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Abstract

One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin

transporters have been extensively studied as a likely contributor to this high failure rate. Here, we

investigate, for the first time, the effect of genetic variants in transcription factors on metformin

pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed

their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this

analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the

expression of metformin transporters, were associated with changes in treatment HbA1c (P <

0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further

confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant,

rs784888. Genetic variants in other transcription factors, peroxisome proliferator–activated

receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change
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only. Overall, our study highlights the importance of genetic variants in transcription factors as

modulators of metformin PK and response.

Metformin is first-line therapy for type 2 diabetes, and it is also one of the most commonly

prescribed drugs worldwide. 1–10 Despite 50 years of clinical use, its mechanism of action

remains controversial. It has been well established that metformin activates adenine

monophosphate–activated protein kinase, which may contribute to many of the

pharmacological outcomes of metformin, including the inhibition of gluconeogenesis,

reduction of glucose absorption, and enhancement of glucose uptake and utilization.2,6,11

There is considerable variability in the glycemic response and pharmacokinetic

characteristics of metformin. In terms of pharmacokinetics (PK), metformin is not

metabolized, and is excreted unchanged in the urine, with a half-life of roughly 5 h.2,5,6,10

The pharmacokinetic variability of metformin is unusually high for a renally cleared drug. In

particular, mean plasma concentrations of metformin fluctuate between 0.4 and 1.3 mg/l at a

dose of 1,000 mg twice daily.1,2,5,6,8,12–17 Metformin relies on facilitated transport for

uptake into various tissues as well as for renal elimination. Specifically, transporters that

mediate metformin elimination and tissue distribution include organic cation transporters

(OCTs) and multidrug and toxin extrusion proteins (MATEs), and may contribute to the

wide variation in metformin PK. Pharmacokinetic variability contributes to variation in

response to metformin: various research groups have observed dose-response relationships

with fasting plasma glucose and HbA1c levels. 18–20 Metformin response variability is

substantial; >30% of patients receiving metformin are classified as poor responders.1,5,8,10

To date, many pharmacogenetic studies have focused on the relationship between genetic

variants in transporters and metformin pharmacokinetic parameters, and there has been one

genome-wide association study for metformin response. 1,5,8,12–17,21–24

For example, OCT1 is a major determinant of metformin uptake into hepatocytes, and

genetic polymorphisms of OCT1 have been associated with reduced response and changes

in metformin PK in healthy subjects and diabetes patients. 1,7–9 Recently, promoter variants

of MATE1 and MATE2K, transporters that determine the efflux of metformin into the urine,

were also shown to be associated with metformin disposition and response in healthy

subjects and diabetes patients.5,15,25 Understanding genetic predictors of variability in terms

of both its response and disposition is important in the rational use of metformin for the

treatment of patients with type 2 diabetes.

Although genetic studies have demonstrated associations between single-nucleotide

polymorphisms (SNPs) in transporters and metformin PK and pharmacodynamics (PD),

each individual SNP accounts only for a small fraction of the variation in HbA1c among

type 2 diabetes patients. This is not surprising given that metformin disposition is governed

by multiple transporters rather than a single transporter (Figure 1). With this in mind, we

proposed to study genetic variants in transcription factors that may regulate the expression

levels of multiple metformin transporters and thus may have larger effects on metformin

disposition and response than variants in a single transporter. A subset of transcription

factors have been shown to modulate the expression levels of OCTs (SLC22) and MATEs
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(SLC47), which are involved in determining metformin PK.26 For example, transfection of

hepatocyte nuclear factor 4-α (HNF4-a) has been shown to increase transcript levels of

OCT1 in hepatocytes.3,7,9 Specificity protein 1 (SP1) has been implicated in modulating

mRNA levels of MATE1.27–31 Activating enhancer binding protein (AP)2 has been shown

to have a repressive effect on MATE1 gene expression.3,28,30 Other transcription factors

have also been linked to modulating the expression levels of OCTs and MATEs involved in

metformin disposition.7,9,27,29,31,32 To date, the impact of transcription factor

polymorphisms on metformin PK and response phenotypes has not been studied. Our

hypothesis is that, compared with genetic variants in transporter genes, genetic variants in

transcription factors may have a stronger impact on overall metformin plasma and tissue

levels. This is because transcription factors modulate expression levels of a system of

transporters, leading to stronger effect sizes on pharmacological outcomes.

