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Abstract

Neuroimaging plays a critical role in the setting in traumatic brain injury (TBI). Diffusion tensor 

imaging (DTI) is an advanced magnetic resonance imaging technique that is capable of providing 

rich information on the brain’s neuroanatomic connectome. The purpose of this article is to 

systematically review the role of DTI and advanced diffusion techniques in the setting of TBI, 

including diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging, 

diffusion spectrum imaging, and q-ball imaging. We discuss clinical applications of DTI and 

review the DTI literature as it pertains to TBI. Despite the continued advancements in DTI and 

related diffusion techniques over the past 20 years, DTI techniques are sensitive for TBI at the 

group level only and there is insufficient evidence that DTI plays a role at the individual level. We 

conclude by discussing future directions in DTI research in TBI including the role of machine 

learning in the pattern classification of TBI.
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Traumatic brain injury(TBI) is a common problem that affects 1.7 million people and results 

in 275,000 hospitalizations and 52,000 deaths in the United States annually. The incidence 

in emergency room visits related to TBI has been increasing over the past decade.1–3 Adults 

older than 75 years of age have higher rates of hospitalization and death.1 The most common 

causes of TBI are motor vehicle accidents, falls, sports-related injury, and assault,1–3 with 

falls being the most common overall while motor vehicle accidents are the most common 

cause of TBI-related deaths.1 In the military population, TBI is common in soldiers who 

have been exposed to an explosion.4 According to the Veterans Health Administration, the 

cost of treating a patient with TBI for the first year averages $11,700, whereas the cost of 
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treating a non-TBI patient is $2400.4 The clinical symptoms from TBI range from mild 

cognitive impairment to severe disability.

Neuroimaging plays a critical role in the acute setting to guide appropriate management by 

detecting injuries that require intervention or further monitoring. For example, in the setting 

of severe TBI, the detection of an epidural hematoma may require emergent neuro-surgical 

management. However, in the setting of a concussion, conventional magnetic resonance 

imaging (MRI) is typically normal.5 Many advanced neuroimaging techniques are actively 

being researched in an attempt to better diagnose concussions.

In contrast, diffusion tensor imaging (DTI) is an advanced MRI technique that came into 

existence in the mid-1980s and is capable of providing rich information on the brain’s 

neuroanatomic connectome.6,7 DTI metrics are thought to reflect the integrity of 

microstructural properties of white matter and have been applied extensively as 

neuroimaging biomarkers to study a range of clinical conditions.8

This article will review the potential benefits and challenges of using DTI in TBI. First, we 

briefly introduce the fundamental principles that subtend DTI. We then present an overview 

of DTI, and image acquisition techniques and processing methods for techniques beyond 

DTI. Next, we review clinical applications of DTI, with a focus on its use in imaging TBI. 

We then conclude with a discussion on future directions of DTI research.

FUNDAMENTALS OF DTI IMAGING

The white matter of the human brain is composed of axons. These axons travel from gray 

matter wherein the cell bodies of the neurons are located to other areas of the brain or spinal 

cord. Axon bundles traveling together constitute white matter tracts, which putatively 

connect functionally specialized yet segregated regions of the brain.

Conventional MRI is unable to visualize many of these white matter tracts. This is because 

conventional MRI contrast resolution is based solely on T1 and T2 relaxation times and 

white matter tracts have similar T1 and T2 relaxation times irrespective of the direction of 

the tracts.

DTI allows for visualization of these white matter tracts by imaging the anisotropy of water 

diffusion9–13 (Fig. 1). Many excellent books and review articles have been published 

discussing DTI imaging methodology in detail.11–16

Mori15 explains the concept of water diffusion by providing the analogy of an ink drop 

falling onto a piece of paper, with the subsequent diffusion (or spread) of the ink on the 

paper. As the ink spot grows over time, the rate of growth correlates to the rate of diffusion. 

