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Abstract

We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data
from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project
(Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also iden-
tified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves
statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee
subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further,
using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9
binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including
at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more
rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres
and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromo-
some ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found
minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome
ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of
recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is
the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives.

Key words: recombination, PRDM9, hotspots, primates

Introduction
The increasing availability of genetic maps from a variety of
taxa has become a valuable resource for the scientific com-
munity for phasing (Browning SR and Browning BL 2011),
QTL analysis (Altshuler et al. 2008), and most recently to
aid in de novo genome assembly (Hahn et al. 2014;
Kawakami et al. 2014). Despite the obvious utility of having
genetic maps for these and other scientific applications,

obtaining accurate estimates of genome-wide recombination
rates can be both challenging and expensive. While the most
straightforward approach is to directly observe meiotic events
in genetic crosses or pedigrees, this requires large numbers of
individuals observed over multiple generations and dense ge-
netic markers. An alternative approach is to estimate recom-
bination rates indirectly based on patterns of linkage
disequilibrium (LD) between adjacent sites. This approach
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gives the benefits of finer-scale precision and requires a smal-
ler sample size but still needs a dense set of markers. LD-based
recombination maps have several limitations, including sen-
sitivity to population structure, lack of sex-specific recombi-
nation rate estimates, and generation of historical
recombination rate estimates rather than contemporary
ones (Stumpf and McVean 2003; Clark et al. 2010).
Nonetheless, recombination rates obtained via these two
major approaches have been found to give fairly similar esti-
mates when compared at broader size scales (Clark et al.
2010).

Both of these approaches have been used to estimate re-
combination rates in various human populations and our
closest relative, the chimpanzee. The first genome-wide re-
combination map in humans was a pedigree-based map of a
European population (Broman et al. 1998). Since then, other
pedigree-based maps of human populations have been gen-
erated for Europeans (Kong et al. 2002; Coop et al. 2008) and
Asians (Bleazard et al. 2013). Genome-wide LD-based recom-
bination maps have also been generated using HapMap
genotype data and include European (CEU), African (YRI),
and Asian (CHB+JPT) population rate estimates (Myers
et al. 2005). Recently, the 1000-genomes project constructed
LD-based recombination maps from low-coverage whole-
genome sequence data for the same populations (Altshuler
et al. 2010). Another approach to fine-mapping recombina-
tion events in the genome has used local ancestry methods to
build recombination maps for African-Americans (Hinch et al.
2011; Wegmann et al. 2011). Finally, in 2012, the first nonhu-
man primate fine-scale recombination map was published
using ten unrelated whole-genome sequences of western
chimpanzees (Auton et al. 2012).

Several studies have noted the importance of scale when
comparing results between studies and when comparing re-
combination rates within and between species (Stevison and
Noor 2010; Auton et al. 2012; Chan et al. 2012). Comparison
of recombination rates between close relatives has shown
that recombination rates have rapid turnover on the scale
of recombination hotspots (1–2 kb) but are correlated be-
tween species when examined at intervals of approximately
1 Mb (Serre et al. 2005; Duret and Arndt 2008; Laayouni et al.
2011). However, most previous between-species comparisons
have focused on either very closely related taxa or distant
relatives (Smukowski and Noor 2011). Nonetheless, differ-
ences in the conservation of recombination rates at various
scales suggest different mechanisms control broad and fine-
scale patterns of recombination rates across the genome.
While recombination rates are free to evolve in different di-
rections as species diverge, meiotic recombination is a tightly
regulated cellular process and thus broad-scale rates may be
limited both mechanistically and evolutionarily in how
much they can change (Brooks 1988; Kauppi et al. 2004).
Mechanistically, recombination is necessary to stabilize chro-
mosomes during meiosis, but excessive recombination or
errors in this pathway can lead to aneuploidy, birth defects,
disease, and/or various cancers (Hassold and Hunt 2001;
Petronczki et al. 2003; Coop and Przeworski 2007).
Evolutionarily, recombination helps to shuffle beneficial

alleles onto common genetic backgrounds, facilitating the
efficacy of natural selection (Crow 1994). However, too
much recombination can break down these associations
(Crow 1988).

One possible explanation for the difference in conservation
of recombination rates at various scales is that the mecha-
nisms controlling the distribution of recombination hotspots
leads to rapid turnover of fine-scale recombination rates. In
E. coli, hotspot determination is localized to � sites (Smith
2012), whereas in mammals, such as humans and mice, it has
been shown that the transcription factor PRDM9 binds to
hotspots and recruits additional recombination machinery
(Baudat et al. 2010; Cole et al. 2014). Despite recent efforts
to comprehensively sequence PRDM9 across various taxa
(Myers et al. 2010; Berg et al. 2011; Auton et al. 2012;
Schwartz et al. 2014), the universal role of this protein in
recruiting recombination machinery remains unclear. For ex-
ample, in dogs, the PRDM9 protein sequence is truncated,
and recombination hotspots are localized based on functional
elements in the genome (Auton et al. 2013). In chimpanzees,
there has thus far been no evidence that recombination rates
are higher in regions with suspected PRDM9 binding (Auton
et al. 2012). Unlike what has been shown in dogs, the chim-
panzee PRDM9 protein is fully functional, and a recent survey
of PRDM9 diversity in primates has shown pervasive diversi-
fying selection for this protein throughout primates (Schwartz
et al. 2014).

Despite the growing number of population-specific recom-
bination maps in humans and the chimpanzee map
(PanMap), there is not much information among primates
for how recombination rate variation evolves. To fully under-
stand the broad-scale evolution of recombination rates in
great apes, more between-species comparisons are needed
with different degrees of interspecific divergence and also
more within species comparisons are needed that are not
limited to human populations. Additionally, recombination
rate estimates outside of these groups are imperative to assess
PRDM9’s role in hotspot determination broadly across great
apes. To address these fundamental questions regarding the
time scale of recombination rate evolution, we present three
new LD-based recombination maps for Nigerian chimpan-
zees, bonobos, and western gorillas collected as part of the
Great Ape Genome Project (Prado-Martinez et al. 2013).

First, we compared patterns of fine-scale recombination
rate variation within and between these groups, and existing
recombination rate data in humans and chimpanzees. After
identifying species-specific recombination hotspots from our
population-scaled recombination rate estimates, we exam-
ined the amount of overlap between these localized regions
within and between species to determine the time scale of
hotspot turnover. We further sought to elucidate the role of
PRDM9 in determining the location of recombination hot-
spots broadly across great apes. We used computational
approaches to identify predicted DNA binding of the zinc
fingers of each species-specific form of the protein PRDM9.
While PRDM9 can have anywhere from 6 to 19 zinc fingers
in primates (Schwartz et al. 2014) and all are experimentally
shown to bind to DNA when expressed in E. coli (Billings et al.
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2013), several of these zinc fingers seem to be less specific
in their binding to DNA (Segurel 2013). Consistent with
this result, previous studies examining the association be-
tween PRDM9 and recombination have focused on
shorter submotifs within the full predicted binding se-
quence of PRDM9 that recur in population surveys of
PRDM9 alleles (table 1) (Myers et al. 2005; Auton et al.
2012; Schwartz et al. 2014). For example, in humans, two
major submotifs of PRDM9 are associated with binding to
recombination hotspots. This includes a 13-bp submotif
common to PRDM9 alleles found in European popula-
tions, and a 17-bp submotif more commonly associated
with PRDM9 alleles found in African populations (Hinch
et al. 2011), both matching the terminal zinc fingers in the
full PRDM9 motif (table 1 and supplementary fig. S8,
Supplementary Material online). For chimpanzees and
bonobos, four submotif regions, including a recently de-
scribed internal submotif, have been shown to recur in
several alleles of PRDM9 across the Pan genus (Auton
et al. 2012; Schwartz et al. 2014). For gorillas, an internal
submotif was recently identified based on a smaller subset
of PRDM9 alleles (Schwartz et al. 2014). None of these
most recently described submotifs have been analyzed for
their potential role in hotspot localization, mainly due to
a lack of nonhuman primate recombination maps.

