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ABSTRACT 

Accurate electricity demand forecasts that account for impacts of extreme weather events are needed to 

inform electric grid operation and utility resource planning, as well as to enhance energy security and grid 

resilience. Three common data-driven models are used to predict city-scale daily electricity usage: linear 

regression models, machine learning models for time series data, and machine learning models for tabular 

data. In this study, we developed and compared seven data-driven models: (1) five-parameter change-point 

model, (2) Heating/Cooling Degree Hour model, (3) time series decomposed model implemented by 

Facebook Prophet, (4) Gradient Boosting Machine implemented by Microsoft lightGBM, and (5) three 

widely-used machine learning models (Random Forest, Support Vector Machine, Neural Network). Seven 

models are applied to the city-scale electricity usage data for three metropolitan areas in the United States: 

Sacramento, Los Angeles, and New York. Results show seven models can predict the metropolitan area’s 

daily electricity use, with a coefficient of variation of the root mean square error (CVRMSE) less than 10%. 

The lightGBM provides the most accurate results, with CVRMSE on the test dataset of 6.5% for Los Angeles, 

4.6% for Sacramento, and 4.1% for the New York metropolitan area. These models are further applied to 

explore how extreme weather events (e.g., heat waves) and unexpected public health events (e.g., COVID-

19 pandemic) influence each city’s electricity demand. Results show weather-sensitive component accounts 

for 30%–50% of the total daily electricity usage. Every degree Celsius ambient temperature increase in 

summer leads to about 5% (4.7% in Los Angeles, 6.2% in Sacramento, and 5.1% in New York) more daily 

electricity usage compared with the base load in the three metropolitan areas. The COVID-19 pandemic 

reduced city-scale electricity demand: compared with the pre-pandemic same months in 2019, daily 

electricity usage during the 2020 pandemic decreased by 10% in April and started to rebound in summer. 

KEYWORDS: City-scale electricity usage, Decomposed time-series modeling, Gradient Boosting Trees, 

temperature-sensitive energy demand; Machine Learning prediction 

1. INTRODUCTION 

1.1 Background 

City-scale electricity demand prediction can be used to assist in power generation resource planning, energy 

efficiency program evaluation, greenhouse gas emissions tracking, grid infrastructure analysis, and analysis 

of reserve requirements. Therefore, understanding building energy use at the city scale is a critical 

component of advancing urban sustainability, carbon reduction, and energy efficiency across the globe [1]. 

City-scale electricity usage is temperature sensitive. Ambient temperature, along with factors such as 

population and income, is a key driver of city-scale energy usage [2], because heating and cooling buildings 

is a major energy use in cities [3], and that is highly dependent on the outdoor air temperature. Temperature-

sensitive city-scale electricity consumption analysis is becoming an important topic under the context of 

climate change, which is leading to more frequent, more severe, and longer extreme weather events such as 

heat waves. To develop effective climate change solutions, researchers, energy planners, and policy makers 



need to pay attention to climate change adaptation [4]. Similarly, these stakeholders need to understand how 

the electricity generation and transmission infrastructure should be better prepared for high demand events, 

to enhance energy security and resilience as part of climate change adaptation.  

Hou et al. (2014) studied how the increasing ambient temperature influenced the electricity consumption in 

Shanghai. They argued that the projected temperature increase implies an increasing electricity demand in 

summer and a decreasing demand in winter if the current energy consumption pattern does not change [5]. 

Similarly, it was estimated in California that the atmospheric warming and the associated peak demand 

increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional 

transmission capacity by 2099 [6]. In August 2020, a heat wave in California led to a power supply shortage 

due to a surge of air-conditioning use, and California’s residents experienced rotating power outages. When 

policy makers reflected on this disruptive event, the first going-forward action mentioned in the Response 

Letter was to refine the electricity demand forecast by accounting for climate change, capturing extreme 

weather events and associated load impacts [7]. 

In addition to the ambient weather condition, city-scale electricity usage can also be influenced by other 

factors such as unexpected public health events. Studies conducted in Brazil found the COVID-19 pandemic 

has influenced Brazilian’s electricity consumption patterns, and as a result, the electricity consumption in 

Brazil was reduced by 7%-20%, depending on the local economic structure: industry-dominated area was 

less affected [8]. Another study conducted in Europe found the strictness and intensiveness of lockdown 

measures influenced the society’s electricity consumption. For countries with severe restrictions such as 

Spain and Italy, the electricity usage profiles during the pandemic are similar to the pre-pandemic weekend 

profiles for the same period in 2019; while for countries with less restrictive measures such as Sweden, the 

decrease in power consumption was lower [9]. Electricity consumption can be used as a real-time indicator 

of the economic effects of the lockdown. It was found that the overall electricity use decrease in Switzerland 

was 4.6%, while a reduction of 14.3% was observed in the Canton of Ticino where stricter curtailment 

measures were implemented on top of federal regulations [10]. 

There are two general approaches to model city-level energy usage: top-down methods and bottom-up 

methods [11]. Top-down models treat the city-level energy consumption at the macro scale, ignoring details 

of individual end uses [12]. The top-down approach is usually employed to extract the relationships between 

energy usage and macroeconomic and demographic factors [13]. The bottom-up approach develops 

simulation models for individual units and then aggregates those units to calculate the macro level energy 

usage [14]. As there can be millions of end users at the city scale; the simulation unit is not necessary to be 

individual end user, instead, it can be a cluster/group of end users with similar characteristics or patterns.  

It is difficult, if not impossible, to develop a physics-based model at the macro level (e.g., because it requires 

a large amount of input data with high uncertainty to establish a physics-based model), so top-down modeling 

usually uses data-driven approaches. Conversely, the bottom-up approach has the flexibility to develop either 

a physics-based model or a data-driven model. Wang et al. (2015) developed a physics-based bottom-up 

model to estimate the state level heating energy consumption in China [15]. Kontokosta and Tull (2017) 

developed a data-driven bottom-up model to predict the city-scale building energy consumption in New York 

[1]. The bottom-up approach allows city-scale building retrofit analysis covering individual buildings with 

their varying characteristics and baseline performance—an approach that cannot be conducted using top-

down statistical-based methods [16]. It is difficult to say whether the top-down approach or the bottom-up 

approach is better, as both methods have strengths and weaknesses [17]. Which approach is more suitable 



depends on the application and objective of the modeling (i.e., fit-for-purpose). 

1.2 Objectives 

City-scale electricity prediction has wide applications, and we found many studies on this topic. However, a 

major research gap we identified after reviewing existing studies is: different approaches have been proposed 

but none of the studies provide open source data, model or code for public inspection or reuse. Therefore, 

there is a lack of summary and comparison between those methods, especially between the conventional 

linear regression approach and the emerging machine learning algorithms. 

In this study, we applied the top-down data-driven approach to predict the daily electricity consumption at 

the city scale. The contributions of this paper are twofold: 

 First, we explored three different approaches to predict city-level1 daily energy consumption: linear 

regression models, machine learning models for time-series data, and machine learning model for 

non-time-series data. We tested and compared these approaches with electricity data from three U.S. 

metropolitan areas: Los Angeles, Sacramento, and New York. We open sourced all the data and all 

the codes at Github, https://github.com/LBNL-ETA/City-Scale-Electricity-Use-Prediction, which 

enables other researchers to test and compare their models against ours. 

 Second, we used the models to study both the impacts of extreme heat waves and the unexpected 

public health event of the 2020 COVID-19 pandemic on city-scale daily electricity demand. These 

results provide quantitative daily electricity usage and peak demand prediction to inform energy 

planning and policy making for utilities and state or local government. 