If we extend this heuristic, isotropic diffusion occurs when the ink drop grows equally in all 

directions. Anisotropic diffusion occurs if the ink drop grows preferentially in 1 direction, 

such as would be seen if the ink drop fell onto a piece of fabric made up of woven fibers that 

were more tightly packed in 1 direction. In white matter tracts, water tends to have 

preferential diffusion along the axons and the shape of the ink spot would be more elliptical. 
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Cell membranes, axons, and myelin sheaths contribute to white matter tract anisotropy, with 

axons thought to be the major component.17

The pulse sequence for any DTI imaging technique is a spin-echo diffusion-weighted pulse 

sequence. DTI is able to image the anisotropy of white matter tracts by applying diffusion 

weighting in multiple different spatial directions using diffusion-sensitizing gradients. For 

example, the same white matter tract has different diffusivity constants depending on the 

direction of the diffusion-sensitizing gradient applied (Fig. 2). For each diffusion-sensitizing 

gradient, there is a 4D data set with x, y, z spatial locations with a diffusion constant that is 

proportional to the magnitude or rate of water diffusion. This process needs to be repeated 

with a minimum of 6 diffusion-sensitizing gradients and will ultimately yield a set of vectors 

that can be used to generate a structural connectivity map of the brain.

KEY CONSIDERATIONS IN PERFORMING TRACTOGRAPHY

The first key consideration in performing tractography is determining the diffusion model 

and whether to choose a model-based or model-free technique. The second key 

consideration is how to deal with the uncertainty in the tractography whether to perform 

deterministic or probabilistic tractography.

Model-Based Versus Model-Free Techniques

The most commonly used model-based technique is DTI. Other model-based approaches 

include diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density 

imaging (NODDI).18 The model-based approaches are based on an assumption of the fiber 

orientation within each voxel. For example, a single tensor model is based on the assumption 

that the voxel is composed of a single fiber orientation, whereas a 2-tensor model assumes 

that voxels are composed of 2-fiber orientations. DTI uses a Gaussian approximation for 

diffusion. DKI is based on a Kurtosis model, which characterizes the non-Gaussianity of the 

diffusion. In order to recover the brain’s complex neuroanatomic connectome, sampling 

must be performed along with many different diffusion-sensitizing orientations, called high 

angular sampling. We will therefore discuss high angular resolution diffusion imaging 

(HARDI) acquisition technique. We will also discuss multi-band acquisitions, a method to 

speed up acquisition.

In contrast to the assumptions used in the model-based diffusion techniques, the model-free 

approaches estimate the fiber orientation with a 3D measurement of the water diffusion in 

the voxel of interest.

The 3D data acquired for these approaches are called q-space signal.19 These model-free 

methods have the potential for more accurate characterization of the structural and 

orientation of the white matter tracts. The most commonly used model-free technique is 

diffusion spectrum imaging (DSI).

Deterministic Versus Probabilistic Tractography

Deterministic tractography assumes a single orientation at each voxel, such that a single tract 

is determined at each voxel. All of the clinical applications are based on deterministic 
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tractography. Probabilistic tractography is based on a distribution of multiple possible 

orientations at each voxel with each orientation having an associated probability.

IMAGE ACQUISITION

DTI Imaging Acquisition

The simplest form of DTI is the single tensor (or single ellipsoid) model. This form requires 

at least 2 B-values: 1 B = 0 mm/s2 reference image and 1 additional B-value (eg, B ¼ 1000 

mm/s2) upon which the diffusion-sensitizing gradients are applied. Two B-values are 

required in order to perform a Gaussian model for the diffusion process. Another 

requirement for this single tensor DTI is the use of a minimum of 6 diffusion-sensitizing 

gradients, which is also referred to as directions; this obtains enough information to 

reconstruct the orientation and anisotropy information. The field of view for DTI imaging 

has no overlap and no skip between successive slices. Slice thickness and matrix size are 

variably set, but a standard protocol typically consists of a thickness of 2.0 mm and a matrix 

of 128 × 128.20,21Techniques that use few directions (such as the single tensor model using 

6 directions) are unable to resolve crossing fibers. Accurate measurement of parameters such 

as fractional anisotropy (FA) requires approximately 25 to 30 diffusion directions depending 

on signal to noise ratio (SNR) of the individual diffusion-weighted images.22

The total number of volumes in a DTI series can be defined as of volumes in a DTI series = 

References volumes + of diffusionen-coding volumes.

The total number of images in a DTI series can be defined as of images in a DWI series = 

slices in B0 reference image + additional B values × of directions × of slicesinthe brain.

