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Characterization of Chaotic Instabilities in an Electron-Hole 
Plasma in Germanium 

G. A. Held and C. D. Jeffries 

Department of Physics and Lawrence Berkeley Laboratory, University of Cali
fornia. Berkeley, CA 94720, USA 

Abstract 

Helical instabilities in an electron-hole plasma in Ge in parallel dc 
electric and magnetic fields are known to exhibit chaotic behavior. 
By fabricating probe contacts along the length of a Ge crystal we 
study the spatial structure of these instabilities, finding two types: 
(i) spatially coherent and temporally chaotic helical density waves 
characterized by strange attractors of measured fractal dimension 
d - 3, and (ii) beyond the onset of spatial incoherence, instabilities 
of indeterminately large fractal dimension d ~ 8. In the first 
instance, calculations of the fractal dimension provide an effective 
means of characterizing the observed chaotic instabilities. How
ever, in the second instance, these calculations do not provide a 
means of determining whether the observed plasma turbulence is 
of stochastic or of deterministic (Le., chaotic) origin. 

1. Introduction 

It is by now well established that the onset of turbulence in a wide range of 
physical systems can be characterized by low-dimensional chaotic dynamics. I 
That is, the evolution of these systems corresponds to motion in phase space 
along trajectories confined to a strange (fractal) attractor.2 Experimentally, it 
is often difficult to distinguish between deterministic chaos and stochastic 
noise - both are characterized by broad spectral peaks. To establish that 
experimentally observed behavior is indeed chaotic, it is necessary to examine 
the structure of the attractor itself. This requires methods of data reduction 
designed specifically to identify and characterize low-dimensional chaotic 
attractors. These include the construction of phase portraits, Poincare 
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sections, return maps, and bifurcation diagrams. In those cases where the 
chaotic behavior is characterized by an attractor of dimension greater than 
approximately 2.5, even these methods of analysis cannot distinguish between 
chaos and stochastic noise; the fractal structure becomes too dense to be dis~ 
cemed through visual inspection of a tw<Hiimensional projection of a Poin
care section. In such instances, one must calculate quantitative measures of 
chaos Such as fractal dimensions,) Lyapunov exponents,4 and metric entropyS 
of the attractor~ In this paper we present the results of our efforts to calculate 
fractal dimensions as a means of identifying and characterizing chaos in heli
cal instabilities of an electron-hole (e-h) plasma in germanium (Ge). 

Spontaneous current oscillations in an e-h plasma in a dc electric field 
Eo and a parallel dc magnetic field Bo are known to be the result of an 
unstable, travelling, screw~shaped helical density wave.6,7 Held, Jeffries, and 
HaIlerS have found that when this instability is strongly excited by an increas
ing electric field, it will undergo both period-doubling and quasiperiodic tran
sitions to low-dimensional chaos. Experimentally, we vary the applied dc 
fields and record the dynamical variables I(t), the total current passing 
through the sample, and V(t), the voltage across it. By forming probe contacts 
along the length of our crystals, we are also able to monitor the local varia
tions in plasma density. 

We have found two distinct types of behavior: (i) an essentially spa
tially coherent and temporally chaotic plasma density wave characterized by 
an attractor of fractal dimension d - 3, and (ii) a spatially incoherent wave 
with an immeasurably large fractal dimension d> 8. Further, as the applied 
electric field Eo is increased, we observe a transition between these two states 
- characterized by a partial loss of spatial order and a jump in the fractal 
dimension. While the increase in fractal dimension from d - 3 to d > 8 is 
somewhat abrupt (~Eo/Eo - 0.05), the breakup of spatial order occurs gradu
ally. It is physically reasonable that the onset of spatial incoherence (which 
increases the number of available degrees of freedom) would result in an 
increased fractal dimension. However, we cannot firmly establish that the 
onset of spatial disorder is coincident with the observed jump in fractal 
dimension; the possibility that these two events occur at comparable fields 
and yet are not directly related cannot be completely excluded. 