In this study, we first investigated the effect of genetic variants in a subset of genes on

metformin response, specifically HbA1c levels in type 2 diabetes patients. The genes

included were relevant metformin transcription factors cited in the literature and

demonstrated to play a modulatory role on key metformin transporters. Subsequently, for the

most significant transcription factor variants associated with HbA1c change, we further

investigated their relationship with metformin PK using two approaches: (i) In a subset of

healthy subjects with abundant pharmacokinetic measurements and available urine data, we

used multiple linear regression to investigate the effect of the top transcription factor

variants on measured metformin secretory clearance, which is a major route of metformin

elimination. (ii) Using data combined from type 2 diabetes patients and healthy subjects, we

then developed a population pharmacokinetic model to investigate the effect of prioritized

transcription factor variants, shown to be significantly associated with secretory clearance,

on various metformin pharmacokinetic parameters.1,5,8,14

Our study suggests the importance of transcription factors and genetic variants in

transcription factors with regard to the pharmacological outcomes of metformin use, namely

HbA1c levels and metformin pharmacokinetic parameters. Variants in SP1 exhibited the

strongest association with both metformin PK and PD.

RESULTS

Characteristics of type 2 diabetes patients and healthy subjects

Baseline characteristics of patients and healthy subjects are summarized in Table 1. Clinical

data included longitudinal HbA1c measurements from 440 type 2 diabetes patients. A total

of 2,382 metformin plasma samples in healthy subjects (102) and patients (133) were used

to develop a population pharmacokinetic model. Of the 102 healthy subjects, 57 subjects

also had available urine samples, which enabled the collection of creatinine levels and the

subsequent calculation of metformin secretory clearance.

Top transcription factor variants from a multivariate regression approach

A total of five transcription factors were selected (AP1, AP2, SP1, HNF4-α, and peroxisome

proliferator–activated receptor (PPAR)-α) for multivariate linear regression with treatment
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HbA1c levels (Supplementary Table S2). Among the tested genetic variants that met our

criteria (see Methods section), 40 SNPs were associated with HbA1c change at 3 months

after metformin initiation, adjusted for baseline levels (Treatment HbA1c). Among the 40

SNPs, a multivariate linear regression on metformin secretory clearance was performed as

one method for investigating a pharmacokinetic mechanism. A total of six SNPs in two

genes were significantly associated with metformin secretory clearance and treatment

HbA1c levels using a multivariate regression model. Of these six genetic variants, five were

located in the SP1 region and one was located in the AP2 region (Supplementary Table S1

online).

Population pharmacokinetic model

In addition to metformin secretory clearance, a population-based modeling approach was

used to investigate the effect of prioritized transcription factor variants on the systemic

plasma levels of metformin in both patients and healthy subjects. The six-transcription factor

SNPs (associated with metformin PK and PD) identified from the multiple linear regression

analysis, along with 13 genetic variants in metformin transporters (Supplementary Table S5

online) and demographic variables, were investigated.

A two-compartment model with a delayed absorption (one-transit compartment) best

described the data. A schematic of the final model with included covariates is shown in

Figure 2. Pharmacokinetic profiles were overall quite similar between healthy subjects and

patients. The final model consisted of statistically significant covariates on central

compartment volume (Vc/F), apparent clearance (CL/F), and metformin peripheral flow

(Q/F). Covariates that affected Vc/F were body weight, OCT3 variant rs555754, and OCT2

variant rs316019. Based on different combinations of these covariates, Vc/F may decrease

by as much as 54% and increase by as much as 260% (see Figure 3). For peripheral flow

(Q/F), ethnicity and the MATE2 variant rs12943590 were significant. In Figure 3, the

reference ethnic population was European American to more clearly show the range of

covariate effects on Q/F and CL/F. Finally, for CL/F, creatinine clearance (CrCL), ethnicity,

and the SP1 variant rs784888 were significant. Different combinations of these covariates

may decrease CL/F by as much as 29% and increase it by as much as 37%. Final parameter

estimates are summarized in Table 2.

