching one, as n → ∞, h1 → 0, h2 → 0, h22/h1 → 0,

nh2h
5
1 → ∞, and h/h2 → 0, there exist consistent maximizers (σ̂2(x), h2 ˆ̇σ

2(x)) of (3.6)

such that

i. |σ̂2(x)− σ2(x)| = Op

((
nh2h

3
1

)−1/2
+ h21 + h22

)
,

ii. |h2(ˆ̇σ2(x)− σ̇2(x))| = Op

((
nh2h

3
1

)−1/2
+ h21 + h22

)
.

It is necessary to emphasize that the same rates of convergence are observed in the

setting of α-mixing dependence as well as in the case of independence for nonparametric

modal regression. A closer examination of Theorem 3.2.11 reveals that the bias terms have

contributions from both the estimation of mode and the approximation of function; the

first term (h21) in the bias results from the modal estimating process and the second term

(h22) is obtained by local linear estimation, which is consistent with mean regression. It

can be seen that higher order local polynomial smoothing can reduce the bias incurred by

approximating of σ2(·) if σ2(·) has the (p + 1)th (p ≥ 2) order derivative continuous at

x. The contribution from the error in the estimator m̂(x) is asymptotically omitted with

the assumption that h/h2 → 0. Notice that the optimal bandwidth h that minimizes the

asymptotic MSE has an optimal rate of n−1/5, while the MSE-optimal bandwidth h2 has

the rate of n−1/8, implying that the condition h/h2 → 0 is unambiguously met. Therefore,

there is no need to undersmooth m̂(x) when conducting mean estimation. The next theorem

gives the asymptotic distributions of the modal estimators we are interested in, which is in

parallel with those arising in nonparametric modal estimators with independent data.
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Theorem 3.2.12 With nh52h
3
1 = O(1) and nh2h

7
1 = O(1), under the same conditions as

Theorem 3.2.11, the estimators satisfying the consistency results in Theorem 3.2.11 have

the following asymptotic result

√
nh2h31


 σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))

− Γ−1

(
h22
2
Λ2σ̈

2(x)− h21
2
Λ1

)
d→ N

(
0,

∫
τ2ϕ2(τ)dτ

fX(x)
Γ−1ΣΓ−1

)
.

If we allow nh52h
3
1 → 0 and nh2h

7
1 → 0, the asymptotic theorem becomes

√
nh2h31

 σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))

 d→ N
(
0,

∫
τ2ϕ2(τ)dτ

fX(x)
Γ−1ΣΓ−1

)
.

where

Γ =

µ0g
(2)
ϵ (0 | x) µ1g

(2)
ϵ (0 | x)

µ1g
(2)
ϵ (0 | x) µ2g

(2)
ϵ (0 | x)

, Σ =

v0gϵ(0 | x) v1gϵ(0 | x)

v1gϵ(0 | x) v2gϵ(0 | x)

, Λ1 =

µ0g
(3)
ϵ (0 | x)

µ1g
(3)
ϵ (0 | x)

,

and Λ2 =

µ2g
(2)
ϵ (0 | x)

µ3g
(2)
ϵ (0 | x)

. Provided that µ1 = 0 and µ3 = 0 with a symmetric kernel, the

results indicate that σ̂2(x) and ˆ̇σ2(x) are asymptomatically independent.

The proof of Theorem 3.2.12 is based on the Bahadur-type representation for the

nonparametric estimator of modal volatility. It states that the residual-based modal es-

timator σ̂2(x), which does not require m(·) to be known, is asymptotically as efficient as

the oracle estimator as if the knowledge of m(·) were known in advance. In particular, the

asymptotic results do not include any additional bias or variance components due to the

first step in the estimation procedure. This adaptiveness property to the unknown con-

ditional mean regression function is shared by other residual-based volatility estimators;
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see Ziegelmann (2002) and Xu and Philips (2011). Theorem 3.2.12 also indicates that the

asymptotic bias term can vanish fast enough under certain conditions to have no impact

on the asymptotic distribution. However, the optimal bandwidths of h1 and h2 have the

rate n−1/8, which does not fulfill the conditions that nh52h
3
1 → 0 and nh2h

7
1 → 0. As a re-

sult, consistent with most semiparametric regression literature, undersmoothing is required.

Comparing Theorem 3.2.12 to Theorem 1 in Fan and Yao (1998), which investigated a mean

variance estimator based on random and absolutely regular observations, the modal volatil-

ity estimator has a slower convergence rate. Also, Theorem 3.2.12 indicates that under

suitable conditions, the dependence of the observations does not influence the asymptotic

distribution of the modal volatility estimator. The primary reason for this is attributed

to the imposed conditions on bandwidth choice. Under α-mixing process, the covariance

between random variables ϵt and ϵj such that ϵt, ϵj ∈ (ϵ − h1, ϵ + h1) is dominated by the

variance of ϵt (or is nearly uncorrelated) under certain mild conditions. The similar expla-

nation applies to variables Xt and Xj . Therefore, when the dependence is moderate, the

asymptotic theorem is identical to that in the i.i.d. case.

Remark 3.2.32 (Boundary Behavior) The behavior near the boundary, which is a well-

known appealing property of local linear smoothers, can be shown to carry over to the mode

case. Take x = ch2 for some 0 < c < 1 and define µj(c) =
∫∞
−c w

jK(w)dw and vj(c) =∫∞
−c w

jK2(w)dw. Under conditions similar to those of Theorem 3.2.12, we can obtain

Bias(σ̂2(x)) =
h22
2
σ̈2(x)

µ2
2(c)− µ1(c)µ3(c)

µ0(c)µ2(c)− µ2
1(c)

− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

.

Var(σ̂2(x)) =

∫
τ2ϕ2(τ)dτ

nh2h31fX(x)

gϵ(0 | x)
g
(2)
ϵ (0 | x)2

µ2
2(c)v0(c)− 2µ1(c)µ2(c)v1(c) + µ2

1(c)v2(c)

(µ0(c)µ2(c)− µ2
1(c))

2
.

Thus, the local linear modal estimator adapts automatically to all locations.
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Remark 3.2.33 (Modal-Based Robust Volatility Estimator) Following Remark 3.2.

31, to derive the asymptotic theorem for the modal-based robust volatility estimator under

stationary α-mixing dependent samples, we impose the following necessary conditions.

D1 The errors ϵt are symmetrically random errors with zero mode and zero mean, and they

are independent of Xt. Also, E(ϕ
(1)
h1

(ϵt) | Xt) = 0, where ϕh1(ϵt) = ϕ(ϵt/h1)/h1 and

ϕ
(c)
h1
(·) represents the cth derivative. In addition, E(ϕ

(2)
h1

(ϵt) | Xt) < 0, E((ϕ
(2)
h1

(ϵt))
2 |

Xt), (E(ϕ
(2)
h1

(ϵt) | Xt))
2, E(ϕ

(1)
h1

(ϵt)
2 | Xt), E(|ϕ(1)

h1
(ϵt)

3| | Xt), and E(ϕ
(3)
h1

(ϵt) | Xt) are

continuous with respect to Xt.

D2 The random variable X has a bound support, and its density fX(·) has a continuous

first derivative and is bounded away from zero and infinity. In addition, the joint

density of Xt and Xj is bounded for all j ≥ t+ 1.

D3 There exists a sequence of positive integers dn such that dn → ∞, dn = o
(
(nh2)

1/2
)
,

and (n/h2)
1/2ρ (dn) → 0 as n → ∞.

D4 The conditional moments E(|ϕ(1)
h1

(ϵt)|2+γ | Xt) and E(|ϕ(2)
h1

(ϵt)|2+γ | Xt) are bounded.

There exits τ > 2+γ such that E(|ϕ(1)
h1

(ϵt)|τ | Xt) is bounded and ρ(n) = O(n−θ) such

that θ ≥ (2 + γ)τ/(2(τ − 2− γ)). Also, n−γ/4h
(2+γ)/τ−1−γ/4
1 = O(1).

D5 The bandwidth h2 is a real sequence such that as n → ∞, h2 → 0 and nh2 → ∞.

Also, it is necessary that h/h2 → 0.

Completely different from the proposed modal volatility estimator, we now need to

impose moment conditions for the modal-based robust volatility estimator. Condition D1 is

a necessary condition for the asymptotic normality and consistency of the modal-based ro-
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bust estimator. The derivative ϕ
(1)
h1

(·) can be considered as the influence function, measuring

the influence of an observation on the value of the parameter estimate. Condition D2 is a

standard smoothness condition that is found in a variety of applications. Conditions D3 and

D4 are utilized to ensure the asymptotic neglect of dependence between observations. Such

conditions are different from the ones used in modal volatility estimation since we do not

need to control the dependence between errors. Condition D5 is the classical bandwidth con-

dition in nonparametric estimation. As opposed to modal volatility estimation, we presently

need to undersmooth the first step estimators in order to asymptotically ignore their effect

in the second step estimation. There is no condition imposed on bandwidth h1 because it

is treated as a constant. We then have the following asymptotic theorem, with the proof

obtained by using the first-order Taylor expansion and the central limit theorem.

Theorem 3.2.13 Suppose that the point x at which the estimator is taking place satisfies

h2 < x < 1− h2. With nh52 = O(1), under the conditions C1, C2, the first part of C4, and

D1-D5, as n → ∞, we have the following asymptotic result

√
nh2

[ σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))

− h22
2
Γ−1
m Λmσ̈2(x)

]

d→ N

(
0,

E((ϕ
(1)
h1

(ϵ))2 | X = x)Γ−1
m Σm(Γ−1

m )T

(E(ϕ
(2)
h1

(ϵ) | X = x))2fX(x)

)
.

If we allow nh52 → 0, the asymptotic theorem becomes

√
nh2

 σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))

 d→ N

(
0,

E((ϕ
(1)
h1

(ϵ))2 | X = x)

(E(ϕ
(2)
h1

(ϵ) | X = x))2fX(x)
Γ−1
m Σm(Γ−1

m )T

)
,

where Λm =

µ2

µ3

, Γm =

µ0 µ1

µ1 µ2

, and Σm =

v0 v1

v1 v2

.
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We briefly outline the proof in the appendix. In comparison to the modal volatility estimator,

the convergence rate now becomes (nh2)
1/2, which is the same as that of local linear mean

estimator. Similar to the literature on semiparametric two-step estimators involving kernel

estimation in the first step, the bias and variance in the first step vanish asymptotically

with undersmoothing (h/h2 → 0). The above theorem also shows that the modal-based

robust volatility estimator is not only asymptotically equivalent to the local linear mean

robust volatility estimator but is also more efficient. An asymptotic comparison with local

linear mean estimation is entirely driven by a comparison of their asymptotic variance (they

share the same asymptotic bias), where we can achieve an efficiency gain in the presence of

certain conditions by adjusting the value of h1; see Yao et al. (2012) and Ullah et al. (2022).

In practice, we can minimize the asymptotic variance, utilize the plug-in method to replace

unknown functions with consistent estimators, and combine with the grid search method to

choose bandwidths h1 and h2. Due to space constraints, the comprehensive investigation of

such a modal-based robust volatility estimator is omitted here.

Remark 3.2.34 Because of the use of only a small part of the data, quantifying uncertainty

in modal statistics is challenging. The theorems stated above establish the asymptotic distri-

bution of the proposed modal (and modal-based robust) volatility estimators. However, the

asymptotic distribution involves many unknown terms, necessitating further nonparametric

estimation with new bandwidths. Consequently, it would be difficult to apply the asymptotic

results directly to perform (modal) inference. We will not explore the problem of inference

here, but readers may consult, for example, we can adopt the stationary bootstrap in Politis

and Romano (1994) to construct confidence intervals for modal (and modal-based robust)

volatility.
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3.2.3 Optimal Bandwidths

It is commonly acknowledged that in a standard finite dimensional framework, the smooth-

ing parameters must be appropriately chosen to ensure good practical performance. Dif-

ferent from other nonparametric methods, setting the bandwidths in modal regression not

only controls the trade off between bias and variance but also affects the target of the ob-

jective (mean estimator or modal estimator). In addition, for modal regression, bandwidth

choice is considerably more important since the value of bandwidth associated with error

terms affects the number of estimated modes. In this part, we explore asymptotic optimal

bandwidths for h1 and h2 and show how to obtain bandwidths suggested by data.

Notice that the mean regression function m(Xt) only plays the role of a nuisance

parameter during the modal estimation process, and the bandwidth h used in estimating

the mean regression function is not as crucial as the bandwidths applied in the modal

estimator. The asymptotic result presented above justifies the use of standard bandwidth

selectors developed to estimate the mean function. We thus follow the rule of thumb to

choose h for simplicity and practical convenience, i.e., ĥ = haσ̂Xn−1/5, where σ̂X is the

standard deviation of X, ha is a real constant to be tuned,8 and n−1/5 is the rate of the

MSE-optimal bandwidth. We refer readers to Fan and Yao (1998) for the expression of the

asymptotic optimal bandwidth h.

With the obtained asymptotic properties, we can derive the asymptotic optimal

bandwidths for h1 and h2 . The fundamental idea is to minimize the asymptotic MSE of

an estimator. Considering the estimator of σ2(x) at point x, the asymptotic MSE equals

8The selection of the bandwidth parameter ha has been debated at length in the literature. We choose
ha = 1.06 for numerical examples since it is the optimum number for density estimation with respect to the
mean integrated standard error criteria (Silverman, 1986).
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MSE(σ̂2(x)) = Bias(σ̂2(x))2 +Var(σ̂2(x))

≈

{
eT1 Γ

−1

(
h22
2
σ̈2(x)Λ2 −

h21
2
Λ1

)}2

+

∫
τ2ϕ2(τ)dτ

nh2h31fX(x)
eT1 Γ

−1ΣΓ−1e1,

(3.7)

where e1 = (1, 0)T . By defining (ĥ1, ĥ2) = argminh1,h2 MSE (σ̂2(x)), we have the following

result in which ∆1 = (σ̈2(x)eT1 Γ
−1Λ2)

2, ∆2 = (eT1 Γ
−1Λ1)

2, ∆3 = (σ̈2(x)eT1 Γ
−1Λ2)(e

T
1 Γ

−1Λ1),

and ∆4 = ∆2/(
√

∆2
3 + 3∆1∆2 −∆3).

Corollary 3.2.1 Under the same conditions as Theorem 3.3.14, the optimal bandwidths of

h1 and h2 satisfy ĥ2 = ĥ1∆
1/2
4 , where

ĥ1 =

(
(∆

5/2
4 ∆1 −∆

3/2
4 ∆2)fX(x)∫

τ2ϕ2(τ)dτeT1 Γ
−1ΣΓ−1e1

)− 1
8

n− 1
8 .

Remark 3.2.35 It can be seen that the modal rate of the MSE-optimal bandwidth is smaller

than that of the mean estimator. Thus, the value of ĥ1 is larger than the value of ĥ. One

can also minimize the asymptotic weighted mean integrated squared error to obtain the

asymptotic global optimal bandwidth. Especially, we can minimize

∫
E[σ̂2(x)− σ2(x)]TW [σ̂2(x)− σ2(x)]w(x)dx,

where W is a weight matrix and w(x) denotes a weight function. One popular choice for

W is the inverse of the asymptotic variance of σ̂2(x).

If we replace the bandwidths in (nh2h
3
1)

1/2 with the MSE-optimal bandwidth val-

ues, we can achieve n1/4 consistency, indicating that the convergence rate of modal regression

is slower than that of mean regression. Notice that the optimal bandwidths in the above

corollary are complicatedly dependent on the unknown densities gϵ(·) and fX(·), which are
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not accessible in practice.9 However, the expression can provide us with some guidelines on

how to select the practically optimal data-driven bandwidths. To simplify the calculations,

we generalize the method in Kemp and Santos Silva (2012) to choose the optimal band-

widths and let ĥ1 = 1.6MADn−0.13 (-0.13 comes from the rate -1/8 and undersmoothing

requirement), where

MAD = medj{|(r̂j − σ̂2
m(Xj))−medt(r̂t − σ̂2

m(Xt))|} (3.8)

is the median absolute deviation and σ̂2
m(·) represents the mean volatility estimator. We

set ĥ2 = 1.06σXn−0.13, in which σX is the standard deviation of the sample Xt. Although

these informal selection procedures may not provide the optimal estimates in practice, they

are formally consistent with the shrinking rates of bandwidths and the requirement for

undersmoothing. How to precisely choose the optimal bandwidths within the content of

modal volatility estimation would be quite involved and requires additional research in the

future to fully understand.

3.3 Variance Reduced Modal Volatility Estimator

Although the proposed modal volatility estimator has a slower convergence rate, there is

room for improvement in terms of variance. Motivated by the increasing attention in the

literature on variance reduction, we extend the variance reduction technique in Cheng et al.

9One method related to bandwidth selection for modal regression is the plug-in method, which is proposed
in Yao and Li (2014), Yao and Xiang (2016), and Ullah et al. (2021, 2022). They estimated the optimal
bandwidths following the expressions of the asymptotic MSE-optimal bandwidths by using the estimated
densities of gϵ(·) and fX(·). They then replaced the unknown terms in expressions with the corresponding
estimates. Nevertheless, for nonparametric modal regression, the computation burden associated with the
plug-in method will increase dramatically. Also, the traditional cross validation based on MSE criteria cannot
be used here, as modal regression is intended to maximize a kernel-based objective function. Although kernel-
based cross validation may be applied, the asymptotic property has not yet been completed investigated.
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(2007) to improve the estimation of the modal volatility estimator σ̂2(x) by constructing a

linear combination of modal estimators at three points around x.10 The main idea of vari-

ance reduction is to incorporate more data points around the target one to reduce variance

while remaining the asymptotic bias unchanged through certain moment conditions derived

from asymptotic bias expansions, which can ultimately result in a significant improvement

in the asymptotic MSE. It is worth noting that a similar technique has been adopted by

Choi and Hall (1998), in which they fitted a straight line segment to a curve in a symmetric

way to reduce bias while keeping variance unchanged.

3.3.1 Variance Reduced Modal Estimation

For any x, we define three equally spaced points x−(r+1−j)βh2, j = 0, 1, 2, to form a linear

combination of the values σ̃2(·), where the shift parameter r ∈ (−1, 0) ∪ (0, 1) represents

the relative location and βh2 > 0 indicates the spacing of the grid. Under the assumption

that β > 0, σ̃2(x) is identical to σ̂2(x) if and only if r ∈ {−1, 0, 1}. When β = 0, σ̃2(·)

is degenerated to σ̂2(·), which is not of any interest. Then, the variance reduced modal

volatility estimator for σ̂2(x) is formally given by the interpolated curve at x

σ̃2(x) =
r(r − 1)

2
σ̂2(x−(r+1)βh2)+(1−r2)σ̂2(x−rβh2)+

r(r + 1)

2
σ̂2(x−(r−1)βh2), (3.9)

where the moment condition 2−1r(r − 1)(−1−r)j+(1−r2)(−r)j+2−1r(r + 1)(1−r)j = β0,j

in which β0,j = 1 if j = 0 and 0 otherwise is satisfied to ensure the asymptotic bias of σ̃2(x)

is the same as that of σ̂2(x). Taking x in (3.9) to be X1, · · · , Xn, respectively, we can obtain

the variance reduced modal volatility estimators of σ2(x) at all of the design points. For

10The choice of three nearby points is based on the minimal requirement imposed by the moment condi-
tions, while the solutions will become more complicated as the number of nearby points increases beyond
three.
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explicitness and simplicity of presentation, we only consider the variance reduced estimator

for the modal function σ2(x). However, the method proposed in this subsection can also be

straightforwardly applied to any other high order modal derivatives.

As with the argument in Cheng et al. (2007), the variance reduction is accom-

plished because the correlation coefficients of the above three estimators are smaller than

one. Furthermore, assuming that Supp(σ2(x)) is bounded, i.e., Supp(σ2(x)) = [0, 1], in or-

der to ensure all points are inside Supp(σ2(x)) all the time, we choose β(x) = min{β, x/[(r+

1)h2], (1− x)/[(1− r)h2]} since x− (1− r)βh2 < x < x+(1+ r)βh2. Then, σ̃
2(x) will have

the same asymptotic bias as σ̂2(x). Before we present the asymptotic theorem for σ̃2(x),

we list the asymptotic distribution for σ̂2(x) that originates from the Theorem 3.2.12.

Theorem 3.3.14 Suppose that x is any given point in the interior of the support of fX(·).

With nh52h
3
1 = O(1) and nh2h

7
1 = O(1), under the same conditions as Theorem 3.2.11,

the estimator σ̂2(x) satisfying the consistency result in Theorem 3.2.11 is asymptotically

normal. That is,

P

(
σ̂2(x)− σ2(x)−B(x)√

V 2(x)/(nh2h31)
≤ t

)
= Φ(t) + op(1),

where Φ(·) is the standard normal distribution function,

B(x) =
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

, and V 2(x) =
gϵ(0 | x)

∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

v0.

If we allow nh52h
3
1 → 0 and nh2h

7
1 → 0, the asymptotic normality becomes

P

(
σ̂2(x)− σ2(x)√
V 2(x)/(nh2h31)

≤ t

)
= Φ(t) + op(1).
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We obtain in what follows the asymptotic theorem for the variance reduced modal

volatility estimator σ̃2(x), which shows that σ̃2(x) is asymptotically efficient relative to

σ̂2(x) by reducing asymptotic variance by a known factor. Such a result is to be expected

given that the estimator σ̃2(x) is simply a linear combination of local linear modal volatility

estimators evaluated at nearby points without any pilot estimation.

Theorem 3.3.15 With nh52h
3
1 = O(1) and nh2h

7
1 = O(1), under the same conditions as

Theorem 3.2.11, we have the following asymptotic result

√
nh2h31

(
σ̃2(x)− σ2(x)−

(
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

))
d→ N

(
0,

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

(
v0 − r2(1− r2)C(β)

))
.

If we allow nh52h
3
1 → 0 and nh2h

7
1 → 0, the asymptotic theorem becomes

√
nh2h31

(
σ̃2(x)− σ2(x)

) d→ N

(
0,

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

(
v0 − r2(1− r2)C(β)

))
,

where C(β) = 1.5C(0, β)−2C(0.5, β)+0.5C(1, β) and C(t, β) =
∫
K(w− tβ)K(w+ tβ)dw.

Remark 3.3.36 Because of the use of local linear estimation, when x is a boundary point,

that is, when x is close to the endpoints of the support of X (supp(X)), σ̃2(x) still has an

asymptotic normal distribution, with only the constant factors in the asymptotic bias and

variance changing.

The function C(·) in Theorem 3.3.15 shares the same form as the corresponding

function in Cheng et al. (2007) and C(β) ≥ 0 for any β ≥ 0 with the symmetric kernel

K(·).11 Comparing Theorem 3.3.15 to Theorem 3.3.14, the asymptotic bias is not changed,

11If K(·) has a unique maximum and is concave, C(β) is increasing in β ≥ 0.
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while the asymptotic variance is reduced by the amount {nh2h31fX(x)g
(2)
ϵ (0 | x)2}−1gϵ(0 |

x)r2(1 − r2)C(β) that depends on β. Because r is an arbitrary constant that is not equal

to 0, 1, or -1, the asymptotic variance of σ̃2(x) is always smaller than that of σ̂2(x), with

the maximum achieved at r = ±
√
1/2 regardless of the other parameters. We can get the

most variance reduction with estimators

˜̃σ2
1(x) =

1/2−
√
1/2

2
σ̂2(x− (

√
1/2 + 1)βh2) +

1

2
σ̂2(x−

√
1/2βh2)

+
1/2 +

√
1/2

2
σ̂2(x− (

√
1/2− 1)βh2),

˜̃σ2
2(x) =

1/2 +
√

1/2

2
σ̂2(x− (1−

√
1/2)βh2) +

1

2
σ̂2(x+

√
1/2βh2)

+
1/2−

√
1/2

2
σ̂2(x− (1−

√
1/2)βh2),

where both of them have asymptotic variance {nh2h31fX(x)g
(2)
ϵ (0 | x)2}−1gϵ(0 | x)(v0 −

C(β)/4). It can be observed that either of the variance reduction estimators ˜̃σ2
1(x) and

˜̃σ2
2(x) utilizes more information from data points on one side of x than the other side. To

balance the finite sample bias caused by ˜̃σ2
1(x) and

˜̃σ2
2(x), we define the final modal volatility

estimator by equally averaging the above two estimators

˜̃σ2(x) =
1

2
˜̃σ2
1(x) +

1

2
˜̃σ2
2(x), (3.10)

which can further improve the asymptotic efficiency of the modal volatility estimator. The

proposed variance reduced modal volatility estimator is, as can be seen, a simple linear

combination of local linear modal volatility estimators evaluated at nearby points. The

following theorem regarding ˜̃σ2(x) follows immediately from Theorem 3.3.15.

Theorem 3.3.16 With nh52h
3
1 = O(1) and nh2h

7
1 = O(1), under the same conditions as

Theorem 3.2.11, we have the following asymptotic result
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√
nh2h31

(
˜̃σ2(x)− σ2(x)−

(
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

))
d→ N

(
0,

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

(
v0
2

− C(β)

8
− D(β)

2

))
.

If we allow nh52h
3
1 → 0 and nh2h

7
1 → 0, the asymptotic theorem becomes

√
nh2h31

(
˜̃σ2(x)− σ2(x)

) d→ N

(
0,

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

(
v0
2

− C(β)

8
− D(β)

2

))
,

where D(δ) = 1
16{4(1 +

√
2)C(

√
2 − 1, β/2) +(3 + 2

√
2)C(2 −

√
2, β/2) +2C(

√
2, β/2) +

4(1−
√
2)C(

√
2 + 1, β/2) +(3− 2

√
2)C(

√
2 + 2, β/2)}.

It can be shown that the variance of ˜̃σ2(x) is always smaller than the variance of

σ̃2(x), indicating that ˜̃σ2(x) enjoys an appealing advantage in terms of the improvement

of efficiency (sharing the same asymptotic bias). In order to guarantee that all points are

contained inside Supp(σ2(x)), for a given positive constant β, we choose

β(x) = min
{
β,

x

(
√
1/2 + 1)h2

,
1− x

(
√
1/2 + 1)h2

}
. (3.11)

Note that while theoretical results suggest that implementing larger β values can achieve

more variance reduction, doing so may introduce significant finite sample bias effects. We

thus follow the instructions in Cheng et al. (2007) to take β = 1 for general purposes.

Remark 3.3.37 Given the present model settings, applying variance reduction to m(x) does

not provide any gain in the asymptotic results of the modal volatility estimator. If we apply

the variance reduction technique to the modal-based robust volatility estimator, the variance

term becomes f−1
X (x)E((ϕ

(1)
h1

(ϵ))2 | X = x)(E(ϕ
(2)
h1

(ϵ) | X = x))−2
(
v0 − r2(1− r2)C(β)

)
. The

final modal-based robust volatility estimator, based on the preceding arguments, has the vari-

ance f−1
X (x)E((ϕ

(1)
h1

(ϵ))2 | X = x)(E(ϕ
(2)
h1

(ϵ) | X = x))−2 (v0/2− C(β)/8−D(β)/2).
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3.3.2 Optimal Bandwidths

With the asymptotic properties established in the previous section, we can derive the asymp-

totic optimal bandwidths for the variance reduced modal volatility estimator. The essential

idea is to minimize the asymptotic MSE of the estimator. Taking into consideration the

estimator σ̃2(x), the asymptotic MSE equals

MSE(σ̃2(x)) = Bias(σ̃2(x))2 +Var(σ̃2(x))

=

(
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

)2

+

(
gϵ(0 | x)

∫
τ2ϕ2(τ)dτ

nh2h31g
(2)
ϵ (0 | x)2fX(x)

(
v0 − r2(1− r2)C(β)

))
.

(3.12)

In comparison to MSE(σ̂2(x)), we now have an extra term −(nh2h
3
1g

(2)
ϵ (0 | x)2fX(x))−1gϵ

(0 | x)
∫
τ2ϕ2(τ)dτr2(1− r2)C(β). Note that 0 < r2(1− r2) ≤ 1/4 for any r ∈ (−1, 1)\{0},

which reaches the maximum at r = ±2−1/2. Moreover, for any symmetric kernel K(·),

0 ≤ C(β) ≤ 3
∫
K2(u)du/2 for all β > 0. As a result, the variance reduced modal volatility

estimator performs significantly better than the local linear modal volatility estimator in

terms of asymptotic MSE. By defining (h̃1, h̃2) = argminh1,h2 MSE(σ̃2(x)), we have the

following result, where ∆5 = −g
(3)
ϵ (0 | x)(3µ2σ̈

2(x)g
(2)
ϵ (0 | x))−1.

Corollary 3.3.2 Under the regularity conditions C1-C5, the optimal bandwidths of h1 and

h2 satisfy h̃2 = h̃1∆
1/2
5 , where

h̃1 =

g
(2)
ϵ (0 | x)2fX(x)∆3

5µ2σ̈
2(x)

(
∆2

5µ2σ̈
2(x)− g

(3)
ϵ (0 | x)g−(2)

ϵ (0 | x)
)

gϵ(0 | X)
∫
τ2ϕ2(τ)dτ

(
v0 − 1

4C(β)
)

− 1
8

n− 1
8 .

Remark 3.3.38 The optimal bandwidths result in MSE(σ̃2(x)) = (v0 − C(β)
4 )

7
8 v

− 7
8

0 MSE

(σ̂2(x)), which indicates the asymptotic relative efficiency
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MSE(σ̂2(x))

MSE(σ̂2(x))
= (v0 −

C(β)

4
)−

7
8 v

7
8
0 ≥ 1.

Considering the estimator ˜̃σ2(x), the asymptotic MSE equals

MSE(˜̃σ2(x)) = Bias(˜̃σ2(x))2 +Var(˜̃σ2(x))

=

(
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

)2

+

(
gϵ(0 | x)

∫
τ2ϕ2(τ)dτ

nh2h31g
(2)
ϵ (0 | x)2fX(x)

(
v0
2

− C(β)

8
− D(β)

2

))
.

(3.13)

By defining (
˜̃
h1,

˜̃
h2) = argminh1,h2 MSE(˜̃σ2(x)), we have the following result.

Corollary 3.3.3 Under the regularity conditions C1-C5, the optimal bandwidths of h1 and

h2 satisfy
˜̃
h2 =

˜̃
h1∆

1/2
5 , where

˜̃
h1 =

g
(2)
ϵ (0 | x)2fX(x)∆3

5µ2σ̈
2(x)

(
∆2

5µ2σ̈
2(x)− g

(3)
ϵ (0 | x)g−(2)

ϵ (0 | x)
)

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

(
v0
2 − C(β)

8 − D(β)
2

)
− 1

8

n− 1
8 .

Remark 3.3.39 The optimal bandwidths produce MSE(˜̃σ2(x)) = (v02 − C(β)
8 − D(β)

2 )
7
8 v

− 7
8

0

MSE(σ̂2(x)), which means the asymptotic relative efficiency

MSE(˜̃σ2(x))

MSE(σ̂2(x))
= (

v0
2

− C(β)

8
− D(β)

2
)−

7
8 v

7
8
0 ≥ 1.

Remark 3.3.40 We can deduce from the preceding corollaries that the optimal bandwidths

for the original modal volatility estimator and the variance reduced modal volatility estimator

differ by a constant factor that depends only on the known v0 and β. To choose the data-

driven bandwidths in practice, following Cheng et al. (2007), we set β = 1 as default value

and let

˜̃
h1 = (

v0
2

− C(β)

8
− D(β)

2
)1/8ĥ1 and

˜̃
h2 = (

v0
2

− C(β)

8
− D(β)

2
)1/8ĥ2

on the basis of asymptotic optimal bandwidth expressions.
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3.4 Numerical Examples

To further explain the difference between mean and modal volatility estimators as well as

to demonstrate the advantage of applying the variance reduction technique, we carry out

several simulation studies and real data analyses in this section, where we compare various

estimation methods, i.e., local linear mean estimation, local linear modal estimation, and

variance reduced modal estimation. To keep all estimates positive, we take the value zero

whenever a negative estimate is obtained, so that σ̂2(x) = max(σ̂2(x), 0). The Gaussian

kernel is used for all examples and the bandwidth selection for modal estimation in practice

is accomplished using the steps introduced in the preceding sections. For the local linear

mean estimation, we utilize the cross-validation technique to select the bandwidths. One

additional simulation related to variance reduction and the prediction advantage of modal

regression is listed in the appendix, in which we show that the variance reduction technique

indeed works well for all univariate functions.

3.4.1 Monte Carlo Experiments

We conduct two simulation studies, one with independent observations and the other with

nonlinear time series. Following Fan and Yao (1998), we use the mean absolute deviation

error (MADE) to evaluate the performance of the estimator

MADE(σ2
E(xt)) =

1

ngrid

ngrid∑
t=1

|σ2
E(xt)− σ2(xt)|,

where σ2
E(xt) denotes the corresponding estimate at time t, σ2(xt) represents the true

volatility function, and the lowest MADE value means the best fit. Since the data near

the boundary may be very sparse, we take {xt, t = 1, · · · , ngrid} as grid points in the range
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Figure 3.1: Simulation Results of Example 1

Note: the first row is for the case b = 0.5; the second row is for the case b = 1; the third row is for the

case b = 2; and the last row is for the case b = 4. For each row, the left plot shows the simulated data,

true mean regression line, and mean fitted line; the middle plot depicts the residual and squared

residual points, as well as the fitted results for three different estimated volatility functions; and

the last plot represents the boxplot results of MADE for the considered three different volatility

estimators.
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of x and ngrid = 101. We consider the following models with simulated 500 random samples

of size n = 200 for each of the settings.

(1) Example 1 The data are generated from the following heteroskedastic regression model

Yt = b(Xt + 2 exp(−16X2
t )) + σ(Xt)εt.

We let σ(Xt) = 0.4 exp(−2X2
t )+0.2, where Xt is generated from uniform distribution U [−2,

2], and εt is independent of Xt and follows N(0, 1). Four different values of b are considered,

i.e., b ∈ {0.5, 1, 2, 4}, which corresponds to the model setting in Fan and Yao (1998).

Figure 3.1 displays the estimation results, where the right plot represents the

MADE boxplots of the estimators, indicating that the modal volatility estimator does not

vary with different values of b and shows the same property as the mean volatility estimator.

The fitted lines of different volatility functions in Figure 3.1 reveal that the modal volatility

function can be utilized as a complement to the mean volatility function to indicate risk.

Nevertheless, there is not much difference between the local linear modal volatility estimator

and the variance reduced modal volatility estimator with regard to fitted lines. Additionally,

Figure 3.1 shows that the modal volatility estimator has a smaller MADE compared to

the mean volatility estimator, and the variance reduced modal volatility estimator performs

better than the local linear modal volatility estimator in terms of MADE. Such findings are

not surprising, and they are in accordance with the theoretical results presented in Section

3.3. The simulation results also suggest that β = 1 is indeed an appropriate default value

for the variance reduced modal estimator in univariate regression.

(2) Example 2 We consider the nonlinear time series model following Fan and Yao (1998)

and Yao and Tong (1994), such that
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Yt = 0.235Xt(16−Xt) + et,

where et ∼ t(3) is independent of Xt, and Yt represents the lag value of Xt. Because the

variance in the one-step-ahead case is constant, we consider the two-step-ahead and three-

step-ahead cases, i.e., Yt = Xt+2 and Yt = Xt+3, respectively. Notice that the volatility

functions are not constant for these two-step and three-step cases, and both are dependent

on covariate Xt.

Figure 3.2: Simulation Results of Example 2

Note: the first row is for the case Yt = Xt+2, whereas the second row is for the case Yt = Xt+3.

For each row, the left plot represents the simulated data, true mean regression line, and mean fitted

line; the middle plot depicts the fitted results for three different estimated volatility functions, along

with the residual and squared residual points; and the last plot shows the boxplot results of MADE

for the considered three different volatility estimators.

The estimation results are reported in Figure 3.2, in which the left plots depict

the shape of the mean regression function and the corresponding local linear mean fitted
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line, and the middle plots show that the modal volatility function is smoother, indicating

less risk than the mean volatility function. The middle plots also demonstrate that modal

estimation is intended to capture the “most likely” values and can be utilized to reveal mode

preference. Figure 3.2 conveys similar conclusions as the previous example, where the local

linear modal volatility estimator and the variance reduced modal volatility estimator show

remarkable superiority compared to the mean volatility estimator in terms of MADE.

In line with the theoretical results, the variance reduced modal volatility estimator can

achieve a comparable bias while having a smaller variance compared to the local linear

modal volatility estimator.

3.4.2 Real Data Analyses

We in this part use two real examples to demonstrate the practical application of the

proposed modal volatility and variance reduced modal volatility, which can be utilized to

expose a variety of distinct characteristics of data.

(1) Interest Rate To establish a plausible connection between risk and the modal re-

turn on financial assets, we consider the yields of the three month Treasury Bill from the

secondary market rates, which are annualized using a 360-day year of bank interest and

quoted on a discount basis. For comparing the results to those in Fan and Yao (1998), we

choose weekly observations from January 5, 1962 to March 31, 1995 as well (Figure 3.3).

The total number of observations is 1735. At first, we fit the data using an AR(5) model

with the order selected by the Akaike information criterion

zt = 1.082
(0.011)

zt−1 − 0.045
(0.018)

zt−2 + 0.015
(0.017)

zt−3 + 0.030
(0.016)

zt−4 − 0.083
(0.012)

zt−5 + Yt, (3.14)
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where zt represents the interest rate series and Yt denotes the residual. The values listed

below each coefficient are standard errors. The results of (3.14) are consistent with those

of Fan and Yao (1998). Then, we can obtain the mean regression function m̂(x) = E{Yt |

zt−1 = x} and the conditional volatility of Yt given zt−1 = x. The overall fitted model is

zt = m̂(zt−1)+1.082zt−1−0.045zt−2+0.015zt−3+0.030zt−4−0.083zt−5+ σ̂(zt−1)εt. (3.15)

Figure 3.3: Results for Three-Month Treasure Bill Data

Note: the left one is the plot of real data; the middle one indicates the residual point and fitted line

of the mean regression function; and the right one represents the fitted results for the considered

three different volatility functions.

The main estimation results are shown in Figure 3.3, from which we can see that

modal regression is able to capture the majority of data points and disclose the character-

istics of data that mean regression cannot reveal (capture the “most likely” effect). When

the interest rate is smaller than 12, the modal regression produces nearly identical results

to the mean regression. In contrast, when the value of the interest rate is beyond 12, the

results from modal regression suggest a lower level of risk in the return of financial assets.

The variance reduced modal volatility estimator is not appreciably different from the modal

volatility estimator, since the primary function of the variance reduction method is to de-
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crease variance while maintaining asymptotic bias constant. This example shows that for

some individuals who have a mode preference rather than the classical expectation/mean

preference, the modal volatility should be regarded as a risk indicator for risk management.

(2) Motorcycle Data To further illustrate the proposed modal volatility, we consider the

well-known motorcycle data from Silverman (1985), in which the dependent variable is the

acceleration force on the head of the rider (in gram) and the independent variable is the

time after a simulated impact (in milliseconds) with motorcycles. The data are available

in the software R library MASS. The sample size is 133. Following Chen et al. (2009), we

model both the mean and volatility of acceleration as nonparametric functions of time

Acceleration = m(Time) + σ(Time)ε, (3.16)

where the volatility function is estimated with the squared residuals.

