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ABSTRACT OF THE DISSERTATION

Physiological Orchestration in Bacteria

by

John Thomas Sauls

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2019

Professor Suckjoon Jun, Chair
Professor Terence Hwa, Co-Chair

Each cell must achieve the dual tasks of replicating the genetic material and dividing its

components into its daughters. This thesis is concerned with how the cell coordinates those fun-

damental requirements. It approaches this question from the perspective of bacterial physiology,

looking at the global relationship between these processes and growth at large. The thesis aims

to uncover and test quantitative principles which govern this physiological orchestration. We

first review the early quantitative principles, or growth laws, and their modern expansions. This

includes cell size control, its connection with the cell cycle, and homeostatic control of each.

We then explore these principles in the context of the model organisms E. coli and B. subtilis.
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Despite their evolutionary distance, we find the two species to be fundamentally similar in their

physiological control. Finally, we test the limits of replication and division coordination using

single-cell measurements and nutrient-shift experiments. This leads us to reevaluate the canonical

Helmstetter-Cooper cell cycle model. Instead of a strict dependency of division on replication

initiation, we instead support the view that both processes are controlled by independent threshold

mechanisms.
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Chapter 1

Introduction to Bacterial Physiology

1.1 Introduction

The earliest cells are thought to have arisen in Earth’s shallow seas less than a billion

years into our planet’s life1. These cells were not as we would recognize them today. They likely

did not yet contain DNA and perhaps were encapsulated by something other than a phospholipid

membrane2–4. Nevertheless, the existence of these cells allowed for evolutionary force to first

sway life. Cells are a prerequisite for evolution because they allow unique entities to be rewarded

for their ability to grow and propagate5, 6. Before cells, prebiotic replicative molecules could

not easily reap the benefits of their catalysis, as all resources were shared and all production

dissipated through diffusion. A cell is born when those replicative molecules are encapsulated

from their environment. If such a cell can grow and reproduce, it gifts to its daughters those same

capabilities and in turn the chance to live, change, and flourish. To give this gift a cell must do

exactly two things: replicate its information molecules and divide its growth into separate entities.

Replication and division amongst early life was a sloppy affair6, 7. It is doubtful that the

two tasks were in any way coupled, so agenetic blebs or other sterile monstrosities were likely

common. Four billion years later, evolution has shaped the descendants of those early forms
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into extremely efficient species which thrive in aggressive environments and against ruthless

competition. Modern bacteria are paragons of growth. Escherichia coli can double its size and

divide in just under twenty minutes8. And it does so with impressive fidelity, with less than 1 in

100 divisions leading to death9. This is a testament to the species’ ability to link replication with

division.

This thesis addresses how bacteria coordinate replication and division with such fidelity.

I use E. coli and Bacillus subtilis as my experimental organisms. I ask this question from the

perspective of bacterial physiology and quantitative biology. The inspiration from bacterial

physiology means that I consider replication and division in the context of the entire cell and

its fundamental goal to grow and propagate. While molecular players are certainly discussed,

the main work in this thesis did not intend to uncover the specific function of particular proteins.

Instead it is to more broadly understand how molecular mechanisms lead to global coordination

of the central biological processes.

Quantitative biology is the application of precise measurements, rigorous statistics, and

mathematical modeling to biological questions. In the space of bacterial physiology, quantitative

biology attempts to produce formal relations that can predict the growth and phenotype of

prokaryotic life. Thus, this thesis work aimed to determine quantitative relationships among the

cell, its environment, and its internal processes. This goal is an extension of the foundational

works in the field from the middle of the 20th century, carried forward by recent discoveries made

with the help of advances in microfluidics, microscopy, and computing10.

Indeed, the work described here was made possible by such advances. Though many

of the original observations on which this thesis work is based were made at the population

level, most of the experiments herein investigate large numbers of single cells. This approach

affords many advantages, not least of which is that it allows the researcher to witness firsthand

the harmony among growth, replication, and division.

2



1.2 Outline

This thesis is organized as follows.

In the rest of the introduction I describe the basic principles of bacterial physiology. This

begins with the theory of measurements and description of bacterial populations. It ends with

a summary of the major quantitative principles in the field, from the classic works to modern

discoveries of which I was a part. These principles are then revisited through the thesis.

Chapter 2 addresses replication and division coordination in detail with a literature review.

This covers the initial formulation of the phenomenon, early models and their development until

today, and key molecular players. A major focus of Chapter 2 is history of the threshold model,

which explains how cells can trigger events in relation to their own growth.

In Chapter 3 I explore the fundamental quantitative principles of bacterial physiology in

the context of B. subtilis with comparison to E. coli. Most of the observations and theories in

this field were developed using E. coli and S. typhimurium. Perhaps surprisingly, B. subtilis is

extremely similar in its core physiological behavior. Chapter 3 is mostly a reproduction of Sauls

et al.11.

The unified physiological regulatory framework presented at the end of Chapter 3 is based

on a threshold mechanism to control replication initiation and division12, 13. This mechanism

is on display in single cells during nutrient shift-down, where initiation is delayed until cells

regain growth. Shift-down also seemingly breaks the canonical connection between initiation and

division.

Chapter 4 explores the shift paradigm in greater depth in order to push the limits of the

cell’s physiological coordination. Ultimately, we determine that the Helmstetter Cooper model,

while useful to conceptualize the bacterial cell cycle, does not accurately describe replication and

division coordination in individual cells. Instead, replication and division timing are primarily

controlled by independent threshold mechanisms, themselves tied to global biosynthesis.
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1.3 Background on bacterial physiology

Bacterial physiologists hope to understand how cells function given the environment

in which they live14. Physiology is at its most basic level described by the culmination of an

organism’s biological program, the result of which is growth. For bacteria, growth is intimately

connected to division (controlling size) and chromosome replication (controlling the cell cy-

cle)12, 15. I am thus centrally concerned with the control and coordination of growth, cell size,

and the cell cycle.

In the following sections I give a brief overview of major principles in bacterial physiology

on which my dissertation work is based. This begins with measurement concepts and a description

of bacterial growth (Subsections 1.3.1 and 1.3.2). Bacterial physiology is particularly satisfying

because even at its inception, its researchers were keen on finding quantitative relationships which

described their subjects16–18. This approach necessitated careful experimental procedures and

mathematical formalisms to describe cells and cell cultures.

From this I follow with the principles which govern cell size and cycle control and

homeostasis (Subsections 1.3.3 and 1.3.4). By “control” I mean how a cell determines its absolute

specifications (i.e. size or cell cycle duration) depending on its conditions. “Homeostasis” is how

the cell maintains those specifications in light of variability or stochasticity. The control section

covers the classic discoveries of the field and their modern expansion. The homeostasis section

briefly covers the discovery of the adder principle and its application to both size and cell cycle

homeostasis.

Note that I used cell size, cell mass, and cell volume interchangeably. The density of cells

is more or less constant across conditions, so this is a reasonable equivalency19.
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Figure 1.1: Growth of bacterial cultures. (A) During canonical bacterial growth, fresh
medium is inoculated with a colony. Cells adjust to their new environment during the lag phase.
They then increase in number and mass during the exponential phase as described in the text. As
nutrients are consumed and become limiting, cells slow growth and enter stationary phase. The
mass of the culture can be measured via the optical density (OD) using a spectrophotometer. (B)
Steady-state populations are created by consecutively diluting an exponential culture into fresh
media. (C) During balanced growth, all extrinsic properties of the culture increase in amount
proportionally to one another. This is equivalent to the mass fraction of all macromolecules
being time-invariant. (D) To achieve steady-state, cells must grow for long enough to dilute out
molecules associated with a previous state. In this example, to be compared to panel B, proteins
associated with the stationary phase become a smaller fraction of cell mass as cells grow without
producing these proteins during exponential growth.

1.3.1 Principles of bacterial growth and measurement

Initial progress in bacterial physiology came after the critical insight that the attainment

of general principles required the reproducible growth of cells20. While this appears to be a

truism, the task is non-obvious from the perspective of bacterial growth. The growth of a bacterial

population involves both an increase in mass and number, and it is the balance of their increase

that we will ultimately use to determine the physiological state of a culture.

Initially, the bacterial growth cycle was considered exclusively in the context of batch
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growth until nutrient depletion21 (Figure 1.1). In this sequence, a seed colony of cells grown

on an agar plate (or from a stationary culture) are inoculated into fresh medium with abundant

nutrients. With proper temperature control and aeration, the cells of this colony will begin growth

and are considered a liquid culture. After a lag phase in which the population slowly accumulates

mass and number, they will begin exponential growth, intermittently and briefly sustaining a

period of maximum increase. This is known as the exponential or log phase, and provides a

toehold for attaining reproducible growth. As the culture grows, inevitably the concentration of a

particular nutrient in the media drops below the consumption rate of the entire population. The

growth (both in mass and number) of the culture slows. Finally, as more nutrients are exhausted,

cells transition into stationary phase and cease to divide. Cell death eventually follows, but even

today that phase remains poorly characterized.

While this sequence is reproducible, quantifiable aspects of the population’s growth are

not. This is because, even under the same environmental conditions such as temperature and

media composition, the duration of the phases is a function of the physiological and environmental

history of the seed culture22. But it is nearly impossible to produce identical bacterial colonies

for seeding new cultures, as their physiology is in turn a function of their history. Phenomena

in biology are extremely difficult to isolate from the subject’s historical context, fundamentally

undermining reproducibility. You cannot restart a biological system as easily as you could a

circuit because all life is a continuous process that began billions of years ago.

Indeed, Neidhardt and Magasanic “realized, however, that the stationary phase does not

represent a unique physiological state”22. The key is then to release the bacterial culture of

its memory such that its physiology is only a function of its current environment. This can

be achieved during the exponential phase of batch culture, when cells grow at a maximal rate

determined by the growth conditions23. During this time, cellular growth is limited only by their

ability to transform the available nutrients into the molecules of which they are constituted. That

is to say, they are only limited by how fast they can make themselves.
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However, maximum exponential growth alone does not ensure reproducible measurements

of the culture. This is because cells growing in this state will still retain molecules that are

associated with a previous state Figure 1.1D. In bacteria, proteins account for around 50-80%

of cell mass, and very few proteins are actively degraded19, 24–26. Thus, the only way to shed

previous proteins is to dilute them out through growth. On average, cells double their mass and

divide evenly every generation, and cellular components are homogeneously inherited by the two

daughters. In this way, each cell before division is composed of one half “new” components,

while the other half was inherited from its mother. The geometric series can be followed to see

that of this inherited portion, half was made by the mother, half inherited from the grandmother,

and so on. Then, to attain a bacterial culture that is only a function of its current environment, that

culture must have growth through sufficient generations to dilute out the molecular memory of its

past. A rule of thumb is that after 10 unimpeded generations have passed, cells are considered to

be only a function of their current conditions14, 27.

This is achieved practically by diluting an exponentially growing population into new

media, allowing it to maintain its maximum growth rate over many generations Figure 1.1B18 .

In this way, a bacterial strain, defined by its genomic code, can be put reproducibly in the same

physiological state that is based strictly on the chemical and physical environmental conditions.

We know this as steady-state, and it forms the basis of all measurements in bacterial physiology.

1.3.2 Steady-state and description of bacterial growth

Steady-state growth implies both exponential growth and balanced growth14, 28. Exponen-

tial growth, described qualitatively above, is formally when the number of cells in the culture

increases with time according to the following formula:

N(t) = N0 · eλt
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Figure 1.2: Single-cell measurements. (A) Example time-lapse images of a single E. coli
growing in TSB medium taken every 45 seconds. Visual definitions of the major parameters
measurable via bright field or phase contrast microscopy are shown. Septum position S1/2 is
the newborn size divided by the division size of the mother. (B) Single-cell distributions of
some parameters, normalized by their respective means. The coefficient of variation (CV) of
a parameter is associated with its regulation, but may be misleading when considering which
parameters cells actively control. In either case, the CV of the major physiological parameters
follows the order S1/2 < λ < Sd < Sb < τ < ∆d. (C) Correlations among single-cell parameters
allow for insight into physiological control. Here, correlation analysis favors the adder principle
over sizer and timer.

Where λ is a constant (the growth rate), N0 is the cell number at time zero, and t is the

elapsed time. Note that the growth rate is related to the doubling time τ by λ = ln2/τ, as the
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above equation can be written as:

N(t) = N0 ·2t/τ

Balanced growth means that every extensive property of the culture increases by the same

rate (Figure 1.1C)10, 14, 29. An extensive property is any measurable, additive aspect of the culture,

such as the mass of RNA, DNA, or proteins, or the number of cells in the culture. For example, if

an exponentially growing culture is in balanced growth, then the mass of ribosomes Mrb in the

population will be:

Mrb = Mrb,0 · eλt

Where Mrb,0 is the mass of ribosomes at time zero.

While all extensive properties increase at the same rate during balanced growth, steady-

state implies that all intensive properties are time-invariant. Intensive properties of the culture

do not depend on the cultures size, but are instead derived from the physiological state of the

cell. Intensive properties include the average cell size, the ratio of ribosomes to other proteins,

and the duration of the cell cycle. In fact, steady-state demands that the distribution of these

parameters are also time-invariant, though those distributions are not always readily measurable

with population level measurements30. It is intensive properties, when compared across growth

conditions, that often lead to insight on the way bacteria orchestrate their lives.

So far we have considered steady-state measurements in the context of bacterial popula-

tions, but we also use the concept for single-cell growth experiments (Figure 1.2). Similarly, all

intrinsic variables and their distributions are time-invariant. For single cells, we measure their

growth by their elongation rate λ. This is because our principal model organisms, E. coli and

B. subtilis, are rod-shaped bacteria and have constant width in a particular growth conditions31.

Thus, an increase in length is proportional to an increase of mass. The single-cell elongation

rate is equivalent to the population growth rate, as both are proportional to mass accumulation.

Similarly, the single-cell interdivision time, or generation time, is equivalent to the population
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level doubling time (and we use τ for both), as individual cells on average double their mass from

birth to division.

The concept of balanced growth also applies to single cells, but with a large caveat.

Processes like DNA replication and division are in reality discrete events, yet the number of cells

in a liquid culture is so large that we consider the mass of DNA and cell number to increase

continuously. This is not appropriate for single cells. As described below, the cell cycle is highly

regulated in terms of when DNA replication is ongoing. This implies that cells of different ages

do not accumulate DNA at the same rate32.

However, there is little or no cell cycle dependent regulation of proteins either in terms

of production or degradation. Thus the production of all proteins in the cell is balanced: they

all increase at the same rate within and individual cell. Their production can be considered

constitutive. This can also be roughly applied to production of other macromolecules in the cell

(besides DNA), such as RNA and lipids, with the additional caveat that there is a change in the

rate of cell wall production during septation26, 33. In any case, the balanced production of proteins

in single cells will prove extremely useful in understanding the triggering of discrete biological

processes.

1.3.3 Background on size and cell cycle control

J. B. S. Haldane wrote in his 1926 essay On Being the Right Size:

For every type of animal there is a most convenient size, and a large change in size
inevitably carries with it a change of form34.

This sentiment certainly applies to bacterial domain, whose species’ span several orders

of magnitude35. In fact, the size of E. coli itself spans one order of magnitude depending on its

environmental conditions16.

Why does E. coli, as well as other species such as B. subtilis, vary its size based on

conditions? Enabled by the steady-state techniques outlined above, it was this observation by Ole
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Figure 1.3: Cell composition and size changes with growth rate. (A) Cells largely determine
their macromolecular composition based on their growth rate, regardless of the chemical details
of the medium. Here, in a reproduction of the classic work by Schaechter and colleagues, using
modern data from Si and colleagues, we see the relationship among RNA, cell size, and DNA
as a function of the growth rate. Lines are linear regression fits and the data is plotted on a
semi-log scale. Data has been normalized so all measurements have the same y-intercept. (B)
Representative images of E. coli at division in various media which support different growth
rates.

Maaløe’s Copenhagen lab that became a keystone of bacterial physiology14, 17. Great strides were

then made connecting cell size, the cell cycle, and growth in order to answer this question. It is

on these works that modern quantitative and systems biology approaches to bacterial physiology

are founded.

In 1958, Schaechter, Maaløe, and Kjeldgaard measured the extrinsic properties of total

mass, DNA, and RNA in cultures of Salmonella typhimurium in balanced growth across twenty-

two media compositions16. Using plate counts, they converted these measures to the intrinsic

properties of average mass (size), DNA, and RNA content per cell. This allowed them to plot

those quantities across the range of growth rates afforded by the different media, from about one

to three doublings per hour Figure 1.3. This simple yet thorough approach revealed two important

patterns.

The first is that it is the growth rate, not the chemical details of the of the media itself,

which predicate the macromolecular composition of the cell. Thus if two bacterial cultures grown

on two different media (for example, placenta broth and yeast extract with glucose used in the
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paper) have the same growth rate, cells in those cultures will have the same size, DNA, and RNA.

This is a boon to the quantitative power of the field, as it means we can use growth rate a state

variable in order to build predictive relationships. It also indicates the cell has a global regulatory

framework in which it connects growth to other processes. This is opposed to a molecularly

specific regulatory framework epitomized by contemporaneous work with the lac operon16.

The second observation was that cell size, DNA, and RNA content all increase exponen-

tially with growth rate, but not in the same proportion. RNA increase the fastest, followed by

cell size and DNA. The increase in size is well described by S ∝ eλ = 2µ, which I refer to as

the Schaechter line (note the relationship between growth rate λ and the doubling rate µ). The

difference in macromolecular composition across growth rates speaks to Haldane’s assertion:

with the change in size comes a change in form. Faster growing cells are not simply enlarged

versions of slower growing ones, but differ in their composition.

The reason for the increase in RNA is related to the increase in the fraction of active

ribosomes in relation to the total proteome in fast growing cells25.

Understanding why cell size and DNA increases with growth rate requires knowledge of

the bacterial cell cycle (Figures 1.4 and 1.5). This was mapped out by Helmstetter and Cooper ten

years later using S. typhimurium’s cousin E. coli32. By using a cell synchronization device called

the baby machine, they pulse labeled cells with tritiated thymidine, which was incorporated into

the nascent chromosome. By comparing the rate of DNA synthesis via thymidine incorporation

to the age of the cell, they were able to deduce the timing of the start and duration of chromosome

replication. They observed that chromosome replication (C period), and the time from replication

termination to division (D period), were constant at about 40 and 20 minutes, respectively, for

growth rates faster than one doubling per hour.

As the C+D period can be longer than the doubling time, they developed a model which

calls for daughter cells to be born with chromosomes which are already partially replicated. This

means that instead of increasing the speed or DNA replication, cells increase the frequency of
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Figure 1.4: The bacterial cell cycle (slow growth). (A) The Helmstetter-Cooper model of
bacterial cell division dictates when chromosome replication initiation begins assuming constant
C (40 minutes) and D (20 minutes) periods. Cell size is given in arbitrary units but follows
relationship of the Schaecter line such that S ∝ 2µ. When τ = C+D = 60 minutes, replication
initiation (purple circle) and cell birth are coincident. The chromosome replication occurs during
the first 40 minutes of the cells life. Daughter cells each inherit one complete and non-replicating
chromosome. (B) The cell size per ori at initiation is the same as in faster conditions shown in
Figure 1.5.

replication initiation. Intuitively, to keep replication and division in one-to-one correspondence,

both events occur every τ minutes. When τ is less than C+D, the number of overlapping cell

cycle noc is defined by floor(C+D/τ). This scenario of overlapping cell cycles leads to multifork

replication. In this complex state, the circular chromosome simultaneously accommodates

multiple sets of replication forks, all traversing from the replication origin (ori) to the terminus

(ter).

Soon after the publication of what would become known as the Helmstetter-Cooper (H-C)

model, William Donachie realized a striking feature connecting the cell cycle with cell size15, 36

(Figure 1.6). In his letter to Nature, Donachie uses a graphical method calculate the cell size at

chromosome replication initiation. The two major ingredients are the constant cell cycle duration

C+D and the exponential dependence of cell size on growth rate such that cell size is proportional

to 2µ. Under these assumptions, the size at initiation per replication origin is constant across
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Figure 1.5: The bacterial cell cycle (fast growth). (A) Diagram same as in Figure 1.4. When
τ = 40 minutes and is less than C+D, replication initiation corresponding to a division event
occurs halfway through the mother’s life. Daughter cells are born with one partially replicated
chromosome. When τ = 30 minutes, replication initiation occurs as the grandmother divides and
the mother is born. Because τ < C period, cells are born with a replicating chromosome that
contains two sets of replication forks (6 total replisomes). (B) The cell size per ori at initiation
is the same in all three conditions.

growth conditions. I refer to this normalized size at the initiation size.