For example, the number of images in a DTI series for acquisition with 40 directions, 63 

slices in the brain, and a B0 reference image of 63 images would equal 63 + 1 × 40 × 63 a 

total of 2583 images. This sequence takes approximately 8 minutes on a 3-Tesla scanner. 

Each image in a DTI series is referred to as a diffusion constant map, which represents the 

raw data for a particular gradient direction and a particular B-value. Thus, after repeating 

acquisition for all directions and all B-values, each pixel will have a magnitude associated 

with each gradient direction.

SNR and Tradeoffs

As with any MRI sequence, the goal of DTI is to provide the optimum SNR. For a single 

magnetic resonance (MR) image, the SNR is defined by the equation23:

SNR  f or a single MR image = S
σ

where:S represents the mean signal intensity within a region of interest

σ represents the standard deviation within that region of interest
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SNR is most commonly measured in the B = 0 reference image. Repetition of acquisition 

with the same diffusion-sensitizing gradient can be performed with data averaging on the 

MRI scanner to improve SNR. The addition of more encoding directions can also improve 

the SNR in addition to the ability to resolve crossing fibers. These SNR improving 

techniques come with the penalty of longer scan acquisition. Longer sequences have their 

own potential undesirable consequences such as motion artifact. There is still debate 

regarding the tradeoff between repeat acquisition and more encoding directions, with some 

studies suggesting that more encoding directions are better at improving SNR (eg,24,25); 

however, there is evidence to the contrary (eg,26).

Acquisition Issues

DTI relies on echo planar imaging (EPI) pulse sequences, which can take several minutes to 

acquire, when whole brain coverage is desired. Parallel imaging can reduce distortion,27 

with a reduction in echo time that can balance the loss in SNR as a result of g-factor noise. 

Multi-band sequences have revolutionized DTI by parallelizing slice excitation28 and 

acquiring several slices simultaneously.29 The total scan time can be reduced by 3- to 5-fold 

depending on coil sensitivity and by acquiring multiple slices simultaneously and separating 

the simultaneous acquisitions mathematically, with very little penalty on SNR.29 This 

accelerated scan protocol also reduces the time during which subject movement can occur 

during a scan. Movement artifacts can bias both FA and mean diffusivity (MD) DTI metrics,
28 which are discussed further below, leading to spurious conclusions, particularly at the 

group level.30 Recently, multiband imaging has been shown to reduce the biased effects of 

subject motion.31

Diffusion Kurtosis Imaging Acquisition

DKI is similar to DTI, but provides further characterization of the water diffusion by 

estimating the kurtosis of the distribution. Kurtosis is a dimensionless higher-order statistic 

that quantifies the non-Gaussianity of a distribution. Two distributions with the same mean 

and variance may have different kurtosis values. For example, a positive kurtosis 

measurement means that the distribution is more strongly peaked.32 In addition to the 

standard diffusion tensor in DTI, DKI also requires an additional tensor called the 

diffusional kurtosis tensor. Thus, a minimum of 3 B-values are required33 and a minimum of 

15 different diffusion gradient directions are also required.34,35

The key advantages of DKI are the improved ability to resolve intravoxel crossing fibers 

resulting in an overall improvement of white matter tractography36 and the added specificity 

and sensitivity of DKI metrics such as mean kurtosis or radial kurtosis.37 DKI acquisition 

can typically be performed on conventional MRI scanners. A limitation of DKI is its longer 

scan time than DTI, typically requiring 10 to 20 minutes per acquisition.

HARDI Acquisition

HARDI is an acquisition technique used in DTI that uses high number of directions (eg, 40 

or more). HARDI are typically acquired with higher diffusion sensitization than DTI. 

HARDI acquisitions are most often followed by spherical deconvolution-based processing 

methods such as constrained spherical deconvolution (CSD). CSD is able to resolve multiple 
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fiber orientations within a single voxel.38 The limitation of HARDI acquisition is the longer 

scan time. Each additional direction requires another diffusion sensitizing gradient.