Figure 3.4: Results for Motorcycle Data

Note: the left one indicates the data points and the fitted line of mean regression function; and the

right one represents the fitted results for the considered three different volatility functions.

The estimation results are reported in Figure 3.4, where the left one depicts the

original data and the local linear mean regression estimate and the right one reveals that
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both modal and mean regressions can finely explore the underlying heteroskedastic struc-

ture of the dataset and reveal a downward U-shape structure. However, the data features

indicated by modal and mean estimations are different. The modal volatility estimators are

significantly smoother than the mean volatility estimator. Compared to mean regression,

the variability is smaller for modal regression when the time is not beyond 40. Nevertheless,

there is a larger value of modal variability when the time is between 40 and 52. In addi-

tion, there exists an obvious downward-upward trend in modal volatility around the time

of 20, while a similar downward trend appears in mean volatility around the time of 45. In

accordance with the previous findings, the variance reduced modal volatility estimator has

a fitted line that is quite close to that of the modal volatility estimator, but with a smaller

amount of variation.

3.5 Exponential Modal Volatility Estimator

Local linear modal regression performs well in estimating the modal volatility function.

However, it is not guaranteed that all volatility estimators based on (3.6) with finite samples

are positive. Generally, large or small bandwidths can lead to negative volatility estimates,

which are commonly observed at design points with fewer observations, and thus we need

to take a further step to correct for negativity; see the numerical results in Section 3.4.

Despite the fact that we can apply the local constant approach, the statistical property

does not appear promising. To enlarge the applicability of the modal volatility and ensure

the guarantee of positivity, we generalize the results in Ziegelmann (2002) to introduce a

local exponential modal volatility estimator and establish its asymptotic property under
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mild regularity conditions, where we show that the proposed exponential modal volatility

estimator can achieve a smaller asymptotic bias compared to the local linear modal volatility

estimator in some cases.

Particularly, when an unknown function r(X) is positive almost surely, for any

given Xt that is close to x, we can approximate it as

r(Xt) = exp(log(r(Xt))) ≈ exp(β1(x) + β2(x)(Xt − x)), (3.17)

where β1(x) = log(r(x)) and β2(x) = ∂ log(r(x))/∂x = r−1(x)∂r(x)/∂x. On the basis of

this, after obtaining the estimate of rt from the mean regression in (3.3), we maximize the

following local kernel-based objective function

Qn(β1(x), β2(x)) =
1

nh3h4

n∑
t=1

ϕ

(
r̂t −Ψ(β1(x) + β2(x)(Xt − x))

h3

)
K

(
Xt − x

h4

)
(3.18)

with respect to β1(x) and β2(x), where the function Ψ(·) takes the form Ψ(s) = exp(s)

and the bandwidths h3 = h3(n) and h4 = h4(n) are approaching zero as the sample size

n → ∞. With the estimators β̂1(x) and β̂2(x), we can then define the exponential modal

volatility estimator as σ̂2
e(x) = exp(β̂1(x)), which is always positive, and the derivative as

ˆ̇σ2
e(x) = exp(β̂1(x))β̂2(x). When Ψ(s) = s, the above objective function is identical to

(3.6). In fact, according to Mishra et al. (2010), we can substitute the exponential function

with any well-defined monotone function that has at least two continuous derivatives on its

support.

It should be highlighted that the application of local exponential estimation may be

restricted by its computational complexity, as maximizing (3.18) does not have an explicit

solution. Because Ψ(·) is a nonlinear function, the previous MEM algorithm cannot be used

without adaptation. Following Ullah et al. (2022) and Algorithm 2, we propose a nonlinear

123



MEM algorithm with the help of Taylor expansion to simplify computations (Algorithm 3).

All of the comments for Algorithm 2 are carried over here as well.

Algorithm 3 MEM Exponential Volatility Algorithm

E-Step. Define θ = (β1(x), β2(x)). Calculate the weight π
(
t | θ(g)

)
, t = 1, · · · , n as

π
(
t | θ(g)

)
=

ϕ
(
r̂t−L(Xt−x,θ(g))

h3

)
K
(
Xt−x
h4

)
∑n

t=1 ϕ
(
r̂t−L(Xt−x,θ(g))

h3

)
K
(
Xt−x
h4

) ∝ ϕ

(
r̂t − L(Xt − x, θ(g))

h3

)
K

(
Xt − x

h4

)
.

Taylor Expansion. Approximate L(Xt − x, θ) by a first order Taylor expansion around

θ(g)

L(Xt − x, θ) ≈ L(Xt − x, θ(g)) +
∂L(Xt − x, θ)

∂θT

∣∣∣
θ=θ(g)

(
θ − θ(g)

)
.

M-Step. Update θ(g+1) by

θ(g+1) = argmax
θ

n∑
t=1

{
π
(
t | θ(g)

)
log

1

h3
ϕ

(
r̂t − L(Xt − x, θ)

h3

)}
=

[
n∑

t=1

π
(
t | θ(g)

) ∂L(Xt − x, θ(g))

∂θ

∂L(Xt − x, θ(g))

∂θT

]−1 [ n∑
t=1

π
(
t | θ(g)

) ∂L(Xt − x, θ(g))

∂θ
r̂
(g)
t

]

where g is the iteration indicator and r̂
(k)
t − L(Xt − x, θ(g)) + ∂L(Xt−x,θ(g))

∂θT
θ(g).

Iterate. Given the initial values, iterate E-Step and M-Step repeatedly until a stopping

criteria is satisfied, i.e., ∥θ(g+1) − θ(g)∥ < τ for a small tolerance value, say τ = 10−5.

To present the asymptotic results, we define

L(Xt − x, θ) = Ψ(β1(x) + β2(x)(Xt − x)) (3.19)

and L(i)(Xt − x, θ) = (∂/∂(Xt − x))iL(Xt − x, θ). It is simple to verify that L(0, θ) =

Ψ(β1(x)), L
(1)(0, θ) = Ψ(β1(x))β2(x), and L(2)(Xt−x, θ) = β2

2(x)Ψ(β1(x)+β2(x)(Xt−x)).

We can then rewrite the objective function (3.18) as
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1

nh3h4

n∑
t=1

ϕ

(
r̂t −Ψ(β1(x) + β2(x)(Xt − x))

h3

)
K

(
Xt − x

h4

)
=

1

nh3h4

n∑
t=1

ϕ

(
r̂t − exp(β1(x))− β2(x) exp(β1(x))(Xt − x)− 2−1L(2)(λt(Xt − x), θ)(Xt − x)2

h3

)

K

(
Xt − x

h4

)
, (3.20)

where λt ∈ [0, 1]. The asymptotic theorem shown below is followed.

Theorem 3.5.17 With nh54h
3
3 = O(1) and nh4h

7
3 = O(1), under the regularity conditions

C1-C5, as n → ∞, h3 → 0, h4 → 0, h/h4 → 0, h24/h3 → 0, and nh4h
5
3 → ∞, we have

√
nh4h33

(
σ̂2
e(x)− σ2(x)−

(
h24
2
µ2

(
σ̈2(x)− L(2)(0, θ)

)
− h23

2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

))
d→ N

(
0,

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

v0

)
.

If we allow nh54h
3
3 → 0 and nh4h

7
3 → 0, the asymptotic theorem becomes

√
nh4h33

(
σ̂2
e(x)− σ2(x)

) d→ N

(
0,

gϵ(0 | x)
∫
τ2ϕ2(τ)dτ

g
(2)
ϵ (0 | x)2fX(x)

v0

)
.

Theorem 3.5.17 indicates that the exponential modal volatility estimator is asymp-

totically fully adaptive to the unknown mean regression function, i.e., the asymptotic results

are the same as those in the case where m(·) is known. The estimator σ̂2
e(x) can asymptot-

ically ignore the bias term by undersmoothing (limn→∞ nh54h
3
3 = 0 and limn→∞ nh4h

7
3 = 0)

at the expense of the increase in variance. However, the exponential modal volatility esti-

mator is not fully equivalent to the local linear modal volatility estimator as it estimates the

logarithm of the volatility rather than the volatility itself. If Ψ(s) = s, the asymptotic re-

sults will reduce to Theorem 3.3.14. Comparing the results to those of the local linear modal

volatility estimator σ̂2(x), it is clear that the two estimators have the same convergence rate.
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Also, the two estimators share exactly the same asymptotic variance but different biases.

The difference is governed by the term related to h4, which is 2−1h24µ2(σ̈
2(x)−L(2)(0, θ)) for

the exponential estimator and 2−1h24µ2σ̈
2(x) for the linear estimator. Because L(2)(0, θ) is

a nonnegative quantity, we conclude that the exponential modal volatility estimator σ̂2
e(x)

could have a smaller bias compared to σ̂2(x) when σ̈2(x) is nonnegative and greater than

L(2)(0, θ). This is an interesting observation since it implies a different approach to reducing

variance. For instance, in the case of σ̈2(x) = L(2)(0, θ), the bias term associated with h4

will vanish. Then, we can choose an arbitrarily large value for h4 to reduce variance as well

as achieve a modal parametric convergence rate.

Remark 3.5.41 We can also apply the variance reduction technique described in Section

3.3 on the exponential modal volatility estimator to achieve variance reduction. As a result

of employing the identical processes as before, the asymptotic bias remains unchanged but the

asymptotic variance becomes (fX(x)g
(2)
ϵ (0 | x)2)−1gϵ(0 | x)

∫
τ2ϕ2(τ)dτ

(
v0 − r2(1− r2)C(β)

)
.

In addition, following the result in Remark 3.2.33, we can straightforwardly obtain the

asymptotic result for the local exponential modal-based robust volatility estimator by treat-

ing bandwidth h3 as a constant, where the asymptotic bias is h242
−1µ2

(
σ̈2(x)− L(2)(0, θ)

)
but the asymptotic variance is unchanged.

3.6 Concluding Remarks

Modal regression has grown in popularity because of its ability to fit a large variety of

datasets with skewness or heavy tails. However, in the literature, there is no research

focusing on the modal volatility estimator, which is directly related to option pricing and
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risk measure quantification. It is frequently found that market returns display negative

skewness and excess kurtosis. In this paper, we apply nonparametric modal regression on

volatility function on the basis of mode value and develop an extension of the variance

reduction technique based on Cheng et al. (2007) for the modal volatility estimator. The

asymptotic results and the expressions of the optimal bandwidths are presented under some

mild conditions. The simulation results and empirical analyses indicate that the introduced

estimation method is applicable in practice to complement the existing mean or median

volatility estimation. In addition, it can be difficult in practice to find statistics that are

both resistant and have the robustness of efficiency. We briefly argue that the modal-based

volatility estimator is not only robust but also as asymptotically efficient as the least squares

estimator. To avoid negative estimates of the volatility function, we discuss the extension of

the proposed method to the local exponential modal estimation without providing numerical

justification. Due to the fact that both conditional heteroskedasticity and asymmetric error

distributions have been observed on a regular basis in empirical finance and economics, the

proposed modal volatility with the relaxation of the symmetry assumption on the error

density can be very helpful for practical applications.

Several extensions of the present work are immediate. We concentrate on the

stationary data in this paper. It has been recognized for a long time that in financial time

series, nonstationarity is an important factor that needs to be considered. In the future, we

can letXt be an integrated or near-integrated process and utilize modal regression to develop

some nonstationary volatility models with the assumption that Xt = (1 − c/n)Xt−1 + vt,

where c ≥ 0 and vt is generated by vt = φ(L)ηt =
∑∞

k=0 φkηt−k in which φ0 = 1, φ(1) ̸= 0
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with
∑∞

k=0 k|φk| < ∞, and ηt are i.i.d. random variables with mean zero and E|ηt|p < ∞

for some p > 2. Also, long memory structure is a more general dependence structure than

mixing. In practice, stock return or exchange rate return series commonly exhibit the long

memory property in volatility, as the lag k auto-covariances decays to zero like k−θ for some

0 < θ < 1. It would be an interesting topic that deserves to be researched further in the

future.

In addition, it is well-known that nonparametric estimation has a slower con-

vergence rate compared to parametric estimation. For practical purposes, it might be

important and interesting to test whether the modal volatility function follows a specified

parametric form, which can be formulated asH0 : σ
2(X) = f(X,κ), where f(X,κ) is a given

family of modal functions indexed by an unknown parameter vector κ. We can easily adopt

a wild bootstrap approach based on comparing the residual sum of kernel-based objective

functions from the restricted and unrestricted estimates. Besides this, we can also develop

a test to detect structural changes in modal volatility. The presence of variance change

easily confuses traditional time series analysis procedure, leading to incorrect conclusions.

Thus, detecting and locating these change points is a critical practice. We leave all of these

interesting directions for future research.
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Chapter 4

Modal Regression Discontinuity

Designs

4.1 Introduction

Regression discontinuity designs, which were originally introduced by Thistlethwaite and

Campbell (1960) to investigate the impact of student scholarships on future academic out-

comes, have emerged as one of the state-of-the-art quasi-experimental approaches for iden-

tifying, estimating, and inferring local treatment effects on the target population in eco-

nomics, statistics, social science, biomedicine, and other related fields. The most distinctive

feature of RD designs is that there exists a continuous variable of interest, known as the run-

ning variable, for each unit in the sample that determines the treatment assignment either

deterministically or probabilistically. In accordance with the ways of determination by a

running variable, the RD designs explored in the literature of causal analysis are divided into
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two types—the sharp RD (SRD) design and the fuzzy RD (FRD) design. It is convenient to

employ the SRD design when the outcome or dependent variable exhibits discontinuity at

a cutoff, in which an individual is allocated to the treatment when the value of the running

variable surpasses the given cutoff. Under weak smoothness conditions, the treatment near

the cutoff appears almost random (Lee, 2008), enabling researchers to identify and estimate

the analogous treatment effect. Significantly different from the SRD design, the treatment

of the FRD design is partially influenced by the running variable, and the probability of

treatment assignment jumps at the cutoff. Following that, researchers can produce an in-

strumental variable estimate of the treatment effect. More recently, with the increasing

availability of richer datasets, there has been a large amount of theoretical and empirical

research investigating RD designs based on the mean or quantile regression with the crucial

assumption that units around the cutoff do not systematically differ in their unobservable

characteristics (Hahn et al., 2001; Van Der Klaauw, 2008; Frandsen et al., 2012). Due to

space constraints, we refer interested readers to the review papers written by Imbens and

Lemieux (2008) and Lee and Lemieux (2010), as well as the references therein, for further

information on the theoretical details and practical applications of RD designs.

In traditional mean regression, researchers are interested in the conditional expec-

tations of the outcomes given covariates in order to recover the average causal effect of the

treatment at the cutoff, which is estimated by limX↓X̄ E (Y1 | X)− limX↑X̄ E (Y0 | X) (SRD

design) under the assumption of the smoothness of the conditional expectation functions,

where X ∈ R is the running variable having a continuous distribution, X̄ is the cutoff,

Y1 ∈ R denotes the outcome of the treatment group, Y0 ∈ R represents the outcome of the
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group without treatment, and X ↓ X̄ and X ↑ X̄ mean taking the limits from the right and

left sides of X̄, respectively. For FRD design in mean regression, the aforementioned limit

expression is divided by a similar difference in the conditional expectations of treatment as-

signment D (defined in Sections 4.2), which is determined by the running variable; see Hahn

et al. (2001) for the solid theoretical work exploring the RD designs with the average causal

effect in the treatment model framework. To extend the conditional average treatment ef-

fect, some researchers propose methods to estimate the conditional τth quantile treatment

effect such that limX↓X̄ Qτ (Y1 | X) − limX↑X̄ Qτ (Y0 | X), under the assumptions of rank

invariance and the smoothness of the conditional distributions of the potential outcomes,

where Qτ (Y | X) is the τth conditional quantile of Y given X; see Frandsen et al. (2012) for

the formal theoretical work in the econometrics literature on identification and estimation in

the quantile RD designs. Since RD designs are related to the local causal effects at a certain

cutoff of the running variable, it is common to adopt a standard nonparametric regression

with local linear approximation to estimate the treatment effects at the boundary points,

which places more weight on observations closer to the cutoff. In addition, it is well-known

that we in general have three popular location or central tendency measures—mean, me-

dian (quantile), and mode. The RD designs should identify not only the mean or quantile

treatment effect but also the mode treatment effect of policies. However, to the best of our

knowledge, almost all research related to RD designs in the literature has a concentration

on estimating the conditional average or quantile treatment effect on the basis of the mean

or quantile regression, which only provides a partial picture of the effects of the treatment.

Also, little is known about the behavior of the regression based on the mode value near the
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boundary. This paper attempts to develop a complementary treatment effect estimator in

the RD designs for modal regression at the boundary point (the cutoff) without making any

strong assumptions about the shapes of the regression functions.

Figure 4.1: Mean, Mode, and Quantile Treatment Effects

Note: the right plot represents the results of DGP 1 in Section 4.3 with n = 500; the left plot

shows that the proposed mode treatment effect incorporates the standard mean treatment effect

as a special case, i.e., with a symmetric distribution, the mode treatment effect is identical to the

mean treatment effect. It is feasible to obtain mode treatment effect from quantile treatment effect

due to the special connection between mode and quantile via the distribution function, which is the

motivation for us to propose a quantile-based estimation method for the CMTE in the modal fuzzy

RD design.

Particularly, to fill the literature gap, we devote attention to the mode treatment

effect and establish its formal identification, estimation, and statistical properties, which

can potentially disclose a novel and intriguing treatment structure that may have been

overlooked by the existing treatment effects. An illustration of different treatment effects

is depicted in Figure 4.1, where we can observe that the existing mean and quantile treat-

ment effects, as well as the new mode treatment effect, are targeting different population
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parameters generally. From a practical perspective, each treatment effect has its own merits

and can be used in conjunction with the others. In comparison to the mean or quantile

treatment effect, the mode treatment effect has two appealing features—it represents the

“most likely” effect and can be resistant to outliers, heavy-tailed distributions, and certain

types of measurement error . In reality, when the data have a skewed distribution (such as

salaries, prices, and expenditures), it is more informative to investigate the mode treatment

effect due to the representative of the benefit of the policy to the majority of people. For ex-

ample, the mode treatment effect can typically better measure whether the implementation

of an income-raising policy has benefited most people from policy-making views, whereas

the mean treatment effect will be influenced much more by the single high income increase

due to the policy, and the quantile treatment effect cannot directly reflect the “most likely”

effect and could result in producing low density point predictions. Also, a treatment ef-

fect with a zero mean may obscure a significant offsetting effect in the mode view. All of

these indicate the necessity of investigating the mode treatment effect. It is important to

mention that the proposed CMTE in this paper has a close relationship with the previous

theoretical work on mode estimation, which has attracted much more attention in statistics

and econometrics accompanied by substantial theoretical contributions for estimation and

inference recently. Among the notable results in this line of modal regression work include

Lee (1989, 1993), Kemp and Santos Silva (2012), Yao and Li (2014), Chen et al. (2016),

Yao and Xiang (2016), Krief (2017), Chen (2018), Ota et al. (2019), Feng et al. (2020),

Kemp et al. (2020), Ullah et al. (2021, 2022), among others.1 However, the objectives of

1The mode, as one of the three measures of central tendency (the other two being the mean and the
median (quantile)), offers an important description of data in many analytical scenarios but has received little
attention in the regression literature, in part due to the computational complexity involved in calculations.

133



those studies are completely different from the ones of this paper, which focuses on modal

boundary estimation. By providing a systematic statistical analysis of the modal estimator

at the boundary point, we contribute significantly to the large and still rapidly growing

literature on mode estimation and treatment effects in the RD designs.

Paralleling the traditional mean or quantile treatment effect, the purpose of this

paper is to propose a novel (local) CMTE in the RD designs

τRD = Mode
(
Y1 | X = X̄

)
−Mode

(
Y0 | X = X̄

)
, (4.1)

which provides a more valuable measure for skewed or heavy-tailed data and can be con-

sidered as an appealing complement to the existing treatment effects. Nevertheless, making

causal interpretations of the CMTE in the form (4.1) is perhaps more challenging than the

mean treatment effect, since the mode is not an additive parameter in the vast majority of

instances. As a consequence, Mode(Y1 − Y0 | X = X̄) ̸= Mode(Y1 | X = X̄) −Mode(Y0 |

X = X̄) in general. The expression Mode(Y1 − Y0 | X = X̄) has a causal interpretation,

which is a measure of the mode benefit to the individual from being a member of the treat-

ment group, while the expression Mode(Y1 | X = X̄) −Mode(Y0 | X = X̄) represents the

difference in modes between two distributions, which measures the effect of a policy on the

mode of the distribution of the outcome of interest rather than the effects of treatment on

a typical individual. To satisfy the above equation, we can impose a deterministic relation-

Modal regression, which is based on the principle of mode, seeks to determine the “most likely” conditional
value (mode) of a dependent variable Y given covariates X, denoted by Mode(Y | X). Let fY |X(Y | X) be
the conditional density function of Y given X and fY,X(Y,X) be the joint density function, we can write the
estimator of the conditional mode of Y given X as

Mode(Y | X) = argmax
Y

fY |X(Y | X) ∝ argmax
Y

fY,X(Y,X),

where “ ∝” means “is proportional to”. However, owing to the “curse of dimensionality”, such a modal
regression based on the distribution function is difficult to implement when the dimension of the covariates
is large. To address this issue, Kemp and Santos Silva (2012) and Yao and Li (2014) allowed a more general
kernel function and established the consistency of the linear modal regression estimator under very mild
conditions even when the error density is skewed; see Yao and Li (2014) and Ullah et al. (2021, 2022) for
the summary of the advantages of modal regression compared to the existing regressions.
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ship between Y1 and Y0. For instance, suppose that Y1 = µ + σY0 with 0 < µ, σ < ∞.

Then, Mode(Y1 − Y0) = µ+ (σ− 1)Y0 = Mode(Y1)−Mode(Y0), implying a constant mode

treatment effect. However, this determinism constraint is overly strict, and the constant

effect in practice may be uninteresting.

To allow the mode effect to be equal to the individual treatment effect, we require

that the mode rank of an individual remains the same regardless of being treated or not

throughout the whole paper, which is referred to as mode rank invariance. Without this

condition, the differences of the potential outcome distributions at mode may be zero, but

the true treatment effects are not zero due to the individuals moving up and down in the

distribution. To better elaborate this mode rank condition, we assume that the potential

outcomes (Y m
1,i , Y

m
0,i) of individual i correspond to the quantiles (ξm1,i, ξ

m
0,i) of the conditional

distributions of Y1 and Y0 given X that achieve the mode points, respectively. Following

that, the mode effect of the policy on individual i is represented by

τm = Y m
1,i − Y m

0,i = F−1
1 (ξm1,i)− F−1

0 (ξm0,i), (4.2)

where F (·) denotes the cumulative distribution of the outcome. Nonetheless, this indi-

vidual effect will never be attained because we cannot estimate F−1
1 (ξm1,i) and F−1

0 (ξm0,i)

simultaneously. We therefore rewrite the effect on individual i as

τm = Y m
1,i − Y m

0,i = F−1
1 (ξm1,i)− F−1

0 (ξm1,i)︸ ︷︷ ︸
mode treatment effect

+F−1
0 (ξm1,i)− F−1

0 (ξm0,i)︸ ︷︷ ︸
flexibility effect

, (4.3)

where the first difference is a mode treatment effect and the second difference is a flexibility

effect, capturing the change in outcomes caused by the movement of individuals to different

modes within the same distribution. We would have τRD = τm if everyone remains the same
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mode rank in the corresponding distributions. That is, the flexibility effect is zero if ξm1,i =

ξm0,i for all individuals. This mode rank invariance condition is weaker than the usual rank

invariance restriction imposed in the quantile RD designs, which requires an individual’s

rank in the potential outcome distribution to be the same across treatment states. If the

usual rank invariance condition is met, then all features of the rank distributions, including

mode, would be the same.

As a matter of exposition, we focus primarily on the SRD design to illustrate the

main idea of this paper, and briefly address the extension of the results to the FRD design

in the end. Under certain mild conditions, the estimation of the mode treatment effect is

equivalent to the problem of estimating the magnitude of a discontinuity in a conditional

mode. For the purpose of simplicity, we restrict our attention to the running variable rather

than other covariates, as is common in most RD studies, and make a comment on the effect

of including additional covariates in the modal SRD design in Section 4.4. Furthermore,

it is discovered that the modal regression line is identified to the mean regression line

whenever the distribution of the data is symmetric. Compared to the mean, it is commonly

recognized that the mode is less susceptible to outliers and heavy-tailed distributions. If

we investigate treatment effects with symmetric data based on the proposed modal RD

designs, we have τRD = Mode(Y1 − Y0 | X = X̄) = E(Y1 − Y0 | X = X̄) = Mode(Y1 | X =

X̄)−Mode(Y0 | X = X̄) = E(Y1 | X = X̄)− E(Y0 | X = X̄), which can be interpreted as

the modal-based robust causal effect without the use of any rank invariance assumptions.

Nevertheless, the estimation procedure and asymptotic properties of such a modal-based

robust treatment effect are significantly different from those of the mode treatment effect.
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We thus concentrate on the asymmetric case in this paper and only present some simulation

results for illustrating modal-based robust treatment effect in the appendix.2

In light of the fact that the estimated CMTE in the SRD design only applies to

individuals who have X = X̄, it is essential to assess the overall stability of the CMTE esti-

mate. Along with that, we demonstrate that when modal regression functions are subject to

the continuous differentiability condition, we can nonparametrically identify the derivative

of the CMTE

τ
(1)
RD(X̄) =

∂τRD(X̄)

∂X̄
=

∂
[
Mode

(
Y1 | X = X̄

)
−Mode

(
Y0 | X = X̄

)]
∂X̄

, (4.4)

which can be utilized to measure the impact of small discrete changes in the running variable

on the treatment effect and test the external validity or generality of the estimated CMTE.

Notice that τ
(1)
RD(X̄) = 0 is a crucial condition for the mode treatment effect to remain

unchanged regardless of the running variable. We then simply need to check the magnitude

of the derivative of CMTE to verify the external validity. In addition, to reflect the impact

of changing the cutoff, we propose a modal marginal cutoff treatment effect (MMCTE)

and show that with the local policy invariance (defined in Lemma 4.2.3), the MMCTE is

identified as τ
(1)
RD(X̄). This allows us to apply a Taylor expansion to provide an approximate

estimate of the effect of a discrete change in the cutoff. Because the focus of this paper

is on the CMTE, we only present theoretical analyses of the derivative and the MMCTE

without any numerical examples.

In recent RD literature, nonparametric local estimation has gained considerable

attention and has emerged as the preferred method for estimating RD treatment results.

2When the data contain outliers or have a heavy-tailed distribution, utilizing modal estimation instead of
mean estimation will yield robust and efficient estimators. In this case, we must regard the bandwidths asso-
ciated with error terms in the matching kernel functions as constants in order to attain a mean convergence
rate. Such a modal-based robust treatment effect is investigated separately in other research.
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In order to maintain the generality and sufficiently flexible modeling of function forms, the

proposed CMTE estimator in the SRD design is also estimated by local linear modal regres-

sion because of its superior performance near the boundary, provided that the bandwidths

decay towards zero asymptotically at an approximate rate. Since the cutoff can be assim-

ilated to the boundary point, the fact that the modal estimator has no boundary effects

is a particularly appealing property when dealing with RD designs. To be more specific,

the developed modal estimation methodology involves a weighted local linear regression to

approximate the modal function above and below the cutoff with weights calculated by the

application of a kernel function at the distance between each observation and the cutoff.

We adopt a so-called modified MEM algorithm by virtue of the normal kernel function to

efficiently obtain the numerical solutions for estimators. We develop modal identification

and present asymptotic theorems for the CMTE estimator in the SRD design under modest

assumptions, where we show that the resulting estimator is consistent at the nonparametric

modal rate. Consequently, the bias complexity of the suggested estimator is no worse than

that of the interior point estimator. Due to the use of a tiny fraction of total observations

around the mode, the CMTE estimator has a slower convergence rate n−1/4 (with the mean

squared error (MSE) optimal bandwidths) compared to the estimators of the mean and

quantile treatment effects.

After achieving the asymptotic theorem, it is natural to construct a confidence

interval for the suggested CMTE estimate. In general, one can apply the asymptotic nor-

mality result to consistently estimate the asymptotic bias and variance. However, due to

the ignorance of the extra variability produced by the bias term and the unknown quantities
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in the bias and variance terms, it is neither simple nor valid to construct a Wald-type con-

fidence interval for the CMTE based on the asymptotic limiting theorem directly. To build

a reliable confidence interval in the modal SRD design, we develop an effective bootstrap

procedure for the practical application relying on undersmoothing (i.e., choosing a band-

width that vanishes at a rate that is faster than the MSE-optimal bandwidth). Currently,

there is no widely accepted method for the selection of optimal bandwidths in modal regres-

sion. We in this paper extend the results in Kemp and Santos Silva (2012) to choose the

undersmoothed bandwidths on the right and left sides of the cutoff, separately, taking into

consideration that the target modal functions are different on both sides of the cutoff, to

implement the developed estimation procedure. We then conduct Monte Carlo simulations

and an empirical analysis to further investigate the practical application of the developed

estimation and inference procedures for CMTE, which demonstrate the good finite sample

performance of the suggested procedures. To our best knowledge, there do not exist any

studies that provide formal identification, estimation, and inference of CMTE in a general

framework for SRD design, where nonparametric modal regression with local boundary es-

timation is applied.3 Several potential extensions of the proposed CMTE estimator in the

modal SRD design, such as including additional covariates, multiple running variables, and

multiple cutoffs, are also discussed in the paper.

3We are aware that a recent work by Chang (2020) also discussed the mode treatment effect by providing
two estimation methods, the traditional kernel density method and the machine learning method, which is
closest to yet substantially different from the current paper. As we pointed out in Footnote 1, modal regres-
sion considered from the conditional distribution is practically infeasible when the dimension of covariates
is moderate or high due to the “curse of dimensionality”. In addition, Chang (2020) did not investigate
CMTE for the modal RD designs, smoothness conditions for identification, local linear approximation for
estimation, practical implementation of the estimators, or the bootstrap method for the confidence interval.
In contrast, the setting in this paper provides more practical guidance on CMTE in the RD designs for
theoretical investigation and empirical applications.
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Finally, because the mode does not possess the additive property, generalizing

the results of the SRD design presented in this paper to the FRD design with a local Wald

estimator (instrumental variables type estimator) is not conceptually straightforward, unless

we impose a strict symmetric distribution assumption under which the mode is identical

to the mean. Providing that the modal regression line coincides with a quantile regression

line, we briefly discuss a simple method considering from quantile regression to estimate

CMTE for compliers (individuals who receive the treatment if and only if they are eligible)

in the modal FRD design without theoretical justification. It should be noted that while

this quantile-based estimating approach for the CMTE can be applied to the modal SRD

design as well, the theoretical properties are fundamentally different from those described in

this paper. Due to space constraints, we will defer to other research for the comprehensive

exploration of such an estimating approach and asymptotic theorems. With consideration of

both sharp and fuzzy cases, the present paper extends the previous literature on treatment

effects to the estimation of mode treatment effect in the modal RD designs.

The remainder of this paper is structured as follows. Section 4.2 formally estab-

lishes the econometric framework of the modal SRD design, proposes a nonparametric modal

regression with local boundary approximation to estimate CMTE, settles the asymptotic

properties of the resulting estimators rigorously, and develops a bootstrap procedure to

construct the confidence interval. Section 4.3 presents the numerical results of the CMTE

estimator, which contain Monte Carlo simulations as well as an empirical analysis to illus-

trate how well the proposed estimator performs with finite samples. We discuss various

extensions in Section 4.4, including the estimation of CMTE in the FRD design using quan-
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tile regression. The paper is concluded in Section 4.5. All technical proofs and additional

numerical and theoretical results are included in the appendix.

4.2 Modal Sharp Regression Discontinuity

We focus on the modal SRD design at the boundary point (the cutoff) in this section, using

the potential outcome framework to characterize the two underlying counterfactual states

(with and without receiving treatment) (Rubin, 1974), where we first establish conditions

under which the newly proposed CMTE in the SRD design can be identified, and then

introduce a local linear modal estimation method to obtain the estimator. The well-known

appealing feature of local linear smoothers, i.e., the behavior near the boundary, is shown

to carry over to the mode case. Following this, we investigate the inference of CMTE and

construct a confidence interval in practice through a bootstrap procedure depending on

undersmoothing.

4.2.1 Econometric Identification

Consider samples {(Yi, Xi, Di)}ni=1 in a standard RD design, where Yi ∈ supp(Yi) ⊂ R is the

observed outcome for individual i in which supp(Yi) denotes the support of Yi, Xi ∈ R, called

running variable, is the pretreatment covariate that determines the assignment of treatment

with support [Xl, Xu] ⊂ R, and the treatment assignment Di is completely determined by

the running variable, which is equal to 1 if individual i receives treatment and 0 otherwise,

i.e.,

Di = 1
(
Xi ≥ X̄

)
=


1 if Xi ≥ X̄,

0 if Xi < X̄,

(4.5)
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where 1(·) is the indicator function that takes the value 1 when the condition within the

bracket is true, and the cutoff X̄ ∈ [Xl, Xu] is supposed to be known for econometricians.

With the previous definitions of Y1,i and Y0,i in the introduction, we have Yi = Y1,iDi +

Y0,i(1 −Di). The objective of causal analysis in this paper is to get knowledge about the

features of the conditional mode value of potential outcomes. Therefore, to avoid model

misspecification, we assume that the outcome variable Yi is determined by a function Y

of the individual characteristics and treatment such that Yi = Y (Xi, Di, ϵi), and use a

nonparametric modal regression to explicitly describe the relationship between Yi and Xi

in a reduced form 
Yi = m(Xi) +DiτRD + ϵi,

Mode(Yi | Xi) = m(Xi) +DiτRD,

(4.6)

where Mode(ϵi | Xi, Di) = 0 almost surely, m(·) is an unknown baseline effect function that

is characterized by regularity conditions near the cutoff, and τRD is the parameter of interest

(CMTE). Throughout the paper, we assume that {(Yi, Xi)}ni=1 are i.i.d. observations.

Remark 4.2.42 Given that D is a deterministic function of X and that there is no varia-

tion in the treatment by conditional on X, the unconfounded treatment assignment Y1,i, Y0,i ⊥

Di | Xi holds trivially, where ⊥ denotes conditional independence. It states that the treat-

ment assignment D is independent of the potential outcomes Y1 and Y0 conditional on

X. The distributions fY1(·) and fY0(·) can then be identified because fY |D=1,X(Y | X) =

fY1|D=1,X(Y | X) = fY1|X(Y | X).

Since there is no value of X for which we can observe the potential outcomes

Y1,i and Y0,i simultaneously, we need a tractable representation of τRD in terms of modal
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function in (4.6), which can be directly estimated from data. We therefore impose the

following assumption for identification without any parametric functional form constraints

on Mode (Y | X).

Assumption 1 (Unimode and Continuity) The conditional distributions fY1|X (Y | X) and

fY0|X (Y | X) are strictly positive, unimodal, and continuous in X for all Y such that

supY :|Y−Y m
1 | >ηfY1|X(Y | X) < fY1|X (Y m

1 | X) and supY :|Y−Y m
0 |>η fY0|X(Y | X) < fY0|X(Y m

0

| X) for η > 0.

Assumption 1 is a novel and fundamental condition, which is imposed to ensure

that both the distributions of Y1 and Y0 are unimodal in the presence of X. It indi-

cates that Mode(Y1 | X) and Mode(Y0 | X) are continuous in X for all Y and represents

that E
[
Mode

(
Y1 | X = X̄

)]
= limX↓X̄ E[Mode(Y | X)] and E

[
Mode

(
Y0 | X = X̄

)]
=

limX↑X̄ E[Mode(Y | X)]. The continuity of conditional distributions guarantees, both in-

tuitively and informally, that the difference in the mode of outcomes on each side of the

cutoff is ascribed to the change in assignment of treatment. The violation of this continuity

assumption would suggest that a change in the mode value of Y is driven by a change in X

rather than a change in D. In reality, we shall utilize continuity for conditional distributions

only at X = X̄, but it is uncommon to assume continuity for one value of the covariate but

not for others.4 The underlying mechanism of modal RD designs is illustrated in Figure

4.2. We then have the following lemma.

Lemma 4.2.1 Under the aforementioned model settings and Assumption 1, by defining

mY1(X̄) = limX↓X̄ mY1(X) and mY0(X̄) = limX↑X̄ mY0(X), the conditional mode effect of

the treatment on the outcome at the cutoff can be identified as

4Assumption 1 implies that the probability density fX(X) is continuous and strictly positive at X = X̄.
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τRD = Mode
(
Y1 | X = X̄

)
−Mode

(
Y0 | X = X̄

)
= lim

X↓X̄
Mode (Y1 | X)− lim

X↑X̄
Mode (Y0 | X)

= lim
X↓X̄

Mode(Y | X)− lim
X↑X̄

Mode(Y | X) = mY1(X̄)−mY0(X̄),

where the second and the forth equations follow under Assumption 1, and the third equation

is a consequence of Y = Y1D + Y0(1−D) and D = 1
(
X ≥ X̄

)
.

Figure 4.2: Modal Regression Discontinuity

Note: it depicts the mechanism of modal RD designs, with Z representing an extra covariate that

may influence outcomes. Since the treatment state is determined entirely by the assignment rule and

is independent of Z given X, there is no arrow from Z to D. The left plot shows that the running

variable confounds the relation D → Y as X influences both D and Y . The right plot indicates that

under the continuity assumption, there will be no arrow from X to Y , and the treatment effect can

be identified since the relation D → Y is neither confounded by X nor by Z.

Remark 4.2.43 Throughout the paper, whenever we take a limit on a function, we im-

plicitly presume that this limit exists with almost certainty and is finite. By releasing the

unique global mode assumption, the suggested approach can also be applied to the multi-

mode treatment effects setting with a local mode rank invariance condition. In particular,
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we can estimate different local modal regression lines to reveal the treatment effect structure

for clustered or inhomogeneous data when the population consists of multiple homogeneous

latent sub-populations (heterogeneous treatment effects). To a large extent, the proposed

CMTE can only be estimated at the cutoff and lacks generalizability, owing to the struc-

ture that there is no overlap in X between the treatment and the control groups and the

counterfactual cannot be accessed.

Figure 4.3: Modal Sharp Regression Discontinuity

Note: Figure 4.3 indicates that Mode(Y0 | X = X̄ − ε) can be an arbitrarily good approximation to

Mode(Y0 | X = X̄) when ε is small enough. It also shows that there are no observations in which

the X is precisely equal to the cutoff X̄. As a consequence, similar to the existing treatment effects,

the local approximation in the modal SRD design depending on observations farther away from the

cutoff is inevitable.

The fundamental concept of identifying CMTE in the SRD design is illustrated

in Figure 4.3 (modal FRD design is elucidated in Figure 4.9). The left plot represents

the conditional probability of receiving the treatment, which has a jump from 0 to 1 at
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the cutoff X̄. The right plot shows that there is a sharp upward jump at the cutoff X̄ in

the modal relationship between Y and X, where the data identify the modal regressions

with solid lines, the counterfactual modes are unobservable (dashed lines), and the CMTE

is the vertical distance between the two modal regression curves at the cutoff X̄. Figure

4.3 shows that the mode treatment effect for the entire population cannot be identified

nonparametrically without the smoothness condition because of a violation of the positive

probability assumption. It also implies that we cannot learn about the CMTE away from the

cutoff without making further assumptions, which motivates us to investigate the derivative

and the MMCTE in what follows.