The methods by which we determined that case (i) corresponds to a 
temporally chaotic, spatially coherent density wave are described in detail 
elsewhere.9 We present here a discussion of the methods which we have used 
to determine the fractal dimension of the attractors associated with such insta
bilities. Following that, we discuss the difficulties which we have encountered 
in attempting to characterize spatially incoherent instabilities in the context of 
chaotic dynamics. 
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2. Experimental Procedures 

Our experiments are performed on a 1 x 1 x 1 mm3 sample cut from a large sin
gle crystal of n-type Ge with a net donor concentration 
No - 3.7x 1012cm-3•8 A lithium-diffused n+ contact (electron injecting) and 
a boron-implanted p + contact (hole injecting) were formed on opposite 
1 x 1 mm2 ends. Phosphor-implanted n + contacts were formed on two oppo
site 1 x 10mm2 faces. Using photolithography, we etched onto these two faces 
a pattern of eight pairs of contacts 0.5 mm wide and spaced by 1 mm along 
the length of the sample. The voltage Vi(t) across a pair of these contacts is a 
measure of the local variation in plasma density. 7 The sample was lapped, 
etched, and then stored in dry air for 72 hours to allow the surfaces to pas
sivate. 

When taking data, the sample is cooled to 77 K in liquid N2 and con
nected in series with a 100-0 resistance and a variable dc voltage, which 
both generates the e-h plasma via double injection and creates the dc electric 
field Eo. The applied voltage V 0, the applied magnetic field 130, and the angle 
between the two fields 8 comprise our control parameters; typically 8 == 0±3°. 
In practice, we fix 130 and 8 and sweep Yo, while recording the dynamical vari
ables I(t), V(t), and Vi(t), which characterize the plasma behavior. 

3. Low-Dimensional Attractors -·Transitions to "Weak" Turbulence 

In different regions of parameter space (V 0, Bo, 8) different types of transitions 
to turbulence are observed. For our system we make the operational defini
tion that a transition to "weak" turbulence is one in which the transition from 
periodicity to chaos is followed by a transition back to periodicity as Vo is 
increased further. All such transitions that we have observed occur over a 
small range (i.e., -1 V) of V 0, and in all such chaotic states there exists at 
least one fundamental peak which stands out clearly above the broad-band 
"noise" level of the power spectrum. 

For several different values of 130 we have observed quasiperiodic transi
tions to weak turbulence: as V 0 is increased, the onset of a quasiperiodic state 
(simultaneous oscillations at two incommensurate frequencies) is followed by 
a transition to chaos. The power spectra for one such sequence, taken at 
130 - 11.15 kGauss, is shown starting in figure l(a) with Vo =- 2.865 volts: I(t} 
is spontaneously oscillating at a fundamental frequence. f, == 63.4 kHz. At 
Vo - 2.907 volts, the system becomes quasiperiodic: a second spectral com
ponent appears at f2 =- 14 kHz, incommensurate with f, [figure 1 (b)l. At 
Vo '" 2.942 volts, the system is still quasiperiodic; however, the two modes 
are interacting and the nonlinear mixing gives spectral peaks at the combina
tion frequencies f = mft + nf2, with m,n integers [figure l(c)j. 
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Fig. 1. Return maps, In vs. In+ 1 (where {In} is the set of local current maxi
ma), and power spectra of the plasma current I(t) at Bo = 11.15 kGauss with 
increasing Vo: (a) 2.865 volts, periodic at fl = 63.4 kHz. (b) 2.907 volts, 
quasiperiodic with second frequency f2 = 14 kHz. (c) 2.942 volts, quasi
periodic with combination frequency components. (d) 3.016 volts, onset of 
chaos. (e) 3.033 volts, chaotic. (0 3.058 volts, more chaotic; the fractal di
mension of this attractor, d = 2.7, is measured in figure 3. 
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As Yo in increased further, we observe a series of frequency lockingslo, 
i.e., (ftlf2) .. rational number, until the onset of chaos is reached, indicated by 
a slight broadening of the spectral peaks [figure 1 (d)j. As Yo is increased 
further, the e-h plasma exhibits increasingly turbulent behavior [figures I(e) 
and (f)j. This is followed by a return to quasiperiodicity at Yo = 3.125 volts 
and, subsequently, simple periodicity at Yo = 3.442 volts. 