Q-Space Acquisition

As is true with any DTI sequence, the pulse sequence for the acquisition of Q-space is a 

spin-echo diffusion-weighted pulse sequence. Q-space acquisition uniquely uses a series of 2 

short, but very strong diffusion gradients applied to ‘‘label’’ the molecule during the 

diffusion process. Then, a displacement distribution function (or probability density 

function) is derived to calculate the 3D diffusion-driven displacement measurement of MR 

signal at each point (qx, qy, qxz) within the Q-space. A diffusion-weighted image is acquired 

for each diffusion-encoding step (q-value). Thus, a total of Nqx × Nqy × Nqz diffusion-

weighted images are required to sample Q-space of size Nqx, Nqy, Nq.39 The large number 

of images required to obtain Q-space information is a limitation of bringing this technology 

to clinical application. There are several Q-space based techniques, most notably DSI and q-

ball imaging (QBI). Q-space sampling schemes are displayed in Fig. 3.40

DSI Acquisition

DSI is a Q-space based technique that uses HARDI acquisition with a 3D Cartesian 

sampling scheme of each voxel.39 This method of processing was developed in attempt to 

resolve multiple intravoxel fiber crossings by imaging the spectra of water diffusion.41 DSI 

uses the probability density function to describe the diffusion process within each voxel, and 

it requires a sufficient signal sample to resolve this diffusion probability density function. In 

order to achieve the sufficient signal, repeated diffusion gradients42 and high spectral 

bandwidth41 are required. DSI acquisition involves up to 5 to 10 times more data. DSI with 

515 diffusion-encoding gradients takes approximately 1 hour, whereas reducing the number 

of diffusion-encoding gradients to 203 reduces the time to approximately 30 minutes.43 

These longer scan times allow for increased motion artifact. Despite these high requirements 

and long image acquisition times, DSI is now clinically available.44

Q-Ball Acquisition

QBI is a model-free Q-space based technique that uses HARDI acquisition with a spherical 

sampling scheme of each voxel involving only a single-shell B-value.39 QBI also requires 

repeated gradients and high bandwidth; however, these are 2 to 3 times lower than that of 

DSI. In addition, QBI does not require as great a demand for the gradient performance as 

compared with DSI. Consequently, QBI is more efficient, but is not as accurate as DSI; 

however, QBI is more feasible for clinical applications.43

Neurite Orientation Dispersion and Density Imaging Acquisition

Projections from a cell body of a neuron are referred to as neurites and may take the form of 

either axons or dendrites. Neurite density and orientation dispersion estimates are 2 key 

contributing factors to FA. NODDI acquisition is a technique that uses a 2-shell HARDI 

acquisition and a 3-compartment model [including the intracellular volume (ICV), 

extracellular volume (ECV), and cerebrospinal fluid] in an attempt to separate out neurite 
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density from orientation dispersion estimates in an attempt to improve the map, dendrites, 

and axons in the brain.18

IMAGE PROCESSING

DTI Processing

DTI, the most common and simplest method of diffusion imaging, processes the diffusion 

anisotropy data with a Gaussian model and a mathematical process referred to as 

diagonalization of the tensor.45,46 For each voxel, a set of directions and magnitudes forming 

a 3D ellipsoid can be generated, which represents the local cytoarchitecture. The 3D 

ellipsoid is characterized with 3 eigenvectors defining the axes with 3 associated eigenvalues 

(l) defining the lengths. MD is a scalar metric representing total amount of diffusion at a 

voxel and is calculated as the average of the 3 eigenvalues.47 FA is a scalar metric 

representing the relative anisotropy at a voxel and is a scalar metric between 0 and 1. FA is 

calculated as the square root of the sum of squares of the diffusivity differences divided by 

the square root sum of squares of the diffusivities.47 FA can characterize the 3D ellipsoid as 

linear, planar, or spherical. An FA value of 0 would represent perfectly isotropic diffusion, 

which is equal diffusion in all directions. An FA of 1 would represent an infinite cylinder 

(Fig. 4).

The diffusion tensor model assumes that there is a single ellipsoid with all axons traveling in 

the same direction within each imaging voxel. This model requires 7 measurements 

including 1 B0 and 6 gradient directions to determine the 3D ellipsoid and is therefore time 

efficient; however, the key limitation is the ability to assess fiber tracts crossing within a 

voxel. For many of the voxels in the human brain, this assumption is not true.48,49 In fact, it 

has recently been suggested that over 90% of voxels contain crossing fibers50 and resolving 

these intravoxel crossing fibers is particularly important for visualization of smaller tracts.51 

DTI and advanced techniques are summarized in Table 1.