Remark 4.2.44 (Identification without Continuity) While the continuity assumption

is crucial for identifying mode treatment effect, in many empirical situations, it may fail

and m(Xi) might have a break at X = X̄. In such a scenario, we can restore the CMTE

by redefining (4.6) as Yi = ṁ(Xi) + Diτ̇RD + ϵi, where ṁ(Xi) = m(Xi) − (mY1(X+) −

mY0(X−))Di, and

τ̇RD = τRD +mY1(X+)−mY0(X−)︸ ︷︷ ︸
Indirect Effect

is the adjusted mode treatment effect that contains the standard CMTE at the cutoff as

well as the indirect effect of the treatment due to the break of m(Xi) (the break magnitude is

mY1(X+)−mY0(X−)), where the signs + and − denote quantities in the regression associated

with Xi ≥ X̄ and Xi < X̄, respectively. To show the continuity, we obtain Mode(ṁ(Xi) |

X+) = mY1(X+)−(mY1(X+)−mY0(X−)) = mY0(X−) and Mode(ṁ(Xi) | X−) = mY0(X−).

As Mode(ṁ(Xi) | X+) − Mode(ṁ(Xi) | X−) = 0, the continuity of Mode(ṁ(X) | X) at

X = X̄ is fulfilled.
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Remark 4.2.45 (Identification with Monotonicity) It is common to observe m-

onotonous RD designs in reality. For instance, when measuring the effect of capital invest-

ment on firm’s production, we expect that production will not decrease in the size of the

capital investment due to increasing returns to scale. If we incorporate the monotonicity

into the modal estimation procedure, we can release the full continuity imposed in Assump-

tion 1 and utilize weaker one-sided continuity conditions to identify CMTE; see Lemma

4.2.3 in the appendix for the identification.

Practically, we may wonder how the mode effect of the policy would change if

the cutoff is marginally altered. We can then use the derivative of the CMTE to test the

external validity of the estimated CMTE. In terms of modal regressions, if we impose a

slightly stronger differentiable assumption, we are able to nonparametrically identify the

derivative of the mode treatment effect with respect to the running variable at the cutoff.

Assumption 2 (Continuous Differentiability) The modal regression functions Mode(Y1 |

X) and Mode (Y0 | X) are continuously differentiable in X for all Y .

This stronger smoothness assumption is easily satisfied by local linear modal es-

timators. In accordance with Assumption 1, we only need continuous differentiability at

X = X̄ to achieve identification, but this is not typically assumed for a single point of the

covariate. By virtue of continuity, the mode treatment effect derivative (τ
(1)
RD), like the mean

treatment effect derivative discussed in Dong and Lewbel (2015), equals the difference of

the right and left limits of the derivatives of Mode(Y1 | X) and Mode(Y0 | X) evaluated at

the cutoff X̄.
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Lemma 4.2.2 Under the preceding model settings and Assumption 2, the mode treatment

effect derivative is defined as

τ
(1)
RD(X̄) = m

(1)
Y1

(X̄)−m
(1)
Y0

(X̄),

where m
(1)
Y1

(X̄) = limX↓X̄ Mode(1)(Y1 | X) and m
(1)
Y0

(X̄) = limX↑X̄ Mode(1)(Y0 | X) are the

right and left limits of the derivatives of modal regression functions with respect to X.

The proof of Lemma 4.2.2 is included in the appendix. The magnitude of τ
(1)
RD(X̄)

can be used to measure the impact of a marginal change in the running variable X on

the treatment effect and test the external validity or generality of the estimated CMTE.

A large value of τ
(1)
RD(X̄) indicates that a minor change in the running variable will cause

a substantial change in the mode treatment effect. In addition, the sign of τ
(1)
RD(X̄) is also

relevant since it indicates whether the CMTE for individuals with the value X, which is

somewhat larger or smaller than X̄, is likely to be stronger or lower.

As previously stated, the mode treatment effect identified by the modal SRD

design applies only to a small subpopulation havingX = X̄. In fact, we may be interested in

evaluating the effects of policy intervention in a variety of contexts and situations by looking

at whether individuals with other values of X around X̄ would have predicted treatment

effects of comparable sign and magnitude. One simple example of a policy intervention

involves altering the eligibility cutoff. For example, a change in income tax brackets may

have an impact on people’s behavior accordingly. To explore such a cutoff change effect, we

propose the MMCTE and demonstrate that with the local policy invariance (Abbring and

Heckman, 2007; Dong and Lewbel, 2015),5 the MMCTE is identified as τ
(1)
RD(X̄).

5The local policy invariance in the content of mode treatment effect means that the change in the CMTE
is negligible compared to a change ε in the cutoff X̄ when ε → 0.
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Lemma 4.2.3 Let Λ denote a possible cutoff and M(X,Λ) = Mode(Y1 | X,Λ)−Mode(Y0 |

X,Λ) be a hypothetical treatment effect function (X ̸= Λ or Λ ̸= X̄). Under the previous

model settings, suppose that Assumption 2 and the local policy invariance ∂M(X,Λ)
∂Λ

∣∣
X=X̄,Λ=X̄

=0 hold. Assuming M(·) is differentiable, we have

MMCTE =
∂M(Λ,Λ)

∂Λ

∣∣∣
Λ=X̄

= τ
(1)
RD(X̄) +

∂M(X,Λ)

∂Λ

∣∣∣
X=X̄,Λ=X̄

= τ
(1)
RD(X̄),

where the MMCTE is nonparametrically identified as τ
(1)
RD(X̄).

Given the identified MMCTE, we can apply the Taylor expansion to obtain an

approximate estimate of the new CMTE when the cutoff is changed to a new one, X̄∗, such

that |X̄∗ − X̄| = o(1) and

τRD(X̄
∗) ≈ τRD(X̄) + τ

(1)
RD(X̄)(X̄∗ − X̄), (4.7)

where “≈” denotes an approximation in probability that excludes higher-order terms. We

can observe from (4.7) that if the magnitude of τ
(1)
RD(X̄) is small, we have τRD(X̄

∗) ≈

τRD(X̄), indicating that the the CMTE or the associated policy is stable; otherwise, the

CMTE is unstable. We would like to point out that (4.7) may also be utilized to extrapolate

the CMTE far away from the cutoff when the local policy invariance is not satisfied, but

∂M(X,Λ)
∂Λ

∣∣
X=X̄,Λ=X̄

is negligibly small.

Remark 4.2.46 (Various CMTEs) Similar to the quantile SRD design in Qu and Yoon

(2019), the technique developed in this paper can be utilized to investigate various other

mode treatment effects in addition to estimating CMTE. For example, we can compare

the CMTE between subgroups (i.e., males and females) specified by a covariate Z such that
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τ zRD = {limX↓X̄ Mode(Y | X,Z = Z1)−limX↑X̄ Mode(Y | X,Z = Z1)}−{limX↓X̄ Mode(Y |

X,Z = Z2) − limX↑X̄ Mode(Y | X,Z = Z2)}. If we substitute Z with a time variable,

the above equation can be used to examine how the CMTE changes between two periods,

t1 and t2, such that τ tRD = {limX↓X̄ Mode(Y | X, t = t1) − limX↑X̄ Mode(Y | X, t =

t1)} − {limX↓X̄ Mode(Y | X, t = t2) − limX↑X̄ Mode(Y | X, t = t2)}. This can be useful

when there exists a confounding policy at the cutoff or when we need to ensure that the

findings are as resilient as possible.

4.2.2 Local Modal Boundary Estimation

In light of the identification results presented above, the estimation for CMTE is con-

cerned with estimating the jump size of a discontinuity in the conditional modes, i.e.,

limX↓X̄ Mode(Y1 | X) − limX↑X̄ Mode(Y0 | X). In order to obtain an unbiased estimate

of the preceding difference, we need unbiased estimates of each limit. Rather than apply-

ing nonparametric kernel density estimation, we develop a local linear modal regression for

estimating the mode treatment effect τRD due to the absence of the edge effects. While

polynomial regression with a higher order (i.e., polynomial model with the entire sample)

can theoretically capture more features of the unknown modal regression functions, it may

exhibit erratic behavior when estimating boundary points, a well-accepted reality known

as Runge’s phenomenon (Calonico et al., 2015). Furthermore, Gelman and Imbens (2019)

have shown that inference based on high-order polynomials is often inaccurate. The local

linear estimation technique, on the other hand, provides robustness by guaranteeing that

observations distant from the cutoff have no impact on the estimate. To justify the proposed

CMTE estimator, we divide (4.6) into two equations
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
Y1,i = mY1(X+,i) + ϵ+,i if Xi ≥ X̄,

Y0,i = mY0(X−,i) + ϵ−,i if Xi < X̄,

(4.8)

where Mode(ϵ+,i | X+,i) = 0 and Mode(ϵ−,i | X−,i) = 0. Then, the estimation of τRD requ-

ires consistently estimating two functions, mY1(X̄) and mY0(X̄), with data near the cutoff.

Under the assumption that the modal regression functions mY1(·) and mY0(·) have

at least second derivatives in the region near the cutoff, we develop separate local linear

modal regressions on each side of X̄ to estimate (4.8), where
mY1(X+,i) ≈ mY1(x) +m

(1)
Y1

(x)(X+,i − x),

mY0(X−,i) ≈ mY0(x) +m
(1)
Y0

(x)(X−,i − x),

(4.9)

|X+,i − x| = o(1), and |X−,i − x| = o(1). Hence, the proposed CMTE estimator remains

local to the cutoff. We thereupon maximize the following two local kernel-based objective

functions6

1

n+h1,+h2,+

n+∑
i=1

ϕ

(
Y1,i − a+ − b+(X+,i − x)

h1,+

)
K

(
X+,i − x

h2,+

)
, (4.10)

1

n−h1,−h2,−

n−∑
i=1

ϕ

(
Y0,i − a− − b−(X−,i − x)

h1,−

)
K

(
X−,i − x

h2,−

)
, (4.11)

with respect to a+, b+, a−, and b−, where ϕ(·) and K(·) are two nonnegatively symmetric

kernels, a+ = mY1(x), b+ = m
(1)
Y1

(x), a− = mY0(x), b− = m
(1)
Y0

(x), and h+ = h+(n+) → 0 as

n+ → ∞ and h− = h−(n−) → 0 as n− → ∞ are two positive bandwidth sequences that de-

cay at an appropriate rate depending on the degree of smoothness assumed for the unknown

6They can also be written as

1

nh1,+h2,+

n∑
i=1

1
(
Xi ≥ X̄

)
ϕ

(
Yi − a+ − b+(Xi − x)

h1,+

)
K

(
Xi − x

h2,+

)
,

1

nh1,−h2,−

n∑
i=1

1
(
Xi < X̄

)
ϕ

(
Yi − a− − b−(Xi − x)

h1,−

)
K

(
Xi − x

h2,−

)
.
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functions. Specially, the bandwidth h1 associated with ϕ(·) is used to capture mode value,

whereas the bandwidth h2 related to K(·) regulates kernel width to localize the regression

fit near the cutoff. Throughout the paper, we allow for different bandwidths on both sides

of the cutoff and drop n+ or n− for bandwidths whenever possible to simplify notation.

As stated in Yao and Li (2014), the choice of kernel functions is not very crucial for the

statistical performance of the modal estimators compared to the bandwidth selection. For

ease of computation, we choose a standard normal kernel for ϕ(·) to form estimators in this

paper.7 The detailed conditions on kernel functions can be found in the following subsection.

Since our point of interest in (4.9) is x = X̄, we can express the estimator for τRD

as the difference in intercepts of the above modal estimators

τ̂RD(X̄) = m̂Y1(X̄)− m̂Y0(X̄), (4.12)

where m̂Y1(X̄) and m̂Y0(X̄) are the estimators of a+ and a− that evaluated at the cutoff

x = X̄ from (4.10) and (4.11), respectively. Similarly, the estimator for the mode treatment

effect derivative, evaluated at the cutoff x = X̄, is

τ̂
(1)
RD(X̄) = m̂

(1)
Y1

(X̄)− m̂
(1)
Y0

(X̄), (4.13)

in which the estimators of b+ and b−, denoted by m̂
(1)
Y1

(X̄) and m̂
(1)
Y0

(X̄), are from (4.10)

and (4.11), accordingly.

Remark 4.2.47 (Mechanism of Modal Estimation) In the preceding local kernel-based

objective functions, ϕ(·) is served to find the mode, whereas K(·) is merely a rescale func-

tion that can put more weight on observations that are closer to the cutoff relative to

7We choose a normal kernel for ϕ(·) to form a closed-form expression for the proposed estimators in
Algorithm . Dimitriadis et al. (2020) also argued that the log-concave kernels with infinite support, i.e.,
normal kernel, can identify the generalized modal midpoint with the unimodal assumption.
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the bandwidth. To gain an insight into the proposed modal estimation, we assume that

ϕ(t) = 2−11(|t| ≤ h) and K(t) = 2−11(|t| ≤ h) are two uniform kernels. Then, (4.10) tries

to find the value of a+ such that the band a+ ± h contains the largest number of response

Y1 given X+ within x ± h (Yao and Li, 2014). A similar argument is applied to (4.11).

We can also interpret the above objective functions on the basis of the mode loss function

1− 2ϕ([Y −Xβ]/h), where Mode(Y | X) = Xβ (Silverman, 1986). As we are considering

nonparametric estimation, we need to utilize another kernel K(·) to control the smoothness

of the modal function.

Remark 4.2.48 It is widely known that the local linear estimation method in mean or

quantile regression has benefits in boundary behavior and in estimating regression derivatives

(Fan and Gijbels, 1996). Such a property of automatic adjustment near boundary regions

is also shown in the modal regression; see the asymptotic results in the following part. In

practice, we can also apply the local constant modal estimation for (4.8) borrowing the idea

of kernel density estimation in Chen et al. (2016), where we maximize the following two

local kernel-based objective functions

1

n+h1,+h2,+

n+∑
i=1

ϕ

(
Y1,i − a+

h1,+

)
K

(
X+,i − x

h2,+

)
,

1

n−h1,−h2,−

n−∑
i=1

ϕ

(
Y0,i − a−

h1,−

)
K

(
X−,i − x

h2,−

)
,

in which modal regression functions are approximated by a constant at a fixed point. Then,

the estimation algorithm and asymptotic theorems shown below in this paper may remain

valid but with some modifications. However, such local constant estimators are generally
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unappealing for RD designs due to the poor performance at boundary points. It will also

occur the “curse of dimensionality” when there exist additional covariates and cannot give

the estimator of the mode treatment effect derivative unless we take the finite difference

approximation. We highlight that in addition to the local approximation method, other basis

systems, including B-splines, Fourier bases, and polynomial bases, can also be adopted for

estimation. Regardless of which expansion we use, the CMTE and the derivative will be

uniquely identified.

Remark 4.2.49 (Semiparametric Modal Estimation) We in this paper utilize two sep-

arate modal regression functions to capture local modes on both sides of the cutoff to estimate

the desired CMTE. As an alternative, we can also interpret the estimation problem of the

effect parameter in the modal SRD as that of the slope coefficient in a partial linear model

1

nh1h2

n∑
i=1

ϕ

(
Yi − a− b1(X+,i − x)− b2(X−,i − x)−DiπRD

h1

)
K

(
Xi − x

h2

)
,

where a = m(x), b1 = m
(1)
Y1

(x), b2 = m
(1)
Y0

(x), and h1 > 0 and h2 > 0 are two bandwidths

depending on sample size n. This semiparametric model enables the use of all available data

to estimate τRD and achieve a parametric modal convergence rate. To be more specific, we

need to update estimates in different steps to achieve the optimal convergence rates for the

nonparametric and parametric components, respectively. Nevertheless, the computational

burden will be increased and the choice of bandwidths will be much more complicated due to

the presence of nonparametric and parametric parts.

It is clear that, as opposed to the traditional local linear mean regression, there is

no closed-form expression for the maximizers of (4.10) and (4.11). We therefore apply the
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modified MEM Algorithm to tackle such a challenging problem (Li et al., 2007; Yao, 2013),

which has the ascending property to guarantee the almost sure convergence of the MEM

algorithm to a stationary point; see Remark 4.2.50. For simplicity, we only present the

algorithm for maximizing (4.10). The maximizers of (4.11) can be obtained accordingly.

In analogy to an EM algorithm, the proposed algorithm consists primarily of two steps:

E-Step (calculating weight) and M-Step (updating estimates), in which we maximize the l-

Algorithm 4 MEM Algorithm for Modal SRD Design

E-Step. Calculate the weight π
(
i | a(g)+ , b

(g)
+

)
, i = 1, · · · , n+, with the preliminary esti-

mates of the modal parameters as

π
(
i | a(g)+ , b

(g)
+

)
=

ϕ

(
Y1,i−a

(g)
+ −b

(g)
+ (X+,i−x)

h1,+

)
K
(
X+,i−x
h2,+

)
∑n+

i=1 ϕ

(
Y1,i−a

(g)
+ −b

(g)
+ (X+,i−x)

h1,+

)
K
(
X+,i−x
h2,+

) .
M-Step. Update

(
a
(g+1)
+ , b

(g+1)
+

)
with the weight calculated in the E-Step

(
a
(g+1)
+ , b

(g+1)
+

)
= arg max

a+,b+

n+∑
i=1

{
π
(
i | a(g)+ , b

(g)
+

)
log

1

h1,+
ϕ

(
Y1,i − a+ − b+(X+,i − x)

h1,+

)}

= (X∗T
+ W+X

∗
+)

−1X∗T
+ W+Y+,

where g denotes the iteration indicator, X∗
+ = (X∗

+,1, · · · , X∗
+,n+

)T withX∗
+,i = (1, X+,i−x),

Y+ = (Y1,1, · · · , Y1,n+)
T , and W+ is an n+ × n+ diagonal matrix with diagonal elements

{π(i | a(g)+ , b
(g)
+ )}n+

i=1.

Iterate. Given the initial values, iterate E-Step and M-Step repeatedly until a stopping

criteria is satisfied. For instance, the Euclidean norm ∥(a(g+1)
+ , b

(g+1)
+ )− (a

(g)
+ , b

(g)
+ )∥ < 10−5

or a pre-specified maximum number of iterations is achieved.
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og objective function instead of the original objective function for ease of calculation. With

the use of a normal kernel function, we can form a closed expression in the M-step. It is

important to notice that, as there may exist multiple maxima for the objective functions

with small bandwidths, we should try different starting points, such as local linear mean

or quantile estimates, in practice to guarantee that the MEM algorithm converges to the

global maximizer (Ullah et al., 2021, 2022).

Remark 4.2.50 We can prove that each iteration of the MEM algorithm monotonically

nondecreases the objective functions. Define f(Y1,i, X+,i; a+, b+) = ϕ
(
Y1,i−a+−b+(X+,i−x)

h1,+

)
K
(
X+,i−x
h2,+

)
, by Jensen’s inequality we can rewrite maximizing (4.10) in the M-Step as

log

n+∑
i=1

f(Y1,i, X+,i; a
(g+1)
+ , b

(g+1)
+ ) = log

n+∑
i=1

f(Y1,i, X+,i; a
(g+1)
+ , b

(g+1)
+ )

π(i | a(g)+ , b
(g)
+ )

π(i | a(g)+ , b
(g)
+ )

≥
n+∑
i=1

π(i | a(g)+ , b
(g)
+ ) log

f(Y1,i, X+,i; a
(g+1)
+ , b

(g+1)
+ )

π(i | a(g)+ , b
(g)
+ )

≥ log

n+∑
i=1

f(Y1,i, X+,i; a
(g)
+ , b

(g)
+ ),

which ensures that the sequence (a
(g)
+ , b

(g)
+ ) is convergent to some (â+, b̂+).

4.2.3 Asymptotic Properties near the Boundary

We are now in a position to provide the limiting distributions for the proposed modal

estimators near the boundary of the region of interest, in the sense that τRD is estimated

nonparametrically using modal regression. Before presenting asymptotic theorems, it is

convenient to introduce some notations that will be used throughout the remainder of this

paper. Since the boundary point is X̄ in the modal RD designs, we define the target

point x = X̄ + c̄h2,+ or x = X̄ − c̄h2,− with h2,+ → 0 and h2,− → 0 in this subsection,
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where c̄ is a positive constant of the support of kernel K(·), and allow gϵ+(ϵ+ | x) and

gϵ−(ϵ− | x) to be the conditional density functions of ϵ+ and ϵ− given x, correspondingly.

We use m
(c)
Yj
(x) = ∂(c)mYj (x)/∂x

c to indicate the cth derivative of mYj (x) for j = 0, 1,

and let g
(c)
ϵ+ (ϵ+ | x) = ∂(c)gϵ+(ϵ+ | x)/∂ϵc+ and g

(c)
ϵ− (ϵ− | x) = ∂(c)gϵ−(ϵ− | x)/∂ϵc− represent

the cth derivatives of gϵ+(ϵ+ | x) and gϵ−(ϵ− | x), respectively, for c = 1, 2, 3. We define

Tn(x) = T (x)+Op(sn) uniformly for x ∈ X if supx∈X |Tn(x)−T (x)| = Op(sn) and use “
d→”

to denote convergence in distribution. To facilitate the investigation, we state the following

assumptions from which the limiting distributions of the proposed estimators are derived.

C1 (Data Structure) {Yi, Xi}ni=1 is an i.i.d. random sequence drawn from a joint proba-

bility distribution FX,Y (X,Y ) on R×R.

C2 (Kernel Function) The kernel functions ϕ(·) and K(·): R → R are nonnegatively

symmetric continuous density functions with bounded support and integrated to one,

where the bounded support of K(·) is denoted as [−M,M ].

C3 (Smoothness) The modal regression functions mY1(X+) and mY0(X−), as well as their

first and second derivatives, have right and left limits at the boundary point X̄,

respectively.

C4 (Conditional Density) (i) For a fixed point x, fX+(x) > 0 and fX−(x) > 0, where

fX+(x) and fX−(x) are the marginal density functions that right and left continuous

differentiable at x = X̄, separately; (ii) Given a certain point x, gϵ+(ϵ+ | x) > 0 and

gϵ−(ϵ− | x) > 0. Furthermore, gϵ+(ϵ+ | x) and gϵ−(ϵ− | x) have the fourth right and

left continuous derivatives at x = X̄, severally, and gϵ+(ϵ+ | x) < gϵ+(0 | x) and
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gϵ−(ϵ− | x) < gϵ−(0 | x) for all ϵ+ ̸= 0 and ϵ− ̸= 0; (iii) all density functions are

bounded away from infinity.

Most of the above assumptions are compatible with the conditions imposed in

the majority of the existing modal regression literature. C1 is pretty typical in describing

the sample generating process for cross sectional data in most applications of RD designs.

The i.i.d. condition is shared by many prior analyses on regression discontinuity and kink

designs. We can extend to the dependent data (strictly stationary process) under mixing

conditions but with more tedious arguments and proofs. C2 is a mild condition on the

kernel functions. The compact support condition for ϕ(·) and K(·) is not essential and can

be relaxed as long as certain integrability restrictions are imposed on the tail of the kernel

functions. Especially, a normal kernel is permitted, which is the default kernel for ϕ(·) used

in this paper. C3 is a frequently employed condition on the smoothness of the nonparametric

functions in local linear fitting to control the leading bias of the RD estimator. It allows

the existence of the difference between the right and left derivatives of the conditional mode

evaluated at the cutoff X̄. Notice that the existing second derivative ensures that the bias

of the local linear estimator is of order Op(h
2
1,+ + h22,+) or Op(h

2
1,− + h22,−) even close to the

boundary. As a result, the local linear modal estimation exhibits automatically excellent

behavior near the boundary, eliminating the need for boundary correction. C4 imposes

a certain smoothness on distributions. It excludes discontinuous changes in the density

of the running variable X and overcomes the technical issues associated with a near-zero

denominator. The presence of a positive density in the neighborhood of X̄ guarantees that

there exist sufficient data for estimating the treatment effect. Notably, the global mode
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for {ϵ+}n+

i=1 or {ϵ−}n−
i=1 is enforced to simplify the illustration and computation (Kemp

and Santos Silva, 2012; Ullah et al., 2021, 2022). The method can be easily modified to

accommodate the multi-mode case. In contrast to the classical mean regression, the modal

regression does not require the existence of error term moments (i.e., Cauchy distribution

has no moments). Even when the conditional variance of the error terms is infinite, the

proposed modal estimators still enjoy asymptotic normality. In practice, if we intend to

compare the CMTE to the mean treatment effect, we must impose a condition that there is

a constant s > 2 such that E(|Y |2s) < ∞ and E(|X|2s) < ∞. The bandwidths are the key

parameters to consider when implementing the CMTE estimator. All bandwidth-related

conditions are specified in each of the following theorems, and the choice of bandwidths is

addressed in depth below.

Remark 4.2.51 If X is instead assumed to have a discrete distribution with a limited

number of points of support, it may not be convenient to anticipate local linear estimation

to be particularly effective in estimating treatment effects. More specifically, the treatment

effect parameter is usually not point identified because there is no data within the specified

bandwidth range. One then may be compelled to arbitrarily choose a broad and ad hoc

bandwidth, resulting in an inappropriately centered confidence interval with a nonignored

asymptotic bias. The effective way to deal with such an issue is to utilize the discrete kernel

function for RD designs.

Although the asymptotic theory for both m̂Y1(·) and m̂Y0(·) near the boundary

can be driven given the aforementioned assumptions, we only present the results for modal

estimators m̂Y1(·) and m̂
(1)
Y1

(·) associated with x = X̄ + c̄h2,+ to conserve space, which
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are shown as follows. The asymptotic properties for modal estimators m̂Y0(·) and m̂
(1)
Y0

(·)

related to x = X̄ − c̄h2,− are listed in the appendix.

Theorem 4.2.18 Under the regularity conditions C1-C4, with probability approaching one,

as n+ → ∞, h1,+ → 0, h2,+ → 0, h22,+/h1,+ → 0, and n+h2,+h
5
1,+ → ∞, there exist

consistent maximizers (m̂Y1(x), h2,+m̂
(1)
Y1

(x)) of (4.10) such that

i. |m̂Y1(x)−mY1(x)| = Op

((
n+h2,+h

3
1,+

)−1/2
+ h21,+ + h22,+

)
,

ii. |h2,+(m̂(1)
Y1

(x)−m
(1)
Y1

(x))| = Op

((
n+h2,+h

3
1,+

)−1/2
+ h21,+ + h22,+

)
.

Theorem 4.2.18 expresses the magnitudes of the estimation bias and variance of

modal estimators near the boundary, which exhibits the same convergence rate as the

interior points. The results indicate that local linear modal regression has an attractive

boundary behavior in the sense that it maintains O(h21,++h22,+) bias across the design space.

In addition, it can be seen that the optimal choices of h1,+ and h2,+ are of order O(n
−1/8
+ ) by

minimizing the asymptotic MSE of estimators over h1,+ and h2,+, and the corresponding

convergence rate is Op(n
−1/4
+ ), which is slower than that of mean or quantile regression

due to the characteristic of mode (Parzen, 1962). Such MSE-optimal bandwidths are too

large for inference as they lead to non-negligible biases of order Op(h
2
1,+) and Op(h

2
2,+),

respectively. In practice, we can modify the MSE-optimal bandwidths through multiplying

them by n−γ
+ , where γ > 0 is a small integer.

Theorem 4.2.19 With n+h
5
2,+h

3
1,+ = O(1) and n+h2,+h

7
1,+ = O(1), under the same con-

ditions as Theorem 4.2.18, the parameters satisfying the consistency results in Theorem

4.2.18 have the following asymptotic result
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√
n+h2,+h31,+

( m̂Y1(x)−mY1(x)

h2,+(m̂
(1)
Y1

(x)−m
(1)
Y1

(x))

− Γ−1
(h22,+

2
m

(2)
Y1

(x)Λ2 −
h21,+
2

g
(3)
ϵ+ (0 | x)
g
(2)
ϵ+ (0 | x)

Λ1

))

d→ N

0,
gϵ+(0 | x)

∫
τ2ϕ2(τ)dτ(

g
(2)
ϵ+ (0 | x)

)2
fX+(x)

Γ−1ΣΓ−1

 .

If we allow n+h
5
2,+h

3
1,+ → 0 and n+h2,+h

7
1,+ → 0, the asymptotic theorem becomes

√
n+h2,+h31,+

 m̂Y1(x)−mY1(x)

h2,+(m̂
(1)
Y1

(x)−m
(1)
Y1

(x))

 d→ N

0,
gϵ+(0 | x)

∫
τ2ϕ2(τ)dτ(

g
(2)
ϵ+ (0 | x)

)2
fX+(x)

Γ−1ΣΓ−1

 ,

where

Λ1 =


∫M
−c̄ K(w)dw∫M

−c̄ wK(w)dw

, Λ2 =


∫M
−c̄ w

2K(w)dw∫M
−c̄ w

3K(w)dw

, Γ =


∫M
−c̄ K(w)dw

∫M
−c̄ wK(w)dw∫M

−c̄ wK(w)dw
∫M
−c̄ w

2K(w)dw

,

and Σ =


∫M
−c̄ K

2(w)dw
∫M
−c̄ wK

2(w)dw∫M
−c̄ wK

2(w)dw
∫M
−c̄ w

2K2(w)dw

.

This asymptotic result for points close to the boundary is of interest in its own right

because it serves as the foundation for the subsequent derivation of the limiting distribution

of the CMTE process. The modal convergence rate (n+h2,+h
3
1,+)

1/2 can be regarded as a

novel one in the RD design literature. The orders of the bias and variance are consistent with

the usual asymptotic results for the interior points in nonparametric modal regression, but

the exact expressions are different since we concentrate on the local linear approximation

near the boundary (half the weights are not defined). The bias term linked with h1,+ is

due to the estimation of the mode value, whereas the bias term attributed to h2,+ is caused

by local linear approximation, which has the same format as that from local linear mean

estimation. Also, the variance term is not dependent on any moments, indicating that no
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moment conditions are required for modal estimation. The results show that the proposed

modal estimators enjoy the property of automatic boundary correction, which is a nice

feature of the local linear estimator. In addition, because of the use of data on the right

side of the cutoff, we do not have asymptotic independence between m̂Y1(x) and m̂
(1)
Y1

(x)

even with a symmetric kernel function.8 The theorem further reveals that the asymptotic

bias term is substantially influenced by bandwidths and can be effectively eliminated under

specific circumstances so that the estimator is centered at the actual value. The estimator

m̂Y0(·) is subjected to the same comments.

Due to the sensitivity of CMTE to bandwidth choice, the estimation in the modal

SRD design requires specifying a bandwidth around the cutoff, much as it does for the

mean or quantile treatment effect. The difference is that we also need to select another

bandwidth for capturing mode. We then apply the results in the above theorem to obtain

the asymptotic MSE of m̂Y1(x). Define µ+,l =
∫M
−c̄ w

lK(w)dw and v+,l =
∫M
−c̄ w

lK2(w)dw

for l = 0, 1, 2, 3. The MSE of m̂Y1(·) near the boundary can be approximated by

E(m̂Y1(x)−mY1(x))
2 ≈ B1h

4
1,+ +B2h

4
2,+ + 2B3h

2
1,+h

2
2,+ +

1

n+h2,+h31,+
V, (4.14)

where



B1 = 4−1(g
(2)
ϵ+ (0 | x))−2(g

(3)
ϵ+ (0 | x))2,

B2 = 4−1[m
(2)
Y1

(x)]2(µ2
+,2 − µ+,1µ+,3)(µ+,0µ+,2 − µ2

+,1)
−1,

B3 = −4−1m
(2)
Y1

(x)(g
(2)
ϵ+ (0 | x))−1g

(3)
ϵ+ (0 | x)(µ2

+,2 − µ+,1µ+,3)(µ+,0µ+,2 − µ2
+,1)

−1,

V =
∫
τ2ϕ2(τ)dτf−1

X+
(x)gϵ+(0 | x)(g(2)ϵ+ (0 | x))−2

(µ2
+,2v+,0 − 2µ+,1µ+,2v+,1 + µ2

+,1v+,2)(µ+,0µ+,2 − µ2
+,1)

−2.

8With the defined values of µ+,l and v+,l, the covariance between m̂Y1(x) and m̂
(1)
Y1

(x) is (n+h2,+h
3
1,+)

−1

(µ0µ2 − µ2
1)

−2(µ2
1v1 − µ2v0v1 + µ2v1µ0 − µ1v2µ0). For the interior points, this value is 0 with a symmetric

kernel.
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By minimizing the above equation as a function of the bandwidths, we can achieve

the optimal rate for bandwidths

ĥ2,+ =

(
3V

4n+B5
4(B1B2

4 +B3)

)1/8

and ĥ1,+ = B4ĥ2,+, (4.15)

where B4 = ([B2
3 + 3B1B2]

1/2 +B3)/B1. Thus, ĥ1,+ = O(n
−1/8
+ ) and ĥ2,+ = O(n

−1/8
+ ), im-

plying that n+(ĥ
8
1,+) → αc ∈ (0,∞) and n+(ĥ

8
2,+) → αc ∈ (0,∞). Combining this with The-

orem 4.2.19, it is clear that the MSE-optimal bandwidths of h1,+ and h2,+ with rate n
−1/8
+

do not satisfy the requirements of limn+→∞ n+h
5
2,+h

3
1,+ = 0 and limn+→∞ n+h2,+h

7
1,+ = 0,

and will lead to a first-order bias in the distributional approximation and bring undercover-

age of confidence interval in inference. Additionally, applying this MSE-optimal bandwidth

selection in reality is likely to introduce further variability into the chosen bandwidths due

to the estimation of so many unknown terms, potentially resulting in the use of extremely

large bandwidths. We may utilize other bandwidth choice methods, such as the revised

MSE-optimal bandwidths by taking bias correction into consideration. After correcting

the bias, the optimal bandwidths can balance Bias2(m̂(·)−Bias(m̂(·))) with the adjusted

variance term (see Remark 4.2.52). Nevertheless, given that Bias(m̂(·)) = O(h21,+ + h22,+),

we have to expand the bias expression up to a higher order and develop the limit process to

calculate Bias(m̂(·)−Bias(m̂(·))), which will impose a significant burden on computation

as well.

Practically, it may be more reasonable to employ different bandwidths for the

modal regressions on both sides of the cutoff to prevent the offset of the biases in those

two regression functions from one another. Developing such data-driven bandwidths with

the plug-in method is much more difficult due to the large number of unknown terms
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in the above expressions, which necessitates the use of pilot bandwidths and additional

smoothness assumptions. Several studies in the RD design literature suggest reducing

the MSE-optimal bandwidths by an arbitrary number. As Hall (1993) discovered that

undersmoothing outperforms naive bias-corrected confidence intervals, we in this paper

limit ourselves to applying the undersmoothing technique, which is a common requirement

in the nonparametric or RD design literature.

We generalize the results in Kemp and Santos Silva (2012) to choose under-

smoothed bandwidths guided by MSE-optimal rates, where in empirical analysis we let

ĥ1,+ = 1.6MADn+
−0.13 (-0.13 comes from the rate -1/8 and undersmoothing requirement),

MAD = med1,i{|(Y1,i − m̃Y1(x)) − med1,i(Y1,i − m̃Y1(x))|} in which m̃m(·) represents the

mean estimator, med means taking the median value, and ĥ2,+ = 1.06σX+n
−0.13
+ in which

σX+ is the standard deviation for samples {X+,i}n+

i=1. According to the previous discussion,

we know that the bandwidth h1,+, in comparison to the bandwidth h2,+, can have an impact

on the number of estimated local modes. To minimize the effect of h1,+ in simulation ex-

amples, we select 50 alternative values of h1,+ ranging from 50MAD to 0.5MADn−0.13 and

provide the best findings (in terms of MSE). The same procedures are applied to calculate

the bandwidths h1,− and h2,−. We note that only observations with the running variable

falling inside the chosen neighborhood [x − ĥ2, x + ĥ2] are used for estimating CMTE.

Although Monte Carlo simulations show that the undersmoothed MSE-based bandwidth

selection rule allows the proposed estimation procedure to perform well in finite samples, we

emphasize that the selection process can only provide a benchmark estimate, and may not

produce the optimal modal estimator since it considers the performance of the estimator
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over the entire support. A formal investigation into practically optimal bandwidths in the

modal RD designs (e.g., the bandwidths that minimize the coverage error of the confidence

interval) is deferred to future work.

4.2.4 Modal Inference on the Boundary

With the nice boundary performance of modal estimators, we can now establish the main

results of this paper at the boundary point x = X̄ on the basis of the studentized statis-

tic. To conserve space, we concentrate on the inference of CMTE and do not pay much

attention to the mode treatment effect derivative. However, using the previous asymptotic

results, it is straightforward to show that (τ̂
(1)
RD − τ

(1)
RD − Bias(τ̂

(1)
RD))

d→ N (0, V ar(τ̂
(1)
RD)),

where Bias(τ̂
(1)
RD) = Bias(m̂

(1)
Y1

(x̄)) − Bias(m̂
(1)
Y0

(x̄)) and V ar(τ̂
(1)
RD) = V ar(m̂

(1)
Y1

(x̄)) +

V ar(m̂
(1)
Y0

(x̄)) because the data used in the estimation are independent. The exact ex-

pressions for Bias(τ̂
(1)
RD) and V ar(τ̂

(1)
RD) are given in the appendix.

Theorem 4.2.20 Define µ−,l =
∫ c̄
−M wlK(w)dw and v−,l =

∫ c̄
−M wlK2(w)dw for l =

0, 1, 2, 3. Under the regularity conditions C1-C4, with n+h
5
2,+h

3
1,+ = O(1), n+h2,+h

7
1,+ =

O(1), n−h
5
2,−h

3
1,− = O(1), and n−h2,−h

7
1,− = O(1), as both n+ → ∞ and n− → ∞, we have

τ̂RD − τRD − Bias(τ̂RD)√
Var(τ̂RD)

d→ N (0, 1) .

If we allow n+h
5
2,+h

3
1,+ → 0, n+h2,+h

7
1,+ → 0, n−h

5
2,−h

3
1,− → 0, and n−h2,−h

7
1,− → 0, as

both n+ → ∞ and n− → ∞, we have

(Var(τ̂RD))
−1/2(τ̂RD − τRD)

d→ N (0, 1) ,

where Bias(τ̂RD) = Bias(m̂Y1(X̄))− Bias(m̂Y0(X̄)) =

{
h22,+
2

m
(2)
Y1

(X̄)p+(c̄)−
h21,+
2

g
(3)
ϵ+ (0 | X̄)

g
(2)
ϵ+ (0 | X̄)
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−
h22,−
2

m
(2)
Y0

(X̄)p−(c̄) +
h21,−
2

g
(3)
ϵ− (0 | X̄)

g
(2)
ϵ− (0 | X̄)

}
(1 + op(1)),

Var(τ̂RD) = Var(m̂Y1(X̄)) +Var(m̂Y0(X̄)) =

{∫
τ2ϕ2(τ)dτf−1

X+
(X̄)

n+h2,+h31,+

gϵ+(0 | X̄)

(g
(2)
ϵ+ (0 | X̄))2

ξ+(c̄)

+

∫
τ2ϕ2(τ)dτf−1

X−
(X̄)

n−h2,−h31,−

gϵ−(0 | X̄)

(g
(2)
ϵ− (0 | X̄))2

ξ−(c̄)

}
(1 + op(1)), p+(c̄) =

µ2
+,2 − µ+,1µ+,3

µ+,0µ+,2 − µ2
+,1

,

p−(c̄) =
µ2
−,2 − µ−,1µ−,3

µ−,0µ−,2 − µ2
−,1

, ξ+(c̄) =
µ2
+,2v+,0 − 2µ+,1µ+,2v+,1 + µ2

+,1v+,2

(µ+,0µ+,2 − µ2
+,1)

2
,

and ξ−(c̄) =
µ2
−,2v−,0 − 2µ−,1µ−,2v−,1 + µ2

−,1v−,2

(µ−,0µ−,2 − µ2
−,1)

2
.