The remainder of this paper is organized as follows. Section 2 introduces the three modeling approaches and 

how our work is built upon and different from existing studies. The data used in this study and model 

prediction results are presented in Section 3. Section 4 first compares the seven models in terms of accuracy 

and complexity to implement; and then applies the best performing models to explore how heat waves and 

COVID-19 influenced the city-level energy consumption. The implication and limitations of this study are 

discussed in Section 5 before we conclude in Section 6. 

2. METHODOLOGY 

In this section, we review the existing city-level electricity usage models and then introduce the models we 

developed. The workflow of this study is shown in Figure 1. We developed seven data-driven models to 

predict the daily electricity use at city scale. These models belong to three different modeling approaches: 

linear model, machine learning model for time-series data, and machine learning model for tabular data. Due 

to the simplicity and interoperability, we first developed two linear models: ASHRAE’s Five-Parameter 

piecewise linear regression model and Heating Cooling Degree Hour model. In terms of the Machine 

Learning model, we first developed three conventional models as baselines: Random Forest (RF), Support 

Vector Machine (SVM), and Artificial Neural Network (NN). Additionally, two machine learning models - 

Generalized Additive Model (GAM) and Gradient Boosting Machine (GBM), which have rarely been used 

in city-scale building energy prediction – were developed and compared. GAM and GBM models the 

electricity consumption data in distinct way. GAM models the electricity usage as time series data while 

GBM models the electricity usage as tabular data. The key difference between time series modeling and 

tabular data modeling is how the temporal information is encoded. Since electricity usage has clear weekly 

                                                        
1 City-level in this study refers to the electricity consumed by the city and its surrounding areas.  



and yearly cycles, it is a natural idea to use time series modeling to predict electricity usage. The time series 

model treats the electricity use as time series data, representing temporal information using an evolving index. 

The three baseline machine learning models (RF, SVM, NN) process the electricity usage as tabular data. In 

this case, the weekly and yearly cycles need to be captured by adding extra features, such as the day of week 

and month of year. Tabular data model adopts a different approach to encode temporal information, i.e., 

representing the temporal information using extra features (such as day of year, hour of day). In other words, 

in time series models, the sequence of data cannot be changed because the data sequence contains temporal 

information which is useful for prediction. However, in tabular data models, the data sequence can be 

shuffled because the temporal information was captured by the extra features.  

The time-series model and the tabular data model are compared with the baseline – the linear models and 

baseline machine learning models. The best performing models were selected to answer two practical 

questions: 1) how the city-scale daily electricity use would be influenced by the ambient air temperature, 

especially in a heat wave event; 2) how the city-scale daily electricity use would be influenced by unexpected 

public health events, in this case the COVID-19 pandemic. 

 

Figure 1: Overall workflow 

In this study, we are predicting city-scale daily electricity use which includes electricity use for buildings, 

transportation (e.g., electric vehicles, public electric buses/trains), industry, and other public services inside 

the city and the neighboring rural areas.  

2.1 Linear models 

Linear models use a linear relationship to regress the observation and the independent variables. The strength 

of linear models lies in their simplicity and interoperability. Therefore, linear models are frequently used in 

city-level energy modeling. For instance, Lindsey et al. (2011) developed a linear model to predict the city-

level transportation energy usage and greenhouse gas emission in Chicago [18]. Kuusela et al. (2015) 

developed a multi-variable linear regression model to predict the neighborhood scale energy consumption 

[19]. Actually, even for a relatively complicated energy system, such as a large-scale ground source heat 

pump, linear models can deliver decent prediction performance [20]. 

A major reason why linear models are widely used is their interoperability. The regressed coefficients (slopes 

and intercept) have clear implications that modelers can use to validate and explain their models. Linear 



models might be less accurate, as they fail to capture non-linear relationships that are common in the real 

world [21]. However, the simplicity and understandability of linear models makes them a good choice as the 

baseline model for benchmarking against more complicated non-linear models. 

In this study, we developed two linear models to predict the temperature-sensitive electricity usage in city-

scale. The first linear model is ASHRAE’s change-point model, which was originally proposed by ASHRAE 

in the 1990s[22]. As shown in Figure 2 and Equation 1, the change point model uses five parameters (𝛽𝑏𝑎𝑠𝑒, 

𝑇ℎ, 𝑇𝑐, 𝛽ℎ , 𝛽𝑐) to characterize the relation between energy usage and ambient temperature. 𝛽𝑏𝑎𝑠𝑒 is the 

base load. When the outdoor temperature is in the range of [𝑇ℎ, 𝑇𝑐], the energy usage is the lowest, and that 

is referred to as the base load. When the outdoor temperature is lower than the heating change point 𝑇ℎ, city-

level energy usage increases as heating demand increases in response to the temperature decreasing. 

Conversely, when the outdoor temperature is higher than the cooling change point 𝑇𝑐, city-level energy 

usage also increases as cooling demand increases with higher temperature. The slope on the cooling (𝛽𝑐) and 

heating (𝛽ℎ) sides characterize how sensitive the city-level load is related to the temperature change. Since 

we are interested in electricity consumption only, the 𝛽ℎ would be smaller than 𝛽𝑐, because many buildings 

use natural gas for heating while the majority of air conditioned buildings use electricity for cooling. 

ASHRAE’s five-parameter change point model has been widely used to predict building-level energy 

consumption [23], [24], and to benchmark building energy performance [25]. In this study, we applied the 

five-parameter change point (5-p) model to predict city-level energy usage. 

 

Figure 2: ASHRAE’s change point model 

𝑙𝑜𝑎𝑑(𝑇) =  {

𝛽𝑏𝑎𝑠𝑒 + 𝛽ℎ × (𝑇ℎ − 𝑇), 𝑖𝑓     𝑇 < 𝑇ℎ  
𝛽𝑏𝑎𝑠𝑒                  , 𝑖𝑓 𝑇ℎ < 𝑇 < 𝑇𝐶

𝛽𝑏𝑎𝑠𝑒 + 𝛽𝑐 × (𝑇 − 𝑇𝑐), 𝑖𝑓 𝑇𝐶 < 𝑇     
   (Equation 1) 

The second linear model we used is the Heating/Cooling Degree Hour (HCDH) model. Heating/Cooling 

Degree Hour method is one of the most well-known methods used in the heating, ventilating and air-

conditioning (HVAC) industry to estimate heating and cooling energy requirements [26]. Because of its 

significance in this field, the heating and cooling degree day was used to determine the U.S. climate zone, 

and has been widely used as a proxy variable to quantify the influence of climate change on electricity 

demand [27]. As shown in Equation 2, heating degree hour (HDH) and cooling degree hour (CDH) are 

calculated as the accumulative sum of the difference between the ambient temperature and the heating (𝑇𝑏ℎ) 

cooling (𝑇𝑏𝑐 ) base temperatures. Once the outdoor temperature is below 𝑇𝑏ℎ , heating is likely to be 

triggered. The cumulative sum of the difference between the outdoor and the base temperature 𝑇𝑏ℎ − 𝑇𝑖 is 

a good indicator of how much heating is needed. Heating and cooling degree hours are widely used to 

Base load
𝛽𝑏𝑎𝑠𝑒

𝑇𝑐𝑇ℎ

Load

Temperature



estimate building energy demand [28], to determine the building thermal insulation [29], and for other 

purposes. In this study, we regressed the daily city-level energy usage as a linear function of the HDH and 

CDH. 