The final model explained 5% of the variability in CL/F, 23% of the variability in Vc/F, and

13% of the variability in Q/F. The SP1 variant rs784888 and ethnicity reduced the variance

of interindividual variability in CL/F by 1.6 and 2.3%, respectively. Based on model

estimates, an extreme case of high metformin clearance (low exposure) occurs in an

African-American patient with normal renal function and homozygous CC for the SP1

variant rs784888. The performance of the final model based on model diagnostics was

adequate (Table 2 and Figure 2). The final equations for CL/F, Vc/F, and Q/F were (Eqs. 1,

2, and 3, respectively):

(1)
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(2)

(3)

where 78.4 l/h is the typical metformin apparent clearance for an African American with a

creatinine clearance of 112 ml/min and homozygous reference (CC genotype) for the SP1

variant, rs784888. The imputed SP1 variant can take on a value between 0 and 2, which

quantifies the presence of a G allele. Similarly, 76.8 l is the typical central compartment

volume for an African American weighing 75 kg (WT), and is a homozygous reference for

both rs555754 (SLC22A3) and rs316019 (SLC22A2). ΘCRCL, ΘEthnicity, CL, Θrs784888,

Θrs555754, ΘWT, Θrs316019, Θrs12943590, and ΘEthnicity, Q, are the corresponding effect sizes

for creatinine clearance and ethnicity on CL/F, and SP1 variant rs784888, OCT3 variant

rs555754, body weight, OCT2 variant rs316019, MATE2 variant rs12943590, and ethnicity

on Q/F, respectively. The number of subjects in the data set with an imputed value of greater

than or equal to 1 for variants rs784888, rs555754, rs316019,and rs12943590 were 54, 131,

106, and 60, respectively. African Americans were used as the reference ethnic population

in the model due to a large representation of African Americans in our cohort. In Figure 3,

the reference ethnic population was changed to European American to more clearly show

the range of covariate effects on each pharmacokinetic parameter.

Genetic variants in SP1 were critical determinants of variation in PK and PD of metformin

Our top finding was in regard to the gene encoding the transcription factor SP1, a gene

previously noted to potentially modulate transcript levels of OCT3 and MATE1.28,30 Our

regression results showed multiple independent SNPs in the SP1 locus associated with

pharmacodynamic and pharmacokinetic phenotypes of metformin (Supplementary Table S1

online). Five of the six total variants linked to metformin PK and PD were in the SP1 gene

region. Most of the SNPs were in noncoding regions, including intronic, upstream, and

downstream regions of SP1. The most strongly associated SNP, rs784892, is in the intronic

region of the downstream gene, AMHR2 (anti-Mullerian hormone receptor, type II). This

SNP was strongly associated with both metformin PD (HbA1c) and PK (metformin

secretory clearance), with β coefficients of −0.32 HbA1c per G allele (P = 0.008) and −76.9

ml/min per G allele (P = 0.02), respectively (Figure 4). A separate analysis, based on

creatinine clearance, was performed for SP1 variants, and from this analysis, no statistically

significant association was observed between SP1 variants and creatinine clearance. The

rs784892 variant has a combined minor allele frequency of ∼11% across all ethnic groups,

with African Americans (∼35%) having a higher frequency than European Americans

(<1%). However, the effect of race was accounted for using principal components in our

multivariate analysis, and a separate analysis in African Americans was performed to ensure

that the variant has a significant effect on both treatment HbA1c levels and secretory

clearance in African Americans. Statistical significance was observed for both phenotypes in

the African-American cohort.
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Results from the final population pharmacokinetic model of metformin determined that

rs784888, a SNP less than 50 kb downstream of SP1, was an important predictor of

metformin apparent clearance. The rs784888 G allele led to a 12% reduction in metformin

apparent clearance. This variant has a frequency of ∼9% (in African Americans = 42%, in

European Americans = <1%). As with rs784892, a separate analysis confirmed this finding

in African Americans.

PPAR-α and HNF4-α were major genes with polymorphisms associated with variation in
PD, independent of PK

A total of 17 variants in PPAR-α and 6 variants in HNF4-α were associated with metformin

PD (P < 0.01) (Figure 5; Supplementary Table S4 online). The most significant variant from

our pharmacodynamic analysis was intronic SNP rs149711321 in PPAR-α (P = 1 × 10−05).