Next, we sought to compare the distribution of recombi-
nation rate across the genomes of great apes. Previously, it has
been shown that nearly 80% of recombination events occur
in< 20% of the physical sequence of the genome, occurring
mostly in recombination hotspots (McVean et al. 2004).
Further, recombination is more strongly biased toward hot-
spots in European recombination maps but less so in African
or chimpanzee recombination maps. For this analysis, we
adopted the use of the Gini coefficient, which has been
used in economics to compare the distribution of wealth
among countries, and was recently applied to analysis of
the cumulative distribution of recombination in C. elegans
(Dorfman 1979; Kaur and Rockman 2014). By directly com-
paring the area under the curve of these cumulative distribu-
tion functions, this approach allows for easier comparison
among taxa (Kaur and Rockman 2014).

We further sought to compare broad-scale patterns of
recombination rate divergence using this comparative recom-
bination rate data set. This analysis included a comparison at
various scales of the rate at which recombination and nucle-
otide sequences diverge between species to understand the
relative constraints on each. We also examined how large-
scale chromosomal differences impact recombination rates
and the skew in recombination rates typically present in
telomeric and centromeric regions.

Finally, because recombination rates have been shown to
correlate with genetic features such as polymorphism, diver-
gence, GC-content, repeat content, and specific sequence
motifs (Jensen-Seaman et al. 2004; Coop and Przeworski
2007; Stevison and Noor 2010), we sought to determine the
amount of variation in recombination rate that can be ex-
plained by various genetic features. The finding that recom-
bination rate variation across the genome correlates with a T
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variety of genetic features has led many to attempt to deter-
mine which evolutionary forces drive these associations. For
example, many studies have found that recombination-
mediated linked selection drives the ubiquitous correlation
observed between recombination rate and nucleotide poly-
morphism in many taxa (Begun and Aquadro 1992; McGaugh
et al. 2012; Webster and Hurst 2012). Alternatively, a biased
repair process increasing the probability of transmission of
GC-alleles, known as GC-biased gene conversion (gBGC),
has been shown to explain the correlation between GC-con-
tent and recombination in most cases (Marais et al. 2001;
Birdsell 2002; Marais 2003; Duret and Galtier 2009; Galtier
et al. 2009), but see (Hey and Kliman 2002; Kliman and Hey
2003). For this analysis, we comprehensively represented the
various genetic feature data available in primates and sought
to normalize the explained variation by employing a multiple
linear regression framework. In addition to the findings
we present here, we anticipate the resources present here
will be useful both for imputing and phasing future genotype
data collected and in uncovering unique patterns of
selection and demography in these species (McManus et al.
2015).

Results
We used whole-genome sequences (mean coverage 26.34�)
from 10 Pan troglodytes ellioti, 13 Pan paniscus, and 15 Gorilla
gorilla gorilla (supplementary table S1, Supplementary
Material online) individuals to construct population-scaled

recombination maps for each species, using a similar ap-
proach to that employed for the western chimpanzee map
(Auton et al. 2012). The final maps were constructed from 4.2,
8.5, and 7.8 million single-nucleotide polymorphisms (SNPs)
for bonobo, Nigerian chimpanzee, and western gorilla, respec-
tively, as compared to 5.3 and 1.6 million sites used in the
western chimpanzee and HapMap projects, respectively. The
genome-wide population-scaled average recombination rates
were 0.641, 0.8, and 0.944 r/kb in bonobo, Nigerian chimpan-
zee, and western gorilla, respectively. For a robust comparison
between our maps and existing human and western chim-
panzee maps, we identified blocks for each nonhuman
genome that were syntenic with human (supplementary
fig. S2–S4, Supplementary Material online). We later binned
these syntenic blocks to 1 Mb (supplementary table S2 and
fig. S5, Supplementary Material online), 500 kb, and 100 kb for
downstream analysis. Additionally, figure 1 shows a plot of
recombination rates across the genomes of the great apes
compared here. To identify recombination hotspot locations,
we implemented a version of LDhot that follows the ap-
proach of Myers et al. (2005). Briefly, for a 20-kb region, we
used a likelihood ratio test to determine whether the central
2 kb had an elevated population-scaled recombination rate
relative to the surrounding sequence (see supplementary fig.
S6, Supplementary Material online, for comparison to other
methods). Using this approach, we identified 10,704, 8,037,
and 22,012 hotspots in bonobo, Nigerian chimpanzee, and
western gorilla, respectively.

FIG. 1. Broad-scale comparisons of recombination rates across great apes. Genome-wide plot of recombination rate estimates for Europe and African
human populations from HapMap, western chimpanzees from PanMap, and the three maps generated here, grouped within humans (N = 2),
chimpanzees and bonobos (N = 3), and gorillas (N = 1) to highlight both within- and between-species differences. Alternating chromosomes are
plotted in different colors to emphasize boundaries.
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Fine-Scale Comparisons
Hotspot Overlap within and between Species
We used two complementary approaches for exploring the
degree of overlap in hotspot locations across populations.
First, we examined the recombination rate at the syntenic
locations of called hotspots (fig. 2). That is, if a hotspot is
called in one population, we examined whether the estimated
recombination rate at the syntenic region was elevated in
closely related taxa. We call this “hotspot rate correlations”
below. Using the publicly available hotspots from HapMap
(Myers et al. 2005) and western chimpanzee (Auton et al.
2012), we found substantial hotspot rate correlation between
human populations but little (or no) evidence of elevated
rates at hotspot orthologs in other comparisons. It is worth
noting that figure 2A inflates the hotspot rate correlation
between human populations because the HapMap hotspots
are a composite of population-specific hotspots from
European, African, and Asian populations. Therefore, we com-
pared our population-specific hotspot results for chimpan-
zees (fig. 2B and C) to the population-specific hotspot plots of
European and African human populations (see supplemen-
tary fig. S6 in Auton et al. [2012]). Still, the degree of rate
correlation in human hotspots is much higher than in
figure 2B and C. One potential reason for a lack of shared
hotspot rates between Nigerian and western chimpanzees
could be that our method for identifying hotspots was slightly
different than the methods used for both HapMap and west-
ern chimpanzee. We estimated hotspots in western chimpan-
zee using our method but did not see any qualitative
difference in the degree of hotspot correlation with other
populations (supplementary fig. S7, Supplementary Material
online). Further, we found a similar lack of hotspot rate cor-
relation in bonobo–chimpanzee comparisons (fig. 2D) and all
comparisons involving gorilla (fig. 2E).