𝐻𝐷𝐻 =  ∑ max(0, (𝑇𝑏ℎ − 𝑇𝑖))

24

𝑖=1

 

𝐶𝐷𝐻 =  ∑ max (0, (𝑇𝑖 − 𝑇𝑏𝑐))

24

𝑖=1

  

𝑙𝑜𝑎𝑑(𝑇) = 𝛽0 + 𝛽1 × 𝐻𝐷𝐻 + 𝛽2 × 𝐶𝐷𝐻                (Equation 2) 

 

A common problem of developing either the five-parameter or HCDH model is the need to carefully select 

the change temperature (𝑇ℎ , 𝑇𝑐  in the five-parameter model) and the base temperature (𝑇𝑏ℎ , 𝑇𝑏𝑐  in the 

HCDH model) [30]. In this study, we selected those temperatures based on which sets of change or base 

temperature could deliver the most accurate linear model. We used the scipy.optimize.curve_fit function [31] 

to determine the best change temperatures for the five-parameter model, and a brute force search to select 

the best base temperatures for the HCDH model. The workflow, input variables, intermediate variables, 

packages and algorithms used to develop the two linear models are illustrated in Figure 3.  



 

Figure 3: Workflow to develop the linear models: top for Five-Parameter Change Point model, bottom for 

Heating and Cooling Degree Hour model 

 

2.2 Machine learning model for time-series data 

The Autoregressive Integrated Moving Average (ARIMA) is the oldest time-series modeling technique [32]. 

ARIMA predicts a time-series variable 𝑦𝑡  with its own lagged values ( 𝑦𝑡−1, 𝑦𝑡−2, … ) and previous 

prediction error (𝜀𝑡−1, 𝜀𝑡−2, …), where 𝜀𝑖 = 𝑦𝑖̂−𝑦𝑖, and 𝑦𝑖̂ is the prediction of the true value 𝑦𝑖. ARIMA 

has been widely used in our field; for instance, to predict the natural gas demand in Turkey [33] and the 

electricity demand in Lebanon [34]. Pappas et al. (2008) used Akaike’s Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) to decide the order of the ARIMA model and to validate electricity 

demand load forecasting models [35]. ARIMA also has been applied together with other techniques such as 

wavelet transform to enhance its prediction accuracy [36]. Another mainstream type of machine learning 

model for time series data is the Recurrent Neural Network (RNN) and its variation—Long Short Term 

Memory (LSTM). RNN and LSTM take a different approach to encode the time dependency: inputting a 

state from previous time step 𝑠𝑡−1 to the neural network to predict 𝑦𝑡. The state 𝑠𝑡−1 is a function of 𝑦𝑡−1, 

approximated by another neural network. With the recent advancement in deep learning algorithms and 



computational power, a neural network based approach has been used extensively to predict energy usage. 

Suganthi and Samuel’s literature review paper found more than 40 papers using neural network based 

approach for short, medium, and long term load forecasts [37]. In recent publications on this topic, Rahman 

et al. (2019) used RNN to predict the electricity consumption for commercial and residential buildings [38] 

and Wang et al. (2019) used LSTM to predict district-level energy demand [39]. There are some existing 

studies to compare the two time-series data modeling approaches—ARIMA and RNN/LSTM. For instance, 

Wang et al. (2019) compared ARIMA and LSTM in terms of building load forecast and found LSTM 

outperformed ARIMA, as LSTM is more capable of capturing non-linear relations between time series data 

and exogenous variables [40]. 

In this paper, we explore a new time-series modeling approach to predict city-level electricity usage— 

ARIMA and RNN. We used a decomposed time series model with three major components: exogenous 

variables, trend, and seasonality (weekly and yearly), as shown in Equation 3. 𝑓(𝑇𝑒𝑚𝑝𝑡) is a linear function 

of heating and cooling degree hours; 𝑔(𝑡) models the trend function, which models non-periodic changes 

in the value of the time series; and 𝑠(𝑡) models the periodic changes, yearly and weekly seasonality in this 

case. We used Facebook’s open-source software Prophet [41] to implement this decomposed time series 

model. For more details of Prophet’s implementation, please refer to the paper [42].  

𝑙𝑜𝑎𝑑𝑡 = 𝑓(𝑇𝑒𝑚𝑝𝑡) + 𝑔(𝑡) + 𝑠(𝑡) + 𝜀𝑡                      Equation 3 

We selected the decomposed time-series model for two reasons. First, it has been applied to predict the 

temperature [43], financial markets [44], and COVID-19 daily cases in Bangladesh [45]. Second, the 

decomposed model can decouple the effects of different factors (such as weather-related temperature-

dependent load and seasonal time-dependent periodical load), and accordingly provide us a unique 

opportunity to observe the “pure” effect of an unexpected public health event on city-level demand. To the 

best of the authors’ knowledge, this is the first time it was applied to predict city-level energy consumption. 

The strength of this decomposed time series model is that it can separate the variation of time series data 

into different components, and each component has clear implications. The temperature-sensitive load 

𝑓(𝑇𝑒𝑚𝑝𝑡) is usually related to HVAC use, which accordingly is a function of temperature. The periodic 

load 𝑠(𝑡) captures the load variation as a function of time, for instance the influence of holiday season on 

city-level electricity usage. The non-periodic load 𝑔(𝑡)  reflects the remaining variation of load, which 

could be due to short term reasons (such as the COVID-19 pandemic) or long term trends (such as the 

improving building thermal properties and equipment energy efficiency). The decomposition results could 

inform the amplitude of each component and identify the dominant driving factors. 

The workflow to develop a time-series decomposed model is presented in Figure 4. It is worth pointing out 

that the intermediate variable used to develop the time series decomposed model is the daily heating and 

cooling degree hour, rather than the daily mean temperature. Because the 𝑓(𝑇𝑒𝑚𝑝𝑡)  term in the 

decomposed model is a monotonous function, to be more specific, a linear function. As the relation between 

the city-scale daily electricity use and the ambient mean temperature is U-shaped (i.e., high electricity use 

when ambient temperature is either low or high). The monotonous function cannot capture the U-shape 

relation. However, the relation between electricity-use and heating cooling degree hour is monotonous. 

Therefore, we use daily heating cooling degree hour as the regressor to the model.  



 

Figure 4: Workflow to develop a time series decomposed model 

2.3 Machine learning model for tabular data (non-time-series data) 

City-level electricity consumption can also be modeled as tabular data. To capture the timing and periodic 

behavior of energy usage, new features need to be added. For instance, to encode the weekly and yearly 

cycles, two new features—day of week, and month of year—need to be added as input variables. 

There are many studies that model time series energy usage data as tabular data. Machine learning algorithms 

for tabular data can be classified into three major categories: neural network based, decision tree based, and 

others. Neural network (NN) based approaches use neural networks to solve regression or classification tasks. 