This concept of the constant initiation size, or critical mass, as been the subject of debate

over the last 50 years38–40. But recent high-throughput approaches at both the population and

single-cell level have proved the strength of this principle (Figure 1.7)13, 37, 41. In fact, the

Schaechter line was found to be a special case of a more general principle37. In this “growth law
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observations from the Schaechter line and the H-C model are combined to reveal constant
initiation size, or critical mass15, 16, 32. Each diagonal line represents the growth in size from
birth to division for an average cell in seven growth conditions which bestow doubling times
between 20 and 60 minutes. Cells double in size between birth and division, and the absolute
birth size is determined by the relationship S ∝ 2µ. Sizes are normalized to the birth size of
cells growing with a doubling time of 60 minutes. The initiation size (purple circles) for each
condition is determined simply by counting C+D = 60 minutes before division. For growth
conditions where τ is a multiple of C+D, two initiation sizes are presented, one at birth and
one at division. This reveals that the size at initiation is constant (times a power of two) in all
conditions. When considering to the number of ori nori at initiation, the normalized initiation
size si = Si/nori is invariant across conditions.

of unit cells,” the average cell size is a function of a unit cell size (proportional to the initiation

size), the growth rate, and the cell cycle duration:

S = S0 · eλ·(C+D) = S0 ·2(C+D)/τ

In this formulation, the exponential relationship of size on growth rate in the Schaechter

line is because under nutrient limitation conditions, C+D and S0 is constant, so S is solely a

function of λ. However, under a different inhibition conditions, including sublethal doses of
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antibiotics and genetic perturbation, all three parameters can vary. Yet S0 was still invariant in

all conditions tested except in genetic constructs where the replication initiation machinery was

specifically targeted. This shows that the constant initiation size, intuited so many years ago, is

an important principle in which to view bacterial size and cell cycle control.

While the aforementioned study was at the population level, it is useful to think of the

initiation size in terms of individual cells (Figure 1.7). In this manner, the growth law of unit cells
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can be rewritten:

Sd = Si/nori · eλ·(C+D) = si · eλ·(C+D)

Note that the relationship between average population cell size and division size is

S = ln2 ·Sd. This is derived from the age distribution of an exponentially growing population,

and also means that the unit cell size and initiation size per ori are related by S0 = ln2 · si

This form may be easier to conceptualize, but it also reveals some issues. One is that,

upon closer inspection, the relationship is tautological because it must be true based on the

definitions of the inputs. This is due to the fact that the definition of D does not have a strong

biological origin; it simply defines the time between replication and termination and division.

This leads to a second problem in that the formula inherently suggests a strict pairing between

replication initiation and division33. This gives a false pretense for regulation which is ultimately

not accurate, and discussed in the following chapters.

Finally, it is unclear what precisely defines the invariant initiation size. I speculate that

at this size the cell has enough resources, either in reserves or through autophagy, to complete

chromosome replication even if it were rapidly lose available resources after initiation.

1.3.4 Background on size and cell cycle homeostasis

Size homeostasis is a basic feature of life. Consider a group of newly born cells which

exhibit a distinct distribution of sizes due to biological stochasticity. Without underlying coordi-

nation of growth and division, this distribution would diverge over generations, leading to cell

sizes that span many orders of magnitude. Evolution has instead selected for organisms which do

not take this gambit. Most microorganisms change their size by only twofold between birth and

division, with the variability of the size distributions being much smaller than their mean42. This

fidelity in the cell size maintenance points to the existence of size control mechanisms.

We now know the mechanism in which size homeostasis in bacteria is achieved. This
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paradigm is called the adder, and simply states that cells add a constant size between birth and

division Figure 1.88, 42. This discovery was enabled by high-throughput single-cell experiments.

These experiments allowed for correlation analysis of single-cell physiological parameters, which

in turn proved the existence of the adder principle.

The etymology of adder comes in contrast to historical size homeostasis mechanisms
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known as sizer and timer30, 42. With sizer, cells divide when they reach a preferred size. Sizer

is intuitively attractive, as all deviation from the correct size would be corrected in a single

generation. For timer, they divide a set amount of time after birth.

While both sizer and timer are obvious models for size control, they fail to explain single-

cell growth data8, 43–50. The failure of these models is not apparent from the distributions, but

requires correlations among the growth parameters. That is, if a cell divided at a critical size

(sizer), then its size at division would be constant despite its birth size. If the cell instead divided

after a constant time has elapsed since birth (timer), then generation time would be independent

of the birth size. Neither the division size nor the generation time are constant relative to the birth

size, inconsistent with either models (Figure 1.2).

In contrast to sizer or timer, cells following adder simply add on average a constant size,

∆d, between birth and division regardless of their birth size. This alone ensures size homeostasis.

To see this, consider a cell born exactly at ∆d. This cell grows by ∆d, doubling its size. When

it divides in the middle its two daughters are born at the same size as the previous generation.

However, a cell born smaller than ∆d will more than double its size, and its daughters will be

born slightly bigger than it was. Over successive generations, the difference between the initial

newborn cell size and ∆d progressively diminishes. Analogously, cells born larger than ∆d also

dilute out their size deviations with every division. The size of all newborn cells will converge to

∆d after several consecutive divisions irrespective of their initial size. Consequently, the average

newborn size of a steady-state population is identical to ∆d, which is determined by the growth

condition.

The adder principle has been shown to dictate size homeostasis for several evolution-

arily divergent bacterial species such as Caulobacter crescentus, E. coli, Bacillus subtilis, and

Pseudomonas aeruginosa8, 42, 45, 48–50. Importantly, adder describes cell size homeostasis without

feedback. Cells employing adder passively converge their size within a few generations without

the need to actively measure their absolute size. This is in stark contrast with the checkpoint-based
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models in eukaryotes for coordinating growth and the cell cycle, which implies each cell actively

control its own size. Dilution of size deviation through adder is conceptually similar to the

dilution of molecular memory discussed earlier.

Adder was discovered in the context of division control, but it also the driving forces

behind cell cycle control13. Deviations in the replication initiation size discussed above are

corrected by an adder mechanism. In this case, it is the added size between two initiation events

that is uncorrelated with respect to the initiation size.

It is important to note that the average initiation size is constant across growth conditions,

but the division size scales with the growth rate. Yet within one condition, homeostasis for both

is achieved through the adder principle. The mechanistic origins of adder are described in detail

in relation to the threshold model and balanced growth in Chapter 4.
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Chapter 2

Review of the Study of Replication and

Division Coordination

2.1 Introduction

In this chapter we review the literature and models associated with replication and division

coordination. We emphasize and favor the threshold model, tracking its history from the early

days of bacterial physiology to its modern understanding. This chapter provides a more in depth

background for the research presented in Chapters 3 and 4.

As discussed in Chapter 1, coordination of DNA replication and cell division is the

fundamental feat bacteria accomplish in order to propagate. How they achieve this with such

fidelity in one of the central questions of bacterial physiology and a major focus of research

since the 1950s. It was also the target of pioneering work in quantitative biology, whereby

researchers combine precision measurements and theoretical modeling to test rules that could

govern biological systems. We will begin with a review of an important work in this vein from

Arthur Koch, a meticulous thinker with a wide knowledge of microbiology (Section 2.2).

Koch’s piece frames our main question of whether division is a consequence of replication
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or if they are two separate processes. We then cover the history and description of the initiator

threshold model and its application triggering replication and division (Section 2.3). We end that

history with a deterministic description of the threshold model and its equivalency with the adder

principle.

In addition to the threshold model, many molecular players and mechanisms have been

discovered which influence the two processes. We will review some of these phenomena and the

associated molecules, chief among them DnaA for replication initiation and FtsZ for cell division

(Section 2.4).

2.2 Does replication initiation regulate division?

Whether replication initiation dictates division has been a central question of cell bi-

ology33, 51–56. For eukaryotic systems, it is universally taught that eukaryotic cells grow and

replicate their DNA during interphase, and then segregate their chromosomes and divide during

mitosis (M) (Figure 2.1A). Interphase is further divided into periods dedicated to growth (G1 and

G2) and one where DNA synthesis occurs as well (S). Despite some recent questioning of the

canon, strict ordering of these cell cycle phases is sacrosanct57, 58. Indeed, a central theme of the

eukaryotic model is that cells employs control checkpoints before transitioning from one phase to

the next.

For bacteria, diversion from the eukaryotic view was early, and the debate on if and how

the cell co-regulates replication and division has carried on until the modern day13, 41, 59–61. The

fundamental issue is whether division is consequence of initiation, or if it has separate controls.

The initial indication that the bacterial cell cycle differed from the eukaryotic sequence is that

DNA synthesis occurred throughout the growth, not during a dedicated phase62 (Figure 2.1B). As

discussed in Subsection 1.3.3 the field adopted the Helmstetter-Cooper (H-C) model as a basic

framework in which to discuss the bacterial cell cycle32. However, while this model differs from
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A Eukaryotic cell cycle B Prokaryotic cell cycle (fast growth)

G1

G2

M

S

CD

growth

division division

Figure 2.1: Eukaryotic and prokaryotic cell cycles. (A) The eukaryotic cell cycle is defined
by discrete phases which do not overlap. Growth occurs during G1, S, and G2 (collectively
known as interphase). DNA synthesis occurs during S. Mitosis, when the chromosomes are
segregated and division occurs, is M phase. (B) Prokaryotes grow continuously throughout
the cell cycle. Chromosome replication occurs during C period, and can start in the previous
generation. D period defines the time between replication termination and division. Chromosome
segregation begins before termination, concurrent with replication.

eukaryotic systems in that ongoing replication cycles can overlap, it still promulgates that the

order of events are sequential. This sequence begins with replication initiation and ends with

division, passing through intermediate steps such as nuclear segregation. This implies that, like

with the eukaryotic cell cycle, one event must follow another in strict order. But is it fair to

assume that division is simply a downstream consequence of initiation?

The remarkable constancy of C+D, and Donachie’s insight that the size at initiation

per origin is similarly invariant (at least in fast growth), increased the appeal of a replication

centric viewpoint based on the H-C model. But while it is a useful conceptual framework, re-

searchers questioned whether it explains the actual mechanism cells use to coordinate replication

and division12, 33. The debate was fueled from many sources, including competing measure-
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Figure 2.2: Classification of replication and division coordination models. Models describ-
ing the coordination of replication and division can be grossly grouped into two categories:
models where division is directly regulated by initiation (A), and models where division and
initiation are triggered by separate mechanisms tied to growth (B). In the first type of models,
the variability in division size Sd should be explained by the variability in initiation size Si plus
noise. In the second type of model, the variability of the two measures should only be related
insofar as they are both downstream of growth. Note that the birth size Sb is considered only as
a function of Sd.

ments15, 37, 40, 63, the discovery of molecular mechanisms which regulate either process or mediate

between them64–66, and a general lack of quality of single cell data30, 67. As a result of this

research, there are no shortage of models which attempt to explain replication and division coor-

dination60, 68–74. Most models can be grouped into two major camps (1) those which hold that

division is a down-stream process of replication initiation, and (2) those which treat replication

and initiation as two independent processes (Figure 2.2). There is a third class of models in which

initiation is triggered by division, but they are not widely held. One major drawback is that this

class of models cannot describe initiation in cells which are waking from stationary phase as the

previous division event is temporally distant.

Arthur Koch addressed this question directly in an extremely thorough work from which

this section derives its name: Does the Initiation of Chromosome Replication Regulate Cell

Division?33. While this work represents just one approach, we review it in detail to introduce

models and modes of thinking. Koch had a wide knowledge of bacterial physiology and comfort

with quantitative approaches. The year in which this work was published influences its scope and

insights. It is late enough that the insights of the Copenhagen school and other classic studies
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of bacterial physiology, i.e., the principles outlined in Chapter 1, are established. Koch also had

access to a computer capable of simulations which were not previously possible. However, it

is early enough that many major discoveries made possible by molecular biology, particularly

those concerning the proteins that regulate the cell cycle and their mechanisms, have not yet been

made. Thus, Koch’s approach was statistical and logical in nature, as he tested models so see how

well they agree with the data. Specifically, he used the available data to calculate the coefficient

of variation (CV) of physiological parameters and compared them to the predictions of various

models.

Koch first outlines his assumptions about cellular growth. The foundational idea is that

cells are chiefly concerned with growth, which he considers a continuous event. He believed the

CV of growth rate should be small. He based this on the premise that the number of molecules

involved in metabolism and biosynthesis are large, and those molecules are evenly divided

amongst the two daughters. Ironically, single-cell growth rate is one of the main parameters for

which he had little reliable data. Despite this, Koch’s intuition was good; the CV of growth rate is

one of the smallest of the physiological parameters, and the positioning of the septum is extremely

precise (Figure 2.3).

While growth is continuous, the events of the cell cycle are discrete. This includes

replication initiation, termination, nucleoid segregation, and division. Since in Koch’s view

growth is king, he postulates that the cell would never limit growth for the discrete events. This is

supported by the fact that protein production requires the majority of cellular resources, compared

to the modest amounts required for DNA synthesis or division75. If replication and division are

subservient to growth, he thinks they should be somehow triggered by cell size (the result of

growth). A size based trigger is conceptually distinct from triggering an event at a certain time

relative to another event.

In fact, a strict timer between birth and division would lead to cells of quickly diverging

sizes. Since cells grow exponentially, a cell born large, growing for a fixed amount of time, would
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Figure 2.3: Comparison of CVs of discrete cell cycle events. The distributions and CVs of
physiological parameters Koch used to show that 1) cell cycle events were subservient to growth
and 2) initiation and division were triggered by independent events. NCM is E. coli NCM3722.
Data is from Si and colleagues13

make daughters that are born larger than it was. The same applies for cells born small. Thus a

pure timer cannot explain size homeostasis, but timer in conjunction with another mechanism

could. For example, timer of length C+D (based on the H-C model) attached to Donachie’s

critical mass could potentially described cell size control and homeostasis.

Settled on the idea that size, the product of biosynthesis, is the key trigger for the events of

the cell cycle, Koch narrows his question to how many triggers there are. Is replication initiation

the only independent event, in which division inevitably follows? Or are there two (or more)
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separate triggers for initiation and division (and nucleoid segregation and others).

Koch’s further arguments are based on simulations of cellular growth using parameters

from available data. This data comes from experiments which mostly use synchronization

techniques to calculate the distribution of cell sizes at particular events, specifically birth, division,

initiation, termination, and nucleoid segregation51, 76–78. His most used data comes from slow

growth (τ = 120 minutes). This is key, because at generation times greater than 60 minutes,

we now know that C+D is not constant, and is in fact correlated with growth rate at both the

population and single cell levels13, 37. Moreover, the initiation size also increases at the population

level in slow growth.

In the first model tested, Koch modeled cellular growth simply by stating cells grow

with growth rate λ (with no variability) from birth to a critical division size, which has a CV of

10-15%. Not surprisingly, this simulation (which accounts for the age distribution of cells), is

able to reproduce the distribution of sizes in an exponentially growing population. This is his

first piece of evidence that division is controlled by a size trigger (i.e., a sizer). Koch did not

have access to single cell correlations among physiological parameters. If he had, as discussed in

Subsection 1.3.4, he would have concluded that a sizer model does not fit the experimental data.

He then tested a model in which initiation is triggered at a fixed size, and division follows a

fixed time later. For the above test, he just compared size distributions, but for this and subsequent

tests he incorporated labeling data which gives an indication of when DNA synthesis is ongoing

as a function of cell size. For this H-C style model, the distribution of sizes and the replication

state of simulated cells does not match the experimental data. This is because at slow growth

C+D is no longer constant and instead scales with generation time in individual cells13, 41. If he

had modeled fast growing cells, where C+D is constant, the H-C model would better reproduces

the observed distributions in sizes and replication state.

Instead, he rejected the H-C model and then tests an independent trigger model. In this

model, both initiation and division are triggered at a critical size, and each given their own CV.
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This model can reproduce both the distribution of sizes and the replication state of cells as a

function of their size. However, to do so requires simulation CV parameters of 10-15% for

division size and a 25% for initiation size. For Koch, this indicates that initiation cannot logically

control division. This is because a noisier process cannot control a less noisy process due to the

propagation of error.

Our single-cell single data at fast growth actually shows that the CV of initiation size is

comparable to that of division size (15%), but Koch’s logic still holds (Figure 2.3). For division

to have such a relatively small CV, and be a direct downstream consequence of initiation, would

require that the intermittent events occur with precision in time that is not reflected in the data.

Importantly, Koch’s simulations treat each cell as memoryless individuals (that is, a

Markov process). This means that the parameters chosen for each daughter cell, i.e., initiation and

division size, are drawn randomly from a Gaussian distribution without regard to the parameters

of the mother. However, this does not reflect the biology. Instead, “memory” between consecutive

generations leads to non-trivial auto-correlations in physiological parameters between mothers

and daughters. The lack of auto- and cross-correlation data greatly limits Koch’s analysis.

Unfortunately, he simply did not have access to this data and he mentions correlations only briefly

in his work. Nonetheless, Koch’s clear identification and formulation of the problem is a solid

stepping stone in addressing whether replication initiation controls division or if the two are

independent events.

2.3 The initiator threshold model

We will now cover the history and development of the initiator threshold model. This

model was initially conceived and developed in the context of replication initiation.
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A Semiconservative replication B Circular, closed chromosome 

C Unidirectional replication D Replicon model

Meselson and Stahl, 1958 Cairns, 1963

Yoshikawa and Seuoka, 1963 Jacobs, Brenner, and Cuzin, 1963

Figure 2.4: Early experiments and models of DNA replication in bacteria. A wave of
discoveries following determination of the molecular structure of DNA led to the introduction
of the replicon model 10 years later. (A) Watson and Crick famously hinted that the double
helix suggests that one DNA strand can serve as a template for another79. Meselson and
Stahl showed that indeed each daughter cell inherits half the DNA of the mother, leading to
the semiconservative model of DNA replication80. (B) Cairns showed microscopically that
the bacterial chromosome is a closed, circular ring81. (C) Using marker frequency analysis,
Yoshikawa and Seoka devised a model, also suggested by Cairns, that replication proceeds from
one point, the origin, to another point, the terminus, on the chromosome. (D) The replicon
model maintains that a chromosome produce an initiator from a structural gene (SGI) which
triggers replication for that chromosome at a specific origin (replicator)82.
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2.3.1 The replicon model

In the previous section we identified a central question in whether division is a downstream

result of initiation or if it is controlled by an independent trigger. But in either case, we must

identify a mechanism by which at least initiation is triggered once per cell cycle. This question

was of central importance in the early ‘60s after a series of insights into the nature of the bacterial

chromosome.

In the 10 years after the realization of the structure of DNA, research into the bacterial

chromosome and its replication resulted in a number of observations (Figure 2.4). This includes

that the bacterial chromosome was a closed ring, replication was nearly continuous throughout the

division cycle, and that replication proceeds linearly on the chromosome62, 79–81, 83. Based on this

foundation, along with significant insight from the replication of F plasmid and phage, François

Jacob, Sydney Brenner, and François Cuzin proposed the replicon model for DNA replication82.

In this model, a genetic element contains an origin of replication (ori), and the element must be

replicated as a whole. In addition, the genetic element must contain a system which signals the

control of its own replication.

This last point concerning a signal is a bit obscure, and is influenced by the authors’

experience with the lac system and phage λ. Controls for those two genetic systems are epitomized

by a repressor molecule which negatively controls expression via an operator until some signal

releases the repressor84, 85. However, they did not believe that negative regulation can explain

DNA replication in some lytic phage mutants. So they instead argued for an active control of

replication, proposing an activator element (a protein) known as an initiator. This vocabulary has

survived through today.
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2.3.2 Beginnings of the initiator threshold model

The paper by Jacob and colleagues introduced the influential replicon and initiator mod-

els. However, it did not address how replication initiation may be connected to growth. Five

years later, Helmstetter, Cooper, Pierucci, and Revelas synthesized the recent breakthroughs in

conceptualizing the bacterial cell cycle to formally introduce a threshold model for initiation12.

The threshold model for replication for initiation represents a conceptual breakthrough

which ties together the major aspects of bacterial physiology: growth, cell size, and the cell

cycle. While it has oscillated in and out of the scientific consciousness, we now know that it

explains cellular behavior under a huge range of growth conditions and perturbations13, 37. We

will more formally define our iteration of this model in Subsection 2.3.5, but here we will outline

the original authors’ understanding.

In their formalism, they recognize a number of tenets. The first is that for cells growing

with doubling time τ, replication initiation also occurs every τ minutes. This is a necessary

requirement to ensure the one-to-one pairing between replication and division. The second is that

the accumulation of an initiator protein for a period of τ minutes allows for initiation to commence.

This statement is based on experiments in which protein synthesis is inhibited for a period of

time and then restored, which delays initiation by an equivalent time52. Though subtle, this is

an extremely important point because it implies that the initiator molecule is indeed a protein,

and not some other genetic element or macromolecule. They also incorporate the observation of

Donachie that initiation occurs at the same cell size per ori, and state that the amount of initiator

required to begin replication is the same in all conditions.

The beauty of the initiator threshold model is that it elegantly explains the contempora-

neous data without invoking complex regulatory mechanisms. Though they recognize that they

do not have a handle on the kinetics of initiator accumulation, the most basic assumption is that

it increases in proportion to growth rate. They also do not know the mechanistic action of the

initiator, and what happens to it after initiation. Those details, while the subject of significant
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future debate, are not necessary to understand the basic framework of initiation control.