In parallel, we also performed an analysis comparing the
number of LDhot-inferred hotspots that overlap with each
other (called here “hotspot overlaps” with the number of
overlaps expected under a null model of random hotspot
locations within syntenic blocks) (see Materials and
Methods). For all comparisons between populations, we
found an excess of overlapping hotspots over the null ex-
pectations (table 2). This observation can be explained in

part due to the fact that recombination hotspot locations
correlate with genomic features such as GC content (see
below) that do not vary much between the closely related
species examined in this study. The degree of hotspot over-
lap increased with decreasing divergence time between
populations, ranging from 78 to 93% excess over null expec-
tations in intra-chimpanzee comparisons to a 9–27% excess
in comparisons involving gorilla. We hypothesize that the
latter range reflects the baseline inflation due to genomic
factors other than shared common descent of a recombina-
tion hotspot in the orthologous location in the gorilla–
human common ancestor. If so, we note that there is a
significant increase in hotspot overlap between chimpan-
zees and bonobos (36–47% excess), despite very little
evidence for increased recombination rates in one species
at the orthologs of hotspots identified in the other. It is also
worth noting that the range of values for increased overlap
of hotspots in the human–chimpanzee comparisons
(9.6–18.1) are similar to the 8% estimate from a similar hot-
spot overlap analysis (Ptak et al. 2005). We also find that the
observed percent overlap (table 2, below diagonal) is higher
for comparisons with more hotspots (human and gorilla,
samples sizes in fig. 2).

Localization of PRDM9 Predicted Binding Sites (PBS) to
Hotspot Regions
Similar to the approach used in a recent mouse study
(Brunschwig et al. 2012), we investigated the extent to
which various PRDM9 submotifs (table 1) are represented
in population-specific hotspots by calculating position
weight matrices (PWMs) identified based on species-specific
protein sequences of PRDM9 (table 1 and supplementary fig.
S8, Supplementary Material online). We then compared the
proportion of hotspots versus matched coldspots with a PBS
(table 3). We also summed the total PBS count across all
hotspots and coldspots over all submotifs and found signifi-
cant enrichment of both the proportion of hotspots with a
PBS and total motif count in the hotspots as compared to
coldspots for all species (table 3), except when using our
newly generated hotspots for western chimpanzee. Both
human submotifs were significantly associated with higher
PBS counts and proportions in hotspots versus coldspots,
though the submotif derived from Allele C was marginally
significant in CEU hotspots. Using the western chimpanzee
hotspots from Auton et al. (2012), we found that the sub-
motifs derived from PRDM9 alleles Pt1, W6, and to a lesser
extent A1 were significantly associated with more PBS counts
in hotspots versus coldspots. However, for our newly gener-
ated set of hotspots in the western chimpanzee, only the Pt1-
derived submotif remained significantly enriched in hotspots.
In the Nigerian chimpanzee, the submotifs derived from W6,
E1, and Pt1 were all found significantly more often in hotspots
than in coldspots. The lack of association between hotspots
and the A1-derived submotif in Nigerian chimpanzees sug-
gests that allele carrying this submotif may not be segregating
in P. t. ellioti, but only direct sequencing of PRDM9 alleles in
the relevant samples could address this question definitively.
Bonobo showed a weak association with the submotifs

Table 2. Hotspot Overlap Analysis.

Panmap Panmap
(new)

Nigerian
Chimpanzee

Bonobo HapMap Gorilla

Panmap — 2167 77.7 46.9 11.3 27

Panmap (new) 35.6 — 92.9 35.9 18.1 22.8

Nigerian
chimpanzee

2.15 3.3 — 39.9 9.6 12.3

Bonobo 2.33 2.87 2.59 — 13.2 9.2

HapMap 6.89 8.14 6.89 7.87 — 14.2

Gorilla 3.24 3.79 3.1 3.55 9.79 —

NOTE.—Above the diagonal values represent percent increase in hotspot overlap over
null expectations in comparisons between populations. Below the diagonal values
represent observed percent shared hotspots (compare to fig. 2). “Panmap” refers to
hotspots called in P. troglodytes verus in Auton et al. (2012), while “Panmap (new)”
refers to hotspots called from the same data using our method.
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FIG. 2. Hotspot rate correlation analysis. Degree of hotspot sharing and recombination rates for all maps in species-specific hotspots. Recombination
rates for all maps 20 kb upstream and downstream of (A) human hotspots from HapMap, (B) western chimpanzee hotspot centers from PanMap, (C)
Nigerian chimpanzee hotspot centers, (D) bonobo hotspot centers, and (E) western gorilla hotspot centers. Rates are shown in cM/Mb, and numbers of
hotspots correspond to the number that mapped to hg18 genome.
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derived from PRDM9 alleles A1, E1, and Pt1 but not W6,
which is not surprising as this is most likely a derived allele
of PRDM9 being only found in western chimpanzees. Finally,
gorillas showed a strong association with both Gg1-derived
submotifs (see table 3 and Materials and Methods).

For each submotif of PRDM9, we further analyzed the PBS
count relative to hotspot strength (supplementary fig. S9,
Supplementary Material online) in hotspots versus coldspot
regions. We posited that if PRDM9 activity is indicated by PBS
count, then the difference in PBS count between hotspot and
coldspot regions should be most pronounced in the strongest
hotspots, where PRDM9 activity is likely to be high. On the
basis of partitioning of hotspots by relative recombination
intensity, we found that for the submotifs that are significant
in table 3, there is evidence of more binding sites in hotspots
relative to coldspots for increasing hotspot strength. The
main deviation from table 3 is that the submotif derived
from the putatively ancestral PRDM9 allele, A1, not significant
overall in chimpanzee, has higher hotspot motif counts in
stronger hotspots, suggesting some historical signature of
binding remains at least for the strongest hotspots.

In addition to examining hotspot intensity and predicted
PRDM9 binding activity, we examined the distribution of

predicted binding sites across both hotspot and cold spot
regions (supplementary fig. S10, Supplementary Material
online). Based on a recent study in humans, there is an ex-
pectation that PRDM9 binds near the center of recombina-
tion hotspots (Pratto et al. 2014). To test if our data also
supported this pattern, we compared the distribution of pre-
dicted binding locations of PRDM9 hits relative to the center
of either hotspots or cold spots, limiting our analysis to hot-
spots less than 5 kb. Humans, bonobos, and gorilla exhibit a
significant difference in the overall distribution of PBS hits in
hotspots compared to cold spots based on a Wilcoxon test
(supplementary fig. S10, Supplementary Material online),
though these results are most striking for humans and not
significant for chimpanzees.

To determine if the observed high GC content of the
PRDM9 motifs drives the difference in predicted binding of
hotspots and coldspots, we also partitioned the hotspot/cold-
spot regions based on their respective GC content and re-
examined the distribution of PBS data (supplementary fig.
S11, Supplementary Material online). If GC content drives
the signal, then we would expect to observe a significant
difference between hotspots and coldspots only in the high-
est GC bin. Our results indicate that PBS counts persist across

Table 3. PRDM9 Results Summary.

Recombination Data Proportion of Regions with a PBS Binomial
Test P Value

Total Motif Count Binomial Test
P Value

Hotspot Source

Submotif Hotspots Cold Spots Hotspots Cold Spots

HapMap CEU 0.50 0.45 2.70E-16 41,984 39,168 4.95E-23 HapMap
Allele A 0.38 0.33 2.23E-23 27,808 25,390 1.06E-25
Allele C 0.29 0.27 1.29E-06 14,176 13,778 0.02

HapMap YRI 0.49 0.44 7.71E-22 40,732 37,687 1.58E-27 HapMap
Allele A 0.38 0.32 9.04E-29 26,901 24,346 1.57E-29
Allele C 0.28 0.26 7.77E-07 13,831 13,341 3.01E-03

Western chimpanzee 0.64 0.60 0.02 5,776 5,480 0.01 PanMap
Western 0.28 0.27 0.26 1,615 1,502 0.04
A1 0.21 0.19 0.04 1,143 1,042 0.03
E1 0.26 0.26 0.93 1,427 1,499 0.19
Pt1 0.28 0.25 8.04E-04 1,591 1,437 0.01