Figure I also shows a sequence of return maps, topologically equivalent 
to Poincare sections. II Periodic motion corresponds to a closed 1-
dimensional orbit in phase space; the Poincare section in this case is simply a 
point [figure I (a)j. Similarly, when the system is quasiperiodic, corresponding 
to motion on a 2-dimensional torus, the Poincare section is approximately a 
circle [figures l(b) and (c)j. However, as the system becomes chaotic, we find 
that the Poincare section begins to wrinkle and to occupy an extended region. 
This does not necessarily imply that the behavior is stochastic, but rather that 
the dimension of the strange attractor (which is one greater than the dimen
sion of the Poincare section) is too large to be determined by visual inspection 
of the Poincare section. For these attractors the fractal dimension must be 
calculated quantitatively. 

The fractal dimension is a measure of the number of "active" degrees of 
freedom needed to characterize the evolution of a system. If this evolution is 
described by trajectories in Gl G-dimensional phase space, then the fractal 
dimension dF is defined as follows:3 

. log M(o) 
dF = ~ log (1/0) (1) 

where the phase space has been partitioned into cubes of volume 0° and M(o) 
is the number of these cubes visited by the attractor. 12 This measure is 
known variously as the capacity, Hausdorff dimension, and fractal dimension. 
Other, alternative, dimensions which characterize strange attractors have also 
been devised. These include the information dimension dJ, 3 and the correla
tion dimension dc. \3 It has been proven 14 that generally dF > dl > dc. 
However, in most cases where these dimensions have been calculated, all 
three have yielded almost identical results. \3.15.16.17 

Equation (1) assumes an attractor contained within a G-dimensional 
phase space. The coordinates of the phase space may be any set of variables 
which, when taken together, uniquely identify the state of the system. For our 
experiments, these variables could be the plasma density and momentum 
measured at many different points within the crystal (provided of course that 
the number of independent probes G were greater than the fractal dimension 
d). Experimentally, this method of characterizing the system is difficult to 
realize. It is not always feasible to have an arbitrary number of probes for a 
given system and, further, it is not known how many probes will be required. 
One cannot know this until the fractal dimension dF has already been 
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determined. 

Fortunately, there is a method of reconstructing phase space from a sin
gle dynamical variable using a technique based on the embedding 
theorem. I,ll.IS,18 If {VI(t), V2(t), ... , Va(t)} is a phase space constructed from 
G independent ·variables, then the reconstructed phase space 
{VI(t), VI(t+T), ... ,VI(t+(D-l}r)} is conjectured to be topologically 
equivalent to the original phase space, for almost all T, provided D > 2G+ I. 18 

Attractors in both the original and reconstructed phase spaces will be charac
terized by the same Lyapunov exponents and fractal dimensions. In our 
experiments, we use a reconstructed phase space derived from the measured 
current l(t). The coordinates of our phase space are thus 
{I(t), I(t + 1'), • ~ • ,I(t+(D-l}r)}. where, typically, 5 ~ < T < 15~; we find 
that the calculated fractal dimensions are independent of 1'. In practice, one 
calculates the fractal dimension d for increasing embedding dimension D until 
d converges with respect to D. 

Calculations of fractal dimensions using the box-counting algorithm of 
Eq. (1) tend to be computationally inefficient. 19 Large regions of phase space 
are visited only rarely. Thus large numbers of data points and, consequently, 
large amounts of computer time are often required. Calculations on systems 
with d==3 can requ.:re more than a million data points. However, it is possi
ble to calculate the "pointwise" fractal dimension2o (which is conjecturedl to 
be equal to the information dimension) using the following, more efficient 
algorithm.21 A D-dimensional phase space is reconstructed from a single 
dynamical variable. Next one computes the number of points on an attractor, 
N(E), which are contained within a D-dimensional hypershpere of radius E cen
tered on a randomly selected point on the attractor. One expects scaling of 
the form: 

(2) 

where d is the fractal dimension of the attractor. Thus a plot of 10gN(E) vs. 
lOgE is expected to have slope d (for sufficiently small E). This procedure is 
carried out for consecutive values of D == 2,3,4, ... , until the slope has con
verged. This is done to insure that the embedding dimension chosen is suffi
ciently large (imponant if the dimension of the phase space is not known) and 
to discriminate against high dimensional stochastic noise, not of known deter
ministic origin. 