These techniques are also known as artificial neural network (ANN), feedforward neural network (FNN), or 

multi-layer perception (MLP) in different studies. The strengths of an NN-based approach include that it can 

be parallelized easily, and can be used to solve many different tasks. Fernández et al. (2011) applied an NN-

based approach to predict building load [46]. Decision tree based approaches include Classification and 

Regression Tree (CART), Random Forest (RF), and Gradient Boosting Machine (GBM). RF and GBM are 

ensemble learning techniques, which ensemble multiple decision trees to make predictions. Combining 

multiple trees usually outperforms a single tree in terms of model accuracy and robustness. Tso and Yau 

(2007) applied CART to predict building energy usage in Hong Kong [47]. Roth et al. (2019) developed RF 

and GBM models to predict building energy consumption in New York City [48]. In addition to the NN-

based and decision tree-based approaches, other algorithms for tabular data also are being used for energy 

usage modeling. For instance, Li et al. (2017) used the Support Vector Machine (SVM) approach to predict 

community-level renewable generation [49]. Al-Qahtani and Crone (2013) applied k-Nearest Neighbors to 

predict electricity demand in the United Kingdom [50]. Fonseca and Schlueter (2015) applied k-means to 

predict district-level building energy usage in Zurich [51]. Additionally, Kontokosta and Tull (2017) found 

the best performing machine learning algorithm might depend on the geographical resolution: SVM provides 

the most accurate prediction at the building level while Linear regression model outperforms other methods 

at the zip code-level [52]. 

Four tabular data modeling algorithms are selected in this study: RF, SVM, NN, and GBM. RF, SVM, and 

NN are selected as baseline algorithms and GBM is introduced in greater detail here. In the recently 

organized building load prediction competition (the ASHRAE Great Energy Predictor III competition), all 

the top six teams applied GBM in their final predictors [53]. Additionally, existing studies have confirmed 



that GBM outperforms many other machine learning algorithms. For instance, [54] found GBM outperforms 

Ridge regression, Lasso regression, Elastic Net, Support Vector Machine, Random Forest, vanilla Deep 

Neural Network, and Long Short Term Memory in predicting building loads. In this study, we selected GBM 

as the state-of-art algorithm and as the representative of tabular data modeling approach. 

The workflow to develop a tabular data Gradient Boosting Machine model is illustrated in Figure 5. The first 

step is to use the time index to generate intermediate variables to encode temporal information. There are 

different implementation packages of GBM, and we used Microsoft’s lightGBM [55] as it is well 

documented and easy to use. Hyper-parameter tuning is needed to train a GBM to avoid over-fitting or under-

fitting.    

 

Figure 5: Workflow to develop a time series decomposed model 

 

3. RESULTS 

This section introduces the city-level electricity data we used and the results of the seven models. A more 

complete model evaluation and comparison are presented in Section 5.1. 

3.1 Data 

This study required ambient temperature data and city-level electricity usage data. Ambient temperature data 

were downloaded using the U.S. National Oceanic and Atmospheric Administration (NOAA) FTP API 

(ftp.ncdc.noaa.gov). We downloaded the hourly temperature of Station 722880-23152 for the Los Angeles 

metropolitan area, Station 724830-23232 for Sacramento metropolitan area, and Station 725053-94728 for 

the New York metropolitan area. We selected these three weather stations because they have the least amount 

of missing data compared with nearby weather stations.  

The city-level electricity usage data were downloaded from the U.S. Energy Information Administration 

(EIA). EIA collected and open sourced hourly demand data from all balancing authorities (BAs)2 in the 

United States. For more details about the dataset, please refer to the paper [56] published at Nature Scientific 

Data. We used the data from three BAs: the Los Angeles Department of Water and Power (LADWP), Balance 

Authority of Northern California (BANC), and New York Independent System Operator (NYISO), 

                                                        
2 For the concept of Balancing Authorities, please refer to the website of U.S. Energy Information Administration: 

https://www.eia.gov/todayinenergy/detail.php?id=27152.  

ftp://ftp.ncdc.noaa.gov/
https://www.eia.gov/todayinenergy/detail.php?id=27152


representing the three metropolitan areas of Los Angeles, Sacramento, and New York, respectively. 

According to the ASHRAE climate zone definition [57], the three metropolitan areas belong to climate zone 

3B for Los Angeles and Sacramento, and climate zone 4A for New York. The electricity usage in this study 

refers to the net demand to the electric grid, which is calculated as the net generation (NG) minus total 

interchange (TI) of each BA [58]. Therefore, the city-level electricity consumption includes the electricity 

usage for industry, transportation (e.g., electric vehicles), buildings, and possibly agriculture in the cities and 

neighboring rural areas. For instance, the BANC dataset includes the electricity usage of the Modesto 

Irrigation District nearby. In this paper, we use “LA,” “Sac,” and “NY” as the abbreviations for the three 

balancing authorities. The raw electricity data are plotted in Figure 6. 

 

Figure 6: Hourly electricity usage in the LA, Sac, and NY metropolitan areas 

Figure 7 shows the daily and weekly cycles of the electricity usage between July 2015 and September 2020. 

The daily demand peaks between 5–7 p.m. and bottoms at 3–5 a.m. The peak demand can be as much as 

twice the base load. The partial peak hours last longer in New York, compared with the other two 

metropolitan areas. In terms of the weekly cycle, a clear weekday-weekend pattern can be observed. 



 

Figure 7: Hourly electricity usage (GW) in the LA, Sac, and NY metropolitan areas 

 

Figure 8: Hourly electricity usage in the four seasons: Spring (Mar., Apr., May), Summer (Jun., Jul., Aug.), 

Autumn (Sep., Oct., Nov.), and Winter (Dec., Jan., Feb.) 

Figure 8 plots the hourly electricity usage in four seasons between 2015 and 2020. Summer has a very high 



peak about 6 p.m., while the other three seasons have a relatively smooth load curve. The grid is more 

stressed during hot summer afternoons compared with other seasons. The load difference between working 

and non-working days is lowest during the nighttime, and highest during the peak hours. The Sacramento 

metropolitan area has the largest peak-to-base ratio in summer, while the New York metropolitan area 

experienced the largest difference between working and non-working days. 

These models can be used potentially for higher temporal resolution prediction (e.g., hourly load prediction) 

through adjustment of some hyper-parameters. 

3.2 Linear models 

3.2.1 Five-Parameter Change Point model  

As we observed a clear working day and non-working day difference in Figure 8, we developed the 

five-parameter change point model separately for working and non-working days. The optimal change-point 

temperature was selected by using the scipy.optimize.curve_fit function [31]. The input data points and the 

piecewise linear regression models are plotted in Figure 9 and recorded in Table 1. The simple linear model 

can fit the daily energy consumption well. The R-squared values of all the three areas are above 0.82.  

The regressed patterns are very similar in the Los Angeles and Sacramento metropolitan areas; the heating 

change point is about 14 oC, and the cooling change point is about 18 oC. In the New York metropolitan area, 

the heating change point and cooling change point are very close to each other, and accordingly the horizontal 

portion is very short especially during working days, indicating a short shoulder season in New York. There 

are two possible explanations: first, it could be because New York has a relatively short transition season, 

and second, a higher proportion of buildings in New York have adopted mechanical ventilation systems, 

which require either cooling or heating. Conversely, in the Los Angeles and Sacramento areas, a higher 

proportion of buildings might adopt natural ventilation or use free cooling for longer periods of time. In 

terms of the heating and cooling slopes, 1 oC of ambient temperature increase leads to about 5% more daily 

energy usage compared with the base load: 4.7% in Los Angeles, 6.2% in Sacramento, and 5.1% in New 

York. The heating slope is about one-third of the cooling slope in all three areas. A major reason for this is 

that we only considered electricity usage in this study. Almost every building uses electricity for cooling, 

while a significant number of buildings use other energy resources (such as natural gas or oil) for heating. 



 
Figure 9: Five-parameter change-point model of city-scale daily electricity usage 

 

  



Table 1: Five-parameter change point model results  

  Regression Coefficients Accuracy Metrics 

  Daily 

base 

load 

(GWh) 

Heating 

base 

temp. 