Provided that a symmetric kernel is utilized, the values of µ+,l and v+,l stay

unchanged if kernel moments on the opposite side of the cutoff are used, implying that

p+(c̄) = p−(c̄) and ξ+(c̄) = ξ−(c̄). When the bandwidths above and below the cutoff are

assumed to be the same, we can deduce the following corollary.

Corollary 4.2.4 Under the regularity conditions C1-C4, as both n+ → ∞ and n− → ∞,

with the restrictions that h1,+ = h1,− = h1, h2,+ = h2,− = h2, n+h
5
2h

3
1 = O(1), n+h2h

7
1 =

O(1), n−h
5
2h

3
1 = O(1), and n−h2h

7
1 = O(1), we have

Bias(τ̂RD) =

{
h22
2
(m

(2)
Y1

(X̄)p+(c̄)−m
(2)
Y0

(X̄)p−(c̄))−
h21
2

(
g
(3)
ϵ+ (0 | X̄)

g
(2)
ϵ+ (0 | X̄)

−
g
(3)
ϵ− (0 | X̄)

g
(2)
ϵ− (0 | X̄)

)}

{1 + op(1)}, and

Var(τ̂RD) =

∫
τ2ϕ2(τ)dτ

h2h31

(
(g

(2)
ϵ+ (0 | X̄))−2gϵ+(0 | X̄)

n+fX+(X̄)
ξ+(c̄) +

(g
(2)
ϵ− (0 | X̄))−2gϵ−(0 | X̄)

n−fX−(X̄)
ξ−(c̄)

)

{1 + op(1)}.

Theorem 4.2.20 can be directly proved by following the results of Theorem 4.2.19.

For simple presentation, we assume that the same bandwidths are used for estimation
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and inference. The asymptotic distribution of τ̂RD is not centered at zero because of the

presence of the asymptotic bias without undersmoothing. Since the data used in estimating

mY1(X̄) and mY0(X̄) are not related, the processes associated with mY1(X̄) and mY0(X̄)

are asymptotically uncorrelated. Furthermore, because the zero-mean normal processes are

fully characterized by their covariance function, the asymptotic variance of τ̂RD consists of

the sum of asymptotic variances of m̂Y1(X̄) and m̂Y0(X̄). If we allow the bandwidths to go

to zero fast enough with the sample size (undersmoothing), the bias can be asymptotically

negligible. Under the premise that the bandwidths on both sides of the cutoff are the

same, if the left and right limits of the second derivatives of the unknown functions and the

second and third derivatives of the unknown densities are identical, the bias would converge

to zero faster, allowing for the estimation of τRD at a faster rate of convergence. Using

the increased convergence rate in such a scenario, however, is problematic, as it would be

difficult to establish sufficiently fast convergence in practice so that the above mentioned

components are really equal.

We can use Theorem 4.2.20 for the modal inference on the boundary. For example,

we can construct a conventional 100(1 − α)% confidence interval for τRD by following the

large-sample approximation of the standardized t-statistic, which is justified by

CIuRD =
[
τ̂RD − ˆBias(τ̂RD)±Φ−1

1−α/2

√
ˆV ar(τ̂RD)

]
or CIwRD =

[
τ̂RD ±Φ−1

1−α/2

√
ˆV ar(τ̂RD)

]
,

(4.16)

where ˆBias(·) and ˆV ar(·) are the corresponding estimates, CIwRD and CIuRD denotes the con-

fidence intervals with and without undersmoothing, and Φ−1
α is the appropriate α-quantile

of the standard normal distribution. The estimators for the second derivatives of modal
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regressions mY1(·) and mY0(·) can be computed using local boundary estimation with a

second-order polynomial. The consistent estimates of the unknown terms in asymptotic

bias and variance related to density at the cutoff can be obtained via kernel density estima-

tion (Ullah et al., 2021). Especially, we can use the local linear mean regression to get the

estimate of ϵ+,i, denoted by ϵ̂m+,i, and apply the nonparametric kernel density estimation

method to obtain the mode of ϵ̂m+,i, say ϵ̂+,m. We can then approximate g
(c)
ϵ+ (·) by

g(c)ϵ+ (0 | X̄) ≈ 1

n+λ
(c+1)
+

n+∑
i=1

K(c)

(
ϵ̂m+,i − ϵ̂+,m

λ+

)
, (4.17)

where λ+ is a new bandwidth and K(c)(·) represents the cth derivative of kernel function.

Similarly, we can obtain the estimate for g
(c)
ϵ− (·). In addition, although using the same band-

widths for estimation and inference can greatly reduce the complexity of implementation,

a tuning parameter that is useful for estimation purpose may not necessarily be optimal

for conducting inference (Pagan and Ullah, 1999). This suggests that the confidence region

CIuRD built using the results obtained from the MSE-optimal bandwidths in the estimation

may not provide good coverage accuracy for the probability limit of τ̂RD. In that case,

we need to minimize the asymptotic MSE of τ̂RD in Theorem 4.2.20 to obtain the optimal

bandwidth expressions and utilize the plug-in method to consistently estimate them.

Remark 4.2.52 (Robust Bias-Corrected Estimator) Calonico et al. (2014) developed

a robust bias-corrected inference method by taking the additional variability introduced by

the bias term into account for mean treatment effect. Such a method is resistant to large

bandwidths that obey h1 ∝ n−1/8 and h2 ∝ n−1/8 in the mode content. As we can rewrite

the bias-correct modal estimator as τ̂ bcRD = m̂Y1 − ˆBias(m̂Y1) − (m̂Y0 − ˆBias(m̂Y0)), which

is the difference between two normal random variables, we have the adjusted t-statistic
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(Var(τ̂ bcRD))
−1/2(τ̂ bcRD − τRD)

d→ N (0, 1) ,

where Var(τ̂ bcRD) = Var(τ̂RD − ˆBias(τ̂RD)) = Var(τ̂RD) + Var( ˆBias(τ̂RD))− 2Cov(τ̂RD, ˆBias

(τ̂RD)) = Var(m̂Y1(X̄)) +Var(m̂Y0(X̄))+Var( ˆBias(m̂Y1(X̄)))+Var( ˆBias(m̂Y0(X̄)))− 2Cov

(m̂Y1(X̄), ˆBias (m̂Y1(X̄)))− 2Cov (m̂Y0(X̄), ˆBias(m̂Y0(X̄))), and Cov(·) represents covari-

ance. Because of the additional variability introduced by bias correction, we can construct a

100(1−α)% bias-corrected confidence interval (CIbcRD) for τRD to improve coverage probabil-

ity, in the sense of P [τRD ∈ CIbcRD] = 1−α+o(1). The difficulty comes from the derivation

and approximation of the aforementioned terms. We discuss such a bias-corrected estimator

in detail in a separate paper.

Nevertheless, the above inference procedure based on the plug-in method has at

least two drawbacks. The first is that the bias is taken into account when constructing

CIuRD, but the additional variability caused by the bias is ignored; see Remark 4.2.52.

Thus, the confidence interval CIuRD may undercover the true estimate and the hypothesis

test could over reject a valid null hypothesis. The other is related to the calculation issue.

The mentioned plug-in calculations may not be correct enough due to the complicated and

unknown quantities in the bias and variance terms. Despite the fact that the bias can be

asymptotically ignored by undersmoothing and the unknown terms can be estimated by

kernel estimators, the estimation process will necessitate the introduction of new tuning

parameters to formulate additional nonparametric estimation. An alternative approach

that can be used to approximate the variance of the modal estimator is the bootstrap

(Horowitz, 1998; Zhang et al., 2020). We thus focus on undersmoothing to ensure that

the finite-sample bias of τ̂RD converges in probability to zero quickly enough than the
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variance, and propose a bootstrap procedure in Algorithm 5 that includes four steps to

construct a reliable confidence interval in practice. With large data, we should expect the

bootstrapped parameter acquired through undersmoothing to be close to the true value

of CMTE, i.e., (V ar(τ̂b,RD))
−1/2(τ̂b,RD − τRD) can be used to approximate the sampling

distribution of (V ar(τ̂RD))
−1/2(τ̂RD − τRD).

9 Notice that different from the traditional

mean bootstrap algorithm, we must use the pseudo random sample {ϵ̂∗i }ni=1 drawn from its

empirical distribution and calculate the centered-in-mode instead of the centered-in-mean

residual to ensure Mode(ϵ̂∗i ) = Mode(ϵ̂i −Mode(ϵ̂i))= 0 in S-2.

Remark 4.2.53 With the use of undersmoothing, we do not incorporate the bias correction

strategy into the above bootstrap algorithm. However, it can be easily generated to a new

bootstrap algorithm to account for the bias and corresponding variability, where we include a

step S-4’ before S-4 to repeat S-2-S-3 for B times to obtain the bias, i.e., ∆∗
bias =

1
B

∑B
b=1

τ̂b,RD−(m̂Y1(X̄)−m̂Y0(X̄)). We can then repeat S-2-S-4’ to calculate the variability; see He

and Bartalotti (2020), which proposed a similar wild bootstrap to construct the bias-corrected

confidence interval for the mean treatment effect in the FRD design and showed that the

bootstrap procedure is asymptotically equivalent to that of Calonico et al. (2014). To mitigate

the effect of the second derivative, we prefer to use the second-order local polynomial to

generate the bootstrapped data in the first step S-1 instead of the local linear approximation

in terms of the implementation of this new bias-corrected bootstrap algorithm. Under the

same conditions as those in Theorem 4.2.20, it can be demonstrated that

9We have checked the validity of this bootstrap algorithm via simulations in Section 4.3. We can also

establish the bootstrap consistency for the modal SRD design, i.e., P [τ̂RD − z∗α ≤ τRD ≤ τ̂RD + z∗α]
P→ 1−α,

indicating that the bootstrapped confidence interval has an asymptotic coverage probability of 1 − α. The
detailed proof of this result requires elaborate, lengthy, and sophisticated calculations, which is beyond the
scope of this paper. Further investigation into the bootstrap method in the context of modal RD designs is
definitely worthwhile.
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(Var(τ̂RD −∆∗
bias))

−1/2(τ̂RD −∆∗
bias − τRD)

d→ N (0, 1) ,

which implies that the bias-corrected bootstrapped estimator has the same asymptotic distri-

bution as the one described in Remark 4.2.52. The specifics will be illustrated in subsequent

research.

Algorithm 5 Bootstrap Algorithm for Modal SRD Design

S-1 Estimate m̂Y1(X+) and m̂Y0(X−) from Algorithm , let m̂(X) = m̂Y1(X+) if Xi ≥ X̄

and m̂(X) = m̂Y0(X−) if Xi < X̄, and obtain the residual ϵ̂i = Yi − m̂(Xi) for all i.

S-2 Compute the centered-in-mode residual ϵ̂∗i = ϵ̂i−Mode(ϵ̂i), where Mode(ϵ̂i) is achieved

via kernel density estimation, and generate the bootstrapped residuals {ϵ̂∗b,i}ni=1 with re-

placement from the empirical distribution function of ϵ̂∗i .

S-3 Calculate Y ∗
b,i = m̂(Xi)+ ϵ̂∗b,i and estimate τ̂b,RD using the new samples {Y ∗

b,i, Xi, Di}ni=1

with the same bandwidths as S-1, that is,

τ̂b,RD = m̂b
Y1
(X̄)− m̂b

Y0
(X̄).

S-4 Repeat S-1-S-3 for B times (e.g., B = 200) with the new samples {Y ∗
b,i, Xi, Di}ni=1 for

b = 1, 2, · · · , B, and construct the α percentile bootstrapped confidence interval based on

{τ̂b,RD}Bb=1 to find z∗α such that

P ∗

(
1

B

B∑
b=1

τ̂b,RD − z∗α ≤ τRD ≤ 1

B

B∑
b=1

τ̂b,RD + z∗α

)
= 1− α,

where P ∗ is the probability measure induced by bootstrap sampling conditional on the

estimation data. Then, the bootstrapped 1− α confidence interval for τ̂RD is

CIBRD = [τ̂RD − z∗α, τ̂RD + z∗α].
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4.3 Numerical Examples

We present Monte Carlo simulations and a real data analysis to demonstrate that the

proposed estimator works effectively in moderate sample sizes. Throughout this section, the

previously specified bandwidth selection procedure is implemented, and the kernel functions

for ϕ(·) and K(·) are fixed as normal kernels, i.e., 1
h
√
2π

exp(−(·)2/2h2) in which h is a

bandwidth.

4.3.1 Monte Carlo Experiments

We carry out simulation experiments to illustrate the finite sample performance of the

proposed estimator in this part, including two Monte Carlo experiments with a skewed

error distribution. We use DGP to represent the data generating process, in what follows,

and compare the mode treatment effect estimates to those of the mean treatment effect from

local linear mean regression,10 which is standard in the RD design literature. The optimal

bandwidth for local linear mean regression is determined using the R package rdrobust with

the option bwselect=mserd . The sample sizes we consider are n ∈ {200, 400, 600, 1000}, with

the number of observations on either side of the cutoff being different. A total of M =200

simulation replications are conducted in all experiments, and the data are i.i.d. draws in

each replication. We compute the average value of the treatment effect, the standard error

(SE), and the MSE for all estimators considered to assess the performance of estimators for

each simulation, where

10Due to time consuming and space limitations, we do not compare the CMTE to the quantile treatment
effect. However, we can apply the method proposed in Frandsen et al. (2012) directly to calculate the
quantile treatment effect; see Figure 4.1 for an illustration of the differences between treatment effects.
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MSE(τ̂) =
1

M

M∑
l=1

(τ̂l − τ)2 ,

τ̂l represents the lth estimate, and τ denotes the true value of the treatment effect.

DGP 1 We first generate random samples from the following DGP

Yi = m(Xi) +Diτ +Xiϵi, i = 1, · · · , n,

where m(Xi) = X2
i , Di = 1

(
Xi ≥ X̄

)
, τ is chosen to be 2, and Xi follows the uniform

distribution on [−2, 2]. To accommodate different structures between mean regression and

modal regression, we set ϵi ∼ 0.5N(−1, 2.52)+0.5N(1, 0.52) with E(ϵi) = 0 and Mode(ϵi) =

1 (Yao and Li, 2014; Ullah et al., 2022). The model has a jump at X̄ = 0.5, which is assumed

to be known in advance. We thus have the conditional modal function

Mode(Yi | Xi) = X2
i +Xi + 1 (Xi ≥ 0.5) τ,

and the conditional mean function with heteroskedasticity

E(Yi | Xi) = X2
i + 1 (Xi ≥ 0.5) τ,

where limX↑0.5Mode(Y0 | Xi = X̄) = 0.75, limX↓0.5Mode(Y1 | Xi = X̄) = 2.75, limX↑0.5E

(Y0 | Xi = X̄) = 0.25, and limX↓0.5E(Y1 | Xi = X̄) = 2.25. We can therefore have the

direct causal effect of interest τRD = τmean = 2. We are not comparing the efficiency of

estimators since the modal regression function differs from the mean regression function.11

Table 4.1 presents the simulation results of the studied estimators for DGP 1, which

are in qualitative agreement with the main theoretical results from the current paper, as

well as the existing modal regression and RD design studies. The bold numbers indicate

11We also run the simulation for the homoskedasticity case of DGP 1, where Yi = m(Xi)+Diτ+ϵi. Other
settings are identical. The results do not show much difference with the observations in DGP 1, except that
the modal estimator cannot beat the mean estimator in terms of MSE when homoskedasticity is present.
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the smaller values of the results obtained from the mean and modal regressions, while the

values in brackets represent standard errors. One can see at a glance that both mean

and modal regressions are capable of capturing the true values of treatment effects with a

reasonable bias that decreases with the increase in sample size. In addition, when compared

to modal regression, mean regression can estimate treatment effect with less bias but with

a larger standard error. From another perspective, the estimation results indicate that

modal regression can obtain the CMTE estimator with a smaller standard error when

heteroskedasticity is present. Therefore, it is not surprising that the CMTE estimator has

a lower MSE in all cases for the DGP 1 settings. We also report the coverage rates of the

bootstrapped confidence interval for the CMTE parameter with B = 200, showing that

the coverage rates are close to the nominal converge probabilities. These results indicate

that the proposed bootstrap algorithm works well in practice. According to the asymptotic

property, the optimal rate of convergence for the modal estimator is O(n−1/4), which is

slower than that of the mean estimator. We would then expect the modal estimator to

be less accurate (in terms of MSE) than the mean estimator as sample size grows. This

observation, however, does not occur in this simulation because the underlying models for

the modal and mean regressions are different, as well as the usage of undersmoothing for

modal regression. Table 4.1 also shows that undersmoothing may not completely eliminate

the estimator’s bias—the bias of the CMTE estimator remains manageable (though very

small) when the number of observations becomes large.

Following the practice in the RD designs, we present the visual results for one set

of simulated observations in Figure 4.4 for various choices of sample size. The plots clearly
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indicate that there is a “jump” at point 0.5 in the outcome variable. The developed estima-

tion procedure captures the modal regression lines well, confirming the good performance

of the newly proposed modal regression for treatment effect analysis. Although the magni-

tudes of treatment effects are the same for mean and modal regressions, the underlying data

generating mechanisms are completely different, as demonstrated by varied fitted lines.

Table 4.1: Results of Simulations—DGP 1

Sample Size Mean Treatment Effect (SE) MSE CMTE (SE) MSE 1-α = 0.99 1-α = 0.95 1-α = 0.90

n=200 1.9534 (0.5280) 0.2795 2.0514 (0.4523) 0.2061 0.9743 0.9327 0.8893

n=400 2.0186 (0.3424) 0.1170 2.0446 (0.3089) 0.0969 0.9806 0.9388 0.8901

n=600 2.0179 (0.2822) 0.0796 2.0400 (0.2401) 0.0590 0.9843 0.9416 0.8923

n=1000 2.0146 (0.2228) 0.0496 2.0241 (0.1092) 0.0125 0.9889 0.9443 0.8927

True Value τmean = 2 τRD = 2

Figure 4.4: Visual Results of DGP 1 for One Set of Simulated Observations
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In order to evaluate the asymptotic normality of the CMTE estimator presented

in Section 4.2, we compare the shape of the empirical density of the standardized CMTE

estimator (and mean estimator) to that of the standard normal density. We plot the ap-

proximated distribution of (τ̂ −E(τ̂))/
√
Var(τ̂) instead of (τ̂ − τ)/

√
Var(τ̂) to account for

any bias caused by the slow convergence rate and sensitivity to bandwidth. Due to space

limitations, we only present the results for n = 400 and n = 1000 in Figure 4.5. The results

for the other sample size schemes are comparable. Figure 4.5 shows that the sample dis-

tribution has a similar bell shape to the standard normal distribution and becomes closer

when the sample size n increases, which is in accordance with the asymptotic theory in

Section 4.2.

Figure 4.5: Distributions of Standardized Treatment Effects—DGP 1

DGP 2 To further illustrate the newly proposed mode treatment effect with a skewed

dataset, we consider the following DGP

Yi = m(Xi) + σ(Xi)ϵi, i = 1, · · · , n,

where Xi ∼ i.i.d.U [−2, 2] and ϵi ∼ 0.5N(−1, 2.52) + 0.5N(1, 0.52) with E(ϵi) = 0 and

Mode(ϵi) = 1 (Yao and Li, 2014; Ullah et al., 2022). To show that the CMTE can be

different from the existing mean treatment effect, we set
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m(Xi) =


2 +Xi + 2X2

i if Xi ≥ X̄,

1 +Xi +X2
i if Xi < X̄,

and σ(Xi) =


Xi if Xi ≥ X̄,

1 if Xi < X̄.

Thus, we have the conditional modal function

Mode(Yi | Xi) =


2 + 2Xi + 2X2

i if Xi ≥ X̄,

2 +Xi +X2
i if Xi < X̄,

and the conditional mean function

E(Yi | Xi) =


2 +Xi + 2X2

i if Xi ≥ X̄,

1 +Xi +X2
i if Xi < X̄.

We allow treatment to be assigned at the cutoff 0.5, resulting in a jump in the

model at X̄ = 0.5. We then obtain limX↑0.5Mode(Y0 | Xi = X̄) = 2.75, limX↓0.5Mode(Y1 |

Xi = X̄) = 3.5, limX↑0.5E(Y0 | Xi = X̄) = 1.75, and limX↓0.5E(Y1 | Xi = X̄) = 3. These

values suggest that the mode treatment effect is τRD = 0.75, which is different from the

traditional mean treatment effect with τmean = 1.25.

Table 4.2: Results of Simulations—DGP 2

Sample Size Mean Treatment Effect (SE) MSE CMTE (SE) MSE 1-α = 0.99 1-α = 0.95 1-α = 0.90

n=200 1.2160 (0.7020) 0.4916 0.8910 (0.5770) 0.3512 0.9724 0.9385 0.8735

n=400 1.2243 (0.4922) 0.2418 0.8388 (0.3278) 0.1148 0.9781 0.9390 0.8806

n=600 1.2359 (0.4271) 0.1817 0.8040 (0.2480) 0.0641 0.9822 0.9427 0.8913

n=1000 1.2426 (0.3251) 0.1052 0.8009 (0.2086) 0.0459 0.9858 0.9436 0.8955

True Value τmean = 1.25 τRD = 0.75

The simulation results are summarized in Table 4.2, which corroborates the good

performance revealed by the theoretical investigation in Section 4.2. The bold numbers in
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the table represent the smaller values between the mean and modal estimates. The same

comments for Table 4.1 apply here as well. The mean treatment effect estimator performs

slightly better in terms of bias.12 The CMTE estimator, on the other hand, consistently

has smaller variance and MSE that decrease with the number of observations, which is

expected due to the use of the mode. These observations suggest that in situations where

centers of location are needed but distributions are not symmetrically normal, the mode

treatment effect should be considered as a supplement to the existing mean treatment effect.

Also, the bootstrap inference for the CMTE parameter performs well across all sample sizes

considered.

Figure 4.6: Visual Results of DGP 2 for One Set of Simulated Observations

12We attribute the bias of CMTE to the slow convergence rate and sensitivity to bandwidth. The perfor-
mance of the modal estimator may be improved with a more efficient bandwidth selection procedure.
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For further graphical illustration, we present the visual results for one set of simu-

lated observations in Figure 4.6 across different choices of sample size n, from which we can

see that both mean and modal regressions can identify the treatment effects well. Because

of the different magnitudes of treatment effects and the diverse underlying mechanisms of

data generation, these plots also suggest that the CMTE can serve as a complement to the

existing treatment effects to disclose the whole treatment features.

Figure 4.7: Distributions of Standardized Treatment Effects—DGP 2

Similar to DGP 1, Figure 4.7 depicts the approximated distributions of the stan-

dardized treatment effect estimates, which is consistent with the asymptotic result presented

in Section 4.2. Particularly, with a larger sample size, the estimator approaches a normal

distribution. Taken in conjunction with the estimation findings presented in Table 4.2, the

plots indicate the necessity of undersmoothing with bootstrap in practice at certain places.

4.3.2 Empirical Analysis: JOBS Act

We follow Mitts (2014) to study the effect of section 601(a)(2) of the Jumpstart Our Small

Business (JOBS) Act of 2012, which modified the cutoff for unlisted banks and bank holding

companies (BHCs) to deregister a class of securities from 300 to 1200 shareholders of record
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under the Securities Exchange Act. This imposed cutoff provides researchers with a natural

quasi-experiment to identify the effect of deregistration on the performance of banks and

BHCs, because the location of banks and BHCs around the cutoff is as good as randomly

assigned (Mitts, 2014), which can be analyzed by applying RD designs.

Table 4.3: Results of Treatment Effects of JOBS Act

CMTE 90% CIBRD 95% CIBRD 99% CIBRD Mean Treatment Effect

Total Other Expenses -0.0014 [-0.0357, 0.0085] [-0.0412, 0.0087] [-0.0490, 0.0088] -0.0012

Net Income 0.4073 [0.4022, 0.6275] [0.3892, 0.6287] [0.3804, 0.6298] 0.4231

Total Noninterest Expenses -0.6822 [-0.7371, -0.5468] [-0.7383, -0.5448] [-0.7394, -0.5440] -0.7721

Total Pretax Expenses -0.7057 [-0.6161, -0.5778] [-0.7385, -0.5759] [-0.8058, -0.5731] -0.6843

Different from Mitts (2014) who used the FRD design to analyze the mean treat-

ment effect, we employ nonparametric modal regression to investigate the CMTE of this

JOBS act on the financial performance of banks and BHCs through the SRD design. The

dependent variables we focus on are Total Other Expenses, Net Income, Total Noninterest

Expenses, and Total Pretax Expenses, which are ratios from the Uniform Bank Performance

Report. The running variable is Shareholders of Record, which consists of the number of

shareholders at the time of deregistration, and the cutoff is 1200. We refer to Mitts (2014)

for the detailed explanation of those variables. The dataset used in this paper was down-

loaded from Harvard Dataverse, which includes quarterly data of 187 banks and BHCs from

January 1, 2003 to December 31, 2013.13 Compared to the original dataset, we exclude firms

that have missing points for any of those five variables and end up with 5733 observations

for each variable.

13https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/Q2OHRH.
The detailed sample summary statistics for the full sample are omitted in this paper for space consideration.
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The bandwidth selection for mean regression is carried out in the same way as

in simulation studies. Table 4.3 summarizes the numerical estimation results of treatment

effects and reports the values of confidence intervals calculated by the bootstrap Algorithm

5 with B = 200. It shows that the CMTEs for Net Income and Total Noninterest Expenses

are significant at the 10%, 5%, and 1% significance levels, respectively, while the CMTE

for Total Other Expenses is not significant at any significance level. It is interesting to

observe that the CMTE for Total Pretax Expenses is not included in the 90% confidence

interval. For all four outcome variables we consider, the CMTEs have consistent signs

with the mean treatment effects, indicating that the JOBS Act can reduce expenses and

increase the net income of banks and BHCs in either the mean or mode sense. However,

the magnitudes are different between CMTEs and mean treatment effects. In particular,

the JOBS Act can reduce Total Other Expenses and Total Pretax Expenses more but

Total Noninterest Expenses less and increase Net Income less in terms of mode value.

This difference demonstrates that the proposed modal RD designs can provide valuable

information in practice that is not available from the conventional approach.

The visual results with the conditional mean and modal functions are reported

in Figure 4.8 to graphically illustrate the difference between CMTEs and mean treatment

effects. In accordance with the findings in Table 4.3, the “jump” of the variable Total Other

Expenses at the cutoff is not apparent in the plot, indicating that the treatment effect is

somewhat insignificant. In addition, we can find from those plots that the CMTE is different

from the mean treatment effect when we have a skewed dataset, such as Net Income, Total

Noninterest Expenses, and Total Pretax Expenses, and thus can serve as a complement to
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the existing treatment effects to reveal the “most likely” effect. On the other hand, when

the dependent variable is Total Other Expenses, the modal regressions (estimates) are not

significantly different from the mean regressions (estimates) because the data are nearly

symmetrical in distribution.

Figure 4.8: Visual Results of Empirical Analysis of JOBS Act

4.4 Extensions

This paper has concentrated exclusively on the modal SRD design. To broaden the applica-

tion of CMTE, we in this section extend the proposed model to several related topics that

are of either practical or theoretical importance.
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4.4.1 Including Additional Covariates

Although controlling for additional “pre-intervention” covariates Z ∈ Rk may not be neces-

sary if we are only interested in local treatment effects, in practice, we can have the benefit

of adding Z into regression to control the sample bias (or different observed characteristics)

and reduce the sampling variability (improve efficiency); see Calonico et al. (2019) for the

related discussion on the RD designs using additional covariates for mean regression. In

accordance with the phenomenon of the mean or quantile treatment effect, the presence of

Z will not change the identification and estimation strategies in this paper as long as the

listed assumptions continue to hold conditionally on X and Z or the distribution of Z is

balanced at the cutoff. With a nonseparable function m(·), including Z allows us to improve

the convergence rate of the CMTE estimator to the rate for one-dimensional nonparametric

modal regression regardless of the dimension of Z, because we can have

τRD = EZ

(
lim
X↓X̄

Mode(Y | X,Z)− lim
X↑X̄

Mode(Y | X,Z) | X = X̄

)
(4.18)

by taking the mean difference over all possible values of Z, that is, the CMTE on all treated

individuals without conditioning on Z. Such an unconditional CMTE can also be used to

examine the robustness of the results to the set of control variables. Furthermore, under mild

regularity conditions, we can avoid fully nonparametric estimation over (X,ZT )T ∈ R1+k,

where T represents the transpose of a vector or matrix, and consider an additively separable

linear modal regression if k is large. Therefore, the “curse of dimensionality” does not apply.

We provide a parametric version of CMTE with covariates in the appendix.
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4.4.2 Multiple Running Variables

The proposed model structure can also cope with situations in which people are assigned

to more than two treatments depending on the values of the multiple running variables

(Papay et al., 2011). This is quite common in practice. For example, students may need

to pass multiple subject exams in order to advance to the next grade level, or geography

units are assigned to treatment on the basis of latitude and longitude. When multiple

running variables are present, the discontinuity becomes a boundary, and the CMTE can

be measured at every point along the treatment boundary. Suppose that we have two

running variables S1 and S2. A unit will receive the treatment if S1 ≥ S̄1 and S2 ≥ S̄2,

where S̄1 and S̄2 are two cutoffs. On the other hand, a unit will receive no treatment in the

following three situations S1 < S̄1 & S2 ≥ S̄2, S1 ≥ S̄1 & S2 < S̄2, and S1 < S̄1 & S2 < S̄2.

Define DS1 and DS2 in the same way as that Di. With mode rank invariance, we have

τRD =Mode(Y
DS1

=1,DS2
=1

11 | S̄1, S̄2)−Mode(Y
DS1

=0,DS2
=0

00 | S̄1, S̄2)

−
[
Mode(Y

DS1
=1,DS2

=0

10 | S̄1, S̄2)−Mode(Y
DS1

=0,DS2
=0

00 | S̄1, S̄2)
]

−
[
Mode(Y

DS1
=0,DS2

=1

01 | S̄1, S̄2)−Mode(Y
DS1

=0,DS2
=0

00 | S̄1, S̄2)
]
, (4.19)

where the two partial effects relative to Y
DS1

=0,DS2
=0

00 are subtracted due to each running

variable crossing its own cutoff. For identification, we assume that the density function

fS1,S2(S1, S2) is strictly positive on a neighborhood of (S̄1, S̄2) and impose the following

assumptions

(1) Mode(Y
DS1

=0,DS2
=0

00 | S̄1, S̄2) = Mode(Y
DS1

=1,DS2
=1

00 | S̄1, S̄2);

(2) Mode(Y
DS1

=1,DS2
=0

10 | S̄1, S̄2) = Mode(Y
DS1

=1,DS2
=1

10 | S̄1, S̄2);
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(3) Mode(Y
DS1

=0,DS2
=1

01 | S̄1, S̄2) = Mode(Y
DS1

=1,DS2
=1

01 | S̄1, S̄2).

The above assumptions demonstrate how counterfactuals for the treatment group

with (S̄1, S̄2) can be identified. After that, τRD can be rewritten as

τRD = lim
(S1,S2)→(S1,+,S2,+)

Mode(Yi | S1, S2)− lim
(S1,S2)→(S1,−,S2,−)

Mode(Yi | S1, S2)

−
[

lim
(S1,S2)→(S1,+,S2,−)

Mode(Yi | S1, S2)− lim
(S1,S2)→(S1,−,S2,−)

Mode(Yi | S1, S2)
]

−
[

lim
(S1,S2)→(S1,−,S2,+)

Mode(Yi | S1, S2)− lim
(S1,S2)→(S1,−,S2,−)

Mode(Yi | S1, S2)
]
.

(4.20)

If there are no partial effects, we obtain

τRD = lim
(S1,S2)→(S1,+,S2,+)

Mode(Yi | S1, S2)− lim
(S1,S2)→(S1,−,S2,−)

Mode(Yi | S1, S2). (4.21)

By substituting the identified elements with sample versions, we can estimate the CMTE.

4.4.3 Multiple Cutoffs

In reality, it is common to observe the presence of multiple cutoffs. For instance, a school test

score cutoff may vary across geographic regions. The existence of multiple cutoffs allows

the researcher to learn about the causal effect at various levels of the running variable.

Following Cattaneo et al. (2016), we in this case can pool the data from multiple cutoffs

to produce a single CMTE estimate. Assume that the cutoff has finite support and there

is a random variable Ci denoting the cutoff of each unit with support {c1, c2, · · · , cJ} and

P (Ci = c) = Pc ∈ [0, 1]. Let fX|C(x | c) represent a continuous conditional density of

Xi|Ci = c (for the previous analysis, Ci is a fixed value with P (Ci = X̄) = 1). We

have limε→0+ E [Di | Xi = c+ ε, Ci = c] = 1, limε→0+ E [Di | Xi = c− ε, Ci = c] = 0, and
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Ydi(Ci) =
∑

c∈C 1(Ci = c)Ydi(c) for d = 0, 1 (2J potential outcomes). With mode rank

invariance, by assuming that the outcomes under treatment and control are continuous

functions of the running variable at all possible cutoffs, we have the following weighted

average of local mode treatment effects

τRD = lim
ε→0+

Mode[Yi | X̃i = ε]− lim
ε→0+

Mode[Yi | X̃i = −ε]

=
∑
c∈C

{Mode [Y1i(c) | Xi = c, Ci = c]−Mode [Y0i(c) | Xi = c, Ci = c]}ω(c), (4.22)

where X̃i = Xi −Ci and ω(c) = fX|C(c | c)P [Ci = c]/
∑

c∈C fX|C(c | c)P [Ci = c] determines

the effects that are included in the pooled estimate and how much each effect contributes

to the pooled estimate. Particularly, for any given ε > 0, we have

Mode[Yi | X̃i = ε] = E
{
Mode [Yi | Xi − Ci = ε, Ci] | X̃i = ε

}
=
∑
c∈C

Mode [Yi | Xi − Ci = ε, Ci = c]P
[
Ci = c | X̃i = ε

]
=
∑
c∈C

Mode [Y1i(c) | Xi = c+ ε, Ci = c]P
[
Ci = c | X̃i = ε

]
, (4.23)

and

Mode
[
Yi | X̃i = −ε

]
=
∑
c∈C

Mode [Y0i(c) | Xi = c− ε, Ci = c]P
[
Ci = c | X̃i = −ε

]
.

(4.24)

Meanwhile, we know that

P
[
Ci = c | X̃i = x

]
=

fX̃|C(x | c)P [Ci = c]

fX̃(x)
=

fX|C(c+ x | c)P [Ci = c]∑
c∈C fX|C(c+ x | c)P [Ci = c]

. (4.25)

Under the assumptions of continuity and finite support, we can get the result by interchang-

ing limits and sums. The pooled CMTE is then a weighted average of the mode treatment

effects at each cutoff when there exist multiple cutoffs,
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4.4.4 Modal FRD Design

The discussion of CMTE in this paper is based on the SRD design. However, it is common

for practical applications of RD designs to be fuzzy rather than sharp. We can then relax

the sharp assignment mechanism from the previous sections and study the FRD case. In

the FRD design, the treatment assignment rule remains the same as that in the SRD

design, but Di is not necessarily equal to 1 when Xi ≥ X̄ or 0 when Xi < X̄ (Figure 4.9),

since Xi is not informative enough to determine the treatment. Instead, it can affect the

probability of treatment in a discontinuous way when it exceeds a certain cutoff X̄, i.e.,

limX→X+ P (D = 1 | X) > limX→X− P (D = 1 | X). This indicates that treatment is not

solely determined by the strict cutoff rule in the FRD design. Some individuals who are

above the cutoff may not receive treatment, while some individuals who are below the cutoff

may receive treatment. Hahn et al. (2001) showed that the mean treatment effect in the FRD

design can be obtained by taking the ratio of the difference in outcomes and the difference in

treatment probabilities at the cutoff X̄. Frandsen et al. (2012) introduced a nonparametric

estimator for local quantile treatment effect in the RD designs, including the fuzzy case.

However, because the mode lacks the additive property, it is not straightforward to extend

the results from the mean or quantile FRD design to the modal FRD design. Providing

that the modal regression line coincides with a quantile regression line, we can propose a

simple approach considering from density function to recover the estimate of CMTE in the

FRD design.

Especially, instead of investigating the CMTE on the basis of nonparametric modal

regression at the boundary point, we define the CMTE in the FRD design as
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τRD = Mode
(
Y1 | i is complier, X̄

)
−Mode

(
Y0 | i is complier, X̄

)
= argmax

Y1

{fY1|D,X(Y1)} − argmax
Y0

{fY0|D,X(Y0)}. (4.26)

Because the CMTE in the FRD design is acquired from the quantile treatment effect, all

conditions imposed for the quantile FRD design should be satisfied here as well; see Frandsen

et al. (2012). As a result, the mode rank invariance condition is met automatically.

Figure 4.9: Modal Fuzzy Regression Discontinuity

The conditional distributions of the potential outcomes in (4.26) are identified by

using two separate Wald representations for 1 (Yi ≤ y) interacted with the treatment state

FY1|D,X=X̄(y) =
limXi↓X̄ E

[
1 (Yi ≤ y)Di | Xi = X̄

]
− limXi↑X̄ E

[
1 (Yi ≤ y)Di | Xi = X̄

]
limXi↓X̄ E

[
Di | Xi = X̄

]
− limXi↑X̄ E

[
Di | Xi = X̄

] ,

(4.27)

FY0|D,X=X̄(y)

=
limXi↓X̄ E

[
1 (Yi ≤ y) (1−Di) | Xi = X̄

]
− limXi↑X̄ E

[
1 (Yi ≤ y) (1−Di) | Xi = X̄

]
limXi↓X̄ E

[
(1−Di) | Xi = X̄

]
− limXi↑X̄ E

[
(1−Di) | Xi = X̄

] ,

(4.28)

and the sample analogues can be estimated by local linear weighted two-stage least squares.