Western chimpanzee 0.60 0.59 0.62 12,599 12,410 0.23 This study
Western 0.27 0.28 0.26 3,393 3,534 0.09
A1 0.21 0.21 0.92 2,490 2,496 0.94
E1 0.25 0.26 0.13 3,163 3,241 0.34
Pt1 0.28 0.25 1.61E-03 3,553 3,139 4.41E-07

Nigerian chimpanzee 0.63 0.58 2.55E-04 9,316 8,520 2.62E-09 This study
Western 0.29 0.26 3.85E-05 2,654 2,356 2.70E-05
A1 0.21 0.20 0.29 1,807 1,745 0.31
E1 0.27 0.25 0.01 2,413 2,214 3.60E-03
Pt1 0.27 0.25 0.01 2,442 2,205 5.35E-04

Bonobo 0.61 0.59 0.05 14,081 13,369 1.77E-05 This study
Western 0.29 0.28 0.08 3,968 3,859 0.22
A1 0.23 0.21 0.01 2,928 2,739 0.01
E1 0.27 0.25 0.04 3,556 3,357 0.02
Pt1 0.27 0.26 0.04 3,629 3,414 0.01

Gorilla 0.32 0.30 1.39E-05 10,384 9,421 8.08E-12 This study
Gg1-1 0.23 0.21 1.94E-03 6,429 6,080 1.86E-03
Gg1-2 0.15 0.13 2.49E-06 3,955 3,341 6.93E-13

NOTE.—Comparison between identified hotspots and matched cold spot regions based on proximity, size, and GC-content. For each set of hotspots, the proportion of hotspots
versus cold spots that contain a predicted binding sequence (PBS) based on species-specific PWM of the PRDM9 sequence. This is contrasted on the right with the total
predicted binding motifs present in the combined sets of hotspots versus cold spots. Results for each relevant submotif and the combined results are presented for each genetic
map with the source of the hotspots listed.
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all GC bins and for most submotifs, indicating that GC-
content is not driving the results in table 3. There are three
exceptions to these results: 1) the Pt1-derived submotif, sig-
nificant in both western chimpanzee hotspot data sets, shows
a possible GC-content signal based on PanMap hotspots
(supplementary fig. S11C, Supplementary Material online),
though this result is the opposite for the hotspots generated
in this study (supplementary fig. S11D, Supplementary
Material online), 2) for Nigerian chimpanzee, the lowest GC
bin supports a GC signal, though the middle quartiles show a
larger difference than either extreme GC bin, consistent with
the overall results (supplementary fig. S11E, Supplementary
Material online), and 3) for bonobo, the E1-derived submotif
has a stronger signal with increasing %GC, suggesting the
result in table 3 for this submotif could be partly driven by
GC-content (supplementary fig. S11F, Supplementary
Material online).

Genome-Wide Predictions of PRDM9 Binding to Compare to

Previous Work in Chimpanzees
For a more direct comparison with the western chimpanzee
analysis performed in Auton et al. (2012), we also performed a
genome scan for each submotif and summed the results over
all submotifs for each group. We then compared the results
with a corresponding null motif (supplementary fig. S12,
Supplementary Material online). The genome-wide scan did
not reveal any significant association between recombination
rate and the submotifs in Nigerian chimpanzee and bo-
nobo, similar to previous results in western chimpanzees.
Conversely, we saw higher recombination rate at both
human submotifs in YRI, the submotif derived from Allele
A in CEU, and the second submotif derived from Gg-1 in
gorillas (table 1). We further split the genome-wide data
based on whether each 1 kb region had 0, 1, or 2+ predicted
binding sites and further split these into GC quantiles as was
done for the hotspot/coldspot analysis (supplementary fig.
S13, Supplementary Material online). For simplicity, we
summed these results across all submotifs. We found that
the recombination rate of both human and gorilla is higher
in regions with higher PBS counts and that this difference is
consistent across GC bins. When we compared these results
to the null motifs, we found that the difference between PBS
count categories was much less pronounced. In contrast,
both the real and null motif result in the Pan species were
similar and neither showed a marked increase in recombina-
tion rate with increased binding sites in any GC bins, consis-
tent with the full genome-wide search results.

Distribution of Recombination Rate across Genome
Another way to compare the recombination rates within and
between great apes is to look at the distribution of recombi-
nation rates across the genome. Similar to previous studies,
we found a biased recombination rate distribution whereby
the majority of recombination (~75%) occurs in a small frac-
tion of the physical genome (~20%). From the corresponding
Gini coefficient using the area under the curve of the Lorenz
curve (fig. 3A), we found that the European human popula-
tion has the strongest hotspot usage across the genome, sim-
ilar to previous studies (fig. 3B). We confirm the differences

between the CEU (Gini = 0.771), YRI (Gini = 0.688), and
chimpanzee (Gini = 0.677) maps previously published. For
the new maps, we calculate a Gini coefficient that lies
within the values of the extremes of these previously pub-
lished maps. Specifically, we calculate a Gini coefficient of
0.704 for gorilla, 0.713 for bonobo, and 0.726 for Nigerian
chimpanzee. Using this statistic, we are able to show that
the extent of recombination rate variation across the
genome is quite similar across great apes, with more variation
between human populations than across these diverse spe-
cies. The values from the recently published survey of Gini
coefficients across various species were included as a reference
point in figure 3B (Kaur and Rockman 2014). It is also worth
noting that the values in the Kaur and Rockman (2014) study
were from direct measures of recombination rather than in-
direct methods used here. To illustrate this point, the human
reference point included in figure 3B is from the Kong et al.
(2010) study and is much higher than the CEU estimate here
presumably from similar populations. This comparison sug-
gests that Gini coefficients from population-scaled recombi-
nation rate estimates are likely underestimates of the values
obtained for a direct pedigree-based method. This difference
could reflect methodological differences in rate estimation,
recent changes in the human recombination rate, or subpop-
ulation differences in recombination rate. Finally, it is worth
noting that the Gini coefficient estimated from LD data is
sensitive to differences in Ne (Auton et al. 2013) and the slight
variation between these taxa may mostly represent variation
in effective population sizes rather than differences in the
distribution of recombination rate across the genome.

Broad-Scale Comparisons

As discussed in the introduction, most between-species com-
parisons of recombination rates have focused on either evo-
lutionarily very close relatives or quite distant relatives.
Because our data set represents a large swath of evolutionary
distance and includes multiple within- and between-species
pairs, we wanted to compare the rate of nucleotide diver-
gence to recombination rate divergence across great apes. We
first binned the genome into 1 Mb, 500 kb, or 100 kb syntenic
blocks, then calculated the Spearman rank correlation coef-
ficient between all pairwise recombination rates. We then
compared the correlation coefficients to the amount of nu-
cleotide sequence divergence between each pair (fig. 4 and
supplementary fig. S15A and B, Supplementary Material
online). Using these data, we see closely related pairs of pop-
ulations display a rapid decline in recombination rate corre-
lation with increasing sequence divergence. Additionally,
when we replace the YRI-CEU comparison with the quality
control comparison of 10YRI-10CEU (fig. 4, gray dot) repre-
senting smaller samples sizes similar to the maps generated
here, we still see a steep decline in recombination rate com-
parisons for the Pan species relative to nucleotide changes. In
contrast, comparisons using species pairs with higher nucle-
otide divergence have relatively similar recombination
rate correlations, regardless of which human comparison is
used. Further, the correlation at decreasing bin sizes
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(supplementary fig. S15, Supplementary Material online) sug-
gests that sequence divergence explains less of the variance in
recombination rates at finer scales, as has been shown previ-
ously (Auton et al. 2012).