DKI Processing

Although DTI uses a Gaussian water diffusion probability function, DKI uses a non-

Gaussian probability function. In addition to the DTI metrics of FA and MD, DKI 

processing provides an additional set of metrics including the mean, axial, and radial 

kurtosis.32 These additional metrics help characterize the non-Gaussianity of the water 

diffusion distribution.32 A positive kurtosis value would mean that the curve is more 

strongly peaked than a Gaussian distribution with the same variance. DKI processing helps 

resolve crossing fiber tracks, which are within a voxel36 (Fig. 5).

Constrained Spherical Deconvolution processing

Recovering the single or multiple-fiber orientations in each voxel is done on the basis of the 

diffusion properties of a single fiber. These single-fiber properties can be derived from the 

diffusion tensor or obtained directly from the data in regions with 1-fiber orientation, such as 

the posterior limb of the internal capsule or corpus callosum. With this knowledge, the 

measured diffusion signals are mathematically deconvolved to obtain a fiber orientation 

distribution that contains the orientations of all fibers within that voxel. CSD works 
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optimally with high b-values (eg, 2500–3000 s/mm2) but can still resolve crossing fibers at 

regular clinical b-values.

DSI Processing

Recall that DSI is a model-free approach. The signal at each voxel within the diffusion-

weighted spin echo images is reconstructed into a 3D probability density function of spin 

displacements using the 3D Fourier transform of the signal. DSI is able to resolve multiple 

intravoxel fiber crossings by imaging the spectra of water diffusion.41 On a 3T scanner, it 

was found that if the bmax (diffusion sensitivity) is optimized, DSI can achieve similar 

angular precision for both higher and lower number of diffusion gradients. Thus, the DSI 

scan with 515 gradients with bmax of 6500 s/mm2 and DSI scan with 203 gradients and 

bmax of 4000 s/mm2 can achieve similar angular precision of 8 degrees for single fibers and 

30 degrees for crossing fibers.43

QBI Processing

Recall that QBI is also a model-free approach. Vector math called the Funk Radon 

Transform is used and geometric tomography and probability distributions to describe the 

diffusion process within each voxel are determined (Fig. 6). This probability distribution is 

similar in concept to the fiber orientation distribution from CSD. This process helps to 

resolve intravoxel fiber crossings, and ultimately, a fiber orientation distribution function 

(fODF) is obtained. Optimizing the bmax for QBI has found similar angular precision as 

DSI for single and crossing fibers for QBI when using both high number of diffusion 

gradients (493 diffusion gradients with bmax of 3000 s/mm2) and lower number of diffusion 

gradients (253 diffusion gradients with bmax of 2500 s/mm2).43

Neurite Orientation Dispersion and Density Imaging processing

NODDI’s 3-compartmental tissue requires a unique model for each compartment. The white 

matter ICV is composed of the volume bounded by the membranes of the neurites and the 

ODF is modeled with the Watson distribution. The white matter ECV is composed of the 

space between the neuritis. The ECV is not restricted by the membranes of the neurites and 

an anisotropic Gaussian model is used. The CSF compartment is modeled by an isotropic 

diffusion model. A NODDI sequence can be performed in 10 minutes18 (Fig. 7).

CLINICAL PRACTICE OF DTI

There are multiple workstations available to the radiologist, which allow the selection of a 

tract by drawing a region of interest (ROI) to “seed” or select the fiber tracts of interest 

entering through this ROI (Fig. 8). Additional “include” and “exclude” boundaries can be set 

to isolate the tract of interest. The typical parameters are as follows: FA threshold of 0.2, 

maximum angle between current major eigenvector and previous major eigenvector of 37 

degrees, minimum fiber length of 50 mm, and number of starting points per voxel of 8.52 

DTI is typically used in clinical applications such as mapping a tract before a neurosurgical 

procedure.
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One of the limitations that the radiologist commonly experiences is that a high fraction of 

fibers in the ROI does not travel the full distance. One reason for this is that a fiber tract of 

interest crosses several other tracts before reaching its final destination. These locations of 

crossing fibers have a reduced FA. A voxel may contain 2 white matter tracts coursing in 

different directions. This would result in loss of anisotropy. Such a voxel will have low 

diffusion signal intensity and will appear dark. Fiber crossing causes a problem in clinical 

DTI, as some tracts simply cannot be visualized throughout their course (Fig. 9). In clinical 

practice, this can be a major limitation for performing tractography, and this is the problem 

that more advanced methods are currently trying to solve.