This variant has a minor allele frequency of 6% reported for both European-American and

African-American ethnicities. Of the 23 total variants in PPAR-α and HNF4-α, none were

significantly associated with metformin PK in healthy subjects.

Deletion in AP2, a repressor, was associated with changes in metformin PK and PD

A total of 11 variants in AP2 were linked to changes in HbA1c levels in type 2 diabetes

patients receiving metformin. Of these, 1 imputed deletion variant in the intronic region of

AP2 was associated with an increase in metformin secretory clearance (P = 0.004) and an

increase in treatment HbA1c levels (P = 0.003) (Supplementary Table S1 online). The minor

allele frequency of this variant was 6%, with a slope (β) of 0.45% change in HbA1c per

minor allele. This variant was not associated with the PK of metformin in our population

pharmacokinetic model. However, it is important to note that the model did not specifically

include metformin secretory clearance as a pharmacokinetic parameter due to the absence of

urine data.

Significant impact on metformin pharmacokinetic parameters of other covariates in the
population pharmacokinetic model

Transporter variants previously associated with metformin PK from noncompartmental

approaches were also significantly associated with metformin kinetics (CL/F, Vc/F, and

Q/F) in the population pharmacokinetic model. In particular, a MATE2/ SLC47A2 variant

(rs12943590) was significantly associated with peripheral flow (Figure 2), potentially

increasing Q/F by as much as 30%. An interaction effect between an OCT3 variant

(rs555754) and an OCT2 variant (rs316019) on metformin central volume was also

observed. Based on the combination of minor alleles from rs555754 and rs316019,

metformin Vc/F may decrease by as much as 32% and increase by as much as 39% (Figure

3). Although significant in the final model, the downstream significance of these variants

will require replication by other studies before the findings can be clinically translated.

The effect of ethnicity was investigated using our population pharmacokinetic model.

Ethnicity was found to be a significant predictor of metformin flow, specifically for the

pharmacokinetic parameters CL/F and Q/F. For both parameters, African Americans had

significantly higher values as compared with those of European Americans (Figure 3). As

compared with African Americans, European Americans had an approximately 26% lower
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metformin clearance and Asian Americans had a 22% lower clearance. For Q/F, European

Americans were predicted to have a 46% lower peripheral flow as compared with that of

African Americans. These effects were independent of creatinine clearance and body

weight. Simulations in Figure 3 compare the effect of typical and extreme values of

metformin clearance after an 850-mg dose (based on different covariate combinations).

DISCUSSION

Previous pharmacogenetic studies of metformin PK have focused on a few nonsynonymous

variants in transporter genes.1,5,14,15 Pharmacogenetic investigation of variants in gene

expression modulators of key transporters involved in metformin PK is a novel approach to

understanding the variability in response to metformin. This study tested the effect of

genetic variants in key transcription factor genes on metformin PD, with a focus on

glycemic response to metformin in type 2 diabetes patients. Subsequently, the top hits

associated with metformin response were examined for a pharmacokinetic mechanism in

both type 2 diabetes patients and healthy subjects using two approaches. Four important

findings emerged from our combined PK/PD analysis: (i) SNPs in SP1 were associated with

metformin PD in type 2 diabetes patients, and this association had a pharmacokinetic basis.

(ii) SNPs in AP2, in particular a deletion variant, were associated with the PK and PD of

metformin. (iii) SNPs in PPAR-α and HNF4-α were associated with the PD of metformin

but did not have a pharmacokinetic mechanism. (iv) Finally, African Americans were

observed to have greater apparent clearances as compared with those of European

Americans and Asian Americans.

To date, the role of SP1 in metformin pharmacology has not been investigated despite

previous studies indicating that SP1 modulates the gene expression of MATE1 and OCT3,

two important metformin transporters.28,30 Our findings strongly suggest an important role

of SP1 in governing metformin disposition and response. Using standard regression, we

observed that five genetic variants in SP1 were associated with metformin PK and PD.