Another interesting broad-scale recombination pattern is
the skew in recombination rates at the ends and near the
center of chromosomes. We quantified the extent of this
skew across species, controlling for differences in recombina-
tion rate in each chromosome (supplementary fig. S16,
Supplementary Material online). While centromeric regions
recovered to the mean of the chromosome within 5 Mb of
the centromere, the skew at telomeres was more pronounced
and continued for nearly 15 Mb from the chromosome end.
We further looked at large-scale chromosomal changes across
great apes, including the chromosome 2 fusion in humans
and the chromosome 5/17 translocation in gorillas. We found
that other nonhuman primates also have high recombination
rates across the junction of chromosomes 2a/2b supporting
its historical telomeric origin. However, bonobos have
lower recombination rates across this region similar to
what has been seen in humans (supplementary fig. S17A,
Supplementary Material online), though this is most likely
due to reduced sequencing coverage in this area for bonobos
leading to less accuracy for recombination rate estimates. We
further found that the translocation event in gorillas did not
influence broad-scale recombination rates, likely because it
did not involve centromeric or telomeric regions (supple-
mentary fig. S17B and C, Supplementary Material online).

Multiple Linear Regression Analysis
Using a multiple linear regression framework, we evaluated
the correlates of various genetic features with both the rate of
recombination, as well as the increase in recombination rate

FIG. 3. Genome-wide distribution of recombination rates. Cumulative distribution or Lorenz curve of recombination rate plotted as proportion of
recombination versus sequence for each recombination map (A). The diagonal represents a uniform distribution. Gini coefficients for each population
map, and for comparison, other taxa reported in Kaur and Rockman (2014), including a human estimate from Kong et al. (2002) (B).

FIG. 4. Recombination rate versus nucleotide divergence. Spearman
rank correlation coefficient between all recombination maps at 1 Mb
(y axis) versus the pairwise nucleotide divergence between pairs (x axis)
with various comparisons labeled.
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relative to the human–chimpanzee ancestor of Munch et al.
(2014) (fig. 5). Briefly, this study used an HMM to reconstruct
approximately 1 million ancestral crossover events between
humans and chimpanzees. Note that we are reporting stan-
dardized (beta) coefficients, so the x-axis in figure 5 represents
the relative importance of each of these factors in predicting
recombination rate and change in rate. Further, the power of
using so many different taxa that share a common ancestor is
that it now becomes possible to disentangle results that
would be ambiguous with only one genetic map. As correla-
tions between recombination rates and our independent var-
iables, such as GC-content, diversity, and divergence, may
have a complicated, possibly interacting/nonlinear relation-
ship in genic versus nongenic contexts, we excluded genic, as
well as phylogenetically conserved bases from phastCons
elements (see Materials and Methods) to simplify the inter-
pretation of the results. To further disentangle substitution
patterns from the quasi-selective effects of gBGC, we looked
solely at transversions that were strong to strong (G$C) or
weak to weak (A$T) for our divergence and diversity statis-
tics, while we looked at the change in GC-content in substi-
tutions for assessing equilibrium GC-content as per Duret and
Arndt (2008). It is worth noting that the error bars at fine
scales are much smaller owing to the larger number of inter-
vals at smaller size scales. Likewise, there is likely more power
to detect differences in the coefficients at finer scales, though
several factors show larger coefficients at larger scales, for
example, diversity.

Both diversity and divergence show significant positive
correlations with recombination rate across all taxa and all
size scales (fig. 5A–C). Further, diversity as a predictor of re-
combination rate variation becomes more pronounced at
larger size scales (supplementary fig. S14A, Supplementary
Material online). While the diversity correlation is consistent
with previous work, the divergence correlation is a bit more
puzzling. Typically, the correlation between divergence and
recombination is used to disentangle the effects of mutagenic
recombination or patterns of linked selection (Begun and
Aquadro 1992). There is evidence that recombination has a
mutagenic effect (Pratto et al. 2014; Arbeithuber et al. 2015),
though these associations largely involve CpG mutations, and
in the case of Arbeithuber et al. (2015), were only seen in
transitions. Further, gBGC, associated with higher recombina-
tion, may also impact estimates of divergence by influencing
the fixation probability of alleles. However, as we only used
S$S and W$W transversion mutations, neither of these
two processes should influence our coefficient estimates.
Further, as linked selection does not influence substitution
rates, save in the ancestral species (Birky and Walsh 1988),
which is the same ancestor in this analysis across taxa, this
correlation cannot be attributed solely to linked selection in
the ancestor of humans and orangs because the human con-
fidence intervals do not overlap the confidence intervals of
the other apes. Similar findings were obtained from the use of
the African individuals sequenced in Prado-Martinez et al.
(2013), suggesting this is not an artifact of different sequenc-
ing technologies. Further, divergence is positively correlated
with recombination rates, while it is weakly associated with a

deceleration in recombination rate relative to the human-
chimpanzee ancestor, especially at smaller scales (100 kb)
(fig. 5A vs. 5D).

Consistent with previous studies, the rate of recombina-
tion is positively correlated with both ancestral GC-content
(Kong et al. 2002; Jensen-Seaman et al. 2004) and an estimate
of the equilibrium GC-content (GC*, see Materials and
Methods) (Duret and Arndt 2008; Munch et al. 2014).
Further, the magnitude of the coefficients for ancestral GC-
content are largely nonoverlapping, with ancestral GC con-
sistently a stronger predictor than GC* in all groups except
Nigerian chimpanzee. Note that the r values inferred from
LDhat were converted into z-scores, so this ordering does not
reflect mere tautologies but rather may reflect an increased
association of ancestral GC-content with local recombination
rate. Additionally, the difference between ancestral GC and
GC* is most apparent in humans, which may reflect some
demographic change in the human-specific lineage. The rel-
ative strength of these associations is consistent across all
scales (supplementary fig. S14B, Supplementary Material
online).

The ENCODE annotations (strong enhancer, active pro-
moter, and transcription associated) provide some of the
smallest effect sizes of all annotations. Similar to previous
works (Kong et al. 2002; Jensen-Seaman et al. 2004), recom-
bination is negatively correlated with genic activity, as mea-
sured by transcription and active promoters. Enhancers show
an occasional significant positive correlation with recombina-
tion rate, which may just reflect recombination being
low in gene-rich regions (see supplementary material,
Supplementary Material online).

Discussion
By extending the number of whole-genome fine-scale genetic
maps, we present a major advance in understanding recom-
bination rate evolution across great apes. First, our results
show that few hotspots are shared between chimpanzees
and bonobos, suggesting that complete hotspot turnover
takes on the order of millions of years. Although our results
show nearly complete hotspot turnover in the Pan species
examined here, our hotspot overlap analysis (table 2) suggests
higher sharing in Pan species than expected by chance.
Second, we have shown that PRDM9 binding likely deter-
mines the locations of recombination hotspots across great
apes not just in humans as had been shown previously. While
we report significant enrichment of putative PRDM9 binding
in recombination hotspot regions as compared with coldspot
regions, we did not observe a significant association between
PRDM9 binding broadly across the genome and local in-
creases in recombination rates. Below we discuss some of
the reasons for the incongruence between the genome-
wide results and the hotspot results. Further, we have ana-
lyzed broad-scale patterns of recombination rate evolution
and showed that the divergence in recombination rates be-
tween species occurs rapidly relative to the divergence of
nucleotide sequences and perhaps more closely tracks pop-
ulation divergence times. We showed that in gorilla, a trans-
location between chromosomes 5 and 17 does not display
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FIG. 5. Genetic correlates of recombination rate. The predictors of recombination rate (left) and the change in recombination rate since the human–
chimpanzee ancestor (right) at varying physical scales (top to bottom). Within each pane, multiple linear regression coefficient estimates (with standard
errors, SEs) are shown for each of the independent variables across taxa. Larger coefficients reflect larger effects, while smaller SEs correspond to larger
correlations.
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any broad-scale recombination rate differences when com-
pared to other species studied here. Finally, we showed that a
subset of genetic features explains the majority of the varia-
tion in recombination rate and that the amount of variation
explained depends in part on species-specific patterns of nat-
ural selection and demography.