DTI CLINICAL APPLICATIONS

The majority of clinical applications of tractography involve preoperative neurosurgical 

planning to identify a specific white matter tract coursing in the vicinity of the lesion. This 

can help the neurosurgeon determine the amount of tissue he can take before reaching the 

white matter tract of interest (Fig. 10).

DTI TBI APPLICATIONS

There have been numerous studies involving DTI in the TBI population. We will review the 

current literature and provide a discussion on future DTI research.

Review of Current Literature of DTI Studies in TBI

There are many DTI studies in the literature for TBI. Many studies have found decreased FA 

and increased MD in the TBI population as compared with the control group.53–70 The 

mechanism of decreased FA is thought to be as a result of demyelination or disruption of the 

microstructure of the tissue.

For example, 1 study by Hart et al70 studied 26 retired NFL players, of whom 39% were 

cognitively impaired and 59% were cognitively normal. DTI analysis revealed statistically 

significant reduced FA in the bilateral frontal, bilateral parietal, corpus callosum, and left 

temporal lobe in the cognitively impaired group, but no statistically significant difference 

between the cognitively unimpaired group and the controls.70

Another study by Wilde et al53 imaged 43 children with moderate to severe TBI and 

compared them with controls who had sustained orthopedic injury. Statistically significant 

decreased FA was found in the cingulum bundle in the TBI group.53

Miles et al57 imaged 17 patients with mild TBI and 29 age-matched controls and found 

decreased FA in the centrum semiovale, corpus callosum, and posterior limb of the internal 

capsule.

Newcombe et al imaged 33 patients with moderate to severe TBI and compared them with 

28 age-matched controls. This study analyzed whole brain white matter injury by assessing 

the proportion of voxels falling below a critical FA threshold. A statistically significant 

reduced FA was found in the TBI group.
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Many studies, including those mentioned, demonstrate the common finding of decreased FA 

at the group level; however, the specific locations of decreased FA are variable. This 

variability may be as a result of the heterogeneity of the cohorts involved in these studies, 

such as severity and locations of TBIs, variability of the timing of imaging, and variability of 

imaging parameters.71 DTI has been found to be sensitive for detection of acute and chronic 

TBI changes within the brain at the group level.72

Despite the sensitivity of decreased FA at the group level of TBI, the finding of decreased 

FA lacks specificity. Alterations in FA can be seen in a variety of other neurological 

conditions, particularly those that affect the white matter.

In conclusion, DTI techniques are sensitive for TBI at the group level only for population-

based research. There remains insufficient evidence at the present time to suggest that DTI 

plays a clinical role in patients with TBI at the individual level.72,73

FUTURE DTI RESEARCH IN TBI

As a result of the fact that conventional MRI can be normal in mild TBI, there is a strong 

need for bringing advanced neuroimaging including DTI to clinical practice at the individual 

level. In addition to advances in acquisition and processing of DTI, there are continued 

improvements in clinical scanner performance. These improvements are helping advanced 

DTI techniques become a part of routine clinical protocols.

Despite all of these advances, DTI has limited application to TBI at the individual patient 

level. One barrier is a current lack of reference imaging data across an age-stratified normal 

population. A solution is to have a normative database with variations. Then, it will be 

possible to perform advanced computational analysis of the patient’s scan and compare the 

results with the normative database in assessment for injury. At the Joint ASNR-ACR-HII-

ASFNR TBI workshop on May 23, 2014 in Montreal, Canada, these issues were discussed 

including the formation of a consensus of the ideal database, normal control subject, and 

standardizing clinical and research neuroimaging protocols. With a normative database, 

future DTI research with computer-aided diagnosis and machine learning (ML) could be 

performed and has the potential for a more refined diagnosis.