After obtaining estimates F̂Y1|D,X=X̄(y) and F̂Y0|D,X=X̄(y), we can calculate the mode values

using
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Mode
(
Y1 | X̄

)
= argmax

Y1

F̂Y1|D,X=X̄(Y1 + λ1)− F̂Y1|D,X=X̄(Y1 − λ1)

2λ1
, (4.29)

Mode
(
Y0 | X̄

)
= argmax

Y0

F̂Y0|D,X=X̄(Y0 + λ0)− F̂Y0|D,X=X̄(Y0 − λ0)

2λ0
, (4.30)

where λ1 and λ0 are two chosen tuning parameters. In light of those estimates, the value

of CMTE in the FRD design can be achieved straightforwardly. Such a quantile-based

CMTE estimator includes the estimator in the SRD design as a special case. The detailed

asymptotic properties and inferences will be investigated in the future.

4.5 Concluding Remarks

The increasing popularity of RD methods for causal inference has led to a large number

of different models and estimating strategies, under which treatment effects are expressed

as comparisons between features of the distributions of both potential outcomes, such as

their means or quantiles. In this paper, we develop an alternative model for estimation and

statistical inference in the RD designs. Particularly, we propose a valuable measure, CMTE,

to complement the existing mean and quantile treatment effects under the assumption of

mode rank invariance, as in certain situations policy makers may be interested especially

in the effects at the highest point and their primary concern is likely with a larger group

of people. We show that when the data are asymmetrically distributed, econometricians

should pay careful attention to interpreting modal RD estimates. We nonparametrically

estimate CMTE in the SRD design with local linear modal regression and provide asymp-

totic normality for the proposed estimator at the cutoff under some mild assumptions. We

numerically estimate the developed model by virtue of a modified MEM algorithm. With

189



the optimal bandwidths, the resultant CMTE estimator is consistent with a n−1/4 rate,

which is the same as the optimal convergence rate for nonparametric modal regression with

local linear approximation for the interior points but slower than that for nonparametric

mean regression. The bootstrap algorithm relying on undersmoothing is presented for con-

structing the confidence interval. We in the end show a simple method based on quantile

regression to derive the CMTE in the FRD design. Several other extensions are investigated

as well to enlarge the applicability of the suggested CMTE.

The novel mode treatment effect suggested in this paper has a wide range of

applications in economics, statistics, social science, and other related fields, because it

can capture the “most likely” effect and be robust to outliers. While the present paper

focuses on the modal RD designs in the classical sharp and fuzzy settings, there are many

other directions related to CMTE that deserve further research. For example, we focus on

the continuous case of a running variable with local linear approximation in this paper,

as the bandwidth cannot be shrunk beyond a certain point. However, it is of interest

to extend to the discrete distribution with a modest number of points of support, which

often arises from various scenarios, including many social and economic studies. In such a

case, it is no longer possible to find treated and control units with values of the running

variable that are arbitrarily close. We can then solve such an issue by the combination

of nonparametric estimation with product kernel functions for smoothing discrete data,

which is to effectively utilize data information from some nearby neighborhoods that might

share similar characteristics with the target. The other issue that deserves to be researched

further is bandwidth choice. Choosing a bandwidth has long been a challenging issue in
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the nonparametric and RD design literature. In this paper, we require the undersmoothed

bandwidths to avoid nuisance bias terms in the limiting distributions of local linear modal

estimators. It would be interesting to research other bandwidth selection criteria for the

CMTE estimator with a rigorous justification, such as using a kernel-based cross-validation

method to fit the curve over the support of the data. Finally, we assume in this paper

that the discontinuity point is known, which may not always be the case in practice. It is

well understood that the identification of RD designs is a time-consuming manual process

that involves human judgment and construction and is therefore subject to human bias.

Investigating CMTE by allowing for an unknown discontinuity point will be an interesting

research direction, where we can adopt a structural-break detection method for the detection

of an unknown cutoff. All of these will be saved for future research.
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Chapter 5

Conclusions

Skewed or heavy-tailed data (e.g., wages, prices, scores on a difficult exam, movie ticket

sales, and expenditures) appear in a broad variety of practical applications, including eco-

nomic, statistical, social, and educational research studies, among others. In such instances,

the mean estimate may not adequately disclose the data’s characteristics, and the mode es-

timate (one of the center measures) should be considered as a supplemental measure to

capture the “most likely” element of the data. Nevertheless, for a long time, mode has not

received much attention from researchers. With more available datasets and powerful com-

putation tools, it is important for (applied) econometricians to be aware of the application

of modal regression, which focuses on modeling how the conditional mode of the response

variable depends on the covariates. This dissertation proposes three new models based on

mode value that can broaden the scope of existing modal regressions.

Chapter 2, to the best of our knowledge, is the first work that analyzes the endo-

geneity issue in modal regression and systematically studies its statistical properties with
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the conditional mode independence restriction. In particular, we introduce a computation-

ally efficient two-step estimation procedure based on control function to estimate parametric

modal regression with endogeneity, followed by a three-stage estimation method for semi-

parametric partially linear modal regression with the estimated modal residual from the

reduced form equation in the second step.

Chapter 3 novelly introduces a nonparametric modal regression estimator of volatil-

ity functions in a general framework that includes the nonlinear time series model as a

special case. It shows that the modal regression estimator of conditional volatility could be

obtained asymptotically as well as if the mean regression were given. Moreover, Chapter 3

proposes a variance reduction technique in terms of modal volatility estimator to achieve

asymptotic relative efficiency and keep the asymptotic bias unchanged. To avoid negativity,

a local exponential modal modal volatility is also introduced

Chapter 4 proposes an innovative and valuable measure, CMTE, to complement

the existing mean and quantile treatment effects under the assumption of mode rank in-

variance. It nonparametrically estimates CMTE in the SRD design with local linear modal

regression and provides asymptotic normality for the proposed estimator at the cutoff under

some mild assumptions. The bootstrap algorithm relying on undersmoothing is presented

for constructing the confidence interval. Chapter 4 also shows a simple method based on

quantile regression to derive the CMTE in the FRD design.
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Appendix A

Appendix for Chapter 2

A.1 Modal Asset Pricing Model

The consumption-based mean asset pricing model, widely regarded as one of the most signif-

icant models in the asset pricing literature, states that the conditional expected return on a

risky asset should be proportional to its conditional consumption beta. However, it has long

been recognized that several fundamental principles of expected utility as a risk preference

measure are often broken in reality. We in this part develop a modal asset pricing model to

further illustrate the applicability of the proposed modal regression with endogeneity and

to enlarge the asset pricing literature. The model framework follows Giovannetti (2013),

which utilized quantile maximization decision theory to the standard intertemporal problem

of a consumer-investor agent, leading to quantile-based Euler equations that the agent must

satisfy in equilibrium. We solve the standard intertemporal problem of a consumer-investor

agent and consider a two-period economy with two assets, one risky and one risk-free. As-

sume that the value of the risky asset at t + 1 is Xt+1 = Pt+1 + Dt+1, where Pt+1 is the
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price of the asset at t + 1 and Dt+1 is the value of some cash flow the investor received

between t and t + 1. Define the value of the risk-free asset at t + 1 as Xf
t+1 and the price

at t as P f
t . The quantities for these two assets at time t are θ and θf . Assume the agent’s

consumption at t is Ct and the initial wealth is Wt. Then, under the modal maximization

decision and time-separability, the agent maximizes

max
θ,θf

Modet(U(Ct) + βU(Ct+1)), (S.1)

where β is the time discount factor, U(·) is a strictly increasing utility function, andModet(·)

represents the mode of the conditional distribution of a random variable conditional on the

information set available at t. The budget constraint is

Ct = Wt − Ptθ − P f
t θ

f ,

Ct+1 = Xt+1θ +Xf
t+1θ

f .

(S.2)

As shown in the Modal Euler Equation example, for a strict increasing function

U(·), we have Mode(U(X)) = U(Mode(X)). Because the model is set for two periods, the

objective function can be expressed as

Modet(U(Ct) + βU(Ct+1)) = U(Ct) + βU(Modet(Ct+1)). (S.3)

Replacing Ct and Ct+1 with the corresponding budget constraint and taking the first order

conditions with respect to θ and θf , we obtain

Pt = β
U (1) (Modet (Ct+1))

U (1) (Ct)
Modet (Xt+1) , (S.4)

P f
t = β

U (1) (Modet (Ct+1))

U (1) (Ct)
Xf

t+1. (S.5)
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It is worth noting that the above two equations adhere to the Law of One Price

and the no-arbitrage condition, that is, price is linear. In accordance with Giovannetti

(2013), define Θt = (θt, θ
f
t ) as a portfolio formed at t with a price PΘ

t . Then, we have

PΘ
t = β

U (1) (Modet (Ct+1))

U (1) (Ct)
Modet(Xt+1θt +Xf

t+1θ
f
t )

= β
U (1) (Modet (Ct+1))

U (1) (Ct)
Modet(Xt+1θt) + β

U (1) (Modet (Ct+1))

U (1) (Ct)
Xf

t+1θ
f
t

= Ptθt + P f
t θ

f
t .

(S.6)

If there is an arbitrage opportunity occurring, it implies that Ptθt+P f
t θ

f
t = 0 and Xt+1θt+

Xf
t+1θ

f
t ≥ 0. Rearranging the aforementioned equations yields Xf

t+1θ
f
t = −θtModet(Xt+1).

As a consequence, a necessary and sufficient condition for arbitrage is θt(Xt+1−Modet(Xt+1))

≥ 0. Therefore, in order to rule out arbitrage, we need to impose the conditions that

Modet(Xt+1) ∈ (min {supp (Xt+1)} ,max {supp (Xt+1)}) . (S.7)

If we let U(C) = C1−γ/(1− γ), the modal Euler equations are given by

Pt = β

(
Modet

(
Ct+1

Ct

))−γ

Modet (Xt+1) ,

P f
t = β

(
Modet

(
Ct+1

Ct

))−γ

Xf
t+1.

(S.8)

In equilibrium, we can obtain Mode(Xt+1 | Ωt) = Xf
t+1. Rearranging equation, we achieve

Mode

(
Ct+1

Ct
| Ωt

)
= (βXf

t+1)
1/γ . (S.9)

Such a modal Euler equation must be satisfied in equilibrium, suggesting a set of popula-

tion orthogonality conditions. Using the mode’s invariance property and the fact that the

logarithm function is monotonically increasing, we get

Modet(ln(X
f
t+1)) = −ln(β) + γMode

(
ln

(
Ct+1

Ct

)
| Ωt

)
, (S.10)
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where 1/γ is the EIS parameter defining the degree of substitutability-complementarity

between consumption today and the certainty equivalent of consumption tomorrow. For

the numerical estimation, we can follow the same procedure as in the Modal Euler Equation

example to apply the proposed estimation method in this paper.

Remark S.1. (Constant Economic Uncertainty) Define rt+1 = ln(Xt+1/Pt), followed

by rt+1 = µr + ut+1, where ut+1 ∼ i.i.d.N(0, σ2
r ). Assume that the consumption growth

rate gt+1 = ln(Ct+1/Ct) is followed by gt+1 = µc + ηt+1, where ηt+1 ∼ i.i.d.N(0, σ2
c ). Then,

we have1

rt+1 = −ln(β) + γµc − γσ2
c + σ2

r + ut+1,

rft+1 = −ln(β) + γµc − γσ2
c ,

Et(rt+1 − rft+1) = σ2
r ,

where rft+1 refers to the risk-free asset return and Et(·) represents the expectation condi-

tional on the information set available at t. It can be seen that the risk-free rate is linear in

expected consumption growth, with the slope equal to the inverse of the EIS. The higher the

desire for consumption smoothing, the higher the risk-free rate. Furthermore, the higher

the rate at which the agent discounts future utility, the higher the risk-free rate required

by the agent in order to save across time. Different from the results of the mean model,

the higher variability of consumption growth may have a less negative effect on the level

of the risk-free rate under the modal model (the third component for rft+1 is −γ2σ2
c/2 with

expected utility). It has been observed that the risk premium does not depend on the co-

variance between consumption and stock returns for the modal model, but on the standard

deviation of the stock return. Also, the risk premium is always positive.

1If ln(x) ∼ N(µ, σ2), then Mode(x) = exp(µ − σ2). According to the model settings, we know
Modet(Ct+1/Ct) = exp(µc − σ2

c ) and Modet(Xt+1/Pt) = exp(µr − σ2
r). Under expected utility,

Et(rt+1 − rft+1) = −σ2
r/2 + γσcr, where Cov(ηt+1, ut+1) = σcr.

204



A.2 Return to Schooling

There has been a large number of empirical research in labor economics focusing on the

causal links between education and labor market success (return to schooling); see the rele-

vant literature summarized in Card (2001) and Psacharopoulos and Patrinos (2018). How-

ever, all research associated with the return to schooling is conducted based on the mean

or quantile regression, regardless of whether endogeneity is considered. In this part, we

further investigate the finite sample performance of the proposed procedure by researching

the estimation of return to schooling presented in Card (1995) to enhance our understand-

ing of the education-return relationship, which can be regarded as a contribution to the

literature on education. The data are from the National Longitudinal Survey of Young Men

(NLSYM), which began in 1966 with 5525 men aged 14-24 and continued with follow-up

surveys through 1981. It contains many variables that we can use directly, such as the

education background of parents, dummies for family structure, and dummies for living

near a college. The motivation for a control function approach stems from the endogeneity

of schooling, which could be due to ability bias. Furthermore, it is quite plausible that

growing up near a four-year college is independent of ability factors. For the purposes of

illustration, we in this part focus on the results of Table 3 Column 5A in Card (1995) and

adopt the same dummy variable for whether someone grew up near a four-year college as

an instrumental variable for education.

The total number of data used in this paper is 3010. The dependent variable Y

is log wages and the endogenous variable X is years of schooling (ed76). The instrumental

variable Z2 is living near a four-year college. The number of exogenous variables Z1 is
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14, which includes a linear experience term (exp76), a quadratic function of experience

(exp762), a race indicator (black), dummies for residence in the south (reg76r) and in a

metropolitan area in 1976 (smsa76r), and indicators for region of residence in 1966 (reg661-

reg668) and for residence in a metropolitan area in 1966 (smsa66r). Although we lack a

formal test to verify the conditional mode independence restriction, we argue that it is quite

plausible that living near a four-year college (Z2) is independent of any ability factors (Ui)

that may affect the return to schooling; see Card (2001). The descriptive statistics for the

sample as well as the arguments for the validity of the instrument can be found in Card

(1995). We thus leave them out for brevity.

Table A.1: Estimates of Return to Schooling

Variables Two-Step Modal Naive Linear Modal Mean-2SLS Quantile (0.3) Quantile (0.5) Quantile (0.7)

ed76 0.1331*** (0.0010) 0.0772*** (0.0005) 0.1315** (0.0548) 0.1652*** (0.0561) 0.1351*** (0.0790) 0.0945** (0.0391)

black -0.1471*** (0.0009) -0.2132*** (0.0012) -0.1468*** (0.0538) -0.1346** (0.0595) -0.1431** (0.0660) -0.1568*** (0.0387)

smsa76r 0.1133*** (0.0006) 0.1786*** (0.0014) 0.1118*** (0.0316) 0.0789* (0.0442) 0.1180*** (0.0428) 0.1211*** (0.0360)

reg76r -0.1440*** (0.0004) -0.1758*** (0.0017) -0.1447*** (0.0272) -0.1573*** (0.0418) -0.1330*** (0.0308) -0.1197*** (0.0292)

reg661 -0.1065*** (0.0007) -0.0177*** (0.0040) -0.1078*** (0.0417) -0.0601 (0.0889) -0.0638 (0.0542) -0.1094*** (0.0359)

reg662 -0.0059*** (0.0006) -0.0817*** (0.0027) -0.0070 (0.0328) -0.0046 (0.0491) -0.0164 (0.0491) -0.0071 (0.0381)

reg663 0.0418*** (0.0006) 0.0427*** (0.0026) 0.0404 (0.0317) 0.0516 (0.0457) 0.0281 (0.0431) 0.0285 (0.0387)

reg664 -0.0574*** (0.0007) -0.0835*** (0.0046) -0.0579 (0.0375) -0.0932 (0.0566) -0.0810* (0.0445) -0.0485 (0.0545)

reg665 0.0396*** (0.0008) 0.0335*** (0.0030) 0.0385 (0.0468) 0.0581 (0.0769) 0.0165 (0.0677) -0.0008 (0.0545)

reg666 0.0560*** (0.0010) 0.0187*** (0.0045) 0.0551 (0.0525) 0.1040 (0.0782) 0.0348 (0.0669) 0.0019 (0.0524)

reg667 0.0285*** (0.0009) 0.0074** (0.0031) 0.0268 (0.0487) 0.0565 (0.0822) 0.0293 (0.0866) -0.0048 (0.0560)

reg668 -0.1894*** (0.0009)) -0.0877*** (0.0040) -0.1909*** (0.0506) -0.2225*** (0.0635) -0.1791*** (0.0618) -0.1548*** (0.0491)

smsa66r 0.0189*** (0.0004) 0.0830*** (0.0013) 0.0185 (0.0216) 0.0211 (0.0253) 0.0207 (0.0238) 0.0395 (0.0264)

exp76 0.1089*** (0.0005) 0.0868*** (0.0008) 0.1083*** (0.0236) 0.1200*** (0.0240) 0.1083*** (0.0385) 0.0879*** (0.0189)

exp762 -0.0023*** (0.0006) -0.0029*** (0.00003) -0.0023*** (0.0003) -0.0022*** (0.0004) -0.0024*** (0.0005) -0.0021*** (0.0004)

We then use the proposed method in this paper to estimate the return to schooling,

which is defined as the derivative of the primary wage equation with respect to education.

The bandwidths are chosen based on the selection procedure introduced in Section 2.4
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with 1.6MADn
−λhj rather than the grid search method. For comparison purposes, we also

report the results of the naive linear modal regression (without endogeneity adjustment),

the mean regression with 2SLS estimation, and the smoothed instrumental variable quantile

regression (Kaplan, 2020). To obtain the standard errors of modal estimates, we follow Ullah

et al. (2021) to apply the bootstrap method with 200 replications. The estimation results

are summarized in Table A.1, with the values in brackets representing standard errors. We

use *** to denote the 1% significance level, ** to indicate the 5% significance level, and *

to represent the 10% significance level.

Figure A.1: Histogram and Kernel Density for Dependent Variable

It can be observed that all three methods considered produce estimates with the

same signs for the three major variables (ed76, exp76, and exp762). All estimates, whether

based on the mean, mode, or quantile, show that education level is positively associated with

wage level. The quantile instrumental variable estimates of the return to schooling exhibit

considerable heterogeneity, ranging from 0.0945 to 0.1652. The magnitude of the estimate of

the return to schooling obtained from the naive linear modal regression is quietly different

from that obtained from the proposed modal regression. Particularly, the naive modal

estimate underestimates the return to schooling as a result of the presence of endogeneity,
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which indicates that the naive estimate is inconsistent. This fact is further confirmed by the

result of the mean or median (0.5 quantile) regression with instrumental variables, which

is significantly different from the naive modal estimate. Compared to the traditional mean

or median regression with instrumental variables, the estimate of the return to schooling

from modal regression with control function is slightly higher, although the difference is not

substantial.2 Particularly, it is 0.0016 higher than the mean estimate and 0.0020 lower than

the median estimate, suggesting that the effect of education is considerably stronger for the

majority of individuals. This provides important implications for policy makers from the

perspective of the “most likely” effect. Finally, most of the bootstrapped standard errors of

the modal estimates are smaller than those of the mean estimates, which implies that the

proposed modal regression method is more efficient.

A.3 Additional Numerical Results

Figure A.2: Histograms and QQ Plots for Estimates (β with ρ = 0.2)—DGP 2

2We attribute this to the almost symmetrically distributed response variable (Figure A.1).
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Figure A.3: Histograms and QQ Plots for Estimates (γ with ρ = 0.2)—DGP 2

Figure A.4: Histograms and QQ Plots for Estimates (β with ρ = 0.5)—DGP 2

Figure A.5: Histograms and QQ Plots for Estimates (γ with ρ = 0.5)—DGP 2
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Table A.2: Regression with Endogeneity of Log GDP Per Capita (Additional Controls)

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Two-Step Modal

Avexpr 1.0389 0.9645 1.0643 1.0693 1.0101 0.9675 0.8945 0.8382 0.9073
(0.0133) (0.0163) (0.0308) (0.0366) (0.0113) (0.0151) (0.0100) (0.0125) (0.0139)

Lat 0.7698 -0.0078 0.5046 0.5986 0.4081
(0.0758) (0.2130) (0.0852) (0.0760) (0.0722)

British dummy -0.3473 -0.3715
(0.0211) (0.0231)

French dummy -0.0841 -0.1509 0.2652
(0.0249) (0.0279) (0.0257)

French legal dummy 0.4336 0.4249 -0.0102
(0.0192) (0.0201) (0.0273)

Naive Linear Modal

Avexpr 0.5276 0.4647 0.6044 0.5475 0.5624 0.5078 0.5332 0.4724 0.4717
(0.0084) (0.0082) (0.0264) (0.0296) (0.0085) (0.0090) (0.0071) (0.0070) (0.0071)

Lat 1.8410 1.1456 1.5098 1.5973 1.5937
(0.0977) (0.3056) (0.0827) (0.0729) (0.0765)

British dummy -0.3084 -0.3702
(0.0257) (0.0269)

French dummy -0.3802 -0.4611 0.0186
(0.0315) (0.0314) (0.0266)

French legal dummy 0.3649 0.3454 -0.0223
(0.0249) (0.0250) (0.0295)

Mean-2SLS

Avexpr 1.0779 1.1552 1.0662 1.2118 1.0800 1.1811 0.9174 1.0062 1.2122
(0.2176) (0.3372) (0.2443) (0.5164) (0.1911) (0.2910) (0.1467) (0.2517) (0.3949)

Lat -0.7512 -2.9863 -1.1258 -0.9378 -1.7936
(1.3351) (3.2136) (1.5597) (1.5034) (2.1328)

British dummy -0.7777 -0.7955
(0.3543) (0.3930)

French dummy -0.1170 -0.0578 0.3960
(0.3548) (0.4188) (0.4953)

French legal dummy 0.8865 0.9624 0.2942
(0.3242) (0.3935) (0.5187)

Note: Model 1 and Model 2 are for base samples. Model 3 and Model 4 are for base samples wit British

colonies only. Model 5 and Model 6 are for base samples with control for French legal origin. Model 7, Model

8, and Model 9 are for base samples with additional religion variables which are fractions of the populations

that are Catholic, Muslim, and of other religions.
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A.4 Monte Carlo Experiment

To illustrate the proposed modal regression for robustly estimating coefficients, we generate

data according to the following model

Yi = Xiβ + Z1,iγ + Ui,

Ui = Vi + cos(Vi) + Ũi, i = 1, · · · , n,

Xi = α+ Z1,iπ1 + Z2,iπ2 + Vi,

where Z1,i and Z2,i are drawn from the following multivariate normal distribution Z1,i

Z2,i

 ∼ i.i.d.N


 0

0

 ,

 1 0

0 1


 .

The following three different error distributions are considered: (1) Ũi ∼ mixture

Laplace 0.8Lp(0, 1)+0.2Lp(0, 5) and Vi ∼ t with three degrees of freedom; (2) Ũi ∼ mixture

normal 0.9N(0, 1)+0.1N(0, 9) and Vi ∼ mixture Laplace 0.8Lp(0, 1)+0.2Lp(0, 5); (3) Ũi ∼

t with three degrees of freedom and Vi ∼ mixture normal 0.9N(0, 1) + 0.1N(0, 9). Without

sacrificing generality, we follow DGP 1 to only consider the case of one instrumental variable

Z2,i and denote the set of all instruments as Zi = [Z1,i Z2,i]
T . The parameter values are

set as (β, γ, α, π1, π2) = (1.5, 2, 2, 2, 2). We then have E(Vi | Zi) = Mode(Vi | Zi) = 0,

E(Ũi | Zi) = Mode(Ũi | Zi) = 0, as well as the control function E(Ui | Vi, Zi) = Mode(Ui |

Vi, Zi) = Vi + cos(Vi).

The sample sizes n are set to be 200, 400, 600, and 1000. A total of 200 simulation

replications are conducted for each model setting. To assess the robustness of the proposed

modal-based estimation, we compare its performance to that of mean estimation (control

function). For simplicity, we use the rule of thumb (1.06 σ̂(V̂i)n
−1/5) for bandwidth choice
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in mean estimation. The estimates, standard errors, and MSEs are reported in Table

A.3, which shows that the performance of modal-based estimation is better than mean

estimation for non-normal distributions, with significant gains in efficiency and robustness.

In addition, given error distributions, both estimation methods become better as the sample

size n increases.

To demonstrate the asymptotic behavior of the proposed modal-based estimators,

we present the histograms and QQ plots for the estimates of β and γ (Figures A.6-A.11).

The plots all support our theoretical results of the asymptotic distribution of the proposed

estimators. With the sample size increasing, the points in QQ align more closely to a

straight line, indicating higher accuracy in the asymptotic standard approximation for these

two estimators.

Table A.3: Results of Simulations

Modal-Based Estimation Mean Estimation

Sample Size β (SE) MSE(β) γ (SE) MSE(γ) β (SE) MSE(β) γ (SE) MSE(γ)

Vi ∼ t(3)

n=200 1.4901 (0.1192) 0.0142 2.0404 (0.3239) 0.1060 1.4756 (0.1783) 0.0322 2.0499 (0.4800) 0.2317

n=400 1.4931 (0.0805) 0.0065 2.0256 (0.2303) 0.0534 1.4959 (0.1244) 0.0154 2.0229 (0.3439) 0.1182

n=600 1.5036 (0.0684) 0.0047 1.9918 (0.1827) 0.0333 1.5004 (0.0970) 0.0094 1.9742 (0.2673) 0.0718

n=1000 1.4948 (0.0516) 0.0027 1.9977 (0.1434) 0.0205 1.4914 (0.0827) 0.0069 2.0082 (0.2383) 0.0565

Vi ∼ 0.8Lp(0, 1) + 0.2Lp(0, 5)

n=200 1.5042 (0.0849) 0.0072 1.9930 (0.2428) 0.0587 1.5007 (0.1158) 0.0133 2.0027 (0.3069) 0.0937

n=400 1.5016 (0.0589) 0.0035 1.9900 (0.1671) 0.0279 1.5022 (0.0746) 0.0055 1.9677 (0.2195) 0.0490

n=600 1.5019 (0.0497) 0.0025 2.0035 (0.1302) 0.0169 1.5123 (0.0659) 0.0045 1.9683 (0.1877) 0.0361

n=1000 1.4981 (0.0349) 0.0012 1.9966 (0.0950) 0.0090 1.4958 (0.0470) 0.0022 1.9986 (0.1287) 0.0165

Vi ∼ 0.9N(0, 1) + 0.1N(0, 9)

n=200 1.4989 (0.1324) 0.0174 2.0303 (0.3465) 0.1204 1.4971 (0.1712) 0.0292 2.0309 (0.4331) 0.1876

n=400 1.4954 (0.0909) 0.0082 2.0164 (0.2488) 0.0619 1.5011 (0.1063) 0.0112 2.0213 (0.2851) 0.0813

n=600 1.4982 (0.0755) 0.0057 2.0014 (0.2073) 0.0428 1.4987 (0.0833) 0.0069 1.9989 (0.2194) 0.0479

n=1000 1.4969 (0.0400) 0.0016 2.0085 (0.1136) 0.0129 1.4975 (0.0518) 0.0027 2.0202 (0.1479) 0.0222
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Figure A.6: Histograms and QQ Plots for Estimates (β with Vi ∼ t(3))

Figure A.7: Histograms and QQ Plots for Estimates (γ with Vi ∼ t(3))

Figure A.8: Histograms and QQ Plots for Estimates (β with Vi ∼ 0.8Lp(0, 1)+ 0.2Lp(0, 5))
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Figure A.9: Histograms and QQ Plots for Estimates (γ with Vi ∼ 0.8Lp(0, 1)+ 0.2Lp(0, 5))

Figure A.10: Histograms and QQ Plots for Estimates (β with Vi ∼ 0.8Lp(0, 1)+0.2Lp(0, 5))

Figure A.11: Histograms and QQ Plots for Estimates (γ with Vi ∼ 0.8Lp(0, 1)+0.2Lp(0, 5))
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A.5 Technical Proofs

Proof of Theorem 2.4.3

Recall that

1

nh1h2

n∑
i=1

ϕ

(
Yi −Xiβ − ZT

1,iγ −m(Vi)− (m(V̂i)−m(Vi))

h1

)
K

(
Vi − v + V̂i − Vi

h2

)
,

(A.1)

where m(V̂i) − m(Vi) = m(1)(V̄i)(V̂i − Vi) and V̄i is between V̂i and Vi. From Theo-

rem 2.4.1, we know |V̂i − Vi| = Op((nh
3)−1/2 + h2) = Op(n

−2/7) with the MSE-optimal

bandwidth. Define θ = (β, γT ,m(v), h2m
(1)(v))T , X∗

i = [Xi, Z
T
1,i, 1, h

−1
2 (Vi − v)]T , and

R(Vi) =
∑

j=2(m
(j)(v)/j!)(Vi − v)j , we have

Qn(θ) =
1

nh1h2

n∑
i=1

ϕ

(
Yi −X∗T

i θ +R(Vi)−m(1)(V̄i)(V̂i − Vi)

h1

)
K

(
Vi − v + V̂i − Vi

h2

)
.

(A.2)

Define δn = h21 + h22 +
√

(nh31h2)
−1, then it is sufficient to show that for any given

η, there exists a large number constant c such that

P

{
sup

∥µ∥=c
Qn (θ0 + δnµ) < Qn (θ0)

}
≥ 1− η, (A.3)

where θ0 is the true parameter and ∥.∥ represents the Euclidean distance. (A.3) implies that

with probability tending to 1, there is a local maximum in the ball {θ0 + δnµ : ∥µ∥ ≤ c}.

Using Taylor expansion, it follows that

Qn (θ0 + δnµ)−Qn (θ0)

=
1

nh1h2

n∑
i=1

[
ϕ

(
R(Vi)−m(1)(V̄i)(V̂i − Vi) + ϵi − δnµ

TX∗
i

h1

)
K

(
Vi − v + V̂i − Vi

h2

)

− ϕ

(
R(Vi)−m(1)(V̄i)(V̂i − Vi) + ϵi

h1

)
K

(
Vi − v + V̂i − Vi

h2

)]
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=
1

nh1h2

n∑
i=1

[
− ϕ(1)

(
R(Vi)−m(1)(V̄i)(V̂i − Vi) + ϵi

h1

)(
δnµ

TX∗
i

h1

)
K

(
Vi − v + V̂i − Vi

h2

)

+
1

2
ϕ(2)

(
R(Vi)−m(1)(V̄i)(V̂i − Vi) + ϵi

h1

)(
δnµ

TX∗
i

h1

)2

K

(
Vi − v + V̂i − Vi

h2

)

− 1

6
ϕ(3)

(
ϵ∗i
h1

)(
δnµ

TX∗
i

h1

)3

K

(
Vi − v + V̂i − Vi

h2

)]

=I1 + I2 + I3, (A.4)

where ϵ∗i is between R(Vi)−m(1)(V̄i)(V̂i−Vi)+ϵi and R(Vi)−m(1)(V̄i)(V̂i−Vi)+ϵi−δnµ
TX∗

i .

Based on the result Tn = E (Tn)+Op(
√
Var (Tn)), we consider each part of the above Taylor

expansion.

(i) For the first part, which is I1 =
−1

nh1h2

∑n
i=1 ϕ

(1)
(
R(Vi)−m(1)(V̄i)(V̂i−Vi)+ϵi

h1

)
(
δnµTX∗

i
h1

)
K
(
Vi−v+V̂i−Vi

h2

)
, by Taylor expansion, we can rewrite it as

E(I1) =
−δn
h1h2

E

(
ϕ(1)

(
R(Vi)−m(1)(V̄i)(V̂i − Vi) + ϵi

h1

)
µTX∗

i

h1
K

(
Vi − v + V̂i − Vi

h2

))

=
−δn
h1h2

E

(
ϕ(1)

(
ϵi
h1

)
µTX∗

i

h1
K

(
Vi − v + V̂i − Vi

h2

)

+ ϕ(2)

(
ϵi
h1

)
(R(Vi)−m(1)(V̄i)(V̂i − Vi))µ

TX∗
i

h21
K

(
Vi − v + V̂i − Vi

h2

)

+
1

2
ϕ(3)

(
ϵ∗∗i
h1

)
(R(Vi)−m(1)(V̄i)(V̂i − Vi))

2µTX∗
i

h31
K

(
Vi − v + V̂i − Vi

h2

))

=I11 + I12 + I13, (A.5)

where ϵ∗∗i is between ϵi and ϵi +R(Xi)−m(1)(V̄i)(V̂i − Vi). Notice that as the order of ϵ∗∗i

is the same as that of ϵi, when we do the calculations associated with I13, we instead use ϵi

directly. By some direct calculations for each part, we can get

I11 =
−δn
h1h2

E

(
ϕ(1)

(
ϵi
h1

)
µTX∗

i

h1
K

(
Vi − v + V̂i − Vi

h2

))
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=
−δn
h1h2

∫∫∫
ϕ(1)

(
ϵ

h1

)
µTX∗

h1
gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
fV (V )dV dϵdF (X∗)

=
δn
h1

∫∫∫
ϕ(τ)τµTX∗gϵ(τh1 | X∗)K(w + w′)fV (wh2 + v)dwdτdF (X∗)

=Op(δnch
2
1), (A.6)

where w′ = V̂−V
h2

= Op(h
2/h2) = op(1) according to the definition of δn, and K(w + w′) =

K(w) +K(1)(w̄)w′ = K(w) + op(1) where w̄ is between w and w + w′.

I12 =
−δn
h1h2

E

(
ϕ(2)

(
ϵi
h1

)
µTX∗

i

h1
K

(
Vi − v + V̂i − Vi

h2

)
R(Vi)−m(1)(V̄i)(V̂i − Vi)

h1

)

=
−δn
h1h2

∫∫∫
ϕ(2)

(
ϵ

h1

)
µTX∗

h1
gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
R(V )−m(1)(V̄ )(V̂ − V )

h1

fV (V )dV dϵdF (X∗)

=
−δn
h1

∫∫∫
ϕ (τ) (τ2 − 1)µTX∗gϵ(τh1 | X∗)K

(
w + w′) R(V )−m(1)(V̄ )(V̂ − V )

h1

fV (wh2 + v)dwdτdF (X∗) = Op(δnch
2
2) (A.7)

with the condition that h/h2 = op(1).

I13 ≈
−δn
h1h2

E

(
1

2
ϕ(3)

(
ϵi
h1

)
(R(Vi)−m(1)(V̄i)(V̂i − Vi))

2µTX∗
i

h31
K

(
Vi − v + V̂i − Vi

h2

))

≤−δnh
4
2

2

∫∫∫
ϕ(τ)(3τ − τ3)

(m(2)(v))2µTX∗

4h31
gϵ(τh1 | X∗)K(w)w4fV (wh2 + v)

dwdτdF (X∗){1 + op(1)} = op(δnh
2
2). (A.8)

Meanwhile, with the condition h22/h1 → 0 held, we obtain

δ2n
h21h

2
2

E

(
ϕ(1)

(
ϵi
h1

)
µTX∗

i

h1
K

(
Vi − v + V̂i − Vi

h2

))2

= Op(δ
2
nc

2(h31h2)
−1). (A.9)

δ2n
h21h

2
2

E

(
ϕ(2)

(
ϵi
h1

)
µTX∗

i

h1
K

(
Vi − v + V̂i − Vi

h2

)
R(Vi)−m(1)(V̄i)(V̂i − Vi)

h1

)2
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≤δ2nh
3
2

h51

∫∫∫
ϕ2 (τ) (τ2 − 1)2(µTX∗)2gϵ(τh1 | X∗)w4K2 (w)

(m(2)(v))2

4
fV (wh2 + v)

dwdτdF (X∗){1 + op(1)} = op(δ
2
n(h

3
1h2)

−1). (A.10)

The above equations show that I1 = Op(δnc(h
2
1 + h22)) +Op(

√
δ2nc

2(nh31h2)
−1) = Op(δ

2
nc).

(ii) For the second part, which is I2 =
1

nh1h2

∑n
i=1

(
1
2ϕ

(2)
(
R(Vi)−m(1)(V̄i)(V̂i−Vi)+ϵi

h1

)
(
δnµTX∗

i
h1

)2
K
(
Vi−v+V̂i−Vi

h2

))
, we can rewrite it as

E(I2) =
δ2n

2h2h1
E

(
ϕ(2)

(
ϵi +R(Vi)−m(1)(V̄i)(V̂i − Vi)

h1

)
(µTX∗

i )
2

h21
K

(
Vi − v + V̂i − Vi

h2

))

=
δ2n

2h2h1
E

(
ϕ(2)

(
ϵi
h1

)
(µTX∗

i )
2

h21
K

(
Vi − v + V̂i − Vi

h2

)

+ ϕ(3)

(
ϵi
h1

)
(R(Vi)−m(1)(V̄i)(V̂i − Vi))(µ

TX∗
i )

2

h31
K

(
Vi − v + V̂i − Vi

h2

)

+
1

2
ϕ(4)

(
ϵ∗∗i
h1

)
(R(Vi)−m(1)(V̄i)(V̂i − Vi))

2(µTX∗
t )

2

h41
K

(
Vi − v + V̂i − Vi

h2

))

=I21 + I22 + I23, (A.11)

where ϵ∗∗i is between ϵi and ϵi + R(Vi)−m(1)(V̄i)(V̂i − Vi). Similarly, as the order of ϵ∗∗i is

the same as that of ϵi, when we do the calculations associated with I23, we instead use ϵi

directly. By some calculations for each part, we can get

I21 =
δ2n

2h2h1
E

(
ϕ(2)

(
ϵi
h1

)
(µTX∗

i )
2

h21
K

(
Vi − v + V̂i − Vi

h2

))

=
δ2n

2h2h1

∫∫∫
ϕ(2)

(
ϵ

h1

)
(µTX∗)2

h21
gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

=
δ2n
2h21

∫∫∫
ϕ(τ)(τ2 − 1)(µTX∗)2gϵ(τh1 | X∗)K(w + w′)fV (wh2 + v)dwdτdF (X∗)

=Op((δnc)
2). (A.12)

I22 =
δ2n

2h2h1
E

(
ϕ(3)

(
ϵi
h1

)
(R(Vi)−m(1)(V̄i)(V̂i − Vi))(µ

TX∗
i )

2

h31
K

(
Vi − v + V̂i − Vi

h2

))
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=
δ2n

2h2h1

∫∫∫
ϕ(3)

(
ϵ

h1

)
(R(V )−m(1)(V̄ )(V̂ − V ))(µTX∗)2

h31
gϵ(ϵ | X∗)

K

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

≤δ2nh
2
2

2h31

∫∫∫
ϕ(τ)(3τ − τ3)

m(2)(v)

2
(µTX∗)2gϵ(τh1 | X∗)w2K(w)fV (wh2 + v)

dwdτdF (X∗){1 + op(1)} = op((δnc)
2). (A.13)

Meanwhile, we can prove that I23 = op((δnc)
2) as well. Following the same steps in (i), we

obtain the following result

δ4n
4h22h

2
1

E

(
ϕ(2)

(
ϵi
h1

)
(µTX∗

i )
2

h21
K

(
Vi − v + V̂i − Vi

h2

))2

=
δ4n

4h22h
2
1

∫∫∫
ϕ(2)2

(
ϵ

h1

)
(µTX∗)4

h41
gϵ(ϵ | X∗)K2

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

=
δ4n

4h2h21

∫∫∫
ϕ2(τ)(τ2 − 1)2

(µTX∗)4

h41
gϵ(τh1 | X∗)K2(w + w′)fV (wh2 + v)dwdτdF (X∗)

=Op((δnc)
4(h2h

5
1)

−1). (A.14)

With the condition nh51h2 → ∞ held, the above equations indicate that the second part

will dominate the first part when we choose c big enough.