Within- and between-Species Comparisons of
Recombination Rate Evolution

Access to multiple within- and between-species comparisons
across great apes allowed us to perform a comprehensive
comparison of recombination rate variation at fine scales.
The two chimpanzee subspecies diverged approximately
400–600 ka (Bowden et al. 2012), whereas the two human
populations diverged approximately 70–80 ka. We find that
most hotspots are shared between human populations but
that very few hotspots are shared between chimpanzee sub-
species, indicating a very rapid change in the hotspot land-
scape over a short evolutionary time period. The lower
coverage of individuals (mean 9.45� coverage) and the
high error rate (34–41%) at the fine scale (<10 kb) reported
in the western chimpanzee study (Auton et al. 2012) indicates
that individual SNP calls may not be accurate and direct
comparisons with western chimpanzee may not be appropri-
ate. Though we find similar results (of very few shared hot-
spots) in comparisons between bonobos and chimpanzees
(fig. 2D and table 2), suggesting that near-complete hotspot
turnover happens within 1–2 My.

It is worth noting that a recent study examining the re-
combination rates of chimpanzees at human hotspots was
able to identify approximately 30 overlapping regions be-
tween chimpanzees and human on chromosome 21, where
both YRI and western chimpanzees had high inferred recom-
bination rates (Wang and Rannala 2014). It is unclear whether
the extent of hotspot overlap found in the study was more
than what is expected by chance, especially if one controls for
GC content. Further work will be needed to answer this ques-
tion. Nonetheless, our results of a quicker turnover are con-
sistent with a recent study suggesting very little overlap of
recombination hotspots between modern humans and
Denisovans, as inferred from a disruption in equilibrium
GC-content indicative of past or present recombination ac-
tivity in primates (Lesecque et al. 2014). They further propose
that the rapid turnover of hotspots presents a solution to the
hotspot paradox, whereby the self-destructive nature of hot-
spots drives selection for new PRDM9 alleles. While they did
not directly estimate recombination rates in Denisovans, they
were able to quantify the expected lifespan of a recombina-
tion hotspot in humans to be approximately 3 My based on
degeneration of the human PRDM9 submotif sequences in
the Densiovan genome. Our results suggest that hotspot
turnover in chimpanzees may occur more rapidly, due in
part to the higher polymorphism at PRDM9. Most likely,
the recent bottleneck in modern humans slowed this hotspot
turnover process by reducing the diversity at PRDM9, which
seems to occur more rapidly along the chimpanzee branch
than the human branch. This presents an interesting example

of how demographic history can impact the time scale of
recombination rate evolution.

PRDM9 Predicted to Bind to Great Ape
Recombination Hotspots

As listed in table 3, we find strong evidence that PRDM9 likely
binds to recombination hotspot regions more frequently
than to coldspot regions broadly across great apes. In fact
for all other groups of great apes, we find at least one submotif
of PRDM9 enriched across hotspot regions as compared to
coldspot regions. Because the signal in western chimpanzees
is mainly reflected in the newly identified internal submotif, it
is not surprising that the earlier study in this group failed to
identify an important role for PRDM9 in recombination rate
association. Indeed the western-chimpanzee-specific submo-
tif of PRDM9 is most strongly associated with predicted bind-
ing in Nigerian chimpanzee recombination hotspots. This is
possibly due to shared PRDM9 alleles between these two
subspecies. However, the Nigerian chimpanzees have not
been previously included in surveys of PRDM9 diversity.
Further, the putatively ancestral A1-derived motif does not
seem to be active in this group despite its activity in bonobos,
supporting the rapid turnover of hotspot landscapes ob-
served between these groups. Additionally, the PRDM9 sub-
motif which is putatively ancestral across chimpanzee
subspecies seems to be active in the outgroup of bonobo,
suggesting it has been active since prior to the bonobo-
chimpanzee split. By breaking hotspots into groups with
potential binding of various submotifs of PRDM9, we can
break down the hotspot landscape. This supports recent
evidence in humans that LD-based recombination rate esti-
mates represent a composite landscape with distinct land-
scapes superimposed to yield a population average (Pratto
et al. 2014).

While this composite landscape of recombination activity
may help explain the lack of association in the previous chim-
panzee recombination study, another source of complication
was the approach for identifying an association. By searching
across the whole genome as opposed to focused hotspot
regions as we did here, the earlier study was more prone to
difficulties of computational predictions of PRDM9 binding
(see supplementary material, Supplementary Material online,
for details). Nonetheless, to compare our results to those of
Auton et al. (2012), we further examined rate differences as-
sociated with PBSs along the genome irrespective of local
recombination rate. We compared recombination rates in
regions with a PBS based on the species-specific PRDM9
PWM versus a null version generated by shuffling the original
PWM. We found higher recombination rates near PRDM9
PBSs versus the null PBS for gorilla, similar to humans (supple-
mentary fig. S12, Supplementary Material online), and
irrespective of GC content (supplementary fig. S13,
Supplementary Material online) but not for Pan species.
We attribute this to the loss of sensitivity of a genome-wide
search in the Pan group due to the high diversity at the
PRDM9 locus in the Pan genus (Schwartz et al. 2014). The
higher allelic diversity at PRDM9, especially in Pan species,
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likely contributes to population rate estimates based on pat-
terns of LD being a composite of multiple distinct hotspot
landscapes (Pratto et al. 2014). Further, LD-based maps are
less likely to reflect recent changes in the recombination land-
scape and the rapid turnover of hotspots in this group may
also render a genome-wide approach difficult in uncovering a
true association between specific PRDM9 submotifs and re-
combination rates. In human and gorilla, both the age of the
alleles and the frequency in the population sampled (table 1)
likely yield higher power to detect such a signal, which may
also explain the reduced signal for both the submotif derived
from Human Allele C and the gorilla submotif Gg1-1. Like
previous studies, a lack of a signal in our genome-wide results
can be explained by a variety of computational challenges.

However, our overall results provide strong evidence that
PRDM9 helps localize recombination hotspots in great apes.
Further, we showed that the difference in PBS count between
hotspot and cold spot regions is more pronounced as both
recombination hotspots of increasing strength and as regions
closer to the center of the hotspot region are considered. We
also showed that GC content does not drive this pattern,
which persists even across regions with the lowest GC-con-
tent. Therefore, our study represents the first evidence that
PRDM9 may be more ubiquitous in determining recombina-
tion rate activity in primates. Future work should both focus
on direct recombination initiation maps from individuals ho-
mozygous for specific PRDM9 alleles as was done recently in
humans (Pratto et al. 2014) and should also work to generate
Chip-Seq data for PRDM9 during meiosis to gain a better
understanding of the binding locations of this protein in
vivo (Segurel 2013).