A comparison of equations (I) and (2) illustrates the difference between 
the fractal and pointwise dimensions. The calculation of the fractal dimen
sion involves determining the fraction of phase space occupied by the entire 
attractor. On the other hand, the pointwise dimension is defined as the scal
ing of N(E) with E, for N(E) centered around a single point on the attractor. 
The conjecture that the pointwise dimension is equal to the information 
dimension (which, like the fractal dimension, is measured globally over the 
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attractor3) implies that the scaling laws which govern the fractal structure are 
constant throughout the attractor. It is therefore sufficient to determine the 
scaling exponent at a single point on the attractor. We note that the point
wise dimension is conjectured to be equal to the information dimension, not 
the fractal dimension, but, as mentioned earlier, the two are found to be 
experimentally indistinguishable. 

We have computed the pointwise dimension d for our plasma instabili
ties at various points along the quasiperiodic transition to chaos described 
above. For each of eleven values of Yo between 2.865 volts and 3.125 volts 
(Bo .... 11.15 kGauss) we recorded N (~98000) successive values of the 
current at 5 jlS intervals [i.e., In = l(t+n1"), n = 1, ... ,98000; 1" = 5 ,",sl. From 
each data set {II, ... ,IN} we constructed N - D + 1 vectors 
Gn == (In, In+h .•. In-o+l) in a D-dimensional phase space. In principle, one 
should be able to calculate the fractal dimension with Eq. (2) using data cen
tered around a single point on the attractor Gn; that is, calculations of N(E) 
centered around different vectors Gj should all yield the same value of d. 
Experimentally this is not actually observed, as discussed below. 

For Yo - 3.058 volts we constructed plots of 10gN(E) vs. lOgE for N(E) 
centered on 27 randomly selected vectors Gj • The slopes of these 27 plots 
comprise 27 measurements of the fractal dimension d. A histogram of these 
values of d is shown in figure 2(a); the result is a distribution centered 
around d - 2.4 - 2.6. However, a careful examination of the 27 plots of 
10gN(E) vs. lOgE indicates that several of these plots yield unreliable values of 
d, for reasons discussed below. Upon elimination of these suspect points, the 
width of the histogram narrows appreciably, as shown in figure 2(b). For an 
experimental system, there are at least three conditions under which one will 
not expect scaling of the form of Eq. (2) for N(E) centered around certain ran
dom points on the attractor. 

First, the random point may be situated in a region of the attractor 
which is visited only rarely. Thus, even with a large number of data points 
there are not enough nearby data points to resolve the fractal structure' and 
thus to observe the scaling of Eq. (2). In such a case, the plot of logN(E) vs. 
logE will have a gradually increasing slope for small E, in contrast with the 
break to a steeper, non-convergent slope for small E that is expected for 
chaotic systems in the presence of thermal noise.22 This break is expected 
because the dynamics of aU physical systems are characterized by thermal 
(stochastic) processes at energies below -kT; these processes are character
ized by fractal dimensions on the order of the number of particles in the sys
tem.23 We eliminate all plots which do not show the physically expected 
break to steeper slope for small E. 

A second difficulty arises when N(E) is centered m a region of the 
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Fig. 2. Histogram of fractal dimension calculations for Yo == 3.058 volts and 
Bo == 11.15 kGauss [same operating conditions as in figure 1 (f)I. (a) The frac
tal dimension is calculated 27 times by observing the scaling of N(E) [equation 
(2)1 around 27 randomly chosen points in reconstructed phase space. The 
vertical axis refers to the number of these calculations for which the fractal di
mension d is found to be in each of the ranges specified on the horizontal 
axis. The distribution is centered around d = 2.4 - 2.6. (b) The same distri
bution as (a), except that those calculations yielding unphysical results (see 
text) have been removed. The distribution is still centered at d == 2.4 - 2.6, 
but it has narrowed appreciably. 

attractor where the length scales over which the structure is fractal are com
parable to or less than those corresponding to thermal fluctuations (- kT). In 
these cases the fractal structure may be "washed out" by thermal noise, result
ing in a plot of 10gN(E) vs. lOgE which does not have a well defined (conver
gent) slope. We discard these plots as well. 