In their model, cells grow and accumulate initiators until a critical size per ori, at which

point all cells divide C+D minutes later from that moment. This ensures a one-to-one corre-

spondence between initiation and division. In the meantime, cells still continue to grow and

accumulate initiators. When τ = C+D, cells are haploid, and initiate at birth. When τ is smaller

than C+D, overlapping cell cycles ensue. The cell size increases because cells still grow for C+D

minutes from the initiation size, but they are growing faster (Figure 1.6). The absolute initiation

size increases by factors of two while the initiation size per ori stays the same, as cells become

diploid or higher ploidy.

Importantly, the influence of the H-C model means that the threshold model is only applied

to initiation (hence the initiator threshold model), and division is a downstream consequence.

Part of the motivation for this belief were experiments in which replication is stopped part way

through, which often inhibits division86, 87. In either case, the authors give a note of caution in

reference to the issue of how replication and division are connected:

While the accumulation of a unit of initiator may ‘cause’ the inception of a new round
of replication, the possibility of a causal relationship between the completion of a
round of replication and cell division should be treated with caution. The evidence
indicates only that termination of a round or replication is a necessary condition for
cell division, and not necessarily a ‘trigger’ of division12.

2.3.3 Development of the initiator threshold model

This subsection covers further developments to the initiator threshold model. We do so

only briefly, as this topic has been covered extensively elsewhere88–90.

The initiator threshold model became the basis for the conversation around replication

initiation control in the field and in turn the focus of additional research. At the same time as the

model described above was suggested, Prichard and colleagues formally introduced a variation

known as the inhibitor titration model36, 91. In this model, it is not an initiator molecule which
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accumulates to a certain level to trigger division, but an inhibitor molecule which dilutes to a

certain level. There exists a subtle but distinct difference between these two models in terms of

the quantity of initiator or inhibitor molecule over the cell cycle. The initiator threshold model

assumes that the initiator is maintained at a constant concentration, increasing its total number

with volume. The inhibitor titration model assumes that the inhibitor is maintained at a constant

copy number per ori, decreasing its concentration with volume. However, no inhibitor molecule

which fits the model’s description has been found, and later theoretical work showed than an

inhibitor titration model cannot attain the observed CV in initiation size.90, 92.

In line with an initiator molecule which accumulates with growth and triggers initiation

at a certain level, Sompayrac and Maaløe introduced the autorepressor model38. This model

describes how the concentration of such a molecule could remain constant throughout the cell

cycle despite fluctuations in growth. Simply put, the molecule represses its own transcription.

When it is in overabundance its production is reduced, and when it is at a dearth its production is

increased.

The autorepressor model formally states that it is the number of initiator molecules per

origin that is the trigger for initiation. When initiation commences, the number of origins doubles

by an integer number, causing a discrete halving of the ratio of initiators to origins. As the cell

grows in volume, the ratio increases until the next initiation is triggered. This is so even though

the initiators maintain a constant mass fraction of the proteome (Figure 2.5).

Developments on the initiator threshold model from this point were heavily influenced

by the identification of DnaA, which is the replication initiator94, 95. A key discovery was that

of DnaA-boxes. These are genetic elements near oriC and elsewhere that bind DnaA96, 97. This

provides a mechanistic explanation of how the cell can plausibly measure the ratio of DnaA to the

number of origins. The number of DnaA-boxes increase when the chromosome replicates, and

the cell is effectively filling those boxes with DnaA until they are saturated, triggering initiation.

Hansen and colleagues extended this notion to explain how cells avoid reinitiation in what is
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Figure 2.5: Threshold model for initiation. (A) In Helmstetter and colleague’s threshold
model for initiation, an initiator molecule is accumulated at the growth rate and thus remains
a constant fraction of the total proteome12. At a certain fixed amount, initiation is triggered.
Replication and division follow during the C and D periods, at which the cell divides. While
this model holds that division is downstream of initiation, the authors caution that this does not
mean initiation triggers division. (B) The autorepressor model describes how a protein could
be kept at a constant concentration and states that initiation could occur when the number of
initiators per origin reaches a threshold38. (C) The discovery of DnaA-boxes and the initiator
titration model give evidence for how the cell can monitor the DnaA to origin ratio93.

known as the initiator titration model93, 98. Further discussion on DnaA and its role as the initiator

are covered in Subsection 2.4.1.
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2.3.4 The threshold model in application to division

This subsection covers the inception of the threshold model in the context of division as

opposed to initiation.

In the ‘70s and ‘80s, molecular biologists committed considerable resources to identifying

genes and their protein products. In this era, the holistic approach to bacterial physiology faded

as excitement about new genetic tools allowed researchers to uncover the molecular players

on which they had previously speculated. Despite this shift of focus, members of the previous

generation kept the physiological questions in mind as they developed new skills and trained new

students.

In Section 2.4, I will cover some of the major molecular discoveries of this time and

how they relate to replication and division coordination. In this section however, I will elaborate

specifically on a school of thought that sees division as a parallel process to initiation. In this

viewpoint, division is controlled by a threshold mechanism akin to initiation.

I believe this thinking originated from none other than Donachie himself, and later

championed by his student Joe Lutkenhaus and others. The hint that division was controlled by a

“division factor” which must accumulate came in a 1974 paper by Teather and colleagues, but

predated the discovery of any such molecule99. Using a division mutant, Teather hypothesized that

cells have a limited capacity for division that normally couples one division to a certain amount

of cell growth. The mutant that they used, which was the as-of-then unidentified min mutant,

does not divide just at the midcell but also at the cell poles, producing anucleate minicells100. A

characteristic of this mutant is that the population contains not only nonviable minicells, but also

that the viable cells are longer than normal. They reasoned that minicell divisions come at the

expense of normal divisions, resulting in these long cells. They then calculated the theoretical

size distribution of cells which can at every generation either divide in a normal location or at the

cell poles, and it matched well with the experimental data (Figure 2.6).

The conclusion of Teather and colleagues was tied up with the chromosome-membrane
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A Minicell formation B Division potential and septum position C Size distribution prediction and model

Figure 2.6: Division potential model by Teather and colleagues. (A) The mutant used by
Teather and colleagues could divide at a normal position or at the cell pole, producing a minicell.
Scale bar is 1µm. (B) In their model, each division event is associated with the growth of the
cell by one unit of length equal to the birth length. The cell could then spend this division
potential at the cell poles or at any multiple of the unit length along the cell body with equal
probability (dashed lines are potential division sites, arrows show where division occurred).
Note that the adder principle is implied in this model though it had not yet been discovered. (C)
The distribution of cell lengths at birth (excluding minicells) was calculated based on the model
(thick horizontal bars) and compared to the experimental distribution (vertically shaded area).
Cell length is presented in number of unit lengths n. All panels reproduced from the article99.

tethering hypothesis and the idea that the division factor only accumulated after termination.

But behind this speculation, the central idea that division requires its own protein factor whose

accumulation is attached to growth provided a foundation for the threshold model to be applied to

division.

The idea that synthesis of specific proteins, independent of replication, was required for

division was supported by studies with thermosensitive ftsA (previously called divA)101, 102. But it

was the discovery and investigations of ftsZ that gave more traction to this idea103, 104. This was

based on observations that increasing the gene dosage of ftsZ delays filamentation during stress

response. In fact, overexpression of ftsZ caused minicell formation in otherwise normal cells105.

That is, additional ftsZ increases the division capacity of the cell, leading to smaller cells. This is

akin to the overexpression of dnaA, which causes cells to initiate at a smaller size as they attain

the requisite threshold more quickly. In a return to Teather’s original work, it was shown that
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overexpression of ftsZ (and especially overexpression of both ftsZ and ftsA) rescues ftsZ mutants

to produce wildtype cell size distributions106–108.

The above works consider a protein required for division, but they do not clearly attach the

accumulation of that protein to cell size or growth rate. Some of the papers connect it to cell size

implicitly, yet there is not a direct link between growth and accumulation. This may be because

they do not necessarily believe that accumulation is proportional to the instantaneous elongation

rate. Instead the papers tend to support arguments that, while you need to accumulate a division

factor to trigger division, the accumulation of that division factor is cell cycle dependent99, 107, 109.

Weart and Levin show that contrary to this view, FtsZ, the likely division threshold

molecule, has a constant concentration during the cell cycle (this supported by experiments

detailed in Chapter 4). This is congruent with the idea that FtsZ is produced in proportion to the

instantaneous growth rate, similar to DnaA. In a later review, Chien, Hill, and Levin argue that

accumulation and FtsZ assembly are both continuous throughout the cell cycle, resulting in the

formation of a complete ring that triggers division59. This model disconnects division triggering

from replication and gives it its own, independent threshold controlled primarily by growth.

2.3.5 The threshold model, balanced growth, and the adder principle

Based on measurements of FtsZ accumulation and division in single cells, we support

the notion that division is controlled by a threshold mechanism analogous but independent of

replication initiation. Moreover, this threshold mechanism, paired with balanced biosynthesis,

is the driving force behind the adder principle13. This subsection formally defines this model.

This is a simple deterministic version of this model to demonstrate the unity between a thresh-

old mechanism and the adder principle. Variations of this formulation have been produced

previously13, 38, 110. For a more in-depth mathematical treatment of the adder principle, see

Taheri-Araghi et al.8 and Jun et al.14.

For this demonstration, we will consider the triggering of division, but the same system
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applies to initiation. We make the following assumptions.

1. (Threshold) There is a protein or group of proteins which triggers division, which we will

call FtsZ for simplicity and directness. FtsZ triggers division when it reaches a threshold

number.

2. (Balanced growth) FtsZ is produced according to balanced growth, meaning that its produc-

tion is proportional to volumetric growth.

At steady-state, the concentration of a protein under balanced growth is constant. Consider

the mass fraction of FtsZ φ∗FtsZ, where the asterisk indicates it is at steady state. The total mass of

FtsZ mFtsZ is related to the total mass of the cell M by:

dmFtsZ

dt
= φ

∗
FtsZ

dM
dt

We convert mass to copy number of FtsZ NFtsZ, by way of the individual mass of one FtsZ

m1FtsZ, the density of the cell ρc, and the cell volume V . The steady-state concentration of FtsZ is

c∗FtsZ and is equal to:

c∗FtsZ = φ
∗
FtsZ

ρc

m1FtsZ

On the left hand side, FtsZ concentration is defined as:

cFtsZ =
NFtsZ

V

The mass of all FtsZ is defined by:

mFtsZ = NFtsZ ·m1FtsZ

And the cell mass is:

M =V ·ρc
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This allows us to rewrite the relationship between FtsZ and cell mass to be between copy

number and cell volume:
dNFtsZ

dt
= c∗FtsZ

dV
dt

We now take into account the threshold assumption to stipulate that division occurs when

FtsZ reaches the copy number Nd
FtsZ. The cell accumulates these FtsZ over its generation time

τ = td− tb, and when a cell is born inherits half of these FtsZ such that:

Nd
FtsZ = N(τ)

Nb
FtsZ =

Nd
FtsZ
2

Recall that cells grow exponentially from birth to division:

Vd =Vbeλτ

We can then consider the added volume between birth and division, ∆d =Vd−Vb in terms

of accumulation of FtsZ:

dNFtsZ

dt
= c∗FtsZ

dV
dt

Nd
FtsZ−Nb

FtsZ = c∗FtsZ(Vd−Vb)

Nd
FtsZ−

Nd
FtsZ
2

= c∗FtsZ(Vd−Vb)

Nd
FtsZ

2c∗FtsZ
=

Nb
FtsZ

c∗FtsZ
= ∆d

Which states that between birth and division cells must on average accumulate the amount

of FtsZ with which they are born. This is the adder principle.
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2.4 Molecular players and associated models

In this section, we discuss some of the molecular players and other mechanisms thought

to pair replication initiation with division.

Cell cycle coordination was often born out of studies of mutant cells in which either

replication, division, nucleoid segregation, or some other critical aspect of the cell cycle was

disrupted87, 94, 111. Identification of the culprit molecules were backed by increasingly powerful

genetic and microscopy techniques of the ‘90s and ‘00s. Consequently, there is no shortage of

mechanistic models which account for replication and division fidelity.

The coordination between replication and division from a molecular perspective is the

subject of a large number of reviews66, 74, 87, 112–115. I will not attempt to reproduce this work, but

instead focus on the two key molecules of replication (DnaA) and division (FtsZ), as well as a

few systems for which I have relevant data. I want to emphasize that this means I will not address

important and well studied mechanisms such as the Min system65, 100, 116. In addition, a number

of intriguing and unique systems have discovered in diverse prokaryotes74, 117. However, I will

focus on those active in E. Coli.

2.4.1 dnaA and replication initiation

In this section we will briefly cover DnaA and the molecular underpinnings of initiation.

The discovery of the DnaA protein gave a molecular face to the replicon model, which

calls for both an initiator and a replication origin. In fact, Jacob and colleagues’ 1963 paper

mentions a mutant that contains an (unidentified) thermosensitive DnaA, which is incapable of

initiation at non-permissive temperatures82. Kohiyama, of Jacob’s lab, identified that mutant,

and over the rest of the decade multiple labs found similar mutants and they were eventually

ascribed to the dnaA locus94. Follow up work further characterized the dnaA gene locus and its

vicinity118, 119.

40



At a similar time, the nature and location of the replication origin was being investi-

gated120, 121. Both dnaA and oriC, as the origin was named, were found to be located near the

ilv locus. Biochemical, genetic, and microscopic experiments confirmed that DnaA does indeed

bind to oriC, cementing its position as the initiator molecule95–97. While the exact mechanisms

of initiation by DnaA is not totally understood, generally it is believed that DnaA forms filaments

at oriC, melting the local DNA structure and allowing the replication forks to assemble88, 89.

There are many regulatory systems that modulate the binding of DnaA to oriC and thus

regulate the timing of initiation122. To prevent re-initiation, DnaA is sequestered to additional

binding sequences98. DnaA is an ATP/ADP binding protein, and as it is active in the ATP bound

state, cycling between either state provide an additional level of control123. The concentration of

DnaA is kept tightly controlled as it negatively regulates its own expression as predicted by the

autorepressor model38, 124, 125.

However, for our purposes it is sufficient to regard these molecular mechanisms as

auxiliary systems which increase the precision of replication initiation. The primary method of

regulating replication is accumulating DnaA to a certain threshold, at which initiation is triggered.

The accumulation is tied directly to the instantaneous growth rate. Importantly, many studies have

shown that, within a certain range, increasing or decreasing the concentration of DnaA inversely

affects the initiation size13, 37, 39, 93, 95, 126.

2.4.2 ftsZ and division

I will now provide some historical and molecular background on FtsZ and its role in

division.

Above, we discussed FtsZ in relation to a threshold model for division. However, much of

the work on this influential protein was and is concerned with its spatial organization, molecular

behavior, and binding partners. In the ‘60s, parallel to work discovering temperature sensitive

initiation mutants, some labs were also isolating mutants deficient in division127, 128. Because
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FtsZ forms a ring at the midcell

Figure 2.7: First image of FtsZ localization. First image from Bi and Lutkenhaus showing
FtsZ forming a ring at the midcell during division132. FtsZ was tagged and imaged via gold-
labelled antibodies and electron microscopy, and appear as small dark dots on the micrographs.
Fluorescent immunolabeling and fluorescent fusion proteins were later used to image FtsZ133–135.

aborted DNA replication often leads aborted division, it can be hard to identify mutants which

contain genes specifically associated with the division machinery. Nevertheless, Piet van de

Putte and colleagues identified such mutants, giving them the name fts for “filamentous growth

is thermosensitive”111. Additional work in this area often revolved around the delay of division

due to DNA damage, known as the SOS response, resulting in discoveries of the lon and sul

genes129–131.

As mentioned previously, it was Joe Lutkenhaus in Donachie’s lab that truly identified

the locus that contained fts mutants, naming both ftsA and ftsZ102, 103. These two genes covered

many of the previously discovered mutant strains. Later, in his own lab, and aided by new tools
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in imaging, he showed that FtsZ forms a ring structure at the midcell in association with the

pinching septum (Figure 2.7)132. This marked an important turning point in the field. Many

labs, excited by the prospect of a prokaryotic cytoskeleton, put serious effort in understanding

FtsZ’s biochemical and localization characteristics133, 134, 136, 137. The result is a formidable body

of research concerning FtsZ. I will group the discoveries into two major (though interrelated)

categories.

The first category of FtsZ research concerns its highly dynamic nature138–146. Generally,

FtsZ is can be thought of as a monomer that polymerizes to form filaments, the result of which

is the Z-ring137, 142. Biophysical work and increasingly powerful imaging has most recently

determined that FtsZ polymers in fact treadmill, perhaps directing peptidoglycan synthesis147–149.

The second category are studies which looked into the assembly of the Z-ring. Here,

researchers learned that the ring is actually a highly complex structure containing more than a

dozen proteins150–155. For example, while FtsA fell out of the spotlight during the ‘90s, it and

many other fts proteins colocalize with FtsZ at the midcell to form what is known as the divisome.

Assembly of the divisome in relation to the cell cycle provided more clues about the regulation of

division133, 151.

Many investigations were also aimed at FtsZ’s regulatory binding partners, which affect

both its dynamic and spatial properties. For example, SulA, which delays division during SOS,

was found to inhibit FtsZ polymerization, giving a molecular mechanisms to long-studied stress

response104. Other proteins were found to help bundle FtsZ, or connect it with other aspects of

the cell cycle66, 74, 115, 142. Some of these proteins are discussed in the following sections.

When considering the threshold model, and similar to how we treat DnaA, it is not

important to consider all the individual molecular players of the divisome and the various binding

partners. We will simply treat the accumulation of FtsZ at the midcell as a representative of the

division apparatus, which must reach a critical amount to trigger division. This assembly happens

at a pace and location which is the sum result of all of FtsZ’s various binding partners. We thus do
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Mulder 1989 Sun 2004 Cho 2011

Figure 2.8: Nucleoid occlusion development. Development of the nucleoid occlusion model
from observation to mechanism156–158. Mulder posited that a positive signal (+) for division is
made at termination, and then directed to the constriction site by the absence of the negative
nucleoid signal (-). Sun showed that in abnormal nucleoids caused by blocking translation or
transcription, FtsZ positioning was also abnormal. Cho build on Bernhardt’s work with SlmA to
form a more complete model. In it, SlmA beaks polymerized FtsZ, only allowing the Z-ring to
form near the center of the cell near the ter domain. MinCD disallows Z-ring formation at the
poles.

not want to lose the forrest for the trees when considering these molecular mechanisms. However,

because the discovery of molecular systems which act upon FtsZ and the divisome stimulated

significant discussion about the coordination between replication and division, we will discuss

some of those systems below as well as explore them experimentally.

2.4.3 Nucleoid occlusion

In this section we review the nucleoid occlusion model, in which the nucleoid prohibits

septum formation in its vicinity.

It was recognized early that the two major spatial undertakings of the cell were extremely

precise: segregation of the replicated nucleoids and positioning of the septum159. Through

the ‘90s, until more powerful imaging experiments showed a less definite connection, it was
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almost taken for granted that segregation was achieved through a membrane to chromosome

tether56, 82, 160, 161. But how did the septum form in the middle of the cell? A number of models

were developed to explain the spatiotemporal control of the division plane. Of particular note are

the Min system and the nucleoid occlusion hypothesis, the latter of which we will cover here.

The idea that the nucleoid positioning could determine the location of the septum was

first put forth by Woldringh and collaborators in 1985156, 162–164 (personal communication). The

basis for the idea was that even in minicell mutants in which septum position was aberrant, or in

filamentous cells with high ploidy, the division plane did not form over nucleoids. In temperature

sensitive mutants in which DNA replication had been inhibited, septation occurred in locations

that were devoid of nucleoids87, 156. This led to the idea that the nucleoid provided a negative

signal for septum formation. Along with a system to avoid septation at the poles, this would favor

divisions between segregated nucleoids. From the outset, nucleoid occlusion was paired with

the idea of a positive regulator for division being produced at termination (based on work from

Donachie’s lab discussed above). Taken together, the cell would produce the capacity to divide,

and nucleoid occlusion would direct that capacity towards the midcell in the space between the

replicated chromosomes (Figure 2.8)99.

At this time, the nature and importance of FtsZ in setting the location of division was not

yet appreciated, nor were any molecular players known that could be responsible for nucleoid

occlusion. But during the ‘90s, the realization that FtsZ forms a ring at the midcell to direct

division pushed FtsZ to the forefront of division regulation128. Then, in 2005, Bernhardt and

Boer identified slmA (synthetic lethal with min), a protein which both binds to the nucleoid and

inhibited the local polymerization of FtsZ64.

Briefly, SlmA is a DNA binding protein whose binding sequences are concentrated

towards the upper part of the chromosome, closer to ori. It can bind FtsZ, and when doing so

inhibits its ability to form polymers and associate with the membrane158, 165. As the chromosome

replicates, the new ori domains move towards the cell poles166. This frees the midcell of SlmA,
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Membrane tethering, Jacob 1963 ter linkage, Buss 2015

Figure 2.9: Chromosome-membrane attachment models. The discovery of ter linkage harks
back to the chromosome-membrane tethering hypothesis suggested by Jacob and perennially
popular despite scant evidence82, 171. However, the models are fundamentally different. In
chromosome-membrane tethering, the replicated chromosome is segregated into the daughter
cells by an anchor point which moves due to the synthesis of new cell wall. The exact purpose
of ter linkage is unclear, but it is likely pertains to the positioning of the septal plane relative to
ter, and perhaps ensures that the replicated chromosomes are separated before cell division.

presumably allowing the Z-ring to form.