Multiple independent effects were observed even after accounting for linkage

disequilibrium. A population-based approach demonstrated that one such SNP located

downstream of SP1, rs784888, significantly affected metformin apparent clearance,

therefore impacting systemic plasma levels of metformin. Comparing the effect size of this

SP1 variant on CL/F with the effect sizes of transporter variants observed in previous studies

revealed that the effect size for the SP1 variant (12%) was greater than those previously

reported for variants in transporters and CL/F.5,8,33 Interestingly, rs784888 is in strong

linkage disequilibrium with rs147778161 (r2 > 0.8),an intronic SNP of SP1 that was initially

removed due to not passing our initial pharmacodynamic cutoff (P < 0.01). The observed

associations for SP1 are biologically plausible, considering the expression of MATE1 on the

apical membrane in the proximal tubule of the kidney and its role in metformin renal

secretion. The role of OCT3 in the renal elimination of metformin is still not fully

elucidated; therefore, it is not known whether SNPs in SP1 may modulate metformin PK by

regulating the expression of OCT3 in addition to MATE1 and other metformin transporters.

Furthermore, we performed a separate transcription factor binding analysis using a

transcription factor binding tool (FIMO), and found that in addition to regulating the

expression of MATE1 and OCT3, SP1 may also modulate levels of OCT2 and MATE2-K,
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transporters that are known to play a very important role in metformin elimination from the

kidney (Supplementary Table S3 online). Although speculative, we propose that genetic

variants in SP1 may affect the binding affinity or the expression level of the transcription

factor, which could then have a combined effect on MATE1, OCT2, OCT3, and MATE2-K

levels, globally affecting the pharmacokinetic and pharmacodynamic outcomes of

metformin. Furthermore, the regression results suggest a clinically significant impact of SP1

variants on metformin PK and PD. For example, typical patients homozygous GG for

rs784892 achieved on average treatment HbA1c levels that were 1.1% lower than patients

homozygous AA. This finding, if replicated, would have clinical significance, given that

metformin reduces HbA1c levels by 1.12% on average (i.e., from 8.0% A1c to 6.9% A1c)

within the first year of therapy.27,34,35 Furthermore, in healthy subjects, there was a 98

ml/min reduction in metformin secretory clearance on average in homozygous GG carriers

as compared with homozygous AA carriers. This pharmacokinetic mechanism supports our

pharmacodynamic finding, in which a lower metformin secretory clearance in homozygous

carriers of the variant allele is expected to increase metformin exposure and hence reduce

HbA1c levels to a greater extent than in carriers of the reference allele. In our population-

based approach, rs784892 trended in the same direction as observed in our regression

analysis for metformin secretory clearance but was only of borderline significance in

stepwise covariate modeling building and was not included in the final model. However,

SP1 variant rs784888 was included. This variant was predicted to lower metformin

clearance by up to 24% in patients with homozygous GG. A lower clearance of metformin

was predicted to increase metformin exposure, potentially leading to a more favorable

response to metformin.

Interestingly, one deletion variant in AP2 was associated with an increase in metformin

secretory clearance and a reduction in the glycemic response to metformin. This finding was

similar to those observed for polymorphisms in SP1, and consistent with previous studies in

our laboratory showing that AP2 is an important repressor of SLC47A1 (MATE1)

transcription.3,5 This finding is biologically plausible, with high expression of AP2 and

MATE1 found in the kidney.36 Furthermore, we performed additional gene expression

analysis using data from the Cancer Genome Atlas to investigate correlations between high-

priority transcription factors and transporter genes (Supplementary Figure S1 online). Gene

expression data, along with our supplemental motif binding analysis, suggested a regulatory

role of AP2 in SLC47A1 and SLC47A2. In addition to SP1, AP2 may also play an important

role in modulating metformin PK and PD via its role as a global regulator of multiple

transporter genes.

PPAR-α and HNF4-a are multifunctional transcription factors that are primarily expressed

in the liver.7,27 PPAR-α is a known regulator of lipid metabolism in the liver. In a study by

the Diabetes Prevention Program, one SNP in PPAR-α was associated with diabetes

incidence and another variant showed a significant interaction with metformin

intervention.37 Mutations in HNF4-a have also been linked to type 2 diabetes.38 Moreover,

literature evidence suggests that both PPAR-α and HNF4-α are important regulators of

SLC22A1 (OCT1), a key transporter mediating the uptake of metformin into the liver, the

primary site of action.5,27 Our regression results suggest that PPAR-α and HNF4-a are
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important modulators of metformin PD, perhaps independent of PK. A total of 23 genetic

variants in PPAR-α and HNF4-a were associated with treatment HbA1c levels, none of

which were explained by a pharmacokinetic mechanism. Furthermore, gene expression

levels for both transcription factors were strongly correlated with OCT1 expression, as well

as with other metformin transporters in the liver. PPAR-α and HNF4-a may be involved in

regulating OCT1 and other genes in the liver that play a role in metformin disposition and

glycemic response.