Distribution of Recombination Rate across
the Genome

We found that variation in the great ape recombination maps
presented here are similar to other vertebrate taxa which have
functional PRDM9 (Schwartz et al. 2014). These results are
consistent with previous work reporting a dominant PRDM9
allele for determining hotspot locations across the genome in
European populations, driving the bias towards hotspot usage
(Altshuler et al. 2010). Further, higher allelic diversity and
levels of within population heterozygosity of PRDM9 likely
contribute to a more even distribution of recombination rates
across the genome, with distinct hotspot landscapes averaged
over the longer population history of chimpanzee, bonobo,
and gorilla (Berg et al. 2011; Schwartz et al. 2014). However,
because the amount of variation in Gini coefficients across
great apes is rather small, it would be difficult to distinguish
between the impact of PRDM9 variation and variation in
effective population size (Ne) (Auton et al. 2013). Further,
the previous application of the Gini coefficient to recombi-
nation rate data excluded LD-based maps due to the poten-
tial biases caused by natural selection and gene conversion.
Nonetheless, while not converted to Gini coefficients, previ-
ous studies have made inferences from the cumulative
distribution of recombination rates across the genome from
LD-based maps that seem to agree with differences in PRDM9

diversity (Frazer et al. 2007; Altshuler et al. 2010; Auton et al.
2012).

Broad-Scale Recombination Rate Changes Occur
More Rapidly than Nucleotide Divergence

Because fine-scale recombination rates change rapidly within
species, focusing on broad-scale recombination rate changes
between species allowed us to identify changes that occurred
over longer evolutionary time frames. These results suggest
that the amount of change in recombination rate over time
plateaus after a few millions years with gorilla versus human
comparisons largely overlapping chimpanzee versus human
ones (fig. 4 and supplementary fig. S15, Supplementary
Material online).

We further analyzed the skew of recombination rates
at chromosome ends across great apes and found a stron-
ger skew at telomeric regions than centromeric regions.
Previous studies account for this skew by removing approx-
imately 5–10 Mb nearby centromeres and telomeres (Serre
et al. 2005), which while sufficient for centromeres but may
not adequately account for the telomeric skew in great apes.
We also plotted recombination rates across the chromo-
some 5/17 translocation present in gorillas and found that
unlike the chromosome 2 fusion event, this does not seem
to disrupt the broad-scale recombination landscape (sup-
plementary fig. S17B and C, Supplementary Material online).
This is perhaps due to the fact that while the chromosome
2 fusion in humans leads to broad-scale rate differences, this
change can be explained by the conversion from telomeric
to centromeric regions. However, the translocation in go-
rillas does not involve any chromosome end regions nor
does it alter the relative distance to the chromosome ends
for either chromosome.

Regression Analysis

We used a multiple linear regression analysis to evaluate the
relationships between recombination rate and rate change
with various genetic features. Unlike simple correlations,
our approach allows us to determine the relative importance
of each feature to the overall variation in each of these var-
iables. We find the strongest positive predictors of recombi-
nation rate (fig. 5A–C) are diversity, divergence, and ancestral
GC content across all scales analyzed here. We showed that
the equilibrium GC content (GC*) increases in importance
with increasing scale. We also showed that repeat masked
regions and to a lesser extent genic annotations are negatively
associated with recombination rate. We further examined
recombination rate change in relation to the human-chim-
panzee ancestor. Both divergence and repeats are associated
with a decelerated recombination rate, while diversity is as-
sociated with an accelerated recombination rate.

A relationship between the local Ne (measured as �/diver-
gence to the human-orang ancestor) and recombination is
not surprising, as it is consistent with the predictions of back-
ground selection (Hudson and Kaplan 1995; Nordborg et al.
1996). As bases under direct forms of selection (genes and
conserved elements) are not included in this analysis, and

940

Stevison et al. . doi:10.1093/molbev/msv331 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv331/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv331/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv331/-/DC1


ENCODE annotations are partitioned into separate coeffi-
cients, if directional selection is invoked as an explanation
for this relationship, then it is due to the action of selection
at linked sites. As linkage to selected bases should be more
pronounced in areas of low recombination, the coefficient
differences we see across taxa may reflect differences in dif-
ferences in the distribution of fitness effects across apes.
Alternative explanations include the possible inclusion of
unannotated bases under directional selection (Asthana
et al. 2007), which would also explain why diversity is corre-
lated with an accelerated recombination rate. However, if
recombination rates are accelerating, then levels of back-
ground selection would become reduced, which may also
explain this relationship. The strong positive correlation
with divergence is surprising, as we constrained ourselves to
only looking at W-4W and S-4 S transversions, which
should be invariant to both gCBC and the documented
mutagenic effects of recombination found in Arbeithuber
et al. (2015). An explanation for this strong positive associa-
tion despite having removed most functionally annotated
sites is that functional density (regions subject to selection)
is nonrandomly distributed and perhaps is higher in
low recombining regions (Cutter and Payseur 2013), where
the bases in question are unannotated, or alternatively,
that recombination-associated processes influence the
probability of substitution at strong to strong and weak
to weak transversion sites in a previously undocumented
fashion.

Overall, these results suggest that despite rapid turnover in
local recombination rates, correlations between specific ge-
netic features and recombination rates are consistent across
great apes, but the degree is contingent on the sample size or
the total depth of the coalescent history for a given popula-
tion as well as population-specific factors such as the strength
of selection or unique demographic processes in these taxa.

Materials and Methods

Samples, Sequencing,and SNP Calling

Samples for the fine-scale recombination maps presented
here were collected and described in the Great Ape
Genome Diversity Consortium (Prado-Martinez et al. 2013).
From the 88 samples described, 38 were used here to estimate
genome-wide recombination rates for three populations of
three major species: 13 bonobos without known geographical
origin (Pan paniscus); 10 chimpanzees from Nigeria (Pan trog-
lodytes ellioti); and 15 western gorillas from Cameroon and
Congo (Gorilla gorilla gorilla). This subset of individuals is
described in supplementary table S1, Supplementary
Material online.

A detailed description of sequencing, reference mapping,
and SNP/variant calling can be found in Prado-Martinez et al.
(2013). Briefly, samples were sequenced on an Illumina se-
quencing platform (HiSeq 2000) with data production at four
different sequencing centers, sequence reads were mapped to
both the human reference genome (hg18) and each species-
specific reference (PanTro 2.1.4, Ensembl release 65 for Pan
and gorGor3, Ensembl release 62 for Gorilla). SNP calling was

performed using the Genome Analysis Toolkit (GATK) soft-
ware (DePristo et al. 2011). Final coverage for the individuals
used here is included in supplementary table S1,
Supplementary Material online.

Recombination Rate Estimation

The processes of data filtering and rate estimation were care-
fully matched to be similar to those used in the recent
PanMap project (Auton et al. 2012). Using both the
human-based mapping and the species-specific mapping of
the reads for each species, the data were filtered using a
combination of VCFtools (Danecek et al. 2011) and custom
scripts (Stevison 2015). See supplementary methods,
Supplementary Material online, for details on this filtering
process. To maintain comparable inherited segments of the
genome, regions that were syntenic between each nonhuman
primate and humans were defined as described in supple-
mentary methods, Supplementary Material online. See sup-
plementary figure S1, Supplementary Material online, for the
distribution of block sizes for each species. See supplementary
figures S2–S4, Supplementary Material online, for plots of
each set of coordinates as mapped in the human reference
versus the nonhuman reference genome, highlighting
large-scale differences from human in orientation for each
species.

Computational phasing and imputation to infer bases at
missing sites was performed on each syntenic block using the
software fastPHASE v1.2 (Scheet and Stephens 2006). Then,
for improved phasing accuracy, the variants were re-phased
using PHASE v2.1 (Stephens and Donnelly 2003) as described
in Auton et al. (2012). See supplementary methods,
Supplementary Material online, for additional details. An ad-
ditional filter based on minor allele frequency was performed
afterward (cutoff = 0.05). Filtered syntenic blocks were split
into 4,000 SNP blocks with 100 SNP overlap and converted to
input for the software LDhat v2.1 (Fearnhead and Donnelly
2001; International HapMap 2005). LDhat was run for 60
million iterations with a block penalty of 5, sampling every
40,000 steps (Auton et al. 2012).