Yet the importance of slmA is questionable. At the outset, its discovery was based on its

conditional essentiality, as it is only necessary in cells with deficient min systems. Numerous later

papers show that even without it, the cell can accurately place the division plane at the midcell

and away from nucleoids, or inhibit division when the nucleoids remain unsegregated167–170.

Nucleoid occlusion by slmA sets the tone for many of the replication and division coordination

systems; while they may increase the precision or efficiency of division and reduce errors, they

are not strictly necessary for viability66.

2.4.4 ter linkage

Here, we review a model that physically links the chromosome to the cell periphery in

order to coordinate replication and division.

A recent discovery shows that cells may regulate FtsZ positioning using the chromosome

in a positive way via the terminus region (Figure 2.9)70, 169, 171–173. Nucleoid occlusion and the

min system represent negative regulators of septum formation via FtsZ. But Espéli and colleagues
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found that the protein MatP physically links the terminus region of the chromosome to proteins

of the divisome70. MatP is a DNA binding protein known to condense the lower portion of the

chromosome into what is called the ter macrodomain174, 175. Using a fluorescent parS-parB to

mark points on the chromosome, they showed that the ter macrodomain localized to the midcell of

dividing bacteria, and that this localization was dependent on MatP. Moreover, they showed that

localization was also dependent on the divisome proteins ZapA and ZapB176. These observations

were supported by additional papers from the Männik Lab which found that MatP, ZapA, and

ZapB contribute to Z-ring positioning in min and slmA mutants169, 172.

These works provide strong evidence for a physical link between the chromosome and

the division machinery. It is not in the form originally imagined by Jacob and others, but it is an

intriguing coordination mechanism with a molecular basis. However, it is unclear what exactly

ter linkage is designed to accomplish. On one hand, it positively regulates Z-ring formation at the

location of ter at the midcell (or the other way around)70, 171. On the other hand, it was shown to

delay actual segregation of the chromosomes, perhaps in conjunction with FtsK177–179. Finally,

like slmA, none of the genes implicated in ter linkage are essential66, 179.

2.4.5 Regulators of FtsZ assembly with growth rate

In this section I describe two known regulators of FtsZ assembly that are thought to

connect division size with growth rate, OpgH and ClpX.

There are no shortage of regulators of FtsZ via its promiscuous C-terminal domain170, 180.

Most of these regulators, such as those outlined above, are associated with spatial control of FtsZ

assembly. Yet others, such as SulA of the SOS response, are associated with quick temporal

control of assembly in response to stress131, 181. However, there are two known regulators that are

thought to regulate the assembly of FtsZ more generally with growth rate on slower time scales.

These models provide a molecular underpinning for how E. coli can modulate its average size

with growth rate.
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The first regulator is OpgH, referred to as a metabolic sensor, as it relays nutrient avail-

ability information to the division machinery182. OpgH is expressed by E. coli, but an analogous

(though non-homologous) protein UgtP was first discovered in B. subtilis183. In brief, the system

works as follows. OpgH inhibits FtsZ assembly by sequestering FtsZ monomers in the presence

of UDP-glucose. UDP-glucose is a metabolite that is two steps from glycolysis and the pentose

phosphate pathway, and is itself a precursor to cell wall and membrane components. In rich

nutrient conditions, when flux through UDP-glucose is high, OpgH is more active in inhibiting

FtsZ assembly. This is effectively the same as decreasing the fraction FtsZ monomers which are

active for division. This delays division as compared to slow growth, which results in a larger

size at division59. While the action of the metabolic sensor can plausibly work on fast time-scales,

such as during a nutrient shift, the beauty of the system is that it is also coordinates the average

growth rate with cell size at steady-state. This partially explains how cells grow larger in fast

growth, even if FtsZ concentration is the same in different conditions184. Based on knockout

studies, the metabolic sensor seems to be effective in fast growth conditions, and “dispensable

under nutrient-poor conditions183.”

The second regulator is ClpX, which, along with its protease ClpP also antagonizes Z-ring

assembly. Better known for its job in SsrA mediated protein degradation for quality control,

ClpX was found to inhibit FtsZ assembly in both B. subtilis and E. coli185–188. There is some

disagreement to whether it degrades or simply inhibits FtsZ polymerization (it likely degrades in

E. coli but only inhibits in B. subtilis), but the effective result is the same141, 189–191. Similar to

OpgH, the effective pool of active monomers is reduced, and division delayed, in conditions in

which ClpX is active. Unlike OpgH, the effect of ClpX is prominent in slow growth and masked

in fast growth13, 191, 192. At slow growth, the balance between FtsZ production and degradation

by ClpX controls the timing of division in both transient and steady-state scenarios, explored in

more detail in Subsection 4.2.5191.

The metabolic sensor helps explain some of the foundational quantitative principles of
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bacterial physiology, like the Schaechter line which states there is an exponential relationship

between size and growth rate in fast growth. ClpX, contrarily, partially explains why those

principles break down in slow growth13, 41. However, both molecules are indicative of a control

framework whereby cells regulated division in a cell cycle independent manner, instead linking it

directly to growth rate.

2.5 Conclusion

The study of replication and division coordination has taken a long arc to the modern day,

tracing back to the beginnings of bacterial physiology and molecular cell biology. How the cell

can keep these two processes in sync was a driving question and fertile ground for speculative

models and molecular investigations. We now believe that both processes are independent insofar

as they are dictated by growth, and connected to each other only in an auxiliary manner. As is

not uncommon in biology, ultimately accurate theories had been proposed early on to explain

this feat193. Yet they would have to wait for experimental data to separate them from the pack. A

collection of such experiments are the subject of Chapter 4.
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Chapter 3

B. subtilis and E. coli Share Common

Principles to Coordinate Growth and the

Cell Cycle

3.1 Introduction

In Chapter 1, we introduced the fundamental concepts and growth principles of bacterial

physiology. In this chapter, we explore these principles in greater depth using the model gram-

positive organism B. subtilis. We do so in comparison to E. coli, which aside from being a model

gram-negative organism, has become the best known bacteria, and arguably the best known

species, since the biological revolution of the 20th century. Because the phylogenetic diversity of

bacteria is enormous, we ask to what degree a unified physiological regulatory framework can be

applied to these two species, which diverged over a billion years ago.

Our current understanding of fundamental, quantitative principles in bacterial physiology

is largely based on studies of E. coli and S. typhimurium. Several of these principles have been

presented in the form of “growth laws”14, 37, 194. For example, the “growth law of cell size” states
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that the average cell size increases exponentially with respect to the nutrient-imposed growth

rate16. This principle has been extended to the “growth law of unit cells,” which allows prediction

of the average cell size based on the growth rate and the cell cycle duration for any steady-state

growth condition37.

Gram-positive B. subtilis is distinct from Gram-negative E. coli at the genetic, molecular,

and regulatory level195. However, despite their evolutionary divergence, B. subtilis and E.

coli follow the same phenomenological principle of cell-size homeostasis known as the adder

principle8, 48. Furthermore, both organisms share the identical mechanistic origin of the adder

principle, namely, a molecular threshold for division proteins and their balanced biosynthesis

during growth13. Based on these findings, we wanted to know to what extent B. subtilis and E.

coli coordinate growth, size, and cell cycle in the same manner. A shared coordination framework

would imply that, despite phylogenetic and molecular diversity, physiological regulation in

bacteria is functionally conserved.

In order to create a full complement of data necessary for comparative analysis, we

measured the growth and cell cycle parameters of B. subtilis at both the population and single-cell

level under a wide range of conditions.

Previous population-level studies have found that B. subtilis, like E. coli, initiates repli-

cation at a fixed mass, establishing a regulatory bridge between cell size and cell cycle con-

trol15, 63, 196. We extended this avenue with single-cell methods to precisely measure the cell

cycle parameters in individual B. subtilis cells across conditions13, 41. These results showed that

the initiation size is constant not only in steady-state conditions, but also during nutrient shifts

between two steady-state conditions. This strongly supports a threshold model for initiation in

both steady and dynamic environments12, 13, 37, 39.

The single-cell approach also allowed us to compare the relative variability of all growth

and cell cycle parameters both among conditions and among species. These measurements reveal

a strikingly similar hierarchy of physiological parameters between B. subtilis and E. coli in terms
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Figure 3.1: Population and single-cell methods to achieve steady-state growth. (A) Tur-
bidostat experimental method and validation. Top left: In the multiplex turbidostat vial, the
culture volume was maintained constant and cell concentration was monitored and adjusted
automatically by infusing fresh medium. Aerobic conditions were ensured via bubbling and
stirring. Top right: growth rate measurements were consistent between 5 and 20 doublings and
cell length distributions were reproducible at sample collection. Data shown is from 4 repeats in
succinate with 2.7 µM chloramphenicol (cam). Bottom: A representative growth curve showing
the timing of the addition of chloramphenicol, dilution events, and sample collection. Each
dilution occurred when the culture reached OD600 0.2 and was diluted to 0.05, allowing for
two doublings during the growth interval. (B) Overview of population growth conditions and
measurements. Growth media and their abbreviations for 5 different nutrient conditions, all of
which are based on S750. Glycerol rich, mannose, and succinate were selected for translation
inhibition experiments (succinate shown here). Representative growth curves (final 8 doublings),
average doubling time τ, and representative crops of images used for population sizing shown
for each condition. (C) Single-cell experiments with the mother machine. Representative image
showing cell-containing traps. Fluorescent signal is DnaN-mGFPmut2 (Figure 3.6, Materials
and methods). The growth in length (black lines) and division (dotted vertical lines) of a single
mother cell is shown over 8 hours. Average birth length and growth rate (solid grey lines) of
the single-cell measurements (grey scatter points) are in steady-state over the course of the
experiment. Data shown is from mannose. Additional measurements for all conditions are
presented in Figure 3.2.

of tightness of their control.

The richness of our quantitative physiological data generated in B. subtilis is comparable

to that in E. coli, providing key evidence that B. subtilis and E. coli share core phenomenological
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and quantitative principles that govern their physiology, thereby providing a unified picture of

bacterial growth, size, and cell cycle coordination.

3.2 B. subtilis physiological control

3.2.1 Ensuring steady-state growth in B. subtilis

Maintaining a steady-state growth is essential for reproducible measurements of the

physiological state of the cell14. In steady-state growth, the total biomass of the culture increases

exponentially with time and protein biosynthesis is balanced with the total biomass increase. That

is, the protein production rate is the same as the growth rate of the cell. As a result, average

protein concentrations are constant, whereas the total amount of proteins increases in proportion

to the cell volume. This constant concentration and proportional increase also applies to other

macromolecules such as DNA, RNA, phospholipids, and the cell wall.

To achieve steady-state measurements in B. subtilis, we grew and monitored cells over

many generations using a multiplex turbidostat that we previously used for E. coli37 (Figure 3.1A).

For both population and single-cell methods, we began cultures from single colonies and pre-

cultured cells using appropriate batch methods before transferring to continuous culture set-

ups (Materials and methods). We ensured pre-cultures did not enter stationary phase to avoid

sporulation. We used a B. subtilis strain which was non-motile and non-biofilm forming to

facilitate single cell-size measurements. This was necessary because B. subtilis exhibits a temporal

chaining phenotype, particularly in faster growth conditions197, 198. During chaining, cells are

physically connected yet their cytoplasms are compartmentalized, obfuscating a definition of

division199, 200. Our strain contained a genetic modification to abolish cell chaining, ensuring that

cell separation coincided with septation201 (Materials and methods).

To measure how long it takes for B. subtilis to reach physiological steady state, we

measured growth rate continuously during time course experiments using our multiplex turbidostat.
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Figure 3.2: Single-cell steady-state physiological parameters for all conditions. Physiolog-
ical parameters for all B. subtilis mother machine experimental conditions and one E. coli
experiment. Time course is shown with single-cell measurements (scatter points) and 30 minute
binned mean (horizontal lines) plotted against the birth time. Multiple consecutive generations
are needed to determine initiation size, C period, and D period, thus a gap exists before those
measurements are possible. Single-cell distributions are invariant in time and shown for each
condition, sharing the same scale as time course. Colors are as in Figure 3.1B. Sample sizes are
provided in Table 6.

Growth rate generally stabilized after 6 generations, and the cell size distribution was reproducible

(Figure 3.1A). However, to be certain of steady-state growth, we typically waited for at least 14

doublings before sample collection in all our subsequent experiments. At collection, we split

the culture for qPCR marker frequency and cell size measurement (see Table 5 for experimental
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Figure 3.3: Population cell size and C period measurements in B. subtilis and E. coli. (A)
Cell size increases with respect to growth rate in B. subtilis and E. coli under nutrient limitation.
For B. subtilis, the relationship is not clearly exponential as it is for E. coli (dotted lines
are linear regression fits of logarithm transformed data, dashed line is a linear regression fit).
Representative images of cells during division show change in aspect ratio as a function of growth
rate. Length and width measurements presented in Figure 3.4. (B) C period measurements
with respect to growth rate in B. subtilis and E. coli under nutrient limitation. For E. coli, C is
approximately constant at 39 minutes (horizontal dotted line) for doubling times faster than 60
minutes (λ = 0.69). That constancy is less clear for B. subtilis, though single-cell data shows
that C+D is proportional to generation time (Figure 3.9). B. subtilis growth media are colored as
in Figure 3.1B with additional LB data in grey. E. coli data is previously published work37; Red
is synthetic rich, orange is glucose with 12 amino acids, yellow is glucose with 6 amino acids,
green is glucose, and blue is glycerol, with additional conditions in grey.

conditions).

For single-cell measurements, we used the microfluidic mother machine to collect phase

contrast and fluorescent timelapse images for at least 10 generations9, 13 (Figure 3.1C). After

analyzing all cell lives, we limited our data to the time interval in which all measured parameters

equilibrated (Figure 3.2). A typical experiment produced data for around 2,500 cells (see Table 6

for experimental conditions).

3.2.2 Growth law of cell size: B. subtilis size shows a positive but not expo-

nential dependence on the nutrient-imposed growth rate

A foundational observation by Schaechter, Maale, and Kjeldgaard showed that the average

cell size in E. coli increases exponentially with respect to the nutrient-imposed growth rate16.
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Figure 3.4: Length and width measurements in B. subtilis and E. coli. (A) Cell length in B.
subtilis and E. coli increases with growth rate. (B) For B. subtilis, width is independent of the
nutrient-imposed growth rate. For E. coli, width increases with growth rate in a similar manner
to length. Colors and conditions are as in Figure 3.3. E. coli data is from previously published
work37.

Previously, we investigated this growth law of cell size in E. coli under various growth and cell

cycle inhibition, and showed that the exponential relationship was a special case wherein the

growth rate was the only experimental variable37. In B. subtilis, the Levin lab recently revisited

the relationship between size and the nutrient-imposed growth rate, and found that the average

cell size in B. subtilis increased with the growth rate at the population level183.

We extended our efforts in E. coli to B. subtilis. Using the multiplex turbidostat, we

grew cells in 5 nutrient conditions with doubling times ranging between 28 and 62 minutes

(Figure 3.1B, Materials and methods; Table 5). Here, we use size interchangeably with volume,

and consider volume to be proportional to dry mass19.

Figure 3.3A shows the average cell size versus growth rate for the 5 different growth con-

ditions. As expected, the average cell size increased with growth rate. However, the exponential

dependence observed for E. coli was less clear in B. subtilis. This discrepancy in B. subtilis could

be due to changes in the duration of replication (C period) and cell division (D period) in different

nutrient conditions37.

We thus measured the population average C period of B. subtilis employing qPCR

marker frequency analysis37, 63, 83. Both species exhibited a similar maximum replication speed
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Figure 3.5: Size and C period under translational inhibition in B. subtilis and E. coli. (A)
Under translation inhibition due to chloramphenicol, the relationship between cell size and
growth rate under nutrient limitation breaks down for both B. subtilis and E. coli. (B) The
deviation from the nutrient growth law can be attributed to the change in C period in both species
under translation inhibition. Lines connect translation inhibition experiments using the same
media. Colors and conditions are as in Figure 3.3. E. coli data is from previously published
work37.

(approximately 40 minutes for C period), but our data indeed do not indicate C period is strictly

constant in fast growth (Figure 3.3B).

Unfortunately, despite extensive efforts, we were unable to reliably measure the D period

in B. subtilis from the population samples as we had done previously for E. coli37. The main

issue was consistency of fluorescence labeling of the DNA required for flow or image cytometry.

Our results were variable from experiment to experiment, and protocol to protocol. We therefore

concluded that the measurement of D period using population methods is not as reliable as needed

to test the growth law of cell size in B. subtilis, a cautionary reminder in interpreting previous

measurements in B. subtilis. For these reasons, we set out to measure the B. subtilis cell cycle

explicitly at the single-cell level.

3.2.3 Single-cell determination of cell cycle parameters in B. subtilis

We employed a functional replisome protein fused with a fluorescent marker, DnaN-

mGFPmut2, to measure cell cycle progression in single cells13, 202 (Materials and methods). In

B. subtilis, the replisomes from the two replication forks of a replicating chromosome are often
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Figure 3.6: Single-cell growth and cell cycle progression in B. subtilis. See text for informa-
tion.

colocalized, thus most foci represent a pair of replisomes203.

Figure 3.6A and B show representative cells from two growth conditions, succinate and

glycerol rich, respectively. Panel A shows a typical cell cycle progression of B. subtilis in slower

growth media. Top: Chromosome configuration. Middle: Fluorescent images of DnaN-mGFPmut

signal. Bottom: Processed image data represented as a cell lineage trace. Vertical green bars are

the DnaN-mGFPmut2 signal summed along the long axis of the cell, with white circles showing
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foci position. Panel B shows a typical cell cycle progression of B. subtilis in faster growth media.

Panel C shows the ensemble method to determine cell cycle parameters. Left: In succinate, a

theoretical cell is born with one pair of replisomes. It may briefly contain no active replisomes

upon termination, and then contain two pairs of replisomes as the two complete chromosomes

begin replication. The length at which the number of replisome pairs increases corresponds to

the initiation size. The average initiation length 〈Li〉 as determined from the cell traces (dashed

purple line) agrees with the ensemble estimate (solid purple line). The average birth 〈Lb〉 and

division length 〈Ld〉 of the population are shown as dotted vertical lines. Right: In glycerol rich,

cells transition from two to four pairs of replisomes

In the slower growth condition (succinate), cells were normally born with one replicating

chromosome. Replication initiation begins synchronously in the mother cell for two chromosomes.

At that time, the origins are located towards the cell poles. Replication proceeds through cell

division, at which point the replication forks reside near the midcell of the newly born cell.

Chromosome segregation is concurrent with replication. By the time the replication forks reach

the terminus region, which is still at the midcell, the previously duplicated origins have already

migrated to the cell poles204.

While overlapping cell cycles are common even at slower growth, cells rarely exhibit mul-

tifork replication. Multifork replication indicates initiation begins before the previous termination

event completes. Instead, B. subtilis normally initiates when the cell contains complete, homolo-

gous chromosomes where the copy number is a power of two. In fact, replication initiation often

proceeds immediately after the previous termination event. This may be due to the role of YabA

in B. subtilis replication initiation control, which ties DnaA activity to DnaN availability205, 206.

Comparatively, multifork replication is common in E. coli, where Hda is thought to play a similar

but mechanistically distinct role in reducing initiation potential during ongoing replication13, 207.

In faster growth conditions (glycerol rich), cells are often born with two replicating

chromosomes. However, the relative variability between division size and C+D was greater in
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Figure 3.7: Ensemble replisome count and localization for all conditions. See text for
information.

this rich condition. This means that a substantial fraction of the population were still born with

one replicating chromosome (Figure 3.16). Moreover, transient filamentation and asymmetrical

septation are more common in fast growth conditions, leading to cells born with a number of

replicating chromosomes which are not a power of two.
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3.2.4 Complementary, ensemble determination of cell cycle parameters in

B. subtilis

The main advantage of the single-cell approach is that it allows for direct comparison

of the relationships among growth parameters, providing mechanistic insights8. However, it

can be difficult to determine the cell cycle parameters manually, particularly when the foci are

clumped or the signal is weak. This is especially true in faster growth conditions. To ensure an

unbiased analysis of the cell cycle, we also employed an “ensemble method” to extract cell cycle

parameters41 (Figure 3.6C). We used the foci count at a given size as a proxy for the replication

state (Materials and methods). This method produces data similar to the original schematics used

by Helmstetter and Cooper when first elucidating the E. coli cell cycle32.

For all but the slowest growth conditions, the measured average number of foci monoton-

ically increases because initiation almost immediately follows termination as discussed above.

Unlike a theoretical single cell, the ensemble plots do not display a strict step-like behavior; we

interpret this as variability in the initiation size. Ensemble plots for all conditions, along with the

foci localization patterns, are presented in Figure 3.7. In it, ensemble plots for three media condi-

tions tested with and without translational inhibition. Average pairs of replisomes (thick black

line) are plotted against cell volume with consistent scale across conditions. Purple vertical lines

show the initiation size from the average of single cells (dashed) and the ensemble method (solid).