In addition to genetics, ethnicity was a significant predictor of metformin PK, affecting

intercompartmental clearance (Q/F) and apparent clearance (CL/F). African Americans had

significantly higher mean CL/F and Q/F estimates as compared with those of European

Americans and Asian Americans. The effects of creatinine clearance and body weight did

not confound this effect observed in our model. Furthermore, based on our simulations, for

African Americans to achieve similar metformin exposure to that of European Americans, a

26% increase in dose should be considered. This takes into account similar creatinine

clearances and SP1 genotype status for the two ethnicities. This means that if, for example, a

European American individual would start with an 850-mg dose of metformin, an African

American would require at least a 1,000-mg dose of the drug to attain similar exposure

levels. The impact of ethnicity on metformin response still needs to be investigated. In

addition, further studies and different approaches are required to validate this observation for

metformin PK.

Overall, this study demonstrates that genetic variants in key transcription factor genes, along

with transporters and ethnicity, are important determinants of metformin PK and PD.

Transcription factors may regulate gene expression levels through either enhancer or

repressor activity. In some cases, for example, SP1 and AP2, the association of genetic

variants with PD may be mediated through pharmacokinetic mechanisms, which ultimately

control systemic blood levels of the drug. For example, SP1 may regulate the expression of a

system of transporters in the kidney that is involved in metformin elimination. In other

cases, PPAR-α, for example, the observed mechanisms for the effects of SNPs are unclear.

PPAR-α SNPs may modulate metformin PD independently of the effects on systemic levels

of metformin. Clearly, future studies are needed to further clarify the biological roles of SP1,

AP2, HNF4-α, and PPAR-α in the disposition and action of metformin.

METHODS

Healthy human subjects

Data from four healthy volunteer studies from the University of California, San Francisco,

were pooled for this study, as previously described.5,39 Studies 6112, 6113, and 865

followed similar protocols. Healthy subjects were dosed with 1,000 mg of metformin,

followed by an 850-mg dose of metformin on the second day of the study. Participants from

study 767 were given a single 850-mg dose of metformin. During the short duration of the

study in healthy volunteers, metformin levels in the liver were not expected to have reached

steady state.
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Patients with type 2 diabetes

Diabetes patients of European-American, African-American, or Asian-American ancestry

were recruited into a multicenter retrospective study as previously described.5,15 All patients

were metformin naive, had HbA1c levels measured before and after initiation of metformin

therapy (between 3 and 18 months), and had a medication possession ratio of >80%.

Selection of transcription factor genes and variants

The candidate gene study consisted of genes and SNPs from transcription factors known to

modulate levels of metformin-related transporters. PharmGKB was the resource used to

determine the list of transporters used in this study. 2,40 Transcription factors were selected

based on evidence from previous publications linking the transcription factor to one of the

metformin-related transporters.7,28,41 A total of five transcription factors were selected: SP1,

AP2, AP1, HNF4-α, and PPAR-α. After filtering out SNPs with low minor allele

frequencies (<5%) in the type 2 diabetes cohort, we selected SNPs in transcription factors

within 50,000 base pairs upstream and downstream of each transcription factor gene.

Phenotype selection for multivariate regression analysis

For the pharmacodynamic analysis, a minimum treatment HbA1c value between 3 and 18

months postinitiation of metformin, referred to as the treat-ment-HbA1c, was selected as the

phenotype of interest. Top SNPs associated with treatment HbA1c were selected and

subsequently tested on metformin secretory clearance. Pharmacokinetic parameters from a

healthy subject study were previously determined using noncompartmental analysis.5,42,43

Secretory clearance was the primary parameter of interest, as this parameter is assumed to be

the most sensitive to changes in transporter function and expression level; it was calculated

using the following formula:

Linear regression analysis

Linear regression was performed using PLINK (v1.07), assuming an additive genetic

model.39,44 Imputation was performed using IMPUTE2 software (version 2).42,43,45

Variants with <5% minor allele frequency were excluded from the regression analysis. For

the regression analysis with HbA1c, a statistical base model (Supplementary Methods

online) was established before testing for the effect of transcription factor variants. Top

variants associated with treatment-HbA1c with an adjusted P value <0.01 were filtered.