(iii) Following the same way, we can calculate the third part. As the order of ϵ∗i

is the same as the order of ϵi, by direct calculations, we have

δ3n
6h2h1

E

(
ϕ(3)

(
ϵi
h1

)
(µTX∗

i )
3

h31
K

(
Vi − v + V̂i − Vi

h2

))

=
δ3n

6h2h1

∫∫∫
ϕ(3)

(
ϵ

h1

)
(µTX∗)

3

h31
gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

=
δ3n
6

∫∫∫
ϕ(τ)(3τ − τ3)

(µTX∗)
3

h31
gϵ(τh1 | X∗)K(w + w′)fV (wh2 + v)dwdτdF (X∗)

=Op(δ
3
n). (A.15)
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δ6n
36h22h

2
1

E

(
ϕ(3)

(
ϵi
h1

)
(µTX∗

i )
3

h31
K

(
Vi − v + V̂i − Vi

h2

))2

=
δ6n

36h22h
2
1

∫∫∫
ϕ(3)2

(
ϵ

h1

)
(µTX∗)

6

h61
gϵ(ϵ | X∗)K2

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

=
δ6n

36h2h1

∫∫∫
ϕ2(τ)(3τ − τ3)2

(µTX∗)
6

h61
gϵ(τh1 | X∗)K2(w + w′)fV (wh2 + v)dwdτdF (X∗)

=Op(δ
6
n(h2h

7
1)

−1). (A.16)

These indicate that the second part dominates the third part.

Based on these, we can choose c bigger enough such that I2 dominates both I1 and

I3 with probability 1−η. Because the second term is negative, thus P{sup∥µ∥=cQn (θ0 + δnµ)

< Qn (θ0)} ≥ 1− η holds.

Proof of Theorem 2.4.4

Based on (A.2), the estimator θ̃ must satisfy the following equation

− 1

nh21h2

n∑
i=1

ϕ(1)

(
ϵi +R(Vi)−X∗T

i (θ̃ − θ0)−m(1)(V̄i)(V̂i − Vi)

h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i

= 0. (A.17)

By taking Taylor expansion, we could obtain

− 1

nh21h2

n∑
i=1

ϕ(1)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i+

1

nh31h2

n∑
i=1

ϕ(2)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i (R(Vi)−X∗T
i (θ̃ − θ0)−m(1)(V̄i)(V̂i − Vi))−

1

nh41h2

n∑
i=1

ϕ(3)

(
ϵ̃∗i
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i

(
R(Vi)−X∗T

i (θ̃ − θ0)−m(1)(V̄i)(V̂i − Vi)
)2

= 0, (A.18)
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where ϵ̃∗i is between ϵi and ϵi+R(Vi)−X∗T
i (θ̃−θ0). According to Theorem 2.4.3, we know

∥θ̃ − θ0∥ = Op(δn), which indicates that

sup
i:|Vi−v|/h2≤1

|R(Vi)−X∗T
i (θ̃ − θ0)−m(1)(V̄i)(V̂i − Vi)|

≤ sup
i:|Vi−v|/h2≤1

{|R(Vi)|+ |X∗T
i (θ̃ − θ0)|

+ |m(1)(V̄i)(V̂i − Vi)|} = Op(∥θ̃ − θ0)∥) = Op(δn), (A.19)

with the condition h/h2 → 0. Combining (A.19) with the Proof of Theorem 2.4.3, we can see

that the third part which is associated withX∗
i

(
R(Vi)−X∗T

i (θ̃ − θ0)−m(1)(V̄i)(V̂i − Vi)
)2

is dominated by the second part which is associated with X∗
i (R(Vi)−X∗T

i (θ̃−θ0)−m(1)(V̄i)

(V̂i − Vi)). We then mainly focus on the first two parts of the left side of (A.18).

Considering − 1
nh2

1h2

∑n
i=1 ϕ

(1)
(

ϵi
h1

)
K
(
Vi−v+V̂i−Vi

h2

)
X∗

i +
1

nh3
1h2

∑n
i=1 ϕ

(2)
(

ϵi
h1

)
K(

Vi−v+V̂i−Vi
h2

)
X∗

i (R(Vi)−m(1)(V̄i)(V̂i − Vi)), by some direct calculations, we can obtain

E

(
− 1

nh21h2

n∑
i=1

ϕ(1)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i

+
1

nh31h2

n∑
i=1

ϕ(2)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i (R(Vi)−m(1)(V̄i)(V̂i − Vi))

)

=− 1

h21h2

∫∫∫
ϕ(1)

(
ϵ

h1

)
X∗gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

+
1

h31h2

∫∫∫
ϕ(2)

(
ϵ

h1

)
X∗gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
(R(V )−m(1)(V̄ )(V̂ − V ))

fV (V )dϵdV dF (X∗)

=
1

h1

∫∫∫
ϕ (τ) τX∗gϵ(τh1 | X∗)K

(
w + w′) fV (wh2 + v)dwdτdF (X∗)− 1

h21

∫∫∫
ϕ (τ)

(τ2 − 1)X∗gϵ(τh1 | X∗)K
(
w + w′) (R(V )−m(1)(V̄ )(V̂ − V ))fV (wh2 + v)dwdτdF (X∗)
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=

{
h21
2
fV (v)E


µ0ZXg

(3)
ϵ (0 | X∗)

µ0g
(3)
ϵ (0 | X∗)

µ1g
(3)
ϵ (0 | X∗)

−


h22m

(2)(v)

2
fV (v)E


µ2ZXg

(2)
ϵ (0 | X∗)

µ2g
(2)
ϵ (0 | X∗)

µ3g
(2)
ϵ (0 | X∗)




}

{1 + op(1)}, (A.20)

where ZX = [X ZT
1 ]

T , w′ = h−1
2 (V̂ − V ), h/h2 → 0,

∫
τ4ϕ(τ)dτ = 3,

∫
τ2ϕ(τ)dτ = 1, and∫

wjK(w)dw = µj .

Considering 1
nh3

1h2

∑n
i=1 ϕ

(2)
(

ϵi
h1

)
K
(
V−v+V̂−V

h2

)
X∗

iX
∗T
i , by direct calculations,

we have

E

(
1

nh31h2

n∑
i=1

ϕ(2)

(
ϵi
h1

)
K

(
V − v + V̂ − V

h2

)
X∗

iX
∗T
i

)

=E

(
1

h31h2
ϕ(2)

(
ϵi
h1

)
K

(
V − v + V̂ − V

h2

)
X∗

iX
∗T
i

)

=
1

h31h2

∫∫∫
ϕ(2)

(
ϵ

h1

)
X∗X∗T gϵ(ϵ | X∗)K

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

=
1

h21

∫∫∫
ϕ (τ) (τ2 − 1)X∗X∗T gϵ(τh1 | X∗)K (w) fV (wh2 + v)dwdτdF (X∗)(1 + op(1))

=fV (v)E


µ0ZXZT

Xg
(2)
ϵ (0 | X∗) µ0ZXg

(2)
ϵ (0 | X∗) µ1ZXg

(2)
ϵ (0 | X∗)

µ0Z
T
Xg

(2)
ϵ (0 | X∗) µ0g

(2)
ϵ (0 | X∗) µ1g

(2)
ϵ (0 | X∗)

µ1Z
T
Xg

(2)
ϵ (0 | X∗) µ1g

(2)
ϵ (0 | X∗) µ2g

(2)
ϵ (0 | X∗)

 . (A.21)

Based on the above two equations (A.20) and (A.21), we can achieve

θ̃ − θ0 = E


µ0ZXZT

Xg
(2)
ϵ (0 | X∗) µ0ZXg

(2)
ϵ (0 | X∗) µ1ZXg

(2)
ϵ (0 | X∗)

µ0Z
T
Xg

(2)
ϵ (0 | X∗) µ0g

(2)
ϵ (0 | X∗) µ1g

(2)
ϵ (0 | X∗)

µ1Z
T
Xg

(2)
ϵ (0 | X∗) µ1g

(2)
ϵ (0 | X∗) µ2g

(2)
ϵ (0 | X∗)



−1
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{
h21
2
fV (v)E


µ0ZXg

(3)
ϵ (0 | X∗)

µ0g
(3)
ϵ (0 | X∗)

µ1g
(3)
ϵ (0 | X∗)

−


h22m

(2)(v)

2
fV (v)E


µ2ZXg

(2)
ϵ (0 | X∗)

µ2g
(2)
ϵ (0 | X∗)

µ3g
(2)
ϵ (0 | X∗)




}
{1 + op(1)}.

(A.22)

Note that we can ignore the effect of the first step estimator on the asymptotic

variance of the first stage estimator due to the faster convergence of the first step estimator.

It is calculated that

V ar
( 1

nh31h2

n∑
i=1

ϕ(2)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i (R(Vi)−m(1)(V̄i)(V̂i − Vi))
)

= Op

(
1

nh51h2

)
Op(V ar(V̂i − Vi)) = Op

(
1

n2h3h51h2

)
= op

(
1

nh31h2

)
. (A.23)

Meanwhile, with the condition h22/h1 → 0 held, we could obtain

Var

(
− 1

nh21h2

n∑
i=1

ϕ(1)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i

+
1

nh31h2

n∑
i=1

ϕ(2)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i (R(Vi)−m(1)(V̄i)(V̂i − Vi))

)

=E

(
− 1

nh21h2

n∑
i=1

ϕ(1)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i

)
(
− 1

nh21h2

n∑
i=1

ϕ(1)

(
ϵi
h1

)
K

(
Vi − v + V̂i − Vi

h2

)
X∗

i

)T

(1 + op(1))

=
1

nh41h
2
2

∫∫∫
ϕ(1)2

(
ϵ

h1

)
X∗X∗T gϵ(ϵ | X∗)K2

(
V − v + V̂ − V

h2

)
fV (V )dϵdV dF (X∗)

(1 + op(1))

=

∫
τ2ϕ2(τ)dτ

nh31h2
fV (v)E


v0ZXZT

Xgϵ(0 | X∗) v0ZXgϵ(0 | X∗) v1ZXgϵ(0 | X∗)

v0Z
T
Xgϵ(0 | X∗) v0gϵ(0 | X∗) v1gϵ(0 | X∗)

v1Z
T
Xgϵ(0 | X∗) v1gϵ(0 | X∗) v2gϵ(0 | X∗)

 (1 + op(1)),

(A.24)
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where vj =
∫
wjK2(w)dw. Define Wn = 1

nh2
1h2

∑n
i=1 ϕ

(1)
(

ϵi
h1

)
K
(
Vi−v+V̂i−Vi

h2

)
X∗

i . To

show Theorem 2.4.4, it is sufficient to show that

Tn =
√
nh2h31Wn

d→ N (0, T ), (A.25)

where T =
∫
τ2ϕ2(τ)dτfV (v)E


v0ZXZT

Xgϵ(0 | X∗) v0ZXgϵ(0 | X∗) v1ZXgϵ(0 | X∗)

v0Z
T
Xgϵ(0 | X∗) v0gϵ(0 | X∗) v1gϵ(0 | X∗)

v1Z
T
Xgϵ(0 | X∗) v1gϵ(0 | X∗) v2gϵ(0 | X∗)

.

By Slutsky’s theorem and the above two equations, we can obtain Theorem 2.4.4.

To show the above equation, we prove that for any unit vector d ∈ R2,

{
dT Cov (Tn)d

}−1/2 {
dTTn − dTE (Tn)

} d→ N(0, 1). (A.26)

Then, we check Lyapunov’s condition. Let

ξi =
√

h2h31/nK

(
Vi − v

h2

)
1

h1h2
ϕ(1)

(
ϵi
h1

)
dTX∗

i , (A.27)

we need to prove nE|ξ1|3 → 0. As
(
dTX∗

i

)2 ≤ ∥d∥2 ∥X∗
i ∥

2 , ϕ(1)(·) is bounded, and K(·)

has compact support, we have

nE|ξ|3 ≤ O
(
nn−3/2h

−3/2
2 h

3/2
1

)
E
∣∣∣K3

(
Vi − v

h2

)
ϕ(1)3

(
ϵi
h1

)
dTX∗

i

∣∣∣→ 0. (A.28)

Thus, the asymptotic normality for Tn holds.

Proof of Theorem 2.4.5

The critical steps of the proof in this part is similar to these of Theorem 2.4.3, we thus outline

the main steps here. Notice that the meanings of notations in this part are independent of

other parts. Recall that
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1

nh3

n∑
i=1

ϕ

(
Yi − m̃(V̂i)−Xiβ − ZT

1,iγ

h3

)
,

=
1

nh3

n∑
i=1

ϕ

(
Yi −m(Vi)−Xiβ − ZT

1,iγ +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)
, (A.29)

where m(Vi) − m̃(Vi) = Op

((
nh2h

3
1

)−1/2
+ h21 + h22

)
= Op(n

−2/8) and m̃(V̂i) − m̃(Vi) =

m̃(1)(V̄i)(V̂i − Vi) in which V̄i is between V̂i and Vi. Based on Theorem 2.4.1, we know

|V̂i − Vi| = Op((nh
3)−1/2 + h2) = Op(n

−2/7). Define θ = (β, γT )T and X∗
i = [Xi, Z

T
1,i]

T , we

have

Qn(θ) =
1

nh3

n∑
i=1

ϕ

(
Yi −m(Vi)−X∗T

i θ +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)
. (A.30)

Define δn = h23+
√
(nh33)

−1, then it is sufficient to show that for any given η, there

exists a large number constant c such that

P

{
sup

∥µ∥=c
Qn (θ0 + δnµ) < Qn (θ0)

}
≥ 1− η,

where θ0is the true parameter. Using Taylor expansion, it follows that

Qn (θ0 + δnµ)−Qn (θ0)

=
1

nh3

n∑
i=1

[
ϕ

(
ϵi − δnµ

TX∗
i +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)

− ϕ

(
ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)]

=
1

nh3

n∑
i=1

[
− ϕ(1)

(
ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)(
δnµ

TX∗
i

h3

)

+
1

2
ϕ(2)

(
ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)(
δnµ

TX∗
i

h3

)2

− 1

6
ϕ(3)

(
ϵ∗i
h3

)(
δnµ

TX∗
i

h3

)3
]

=I1 + I2 + I3, (A.31)
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where ϵ∗i is between ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i) and ϵi +m(Vi)− m̃(Vi) + m̃(Vi)−

m̃(V̂i)− δnµ
TX∗

i . Based on the result Tn = E (Tn)+Op(
√

Var (Tn)), we consider each part

of above Taylor expansion.

(i) For the first part, which is I1 = 1
nh3

∑n
i=1−ϕ(1)

(
ϵi+m(Vi)−m̃(Vi)+m̃(Vi)−m̃(V̂i)

h3

)
(
δnµTX∗

i
h3

)
, by Taylor expansion, we can rewrite it as

E(I1) =
−δn
h3

E

(
ϕ(1)

(
ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)(
µTX∗

i

h3

))

=
−δn
h3

E

(
ϕ(1)

(
ϵi
h3

)
µTX∗

i

h3
+ ϕ(2)

(
ϵi
h3

)
(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))µ

TX∗
i

h23

+
1

2
ϕ(3)

(
ϵ∗∗i
h3

)
(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))

2µTX∗
i

h33

)

=I11 + I12 + I13, (A.32)

where ϵ∗∗i is between ϵi and ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i). Notice that as the order

of ϵ∗∗i is the same as that of ϵi, when we do the calculations associated with I13, we instead

use ϵi directly. By some direct calculations for each part, we can get

I11 =
−δn
h3

E

(
ϕ(1)

(
ϵi
h3

)
µTX∗

i

h3

)
= Op(δnch

2
3). (A.33)

I12 =
−δn
h3

E

(
ϕ(2)

(
ϵi
h3

)
µTX∗

i

h3

(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))

h3

)

=
−δn
h3

∫∫
ϕ(2)

(
ϵ

h3

)
µTX∗

h3
gϵ(ϵ | X∗)

(m(V )− m̃(V ) + m̃(V )− m̃(V̂ ))

h3
dϵdF (X∗)

=
−δn
h3

∫∫
ϕ (τ) (τ2 − 1)µTX∗gϵ(τh3 | X∗)

m(V )− m̃(V ) + m̃(V )− m̃(V̂ )

h3
dτdF (X∗)

=Op(δnc(h
2
1 + h22)), (A.34)

as h converges faster than h1 and h2. With the condition that h1/h3 → 0 and h2/h3 → 0,

it can be seen that I11 dominates I12 and I13. Meanwhile, we obtain
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δ2n
h23

E

(
ϕ(1)

(
ϵi
h3

)
µTX∗

i

h3

)2

= Op(δ
2
nc

2(h33)
−1). (A.35)

The above equations show that I1 = Op(δnch
2
3) +Op(

√
δ2nc

2(nh33)
−1) = Op(δ

2
nc).

(ii) For the second part, which is I2 =
1

nh3

∑n
i=1

(
1
2ϕ

(2)
(
ϵi+m(Vi)−m̃(Vi)+m̃(Vi)−m̃(V̂i)

h3

)
(
δnµTX∗

i
h3

)2 )
, we can rewrite it as

E(I2) =
δ2n
2h3

E

(
ϕ(2)

(
ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)
(µTX∗

i )
2

h23

)

=
δ2n
2h3

E

(
ϕ(2)

(
ϵi
h3

)
(µTX∗

i )
2

h23
+ ϕ(3)

(
ϵi
h3

)
(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))(µ

TX∗
i )

2

h33

+
1

2
ϕ(4)

(
ϵ∗∗i
h3

)
(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))

2(µTX∗
i )

2

h43

)

=I21 + I22 + I23, (A.36)

where ϵ∗∗i is between ϵi and ϵi +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i). Notice that as the order

of ϵ∗∗i is the same as that of ϵi, when we do the calculations associated with I23, we instead

use ϵi directly. By some calculations for each part, we can get

I21 =
δ2n
2h3

E

(
ϕ(2)

(
ϵi
h3

)
(µTX∗

i )
2

h23

)
= Op((δnc)

2). (A.37)

I22 =
δ2n
2h3

E

(
ϕ(3)

(
ϵi
h3

)
(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))(µ

TX∗
i )

2

h33

)
= op((δnc)

2).

(A.38)

Meanwhile, we can prove that I23 = op((δnc)
2) as well. Following the same steps in (i), we

obtain the following result

δ4n
4h23

E

(
ϕ(2)

(
ϵi
h3

)
(µTX∗

i )
2

h23

)2

= Op((δnc)
4(h53)

−1). (A.39)
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With the condition nh53 → ∞ held, the above equations indicate that the second part will

dominate the first part when we choose c big enough.

(iii) Following the same way, we can calculate the third part. As the order of ϵ∗i

is the same as the order of ϵi, by direct calculations, we have

δ3n
6h3

E

(
ϕ(3)

(
ϵi
h3

)
(µTX∗

i )
3

h33

)
= Op(δ

3
n). (A.40)

δ6n
36h23

E

(
ϕ(3)

(
ϵi
h3

)
(µTX∗

i )
3

h33

)2

= Op(δ
6
n(h

7
3)

−1). (A.41)

These indicate that the second part dominates the third part.

Based on these, we can choose c bigger enough such that I2 dominates both I1 and

I3 with probability 1−η. Because the second term is negative, thus P{sup∥µ∥=cQn (θ0 + δnµ)

< Qn (θ0)} ≥ 1− η holds.

Proof of Theorem 2.4.6

Following the same steps as proving Theorem 2.4.2, the estimator θ̃ must satisfy

− 1

nh23

n∑
i=1

ϕ(1)

(
ϵi −X∗T

i (θ̃ − θ0) +m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)

h3

)
X∗

i = 0. (A.42)

By taking Taylor expansion, we could obtain

− 1

nh23

n∑
i=1

ϕ(1)

(
ϵi
h3

)
X∗

i +
1

nh33

n∑
i=1

ϕ(2)

(
ϵi
h3

)
X∗

i (m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)−X∗T
i

(θ̃ − θ0))−
1

nh43

n∑
i=1

ϕ(3)

(
ϵ̃∗i
h3

)
X∗

i

(
m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)−X∗T

i (θ̃ − θ0)
)2

= 0,

(A.43)

where ϵ̃∗i is between ϵi and ϵi + m(Vi) − m̃(Vi) + m̃(Vi) − m̃(V̂i) − X∗T
i (θ̃ − θ0). Assume

h converges faster than h1 and h2, h1/h3 → 0, and h2/h3 → 0, from Theorem 2.4.5,
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we know ∥θ̃ − θ0∥ = Op(δn), which indicates that |m(Vi) − m̃(Vi) + m̃(Vi) − m̃(V̂i) −

X∗T
i (θ̃ − θ0)| = Op(∥θ̃ − θ0)∥) = Op(δn). Thus, the third part which is associated

withX∗
i

(
m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)−X∗T

i (θ̃ − θ0)
)2

is dominated by the second part

which is associated with X∗
i

(
m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i)−X∗T

i (θ̃ − θ0)
)
. We then

mainly focus on the first two parts of the left side of (A.43).

Considering − 1
nh2

3

∑n
i=1 ϕ

(1)
(

ϵi
h3

)
X∗

i + 1
nh3

3

∑n
i=1 ϕ

(2)
(

ϵi
h3

)
X∗

i (m(Vi) − m̃(Vi) +

m̃(Vi)− m̃(V̂i)), by some direct calculations, we can obtain

E

(
− 1

nh23

n∑
i=1

ϕ(1)

(
ϵi
h3

)
X∗

i +
1

nh33

n∑
i=1

ϕ(2)

(
ϵi
h3

)
X∗

i (m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))

)

=− 1

h23

∫∫
ϕ(1)

(
ϵ

h3

)
X∗gϵ(ϵ | X∗)dϵdF (X∗)

+
1

h33

∫∫
ϕ(2)

(
ϵ

h3

)
X∗gϵ(ϵ | X∗)(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))dϵdF (X∗)

=
1

h3

∫∫
ϕ (τ) τX∗gϵ(τh3 | X∗)dτdF (X∗)

− 1

h23

∫∫
ϕ (τ) (τ2 − 1)X∗gϵ(τh3 | X∗)(m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))dτdF (X∗)

=
h23
2
E(X∗g(3)ϵ (0 | X∗)){1 + op(1)}. (A.44)

Considering 1
nh3

3

∑n
i=1 ϕ

(2)
(

ϵi
h3

)
X∗

iX
∗T
i , by direct calculations, we have

E

(
1

nh33

n∑
i=1

ϕ(2)

(
ϵi
h3

)
X∗

iX
∗T
i

)
= E(X∗X∗T g(3)ϵ (0 | X∗)). (A.45)

Based on the above two equations (A.44) and (A.45), we can achieve

θ̃ − θ0 =
h23
2
(E(X∗X∗T g(3)ϵ (0 | X∗)))−1E(X∗g(3)ϵ (0 | X∗)){1 + op(1)}. (A.46)

We can calculate

V ar
( 1

nh33

n∑
i=1

ϕ(2)

(
ϵi
h3

)
X∗

i (m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))
)
= Op

(
1

n2h53h2h
3
1

)
.
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With the condition that h1/h3 → 0 and h2/h3 → 0, it can be seen that the variance of

− 1
nh2

3

∑n
i=1 ϕ

(1)
(

ϵi
h3

)
X∗

i dominates the variance of 1
nh3

3

∑n
i=1 ϕ

(2)
(

ϵi
h3

)
X∗

i (m(Vi)−m̃(Vi)+

m̃(Vi)− m̃(V̂i)).

Meanwhile, with the condition h1/h3 → 0 and h2/h3 → 0 held, we could obtain

Var

(
− 1

nh23

n∑
i=1

ϕ(1)

(
ϵi
h3

)
X∗

i +
1

nh33

n∑
i=1

ϕ(2)

(
ϵi
h3

)
X∗

i (m(Vi)− m̃(Vi) + m̃(Vi)− m̃(V̂i))

)

=
1

nh43

∫∫
ϕ(1)2

(
ϵ

h3

)
X∗X∗T gϵ(ϵ | X∗)dϵdF (X∗)(1 + op(1))

=

∫
τ2ϕ2(τ)dτ

nh33
E(X∗X∗T gϵ(0 | X∗))(1 + op(1)). (A.47)

For the remaining part, we could follow the same idea in the Proof of Theorem

2.4.4 to easily obtain the results.

Proof of Theorem 2.4.7

The proof is similar to those of Theorem 2.4.3, we thus mainly outline the main steps here.

Notice that the meanings of notations in this part are independent of other parts. Recall

that

1

nh4h5

n∑
i=1

ϕ

(
Yi −Xiβ̂ − ZT

1,iγ̂ −m(Vi)− (m(V̂i)−m(Vi))

h4

)
K

(
Vi − v + V̂i − Vi

h5

)
,

(A.48)

where m(V̂i)−m(Vi) = m(1)(V̄i)(V̂i−Vi) and V̄i is between V̂i and Vi. From Theorem 2.4.1,

we know |V̂i − Vi| = Op((nh
3)−1/2 + h2) = Op(n

−2/7) with the MSE-optimal bandwidth.

Define θ = (m(v), h2m
(1)(v))T and X∗ = [1 h−1

2 (V − v)]T , we have

Qn(θ) =
1

nh4h5

n∑
i=1

ϕ

(
Yi −Xiβ̂ − ZT

1,iγ̂ −X∗T
i θ −m(1)(V̄i)(V̂i − Vi)

h4

)
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K

(
Vi − v + V̂i − Vi

h5

)
. (A.49)

Define δn = h24+h25+
√

(nh34h5)
−1, then it is sufficient to show that for any given η,

there exists a large number constant c such that P
{
sup∥µ∥=cQn (θ0 + δnµ) < Qn (θ0)

}
≥

1− η, where θ0 is the true parameter. Using Taylor expansion, it follows that

Qn (θ0 + δnµ)−Qn (θ0)

=
1

nh4h5

n∑
i=1

[
ϕ

(
R̃(Vi) + ϵi − δnµ

TX∗
i

h4

)
K

(
Vi − v + V̂i − Vi

h5

)

− ϕ

(
R̃(Vi) + ϵi

h4

)
K

(
Vi − v + V̂i − Vi

h5

)]

=
1

nh4h5

n∑
i=1

[
− ϕ(1)

(
R̃(Vi) + ϵi

h4

)(
δnµ

TX∗
i

h4

)
K

(
Vi − v + V̂i − Vi

h5

)

+
1

2
ϕ(2)

(
R̃(Vi) + ϵi

h4

)(
δnµ

TX∗
i

h4

)2

K

(
Vi − v + V̂i − Vi

h5

)

− 1

6
ϕ(3)

(
ϵ∗i
h4

)(
δnµ

TX∗
i

h4

)3

K

(
Vi − v + V̂i − Vi

h5

)]

=I1 + I2 + I3, (A.50)

where ϵ∗i is between R̃(Vi)+ϵi and R̃(Vi)+ϵi−δnµ
TX∗

i , and R̃(Vi) =
∑

j=2(m
(j)(v)/j!)(Vi−

v)j − m(1)(V̄i)(V̂i − Vi) − Xi(β̂ − β0) − ZT
1,i(γ̂ − γ0). Based on the result Tn = E (Tn) +

Op(
√

Var (Tn)), we consider each part of the above Taylor expansion.

(i) For the first part, which is

I1 =
1

nh4h5

n∑
i=1

−ϕ(1)

(
R̃(Vi) + ϵi

h4

)(
δnµ

TX∗
i

h4

)
K

(
Vi − v + V̂i − Vi

h5

)
,

by Taylor expansion, we can rewrite it as

E(I1) =
−δn
h4h5

E

(
ϕ(1)

(
R̃(Vi) + ϵi

h4

)
µTX∗

i

h4
K

(
Vi − v + V̂i − Vi

h5

))
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=
−δn
h4h5

E

(
ϕ(1)

(
ϵi
h4

)
µTX∗

i

h4
K

(
Vi − v + V̂i − Vi

h5

)
+ ϕ(2)

(
ϵi
h4

)
R̃(Vi)µ

TX∗
i

h24

K

(
Vi − v + V̂i − Vi

h5

)
+

1

2
ϕ(3)

(
ϵ∗∗i
h4

)
(R̃(Vi))

2µTX∗
i

h34
K

(
Vi − v + V̂i − Vi

h5

))

=I11 + I12 + I13, (A.51)

where ϵ∗∗i is between ϵi and ϵi + R̃(Xi). Notice that as the order of ϵ∗∗i is the same as that

of ϵi, when we do the calculations associated with I13, we instead use ϵi directly. By some

direct calculations for each part, we can get

I11 =
−δn
h4h5

E

(
ϕ(1)

(
ϵi
h4

)
µTX∗

i

h4
K

(
Vi − v + V̂i − Vi

h5

))
= Op(δnch

2
4). (A.52)

I12 =
−δn
h4h5

E

(
ϕ(2)

(
ϵi
h4

)
µTX∗

i

h4
K

(
Vi − v + V̂i − Vi

h5

)
R̃(Vi)

h4

)
= Op(δnch

2
5). (A.53)

I13 ≈
−δn
h4h5

E

(
1

2
ϕ(3)

(
ϵi
h4

)
(R̃(Vi))

2µTX∗
i

h34
K

(
V − v + V̂ − V

h5

))
= op(δnh

2
5), (A.54)

where h/h5 → 0 and h3/h5 → 0. Meanwhile, with the condition h25/h4 → 0 held, we obtain

δ2n
h24h

2
5

E

(
ϕ(1)

(
ϵi
h4

)
µTX∗

i

h4
K

(
Vi − v + V̂i − Vi

h5

))2

= Op(δ
2
nc

2(h34h5)
−1). (A.55)

δ2n
h24h

2
5

E

(
ϕ(2)

(
ϵi
h4

)
µTX∗

i

h4
K

(
Vi − v + V̂i − Vi

h5

)
(R̃(Vi))

h4

)2

= op(δ
2
n(h

3
4h5)

−1). (A.56)

The above equations show that I1 = Op(δnc(h
2
4 + h25)) +Op(

√
δ2nc

2(nh34h5)
−1) = Op(δ

2
nc).

(ii) For the second part, which is I2 = 1
nh4h5

∑n
i=1

(
1
2ϕ

(2)
(
R̃(Vi)+ϵi

h4

)(
δnµTX∗

i
h4

)2
K
(
Vi−v+V̂i−Vi

h5

))
, we can rewrite it as

E(I2) =
δ2n

2h5h4
E

(
ϕ(2)

(
ϵi + R̃(Vi)

h4

)
(µTX∗

i )
2

h24
K

(
Vi − v + V̂i − Vi

h5

))
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=
δ2n

2h5h4
E

(
ϕ(2)

(
ϵi
h4

)
(µTX∗

i )
2

h24
K

(
Vi − v + V̂i − Vi

h5

)

+ ϕ(3)

(
ϵi
h4

)
R̃(Vi)(µ

TX∗
i )

2

h34
K

(
Vi − v + V̂i − Vi

h5

)

+
1

2
ϕ(4)

(
ϵ∗∗i
h4

)
(R̃(Vi))

2(µTX∗
t )

2

h44
K

(
Vi − v + V̂i − Vi

h5

))

=I21 + I22 + I23, (A.57)

where ϵ∗∗i is between ϵi and ϵi + R̃(Vi). Notice that as the order of ϵ∗∗i is the same as that

of ϵi, when we do the calculations associated with I23, we instead use ϵi directly. By some

calculations for each part, we can get

I21 =
δ2n

2h5h4
E

(
ϕ(2)

(
ϵi
h4

)
(µTX∗

i )
2

h24
K

(
Vi − v + V̂i − Vi

h5

))
= Op((δnc)

2). (A.58)

Meanwhile, we can prove that I22 = op((δnc)
2) and I23 = op((δnc)

2). Following the same

steps in (i), we obtain the following result

δ4n
4h25h

2
4

E

(
ϕ(2)

(
ϵi
h4

)
(µTX∗

i )
2

h24
K

(
Vi − v + V̂i − Vi

h5

))2

= Op((δnc)
4(h5h

5
4)

−1). (A.59)

With the condition nh54h5 → ∞ held, the above equations indicate that the second part

will dominate the first part when we choose c big enough.

(iii) Following the same steps as the proofs in Theorem 2.4.3, we can calculate the

third part. As the order of ϵ∗i is the same as the order of ϵi, by direct calculations, we have

δ3n
6h5h4

E

(
ϕ(3)

(
ϵi
h4

)
(µTX∗

i )
3

h34
K

(
Vi − v + V̂i − Vi

h5

))
= Op(δ

3
n). (A.60)

δ6n
36h25h

2
4

E

(
ϕ(3)

(
ϵi
h4

)
(µTX∗

i )
3

h34
K

(
Vi − v + V̂i − Vi

h5

))2

= Op(δ
6
n(h5h

7
4)

−1). (A.61)

These indicate that the second part dominates the third part.
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Based on these, we can choose c bigger enough such that I2 dominates both I1 and

I3 with probability 1−η. Because the second term is negative, thus P{sup∥µ∥=cQn (θ0 + δnµ)

< Qn (θ0)} ≥ 1− η holds.

Proof of Theorem 2.4.8

Based on (A.50), the estimator θ̃ must satisfy the following equation

− 1

nh24h5

n∑
i=1

ϕ(1)

(
ϵi + R̃(Vi)−X∗T

i (θ̃ − θ0)

h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i = 0. (A.62)

By taking Taylor expansion, we could obtain

− 1

nh24h5

n∑
i=1

ϕ(1)

(
ϵi
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i

+
1

nh34h5

n∑
i=1

ϕ(2)

(
ϵi
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i (R̃(Vi)−X∗T
i (θ̃ − θ0))

− 1

nh44h5

n∑
i=1

ϕ(3)

(
ϵ̃∗i
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i

(
R̃(Vi)−X∗T

i (θ̃ − θ0)
)2

= 0, (A.63)

where ϵ̃∗i is between ϵi and ϵi + R̃(Vi) − X∗T
i (θ̃ − θ0). From Theorem 2.4.3, we know

∥θ̃ − θ0∥ = Op(δn) with h/h5 → 0 and h3/h5 → 0, which indicates that

sup
i:|Vi−v|/h2≤1

|R̃(Vi)−X∗T
i (θ̃ − θ0)| = Op(∥θ̃ − θ0)∥) = Op(δn). (A.64)

Combining (A.64) with the Proof of Theorem 2.4.7, we can see that the third part which

is associated with X∗
i

(
R̃(Vi)−X∗T

i (θ̃ − θ0)
)2

is dominated by the second part which is

associated with X∗
i

(
R̃(Vi)−X∗T

i (θ̃ − θ0)
)
. We then mainly focus on the first two parts of

the left side of (A.63).

Considering − 1
nh2

4h5

∑n
i=1 ϕ

(1)
(

ϵi
h4

)
K
(
Vi−v+V̂i−Vi

h5

)
X∗

i +
1

nh3
4h5

∑n
i=1 ϕ

(2)
(

ϵi
h4

)
K
(
Vi−v+V̂i−Vi

h5

)
X∗

i R̃(Vi), by some direct calculations, we can obtain
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E

(
− 1

nh24h5

n∑
i=1

ϕ(1)

(
ϵi
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i

+
1

nh34h5

n∑
i=1

ϕ(2)

(
ϵi
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i R̃(Vi)

)

=

{
h21
2
fV (v)E

µ0g
(3)
ϵ (0 | X∗)

µ1g
(3)
ϵ (0 | X∗)

−

h22m
(2)(v)

2
fV (v)E

µ2g
(2)
ϵ (0 | X∗)

µ3g
(2)
ϵ (0 | X∗)



}
{1 + op(1)}

(A.65)

with h/h5 → 0 and h3/h5 → 0. Considering 1
nh3

4h5

∑n
i=1 ϕ

(2)
(

ϵi
h4

)
K
(
V−v+V̂−V

h5

)
X∗

iX
∗T
i ,

by direct calculations, we have

E

(
1

nh34h5

n∑
i=1

ϕ(2)

(
ϵi
h4

)
K

(
V − v + V̂ − V

h5

)
X∗

iX
∗T
i

)

=fV (v)E

µ0g
(2)
ϵ (0 | X∗) µ1g

(2)
ϵ (0 | X∗)

µ1g
(2)
ϵ (0 | X∗) µ2g

(2)
ϵ (0 | X∗)

 . (A.66)

Based on the above two equations (A.65) and (A.66), we can achieve

θ̃ − θ0 =E

µ0g
(2)
ϵ (0 | X∗) µ1g

(2)
ϵ (0 | X∗)

µ1g
(2)
ϵ (0 | X∗) µ2g

(2)
ϵ (0 | X∗)


−1

{
h21
2
fV (v)E

µ0g
(3)
ϵ (0 | X∗)

µ1g
(3)
ϵ (0 | X∗)

−

h22m
(2)(v)

2
fV (v)E

µ2g
(2)
ϵ (0 | X∗)

µ3g
(2)
ϵ (0 | X∗)



}
{1 + op(1)}.

(A.67)

Meanwhile, with the condition h25/h4 → 0 held, we could obtain

Var

(
− 1

nh24h5

n∑
i=1

ϕ(1)

(
ϵi
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i
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+
1

nh34h5

n∑
i=1

ϕ(2)

(
ϵi
h4

)
K

(
Vi − v + V̂i − Vi

h5

)
X∗

i R̃(Vi)

)

=
1

nh44h
2
5

∫∫
ϕ(1)2

(
ϵ

h4

)
X∗X∗T gϵ(ϵ | X∗)K2

(
V − v + V̂ − V

h5

)
fV (V )dϵdV

(1 + op(1))

=

∫
τ2ϕ2(τ)dτ

nh34h5
fV (v)E

v0gϵ(0 | X∗) v1gϵ(0 | X∗)

v1gϵ(0 | X∗) v2gϵ(0 | X∗)

 (1 + op(1)). (A.68)

For the remaining part, we could follow the same idea in the Proof of Theorem

2.4.4 to easily obtain the results.

Lemma A.5.4 Denote Gn(u) =
∑n

i=1[ϕh(Vi − Z∗T
i u/

√
nh3) − ϕh(Vi)], where Vi = Xi −

Z∗T
i θ0. Under the same conditions as those in Theorem 2.4.2, for any fixed u,

Gn(u) =
g(2)(0 | Z)

2
uT
∑n

i=1 Z
∗
i Z

∗T
i

nh3
u+W T

n u+ op(1),

where Wn =
∑n

i=1 ϕ
(1)
h (Vi)Z

∗
i /

√
nh3.

Proof. The proof of this lemma should be followed by the arguments in Wu and Liu (2009).

To save space, we skip the details of the proof.