(oC) 

Heating 

slope 

(GWh/oC) 

Cooling 

base 

temp. 

(oC) 

Cooling 

slope 

(GWh/oC) 

RMSE 

(GWh) 

R-

squared 

Los 

Angeles 

Working 

Day 

71.63 13.58 -1.16 18.02 3.40 4.73 0.85 

Non-

working 

Day 

64.6 14.93 -0.73 18.32 3.15 4.65 0.82 

Sacramento Working 

Day 

42.74 13.43 -0.63 17.36 2.62 2.8 0.88 

Non-

working 

Day 

39.45 13.9 -0.66 17.49 2.43 2.82 0.86 

New York Working 

Day 

376.73 17.88 -4.11 17.88 19.81 21 0.87 

Non-

working 

Day 

347.66 16.25 -4.61 18.01 17.86 20.76 0.84 

3.2.2 Heating and Cooling Degree Hour (HCDH) model  

The first question we needed to answer before developing the HCDH model is which base temperatures 

( 𝑇𝑏ℎ   and 𝑇𝑏𝑐 ) should be selected. ASHRAE Standard 90.1 recommended 18 oC as a heating base 

temperature and 10 oC as a cooling base temperature [59]. However, these two temperatures did not provide 

satisfactory accuracy for the Sacramento area, possibly because those base temperatures were selected for 

buildings that do not necessarily apply to the weather-sensitive energy consumption pattern at city scale. 

Therefore, we conducted a brute force search: i.e., testing different combinations of 𝑇𝑏ℎ  and 𝑇𝑏𝑐 to see 

which had the least root mean squared error (RMSE). Figure 10 shows the brute force search results.  



 

Figure 10: Brute force search for the best performing heating and cooling base temperatures: the lighter 

color indicates a smaller prediction error, therefore corresponding to the heating and cooling base 

temperatures that deliver a more accurate prediction 

The regression result for the HCDH model with the best performing heating and cooling base temperatures 

is presented in Figure 11 and Table 2. In Sacramento, a wider range of heating and cooling base temperature 

could deliver a more accurate city-scale electricity use prediction. However, the base temperature needs to 

be carefully selected for Los Angeles and New York. Even though the best performing base temperatures are 

different for these three regions, the heating base temperature between 15 and 19 oC and the cooling base 

temperature between 13 and 19 oC can produce decent predictions. Unlike in the five-parameter model, the 

heating and cooling slopes are all positive values, as higher HDH and CDH always lead to higher electricity 

usage. Conversely, in the five-parameter model, lower temperatures lead to higher heating demand. HCDH 

models for all the three regions are not as accurate as the five-parameter model. We discuss the model 

accuracy in greater detail in Section 5.1. The take-home message is that the five-parameter change model is 

a better linear model, compared with the HCDH model, in terms of city-level electricity modeling. The 

selection of base temperature varies significantly for different cities. ASHRAE’s recommendation is not the 

optimal choice for either of the three metropolitan areas we tested because the ASHRAE recommendation 

was designed for building-scale energy usage but not for city-scale usage, as the latter includes other usage 

such as industry, transport, etc. 



  

Figure 11: Heating and Cooling Degree Hour models with the best performing heating and cooling base 

temperatures 

Table 2: Heating and Cooling Degree Hour model results  

  Regression Coefficients Accuracy 

Metrics 

  Daily 

base 

load 

(GWh) 

Heating 

base 

temp. 

(oC) 

Heating 

slope 

(GWh/hoC) 

Cooling 

base 

temp. 

(oC) 

Cooling 

slope 

(GWh/hoC) 

RMSE 

(GWh) 

R-

squared 

Los 

Angeles 

Working 

Day 

62.56 16 0.08 15 0.13 5.35 0.8 

Non-

working 

Day 

56.21 16 0.08 15 0.12 5.22 0.77 

Sacramento Working 

Day 

42.82 11 0.03 22 0.18 3.34 0.83 

Non-

working 

Day 

39.66 11 0.04 22 0.16 3.27 0.82 

New York Working 

Day 

376.4 15 0.21 18 0.83 21.63 0.86 

Non-

working 

Day 

348.24 14 0.23 18 0.73 20.66 0.84 

3.3 Machine learning model for time-series data 

We selected the decomposed model implemented by Facebook Prophet as the time series modeling approach. 

We used four full years of data, from July 2015 to June 2019. We trained our model with the first three years 



and kept the last year for validation. We did not use 2020 data because the COVID-19 curtailment situation 

biased the electricity usage behavior. We discuss this issue in detail in Section 4.3. As we can observe from 

Figure 12, the decomposed model can capture the general trend of city-scale daily electricity use in all three 

regions. However, the decomposed model tends to underestimate electricity use when the usage is high and 

overestimate the electricity use when the usage is low. This is because Prophet used a Fourier Series to model 

the periodic effects, as shown in Equation 4 [42]. To avoid overfitting, the Fourier Series was usually 

truncated at N=3 for weekly seasonality and at N=10 for yearly seasonality[42]. Truncating the Fourier Series 

is like applying a low-pass filter to the seasonality term. As the result, the predicted electricity is smoothed. 

We can use a larger value of N to mitigate this problem, however at the risk of overfitting.  

 

Figure 12: Predictions from the time-series decomposed model and ground truth. From top to bottom – the 

Los Angeles, Sacramento, and New York metropolitan areas. 

𝑠(𝑡) = ∑ (𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑃
) +𝑁

𝑛=1 𝑎𝑛 sin (
2𝜋𝑛𝑡

𝑃
))                      Equation 4 

The strength of the decomposed model is that we can compare the magnitudes of different influential factors, 

as plotted in Figure 13. For all the three metropolitan areas, the non-periodic trends of electricity usage are 

almost flat, which means, excluding the effects of temperature change and weekly and yearly periodical 

fluctuation, the city-scale daily electricity usage did not change since 2015. A clear weekly cycle of 

electricity usage was observed in all three metropolitan areas: the daily electricity usage during weekdays 

was about 10% higher than that during weekends (4 out of 45 GWh in Sacramento, 10 out of 80 GWh in 



Los Angeles, and 40 out of 450 GWh in New York). An obvious yearly cycle was observed in all three cities. 

It is worth noting that these yearly cycles excluded the weather effect in the decomposed model. There are 

two yearly peaks in all three metropolitan areas. The summer load peak was significantly higher than the 

winter peak in both Sacramento and Los Angeles, while in New York the summer peak and winter peak were 

similar. Another difference was the relative magnitude of the yearly cycle, which was 1.5 times that of the 

weekly cycle in Los Angeles, 2 times in Sacramento, and 1.5 times in New York. The last component is the 

weather-related term. The temperature-sensitive electricity usage was about 30 GWh in Sacramento, 40 

GWh in Los Angeles, and 200 GWh in New York. The proportion of weather-related load, compared with 

the base load, was similar in all three regions. 

 

Figure 13: Decomposed time series model results. From left to right – the Los Angeles, Sacramento, and 

New York metropolitan areas. From top to bottom – general trend (non-periodic change), weekly cycle, 

yearly cycle, and influence of extra regressor (heating and cooling degree hours) 

3.4 Machine learning models for tabular data 

We applied four tabular data modeling approaches for city-level electricity usage prediction (Gradient 

Boosting Machine, Random Forest, Support Vector Machine, and Neural Network). Similar to the previous 

section, we used four full years of data, from July 2015 to June 2019. We trained our model with the first 

three years and kept the last year for validation. The result is shown in Figure 14. We observe that the 

electricity usage in all the three metropolitan areas are well captured by the Gradient Boosting Machine 

models. Unlike the linear models, it is challenging to record the decomposed and Gradient Boosting models 

using functions and coefficients, as shown in Table 1 and Table 2, because of the higher model complexity. 