These SNPs were then tested against metformin secretory clearance (P < 0.05). In healthy

subjects, the statistical model was corrected for principal components and age.

Population pharmacokinetic modeling of metformin and final model selection

Data from five studies (patient study, and healthy volunteer studies 6112, 6113, 865, and

767), which include healthy volunteers and type 2 diabetes patients, were analyzed using

nonlinear mixed effect modeling (NONMEM 7) with the first-order conditional estimation

method with interaction (FOCE-I). Model selection was informed by using the objective

function value (−2log likelihood) and visual inspection of diagnostic plots. The final
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structural model was parameterized in terms of CL/F, apparent central and peripheral

volumes of distribution (Vc/F and Vp/F), apparent intercompartmental clearance (Q/F), mean

transit time, and first-order absorption (ka). Interindividual variability was estimated for

CL/F, Vc/F, and Q/F. The Stepwise Covariate Model tool in Perl Speaks NONMEM was

used to develop the final model with statistically significant covariates on metformin

pharmacokinetic parameters. Finally, a bootstrap was performed with 1,000 samples to

obtain 95% confidence intervals for all pharmacokinetic parameters used to characterize the

final model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

✓ Previous studies have focused on the effects of genetic polymorphisms in

membrane transporters on metformin PK and response.

WHAT QUESTION DID THIS STUDY ADDRESS?

✓ In this study, we investigated the effects of genetic variants in transcription

factor genes on the PK and PD of metformin in healthy volunteers and in

patients with type 2 diabetes.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

✓ This study provides evidence that genetic polymorphisms in transcription

factors SP1 and AP2 may have a significant impact on the PK and PD of

metformin. This study also shows that HNF4-α and PPAR-α are linked to

metformin PD, independent of PK. Finally, this study provides model-based

evidence to suggest that African Americans have higher flow rates than

European Americans and Asians.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND
THERAPEUTICS

✓ To date, this is the first study to explore the effect of transcription factors on

metformin PK and PD. In the future, gen-otyping of transcription factor

genes along with transporter genes may be used to inform metformin therapy.
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Figure 1.
Candidate transcription factors known to modulate gene expression levels of transporters

involved in metformin disposition. (a) A cell diagram that depicts a putative network of

transcription factors working in concert to modulate gene expression levels of metformin

transporters. (b) A high-level gene diagram that highlights a mechanism by which a single-

nucleotide polymorphism change in a transcription factor gene may modulate the

pharmacological outcome of metformin. PK/PD, pharmacokinetics/pharmacodynamics.
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Figure 2.
Final metformin population pharmacokinetic model structure and visual predictive check.

(a) A two-compartment model with delayed absorption best characterizes the data. All

parameters are ratios over the bioavailability of metformin (F). The model structure includes

the final model covariates determined by a stepwise covariate analysis (SCM). (b) Visual

predictive check of the final population pharmacokinetic model. The shaded regions indicate

the 95th and 5th percentiles (ends) and the range of median simulated profiles (center) of

simulated predictions from the visual predictive check. Overlaid back points are combined
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healthy volunteer (n = 102) and type 2 diabetes patient (n = 133) data observations. The

solid line indicates the median of the observed data, with red lines indicating the 95th and