Proof of Theorem 2.6.9

For any θ1 − θ10 = Op(h
2 + (nh3)−1/2), 0 < ∥θ2∥ < Cδn, where δn = h2 + (nh3)−1/2, we

have

Q((θT1 , 0)
T )−Q((θT1 , θ

T
2 )

T )

=[Q((θT1 , 0)
T )−Q((θT10, 0)

T )]− [Q((θT1 , θ
T
2 )

T )−Q((θT10, 0)
T )]

=Gn(
√
nh3((θ1 − θ10)

T , 0)T )−Gn(
√
nh3((θ1 − θ10)

T , θT2 )
T )− λn

dZ+1∑
j=s+1

ŵj |θj |, (A.69)

236



where the first two terms are bounded. With the optimal value of bandwidth by minimizing

Op(h
2 + (nh3)−1/2), we have h2 = (nh3)−1/2. We thus in the following proof only focus on

the use of (nh3)−1/2. The third terms goes to −∞ as n → ∞ due to

λn

dZ+1∑
j=s+1

ŵj |θj | =
(
(nh3)(γ−1)/2λn

)√
nh3

dZ+1∑
j=s+1

|
(√

nh3|θ̂j |
)−γ

||θj | → ∞. (A.70)

Hence, the condition that (nh3)(γ−1)/2λn → ∞ implies that λn
∑dZ+1

j=s+1 ŵj |θj | is of higher or-

der than any other terms and dominates as a result. This in turn implies that Q((θT1 , 0)
T )−

Q((θT1 , θ
T
2 )

T ) < 0 for large n, which proves the result.

Proof of Theorem 2.6.10

At first, we know that

Q
(
θ0 + u/

√
nh3

)
−Q (θ0)

=
1

n

n∑
i=1

[
ϕh

(
Xi − Z∗T

i

(
θ0 + u/

√
nh3

))
− ϕh

(
Xi − Z∗T

i θ0
)]

+ λn

dZ+1∑
j=1

[
ŵj |θj0 + uj/

√
nh3| − ŵj |θj0|

]
.

(A.71)

FollowingWu and Liu (2009), we consider the second term first. For j = 1, 2, · · · , s,

we have θj0 ̸= 0; as a result, ŵj
P→ |θj0|−γ . Hence

λn

[
ŵj |θj0 + uj/

√
nh3| − ŵj |θj0|

]
P→ 0 (A.72)

as
√
nh3(|θj0 + uj/

√
nh3| − |θj0 |) → uj sign (θj0) and

√
nh3λn → 0. On the other hand, for

j = s+ 1, · · · , d, the true coefficient θj0 = 0; so
√
nh3λnŵj = (nh3)(1+γ)/2λn

(√
nh3|θ̂j |

)−γ

with
√
nh3θ̂j = Op(1); so it follows that nh3λn

[
ŵj |θj0 + uj/

√
nh3| − ŵj |θj0|

]
P→ ∞ when

uj ̸= 0 and = 0 otherwise due to
√
nh3|uj/

√
nh3| = |uj | for large n. These facts and the

result of Lemma A.5.4 imply that

237



Q

(
θ0 +

u√
nh3

)
−Q (θ0)

L→ V (u)

=


g(2)(0|Z)

2 uT1 E(Z∗
i1Z

∗T
i1 )u1 +W T

n1u1 when uj = 0 for j ≥ s+ 1

∞ otherwise,

(A.73)

where u1 = (u1, u2, · · · , us)T . Noticing that Q
(
θ0 +

u√
nh3

)
−Q (θ0) is concave in u and V

has a unique maximizer, it indicates that

argmaxQ

(
θ0 +

u√
nh3

)
=

√
nh3

(
θ̂ − θ0

)
L→ argmaxV (u), (A.74)

which establishes the asymptotic normality result.
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Appendix B

Appendix for Chapter 3

B.1 Monte Carlo Experiment

To illustrate the applicability of the proposed variance reduction method, we generate data

from the two different data generating processes (DGPs) shown below, where ϵt is sim-

ulated from 0.5N(−1, 2.52) + 0.5N(1, 0.52) with E(ϵ) = 0 and Mode(ϵ) = 1. Thus, the

modal regression line is different from the mean regression line. The sample sizes under

consideration are n = {200, 400, 600, 1000}.

(DGP 1) Yt = exp(πXt) + σ(Xt)ϵt, where the observation Xt is i.i.d., univariate

and uniformed distributed in [0,1], and σ(Xt) = 1 + 2Xt. We then have Mode(Yt | Xt) =

exp(πXt) + 1 + 2Xt and E(Yt | Xt) = exp(πXt).

(DGP 2) Yt = sin(πXt) + σ(Xt)ϵt, where the observation Xt stems from a time

series Xt = 0.5Xt−1+ηt with standard normal innovations ηt, and σ(Xt) = Xt. The setting

indicates that Mode(Yt | Xt) = sin(πXt) +Xt and E(Yt | Xt) = sin(πXt).
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To evaluate the performance of the variance reduced estimators, we calculate the

MSE for each estimate over 200 replicates

1

200n

200∑
l=1

n∑
t=1

(
Mode(Yt | Xt)− m̂(Xt)

(l)
)2

,

in which m̂(Xt)
(l) is the estimate at the lth replication. We compute the ratio of MSE

for local linear modal regression and variance reduced modal regression for each sample.

The results are summarized in Table B.1, from which we can see that the variance reduced

modal estimator has a smaller MSE than the local linear modal estimator for all sample

sizes. The results are consistent with the asymptotic results derived in the paper.

Table B.1: Results of Simulations

DGP 1-Mode-Reduction DGP 2-Mode-Reduction

n=200 0.8868 0.9396

n=400 0.8074 0.8508

n=600 0.7720 0.8379

n=1000 0.7217 0.7809

Figure B.1: Coverage Probabilities
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We also report the coverage probabilities to evaluate the prediction performance

of mean and modal regressions. The lengths of the intervals considered are 0.1σ, 0.2σ, and

0.5σ, respectively, where σ ≈ 2. The calculation steps are identical to those in Ullah et al.

(2021). Figure B.1 shows that modal regression can provide higher coverage probabilities

than mean regression, indicating the prediction advantage of modal regression.

B.2 Technical Proofs

Lemma B.2.5 Under the conditions C1-C5, with nh31h2 → ∞ held, we have

− 1

nh1h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)(
Xt − x

h2

)

=
h21
6

∫∫
g(3)ϵ (0 | x)t4ϕ (t) slK(s)fX (x) dtds(1 + o(1)).

Proof. We proceed along the lines of the proofs in Cai and Ould-Said (2003) and Wang

and Tang (2016). Define Zn,t = − 1
h1h2

ϕ(1)
(

ϵt
h1

)
K
(
Xt−x
h2

)(
Xt−x
h2

)
, with the assumptions

of C1-C3 and conditioning on X, we obtain

E (Zn,1) =

∫∫
ϵ

h31h2
ϕ

(
ϵ

h1

)
K

(
X − x

h2

)(
X − x

h2

)
gϵ(ϵ | x)fX(x)dϵdx

=
1

h1

∫∫
tϕ (t) sK(s)gϵ(th1 | x)fX (sh2 + x) dtds

=
h21
6

∫∫
g(3)ϵ (0 | x)t4ϕ (t) sK(s)fX (x) dtds(1 + o(1)). (B.1)

Therefore, we have

E

{
− 1

nh1h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)(
Xt − x

h2

)}

=
h21
6

∫∫
g(3)ϵ (0 | x)t4ϕ (t) sK(s)fX (x) dtds(1 + o(1)). (B.2)
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Note that

n∑
t=1

Zn,t = E

(
n∑

t=1

Zn,t

)
+Op


√√√√Var

(
n∑

t=1

Zn,t

) , (B.3)

and the stationary of {ϵt} gives

Var

(
n∑

t=1

Zn,t

)
= nEZ2

n,1 + 2

n∑
j=2

(n− j + 1)Cov (Zn,1, Zn,j) . (B.4)

With the assumptions of C1-C3 and conditioning on X, we can have

E
(
Z2
n,1

)
=

1

h21h
2
2

∫∫
ϵ2

h41
ϕ2

(
ϵ

h1

)
K2

(
X − x

h2

)(
X − x

h2

)2

gϵ(ϵ | x)fX(x)dϵdx

=
1

h31h2

∫∫
t2ϕ2 (t) s2K2(s)gϵ(th1 | x)fX (sh2 + x) dtds

=
1

h31h2

∫∫
gϵ(0 | x)t2ϕ2 (t) s2K2(s)fX (x) dtds(1 + o(1)). (B.5)

To obtain an upper bound for the second term on the right-hand side of the above

equation, let dn be a sequence of positive integers satisfying dn → ∞ and dnh1h2 → 0 as

n → ∞, we can split it into two terms

n∑
j=2

|Cov (Zn,1, Zn,j)| =
dn∑
j=2

|Cov (Zn,1, Zn,j)|+
n∑

j=dn+1

|Cov (Zn,t, Zn,j)|. (B.6)

By the assumptions of C1-C3 and conditioning on Xt and Xj , we can have the following

result, where

|EZn,tZn,j | ≤ E|Zn,tZn,j | = E

∣∣∣∣∣E
[
1

h21
ϕ(1)

(
ϵt
h1

)
ϕ(1)

(
ϵj
h1

) ∣∣∣Xt, Xj

]

· 1

h22
K

(
Xt − x

h2

)(
Xt − x

h2

)
K

(
Xj − x

h2

)(
Xj − x

h2

) ∣∣∣∣∣
= E

∣∣∣∣∣
∫∫

1

h21

ϵ

h21
ϕ

(
ϵ

h1

)
ϵ∗

h21
ϕ

(
ϵ∗

h1

)
gϵ(ϵ, ϵ

∗ | Xt, Xj)dϵdϵ
∗

· 1

h22
K

(
Xt − x

h2

)(
Xt − x

h2

)
K

(
Xj − x

h2

)(
Xj − x

h2

) ∣∣∣∣∣
242



≤ C1
1

h21h
2
2

E

∣∣∣∣∣K
(
Xt − x

h2

)(
Xt − x

h2

)
K

(
Xj − x

h2

)(
Xj − x

h2

) ∣∣∣∣∣ ≤ C2
1

h21
, (B.7)

in which C1 and C2 are constants. Therefore, we have

dn∑
j=2

|Cov (Zn,t, Zn,j)| ≤ C2
1

h21

dn∑
j=2

1 = o
(
nh−1

2 h−3
1

)
. (B.8)

By applying Davydov’s inequality, we have

|Cov (Zn,1, Zn,j)| ≤ C3[ρ(j − 1)]δ/(2+δ)
(
E|Zn,1|2+δ

)2/(2+δ)
(B.9)

and obtain

E|Zn,t|2+δ = E

∣∣∣∣∣E
[
1

h1
ϕ(1)

(
ϵt
h1

)
|Xt

]
1

h2
K

(
Xt − x

h2

)(
Xj − x

h2

) ∣∣∣∣∣
2+δ

≤ C4h
(2+δ)2
1 E

∣∣∣∣∣ 1h2K
(
Xt − x

h2

)(
Xj − x

h2

) ∣∣∣∣∣
2+δ

≤ C5h
(2+δ)2
1 h

−(1+δ)
2 , (B.10)

where C3, C4, and C5 are constants. Then, by choosing dn such that dγnh
δ/(2+δ)
2 = O(1) (so

that dnh1h2 → 0 is satisfied), we have

n∑
j=dn+1

|Cov (Zn,1, Zn,j)| ≤ C6

n∑
j=dn+1

C3[ρ(j − 1)]δ/(2+δ)
(
h
(2+δ)2
1 h

−(1+δ)
2

)2/(2+δ)

= C6h
4
1h

−(2+2δ)/(2+δ)
2

n∑
k=dn

[ρ(k)]δ/(2+δ)

≤ C6d
−γ
n h41h

−(2+2δ)/(2+δ)
2

n∑
k=dn

kγ [ρ(k)]δ/(2+δ) = o
(
nh−1

2 h−3
1

)
,

(B.11)

where C6 is a constant. Then, we obtain

Var

(
n∑

t=1

Zn,t

)
= O

(
nh−1

2 h−3
1

)
. (B.12)

With the assumption that nh31h2 → ∞, we obtain the result of Lemma B.2.5.
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Proof of Theorem 3.2.11

Based on the result from Lemma B.2.5, we can observe that under suitable conditions, the

covariance of two different error terms can be dominated by the expectation of the squared

error, which is the underlying result to prove the consistency and asymptotic normality

of modal estimators. Define θ = (α1(x), h2α2(x))
T , θ0 = (σ2

0(x), h2σ̇
2
0(x))

T , and X∗
t =

(1, (Xt − x)/h2)
T , where θ0 is the true value of the parameter, we have

Qn(θ) =
1

nh1h2

n∑
t=1

ϕ

(
r̂t −X∗T

t θ

h1

)
K

(
Xt − x

h2

)

=
1

nh1h2

n∑
t=1

ϕ

(
(Yt − m̂(Xt))

2 −X∗T
t θ

h1

)
K

(
Xt − x

h2

)
. (B.13)

Note that

r̂t = {Yt − m̂ (Xt)}2 = {σ (Xt) εt +m (Xt)− m̂ (Xt)}2

= σ2 (Xt) ε
2
t + 2σ (Xt) εt {m (Xt)− m̂ (Xt)}+ {m (Xt)− m̂ (Xt)}2

= σ2(Xt) + σ2 (Xt) (ε
2
t − 1)︸ ︷︷ ︸

ϵt

+2σ (Xt) εt {m (Xt)− m̂ (Xt)}+ {m (Xt)− m̂ (Xt)}2︸ ︷︷ ︸
Ut

= σ2(Xt) + ϵt + Ut, (B.14)

we then get

Qn(θ) =
1

nh1h2

n∑
t=1

ϕ

(
σ2(Xt)−X∗T

t θ + ϵt + Ut

h1

)
K

(
Xt − x

h2

)
. (B.15)

Define δn = h21 + h22 +
√

(nh31h2)
−1, then it is sufficient to show that for any given

η, there exists a large number constant c such that

P

{
sup

∥µ∥=c
Qn (θ0 + δnµ) < Qn (θ0)

}
≥ 1− η, (B.16)
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where ∥ · ∥ represents the Euclidean distance. The above condition implies that with prob-

ability tending to one, there is a local maximum in the ball {θ0 + δnµ : ∥µ∥ ≤ c}. Using

the Taylor expansion, it follows that

Qn (θ0 + δnµ)−Qn (θ0)

=
1

nh1h2

n∑
t=1

[
ϕ

(
R(Xt) + ϵt − δnµ

TX∗
t

h1

)
K

(
Xt − x

h2

)
− ϕ

(
R(Xt) + ϵt

h1

)
K

(
Xt − x

h2

)]

=
1

nh1h2

n∑
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[
−ϕ(1)

(
R(Xt) + ϵt

h1

)(
δnµ

TX∗
t

h1

)
K

(
Xt − x

h2

)

+
1

2
ϕ(2)

(
R(Xt) + ϵt

h1

)(
δnµ

TX∗
t

h1

)2

K

(
Xt − x

h2

)
− 1

6
ϕ(3)

(
ϵ∗t
h1

)(
δnµ

TX∗
t

h1

)3

K

(
Xt − x

h2

)]

=I1 + I2 + I3, (B.17)

where ϵ∗i is between R(Xt)+ϵt and R(Xt)+ϵt−δnµ
TX∗

t , and R(Xt) =
∑

j=2(αj(x)/j!)(Xt−

x)j + Ut. Based on the result Tn = E (Tn) + Op(
√
Var (Tn)), we consider each part of the

above Taylor expansion.

(i) For the first part, which is

I1 =
1

nh1h2

n∑
t=1

(
−ϕ(1)

(
R(Xt) + ϵt

h1

)(
δnµ

TX∗
t

h1

)
K

(
Xt − x

h2

))
,

by Taylor expansion, we can rewrite it as

E(I1) =
−δn
h1h2

E

(
ϕ(1)

(
R(Xt) + ϵt

h1

)
µTX∗

t

h1
K

(
Xt − x

h2

))
=

−δn
h1h2

E

(
ϕ(1)
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ϵt
h1

)
µTX∗

t

h1
K

(
Xt − x

h2

)
+ ϕ(2)

(
ϵt
h1

)
R(Xt)µ

TX∗
t

h21
K

(
Xt − x

h2

)
+
1

2
ϕ(3)

(
ϵ∗∗t
h1

)
R2(Xt)µ

TX∗
t

h31
K

(
Xt − x

h2

))
= I11 + I12 + I13, (B.18)
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where ϵ∗∗t is between ϵt and ϵt +R(Xt). Notice that as the order of ϵ∗∗t is the same as that

of ϵt, when we do the calculation associated with I13, we instead use ϵt directly. By some

direct calculations for each part and the results from Lemma B.2.5, we can get

I11 =
−δn
h1h2

E

(
ϕ(1)

(
ϵt
h1

)
µTX∗

t

h1
K

(
Xt − x

h2

))
= Op(δnch

2
1). (B.19)

I12 =
−δn
h1h2

E

(
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(
ϵt
h1

)
µTX∗

t

h1
K

(
Xt − x

h2

)
R(Xt)

h1

)
=
−δn
h1

∫∫
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=Op(δnch
2
2). (B.20)

I13 ≈
−δn
h1h2

E

(
1

2
ϕ(3)

(
ϵt
h1

)
R2(Xt)µ

TX∗
t

h31
K

(
Xt − x

h2

))
≤−δnh

4
2

2

∫∫
ϕ(τ)(3τ − τ3)

(α(2)(u))2µTX∗

4h31
gϵ(τh1 | x)K(w)w4

fX(wh2 + x)dwdτ{1 + op(1)} = op(δnh
2
2). (B.21)

Meanwhile, with the condition h22/h1 → 0 held and the results from Lemma B.2.5,

we obtain

δ2n
h21h

2
2

E

(
ϕ(1)

(
ϵt
h1

)
µTX∗
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(
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2
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2(h31h2)
−1). (B.22)
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3
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−1). (B.23)

The above equations show that I1 = Op(δnc(h
2
1 + h22)) +Op(

√
δ2nc

2(nh31h2)
−1) = Op(δ

2
nc).
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(ii) For the second part, which is I2 = 1
nh1h2

∑n
t=1

(
1
2ϕ
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)(
δnµTX∗
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, we can rewrite it as
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where ϵ∗∗t is between ϵt and ϵt +R(Xt). Notice that as the order of ϵ∗∗t is the same as that

of ϵt, when we do the calculation associated with I23, we instead use ϵt directly. By some

calculations for each part, we can get
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2). (B.25)
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Meanwhile, we can prove that I23 = op((δnc)
2) as well. Following the same steps in (i), we

obtain the following result

δ4n
4h22h
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With the condition nh51h2 → ∞ held, the above equations indicate that the second part

will dominate the first part when we choose c big enough.

(iii) The same way to calculate the third part. As the order of ϵ∗t is the same as the

order of ϵt, which indicates that we can obtain I3 ≈ 1
nh1h2

∑n
t=1

(
− 1

6ϕ
(3)
(

ϵt
h1

)(
δnµTX∗

t
h1

)3
K
(
Xt−x
h2

))
. By direct calculation, we can get

δ3n
6h2h1

E

(
ϕ(3)

(
ϵt
h1

)
(µTX∗

t )
3

h31
K

(
Xt − x

h2

))

=
δ3n

6h2h1

∫∫
ϕ(3)

(
ϵ

h1

)
(µTX∗)

3

h31
gϵ(ϵ | X)K

(
X − x

h2

)
fX(X)dϵdX

=
δ3n
6

∫∫
ϕ(τ)(3τ − τ3)

(µTX∗)
3

h31
gϵ(τh1 | x)K(w)fX(wh2 + x)dwdτ = Op(δ

3
n). (B.28)

δ6n
36h22h

2
1

E

(
ϕ(3)

(
ϵt
h1

)
(µTX∗

t )
3

h31
K

(
Xi − x

h2

))2

=
δ6n

36h22h
2
1

∫∫
ϕ(3)2

(
ϵ

h1

)
(µTX∗)

6

h61
gϵ(ϵ | X)K2

(
X − x

h2

)
fX(X)dϵdX

=
δ6n

36h2h1

∫∫
ϕ2(τ)(3τ − τ3)2

(µTX∗)
6

h61
gϵ(τh1 | x)K2(w)fX(wh2 + x)dwdτ

=Op(δ
6
n(h2h

7
1)

−1). (B.29)

These indicate that the second part dominates the third part.
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Based on these, we can choose c bigger enough such that I2 dominates both I1 and

I3 with probability 1−η. Because the second term is negative, thus P{sup∥µ∥=cQn (θ0 + δnµ)

< Qn (θ0)} ≥ 1− η holds.

Proof of Theorem 3.2.12

Following the same steps as proving Theorem 3.2.11, recall that

Qn(θ) =
1

nh1h2

n∑
t=1

ϕ

(
σ2(Xt)−X∗T

t θ + ϵt + Ut

h1

)
K

(
Xt − x

h2

)
. (B.30)

Define θ̂ = (σ̂2(x), h2 ˆ̇σ
2(x)), then it must satisfy the following equation

− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt + R̃(Xt)

h1

)
K

(
Xt − x

h2

)
X∗

t = 0, (B.31)

where

R̃(Xt) =
∑
j=2

(αj(x)/j!)(Xt − x)j + Ut −X∗T
t (θ̂ − θ0) = R(Xt)−X∗T

t (θ̂ − θ0).

We can then rewrite the above equation as

− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt +R(Xt)−X∗T

t (θ̂ − θ0)

h1

)
K

(
Xt − x

h2

)
X∗

t = 0. (B.32)

By taking Taylor expansion, we can obtain

− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

t

+
1

nh31h2

n∑
t=1

ϕ(2)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

t (R(Xt)−X∗T
t (θ̂ − θ0))

− 1

nh41h2

n∑
t=1

ϕ(3)

(
ϵ̃∗t
h1

)
K

(
Xt − x

h2

)
X∗

t

(
R(Xt)−X∗T

t (θ̂ − θ0)
)2

= 0, (B.33)

where ϵ̃∗t is between ϵt and ϵt + R(Xt) − X∗T
t (θ̂ − θ0). From Theorem 3.2.11, we know

∥θ̂ − θ0∥ = Op(δn), which indicates that
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sup
t:|Xt−x|/h2≤1

|R(Xt)−X∗T
t (θ̂ − θ0)| ≤ sup

t:|Xt−x|/h2≤1
{|R(Xt)|+ |X∗T

i (θ̂ − θ0)|}

= Op(∥θ̂ − θ0)∥) = Op(δn). (B.34)

Combining this with the equations in the Proof of Theorem 3.2.11, we can see that the third

part which is associated with X∗
t

(
R(Xt)−X∗T

t (θ̂ − θ0)
)2

is dominated by the second part

which is associated with X∗
t

(
R(Xt)−X∗T

t (θ̂ − θ0)
)
. We then mainly focus on the first

two parts of the left side of the above equation.

Considering− 1
nh2

1h2

∑n
t=1 ϕ

(1)
(

ϵt
h1

)
K
(
Xt−x
h2

)
X∗

t+
1

nh3
1h2

∑n
t=1 ϕ

(2)
(

ϵt
h1

)
K
(
Xt−x
h2

)
X∗

tR(Xt), with the assumption that h/h2 → 0, by some direct calculations, we can obtain

E

(
− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

t +
1

nh31h2

n∑
t=1

ϕ(2)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

tR(Xt)

)

=− 1

h21h2

∫∫
ϕ(1)

(
ϵ

h1

)
X∗gϵ(ϵ | X)K

(
X − x

h2

)
fX(X)dϵdX

+
1

h31h2

∫∫
ϕ(2)

(
ϵ

h1

)
X∗gϵ(ϵ | X)K

(
X − x

h2

)
R(X)fX(X)dϵdX

=
1

h1

∫∫
ϕ (τ) τX∗gϵ(τh1 | x)K (w) fX(wh2 + x)dwdτ

− 1

h21

∫∫
ϕ (τ) (τ2 − 1)X∗gϵ(τh1 | x)K (w)R(X)fX(wh2 + x)dwdτ

=
h21
6
fX(x)

µ0g
(3)
ϵ (0 | x)

µ1g
(3)
ϵ (0 | x)

−

h22σ̈
2(x)

2
fX(x)

µ2g
(2)
ϵ (0 | x)

µ3g
(2)
ϵ (0 | x)


 {1 + op(1)}, (B.35)

where
∫
τ4ϕ(τ)dτ = 3,

∫
τ2ϕ(τ)dτ = 1, and

∫
wjK(w)dw = µj .

Considering 1
nh3

1h2

∑n
t=1 ϕ

(2)
(

ϵt
h1

)
K
(
Xt−x
h2

)
X∗

tX
∗T
t , by direct calculation, we have

E

(
1

nh31h2

n∑
t=1

ϕ(2)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

tX
∗T
t

)

=E

(
1

h31h2
ϕ(2)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

tX
∗T
t

)
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=
1

h31h2

∫∫
ϕ(2)

(
ϵ

h1

)
X∗X∗T gϵ(ϵ | X)K

(
X − x

h2

)
fX(X)dϵdX

=
1

h21

∫∫
ϕ (τ) (τ2 − 1)X∗X∗T gϵ(ϵ | x)K (w) fX(wh2 + x)dwdτ(1 + op(1))

=fX(x)

µ0g
(2)
ϵ (0 | x) µ1g

(2)
ϵ (0 | x)

µ1g
(2)
ϵ (0 | x) µ2g

(2)
ϵ (0 | x)

 . (B.36)

Based on the above two equations, we can achieve

θ̂ − θ0 =

µ0g
(2)
ϵ (0 | x) µ1g

(2)
ϵ (0 | x)

µ1g
(2)
ϵ (0 | x) µ2g

(2)
ϵ (0 | x)


−1

h21
6
fX(x)

µ0g
(3)
ϵ (0 | x)

µ1g
(3)
ϵ (0 | x)

−

h22σ̈
2(x)

2
fX(x)

µ2g
(2)
ϵ (0 | x)

µ3g
(2)
ϵ (0 | x)


 {1 + op(1)}

 .

(B.37)

Meanwhile, with the condition h22/h1 → 0 held, combining the results obtained from Lemma

B.2.5, we can obtain

Var

(
− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

t

+
1

nh31h2

n∑
t=1

ϕ(2)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

tR(Xt)

)

=E

(
− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

t

)(
− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

)
X∗

t

)T

(1 + op(1))

=
1

nh41h
2
2

∫∫
ϕ(1)2

(
ϵ

h1

)
X∗X∗T gϵ(ϵ | X)K2

(
X − x

h2

)
fX(X)dϵdX(1 + op(1))

=

∫
τ2ϕ2(τ)dτ

nh31h2
fX(x)

v0gϵ(0 | x) v1gϵ(0 | x)

v1gϵ(0 | x) v2gϵ(0 | x)

 (1 + op(1)), (B.38)

where vj =
∫
wjK2(w)dw. Then, we can obtain
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Var(θ̂ − θ0) =

∫
τ2ϕ2(τ)dτ

nh31h2fX(x)

µ0g
(2)
ϵ (0 | x) µ1g

(2)
ϵ (0 | x)

µ1g
(2)
ϵ (0 | x) µ2g

(2)
ϵ (0 | x)


−1

v0gϵ(0 | x) v1gϵ(0 | x)

v1gϵ(0 | x) v2gϵ(0 | x)


µ0g

(2)
ϵ (0 | x) µ1g

(2)
ϵ (0 | x)

µ1g
(2)
ϵ (0 | x) µ2g

(2)
ϵ (0 | x)


−1

(1 + op(1)). (B.39)

Define Wn = 1
nh2

1h2

∑n
t=1 ϕ

(1)
(

ϵt
h1

)
K
(
Xt−x
h2

)
X∗

t . To show Theorem 3.3.14, it is

sufficient to show that

Tn =
√
nh2h31Wn

d→ N (0, T ), (B.40)

where T =
∫
τ2ϕ2(τ)dτfX(x)

v0gϵ(0 | x) v1gϵ(0 | x)

v1gϵ(0 | x) v2gϵ(0 | x)

.
By Slutsky’s theorem and the above two equations, we can obtain Theorem 3.3.14.

To show the above equation, we prove that for any unit vector d ∈ R2,

{
dT Cov (Tn)d

}−1/2 {
dTTn − dTE (Tn)

} d→ N(0, 1). (B.41)

Then, we check Lyapunov’s condition. Let

ξi =
√

h2h31/nK

(
Xt − x

h2

)
1

h1h2
ϕ(1)

(
ϵt
h1

)
dTX∗

t , (B.42)

we need to prove nE|ξ1|3 → 0. As
(
dTX∗

t

)2 ≤ ∥d∥2 ∥X∗
t ∥

2 , ϕ(1)(·) is bounded, and K(·)

has compact support, we have

nE|ξ|3 ≤ O
(
nn−3/2h

−3/2
2 h

3/2
1

)
E
∣∣∣K3

(
Xt − x

h2

)
ϕ(1)3

(
ϵt
h1

)
dTX∗

t

∣∣∣→ 0. (B.43)

Thus, the asymptotic normality for Tn holds.
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Lemma B.2.6 Let R(Xt) = σ2(Xt)−σ2(x)−σ̇2(x)(Xt−x) and ϵt = [Yt−m̂(Xt)]
2−σ2(Xt).

Under the conditions C1, C2, the first part of C4, and D1-D5, we have

n∑
t=1

ϕ
(2)
h1

(ϵt)K

(
Xt − x

h2

)
(Xt − x)l = nhl+1

2 E(ϕ
(2)
h1

(ϵt) | Xt = x)fX(x)µl (1 + op(1)) , and

n∑
t=1

ϕ
(2)
h1

(ϵt)R(Xt)K

(
Xt − x

h2

)
(Xt − x)l

=
nhl+3

2

2
E(ϕ

(2)
h1

(ϵt) | Xt = x)σ̈2(x)fX(x)µl+2(1 + op(1)).

Proof. The main steps are consistent with the ones in Lemma B.2.5 besides we treat

bandwidth h1 as a constant. We focus on the proof for the first equation, while the second

one can be proved by the same arguments. Define Zn,t = ϕ
(2)
h1

(ϵt)K
(
Xt−x
h2

)
(Xt − x)l. By

calculating, we can have

E(Zn,1) = hl+1
2 E(ϕ

(2)
h1

(ϵt) | Xt = x)fX(x)µl(1 + op(1)). (B.44)

Therefore,

E

(
n∑

t=1

ϕ
(2)
h1

(ϵt)K

(
Xt − x

h2

)
(Xt − x)l

)
= nhl+1

2 E(ϕ
(2)
h1

(ϵt) | Xt = x)fX(x)µl (1 + op(1)) .

Note that

n∑
t=1

Zn,t = E

(
n∑

t=1

Zn,t

)
+Op


√√√√Var

(
n∑

t=1

Zn,t

) , (B.45)

and the stationary of {ϵt} gives

Var

(
n∑

t=1

Zn,t

)
= nEZ2

n,1 + 2

n∑
j=2

(n− j + 1)Cov (Zn,t, Zn,1) . (B.46)

In addition, we can get

E(Z2
n,1) = h2l+1

2 E(ϕ
(2)
h1

(ϵt) | Xt = x)2fX(x)

∫
K2(u)u2ldu(1 + o(1)) = O(h2l+1

2 ). (B.47)
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To obtain an upper bound for the second term on the right-hand side of the above

equation, let dn be a sequence of positive integers satisfying dn → ∞ and dnh2 → 0 as

n → ∞, we can split it into two terms

n∑
j=2

|Cov (Zn,1, Zn,j)| =
dn∑
j=2

|Cov (Zn,1, Zn,j)|+
n∑

j=dn+1

|Cov (Zn,t, Zn,j)|. (B.48)

By calculating, we can show that

|EZn,tZn,j | ≤ E|Zn,tZn,j | = E | E
[
ϕ
(2)
h1

(ϵt)ϕ
(2)
h1

(ϵj) | Xt, Xj

]
K

(
Xt − x

h2

)
(Xt − x)l

K

(
Xj − x

h2

)
(Xj − x)l | ≤ Ch2l+2

2 , (B.49)

where C is a constant. Therefore, we have
∑dn

j=2|Cov (Zn,1, Zn,j)| ≤ Ch2l+2
2

∑dn
j=2 1 =

o
(
nh2l+1

2

)
. By using Davydov’s inequality, we obtain

|Cov (Zn,1, Zn,j)| ≤ C[α(j − 1)]δ/(2+δ)
(
E|Zn,1|2+δ

)2/(2+δ)
, (B.50)

and

E|Zn,t|2+δ = E|E
[
ϕ(2) (ϵt) | Xt

]
K

(
Xt − x

h2

)
(Xt − x)l|2+δ ≤ Ch

(2+δ)l+1
2 . (B.51)

Then, by choosing dn such that dγnh
δ/(2+δ)
2 = O(1), we have

n∑
j=dn+1

|Cov (Zn,1, Zn,j) |≤ C

n∑
j=dn+1

[α(j − 1)]δ/(2+δ)
(
h
(2+δ)l+1
2

)2/(2+δ)

≤ Cd−a
n h

2l+2/(2+δ)
2

n∑
k=dn

kγ [ρ(k)]δ/(2+δ) = o
(
nh2l+1

2

)
. (B.52)

Thus, Var (
∑n

i=1 Zn,i) = O
(
nh2l+1

2

)
and we complete the proof.
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Lemma B.2.7 Under the conditions C1, C2, the first part of C4, and D1-D5, we have

1√
nh2


∑n

t=1 ϕ
(1)
h1

(ϵt)K
(
Xt−x
h2

)
∑n

t=1 ϕ
(1)
h1

(ϵt)K
(
Xt−x
h2

)
Xt−x
h2

 D−→

N

0, fX(x)E((ϕ
(1)
h1

(ϵ))2 | X = x)

 v0 v1

v1 v2


 .

Proof. Let Wn =
∑n

t=1Wn,t =
∑n

t=1 ϕ
(1)
h1

(ϵt)K
(
Xt−x
h2

) 1

Xt−x
h2

. Then, we have

E(Wn) = 0 and Var(Wn) = Var (
∑n

t=1Wn,t) = nEW 2
n,1+2

∑n
j=2(n−j+1)Cov (Wn,t,Wn,j).

Following the lines of arguments as in Lemma B.2.6, we can obtain Var(Wn).

Proof of Theorem 3.2.13

At first, we have

r̂(Xt) = [Yt − m̂(Xt)]
2 = σ2(Xt) + ϵt = σ2(Xt)− σ2(x)− σ̇2(x)(Xt − x)

+ σ2(x) + σ̇2(x)(Xt − x) + ϵt = σ̂2(x) + ˆ̇σ2(x)(Xt − x) + ϵt + η̂t, (B.53)

where η̂t = R(Xt)− (σ̂2(x)− σ2(x))− (ˆ̇σ2(x)− σ̇2(x))(Xt − x). Then, taking the derivative

of the objective function leads

n∑
t=1

ϕ
(1)
h1

(ϵt + η̂t)K

(
Xt − x

h2

) 1

Xt−x
h2

 =

 0

0

 . (B.54)

By using Taylor expansion, we can obtain

n∑
t=1

[
ϕ
(1)
h1

(ϵt) + ϕ
(2)
h1

(ϵt) η̂t + [ϕ
(1)
h1

(ϵt + η̂t)− ϕ
(1)
h1

(ϵt)− ϕ
(2)
h1

(ϵt) η̂t]
]
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K

(
Xt − x

h2

) 1

Xt−x
h2

 =

 0

0

 . (B.55)

Considering
∑n

t=1 ϕ
(2)
h1

(ϵt) η̂tK
(
Xt−x
h2

) 1

Xt−x
h2

, by calculating and the results from Lemma

B.2.6, we obtain

n∑
t=1

ϕ
(2)
h1

(ϵt)R (Xt)K

(
Xt − x

h2

) 1

Xt−x
h2

−
n∑

t=1

ϕ
(2)
h1

(ϵt)K

(
Xt − x

h2

)
 (σ̂2(x)− σ2(x)) + (ˆ̇σ2(x)− σ̇2(x))(Xt − x)

Xt−x
h2

[(σ̂2(x)− σ2(x)) + (ˆ̇σ2(x)− σ̇2(x))(Xt − x)]



=
n∑

t=1

ϕ
(2)
h1

(ϵt)R (Xt)K

(
Xt − x

h2

) 1

Xt−x
h2

−
n∑

t=1

ϕ
(2)
h1

(ϵt)K

(
Xt − x

h2

)
 1 Xt−x

h2

Xt−x
h2

(Xt−x)2

h2
2


 σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))



=
nh32
2

E(ϕ
(2)
h1

(ϵt) | Xt = x)σ̈2(x)fX(x)

 µ2

µ3

 (1 + op(1))− nh2E(ϕ
(2)
h1

(ϵt) | Xt = x)

fX(x)

 µ0 µ1

µ1 µ2

 (1 + op(1))

 σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))

 . (B.56)

Meanwhile, with consistency property (it can be proved by following the arguments in Proof

of Theorem 3.2.11), we know that

sup
t
|η̂t| = sup

t
| R (Xt)−

(
σ̂2 (x)− σ2 (x)

)
−
(
ˆ̇σ2 (x)− σ̇2(x)

)
(Xt − x) |

256



≤ sup
t
|R (Xt)|+ |σ̂2 (x)− σ2 (x)|+ h2|ˆ̇σ2 (x)− σ̇2 (x)|

= Op

(
h22 +

(
σ̂2 (x)− σ2 (x)

)
+ h2

(
ˆ̇σ2 (x)− σ̇2 (x)

))
= op(1) (B.57)

with |Xt − x| ≤ h2. Thus, we do not need to consider the third part of the above Taylor

expansion equation. Then, we have σ̂2(x)− σ2(x)

h2(ˆ̇σ
2(x)− σ̇2(x))

 =
1

nh2
E−1(ϕ

(2)
h1

(ϵt) | Xt = x)f−1
X (x)

 µ0 µ1

µ1 µ2


−1

(1 + op(1))Wn

+
h22
2
σ̈2(x)

 µ0 µ1

µ1 µ2


−1 µ2

µ3

 (1 + op(1)). (B.58)

With the results from Lemma B.2.7 and Slutsky’s theorem, we complete the proof.

Proof of Theorem 3.3.15

We follow the lines of the proof in Cheng et al. (2007). Recall that

E
(
σ̂2(x)

)
= σ2(x) +

(
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

)
+ o(h21 + h22 + (nh2h

3
1)

−1/2). (B.59)

σ̃2(x) =
r(r − 1)

2
σ̂2(x−(r+1)βh2)+(1−r2)σ̂2(x−rβh2)+

r(r + 1)

2
σ̂2(x−(r−1)βh2). (B.60)

By applying Taylor expansion, we can have

E
(
σ̃2(x)

)
=E

(
r(r − 1)

2
σ̂2(x− (r + 1)βh2) + (1− r2)σ̂2(x− rβh2) +

r(r + 1)

2
σ̂2(x− (r − 1)βh2)

)
=

(
r(r − 1)

2
+ (1− r2) +

r(r + 1)

2

)(
σ2(x) +

(
h22
2
µ2σ̈

2(x)− h21
2

g(3)(0 | x)
g(2)(0 | x)

))

+ σ̇2(x)
r(r − 1)

2
(−(r + 1)βh2) + σ̇2(x)(1− r2)(−rβh2)

+ σ̇2(x)
r(r + 1)

2
(−(r − 1)βh2) +

1

2
σ̈2(x)

r(r − 1)

2
(−(r + 1)βh2)

2
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+
1

2
σ̈2(x)(1− r2)(−rβh2)

2 +
1

2
σ̈2(x)

r(r − 1)

2
(−(r − 1)βh2)

2 + o(h21 + h22 + (nh2h
3
1)

−1/2).