Vertical dotted black lines indicate the average birth and division size. The average number of

foci may be above or below the theoretical number as replisomes can transiently dissociate, and a

pair of replisomes may be counted as two foci when they are not colocalized203, 208, 209. The nor-

malized DnaN-mGFPmut2 signal relative to midcell (green background) shows the localization

of replisomes over the cell cycle, with the diagonal solid black lines indicating the cell periphery.

This measurement is in good agreement with the average initiation size as measured from

individual cells. We used these complementary methods to test whether the initiation size is
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invariant in B. subtilis as in E. coli37.

3.2.5 Invariance of initiation size: B. subtilis initiates at a fixed cell size per

ori

In E. coli and S. typhimurium, the concept of a conserved initiation size was first explained

by Donachie as a consequence of the growth law of cell size and the constant C+D15, 16, 32. The

upshot is that, at a fixed size per origin (ori), all origins of replication fire simultaneously. Recent

62



0 50 100 150
generation time (minutes)

0

50

100

150

200

C+
D

 (m
in

ut
es

)

0 1 2
growth rate (1/hours)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w
id

th
 (μ

m
)

0 1 2
growth rate (1/hours)

0

1

2

3

in
iti

at
io

n 
le

ng
th

 p
er

 o
ri 

(μ
m

)

0 1 2
growth rate (1/hours)

0.00

0.25

0.50

0.75

1.00

in
iti

at
io

n 
si

ze
 p

er
 o

ri 
(μ

m
³)

A C+D is proportional
to generation time

B Width changes under
translational inhibition

C Initiation length is 
dependent on cell width

D Initiation size is 
independent of cell width

y = x

‹W0 μM› ‹li› ‹si›

gly+
0 μM

man
0 μM

suc
0 μM

increasing 
chloramphenicol
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high-throughput works at both single-cell and population levels have conclusively shown that the

early insight by Donachie was correct13, 37, 41. In fact, the initiation size per ori is invariant not

only across nutrient conditions, but also under antibiotic inhibition and genetic perturbations37.

The constancy of initiation size in B. subtilis has previously been tested by several groups

at the population level under nutrient limitation conditions63, 196, 210. We further measured the

initiation size using single-cell methods under nutrient limitation and translational inhibition. We

found that the initiation size per ori in B. subtilis is indeed invariant across conditions, even for

individual cells (Figure 3.8A).

This constant initiation size is in stark contrast to the varying C period under different

growth conditions (Figure 3.9A). In fact, initiation size is one of the least variable physiological

parameters along with septum position and width (Figure 3.16). The single-cell approach also

allowed us to measure the correlations among all growth and cell cycle parameters. The initiation

size is only weakly correlated with other measured parameters (Figure 3.17).

These observations are consistent with a threshold model for replication initiation13, 37, 125.
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Within that framework, initiator molecules accumulate proportional to the growth rate. This

mechanism is enacted in single cells and is in turn apparent at the population level.

3.2.6 Initiation size is invariant even during nutrient shifts at the single-

cell level

Because the constant initiation size was implemented by individual cells in the previous

steady-state experiments, we wondered how cells would behave in a changing environment.

Nutrient shift experiments have provided important insight into the coordination of biosynthesis

and the cell cycle22, 211, 212. We revisited this paradigm at the single-cell level, shifting cells from

minimal media (τ = 65 min) to rich conditions (τ = 30 min) and back again (Figure 3.11). By

using the mother machine, we could add and remove nutrients immediately while measuring the

cell cycle and all other physiological parameters (Materials and methods).

The most drastic results occurred upon shift-down (Figure 3.10). When nutrient supple-

ments were removed, growth immediately paused. The crash in growth rate caused a drastic

increase in generation and cell cycle time for cells which experienced the shift-down. Replicating

chromosomes were stalled and division ceased. Strikingly, the growth pause led to an absence

of initiation events until after cells restarted elongation and attained the requisite initiation size.

Thus individual cells maintained a constant initiation size through the transition. Division also

resumed after growth recommenced, but at a smaller size commensurate with the post-shift-down

growth rate. A constant C+D period is not maintained during this time (Figure 3.11).

The decoupling of initiation and division supports the idea that they are controlled by

independent threshold mechanisms13. That is, the cell builds up a pool of dedicated molecules for

each task to a certain level12, 13, 53, 59, 99. For initiation, this threshold and the accumulation rate is

conserved across growth conditions. For division, the threshold or the accumulation rate is set by

the growth condition184. In the generation after shift down, cells grow much more slowly and

therefore accumulate threshold molecules at a similarly depressed rate. As a result, both initiation
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and division are delayed. For division, active degradation or antagonization of FtsZ could further

hinder the triggering of constriction187, 191.

3.2.7 E. coli and B. subtilis change cell shape differently under different

growth conditions but maintain a constant initiation size

One of the major differences between E. coli and B. subtilis is their shape under different

nutrient conditions. Data from our lab and others have shown that the aspect ratio of E. coli is

nearly constant (approximately 4) under different nutrient-imposed growth rates31, 37. By contrast,
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the average width of B. subtilis remains relatively constant (Figure 3.4)196, 213.

Nevertheless, for initiation control in B. subtilis, we find that volume per ori is more

conserved than the length per ori at initiation. While we find length to be a good proxy for

initiation size under nutrient limitation, our data show that chloramphenicol treatment decreases

cell width in B. subtilis. Thus, when comparing across all growth conditions, only the initiation

volume is constant (Figure 3.9B-D).

3.2.8 B. subtilis is both a division adder and an initiation adder

As previously reported, B. subtilis achieves size homeostasis by following the adder

principle8. We recently showed that B. subtilis, along with E. coli, are also initiation adders;

the size added per ori between successive initiation events is constant with respect to initiation

size13. We further tested those results here under additional growth conditions and translational
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inhibition (Figure 3.12). We find that, for division, our data is best described by the adder

principle. However, we note that when going from faster to slower growth condition, the slope

becomes slightly negative. This may be due to active degradation or inhibition of FtsZ assembly

or other key division proteins13, 187, 191. For initiation, we again find that our data is best described

by the adder principle. Importantly, the added size between initiation and added size between

division are uncorrelated (Figure 3.17), consistent with initiation and division being controlled

by separate threshold mechanisms13. While both processes are tied to global biosynthesis, this

indicates minimal crosstalk between the two in steady-state conditions.

3.2.9 B. subtilis and E. coli share the same hierarchy of physiological pa-

rameters

The coefficient of variation (CV) of a distribution of a physiological parameter is often

interpreted as the tightness of the underlying biological control51. We extended previous analysis

to include the cell cycle related parameters C period, D period, initiation size, and added initiation

size for both B. subtilis and E. coli. We found that both evolutionarily distant organisms share

the same order of their physiological parameters in terms of CV (Figure 3.13). Width, septum

position, initiation size, and growth rate are the tightest of the parameters. D period is significantly

more variable than C period, and they are inversely correlated. In fact, the CV of a particular

physiological parameter is extremely similar across growth conditions, species, and strains

(Figure 3.14).

Ultimately, the CV of the physiological parameters is the manifestation of molecular

regulatory mechanisms. Classically, B. subtilis and E. coli provide excellent examples of both

homologous and non-homologous versions of such mechanisms. For example, major protein

players controlling replication and division, such as DnaA and FtsZ, are conserved in these

and most other prokaryotes88, 214. However, the regulation of those molecules in B. subtilis and

E. coli is unique74, 117, 215. More generally, the two species often use unrelated mechanisms to
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(A) Single-cell physiological parameter definitions as determined from time-lapse images. Cells
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in E. coli display the same CV hierarchy. Data from E. coli NCM3722 grown in MOPS arginine
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work13.

achieve the same regulatory goal117, 182. Because of their phylogenetic distance, the uncanny

agreement among the CVs of their physiological parameters suggests an evolutionary ancient
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control framework shared by these organisms.

3.3 Conclusion

We have shown that B. subtilis and E. coli, despite their historical separation across the

Gram stain divide, share extremely similar fundamental physiological behavior (Figure 3.15).

Under a wide range of nutrient and growth inhibition conditions, both species base their chro-

mosome replication in a constant initiation size. Impressively, this constant initiation size is

imposed even during dynamic growth transitions. This is consistent with a threshold mechanism

and constant production of cell cycle initiator proteins for initiation and division timing control,

thus maintaining size homeostasis with the adder principle13.

As with E. coli, DnaA and FtsZ are among the key proteins responsible for the initiation

and division threshold mechanisms in B. subtilis, respectively13, 39, 106. The view that global
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biosynthesis fundamentally controls their production, and thus the replication and division rate,

is still compatible with the idea that additional levels of regulation modulate or coordinate their

activity in certain situations66, 74. It is unclear whether these additional mechanisms have evolved

to increase replication and division fidelity during steady-state or are more important in dynamic

environments. More single-cell shift experiments with mutant or even minimal genome cells will

help reveal the importance of redundant regulatory systems.

These deep similarities between B. subtilis and E. coli speak to a conserved control

framework which both species use to coordinate growth, DNA replication, and division. In doing

so, they ensure lifes essential demand of physiological homeostasis. In the end, it is unclear if

this framework is the result of parallel or convergent evolution. In order to better address this

question, more quality single-cell data is needed from diverse prokaryotes. In either case, the

existence of a shared control framework underscores its efficacy, providing an intriguing avenue

for the development of synthetic organisms.
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Chapter 3, in full, has been prepared for submission for publication of the material. Sauls,

John T; Cox, Sarah E; Do, Quynh; Castillo, Victoria; Ghulam-Jelani, Zulfar; Jun, Suckjoon. The

dissertation author was the primary investigator and author of this material.
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Chapter 4

Replication and Division Coordination

During Physiological Shifts

4.1 Introduction

In this chapter I describe a collection of single-cell imaging experiments where I measure

replication and division control in order to understand the extent of their coordination. These

experiments rely on fluorescent fusion proteins, which in addition to phase contrast imaging,

allow me to track these processes directly. This includes replication via DnaN, divisome assembly

via FtsZ, and nucleoid segregation via HU.

Many of these experiments also exploit the nutrient shift paradigm, in which cells growing

at steady-state in one condition are abruptly switched to another condition. This second condition

may be more (shift-up) or less (shift-down) favorable than the initial condition. The manner in

which cells respond to this change has historically shed light on their physiological regulation. I

will cover relevant cases in the literature as needed, as many many of my experiments are simply

modern renditions of classic studies.
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Macromolecular accumulation and rate maintenance
during nutrient shift-up
Kjeldgaard, Maaløe, and Schaechter (1958)

Figure 4.1: Macromolecular accumulation and rate maintenance during nutrient shift-up.
RNA and optical density increase quickly upon a shift to richer medium, while DNA synthesis
and cell number are delayed by 20 and 70 minutes, respectively. Reproduced from Kjeldaard et
al.211.

4.2 Imaging replication and division coordination in E. coli

4.2.1 A constant initiation size is conserved during nutrient shift-up

In this section we review experiments that show a constant initiation size is obeyed even

in dynamic environments. This strongly supports the threshold model for initiation.

At steady-state, the pioneering work by Schaechter, Kjeldgaard, and Maaløe demonstrated

how faster growing cells in rich medium were larger, and contained a higher concentration

of RNA and DNA than slower growing cells in minimal medium (Figure 1.3)16. The same

authors in the same year also measured how these quantities changed in a shift from minimal

to rich medium (Figure 4.1)211. They found that while RNA and cell mass increased their rate
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Tracking cell cycle parameters during nutrient shift-up

Figure 4.2: Single-cell nutrient shift-up. DnaN-yPet can be used to track active replisomes
and determine the cell cycle parameters in single cells. Images of fluorescent images are shown
with the corresponding chromosome conformation for the highlighted cell. During nutrient
shift-up, cell size increases but the initiation size stays constant, moving the timing of initiation
closer to the birth of the cell.

of accumulation instantly, an increase in DNA and cell count was delayed. They coined this

phenomenon “rate-maintenance.”

Stephen Cooper later explained rate-maintenance as a consequence of the constant C+D of

the H-C model212. When cells enter a richer medium, they immediately upregulate the production

of RNA (of all types), as well as protein production, which is reflected in the increase in mass

(growth rate). However, they cannot increase their rate of division because initiation events that

occurred before the shift-up must still wait C+D minutes before cells divide. In fact the increase

in cell count was measured by Kjeldgaard and colleagues to be 70 minutes after shift up, close

to the 60 minute duration for C+D measured by Helmestetter and Cooper. They delay in DNA
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Figure 4.3: Single-cell parameters during shift-up. Single-cell parameters during nutrient
shift-up. Scatter plot colors correspond to the generations relative to the shift-up in the top
left single cell trace, i.e., light blue dots are cells born before shift-up but divide after. Rate
maintenance is seen in the top right plot as these cells have a generation time of 60 minutes,
which only decreases for cells born after the shift-up. Note that parameters are plotted against
the division time of each cell.

synthesis of 20 minutes can be attributed residual D periods overlapping with the shift.

I repeated this experiment at the single-cell level, shifting cells from glucose minimal
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media to the same media with a supplement of 11 amino acids, changing the doubling time from

40 to 60 minutes. To measure the cell cycle parameters, I used a fluorescent protein fused to DnaN,

the β-clamp of DNA polymerase III216. When the replisome is active and polymerizing DNA,

the local concentration of DnaN increases such the location of the replisome can be resolved

as a diffraction limited spot. The spatiotemporal location of these foci can be used to manually

determine the cell cycle parameters. Figure 4.2 shows and example image of the DnaN signal and

resolving the single-cell cell cycle dynamics during shift-up.

My data supports the classic observations to a large degree (Figure 4.3). I find that while

the elongation rate increases immediately, the generation time is maintained in the generation

of cells that experience the shift up. While C+D is not strictly constant between the two growth

rates, the shift-down supports the notion that the division rate cannot be greatly increased before

C+D minutes after the initiation rate has increased.

The initiation rate however increases immediately with the growth rate. This is reflected

in the initiation volume, which is constant throughout the shift-up. This supports a model in

which the replication initiator molecule accumulates in proportion to cell volume, and triggers

initiation at a constant number per ori. This naturally leads to an initiation time that occurs earlier

in the cells life, as the shift-up is accompanied by a corresponding increase in birth and division

size.

4.2.2 A constant initiation size is conserved during nutrient shift-down

In this section we extend the previous measurement to nutrient shift-down. We observe

that the initiation size is still conserved through the transition, but that the timing of division is

not well explained by the H-C model.

Kjeldgaard and colleagues also measured the reverse of their shift-up experiment by

growing cells in nutrient broth, then filtering the cells and resuspending them in minimal glucose

media (Figure 4.4)211. In this scenario, RNA synthesis and optical density do not increase until at
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Macromolecular accumulation and division during nutrient shift-down
Kjeldgaard, Maaløe, and Schaechter (1958)

Figure 4.4: Macromolecular accumulation and division during nutrient shift-down. RNA
accumulation and cell mass cease increasing upon shift-down, while DNA synthesis and division
occur at the pre-shift rate for a short time. Reproduced from Kjeldgaard et al.211

least an hour has passed, indicating growth is inhibited. However, DNA synthesis and cell count

maintain their preshift rate for approximately 20 minutes, and then reduce the rate to something

closer to the post-shift steady-state value.

The authors recognized that if cell count continues to increase while cell mass does not,

the average cell decreases during shift-down. However, it was not clear to them the source of the

discrepancy between RNA and protein synthesis, versus DNA synthesis and the division rate.

Tellingly, Cooper did not attempt to explain this data when he addressed the shift-up data as

outlined above212.

The H-C model does not describe shift down, because if the constant C+D was obeyed,

colony counts should have increased for 60 minutes from the shift down, not 20. Instead, the data

implies that only cells already close to division executed the task, while others waited. Indeed,
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Figure 4.5: Single-cell nutrient shift-down.. Determining replication dynamics in single cells
during shift down. (Top) Replication foci are visible by DnaN-Ypet. (Middle) The replication
state of the cell is deduced from the foci. (Bottom) A single lineage undergoing shift down
(at time zero). The red stars show the initiation time and the green bars are the initiation size.
Termination is at the end of the line created by the foci positions. The top and middle panels
show the two cells in grey. The first cell experiences the shift down at time zero. While C period
does not appreciably increase, the second cell has a delayed division (and hence delayed D
period).

this is what I observed when revisiting in this experiment with the mother machine (Figure 4.5).

In the generation during and after shift down, a cell may divide, and then it is followed by a cell

with an extremely long generation time and low growth rate (Figure 4.6). Interestingly, the C

period of cells during this time does not appreciably increase. That is, if replication starts, it will

finish “on time.” Since division is delayed, there is instead a large increase in the D period.

Impressively, the size at replication initiation is unperturbed during these changes. Cells
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Single-cell parameters during shift-down

Figure 4.6: Single-cell parameters during shift-down. Single-cell parameters during nutrient
shift-down. Scatter plot colors correspond to the generations relative to the shift-up in the top
left single cell trace, i.e., light blue dots are cells born before shift-up but divide after. Note that
parameters are plotted against the initiation time of that cell. This emphasizes that cells which
initiate before the shift down can still increase their generation time (via the D period), greater
than what is prescribed by the H-C model.

simply wait until they have reached the requisite size, which manifests itself as a dearth of

initiation events after shift-down. This comports with the idea that replication initiators accumulate

82



0 1 2 3 4
0

2

4

6

8

time (hours)

le
ng

th
 (μ

m
)

FtsZ-mVenus
1µm

FtsZ accumulation in E. coli

Figure 4.7: Measuring FtsZ ring formation in single cells. (Top) Time lapse images of the
mVenus channel of the cell indicated. (Bottom) The cell length and fluorescent signal from
FtsZ-mVenus for a single lineage at steady state. The green color is the sum of the fluorescence
intensity along the long axis of the cell. The formation and location of the Z-ring are clear at the
midcell. Cells are growing in MOPS glucose.

proportionally with growth rate, thus retaining a constant concentration regardless of if cells are

in steady-state or not. Indeed, the added size between initiation events is also constant. The fact

that division is delayed relative to these initiation events indicates that the former is not strictly

coupled to the latter. An explanation for this delay is covered in the next section.

4.2.3 Division is controlled by FtsZ accumulation at the midcell

During nutrient shift-down the canonical time interval between replication and division

is broken. Instead, division proceeds when FtsZ accumulates to the proper level, supporting a
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model in which division is controlled by a separate threshold mechanism.

To understand why division is delayed during nutrient shift-down, we should first consider

how division is triggered in steady-state conditions. As described in Subsection 2.3.5, I hold that

the cell divides when it attains a requisite number of FtsZ. More specifically, I believe that it

commits to division when the number of FtsZ molecules have assembled in the Z-ring at midcell.

This commitment happens before the actual division event, likely right before the onset of visible

constriction. This is around 10 minutes before division in faster growth rates217.

To test this theory, we used a near-functional FtsZ-mVenus fusion protein and tracked its

amount and localization over the division cycle (Figure 4.7)135. The FtsZ-mVenus marker is the

sole copy of FtsZ in the cell. From this data we first recognize that FtsZ concentration is constant

throughout the cell cycle. This means it satisfies the requirement of balanced biosynthesis, as

its production is tied directly to instantaneous growth rate of the cell. We also recognize that

the formation of the Z-ring occurs very early in the cell’s life, usually only a few minutes after

birth. Once the Z-ring forms, the fraction of FtsZ in the ring versus the cytoplasm is stable at

around 30%, increasing slightly towards division, and then decreases during constriction as the

ring disassembles154, 178. Because the FtsZ concentration is constant, and the fraction of FtsZ in

the ring is stable save for right around a division event, the number of FtsZ in the ring steadily

increases as the cell grows (Figure 4.8).

If division is triggered when FtsZ reaches a critical level in the ring, then the intensity of

FtsZ-mVenus in the ring at that time should be independent of the division size. This is indeed

the case (Figure 4.9). The top left panel shows the amount of FtsZ in the ring at the time of

constriction is independent of the eventual division. This supports a model where the cell commits

to division at constriction, which is triggered by this amount of FtsZ. The top right panel shows

the FtsZ in the whole cell at this time correlates with the division size, indicating that it the

amount in the ring which is critical. That is to say, cells which divide large may have more FtsZ

at constriction, but they do not have more active FtsZ. The bottom left panel shows the division
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Figure 4.8: FtsZ accumulation over the division cycle. (A) Thin traces show the concen-
tration of FtsZ of many cells aligned to their division time. FtsZ concentration is constant
throughout the division cycle. The thick line is the population average. (B) The percentage
of FtsZ in the ring is mostly constant over the division cycle. (C) The intensity of the Z-ring
increases throughout the division cycle until the moment of constriction, at which point the ring
disassembles. The intensity of the Z-ring was calculated by integrating the intensity of a box
surrounding the midcell. The intensity of quarter position, like the total concentration, remains
constant.
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Figure 4.9: Division is triggered when the Z-ring contains a critical amount of FtsZ. See
text for information.

length correlates highly with the constriction length. This indicates that once constriction begins,

division follows shortly after. The bottom right panel shows the distribution of the time period

between constriction and division.