5th percentiles of observations. CrCL, creatinine clearance; CL, apparent clearance of

metformin; Ka, absorption rate constant; Ktr, transit rate constant, Vc, apparent central

volume of distribution; Vp, apparent peripheral volume of distribution.
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Figure 3.
Predicted effects of demographic and genetic factors on metformin pharmacokinetic

parameters. (a) Predicted effects of covariates on apparent clearance (CL/F) with the

reference ethnicity identified as European Americans. (b) Predicted effect of covariates on

intercompartmental clearance (Q/F). (c) Predicted effects of covariates on central

compartment volume (Vc/F). (d, e, and f) Simulations of pharmacokinetic profiles after a

single 850-mg dose of metformin with variability on clearance. Simulations are based on the

predicted metformin clearance estimates. Predicted clearance estimates are based on the

covariates described in Figure 3a. Ethnicity, creatinine clearance (CrCL), and SP1 variant

status are shown in each panel. Dashed line at 1 mg/l indicates the lower target of metformin

concentration based on therapeutic range. (d) Black solid line = typical value of clearance

for a Caucasian with normal creatinine clearance (80–130ml/min) who is homozygous CC

for SNP rs784888. Dashed black lines indicate the 97.5 and 2.5 percentiles of the

interindividual variability (ETA) distribution for CL/F for this patient. (e) Black solid line =

typical value of clearance for a Caucasian with low creatinine clearance (<70ml/min) who is

homozygous GG for SNP rs784888. Dashed lines indicate the 97.5 and 2.5 percentiles of the

interindividual variability (ETA) distribution for CL/F for this patient. (f) Black solid line =

typical value of clearance for an African American with normal creatinine clearance (80–

130ml/min) who is homozygous CC for SNP rs784888. Dashed lines indicate the 97.5 and

2.5 percentiles of the interindividual variability (ETA) distribution for CL/F or this patient.

CrCL, creatinine clearance; SNP, single-nucleotide polymorphism.
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Figure 4.
Gene diagram summarizes the chromosome location of top associated single-nucleotide

polymorphisms, highlighting both metformin pharmacodynamic and pharmacokinetic

associated P values using multiple linear regression analysis, n = 440 patients for

pharmacodynamics analysis, and n = 57 healthy subjects for the pharmacokinetic analysis.

G, associated allele of rs784892; PD, pharmacodynamics, variant association with treatment

HbA1c level, as defined in the text; PK, pharmacokinetics, variant association with

measured metformin secretory clearance (ml/min).
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Figure 5.
A zoomed-in view of genetic polymorphisms in HNF4-α and PPAR-α associated with

treatment-HbA1c levels. Circles represent the location and the–log10 P value of the

association. Recombination rates are also overlaid on the figure, with each peak representing

relatively high recombination rates for that region.
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Table 2

Population pharmacokinetic model-derived estimates and bootstrap results for pharmacokinetic parameters of

metformin

Final model parameter
Median

(%RSE)a Median (90% Cl)b

Total clearance (CL/F; I/h) 78.4 (6) 77.5 (70–87)

Central volume of distribution (Vc/F; I) 76.8(15) 76.7 (53–95)

Peripheral flow (Q/F; I/h) 18.1 (9) 18.8(16–32)

Peripheral volume of distribution (Vp/F; I) 413(43) 419(286–3,293)

Mean transit time (h) 0.207(24) 0.2033(0.14–0.37)

Absorption rate(ka; 1/h) 0.312(5) 0.31 (0.28–0.34)

Interindividual variability (% variance)

    Between-subject variability (CL) 50(10) 50 (40–60)

    Between-subject variability (Vc) 45(13) 45 (34–64)

    Between-subject variability (Q) 41 (23) 40 (27–49)

Covariance of parameters

    Correlation between total clearance
    and central volumeof distribution
    (CL-V)

0.05 (5) 0.10 (−0.33–0.29)

Residual error model

Studies 6112/6113

    Proportional error (%) 14(12) 0.14(0.11–0.16)

    Additive error 0.02(32) 0.02(0.01–0.02)

Study 865

    Proportional error (%) 12(6) 12(11–13)

    Additive error 0.01 -

Study 787

    Proportional error (%) 21(13) 20(16–25)

    Additive error 0.01 (20) 0.007(0.003–0.012)

Patient data

    Proportional error (%) 20(13) 0.2(0.16–0.24)

    Additive error 0.01 -

a
Typical value of pharmacokinetic parameter in final model. RSE, relative standard error (%), also known as the precision of the population

pharmacokinetic parameter estimate.

b
Confidence interval (CI) forthe population pharmacokinetic parameterfollowing bootstrap results. Reference ethnicity of model output is African

Americans, due to the high proportion of African Americans in the cohort.
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