Finally, if a hypershpere N(E) is centered on the attractor in a region of 
high lacunarity,24 the resulting plot of 10gN(E) vs. logE will not have a well 
defined slope. 
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By rejecting those plots of 10gN(E) vs. lOgE which do not exhibit physi
cally reasonable characteristics (i.e., a well defined slope and a break to 
steeper slope for small E), we obtain a much sharper distribution of values for 
the fractal dimension ~s seen in figure 2(b). However, when we plot 
10gN(E) vs. logE, where N(E) is the average over many hyperspheres, we find 
that this average slope is unchanged (± 5%) by the rejection of the unphysical 
plots. This was found to be true for several cases. Thus, in most instances 
we simply plot 10gN(E) vs. logE for N(E) averaged over many randomly chosen 
hyperspheres. (This same procedure has also been utilized in studies of free 
surface modes of a vertically forced fluid layerS and Couette-Taylor flows. IS ) 

Figure 3(a) shows our results for Vo a 3.058 volts with the embedding dimen
sion D == 2,4,6, and 8; for D ~ 6 the slope (and thus the fractal dimension) 
has converged to 2.7. The fractal dimension for all the states shown in figure 
1, as well as several states not shown, are plotted in figure 3(b). 
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Fig. 3. (a) Plots of 10gN(E) vs. lOgE used to detennine the fractal dimension d 
of the chaotic attractor at Vo = 3.058 volts, Bo - 11.15 kGauss. using method 
discussed in text and Eq. (2) [averaged over 25 randomly chosen points in 
reconstructed phase spacej. Embedding dimension D ... 2, 4, 6 and 8 
correspond, respectively, to symbols ., x, 0 and +; for 0 ~ 6, the slope con
verges to d .. 2.7. (b) Dependence of measured dimension d on applied vol
tage V 0- So - 11.15 kGauss. Values d ... 1 and d = 2 correspond to periodic 
and quasiperiodic orbits, respectively. All calculations were checked for con
vergence with respect to embedding dimension D and number of data points 
sampled N. All values of d represent an average over 25 randomly selected 
points in reconstructed phase space. 
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Within the chaotic regime, the fractal dimension of the attractor varies 
between 2 and 3. This demonstrates that the observed plasma turbulence 
shown in figures l(d}-(f) may be described with only a few degrees of freedom; 
the behavior of the system remains largely deterministic. If the observed tur
bulence were due to thermal or stochastic processes, then a measurement of 
the fractal dimension d would not have converged for small embedding 
dimension D. The dimension of the attractor d could then have been on the 
order of the number of conduction electrons and holes in the crystal23 

(::::::101~. 

4. Transitions to "Strong" Turbulence 

With sufficiently large applied electric and magnetic fields, we find that we 
can drive the plasma into a turbulent state from which it will not become 
periodic again as Vo is increased further. Instead, all of the frequency peaks 
in the power spectrum merge into a single, broad, noiselike band. We classify 

. this as a transition to "strong" turbulence. Such a transition is shown in fig
ure 4. At Vo'" I 0.4 volts, l(t) is simply periodic at fo == 321 kHz, with higher 
harmonics present as well [figure 4(a)j. At Vo == 11.6 volts, I(t) is quasi
periodic and at Vo'" 12.1 volts (not shown), the onset of broadband "noise" 
can be observed. At Vo = 13.8 volts [figure 4(b)j, only a few of the peaks can 
be seen above the noise, and when Vo = 21.8 volts [figure 4(c)j, only a very 
broad peak remains. 

We find that this transition to strong turbulence is characterized by a 
partial loss of spatial coherence. In the right hand column of figure 4, we plot 
the voltage traces across two pairs of probe contacts which are separated by 
r"'"' 4 mm, for Vo z= 10.4, 13.8, and 21.8 volts. In the periodic case, the wave 
is spatially coherent with a wavelength of approximately 8 mm (i.e., a 4 mm 
separation corresponds to a 1800 phase shift). At Vo == 13.8 volts we are just 
beyond the onset of the break-up of spatial order - the basic oscillatory pat
tern and the 1800 phase shift are approximately maintained between the two 
traces, but changes in the shapes and spacings of the peaks can also be 
observed. For Yo == 21.8 volts, the wavelike structure of the traces, as well as 
the readily observable spatial correlation, is no longer present. 