Whether a cell is small or large at a particular moment is irrelevant to the timing of division,

it only matters if they have assembled a functional Z-ring. Of course, larger cells will naturally
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have more FtsZ than smaller one due to balanced biosynthesis, but the stochasticity in division

size can be attributed in part due to stochasticity in the timing of reaching the FtsZ-in-the-ring

threshold.

This argument is strengthened in experiments in which FtsZ levels are oscillated by way of

an exogenous signal13. In these experiments, and in accordance with previous research, division

size decreases with higher FtsZ expression and increases with lower expression. However, despite

an almost two-fold change in division size, the maximum intensity of the Z-ring (usually around

10 minutes before division) is independent of the division size (See Si et al. Figure 613).

During shift-down, what then are the dynamics of ring formation? In Figure 4.10, we see

that the Z-ring still forms and that division is triggered upon the intensity of the Z-ring reaching a

critical amount. FtsZ concentration remains roughly constant during the shift down, indicating

that it is made in proportion to the instantaneous growth rate. Since the division size decreases,

the total number of FtsZ in the cell at division also decreases. In order to divide at a smaller size,

while maintaining the same critical threshold for FtsZ in the ring and the same FtsZ concentration,

the cell increases the fraction of FtsZ in the ring. It is not clear how the cell achieves this, but it is

likely due to changes in the activity of FtsZ regulators such as ClpX and OpgH.

The differential regulation of FtsZ with growth rate, both its expression and assembly,

makes it distinct from DnaA and is the essential reason for how E. coli changes its size. For

DnaA, we observe a constant concentration in all growth rates. Additionally, we posit that the

same fraction of DnaA is active for initiating replication, and the same number of active DnaA

molecules per ori are needed for initiation (i.e., the threshold is the same). The result of this is

that the initiation size is the same across all growth conditions.

For FtsZ, at least one of these tenets must be false. Otherwise, the cell would divide at

the same size across growth rates, at odds with the foundational Schaechter line. If division is

controlled by a threshold model, and assuming balanced biosynthesis (i.e., FtsZ is not regulated

in a cell cycle dependent manner), three possible aspects division triggering can change with
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Figure 4.10: Division is determined by FtsZ accumulation in the Z-ring. (A) During shift-
down, growth-rate crashes and division is delayed. In single cells, FtsZ still accumulates at the
midcell during the division cycle, while the total concentration of FtsZ in the cell stays roughly
constant. (B) The divisions after shift-down are still triggered when the cell attains a critical
amount of FtsZ at the midcell. Because the concentration stays the same, the fraction of FtsZ in
the ring transiently increases.

respect to FtsZ.

1. The threshold amount of FtsZ can change with the growth rate.

2. The concentration of FtsZ can change with the growth rate.

3. The ratio of active FtsZ to total FtsZ can change with the growth rate.
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Unfortunately there is conflicting data on which of these aspects of FtsZ regulation

changes with growth rate to produce the Schaechter line, and it is possible that all three are in

play.

For the threshold to change, the most intuitive evidence is that the cell width also changes

with growth rate. It is conceivable then that faster, larger cells with greater width require more

FtsZ to trigger division. However, because the mechanisms of triggering constriction is not fully

understood (i.e., how the cell measures if the threshold number of FtsZ molecules has been

attained), this avenue of thought is mostly speculation. In addition, cell width does not change

with growth rate in B. subtilis.

For the differential expression of FtsZ, there are conflicting reports stating that the

concentration of FtsZ is constant and that the copy number of FtsZ is constant at different growth

rates109, 184. If the copy number were constant, that would provide a tidy solution to the problem.

It means that faster growing cells down-regulate the expression of FtsZ, such that its concentration

is lower in larger cells. If the same number of FtsZ is required to reach the division threshold in

all growth conditions, then fast growing cells would indeed divide at a larger size as they would

grow more between successive division events.

However, if the concentration does not change during with growth rate, then it is the

amount of FtsZ that is competent for activating division which must change. Arguably, there

is the most evidence for this method of regulation. FtsZ has many binding partners, most of

which antagonize the assembly of FtsZ into the ring. As discussed above, if the activity of

these Z-ring assembly inhibitors is coordinated with growth rate, then the cell can effectively

control its division size by changing the active fraction of FtsZ. My shift-down data also supports

this strategy as it is the fraction of FtsZ in the ring that changes most when the cells change

environments. However, to fully understand how absolute cell size is coordinated with growth

rate, a more systematic treatment of FtsZ expression and assembly dynamics are required.
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Figure 4.11: Tracking nucleoid segregation and replication. (A) Representative images for
cells expressing HU-mCherry (red) and DnaN-yPet (green). (B) Example trace of cells in A
used to determine the size and timing of initiation, termination, and nucleoid segregation. Purple
signal is Hu-mCherry fluorescence summed along the long axis of the cell. White circles are the
position of replisomes as determined from the DnaN-yPet foci.

4.2.4 Nucleoid segregation occurs at a fixed size unrelated to ring forma-

tion

The timing of nucleoid segregation in relation to the cell cycle and cell size provided fertile

ground for speculation about coordination mechanisms in the past. Here, we show that segregation

occurs at a fixed size as opposed to certain time after initiation. Nucleoid segregation is spatially

but not temporally correlated with Z-ring formation. Note that by nucleoid segregation I mean

the physical separation of the nucleoid. This is distinct from chromosome segregation, in which

new replicated DNA is separated. Chromosome segregation is known to happen concurrently

with replication166.

In Does the Initiation of Chromosome Replication Regulate Cell Division, Arthur Koch

investigates if, like initiation, division is controlled by its own independent signal. He also

speculates that nucleoid segregation could itself be linked to its own size-related trigger. This

theory had roots in earlier work, including some from Schaechter and colleagues based on

quantitative imaging experiments showing that segregation happened at a certain time before

90



0.0 0.5 1.0 1.5
μm³

μ=0.82, CV=0.18

0 1 2 3
μm³

μ=1.61, CV=0.17

0.0 0.5 1.0
μm³

μ=0.69, CV=0.12

0 1 2
μm³

μ=1.47, CV=0.12

birth size division size initiation size segregation size

Figure 4.12: Distribution of cell cycle event sizes. As previously reported, the CV of the
initiation size is significantly smaller than birth or division size. Here we also show that the size
and segregation is similarly small.

division and with a similar CV159.

Using a fluorescent marker for the DNA associated protein HU in conjunction with a

replisome marker, I measured the single-cell growth and cell cycle parameters, including the

segregation size (Figures 4.11 and 4.12). Impressively, the CV of the size at segregation is

extremely small at 12%, the same as the initiation size. In addition, this size seems to be

conserved in additional growth rates and during nutrient shift-down.

It is unclear to me what the significance of the segregation size is. Donachie and others

produced a number of papers speculating that nucleoid segregation occurred at a size that was

twice the minimal cell length (as extrapolated from the Schaechter line and equivalent to the

initiation length) and commensurate with the termination time218. My data for E. Coli growing

with a doubling time of 55 minutes, indicates that the segregation time is always after termination

by around 7 minutes, but with a large CV (63%). My segregation size is slightly greater than

twice the minimum cell length (4.11 vs 1.93 µm), consistent with Donachie’s work (personal

communication).

This may mean that the cell must reach a minimum size before segregation can occur.
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Figure 4.13: Ring formation and nucleoid segregation are independent. In a dual color
imaging experiment during shift-down, there does not exist a clean relationship between Z-ring
formation and nucleoid segregation. (A) Z-ring formation can occur before or after segregation,
which is apparent in the slow growing cells after shift-down. Green signal is FtsZ-mVenus
summed over the long axis of the cell. (B) Nucleoid segregation occurs at a fixed length before
and after shift-down. Purple signal is HU-mCherry signal summed over the long axis of the cell.

Recent work has shown that nucleoid shape and position are greatly influenced by the cell

boundary and molecular crowding via entropic forces219.

Finally, nucleoid segregation does not correlate with the formation of the Z-ring (Fig-

ure 4.13). Contrary to several reports, my data shows that the Z-ring forms continuously at the

midcell over the division cycle, regardless of the segregation state of the nucleoids. The Z-ring

is normally positioned snugly between the nucleoids once they do segregate, but from my data

it is not possible to distinguish a causal relationship between Z-ring formation and nucleoid

segregation.
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4.2.5 FtsZ accumulation and ClpX degradation control division at slow

growth

ClpX is known to antagonize FtsZ and thus somehow regulate division. Here, we show

that FtsZ degradation by ClpX regulates division timing when growth rate and the accumulation

of FtsZ is slow.

As outlined in Subsection 2.4.5, ClpX is known to negatively affect FtsZ assembly in

both B. subtilis and E. coli141, 187–190. In E. coli, ClpX degrades FtsZ with its partner protease

ClpP141, 188, 191. However, while the interaction is well recognized, it was unknown what the

physiological role of this regulation was. Recently, we and collaborators determined that FtsZ

regulation by ClpX is important during slow growth13, 191.

At slow growth, cells still grow in a balanced manner and thus FtsZ is produced at a

rate proportional to growth rate. However, and unlike fast growth, the effects of active protein

degradation cannot be ignored. Sekar and colleagues determined that it was this balance between

production and degradation that determined the first division in cells waking from a non-growing

state. In a collection of experimental set-ups, growing cells were starved by removing carbon.

These cells cease growth, though do not necessarily enter stationary phase. The fraction of

the cells in D period at the time of starvation contain two complete chromosomes and do not

necessarily complete division.

Upon starvation, wild-type cells degrade FtsZ (see Sekar et al. Figure 8191 and Fig-

ure 4.14). Degradation happens on the order of a few hours, indicating it is active (the average

halflife of an unregulated protein is 12 hours)24. Cells lacking clpX do not degrade FtsZ during

starvation and indeed have abnormal FtsZ localization, perhaps indicating that ClpX may also

directly affect FtsZ assembly187.

Cells without FtsZ do not divide. ClpX, which remains active during starvation, ensures

that cells do not divide in the absence of protein production. When cells begin growing again, the
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FtsZ signal in single cells with and without clpX at the onset of starvationA

FtsZ signal in single cells with and without clpX after 10 hours of starvationB

Figure 4.14: ClpX degrades FtsZ during starvation. Representative mother machine images
of wild type cells with ClpX and mutant cells without ClpX before (A) and 10 hours after (B)
carbon starvation.

production of FtsZ must overcome the degradation rate by ClpX such that cells can accumulate

FtsZ to the requisite threshold amount. Sekar and colleagues showed this by pulse feeding small
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amounts of glucose to the starved cells191. Upon addition of glucose to the culture medium,

cells use the available carbon for biomass synthesis (no discernible amount of carbon sunk

towards maintenance was observed). Some of this biomass synthesis includes FtsZ. If the time

averaged pulse feeding rate was faster than the degradation rate, cells eventually divided after an

accumulation time. However, if the feed rate was less than or equal to the degradation rate, cells

never divided. Importantly, cells lacking clpX divide with minimal lag.

The pulse feeding experiments can be described with a simple model in which cells divide

after the accumulatey a threshold amount of FtsZ. The production of this FtsZ is a function of

the feed rate (i.e., the growth rate) and the degradation rate. At slow growth, degradation is

non-trivial, and has the effect of delaying division.

The pulse-feeding experiments demonstrate nicely how FtsZ is accumulated and degraded

when transitioning into or out of growth. ClpX also affects division mechanics at slow growth

in steady-state. It was reported that at slow growth, cells exhibit a sizer like behavior41. Si

and colleagues showed that this behavior is due to non-trivial levels of FtsZ degradation in this

condition. Effectively, FtsZ degradation leads to a lower autocorrelation in FtsZ amount between

mother and daughter, which means the daughter will divide at a size more independent of the

mother’s division size.

Consider a cell without degradation that divides small. Its daughter is born small, and to

accumulate enough FtsZ to divide it grows by the average birth size, equivalent to the constant

added size (see Si et al. Figure 713). When it divides, it its size is halfway between its mother’s

size and the average size. This is the adder principle, and it means the cell fixes its size deviation

and lack of FtsZ by one half every division, leading to an autocorrelation of one half after one

generation. But if this cell also has active degradation, then it loses some FtsZ which is normally

made in proportion to biomass growth. To divide, the cell must actually grow a little bit more

than the average birth size, and the added size becomes a function (negatively correlated) with

the birth size. The autocorrelation in size or FtsZ amount is thus less than one half after one
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generation in these cells. By knocking down clpX, Si and colleagues showed that they could

restore the adder phenotype even in slow growing cells.

4.3 Conclusion

Through advances in genetics, molecular biology, and imaging, we can now answer Arthur

Koch’s question with confidence33. Replication initiation does not trigger division. Instead, both

processes, and perhaps nucleoid segregation, are attached to cell growth and thus cell size at

large. Even in dynamic environments, it is the production of initiating proteins that control the

frequency of these events. A threshold mechanism is the fundamental control system. As such, it

should be of interest to microbial engineers, especially those concerned with minimal cells.

The foundational position of the threshold model does not preclude or diminish the role of

auxiliary systems which further increase the fidelity of chromosome replication and cell division.

Indeed, such systems, while ultimately dispensable, are still responsible for the extremely high

precession of whatever process they are concerned. Evolution clearly favors their existence. In

addition, the diversity of these systems across prokaryotes is undoubtably high based on our

meager knowledge of the model organisms. This alone warrants further study.

In terms of further exploration of the threshold mechanism and its implementation, I see

two major avenues which require additional work. The first avenue, discussed in Subsection 4.2.3,

is how the cell changes aspects of the threshold mechanism with growth rate in order to fit its

form to different environments. Does it change its program at the the level of transcription, or is

post-translational regulation at play? This avenue must address the idea that the cell likely has

multiple programs which are employed at different time-scales.

The second is to focus on the molecular details of the threshold mechanism, that is, how

can molecular interactions among molecules and other components of the cell trigger a structural

event. In a circuit analogy, how can molecules behave as a transistor or capacitor? In synthetic
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biology, significant effort has been put towards constructing genetic elements to behave as well

characterized components, epitomized by the “transcriptor”220. Normally, the input to such a

component is a transcription factor, and the output of such an element is the transcription of a

target gene (perhaps another transcription factor). These genetic circuits and their components

are normally defined by parameters such as the strength of promoters and ribosome binding sites.

The triggering of a structural cellular event, such as replication or division, can also be

thought of as a component. The input is the number of molecules and the output is a physical

event involving macromolecules or large protein complexes. However, the characterization of

such a component is more difficult than for genetic elements. This is because it is based on

complex molecular interactions that involve cooperatively and dynamics. While promoters and

ribosome binding site strength can be predicted computationally, this is not the case for structural

events. Without predictive ability, we do not truly understand how these systems work and cannot

use them for other purposes.

Investigating the physiological orchestration of the cell is to ask what solution has evo-

lution found for a difficult problem. By understanding this solution, we can better grasp the

limitations felt by biological systems as well as the capabilities they have at hand. In the latter we

will find inspiration for the problems that we have created and will have to solve ourselves.
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Appendix A

Materials and methods

A.1 Strains

In Chapter 3, we used B. subtilis strains in the 3610 background with mutations to confer

non-motility and reduce biofilm formation8. The background strain contained comI(Q12L) to

confer competence221. We used an inducible lytF construct to prevent chaining201. For mother

machine experiments in which replisomes were tracked, we used dnaN-mGFPmut2202, 203. Strain

construction was performed using single crossover plasmid recombination or double crossover

recombination from genomic DNA222.

For E. coli in Chapters 3 and 4, we used a K-12 MG1655 strain containing a functional

dnaN-YPet construct216, hupA-mCherry, or ftsZ-mVenus135. Strain construction was performed

using P1 transduction and lambda Red recombination.

Strain genotypes for both species are provided in Table A.1.
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A.2 Growth media and experimental conditions

For B. subtilis, we used S750 medium with different carbon sources and supplements.

Importantly, we included additional iron(III) chloride and trisodium citrate. The latter acts as a

siderophore for B. subtilis, and without it our strain cannot grow in the mother machine30. To

make rich conditions, we added 2 mg/mL casamino acids and 0.04 mg/mL tryptophan. For E.

coli, we used MOPS glucose medium with or without an 11 amino acid supplement. Turbidostat

and mother machine experiments used the same media with the following addition: bovine serum

albumin was added at 0.5 mg/mL during mother machine experiments in order to reduce cell

adherence to surfaces inside the device. Tables A.2 to A.4 provide detailed information on media

composition.

For both turbidostat and mother machine experiments, chloramphenicol was added at

concentrations between 1- and 4.2 µM during translational inhibition experiments. All exper-

iments were performed at 37◦C in a climate controlled environmental room which housed the

multiplex turbidostat and all optical components (Darwin Chambers Company, MO). Tables A.5

and A.6 enumerate experimental conditions and sample size for turbidostat and mother machine

experiments, respectively.

A.3 Microscopy configuration

We performed phase contrast and fluorescent imaging on a Nikon Ti-E inverted microscope

with Perfect Focus (PFS) and an LED transmission light source, controlled by Nikon Elements.

For turbidostat experiments we used a PFS 2, CoolLED pE-100, 60X 1.4 NA Ph3 oil immersion

objective (Nikon CFI Plan Apo DM Lambda 60X Oil), and Andor Technology Neo sCMOS

camera. For fixed cell phase contrast imaging, we used exposure times between 50-100 ms and

100% transmission power.

For mother machine experiments, we used a PFS 3, Sutter Instruments TLED, 100X 1.45
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NA Ph3 oil immersion objective (Nikon CFI Plan Apo DM Lambda 100X Oil), Photometrics

Prime 95B sCMOS camera, and Coherent Obis laser 488LX for epifluorescent illumination. For

laser epifluorescent illumination, we inserted a rotating diffuser in the optical train to reduce

speckle. We also reduced the camera sensor region of interest to flatten the fluorescent illu-

mination profile. We used a Chroma filter cube with dichroic mirror ZT488rdc and emission

filter ET252/50m. For live cell phase contrast imaging, we used a 30 ms exposure time at 100%

transmission power at an interval of 1.5 minutes. For fluorescent imaging, we used a 25 or 50

ms exposure time at 25% power at an interval of 3 minutes. This weak illumination minimized

physiological effects due to phototoxicity on the cell and allowed for steady-state behavior over

many hours.

A.4 Turbidostat cell preparation and sample collection

We grew all pre-cultures at 32◦C or 37◦C in a water bath shaker at 260 rpm. Seed cultures

were inoculated into 1-3 mL LB medium from a single colony from an agar plate, streaked no

more than 2 days before use. Cells were grown for several hours then diluted 1,000-fold into the

target media without antibiotics and grown until OD600 0.1. If multiple back dilution rounds were

needed to control experimental timing, they were done such that cells did not enter stationary

phase. The culture was then inoculated into each turbidostat vial with or without antibiotics

to the target OD600 0.05. Cultures grew for a minimum of 14 doublings to ensure steady-state

conditions upon sample collection. For some conditions, cells adhered to the glass culture vial,

evidence of residual biofilm activity we observed as changes in growth rate over the time course.

In these cases, the sample was transferred to a clean glass vial at the end of the experiment for at

least 1 additional doubling from which the growth rate was determined.

We collected samples for cell size and cell cycle measurements at OD600 0.2. Approx-

imately 20 mL of cell culture was immediately put on ice to arrest growth. The culture was
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then split and pelleted, frozen, or fixed according to the subsequent measurement protocol. Our

turbidostat design and function has been previously described37.

A.5 Turbidostat growth rate measurement

The turbidostat maintained cells growing exponentially between OD600 0.05 and 0.2. In

effect, it was run as a batch growth repeater, diluting the culture to OD600 0.05 when it reached

OD600 0.2. An exponential line was fit to the growth periods between consecutive dilution events.

From the exponential line I = I0 · 2t/τ, the growth rate was determined as λ = ln2/τ, where τ

is the doubling time. The turbidostat spectrometers were blanked with the appropriate medium

before each experiment.

A.6 Turbidostat cell size measurement

We fixed cells with a glutaraldehyde and paraformaldehyde mixture and imaged within

24 hr as previously reported223, except for the following modifications: 2 µl 25% glutaraldehyde

was added to 1 ml 16% paraformaldehyde and cells were resuspended in 300 µl GTE (50mM

Glucose 25mM Tris 8.0 10mM EDTA 8.0) per sample after PBS washes.

Before imaging, we adjusted cells to an appropriate cell density as needed. Cells were

pipetted onto a 2% agarose pad and briefly dried. The agarose pad was then flipped onto a Willco

dish (WillCo Wells, Netherlands) and covered with a glass coverslip to reduce evaporation during

imaging. Each experiment consisted of 80-200 images. Sample sizes are presented in Table A.6.

We performed fixed cell image analysis with a custom Python script using the OpenCV

library. First, we detected contours using an active snakes edge detection algorithm. We then

filtered for cell contours using a priori knowledge of cell size and shape, and manually checked

for correctly segmented cells. Width and length were calculated from the long and short axis of
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the cell segments using a simple threshold on the raw phase contrast images. All segmented cells

where the width and length fell within 3 standard deviations of the mean for that measurement

were kept for further analysis. To calculate cell volume, we assumed the cell was a cylinder with

hemispherical ends.