Due to the space constraint, we presented the results of the other three baseline models (Random Forest, 

Support Vector Machine, Neural Network) in the Appendix. 
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Figure 14: Predictions from Gradient Boosting Machine model and ground truth. From top to bottom – Los 

Angeles, Sacramento, and New York metropolitan areas 

4. APPLICATIONS 

A natural question after we developed seven data-driven models is which model perform the best. In this 

section, we compare the seven models first and used the best performing model to answer two practical 

questions: a) what is the impact of ambient temperature on city-scale daily electricity use, especially during 

a heat wave event; b) how unexpected public health event, for instance the COVID-19 pandemic, would 

influence the city-scale daily electricity use.  

4.1 Model comparison 

Model accuracy is one of the top, if not the most important, criteria to compare different data-driven models. 

To facilitate the model comparison, we trained the model using three years of data (July 2015 to June 2018) 

and used the final year (July 2018 to June 2019) for model validation. We did not use 2020 data, as we 

wanted to decouple the effect of unexpected events from the model comparison. We developed seven data-

driven models: two linear models (five-parameter change point model, Heating and Cooling Degree Hour 

model), three conventional machine learning models (Random Forest, Support Vector Machine, Artificial 

Neural Network), time-series decomposed model, and Gradient Boosting Machine model. The model was 

trained on the training set only and then evaluated on the test set. The prediction accuracy is shown in Table 

3. Three metrics were used for comparison: mean absolute error (MAE), root mean squared error (RMSE), 



and cross validation root mean squared error (CVRMSE). Additionally, we plotted the CVRMSE of the 

seven algorithms of the three metropolitan areas in Figure 15.  

As shown in Table 3, the top-down data-driven models can provide accurate city-level electricity demand. 

All of the seven data-driven models can predict the city-scale daily electricity use with an accuracy higher 

than 90%. Overfitting is not a problem for Sacramento or New York. But in Los Angeles, the model 

performance on the test dataset deteriorated more significantly than it did for the other two regions; while in 

the other two regions, the models performed almost equally well on the test and train dataset. There could 

be two potential reasons for this. First, the electricity usage behavior of Los Angeles changed in the test 

dataset, and second, some other hidden factors that significantly influence Los Angeles’s electricity demand 

was identified and included in the data-driven model. 

Simple linear regression models (piecewise linear regression and multivariate linear regression) is able to 

provide decent prediction. Among the two linear models, the five-parameter change point model 

outperformed the Heating and Cooling Degree Hour model in all three metropolitan areas. CVRMSE of five-

parameter model is in the range of 5.2%-8.2%; in comparison, CVRMSE of HCDH model is in the range of 

5.4%-8.8%. Additionally, the five-parameter change point model is easier to implement because it does not 

need to determine the best-performing heating and cooling base temperatures, which may vary by cities with 

different weather and electricity use behavior.  

In the category of Machine Learning models, conventional ML models (RF, SVM, and NN) deliver similar 

accuracy. Even though the same hyper-parameter and model architecture is applied, the performance of the 

ML models depend on individual data set: SVM performs the best in Los Angeles and Sacramento but 

performs the worst in New York. In this regard, the model generalizability is in question. 

The GBM model outperforms the decomposed model and other baseline machine learning models (RF, SVM, 

and NN) in all three metropolitan areas with a decrease in CVRMSE between 0.4% (Los Angeles) to 4.3% 

(Sacramento). Electricity usage might not be necessarily modeled as time-series data if the temporal 

information is carefully encoded (in this study, encoded by two variables: the month of year and day of 

week). Compared with time-series modeling, the tabular data model is more robust to missing data, because 

time-series modeling uses the sequential ordering of input data to represent temporal information. It is a 

problem if some data is missing, and data imputation is needed in this case, which adds another layer of 

complexity in terms of data preprocessing. However, tabular data models encode temporal information using 

extra features (such as day of week) and therefore do not suffer if some data is missing.  

Comparing the winner of linear model (5-parameter) with the winner of machine learning model (lightGBM), 

the lightGBM model can improve the model accuracy with a margin of 1.1% to 1.7%.  

 

Table 3: Model comparison in terms of prediction accuracy 

 MAE_train 

[GWh] 

MAE_test 

[GWh] 

RMSE_train 

[GWh] 

RMSE_test 

[GWh] CVRMSE_train CVRMSE_test 

 Los Angeles metropolitan area 

5-Parameter 3.01 4.97 4.08 6.38 5.25% 8.20% 

Degree Hour 3.72 5.27 4.74 6.85 6.10% 8.80% 



Decomposed 2.58 3.97 3.45 5.34 4.43% 6.86% 

lightGBM 1.99 4.16 2.68 5.06 3.44% 6.50% 

RF 2.23 4.61 3.08 5.70 3.95% 7.33% 

SVM 2.16 4.43 3.19 5.53 4.10% 7.11% 

NN 2.85 5.01 3.66 6.07 4.70% 7.81% 

 Sacramento metropolitan area 

5-Parameter 2.04 2.25 2.79 2.95 5.82% 6.16% 

Degree Hour 2.49 2.66 3.32 3.34 6.93% 6.97% 

Decomposed 2.28 3.43 2.99 4.26 6.24% 8.89% 

lightGBM 1.42 1.69 2.03 2.21 4.23% 4.60% 

RF 1.52 2.05 2.12 2.72 4.43% 5.67% 

SVM 1.48 1.69 2.31 2.13 4.81% 4.44% 

NN 1.74 2.08 2.39 2.51 4.98% 5.23% 

 New York metropolitan area 

5-Parameter 14.78 17.36 20.26 22.57 4.66% 5.19% 

Degree Hour 15.03 17.90 20.83 23.22 4.79% 5.34% 

Decomposed 16.89 20.92 22.42 27.16 5.16% 6.25% 

lightGBM 9.74 13.26 13.61 17.85 3.13% 4.10% 

RF 11.34 16.27 15.56 22.10 3.58% 5.08% 

SVM 16.68 20.42 26.73 31.80 6.15% 7.31% 

NN 11.20 14.05 15.20 18.68 3.50% 4.30% 

 



 

Figure 15: Coefficient of Variation of Root Mean Squared Error (CVRMSE) of the seven algorithms for 

the three metropolitan areas. From top to bottom – the Los Angeles, Sacramento, and New York 

metropolitan areas. 

Next, we compared the model prediction with the ground truth on the test dataset, as shown in Figure 16: 

the ground truth is plotted in solid line, the two linear models are plotted in dashed lines, and the two machine 

learning models are plotted in dotted lines. To avoid making the plot too distractive, we only compared the 

results from the two linear models and the two machine learning models, the Decomposed model and GBM 

model.   

 



Figure 16: Model prediction of city-scale daily electricity consumption (GWh) on the test dataset (July 

2018–June 2019). From top to bottom – the Los Angeles, Sacramento, and New York metropolitan areas. 

Left is summer season, and right is winter season. 

As can be observed from Figure 16, the general trend of city-scale daily electricity usage can be predicted 

by all of the four data-driven models. The only exception is the winter case of Sacramento region. The five-

parameter, HCDH and GBM models predict the electricity use well before mid-March and overestimate the 

electricity use after mid-March. Contrarily, the decomposed model underestimates the load before mid-

March but captures the load trend in late March. It can also be observed that the data driven models work 

well during some periods in some cities (e.g., New York) but not in other cases (e.g., Summer in Los Angeles 

and Winter in Sacramento). 