Comparisons to Existing Maps

To get comparable recombination rate data for the published
human and western chimpanzee maps, source data were
downloaded and converted as described in supplementary
methods, Supplementary Material online. Further, our map
estimates were converted from r/kb to cM/Mb following the
approach of McVean et al. (2004), which yielded Ne estimates
of 13,428, 16,781, and 19,785 for bonobos, Nigerian chimpan-
zees, and gorillas, respectively. These Ne values yielded the
same adjusted rate estimate of approximately 1.193 cM/Mb
for bonobo, Nigerian chimpanzee, and gorillas (see supple-
mentary methods, Supplementary Material online, for
details).

Together with western chimpanzee, the block boundaries
for regions that are syntenic to human were intersected
across the four nonhuman maps and the two human maps
as described in supplementary methods, Supplementary
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Material online. These “multi-syntenic” blocks were generated
to give average rate estimates in bins of 1 Mb, 500 kb, and
100 kb. Supplementary figure S5, Supplementary Material
online, shows a boxplot of the mean values across all six
maps using the 1 Mb binned data set and the full 1 Mb
binned data set can be found in supplementary table S2,
Supplementary Material online.

Hotspot Determination and Sharing between
Populations

LDhot uses a composite-likelihood framework based on the
work of Hudson(2001) and McVean et al. (2002). The Auton
et al. (2012) implementation tests every 2 kb region (with a
1 kb increment) as a potential hotspot by analyzing the 200-
kb region centered around the region of interest. Auton et al.
(2014) used a smaller window size (100 kb) but the same basic
approach for identifying candidate regions. Our new ap-
proach here is to use a 20-kb window size to yield greatly
improved power to detect less intense recombination hot-
spots. A detailed comparison of our method and the two
former approaches can be found in supplementary methods,
Supplementary Material online.

To identify the degree of overlap between hotspots (la-
beled “hotspot overlap” above), we started with 442 syntenic
blocks that were 4 1 Mb in length. We trimmed 10 kb off
each end of these blocks. Then, we randomly permuted the
start sites of each hotspot, keeping it in the same syntenic
block it started in and keeping the hotspot lengths
unchanged. We did this 1,000 separate times and tabulated
the average number of permuted hotspots whose boundaries
overlapped each other (by at least 1 bp). We also tabulated
the excess of observed hotspot overlaps compared with the
expected number (i.e., the observed number of hotspot over-
laps divided by the average number of simulated hotspot
overlaps for a pair of populations) (table 2).

Comparisons between Existing and Newly
Identified Hotspots

To compare recombination rates at hotspots identified here
and in previous studies, source data were downloaded
and converted as described in supplementary methods,
Supplementary Material online. Next, the coordinates for
each full recombination map were rescaled to reflect the rel-
ative location �20 kb to the center of each set of hotspots.
Then, a loess smoothing was applied to the rate estimates
using the rescaled coordinates across all hotspots in each map
(fig. 2). Finally, the same method used to identify hotspots for
the three recombination maps generated in this study was
applied to the phased haplotype data from PanMap. This
resulted in a set of 9,993 hotspots in western chimpanzee
(as compared to 5,038 from the original set of western chim-
panzee hotspots). Supplementary figure S7, Supplementary
Material online, shows the plot of this new set of western
chimpanzee hotspots with rates from all six compared maps
(similar to fig. 2B).

Examining the Relationship between PRDM9 Binding
Motifs and Hotspots

Previous work has shown higher recombination rates in PRDM9
predicted binding sites in humans but not in western chimpan-
zees. To further investigate the importance of PRDM9 in local-
izing population-specific hotspots, we downloaded the protein
sequences of PRDM9 from previous studies (Berg et al. 2011;
Auton et al. 2012; Schwartz et al. 2014). We then predicted
binding motifs for the zinc-fingers of the protein sequence
using http://zf.princeton.edu/ (last accessed October 29, 2014)
and the polynomial SVM model as described in Persikov et al.
(2009). This analysis included eight submotifs (table 1) with
different combinations searched across six recombination
maps (including the newly defined set of hotspots for western
chimpanzee). See supplementary methods, Supplementary
Material online, for submotif descriptions and sources.

To examine the prevalence of PRDM9 in explaining hot-
spot distribution, we computationally identified matched
coldspots across the genome as described in supplementary
methods, Supplementary Material online. We then extracted
the fasta sequence for both the hotspots and coldspots from
the masked version of the species-specific reference genome.
Next, we used the software “fimo” to identify PBSs within the
fasta sequence of the hotspots and coldspots (Grant et al.
2011). In table 3, we report the results for individual submotifs
for each map and set of hotspots used here and the analysis
summed across all submotifs. In addition to total number of
predicted binding regions for both hotspots and coldspots,
we summed up the number of nonzero regions for each to
yield a proportion of regions with any suspected PRDM9
binding. To explain why our results were different from
those of Auton et al. (2012), we also performed a genome
scan for each submotif. In supplementary figure S11,
Supplementary Material online, we plot the results of our
genome-wide survey of recombination rate enrichment at
PRDM9 submotif predicted binding regions as compared to
a null motif (see supplementary methods, Supplementary
Material online).

Genomic Distribution of Recombination Rates

To get cumulative distributions of recombination rates across
each recombination map, the absolute physical and genetic
distance for each interval was calculated, sorted relative to
genetic distance, and summed to 1 for both physical and
genetic distance values across the full data set (Stevison
2015). From these data, we plotted the Lorenz curve and
Gini coefficient for all six maps (fig. 3).

Broad-Scale Comparisons

Pairwise nucleotide divergence between each population was
taken from supplementary table S5.2 of Prado-Martinez et al.
(2013). To compare each map, the 1 Mb rate estimates from
the multisyntenic regions as defined between all six maps
were fitted to a regression in R and the Pearson correlation co-
efficient between each pairwise comparison was computed.

Using the 1 Mb binned multisynteny data set, we exam-
ined variation in the skew of recombination typically
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observed at chromosome ends (Serre et al. 2005). We then
plotted the skew at telomeres (supplementary fig. S15A,
Supplementary Material online) and centromeres (supple-
mentary fig. S15B, Supplementary Material online) in 1 Mb
bins for the first and last 25 Mb relative to the chromosome
ends for all six comparative maps. In addition to skews in
recombination due to chromosomal location, we examined
how large-scale changes in chromosomal structure impacted
recombination rates in great apes. We examined the chromo-
some 2 junction across great apes and the translocation of
human chromosomes 5 and 17 in gorillas.

Multiple Linear Regression Analysis

From the UCSC genome browser, we downloaded three
classes of repeats, Repeating Elements (v. 3.2.7), Simple
Tandem Repeats, Microsatellites, two classes of functional
elements, exons from the CCDS project and phastCons
elements from the 28-way placental mammals alignments,
and three ENCODE annotations pertaining to gene activ-
ity—Transcription-associated, Active Promotor, and Strong
Enhancer—from the Genome Segments track (from
GM12878, combined Segway + ChromHMM).

We calculated nucleotide diversity (�), divergence, ances-
tral GC content, and GC* using the ancestral-sequence in-
ferred for the common ancestor of humans and orangutans
using the same methodology as described in Prado-Martinez
et al. (2013). GC-flux was defined as the number of AT to GC
substitutions divided by the number of GC to AT substitu-
tions, and GC* was defined as GC-flux/(1+GCflux) as per
Munch et al. (2014). Further details can be found in supple-
mentary methods, Supplementary Material online.

Supplementary Material
Supplementary figures S1–S17, methods, and tables S1 and S2
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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