(B.61)

It indicates that

E
(
σ̃2(x)

)
= σ2(x) +

(
h22
2
µ2σ̈

2(x)− h21
2

g
(3)
ϵ (0 | x)
g
(2)
ϵ (0 | x)

)
+ o(h21 + h22 + (nh2h

3
1)

−1/2). (B.62)

From the Proof of Theorem 3.3.14, we know that the main equation we need to

deal with for calculating the variance of σ̂2(x) at point x is

Var

(
− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

))

=E

(
− 1

nh21h2

n∑
t=1

ϕ(1)

(
ϵt
h1

)
K

(
Xt − x

h2

))2

(1 + op(1))

=
1

nh41h
2
2

∫∫
ϕ(1)2

(
ϵ

h1

)
gϵ(ϵ | X)K2

(
X − x

h2

)
fX(X)dϵdX(1 + op(1))

=

∫
τ2ϕ2(τ)dτ

nh31h2
fX(x)v0gϵ(0 | x)(1 + op(1)). (B.63)

In terms of the variance of σ̃2(x), we have

Var
(
σ̃2(x)

)
=Var

(
r(r − 1)

2
σ̂2(x− (r + 1)βh2) + (1− r2)σ̂2(x− rβh2) +

r(r + 1)

2
σ̂2(x− (r − 1)βh2)

)
=

∫
τ2ϕ2(τ)dτfX(x)

nh31h2g
(2)
ϵ (0 | x)2

gϵ(0 | x)
∫ (

r(r − 1)

2
K(s) + (1− r2)K(s+ βh2)

+
r(r + 1)

2
K(s+ 2βh2)

)
ds

=

∫
τ2ϕ2(τ)dτfX(x)

nh31h2g
(2)
ϵ (0 | x)2

gϵ(0 | x)
{
v0 −

3r2(1− r2)

2

∫
K2(s)ds

+ 2r2(1− r2)

∫
K(s)K(s+ βh2)ds−

r2(1− r2)

2

∫
K(s)K(s+ 2βh2)ds

}
=

∫
τ2ϕ2(τ)dτ

nh31h2g
(2)
ϵ (0 | x)2

fX(x)gϵ(0 | x)(v0 − r2(1− r2)C(β)), (B.64)

where C(β) = 1.5C(0, β)−2C(0.5, β)+0.5C(1, β) and C(β, t) =
∫
K(w− tβ)K(w+ tβ)dw.
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Proof of Theorem 3.5.17

Recall that

Qn(β1(x), β2(x)) =
1

nh3h4

n∑
t=1

ϕ

(
r̂t −Ψ(β1(x) + β2(x)(Xt − x))

h3

)
K

(
Xt − x

h4

)
. (B.65)

Following the notations in Ziegelmann (2002), we define L(Xt−x, θ) = Ψ(β1(x)+

β2(x)(Xt − x)) and L(i)(Xt − x, θ) = (∂/∂(Xt − x))iL(Xt − x, θ), where θ = (β1(x), β2(x)).

By applying Taylor expansion, we can obtain

Qn(θ) =
1

nh3h4

n∑
t=1

ϕ

(
ϵt +R∗(Xt)

h3

)
K

(
Xt − x

h4

)
, (B.66)

where R∗(Xt) = 2−1σ̈2(x)(Xt−x)2−2−1L(2)(0, θ)(Xt−x)2+ terms of smaller order. Then,

we can follow the same steps as Proof of Theorem 3.3.14 to obtain Theorem 3.5.17.
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Appendix C

Appendix for Chapter 4

C.1 Identification with Monotonicity

If we impose monotonicity for the modal function Mode(Y | X), we can identify CMTE

without using the full continuity assumption. In particular, we impose the following condi-

tions.

Assumption 3 fY1

(
Y | X = X̄

)
and fY0

(
Y | X = X̄

)
are strictly positive and unimodal

distributions, such that supY :|Y−Y m
1 |>ε fY1(Y | X = X̄) < fY1

(
Y m
1 | X = X̄

)
and supY :|Y−

Y m
0 |>εfY0(Y | X = X̄) < fY0

(
Y m
0 | X = X̄

)
for all ε > 0.

Assumption 4 (i) X 7→ Mode(Y1 | X) and X 7→ Mode(Y0 | X) are monotone in some

neighborhood of X̄; (ii) Mode(Y1 | X = X̄) ≥ Mode(Y0 | X = X̄) in the non-decreasing

case or Mode(Y1 | X = X̄) ≤ Mode(Y0 | X = X̄) in the non-increasing case.

Assumption 5 Under Assumption 4, X 7→ Mode(Y1 | X) is right-continuous at the cutoff

X̄ and X 7→ Mode(Y0 | X) is left-continuous at the cutoff X̄.
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Assumption 3 is nearly identical to Assumption 1 except for the continuity, which

is imposed to ensure that both distributions of Y1 and Y0 are unimodal in the presence of

X. It guarantees the existence of the modal estimator around the cutoff X̄. Assumption

4 assures that all limits exist at the discontinuity point and necessitates local responsive-

ness to treatment at the cutoff. Assumption 5, which is imposed on the conditional modes

of potential outcomes, is weaker than the assumption of full continuity at the cutoff. It

demonstrates that continuity at the cutoff of both conditional modal functions is not re-

quired for identification and that under monotonicity restriction, the one-sided continuity

is both necessary and sufficient for identification. We then have the following lemma.

Lemma C.1.8 Under the model settings in the paper and Assumptions 3-5, by defining

mY1(X̄) = limX↓X̄ mY1(X) and mY0(X̄) = limX↑X̄ mY0(X), the conditional mode effect of

the treatment on the outcome at the cutoff can be identified as

τRD = Mode
(
Y1 | X̄

)
−Mode

(
Y0 | X̄

)
= lim

X↓X̄
Mode (Y1 | X)− lim

X↑X̄
Mode (Y0 | X)

= lim
X↓X̄

Mode(Y | X)− lim
X↑X̄

Mode(Y | X) = mY1(X̄)−mY0(X̄),

where the second equation follows under Assumption 5, the third equation is a consequence

of Y = Y1D + Y0(1 −D) and D = 1
(
X ≥ X̄

)
, and the fourth one is from Assumptions 4

and 5.

Proof. To prove the above lemma, we only need to show the fourth equation. Be-

cause the treatment of non-increasing and non-decreasing cases is similar, we only dis-

cuss the former. Under the first part of Assumption 4, we have Mode(Y1 | X = X̄) ≤

limX↓X̄ Mode (Y1 | X) = limX↓X̄ Mode(Y | X) and limX↑X̄ Mode(Y | X) = limX↑X̄ Mode
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(Y0 | X) ≤ Mode(Y0 | X = X̄). Then, with the second part of Assumption 4, we obtain

limX↑X̄ Mode(Y | X) ≤ Mode(Y0 | X = X̄) ≤ Mode(Y1 | X = X̄) ≤ limX↓X̄ Mode(Y | X).

Finally, τRD is defined as the difference between the right and left limits of the condi-

tional modal regression functions evaluated at the cutoff X̄ by virtue of continuity under

Assumption 5.

C.2 Asymptotic Properties of m̂Y0
(x) and m̂

(1)
Y0
(x)

Theorem C.2.21 Under the regularity conditions C1-C4, with probability approaching one,

as n− → ∞, h1,− → 0, h2,− → 0, h22,−/h1,− → 0, and n−h2,−h
5
1,− → ∞, there exist

consistent maximizers (m̂Y0(x), h2,−m̂
(1)
Y0

(x)) of (4.11) such that

i. |m̂Y0(x)−mY0(x)| = Op

((
n−h2,−h

3
1,−
)−1/2

+ h21,− + h22,−

)
,

ii. |h2,−(m̂(1)
Y0

(x)−m
(1)
Y0

(x))| = Op

((
n−h2,−h

3
1,−
)−1/2

+ h21,− + h22,−

)
.

Theorem C.2.22 With n−h
5
2,−h

3
1,− = O(1) and n−h2,−h

7
1,− = O(1), under the same con-

ditions as Theorem C.2.21, the parameters satisfying the consistency results in Theorem

C.2.21 have the following asymptotic result

√
n−h2,−h31,−

( m̂Y0(x)−mY0(x)

h2,−(m̂
(1)
Y0

(x)−m
(1)
Y0

(x))

− Γ̂−1
(h22,−

2
m

(2)
Y0

(x)Λ̂2 −
h21,−
2

g
(3)
ϵ− (0 | x)
g
(2)
ϵ− (0 | x)

Λ̂1

))

d→ N

0,
gϵ−(0 | x)

∫
τ2ϕ2(τ)dτ(

g
(2)
ϵ− (0 | x)

)2
fX−(x)

Γ̂−1Σ̂Γ̂−1

 .

If we allow n−h
5
2,−h

3
1,− → 0 and n−h2,−h

7
1,− → 0, the asymptotic theorem becomes

√
n−h2,−h31,−

 m̂Y0(x)−mY0(x)

h2,−(m̂
(1)
Y0

(x)−m
(1)
Y0

(x))

 d→ N

0,
gϵ−(0 | x)

∫
τ2ϕ2(τ)dτ(

g
(2)
ϵ− (0 | x)

)2
fX−(x)

Γ̂−1Σ̂Γ̂−1

 .
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where Γ̂ =


∫ c̄
−M K(w)dw

∫ c̄
−M wK(w)dw∫ c̄

−M wK(w)dw
∫ c̄
−M w2K(w)dw

, Λ̂1 =


∫ c̄
−M K(w)dw∫ c̄

−M wK(w)dw

,

Λ̂2 =


∫ c̄
−M w2K(w)dw∫ c̄
−M w3K(w)dw

, and Σ̂ =


∫ c̄
−M K2(w)dw

∫ c̄
−M wK2(w)dw∫ c̄

−M wK2(w)dw
∫ c̄
−M w2K2(w)dw

.
The proofs of the aforementioned two theorems can be obtained directly by following the

procedures for proving Theorems 4.2.18 and 4.2.19, which are omitted in this paper for

space reasons.

C.3 Modal Inference for τ
(1)
RD

Theorem C.3.23 Under the regularity conditions C1-C4, with n+h
5
2,+h

3
1,+ = O(1), n+h2,+

h71,+ = O(1), n−h
5
2,−h

3
1,− = O(1), and n−h2,−h

7
1,− = O(1), as both n+ → ∞ and n− → ∞,

we have

τ̂
(1)
RD − τ

(1)
RD − Bias(τ̂

(1)
RD)√

Var(τ̂
(1)
RD)

d→ N (0, 1) .

If we allow n+h
5
2,+h

3
1,+ → 0, n+h2,+h

7
1,+ → 0, n−h

5
2,−h

3
1,− → 0, and n−h2,−h

7
1,− → 0, as

both n+ → ∞ and n− → ∞, we have

(Var(τ̂
(1)
RD))

−1/2(τ̂
(1)
RD − τRD)

d→ N (0, 1) ,

where Bias(τ̂
(1)
RD) =

{
h22,+
2

m
(2)
Y1

(X̄)
µ+,0µ+,3 − µ+,1µ+,2

µ+,0µ+,2 − µ2
+,1

−
h22,−
2

m
(2)
Y0

(X̄)
µ−,0µ−,3 − µ−,1µ−,2

µ−,0µ−,2 − µ2
−,1

}

(1 + op(1)) and Var(τ̂
(1)
RD) = Var(m̂

(1)
Y1

(X̄)) +Var(m̂
(1)
Y0

(X̄))

=

{∫
τ2ϕ2(τ)dτf−1

X+
(X̄)

n+h2,+h31,+

gϵ+(0 | X̄)

(g
(2)
ϵ+ (0 | X̄))2

µ2
+,1v+,0 − 2µ+,1µ+,0v+,1 + µ2

+,0v+,2

(µ+,0µ+,2 − µ2
+,1)

2

+

∫
τ2ϕ2(τ)dτf−1

X−
(X̄)

n−h2,−h31,−

gϵ−(0 | X̄)

(g
(2)
ϵ− (0 | X̄))2

µ2
−,1v−,0 − 2µ−,1µ−,0v−,1 + µ2

−,0v−,2

(µ−,0µ−,2 − µ2
−,1)

2

}

(1 + op(1)).
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C.4 Monte Carlo Experiment

It is observed that when the data are symmetrically distributed, the modal and mean

regression lines are identical to one another. However, little is known about the behavior

of the modal-based robust regression at the boundary point, which is a building block of

the modal-based robust RD estimator. We in this section numerically show that we can

utilize the proposed modal RD regression to estimate mean treatment effects, and have some

efficiency gain against mean regression when the data are non-normal or have outliers.

To illustrate the applicability of the proposed modal regression on the symmetric

case where the modal RD design is identical to the mean RD design (mainly focus on fuzzy

RD designs), we generate the random samples from the following DGP

Yi = m(Xi) +Diτ +Xiϵi, i = 1, · · · , n,

where m(Xi) = Xi+X2
i , Di = 1

(
Xi ≥ X̄i

)
, τ = 1, and Xi follows the uniform distribution

on [−2, 2]. The sample size considered for this experiment is n ∈ {200, 400, 600, 1000}. To

show the superiority of the modal-based estimation, we set (1) ϵi ∼ Laplace with µ = 0

and σ = 1; (2) ϵi ∼ t distribution with 3 degrees of freedom; and (3) ϵi ∼ mixture normal

0.9N(0, 1) + 0.1N(0, 9). The model has a jump at X̄i = 0.5 which is assumed to be known

in advance. Thus, we have the conditional modal/mean function

Mode(Yi | Xi) = E(Yi | Xi) = Xi +X2
i + 1 (Xi ≥ 0.5) τ,

where limX↑0.5Mode(Y0 | Xi = X̄i) = limX↑0.5E(Y0 | Xi = X̄i) = 0.75 and limX↓0.5Mode(Y1 |

Xi = limX↓0.5E(Y1 | Xi = X̄i) = X̄i) = 1.75. We can then have the direct causal effect of

interest τRD = τmean = 1. For easy illustration, we set all bandwidths associated with h2
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in mean and modal regression equal, which are calculated by R package rdrobust. For the

bandwidths associated with h1 in modal regression, we use the rule of thumb to set them

as 1.05σXn−1/5 in which σX is the standard deviation of variable X. For each data set, a

total of 200 simulation relocations are conducted.

Table C.1 presents the simulation results of the studied estimators, where the

bold number indicates the smaller value of the results obtained from the mean and modal-

based regressions, and the values in the brackets represent standard errors. The results

are in qualitative agreement with the theoretical intuition and show that the modal-based

estimation produces highly accurate/efficient estimates and outperforms the local linear

mean regression in all three error distributions under consideration.

Table C.1: Results of Simulations

Sample Size Mean Treatment Effect (SE) MSE Modal-Based (SE) MSE

Lp(0, 1)

n=200 1.0643 (0.3461) 0.1233 1.0836 (0.2920) 0.0918

n=400 1.0536 (0.2480) 0.0641 1.0448 (0.2161) 0.0485

n=600 1.0364 (0.1918) 0.0379 1.0216 (0.1587) 0.0255

n=1000 1.0222 (0.1620) 0.0266 1.0223 (0.1290) 0.0171

t(3)

n=200 1.0331 (0.4311) 0.1860 1.0974 (0.3902) 0.1610

n=400 1.0232 (0.3153) 0.0995 1.0119 (0.2757) 0.0758

n=600 1.0342 (0.2526) 0.0647 1.0260 (0.2332) 0.0548

n=1000 1.0079 (0.1780) 0.0316 1.0188 (0.1594) 0.0256

0.9N(0,1)+0.1N(0,9)

n=200 1.1121 (0.8105) 0.6662 1.0770 (0.4021) 0.1668

n=400 1.0905 (0.5607) 0.3210 1.0469 (0.3012) 0.0925

n=600 0.9507 (0.4522) 0.2059 1.0097 (0.2494) 0.0620

n=1000 1.0482 (0.3647) 0.1347 1.0474 (0.1975) 0.0410

The visual results for one set of simulated observations according to different values

of sample size are presented in Figure C.1, which shows that both mean and modal-based
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regression lines can capture the true RD regression lines. When we have symmetric data

with outliers or a heavy-tailed distribution, the modal regression line is the same as the mean

regression line, but modal-based estimation can give superior or more efficient estimators.

Figure C.1: Visual Results for One Set of Simulated Observations
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C.5 Technical Proofs

Proof of Lemma 4.2.2

We can easily prove the lemma on the basis of the definition of derivative. Notice that we

already know

Mode(Y0 | X̄) = lim
ε→0

Mode
(
Y0 | X̄ − ε

)
= lim

ε→0
Mode

(
Y0 | X̄ − ε,D = 0

)
= lim

ε→0
Mode

(
Y | X̄ − ε

)
= mY0(X̄) (C.1)

when ε is sufficiently small. Based on Assumption 2, since Mode(Y0 | X) is continuously

differentiable in a neighborhood of the cutoff X̄, Mode(1)(Y0 | X̄) will equal its own one-

sided derivative. We therefore have

Mode(1)(Y0 | X̄) = lim
ε→0

(Mode(Y0 | X̄ − ε)−Mode(Y0 | X̄))/ε

= lim
ε→0

(Mode(Y0 | X̄ − ε,D = 0)−Mode(Y | X̄))/ε

= lim
ε→0

(Mode(Y | X̄ − ε)−Mode(Y | X̄))/ε = m
(1)
Y0

(X̄). (C.2)

Similar results are obtained for m
(1)
Y1

(X̄). We then prove the lemma.

Proof of Theorem 4.2.18

Define θ = (a+, h2,+b+)
T , θ0 = (mY1(x), h2,+m

(1)
Y1

(x))T , X∗
+,i = (1, (X+,i−x)/h2,+)

T , where

θ0 is the true value of the parameter, we have

Qn+(θ) =
1

n+h1,+h2,+

n+∑
i=1

ϕ

(
Y1,i −X∗T

+,iθ

h1,+

)
K

(
X+,i − x

h2,+

)
. (C.3)

Define δn+ = h21,+ + h22,+ +
√

(n+h31,+h2,+)
−1, then it is sufficient to show that for

any given η, there exists a large number constant c such that

267



P

{
sup

∥µ∥=c
Qn+

(
θ0 + δn+µ

)
< Qn+ (θ0)

}
≥ 1− η, (C.4)

where ∥ · ∥ represents the Euclidean distance. (C.4) implies that with a probability tending

to one, there is a local maximum in the ball {θ0+δn+µ : ∥µ∥ ≤ c}. Using Taylor expansion,

it follows that

Qn+

(
θ0 + δn+µ

)
−Qn+ (θ0)

=
1

n+h1,+h2,+

n+∑
i=1

[
ϕ

(
R(X+,i) + ϵ+,i − δn+µ

TX∗
+,i

h1,+

)
K

(
X+,i − x

h2,+

)

− ϕ

(
R(X+,i) + ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)]

=
1

n+h1,+h2,+

n+∑
i=1

[
−ϕ(1)

(
R(X+,i) + ϵ+,i

h1,+

)(
δn+µ

TX∗
+,i

h1,+

)
K

(
X+,i − x

h2,+

)

+
1

2
ϕ(2)

(
R(X+,i) + ϵ+,i

h1,+

)(
δn+µ

TX∗
+,i

h1,+

)2

K

(
X+,i − x

h2,+

)

− 1

6
ϕ(3)

(
ϵ∗+,i

h1,+

)(
δn+µ

TX∗
+,i

h1,+

)3

K

(
X+,i − x

h2,+

)]

=I1 + I2 + I3, (C.5)

where ϵ∗+,i is between R(X+,i) + ϵ+,i and R(X+,i) + ϵ+,i − δn+µ
TX∗

+,i, and R(X+,i) =∑
j=2(m

(j)
Y1

(x) /j!)(X+,i − x)j . Based on the result Tn+ = E
(
Tn+

)
+ Op(

√
Var

(
Tn+

)
), we

consider each part of the above Taylor expansion.

(i) For the first part, I1 = 1
n+h1,+h2,+

∑n+

i=1

(
− ϕ(1)

(
R(X+,i)+ϵ+,i

h1,+

)(
δn+µTX∗

+,i

h1,+

)
K
(
X+,i−x
h2,+

))
, by Taylor expansion, we can rewrite it as

E(I1) =
−δn+

h1,+h2,+
E

(
ϕ(1)

(
R(X+,i) + ϵ+,i

h1,+

)(
µTX∗

+,i

h1,+

)
K

(
X+,i − x

h2,+

))

=
−δn+

h1,+h2,+
E

(
ϕ(1)

(
ϵ+,i

h1,+

)
µTX∗

+,i

h1,+
K

(
X+,i − x

h2,+

)
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+ ϕ(2)

(
ϵ+,i

h1,+

)
R(X+,i)µ

TX∗
+,i

h21,+
K

(
X+,i − x

h2,+

)
+
1

2
ϕ(3)

(
ϵ∗∗+,i

h1,+

)
R2(X+,i)µ

TX∗
+,i

h31,+
K

(
X+,i − x

h2,+

))

= I11 + I12 + I13, (C.6)

where ϵ∗∗+,i is between ϵ+,i and ϵ+,i + R(X+,i). Notice that as the order of ϵ∗∗+,i is the same

as that of ϵ+,i, when we do the calculations associated with I13, we instead use ϵ+,i directly.

By some direct calculations for each part, we can get

I11 =
−δn+

h1,+h2,+
E

(
ϕ(1)

(
ϵ+,i

h1,+

)
µTX∗

+,i

h1,+
K

(
X+,i − x

h2,+

))
= Op(δn+ch

2
1,+). (C.7)

I12 =
−δn+

h1,+h2,+
E

(
ϕ(2)

(
ϵ+,i

h1,+

)
µTX∗

+,i

h1,+
K

(
X+,i − x

h2,+

)
R(X+,i)

h1,+

)

=
−δn+

h1,+

∫∫
ϕ (τ) (τ2 − 1)µTX∗

+gϵ+(τh1,+|x)K (w)
R(X+)

h1,+
fX+(wh2,+ + x)dwdτ

=Op(δn+ch
2
2,+). (C.8)

I13 ≈
−δn+

h1,+h2,+
E

(
1

2
ϕ(3)

(
ϵ+,i

h1,+

)
R2(X+,i)µ

TX∗
+,i

h31,+
K

(
X+,i − x

h2,+

))

≤
−δn+h

4
2,+

2

∫∫
ϕ(τ)(3τ − τ3)

(m
(2)
Y1

(x))2µTX∗
+

4h31,+
gϵ+(τh1,+|x)K(w)w4fX+(wh2,+ + x)

dwdτ{1 + op(1)}

=op(δn+ch
2
2,+). (C.9)

Meanwhile, with the condition h22,+/h1,+ → 0 held, we obtain

δ2n+

h21,+h
2
2,+

E

(
ϕ(1)

(
ϵ+,i

h1,+

)
µTX∗

+,i

h1,+
K

(
X+,i − x

h2,+

))2

= Op(δ
2
n+

c2(h31,+h2,+)
−1). (C.10)
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δ2n+

h21,+h
2
2,+

E

(
ϕ(2)

(
ϵ+,i

h1,+

)
µTX∗

+,i

h1,+
K

(
X+,i − x

h2,+

)
R(X+,i)

h1,+

)2

≤
δ2n+

h32,+
h51,+

∫∫
ϕ2 (τ) (τ2 − 1)2(µTX∗

+)
2gϵ+(τh1,+|x)w4K2 (w)

(m
(2)
Y1

(x))2

4
fX+(wh2,+ + x)

dwdτ{1 + op(1)} = op(δ
2
n+

c2(h31,+h2,+)
−1). (C.11)

The above equations show that I1 = Op(δn+c(h
2
1,++h22,+))+Op(

√
δ2n+

c2(n+h31,+h2,+)
−1) =

Op(δ
2
n+

c).

(ii) For the second part, I2 =
1

n+h1,+h2,+

∑n+

i=1

(
1
2ϕ

(2)
(
R(X+,i)+ϵ+,i

h1,+

)(
δn+µTX∗

+,i

h1,+

)2

K
(
X+,i−x
h2,+

))
, we can rewrite it as

E(I2) =
δ2n+

2h2,+h1,+
E

ϕ(2)

(
R(X+,i) + ϵ+,i

h1,+

)(
δn+µ

TX∗
+,i

h1,+

)2

K

(
X+,i − x

h2,+

)
=

δ2n+

2h2,+h1,+
E

(
ϕ(2)

(
ϵ+,i

h1,+

)
(µTX∗

+,i)
2

h21,+
K

(
X+,i − x

h2,+

)

+ ϕ(3)

(
ϵ+,i

h1,+

)
R(X+,i)(µ

TX∗
+,i)

2

h31,+
K

(
X+,i − x

h2,+

)
+

1

2
ϕ(4)

(
ϵ∗∗+,i

h1,+

)
R2(X+,i)(µ

TX∗
+,i)

2

h41,+
K

(
X+,i − x

h2,+

))

=I21 + I22 + I23, (C.12)

where ϵ∗∗+,i lies between ϵ+,i and ϵt+R(X+,i). Notice that as the order of ϵ
∗∗
+,i is the same as

that of ϵ+,i, when we do the calculations associated with I23, we instead use ϵ+,i directly.

By some calculations for each part, we can get

I21 =
δ2n+

2h2,+h1,+
E

(
ϕ(2)

(
ϵ+,i

h1,+

)
(µTX∗

+,i)
2

h21,+
K

(
X+,i − x

h2,+

))

=
δ2n+

2h2,+h1,+

∫∫
ϕ(2)

(
ϵ+
h1,+

)
(µTX∗

+)
2

h21,+
gϵ+(ϵ+|X+)K

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+
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=
δ2n+

2h21,+

∫∫
ϕ(τ)(τ2 − 1)(µTX∗

+)
2gϵ+(τh1,+|x)K(w)fX+(wh2,+ + x)dwdτ

=Op((δn+c)
2). (C.13)

I22 =
δ2n+

2h2,+h1,+
E

(
ϕ(3)

(
ϵ+,i

h1,+

)
R(X+,i)(µ

TX∗
+,i)

2

h31,+
K

(
X+,i − x

h2,+

))

=
δ2n+

2h2,+h1,+

∫∫
ϕ(3)

(
ϵ+
h1,+

)
R(X+)(µ

TX∗
+)

2

h31,+
gϵ+(ϵ+|X+)K

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

≤
δ2n+

h22,+
2h31,+

∫∫
ϕ(τ)(3τ − τ3)

m
(2)
Y1

(x)

2
(µTX∗

+)
2gϵ+(τh1,+|x)w2K(w)fX+(wh2,+ + x)dwdτ

{1 + op(1)}

=op((δn+c)
2). (C.14)

Meanwhile, we can prove that I23 = op((δn+c)
2) as well. Following the same steps in (i),

we obtain the following result

δ4n+

4h22,+h
2
1,+

E

(
ϕ(2)

(
ϵ+,i

h1,+

)
(µTX∗

+,i)
2

h21,+
K

(
X+,i − x

h2,+

))2

=
δ4n+

4h22,+h
2
1,+

∫∫
ϕ(2)2

(
ϵ+
h1,+

)
(µTX∗

+)
4

h41,+
gϵ+(ϵ+|X+)K

2

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

=
δ4n+

4h2,+h21,+

∫∫
ϕ2(τ)(τ2 − 1)2

(µTX∗
+)

4

h41,+
gϵ+(τh1,+|x)K2(w)fX+(wh2,+ + x)dwdτ

=Op((δn+c)
4(h2,+h

5
1,+)

−1). (C.15)

With the condition n+h
5
1,+h2,+ → ∞ held, the above equations indicate that the second

part will dominate the first part when we choose c big enough.

(iii) The same way is used to calculate the third part. As the order of ϵ∗+,i is the

same as the order of ϵ+,i, we can obtain I3 ≈ 1
n+h1,+h2,+

∑n+

i=1

(
− 1

6ϕ
(3)
(

ϵ+,i

h1,+

)(
δn+µTX∗

+,i

h1,+

)3

K
(
X+,i−x
h2,+

))
. By direct calculations, we can get
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δ3n+

6h2,+h1,+
E

(
ϕ(3)

(
ϵ+,i

h1,+

)
(µTX∗

+,i)
3

h31,+
K

(
X+,i − x

h2,+

))

=
δ3n+

6h2,+h1,+

∫∫
ϕ(3)

(
ϵ+
h1,+

)
(µTX∗

+)
3

h31,+
gϵ+(ϵ+|X+)K

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

=
δ3n+

6

∫∫
ϕ(τ)(3τ − τ3)

(µTX∗
+)

3

h31,+
gϵ+(τh1,+|x)K(w)fX+(wh2,+ + x)dwdτ

=Op(δ
3
n+

). (C.16)

δ6n+

36h22,+h
2
1,+

E

(
ϕ(3)

(
ϵ+,i

h1,+

)
(µTX∗

+,i)
3

h31,+
K

(
X+,i − x

h2,+

))2

=
δ6n+

36h22,+h
2
1,+

∫∫
ϕ(3)2

(
ϵ+
h1,+

)
(µTX∗

+)
6

h61,+
gϵ+(ϵ+|X+)K

2

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

=
δ6n+

36h2,+h1,+

∫∫
ϕ2(τ)(3τ − τ3)2

(µTX∗
+)

6

h61,+
gϵ+(τh1,+|x)K2(w)fX+(wh2,+ + x)dwdτ

=Op(δ
6
n+

(h2,+h
7
1,+)

−1). (C.17)

These indicate that the second part dominates the third part.

Based on these, we can choose c bigger enough such that I2 dominates both I1 and

I3 with probability 1−η. Because the second term is negative, P{sup∥µ∥=cQn+

(
θ0 + δn+µ

)
< Qn+ (θ0)} ≥ 1− η holds.

Proof of Theorem 4.2.19

Following the same steps as proving Theorem 4.2.18, recall that

Qn+(θ) =
1

nh1+h2+

n+∑
i=1

ϕ

(
Y1 −X∗T

+,iθ

h1,+

)
K

(
X+,i − x

h2,+

)
. (C.18)

Define θ̂ = (m̂Y1(x), h2,+m̂
(1)
Y1

(x)), it must satisfy the following equation

− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i + R̃(X+,i)

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i = 0, (C.19)
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where R̃(X+,i) =
∑

j=2(m
(j)
Y1

(x)/j!)(X+,i−x)j −X∗T
+,i(θ̂−θ0) = R(X+,i)−X∗T

+,i(θ̂−θ0). We

can then rewrite (C.19) as

− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i +R(X+,i)−X∗T

+,i(θ̂ − θ0)

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i = 0. (C.20)

By taking Taylor expansion, we can obtain

− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i

+
1

n+h31,+h2,+

n+∑
i=1

ϕ(2)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i(R(X+,i)−X∗T
+,i(θ̂ − θ0))

− 1

n+h41,+h2,+

n+∑
i=1

ϕ(3)

(
ϵ̃∗+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i

(
R(X+,i)−X∗T

+,i(θ̂ − θ0)
)2

= 0,

(C.21)

where ϵ̃∗+,i is between ϵ+,i and ϵ+,i + R(X+,i) − X∗T
+,i(θ̂ − θ0). From Theorem 4.2.18, we

know ∥θ̂ − θ0∥ = Op(δn+), which indicates that

sup
i:|X+,i−x|/h2,+≤1

|R(X+,i)−X∗T
+,i(θ̂ − θ0)| ≤ sup

i:|X+,i−x|/h2,+≤1
{|R(X+,i)|+ |X∗T

+,i(θ̂ − θ0)|}

= Op(∥θ̂ − θ0)∥) = Op(δn+). (C.22)

Combining this with the results in the Proof of Theorem 4.2.18, we can see that the third

part which is associated with X∗
+,i

(
R(X+,i)−X∗T

+,i(θ̂ − θ0)
)2

is dominated by the second

part which is associated with X∗
+,i

(
R(X+,i)−X∗T

+,i(θ̂ − θ0)
)
. We then mainly focus on

the first two parts of the left side of (C.19).

Considering − 1
n+h2

1,+h2,+

∑n+

i=1 ϕ
(1)
(

ϵ+,i

h1,+

)
K
(
X+,i−x
h2,+

)
X∗

+,i +
1

n+h3
1,+h2,+

∑n+

i=1 ϕ
(2)(

ϵ+,i

h1,+

)
K
(
X+,i−x
h2,+

)
X∗

+,iR(X+,i), by some direct calculations, we can obtain

E

{
− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i
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+
1

n+h31,+h2,+

n+∑
i=1

ϕ(2)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,iR(X+,i)

}

=− 1

h21,+h2,+

∫∫
ϕ(1)

(
ϵ+
h1,+

)
X∗

+gϵ+(ϵ+|X+)K

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

+
1

h31,+h2,+

∫∫
ϕ(2)

(
ϵ+
h1,+

)
X∗

+gϵ+(ϵ+|X+)K

(
X+ − x

h2,+

)
R(X+)fX+(X+)dϵ+dX+

=
1

h1,+

∫∫
ϕ (τ) τX∗

+gϵ+(τh1,+|x)K (w) fX+(wh2,+ + x)dwdτ

− 1

h21,+

∫∫
ϕ (τ) (τ2 − 1)X∗

+gϵ+(τh1,+|x)K (w)R(X+)fX+(wh2,+ + x)dwdτ

=

{
h21,+
6

fX+(x)

µ+,0g
(3)
ϵ+ (0|x)

µ+,1g
(3)
ϵ+ (0|x)

−

h22,+m
(2)
Y1

(x)

2
fX+(x)

µ+,2g
(2)
ϵ+ (0|x)

µ+,3g
(2)
ϵ+ (0|x)



}
{1 + op(1)},

(C.23)

where
∫
τ4ϕ(τ)dτ = 3,

∫
τ2ϕ(τ)dτ = 1, and

∫M
−x̄w

jK(w)dw = µ+,j for j = 0, 1, 2, 3.

Considering 1
n+h3

1,+h2,+

∑n+

i=1 ϕ
(2)
(

ϵ+,i

h1,+

)
K
(
X+,i−x
h2,+

)
X∗

+,iX
∗T
+,i, by direct calcula-

tions, we have

E

(
1

n+h31,+h2,+

n+∑
i=1

ϕ(2)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,iX
∗T
+,i

)

=E

(
1

h31,+h2,+
ϕ(2)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,iX
∗T
+,i

)

=
1

h31,+h2,+

∫∫
ϕ(2)

(
ϵ+
h1,+

)
X∗

+X
∗T
+ gϵ+(ϵ+|X+)K

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

=
1

h21,+

∫∫
ϕ (τ) (τ2 − 1)X∗

+X
∗T
+ gϵ+(ϵ+|x)K (w) fX+(wh2,+ + x)dwdτ(1 + op(1))

=fX+(x)

µ+,0g
(2)
ϵ+ (0|x) µ+,1g

(2)
ϵ+ (0|x)

µ+,1g
(2)
ϵ+ (0|x) µ+,2g

(2)
ϵ+ (0|x)

 . (C.24)

Based on the above two equations (C.23) and (C.24), we can achieve
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θ̂ − θ0 =

µ+,0g
(2)
ϵ+ (0|x) µ+,1g

(2)
ϵ+ (0|x)

µ+,1g
(2)
ϵ+ (0|x) µ+,2g

(2)
ϵ+ (0|x)


−1

h21,+
6

fX+(x)

µ+,0g
(3)
ϵ+ (0|x)

µ+,1g
(3)
ϵ+ (0|x)

−

h22,+m
(2)
Y1

(x)

2
fX+(x)

µ+,2g
(2)
ϵ+ (0|x)

µ3,+g
(2)
ϵ+ (0|x)





{1 + op(1)}. (C.25)

Meanwhile, with the condition h22,+/h1,+ → 0 held, we can obtain

Var
{
− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i

+
1

n+h31,+h2,+

n+∑
i=1

ϕ(2)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,iR(X+,i)
}

=E

(
− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i

)
(
− 1

n+h21,+h2,+

n+∑
i=1

ϕ(1)

(
ϵ+,i

h1,+

)
K

(
X+,i − x

h2,+

)
X∗

+,i

)T

(1 + op(1))

=
1

n+h41,+h
2
2,+

∫∫
ϕ(1)2

(
ϵ+
h1,+

)
X∗

+X
∗T
+ gϵ+(ϵ+|X+)K

2

(
X+ − x

h2,+

)
fX+(X+)dϵ+dX+

(1 + op(1))

=

∫
τ2ϕ2(τ)dτ

n+h31,+h2,+
fX+(x)

v0,+gϵ+(0|x) v1,+gϵ+(0|x)

v1,+gϵ+(0|x) v2,+gϵ+(0|x)

 (1 + op(1)), (C.26)

where v+,j =
∫M
−x̄w

jK2(w)dw for j = 0, 1, 2. Then, we can get

Var(θ̂ − θ0) =

∫
τ2ϕ2(τ)dτ

n+h31,+h2,+fX+(x)

µ+,0g
(2)
ϵ+ (0|x) µ+,1g

(2)
ϵ+ (0|x)

µ+,1g
(2)
ϵ+ (0|x) µ+,2g

(2)
ϵ+ (0|x)


−1

v0,+gϵ+(0|x) v1,+gϵ+(0|x)

v1,+gϵ+(0|x) v2,+gϵ+(0|x)


µ+,0g

(2)
ϵ+ (0|x) µ+,1g

(2)
ϵ+ (0|x)

µ+,1g
(2)
ϵ+ (0|x) µ+,2g

(2)
ϵ+ (0|x)


−1

(1 + op(1)). (C.27)
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Define Wn+ = 1
n+h2

1,+h2,+

∑n+

i=1 ϕ
(1)
(

ϵ+,i

h1,+

)
K
(
X+,i−x
h2,+

)
X∗

+,i. By Slutsky’s theo-

rem, to show Theorem 4.2.19, it is sufficient to show that

Tn+ =
√
n+h2,+h31,+Wn+

d→ N (0, T ), (C.28)

where T =
∫
τ2ϕ2(τ)dτfX+(x)

v0,+gϵ+(0|x) v1,+gϵ+(0|x)

v1,+gϵ+(0|x) v2,+gϵ+(0|x)

. We then prove that for any

unit vector d ∈ R2,

{
dT Cov

(
Tn+

)
d
}−1/2 {

dTTn+ − dTE
(
Tn+

)} d→ N(0, 1). (C.29)

We therefore check Lyapunov’s condition. Let ξi =
√
h2,+h31,+/n+K

(
X+−x
h2,+

)
1

h1,+h2,+

ϕ(1)
(

ϵ+,i

h1,+

)
dTX∗

+,i, we need to prove n+E|ξ1|3 → 0. As
(
dTX∗

+,i

)2 ≤ ∥d∥2
∥∥X∗

+,i

∥∥2 , ϕ(1)(·)

is bounded, and K(·) has a compact support, we have

n+E|ξ|3 ≤ O
(
n+n

−3/2
+ h

−3/2
2,+ h

3/2
1,+

)
E
∣∣∣K3

(
X+ − x

h2,+

)
ϕ(1)3

(
ϵ+,i

h1,+

)
dTX∗

+,i

∣∣∣→ 0. (C.30)

Thus, the asymptotic normality for Tn+ holds.
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