In addition to the model accuracy, we also care about the models’ interoperability and generalizability. The 

GBM method can deliver very accurate predictions; however, the results are not interpretable. It should be 

very careful to extrapolate the GBM models. Linear model and decomposed time series might be less 

accurate; however, their results have clear physics implications. For instance, the results of linear models are 

easy to understand and explain, while the results of a decomposed model can be used to examine the relative 

magnitudes of different influencing factors.  

As discussed above, different models have their own strengths and weaknesses, because of their unique 

mathematical structures. As the well-recognized British statistician George E. P. Box once said, “all models 

are wrong, but some are useful.” Which model should be developed depends on how you are going to use 

your model. For instance, the decomposed time-series model is the best candidate to understand the relative 

importance of different influencing factors, but it might not be a good choice to explore the sensitivity and 

elasticity to a specific variable, as you need to organize your numerical experiment in the format of time-

series data.  

4.2 Heat wave impact on city electricity usage 

As a result of climate change, heat waves happen at an increasing frequency worldwide[60]. Since cooling 

is a major electricity consumer, heat waves lead to more frequent use of air conditioning, and thus higher 

electricity usage. The increasing demand during a heat wave poses extra challenges to the grid infrastructure. 

In this section, we explore the impact of increasing ambient temperature on city-level electricity demand 

during heat waves. 

The five-parameter change point model provides the most straightforward way to understand how higher 

temperature drives up the electricity demand, as the regressed cooling slope (𝛽𝑐) depicts the sensitivity of 

electricity demand on ambient temperature. Gradient Boosting Machine is another good candidate because 

it accepts tabular data as model inputs. We can examine the temperature sensitivity by observing how the 

outputs (electricity demand) change with different inputs (ambient temperature). On the other hand, a 

decomposed time-series model is not a good choice because it requires time-series data as inputs. It is 

challenging to organize the numerical experiments of varying ambient temperature in the format of time-

series data. Therefore, in this subsection, we applied a five-parameter linear model and Gradient Boosting 

Machine to explore the gradient of city-level electricity demand to ambient temperature. 

The relation between the electricity demand and ambient temperature is plotted in Figure 17. The prediction 

of five-parameter model is a monotonically increasing linear line, as we expected. The daily electricity 

demands increase at the rate of 2.5 GWh/oC, 3.3 GWh/oC, and 19.1 GWh/oC in the Sacramento (6.2%/oC), 



Los Angeles (4.7%/oC), and New York (5.1%/oC) metropolitan areas, respectively. The daily peak hourly 

loads increase by 0.19 GW/oC, 0.22 GW/oC, and 1.04 GW/oC in the Sacramento, Los Angeles, and New 

York metropolitan areas, respectively. The prediction of the lightGBM aligned with the five-parameter model 

until the daily mean ambient temperature was above about 30 oC. When the ambient temperature was above 

30 oC, the prediction of lightGBM was a constant value. This is because the GBM model has a poor 

generalizability. Its prediction is not trustworthy if the input data are outside the space covered by the training 

datasets. 

 

Figure 17: The impact of ambient temperature on daily total electricity consumption and peak demand. 

From left to right – the Los Angeles, Sacramento, and New York metropolitan areas. The top figures are 

daily total consumption, and the bottom figures are daily peak demand. 

4.3 COVID-19 pandemic impact on city electricity usage 

The second question we wanted to answer is how the measures government and individuals took (e.g., shelter 

in place, stay-at-home, business shutdown, or reduced operation) to mitigate the impact of the COVID-19 

pandemic in U.S. cities influenced city-level electricity consumption. As discussed in [9], city-scale 

electricity use can be an real time indicator of the strictness of shutdown measures implemented.   

To evaluate the impact of COVID-19 on city-scale electricity consumption, we used the GBM model due to 

its high accuracy compared with other data-driven models. We use the pre-pandemic data (2015 Jul. to 2020 

Mar.) to train the GBM model, and then apply the trained model to predict the electricity use after the 

pandemic. Our hypothesis is: if the electricity use patterns changed due to the COVID-19 pandemic, the 

model trained with the pre-pandemic data could not be used to accurately predict the electricity use after the 

pandemic. We plotted our results in Figure 18. 

Our hypothesis was validated by results in Figure 18: the model trained with the pre-pandemic data tend to 

overestimate the electricity use after mid-March when lockdown measures were put in place in majority of 

U.S. cities: the predicted electricity usage after the lockdown (green line) was constantly above the actual 

electricity usage (dotted orange line). Conversely, the electricity demand prediction before the curtailment 



(blue line) was close to the actual demand (dotted orange line). This discrepancy between the forecasted and 

the real electricity usage after 2020 mid-March indicates that the COVID-19 curtailment changed electricity 

demand behavior. Another interesting finding was the discrepancy between the forecasted and real electricity 

usage peaks in April. In New York, the projected and real electricity usage matched again after June, which 

is consistent with the time COVID-19 was controlled there.  

 

Figure 18: Predicted vs. real city-scale daily electricity consumption before and after the COVID-19 

lockdown. From top to bottom – the Los Angeles, Sacramento, and New York metropolitan areas. 

 

Figure 19 summarizes the changes in monthly electricity consumption for the three metropolitan areas. The 

COVID-19 curtailment in the United States started in the mid-March 2020. The electricity usage reduction 

peaked in April 2020, reaching more than 10% in all three metropolitan areas. With the economy gradually 

opening up in the summer, electricity usage increased. The effect of the COVID-19 curtailment on electricity 

usage was highest in the Los Angeles metropolitan area and the smallest in the Sacramento metropolitan 

area, probability because the travel and entertainment industries, which were much more influenced by the 

COVID-19 pandemic, account for a higher weight of Los Angeles’s economy and thus electricity use.  

 



 

Figure 19: Monthly electricity use changes since COVID-19 pandemic for the three metropolitan areas 

5. DISCUSSION 

5.1 Implications 

City-level electricity prediction has wide applications and is important to enhance energy security and 

resilience. In this study we developed data-driven models to predict daily electricity consumption at city or 

metropolitan scale. We open sourced the data and the code to help researchers to a) reproduce our work, b) 

develop their own data-driven models using our code as the starting point, and test and compare our models 

with theirs, and c) apply our models to other cities’ data and do the evaluations. The major contributions of 

this study include: 

First, we applied data-driven models to study how city-scale electricity consumption can be influenced by 

extreme heat waves and the unexpected public health event, which can enhance our understanding of city-

scale energy use dynamics and support grid operators on load forecast and generation resources planning. 

Such predictions can inform utilities and state or city governments to secure energy supply and avoid or 

minimize power outages during extreme weather events (e.g., heat waves). 

Second, we implemented and evaluated seven data-driven models including the five-parameter change-point 

model, the Heating/Cooling Degree Hour model, the time series decomposed model implemented by 

Facebook Prophet, the Gradient Boosting Machine implemented by Microsoft lightGBM, and three widely-

used machine learning models (Random Forest, Support Vector Machine, Neural Network). 

Third, we answered some key questions in developing city-scale electricity prediction models, including 

whether to model the electricity use as time series data or as tabular data, how to select the heating and 

cooling base temperature to achieve high accuracy prediction, and what is the performance margin of 

machine learning models compared with straightforward linear regression models.   