We would like to determine whether this breakup of spatial order can be 
characterized by chaotic dynamics: Do the spatially uncorrelated states still 
correspond to motion in phase space along a low-dimensional strange attrac
tor? We have as yet been unable to answer this question definitively. Just 
prior to the breakup of spatial coherence, Yo = 12.1 volts, the total current l(t) 
of the system is characterized by a low-dimensional attractor, measurements 
of the fractal dimension yield d = 2.5 [figure 5(a)/. However, just after the 
onset of spatial disordering, Yo = 12.9 volts, the fractal dimension has 
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Fig. 4. Left, measured power spectra of l(t); right, measured voltages for two 
pairs of probe contacts separated by r = 4 mm: V3(t) and V7(t) correspond to 
probe pairs located 3 and 7 mm away from the p + contact, respectively. 
130 = IUS kGauss. (a) Vo == 10.4 volts, periodic at fo =- 321 kHz. At 
Vo == 12.1 volts (not shown) temporal chaos has set in, with measured fractal 
dimension d::::::: 2.S, figure S(a). (b) Vo == 13.8 volts, power spectrum has 
broad base and peaks; comparison of V 3(t) and V 7(t) shows beginning of spa
tial incoherence; measured fractal dimension d> 8. (c) Vo == 21.8 volts, 
power spectra very broad, more marked loss of spatial coherence, measured 
fractal dimension d > 8. 

increased to the point where we cannot calculate its value - we can only set a 
lower limit: d ~ 8. This is shown in figure S(b) where the slope has not con
verged with respect to either embedding dimension D or number of data 
points N. Figure S(b) was taken with N == 884000 and required SO hours of 
CPU time on a Sun microcomputer. For V 0 == 21.8 volts, N =0 884000 points 
and embedding dimension D =- 18, the slope is 14 and has definitely not con
verged . 

For our fractal dimension plots of figure S we note that the curves 
become horizontal (saturate) for (i) E> Et. a hypershpere large enough to 
include all points on the attractor and for (ii) E < E2, a hypersphere so small 
that only the single point at its center is within it. This behavior is to be 
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Fig. 5. Plots of 10gN(E) vs. lOgE used to determine fractal dimension d at 
Bo = 11.15 kGauss. (a) Yo = 12.1 volts, N == 490000 data points; the sym
bols 0 and ~ refer to embedding dimensions 0 of 4 and 8, respectively. 
Slopes have converged to 2.5 with respect to both 0 and N. (b) Yo = 12.9 
volts, N =- 884000; \1, 0, 0, and ~ refer to 0 - 6, 10, 14 and 18, respective
ly. Slopes have not converged with respect to either 0 or N. For 0 - 18 
slope is 8.7. 

expected for all fractal dimension plots, provided E is varied sufficiently; it is 
important to do this to ensure that all experimental data are examined. 

Calculations based on time series taken across different pairs of probe 
contacts Vi(t) yield the same fractal dimensions d as those based on total 
current I(t), for both spatially coherent and incoherent states. Further, we 
find that for fixed values of our applied fields, the power spectrum measured 
across a pair of probe contacts 1 Yi(w) 12 is essentially identical to the power 
spectrum of the total current 1 I(w) 12. This suggests that the spatial incoher
ence may be due to the dispersive nature of the e-h plasma. 

This difficulty in calculating large fractal dimensions is a problem 
incurred with very chaotic systems. The number of data points required for 
convergence increases exponentially with the fractal dimension of the sys
tem. 19,26 At present, although we know that our system experiences a large 
jump in dimensionality at the onset of spatial incoherence, we have not yet 
determined whether this onset is characterized by chaotic dynamics of an 
attractor of fractal dimension may orders of magnitude smaller than the 
number of degrees of freedom of the particles in the system (- I Ol~. Other 
approaches for quantitatively characterizing very chaotic states (say, d> 10) 
will need to. be developed before this intriguing question can be answered. 
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