A.7 Turbidostat C period measurement using qPCR

We estimated C period using qPCR and marker frequency analysis. Genomic DNA

was prepared from each turbidostat sample using a standard phenol chloroform extraction. We

amplified genomic DNA using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific).

We used primer pairs targeting chromosomal loci and calculated the C period using the ratio of

relative loci copy numbers as discussed previously37. Primers are listed in Table A.7.

A.8 Mother machine cell preparation and image acquisition

We prepared cultures for mother machine experiments the same as for turbidostat experi-

ments except for the following difference: for translational inhibition experiments, the culture

was diluted into the target media with appropriate antibiotics and allowed to grow for several

generations before loading into the device.

We performed mother machine experiments as previously described8, 13. We used a

custom centrifuge to load cells into the growth channels of the mother machine. The time required

to remove cells from the water bath shaker, load them into the growth channels, and infuse fresh

37◦C media was between 15 and 30 minutes. We then imaged cells for many hours under constant

media infusion via a syringe pump (Harvard Apparatus, MA).

For nutrient shift experiments, two syringe pumps were used in conjunction with a manual

Y-valve near the device inlet. Cells experienced the change in nutrients in a time interval shorter
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than the imaging interval191.

A.9 Mother machine image processing

Mother machine images were processed with custom Python software. The pipeline takes

raw images and produces objects which represent a cell and contains all measured parameters. It

is described in detail in Appendix B, Briefly, the software aligns and crops images into single

channels, segments cells, and links segments in time to construct cell lives and lineages. From the

constructed cells we extracted physical parameters in space and time such as size and growth rate.

The software has been previously described13 with the following modification: segmentation was

accomplished with a convolutional neural network implemented with TensorFlow using manually

annotated training data224.

After segmentation and lineage creation, the resulting cells were filtered for those with

measured parameters (septum position, elongation rate, generation time, and birth, division

and added length) within 4 standard deviations of their respective population means. We only

considered cells in the time interval for which measured parameters and the fluorescent signal

were in steady-state. This was normally 3-4 hours after imaging began until imaging ceased.

For the growth condition glycerol rich with 3.5 µM chloramphenicol, we excluded cells which

divided at the quarter positions, which were less than 5% of all cells. For all conditions, we further

selected a subset of cells which could be followed for at least 4-6 consecutive generations. The

later filtering step did not affect the parameter distributions, but ensured cell cycle determination

was possible in light of the presence of overlapping cell cycles. We only considered mother cells

during analysis, but note that other cells along the channel had identical elongation rates.
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A.10 Single-cell cell cycle analysis

As described in Subsection 3.2.3 we used a functional fluorescent DnaN-mGFPmut2

fusion protein for B. subtilis. The construct was integrated at the chromosomal locus and

expressed under the native promoter. The same genetic configuration was done for E. coli using

DnaN-YPet. The gene product is the β-clamp subunit of DNA polymerase III, which is present at

high stoichiometry in active replisomes216.

Cell cycle analysis is as described previously13. Processed fluorescent images were

used to determine the cell cycle parameters manually. We first identified replisome foci in the

processed fluorescent images using a Laplacian of Gaussian blob detection method. We then

constructed cell traces by plotting cell length versus time, with both the fluorescent signal and

foci position projected against the long axis of the cell as demonstrated in Figure 3.6. Using an

interactive program, we determined the start and end of replication visually based on the position

and number of detected foci. For the fastest two growth conditions, glycerol rich with 0 and 1 µM

chloramphenicol, termination time and thus C and D period were not determined separately.

For nucleoid segregation time (Subsection 4.2.4), an analogous method with an interactive

program was used to determine the segregation time.

A.11 Ensemble cell cycle analysis

In the ensemble method, we aligned cells by size and plotted the ensemble replication

state. Based on ours and published measurements, we chose alignment by size as opposed to cell

age41. To create the ensemble, we find the average number of foci as a function of cell size across

all cells. For the slow growing case, the number of foci is 1 at small lengths until a transition

period, at which it rises to and plateaus at 2. We take the initiation length to be the length at which

the foci count rate of change is the highest, using a differentiation step of 0.2 µm. By inferring
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the average number of overlapping cell cycles noc from the traces, we can calculate C+D to be:

C+D = (noc + log2(Sd/Si)) · τ

A.12 Tables

Table A.1: Strain information.

B. subtilis strains Genotype Notes
BS15 3610 comI(Q12L)

hag::MLS(R)::MLS(S)
amyE::[Phyperspank-lytF spcR]
epsH::tet

Chapter 3

BS45 3610 comI(Q12L) motAB::Tn917
amyE::[Physpank-lytF kan] epsH::tet
dnaN::[dnaN-gfp spec]

Chapter 3

E. coli strains
SJ1535 K-12 MG1655 dnaN::[dnaN-yPet kan] Chapter 4
SJ1724 K-12 MG1655 dnaN::[dnaN-yPet kan]

hupA::[hupA-mRuby2 FRT-cat-FRT]
Chapters 3 and 4

SJ1725 K-12 MG1655 ftsZ::[ftsZ55-mVenus-
56]

Chapter 4

SJ1728 K-12 MG1655 ftsZ::[ftsZ55-mVenus-
56] hupA::[hupA-mRuby2 FRT-cat-
FRT]

Chapter 4

SJ1741 K-12 MG1655 ftsZ::[ftsZ55-mVenus-
56] clpX::[FRT-kan-FRT]

Chapter 4
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Table A.3: Media components.

Component Concentration
S750 salts and metals
MOPS 50 mM
ammonium sulfate 1 mM
potassium phosphate monobasic 5 mM
magnesium chloride 2 mM
calcium chloride 0.7 mM
manganese(II) chloride 50 µM
zinc chloride 1 µM
iron(III) chloride 55 µM
thiamine hydrochloride 1 mM
hydrogen chloride 20 µM
trisodium citrate 50 µM
MOPS modified buffer
MOPS 40 mM
tricine 4 mM
iron(III) sulfate 0.1 mM
sodium sulfate 0.276 mM
calcium chloride 0.5 µM
magnesium chloride 0.525 mM
sodium chloride 50 mM
ammonium molybdate 3 nM
boric acid 0.4 µM
cobalt chloride 30 nM
cupric sulfate 10 nM
manganese(II) chloride 80 nM
zinc sulfate 10 nM
potassium phosphate monobasic 1.32 mM
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Table A.4: Amino acid supplement.

Component Concentration
L-methionine 500
L-histidine 500
L-arginine 500
L-proline 500
L-threonine 500
L-tryptophan 500
L-leucine 500
L-tyrosine 500
L-alanine 500
L-asparagine 500
L-aspartic acid 25

Table A.5: Turbidostat experimental conditions.

Strain Growth medium Perturbation Replicates Sample size
BS15 succinate none 4 6592, 8769, 7418 7051
BS15 succinate 1.8 µM cam 4 16804, 11418, 15001, 8065
BS15 succinate 2.7 µM cam 4 7051, 7901, 13369, 7741
BS15 succinate 4.2 µM cam 2 4782, 3132
BS15 mannose none 2 4782, 3132
BS15 mannose 1 µM cam 3 5368, 9213, 8086
BS15 mannose 2 µM cam 4 14080, 12865, 18524, 15191
BS15 mannose 3.5 µM cam 3 6623, 7218, 9140
BS15 succinate rich none 2 7861, 18963
BS15 mannose rich none 2 3346, 3387
BS15 glycerol rich none 3 4807, 3152, 4819
BS15 glycerol rich 1 µM cam 3 3551, 4894, 2199
BS15 glycerol rich 2 µM cam 4 7821, 3332, 9554, 7973
BS15 glycerol rich 3.5 µM cam 4 5786, 5143, 7059, 4910
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Table A.6: Mother machine experimental conditions.

Strain Growth medium Perturbation Sample size With initiation size
BS45 succinate none 2530 506
BS45 succinate 2 µM cam 2586 534
BS45 mannose none 5478 504
BS45 mannose 2 µM cam 3375 561
BS45 mannose 3.5 µM cam 2151 553
BS45 glycerol rich none 2355 514
BS45 glycerol rich 2 µM cam 4743 476
BS45 glycerol rich 3.5 µM cam 1416 198
BS43 succinate, succinate rich nutrient shift 7671 1695
SJ1724 MOPS glucose none 4681 437

Table A.7: qPCR primers.

Primer name Sequence Location g on genome;
ori = 0 ter = 1

SJO1152 CGTTGATAGGAACTAGTAGGGA ori forward (right arm)
SJO1153 AGCATTTCGCTCAAGGATG ori reverse (right arm)
SJO1232 GGAATTTCTTTCTCAGGAGAACATTTG 0.2 forward (right arm)
SJO1233 TCTTTATAACGCAGGCATACGG 0.2 reverse (right arm)
SJO1167 CAGTTCGAGCGAAACGATAGA 0.4 forward (right arm)
SJO1168 CGCCACTTTCTCCCTCATAC 0.4 reverse (right arm)
SJO1136 AGAGATGGGTACGATTGTTTG 0.73 forward (right arm)
SJO1137 TTGTCCGCAGCAAGTTC 0.73 reverse (right arm)
SJO1138 TTAACTCGGACATCTTCATCAG ter forward
SJO1139 CAAGGATCAGGAGCAGTTTAT ter reverse
SJO1140 CAGTTCTGCGTTTAGCTGTA -0.74 forward (left arm)
SJO1141 TTCGGTCATTCTTGTGATAGTT -0.74 reverse (left arm)
SJO1175 TCAAACACATACTTACTCGGATACA -0.41 forward (left arm)
SJO1176 CTTGCAGGATTTGAAAGGGAAA -0.41 reverse (left arm)
SJO1177 CATAACCGGGTACTGAGGAAA -0.22 forward (left arm)
SJO1178 TCGGATTACGGAAGTTGAAGAG -0.22 reverse (left arm)
SJO1179 CACTGCCAGCATATTGTTTATCG ori forward (left arm)
SJO1180 GAATGGTTGATCGGTATGGCTA ori reverse (left arm)
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Appendix B

Mother machine image processing with

mm3

B.1 Introduction

A hallmark of modern measurement methods is that they simply produce a lot of infor-

mation. This is especially true in imaging, whether for scientific purposes or otherwise. When

the CIA launched its first spy satellites, behemoth spacecraft at the technological forefront, they

would take a single picture to film and launch a canister to Earth. Agents would collect and

develop the negatives, and teams would pour over the image for tens or even hundreds of hours225.

In 2019, companies like Planet Labs take thousands of pictures of Earth a day with an orbiting

array of satellites, each the size of a loaf of bread.

In the realm of microbiology, microscopy predated photography by over 200 years. To

capture information from microscopes meant describing what the viewer saw or to sketch it. This

approach has its advantages, but it was certainly cumbersome. Moreover, an argument can be

made that quantitative imaging cannot be done without photographs as the eye is a fallible cypher.

In either case, a dearth of data is no longer a problem: a typical mother machine experiment

110



produces 50,000 images.

This is an awesome technological achievement, yet if we step back an obvious problem

arises. If you cannot examine these images, they are worthless. And unless you are taking pictures

of cats and putting them on the internet (or have a Red Scare inflated CIA budget), it is not

feasible to muster enough eyes to look at each image. Here, necessity is the mother of invention;

the impracticality of manual analysis motivates the creation of automated methods. Zooming out,

the advent of the so-called “big data” era is actually a story of two companions. The first are the

tools we have created to take many measurements, the second is the methods we have developed

to get a hold on what we have measured.

In this chapter I will describe the development of an image analysis platform, named mm3,

that I helped design to address the problem introduced here. In a nutshell, the software takes raw

images and outputs a dataset containing a collection of cells and their observable features, such

as their birth size, generation time, and elongation rate. The two major algorithmic tasks involved

are segmentation (the detection of cells in the image), and lineage creation (the linking of these

cells through time to define birth, division, and genealogy)226. The output are cell objects which

encapsulate information concerning one cell from birth to division and the basis for all single-cell

data presented in this thesis.

Before we continue I will first define some terms to allay confusion.

1. I refer to the act of taking raw image data and producing curated data as both image

processing and image analysis. However, “data analysis” describes the further investigation

or plotting of this curated data.

2. There is and unfortunate nomenclature conflict that in microscopy, images taken of the

same field of view, focal height, and nominal time, but with different illumination or other

methods, are called channels. As we also refer to the dead end cell traps of the mother

machine as channels, I will refer to microscopy channels as color planes or simply planes.
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Finally, I would like to note that there are a number of other software packages designed

for mother machine image processing, as well as general segmentation and tracking works of

note226–235.

B.2 mm3 image processing workflow

In this section I review the general workflow of mm3.

In order to address the problems outlined above, I, with the help of other lab members,

developed a highly automated image processing pipeline. mm3 attempts to find a balance between

two contradicting forces which often pull at home-grown software: to be specific enough that it

can be readily applied to new datasets, but be general and flexible enough that it can be modified

for specific experimental setups. As such the workflow is modular, such that certain tasks can be

substituted or ignored.

The code is written in Python and is run as a command line tool with the occasional

graphical user interface (GUI). The pipeline takes as an input raw TIFF images and related

metadata. The output is an associative array, that is, a dictionary of cell objects. These cell objects

can be used for further analysis and plotting. Parameters are passed to the individual scripts via a

text file in YAML format and as command line options.

mm3 expects phase contrast (bright field) images, which it uses to identify channels and

segment the cells. Additional color planes are accepted, specifically fluorescent images. These

are not used for the main goals of cell segmentation and tracking. However, they are kept with

the phase contrast images as this greatly streamlines downstream, experiment specific processing.

mm3 contains a number of functions for fluorescent analysis.

The general pipeline proceeds as follows (Figure B.1). Raw images are processed for

metadata and the location of channels. Channels are cropped out and compiled in a way the

reflects the multiplicity and dimensionality of the data. Each field of view (FOV) can have some
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Figure B.1: mm3 workflow. (A) Workflow of mm3 with major processes. Processes in the
pipeline are shown in the middle column as plain squares. Inputs and outputs are shown on
the left (parameter and metadata files) and right (raw and processed image data, including cell
objects). Note that all of the processes draw from parameter and metadata files, but not all lines
are shown for clarity. (B) Example images from various steps during processing.

number of channels, and each channel is functionally its own unit that does not interact with

other channels. Each channel has an expansion and time and perhaps additional color planes.

Cropped channels are either saved as stacked TIFF files, or in a compendium HDF5 format for

downstream analysis. This step is known as compiling (Appendix B.2.1).

Channels are then assessed on whether they should be used for analysis. That is, that they

both contain cells and are free of other defects or other reasons for exclusion. Empty channels are
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designated for the purposes of background subtraction (Appendix B.2.2). If using the standard

image analysis methods for segmentation, subtraction is performed (Appendix B.2.3).

Segmentation is then done on an image by image basis in one of two ways. The first

method relies on more traditional image analysis procedures (Appendix B.2.4). The second

relies on training data and a convolutional neural network (CNN), i.e., a deep learning method

(Appendix B.2.5). The output of both methods, the segmented image, is an 8 bit array where each

cell is represented by pixels of the same value starting from 1, with background pixels being zero.

Finally, segments are connected through time to create the cell lineages. This algorithm

utilizes a simple decision tree to determine cell growth and division (Appendix B.2.6).

The output are cell objects which constitute the life of a single cell from birth to division.

Each cell has a unique identifier, which can be used to locate the segments that make up that cell

in the cropped channel images. This facilitates post processing, such as retrieving and adding

fluorescent data associated with the cell. Cell objects also contain attributes which indicate their

parent and children. It is then trivial to reconstruct the lineage tree of all cells in a channel using

graph traversal algorithms.

Below, the individual sections of the image analysis pipeline are described in greater

detail.

B.2.1 Crop and compile images

The first step in the pipeline is mostly associated with bookkeeping and organizing

metadata. The goal of this process is to output cropped channel images and pool relevant

metadata.

The mother machine input data is a series of TIFF files. TIFF files are separated by time

point and FOV. Each image file contains this information in its name as a suffix. If there is more

than one image taken at each time point and FOV, such as a fluorescent exposure in addition

to a phase contrast image, these color planes are stacked within one TIFF. Each TIFF may also
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Figure B.2: Channel detection. Summing along the short axis of the mother machine images
produces an X projection. Because the channels have higher pixel values than the background,
even when they contain cells, distinct peaks appear. The location of the channels is found via a
wavelet transform on this X projection. The open and closed end of the channels are found via
the Y projection, which has a higher value than the very top and bottom of the image.

contains metadata stored in the header of the file in JSON format. Depending on the source of

the image, this includes the above information such as the absolute (wall) time that the image

was taken, the microscope stage position of the image, and the optical configuration of the image

planes.

Images are first analyzed individually to collect this metadata in a dictionary. This

dictionary, as well as a table that relates the nominal time index to the absolute time an image was

taken are saved for future reference. Importantly, each phase contrast image is analyzed for the

location of the mother machine channels. The location information is used to crop out individual

channel images. This reduces the amount of data that must be processed (because the sum area of

the resulting images are smaller). Moreover, since each channel contains an independent lineage,

cropping them separately is a convenient and logical way to process and organize the data.

Locating channels relies on a wavelet transform, taking advantage of the regular spacing
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of the channels in a mother machine image (Figure B.2). In a normal mother machine image,

the channels appear lighter than the background PDMS or main flow cell. Image preprocessing

requires that the channels be aligned vertically. Thus if the image is summed over the X axis, the

1D projection of the image is a series of peaks. To find the location of these peaks, a Mexican hat

wavelet is convolved across the 1D projection. Where the wavelet aligns well to the peaks of the

projection, a local maxima arises. This is true even when the channel contains cells. The peaks

are chosen where the maxima to noise ratio is above a specified threshold. These peaks are the

location of the channels and are the basis for cropping in the X dimension.

To find the ends of the channel we again take advantage of the fact that the channel pixels

are lighter than the foreground. We then sum over the Y axis, and the 1D projection has a higher

value in the location of the channel. In preprocessing the channels are arranged such that the open

end faces down. Additionally, images are cropped such that we can make the assumption that the

closed and open end of the channel are within the top and bottom third of the image, respectively.

We then take the numerical derivative of the Y projection. In the first third of the derivative of the

projection, the maxima correspond to the closed end of the channel. This is where, where the

projection has a quick transition from dark to light. Similarly, the open end of the channel is the

location of the minima in the last third of the projection derivative, where it goes from light to

dark.

The X and Y projections give both the center pixel of each channel (the peak value from

the wavelet transform) and the averaged location of the closed and open end of the channels

across the image. The same Y projection method to determine the closed and open end of the

channels is then repeated for each individual channel to account for subtle differences between

channels or deformations in the device. If the result of this individual accounting is significantly

different than the average, then the average is taken as a default. These three pixel values (peak,

open, and closed end), effectively define the location of every channel in every image.

For the purposes of cropping out the individual channels, the width of the channel is taken
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as a parameter that is to be measured and entered by the user. Two additional parameters for the

desired width and length padding finally dictate the crop areas in each raw image. Explicitly,

each channel peak location is expanded in X by the channel width and channel width pad, and the

open and closed end pixels are expanded by the length pad. This gives four numbers for each

channel that together form a mask.

The masks are created for each time point for a particular FOV, and are then combined into

a consensus mask which is then applied to all time points. This process accounts for aberrations

in particular time points, such as transient illumination artifacts that may cause errors in channel

location. However, it requires that there is not significant XY translation of the FOV during

imaging.

The consensus mask is created by stacking all masks from a particular FOV to create an

occupancy map. Each pixel in the map takes a value between 0 and 1 corresponding to the fraction

of time that pixel is part of a mask across all time points. Pixels with a minimum occupancy are

taken to be part of the consensus mask. Finally, this process often leads to individual channel

masks with jagged edges. These edges are squared by taking the smallest rectangle that can

contain the mask. Additionally, each channel mask can be expanded so that they are the same

size across the experiment. This is mostly an aesthetic decision, but has some benefits when

doing image post-processing. The consensus channel mask is saved and can be directly edited if

desired.

The channels are then cropped individually and saved as 3D image stacks through time.

Individual color planes are saved separately. Stacks are named with a unique suffix identifying

their FOV, channel (peak) number, and color plane.

The wavelet transform and derivative method of finding the location of the channels has the

advantage of being computationally fast. However, it requires an assumption about the appearance

of the images which may not be true in all cases. Alternatively, the channels can be found directly

using a deep learning approach analogous to the one used for segmentation described later. This
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method is much slower but much more amenable arbitrary channel appearances. Because deep

learning segmentation is discussed in Appendix B.2.5 in more detail, we will not delve into this

method here.

Going forward, all processes are applied to the cropped channel stacks individually.

B.2.2 Channel designation

In the previous step, all channels are located and cropped regardless of if they contain

cells or not. However, it is valuable to partition channels into groups based on if they should be

analyzed (i.e., contain growing cells), or do not. This is mainly to minimize the computational

load of downstream steps by simply reducing the number of images that must be analyzed. In

addition, some channels which contain cells may not be prime for analysis because of artifacts

in the device which distorts how the cells grow (i.e., as microcolonies rather than in lines). Or

the channel simply loses its cells early in the experiment, and thus will not contribute much data

overall. Finally, channels which do not contain cells but are otherwise pristine can be used for

background subtraction. Discussed in Appendix B.2.3, background subtraction is necessary for

one of the two segmentation methods and is usually done as a precursor to fluorescent image

analysis.