The implications of our findings are as follows: 

First, city-scale energy usage is highly correlated with ambient temperature, as heating and cooling load 

accounts for a high proportion of city-level energy usage. Under the current weather conditions, weather-

sensitive electricity consumption accounts for 30%–50% of total electricity usage. Every degree Celsius 



ambient temperature increase in summer leads to about 5% more electricity usage compared with the base 

load. As a result of climate change, heat waves will happen more frequently, leading to higher electricity 

demand in summer. The power generation and transmission infrastructure needs to be prepared to meet this 

new challenge. 

Second, during the COVID-19 pandemic, the city-scale electricity consumption dropped by more than 10% 

in April 2020 and recovered in summer when the pandemic was started getting in control. The impact of 

COVID-19 on city-scale electricity use depends on the strictness of the lockdown measures governments 

took as well as the local economic structure. 

Third, a linear model is a simple but powerful tool that can provide decent city-level electricity usage 

prediction with a CVRMSE between 5% and 10%. Other benefits of the linear model include understandable 

results and good interoperability. The Five-Parameter Change Point model slightly outperforms the Heating 

Cooling Degree Hour model in all the three metropolitan areas. 

Fourth, when applying the Heating Cooling Degree Hour model, the heating and cooling change points and 

the base temperature need to be carefully selected. There is no one set of change points or base temperature 

that can be applied universally for every city. The ASHRAE recommended values are not a one-size-fits-all 

solution. Even though the best performing base temperature varies for these three regions, the heating base 

temperature between 15 and 19 oC and the cooling base temperature between 13 and 19 oC can produce 

decent predictions. 

Fifth, machine learning models might not necessarily outperform simple linear models. For instance, the 

time-series decomposed model failed to generate more accurate prediction in Sacramento and New York 

regions. However, the decomposed model provides us with a unique tool that can be used to compare the 

relative importance of different components, such as the general trend, weekly and yearly cycle, and weather-

related demand.  

Sixth, Gradient Boosting Machine performs the best compared with the other models tested in this study. 

The prediction error of GBM could be as low as 4%-6% on the test dataset. However, users should be 

cautious when using those black-box models for new data, especially data with trends or patterns not covered 

by the training dataset.  

Lastly, in addition to accuracy, we also compared the modeling complexity, computational complexity and 

interpretability of the models. Linear models and lightGBM are easier to implement because the software 

dependency is simpler and those algorithms are less sensitive to missing data. On the contrary, time-series 

models need to handle missing data first. In terms of computational complexity, linear models are the fastest, 

followed by the GBM models, while time-series models are the slowest. As for the interpretability, the linear 

models and time-series decomposed model have clearer implications and are easier to understand compared 

with the GBM model.   

5.2 Limitations 

A key concern about the data-driven approach is whether the conclusion drawn from data-driven methods 

can be extrapolated to cases where the data are not available. For instance, can we assume the slope between 

electricity demand and the ambient temperature is constant when the ambient temperature increases further? 

Will the consumers’ energy consumption behavior change over time? For instance, Auffhammer and Mansur 

(2014) argued that climate change will affect energy consumption by changing how consumers respond to 



weather shocks (the intensive margin) in the short run, but in the long run people might adapt to it (the 

extensive margin) [61]. Unfortunately, the data-driven approach used in this study is unable to answer those 

questions.  

The conclusion of this article is based on the analysis of city-level electricity usage in three U.S. cities (Los 

Angeles, Sacramento, and New York). Though these three cities are diversified (with different climate, scale 

and economy structure), it should be noted that the findings may not be directly applicable to other cities. 

This is a common problem for data-driven modeling. To help address this problem, we open sourced the 

code so that other researchers can retrain the model with data of other cities and evaluate the prediction 

performance.      

Another limitation of this study is that, although urban and rural areas may have different microclimates, we 

only used ambient temperature data from one NOAA listed weather station per city. This was because we do 

not have information about the geographical distributions of the energy consumers (e.g. residential and 

commercial buildings, factories, transportation, and other infrastructure). So there is no hint as to which 

weather stations should be used. The models we proposed in this study potentially can provide more granular 

predictions should the distribution information become available in the future. 

6. CONCLUSIONS 

City-level electricity usage is temperature sensitive, because heating and cooling is a major energy consumer. 

As a result of climate change, extreme weather events happen more frequently. A more accurate electricity 

demand forecast, accounting for extreme weather events and associated load impacts, is needed to enhance 

energy security and resilience of the electric grid.  

A literature review identified three common approaches to model the city-level electricity usage: linear 

models, machine learning models for time series data (Autoregressive integrated moving average, Recurrent 

Neural Network/Long Short Term Memory), and machine learning models for tabular data (neural network-

based, decision tree based, and others). In this study, we developed and compared seven data-driven models: 

a five-parameter change-point model, a Heating Cooling Degree Hour model, a decomposed time series 

model implemented by Facebook Prophet, a Gradient Boosting Trees model implemented by Microsoft 

lightGBM, and three conventional machine learning models (Random Forest, Support Vector Machine, and 

Neural Network). The decomposed model has rarely been used in this field; however, lightGBM has been 

proven as a top performer in city-scale energy demand prediction. 

We tested seven models with the city-level (including the city and surrounding rural area) electricity usage 

data from three metropolitan areas in the United States: Sacramento, Los Angeles, and New York. All the 

models can predict the city-level electricity demand well, with a CVRMSE less than 10%. The five-

parameter model outperforms the HCDH model. Gradient Boosting Machine is the most accurate model 

among the seven. The CVRMSE of lightGBM on the test dataset was 6.5% for Los Angeles, 4.6% for 

Sacramento, and as low as 4.1% for New York metropolitan area. Though not as accurate as lightGBM, the 

decomposed time series model provides us a unique chance to decouple and compare the effects of different 

driving factors (weather-related, yearly and weekly cycle, general trend) of energy demand.  

We applied the best performing models to explore how extreme weather events (heat wave) and unexpected 

public health events (COVID-19 curtailment) influenced the city-level electricity demand. Under the current 

weather condition, weather-related electricity consumption accounts for 30%–50% of daily electricity usage 

of a city. Every degree Celsius increase of ambient temperature leads to an increase of about 5% more daily 



electricity usage compared with the base load in the three metropolitan areas. The COVID-19 curtailment 

reduced city-level electricity demand. Compared with the pre-pandemic same month in 2019, the daily 

electricity usages during the 2020 COVID-19 pandemic decreased by 2%-12% in the Sacramento, Los 

Angeles, and the New York metropolitan areas. 

All the data and code used in this paper is open sourced at Github, https://github.com/LBNL-ETA/City-

Scale-Electricity-Use-Prediction. 
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APPENDIX 

The prediction results of the three baseline machine learning models (Random Forest, Support Vector 

Machine, and Neural Network) are included in this appendix. 

 

 

Figure A1: Predictions from Random Forest and ground truth. From top to bottom – Los Angeles, 



Sacramento, and New York metropolitan areas 

 

 

Figure A2: Predictions from Support Vector Machine and ground truth. From top to bottom – Los Angeles, 

Sacramento, and New York metropolitan areas 

 



 

Figure A3: Predictions from Neural Network and ground truth. From top to bottom – Los Angeles, 

Sacramento, and New York metropolitan areas 

All the three data-driven models under-estimated the electricity usage of New York in the summer of 2018, 

which means some influencing factors (in addition to the ambient temperature and time) were not captured. 

SVM under-estimated the summer load increase in New York more than the other two machine learning 

algorithms. 
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