For the above reasons, mm3 contains a dedicated step in which channels are designated

into one of three categories: analyze, empty (use for background subtraction), or ignore. This is

done in a semi-automated way: the cells can algorithmically be categorized into either analyze or

ignore, but the user is highly encouraged to check over this categorization and must designate

empty channel manually. Practically, it is not necessary to create an algorithm that can correctly

designate channels for every experiment. The development or training of such a method would

take far longer than manually designating the channels for each experiment. Moreover, it is

simply good practice to force the user to look at their processed data before the more critical steps

of segmentation and lineage tracking are performed. While a typical mother machine experiment
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may consist of 1000 individual channels, these can be sufficiently inspected in 30 minutes.

Yet automated pre-sorting does ease manual annotation. The automated designation of

channels as either containing cell (analyze) or not (ignore) can be done in one of two ways. The

first uses the 2D cross correlation of images of the channel across time. The latter uses a deep

learning approach, which is accurate but slow. We will discuss the cross correlation method here.

The 2D cross correlation method takes advantage of the fact that a channel that contains

no cells does not change in appearance over time. On the other hand, the appearance of a channel

which contains cells is very dependent on time as the cells grow, divide, and change their position

throughout the experiment. In fact, the cross correlation can be used to create a single value

similarity index. The cross correlation from second time point onward is calculated against

the first time point and these numbers are averaged. A value of 1 indicates that the image is

completely time invariant, while a value of -1 indicates the images are inverse of one another. A

threshold is used to separate channels with high similarity and those with lower similarity, which

likely contain growing cells.

In practice all channel images with or without cells are highly similar through time, so

their similarity index is often above 0.90. Also, it is unnecessary to calculate the cross correlation

at all time points. A subset of 10% of the images is used to calculate the similarity index in order

to reduce computation time.

While this method can distinguish between active and inactive channels, it cannot desig-

nate a channel as truly empty. For example, if a channel contains a dead cell from the beginning

of the experiment, it will have a very high similarity index, but is not appropriate to use for

background subtraction. More commonly, small imperfections which are difficult to assess

algorithmically preclude the ability of many channels to be representative empty channels. For

these reasons, empty channel designation is done manually via a GUI. The GUI is also used to

review and correct improperly designated channels from the automated step.

Figure B.3 shows the GUI. The top column shows the first image from all the channels in
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Figure B.3: Channel designation GUI. See text for information.

the FOV. The channel number (its X location in the original image) is shown above the frame.

The middle row shows the last image from the channel. They are colored by whether they should

be analyzed (green), ignored (red), or used for background subtraction (blue). Clicking on the
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images cycles among the designations. The bottom column shows the similarity index of the

channel across time. Values farther to the right are more similar, such as for the empty channel.

The output of this step is a YAML file which contains the designations of all channels,

organized by FOV, for the experiment. This file is known as the specifications file and can be

directly edited. Channels with designation analyze have value 1, those with designation ignore

have value -1, and those with designation empty have value 0. It is used in all downstream image

processing.

B.2.3 Background subtraction

Broadly speaking, the purpose of background subtraction in image analysis is to remove

uninformative signal from the data. Ideally, this leaves only pixels which contain useful data

and greatly simplifies analysis. Mother machine images are well suited for background subtrac-

tion because of their regular appearance. Background subtraction is a precursor to one of the

segmentation routines and is done before most fluorescent image analysis.

Background subtraction is achieved in three parts: determining an appropriate background,

aligning this background to the image being processed (known somewhat confusingly as the

foreground image), and finding the difference in intensity on a pixel by pixel basis.

As alluded to above, we use empty channels as the background for subtraction. One

empty channel is used for each FOV. The empty channel is itself a channel stack through time,

such that at each time point has a corresponding background image. This is because long-term

changes in lighting or focus precludes the ability to use one image for all time points.

During channel designation, if only one channel in the FOV is designated as an empty

channel, then it is used directly. If more than one channel are deemed empty in a FOV, then they

are averaged together to create a representative empty. At each time point, the empty channel

images are aligned to one another using a tiling cross correlation described in more detail below.

The aligned images are then averaged on a pixel-by-pixel basis. It is beneficial to use an averaged
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empty channel for background subtraction to remove all minor artifacts which may propagate

through subtraction. If no empty channels are designated for a particular FOV, an empty channel

is borrowed from the closest available FOV.

The background image must be aligned to the foreground image before subtraction

such that the features of the channels overlap precisely. Even a small misalignment will create

confounding artifacts in the subtracted result. We employ a 2D cross correlation to find the

best alignment. This is a commonly used method in image analysis for template matching.

The background image is first padded with additional pixels on all sides to ensure it is larger

than the foreground image. The value of these padded pixels are drawn by mirroring at the

edge of the image. The foreground image is then slid across the background image across all

positions for which it completely overlaps with the background. At each position we calculate

the cross correlation. This is equivalent to a 2D convolution of the foreground image against the

background. The maximum value of the convolution corresponds to the position at which the

foreground is most similar to the background. Even though the foreground image may contain

cells in the channel, the shared features, specifically the PDMS-liquid interface at the open end of

the channel and the channel itself, drive images to be well aligned. With alignment position in

hand, we then shift and trim the background image so that it is the same size as the foreground

image.

With aligned images, subtraction itself is decidedly simple. We subtract the foreground

image from the background image element wise. We find the difference in this order so the cells,

which are dark in the phase contrast images, are light in the subtracted images. Note that no

normalization is performed. Values below zero are set to zero as they are effectively undefined.

B.2.4 Segmentation routine 1: Otsu threshold and random walker

The first segmentation routine uses fairly standard image analysis algorithms, and I refer

to it as the standard method. The standard method takes the subtracted images as input. The
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Figure B.4: Standard segmentation algorithm. Segmentation via the standard algorithm
progresses from the raw image (far left) to segmented regions for each cell (far right). After
background subtraction, the image is binarized via Otsu’s method, markers for each cell are
determined, and each marker is expanded to encompass the entire cell. See text for descriptions
of each process.

subtracted images are unsigned 16 bit gray scale images where the background is dark and the

foreground (i.e., cells), are light. There are three general sections of the routine: binarization,

marker creation, and enlarging markers to the cells’ boundaries (Figure B.4).

The first step is binarization, also known as thresholding, and is done via Otsu’s method.

Otsu’s method considers a histogram of pixel intensities of an image. It finds the threshold

intensity that maximizes the variance between the two classes of pixel intensities that are created

on either side of the threshold intensity. This is equivalent to minimizing the variance of each

class individually. The grayscale image is then converted to a binary image by setting all pixels

above the Otsu threshold to 1, and all other pixels to 0. Otsu’s method works well when the

distribution of pixel intensities is approximately bimodal. And although it exhaustively tests all

pixel values to be the candidate threshold, it is a fast calculation that does not scale with the size
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of the image.

The second general step, marker creation, has the key goal of spatially separating each

unique cell. Binarization does a good job of distinguishing foreground objects from the back-

ground. But because of the physical proximity of the cells in the mother mother machine channels,

binarization often results in one mass of white pixels. To efficiently label individual cells, we

instead require islands of white pixels surrounded by black pixels.

Marker creation is thus achieved by “contracting” the binarized foreground. This is

accomplished with both morphological operations and an edge distance threshold. These methods

works because we take advantage of the fact that in the mother machine, cells mostly touch each

other at the cell poles. Moreover, these connections in the binary image are usually smaller than

the width of the cell. Thus, we can specifically target the removal of these thin connections.

Morphological image operations are manipulations that target the boundary between black

and white pixels in a binary image. They utilize a kernel (a small binary image), such as a square

three pixels to a side. There are two fundamental morphological operations: erosion and dilation.

In erosion, the kernel is superimposed on each white pixel of the image. Whenever the kernel

does not completely overlap with white pixels, it turns the white pixel on which it is centered to

black. In dilation, the kernel is again superimposed on each white pixel in the image. If the kernel

overlaps with black pixels, it turns those pixels white. For either operation, the transformation of

each pixel is calculated at each index individually, so the order of superposition is not important.

Morphological operations of binary images are not computationally expensive.

Functionally, erosion and dilation result in erasing or adding white pixels at binary

boundaries, respectively. Take a round island (represented by white pixels) sitting in a sea (of

black pixels). A dredging crane (the kernel) removes land by traversing the boundary of the

island, resulting in a smaller island via erosion. Conversely, the crane can circle the island and

add land, resulting in a larger island via dilation (known as accretion in topography).

We employ erosion followed by dilation, a process known as opening, in order to remove
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image features we wish to discard while retaining the underlying size of the foreground object.

Imagine a peninsula with a narrow isthmus to the mainland. When the crane erodes the land

along the shore, the isthmus is destroyed and the peninsula becomes an island. The island is

smaller than the original peninsula. Yet when the crane returns to the shoreline restore the size of

the land via dilation, there is no isthmus to use as a guide. Thus the island grows to the size of the

original peninsula, but it is still an island. We use opening to remove the isthmuses (that is, thin

connections) between cells in our images.

The second technique is a simple edge distance threshold. Each white pixel is given a

value equivalent to its Euclidian distance from a black pixel. A simple threshold is then used,

where white pixels less than a certain value, or distance from an edge, are turned black. This has

the effect of shrinking all foreground objects.

In total, marker creation is achieved by a morphological opening, a distance threshold,

and then a second opening. The second opening is not strictly required, but helps to break

additional connections and generally smooths the final output. This output is ideally a collection

of foreground markers which are separated and have one-to-one correspondence with each and

every cell in the original image. Markers which touch the image edge or are beneath a minimum

size are considered errors and removed. Normally, the marker is in the shape of a small ellipse

which overlaps with the middle of the cell. The markers are then labeled. Labeling is a process

by which all contiguous pixel groups are given a unique pixel value. Unique numbers are given

based on the location of the object.

The separated, labeled markers represent unique cells in the channel, but they do not

accurately reflect the shape and size of the actual cells. In order to do so, we want to “fill out”

the markers. We use the subtracted images, masked by the binary image created by the Otsu

threshold, to determine the cell boundaries. We expand the markers up to these boundaries as

well as each other (without overlapping). The result is the segmented image

For this task we use the “random walker” algorithm to determine which pixels should
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be grouped with which markers236. Practically, random walker is similar to the more common

watershedding algorithm. However, wathershedding can have undesired behavior at intersections

between segments.

Random walker is a diffusion inspired, probabilistic method. It poses the question: if I

am a particle starting at a given pixel in the image, what is the probability that I will land first at a

particular marker via Brownian motion? Importantly, the intensity of image is used to weight

the most likely direction the particle will take in a given time step. Specifically, the diffusion

coefficient is greater between neighboring pixels when they have similar values. In this way,

pixels close to and not separated by high gradients from a particular marker will be likely to land

at that marker. We only consider pixels which are in the foreground (as dictated by the Otsu

threshold) as candidates to be associated with a particular marker and thus become part of a cell.

Random walker it is solved as an optimization problem. In a brute force approach, for

every pixel which is part of the foreground and not part of a marker, the probability that it will

reach a marker is calculated for each marker. The pixel then receives the label of the marker on

which it is most likely to land. Computationally, this is formed as a set of linear equations and

solved such that the final combination of pixel assignments has the maximum likelihood of all

possible combinations. In practice, the brute force approach is slow and the linear programming

problem is solved with an approximate method.

B.2.5 Segmentation routine 2: U-net convolutional network

mm3 also has a second, deep learning segmentation method based on a convolution

network of the U-net architecture.

The traditional segmentation method has the advantage that it is relatively simple and fast.

However, it relies on a number of parameters which must be specified by the user. Moreover, it is

specifically designed for phase contrast images of rod shaped bacteria. Fission yeast, which are

also amenable to growth in mother machine devices, is not well segmented by the method.
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Figure B.5: U-net segmentation workflow. (A) U-net segmentation requires the training of
a model using pre-labeled training data. Over many iterations, the model is able to create
predictions from the raw image which accurately reflect the pre-labeled mask. This accuracy is
reflected in the loss. (B) With a trained model, segmentation is applied directly to raw images.
The output is a classification prediction array. Values from 0 to 1 correspond to the confidence
that a given pixel is part of a cell. This image is binarized via a threshold and labeled to make
the segmented image.

Convolutional networks are a class of generalized image classification algorithms that

do not rely on significant manual parameterization or preprocessing of images. Segmentation

is such a classification problem, that is, classifying which pixels belong to cells. Convolution

networks as applied to images determine the probability that a pixel is of a class (in our case, part

of a cell or part of the background). It does this using a model which recognizes local patterns in

the image which indicate its class. The architecture of that model is pre-defined, and it contains

many parameters.

The parameters of the model are effectively hidden from the user. To determine the

parameters that most accurately classify pixels, convolution networks use supervised machine

learning. In supervised machine learning, the classification algorithm is given training data which

has been manually annotated and contains “true” data. In our case the training data is a binary

mask of cells along with the raw image from which they were determined. The algorithm then

iteratively runs classification and adjusts its internal parameters. Its goal during iteration is to
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determine the set of parameters (weights) that produces a classification that is most similar to

the given training data. Similarity is determined by minimizing a loss function. This function

quantifies the distance between the model output and the training data input. In our case the cross

entropy is used for the loss, which quantifies the unnecessary information contained in the output

image when compared to the input image.

The model architecture we use is called U-net224, 237. This architecture uses both local

and distant information in the image for pixel classification. When the image is contracted into

a feature vector, it passes through alternating steps of convolutions and downsampling. The

convolution sets always use 3x3 kernels, of which only the real part is taken (thus the edge

pixels are lost). Each set of convolutions increases the number of feature channels, while the

downsampling decreases the 2D resolution. Later convolution steps are effectively drawing

information from a larger swath of the original image.

The resulting 1D feature vector is then successively expanded via 2x2 up-convolutions

which use the training weights. Each up-convolution doubles the size of the array in X and Y and

halves the number of features. In addition, the corresponding feature map from contraction is

cropped and concatenated with the result of the up-convolution, adding contextual information.

This feature array is then convolved similarly as during contraction. By using the same number

of expansion steps as contraction steps, the resulting output image is of the same resolution as the

input (however, it is smaller due to pixels being lost at the border during every convolution). This

symmetry is also what gives the architecture its ‘U’ shape.

Regardless of the details of the U-net segmentation algorithm, it effectively works as

follows (Figure B.5). The user makes training data. These are binary segmentation masks paired

with the raw source images. These can be made via another algorithm such as the standard method

described above, curated by hand, or a combination of both. Usually, the size of the training

dataset is augmented by applying numerous affine transformation to the set to create “new” data.

The user then trains a U-net model using this labeled data. This trained U-net model is applied to
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unsegmented images. The output are probabilistic predictions of cell containing pixels. These

prediction arrays are binarized with a threshold and distinct cells are labeled. The final result is

an 8 bit image array is the same format as the result from the traditional segmentation algorithm.

The advantage of the U-net segmentation, and deep learning in general, is that it can

be applied to diverse datasets and requires little configurations. It is also far more accurate

than the traditional method in many cases. The disadvantages are several. Convolutions are

computationally expensive, so this method is slower than traditional methods. Curating training

data is a time intensive process, and different experimental conditions (such as different lighting

or devices) may require the training of new models. Additionally, unexpected behavior can

be hard to debug because the internal workings of the model are obscured. However, in my

experience the benefits outweigh the costs. Once a sufficient model is trained it can be used

indefinitely to produce consistent results. Segmentation for typical experiment is on the order of

hours, but will most likely be done overnight on a personal computer for either method. Most

importantly, the decrease in segmentation errors greatly improves the fidelity of the tracking

algorithm. This results in much larger datasets of analyzable cells (or equivalently requires less

raw data to produce the same amount).

B.2.6 Region tracking and cell lineage creation

Creating cell lineages entails linking segmented regions through time. In computer vision,

this problem is known as region tracking. This could be tracking the location of a car as it moves

in a video. For us, it means tracking a cell as it grows and moves in a mother machine channel. If

we know which set of regions across time belong to one cell, we have the requisite information to

measure physiological parameters such as birth size, elongation rate, and generation time.

Our goal goes slightly beyond region tracking, because we also want to define the cell

ancestry or lineage. That is, we want to identify the parent and children of each cell. When a

cells life is over, it likely becomes two cells. It can also die or escape the channel, though these
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are treated as corner cases for our purposes. When all is said and done, cell objects are defined

as a collection of regions through time which are born from another cell and have two daughter

cells. The process of creating cell objects from regions and identifying their parents and children

is lineage creation.

Lineage creation is naively accomplished with a decision tree algorithm based on a priori

knowledge of how cells grow as well as the normal arrangement of cells in mother machine

channels. The algorithm traverses a single channel through time. It assesses how the regions at

the current time point relate to regions in the previous time point, thereby initializing and building

cell objects. In this way, a graph is built which links regions from the current time point to the

cells present in the previous time point. The cells in the previous time point are the leaves in the

graph. The graph is effectively stored in the cell objects, which are fundamentally a collection of

linked regions.

The algorithm starts at the first time point, and all regions at that time point are initialized

as cell objects. Each cell object has an experiment-wide unique ID and contains information

about the regions of which it is composed (which at the start is just one region). These cells

are stored as current leaves (leaf cells) and the algorithm progresses to the next time point. All

current regions are then assigned to a leaf cell. This assignment is based on the Y locations of

the regions and the most recent Y locations of the leaf cells. Importantly, cells in the mother

machine are arranged vertically and cannot pass each other. Thus, a current region with a small Y

displacement from a particular leaf cell is most likely part of that cell, or is perhaps its daughter.

The result is a map where each current region is linked to one and only one leaf cell.

However, each leaf cell may be linked to zero, one, two, or more current regions. The next step is

to inspect each leaf cell and its potential links to decide what the fate of the linked regions should

be. This step relies on assumptions about normal cell growth while acknowledging that some

regions may be meaningless as they are the result of segmentation errors.

The most important piece of information is how many regions are linked to a leaf cell.
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This determines what kind of checks are made.

1. If a leaf cell is linked to no regions, then that leaf is skipped over. This could mean that

the cell died, escaped the channel, moved a great deal vertically, or segmentation errors

corrupted the region to leaf cell map. They are left in the list of current leaf cells and can

still be linked to regions in future time points. However, after several time points, leaf cells

to which no regions link are removed from the list of current leaf cells. That cell is then the

tail of a dead end lineage.

2. If a leaf cell is linked to one region, it is possible that the cell has grown. The region is

checked that it is no smaller or larger than the last region of the leaf cell to which it is linked

by a defined factor. These parameters are chosen based on the growth rate of the cells and

picture taking frequency. If it passes this test, the region is added to the current leaf cell

and becomes part of that cell object. The cell object remains in the list of current leaf cells.

If the region does not pass this test, it is discarded.

3. If a leaf cell is linked to two regions then there are the following possibilities: the two

regions are the daughters of the divided cell, one of the two regions is the cell growing and

the other is an error, or both regions are errors. First, the size of each region is checked

against the size of the last region in the leaf cell. If either region satisfies the requirements

for a growing cell as above, then the cell is grown by that region and the other region is

initialized as a new leaf cell.

In the case that the cell has divided, each region would be too small to satisfy the growth

requirements. Instead, the size of the two regions are combined and compared to the size

of the leaf cell. If the difference in size between the combined regions and the leaf cell

is within set bounds it is possible that the cell has divided. An additional check is made

in that one of the region’s centroid must fall within the top half of the bounding box that

contains the leaf cell, and the other must fall within the bottom half. If these requirements

131



are met, two new cells are initialized and added to the list of current leaf cells. A cell that is

born in this way is initialized with a pointer to the ID of its parent. The previous leaf cell is

divided (with pointers to its two daughters stored) and removed from the list of leaf cells.

If the regions cannot be assigned as growing or daughter cells, then they are discarded.

4. Finally, if a leaf cell is linked to three or more regions, only the two closest regions are

considered for the above possibility. The other regions are initialized at new leaf cells.

There is some nuance as to when unassignable regions should be discarded and when they

should be initialized as new cells and added to the list of leaf cells. The former can miss potential

cells, while the latter can complicate the graph with spurious leaf cells. If for some reason during

tracking all leaf cells become dead ends and a later time point has regions, all those regions are

initialized as new leaf cells. This can happen due to errors is segmentation, or a rare event such as

a channel becoming empty and then a cell entering the channel from the open end. This process is

continued for every time point. The result is a dictionary of cell objects using the cell IDs as keys.

Normally, this dictionary is further refined to just “complete” cells. A complete cell is one that

has both a mother and two daughters. Thus, cells that are initialized in a manner other than being

daughters, such as the cells in the first time point, are ignored for the purposes of data analysis

because their true history is unknown. Cells which do not divide are also ignored as they are

likely the result of segmentation or tracking errors, cell death, or escaping the channel. However,

in cases where cell death is a key aspect of the research question, it is necessary to return to the

dictionary of all cell objects and apply tailored filtering methods.
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