Pattern Classification in TBI

The heterogeneity of TBI is considerable, and this variability represents a major obstacle in 

finding effective treatments at the individual level.74 Pattern classification, synonymous with 

ML, has become a core tool for studying neuroimaging data during the past decade. As a 

result of their inherent multivariate nature, pattern classifiers may be capable of revealing 

effects that may otherwise be invisible with conventional univariate statistics.75–77 In this 

sense, ML tools may reveal patterns of brain signal data consistent with etiological, 

symptom-based, prognostic, and pathoanatomic classifications of TBI.74

Pattern classification refers to the process of training a computer algorithm to ‘‘learn’’ from 

past experience. Classifiers operate on ‘‘features,’’ or descriptive variable categories (eg, 

DTI FA values) for the purpose of either prediction or description. When applied in a 
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predictive capacity, classification takes place within a supervised framework and each set of 

features is paired with an outcome label.78 Together, these can be used to predict a binary 

diagnosis (eg, microbleed or normal) or multilevel outcome (eg, 1–15 on the Glasgow Coma 

Scale). For example, ML applied to DTI data was able to discriminate between patients with 

microbleeds and age-matched controls with a high degree of accuracy.79 Combining DTI 

with additional MRI metrics has also been successful in classifying patients with mild TBI 

from controls with up to 86% accuracy.80

Ideally, however, ML algorithms could be applied for the dual purpose of classification and 

interpretation of the informative MRI features that are used for prediction. Great care should 

be taken when attempting this, as data features are typically assigned weights in order to 

collaboratively optimize discrimination using a multidimenstional hyperplane. Therefore, 

data features that absorb noise with little information on their own may be assigned a strong 

weight.81 When the data features are statistically independent, as would be the case for 

independent component features, this issue is less problematic.82,83 However, in most 

applications, data features should be back projected into their native space before 

interpretation.81

In supervised learning, each data feature must be assigned a label (eg, TBI or healthy 

control). In many instances, however, the number of labels may be unknown. For example, 

one may wish to understand the number of underlying symptom clusters that exist under the 

broad definition of TBI. In this case, unsupervised learning may be appropriate. For 

example, nonnegative matrix factorization has recently been applied to ADHD data to 

uncover both the number of archetypal patient ‘‘clusters’’ in this population, as well as the 

phenotypic and neuroimaging linkages that are associated with each group.84 Unsupervised 

analysis applied to DTI data has recently revealed a linkage between induction of MCP-1 

following TBI and a predisposition for development of Alzheimer disease.85

Structure-Function Integration

As discussed above, development of a canonical DTI reference atlas across the lifespan is 

imperative. Nonetheless, in isolation, DTI may prove insufficient to fully understand the 

neural and cellular underpinnings of TBI, and a multimodal fusion approach may be more 

effective. In addition to clustering and pattern classification methods, structural connectivity 

measures derived from DTI data have been used as priors in estimating effective 

connectivity measures from functional MRI data within the context of dynamic causal 

modeling analysis.86 An integrated structure-function approach that combines clinical 

information may yield insights into the phenomenology of TBI and future directions for 

treatment pathways.
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FIGURE 1. 
(A) T1-weighted inversion recovery prepared fast spoiled gradient-recalled (IR-FSPGR) 

postcontrast image. There is no ability to distinguish the different fiber tracts. For example, 

all of the white matter tracts within the centrum semiovale and the same intensity and 

directional information cannot be obtained. (B) DTI fractional anisotropy gray scale image. 

There is varying signal intensities within the white matter tracts within the centrum 

semiovale and fiber tracts are visualized separately. (C) DTI color-coded fractional 

anisotropy. The colors correspond to the direction of the fiber tracts with red, blue, and green 

tracts denoting transverse, superior-inferior, and anterior-posterior directions, respectively. 

Different components of white matter fascicles can be much more clearly delineated.
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FIGURE 2. 
(A) Diffusion-weighted image. The corticospinal tracts (CSTs) coursing through the 

posterior limb of the internal capsule (denoted by the arrows) are hyperintense. (B) 

Diffusion-weighted image with different gradient direction. Note that the CST coursing 

through the posterior limb of the internal capsule have lost their signal. The diffusion signal 

goes down if the gradient is applied along the axis of diffusion. Therefore, if the diffusion-

encoding gradient is directed superior–inferior, then the CST will decrease in signal 

intensity on the diffusion-weighted image. Similarly, if the diffusion-encoding gradient is 

directed anterior–posterior, then the superior longitudinal fasciculus will decrease in signal 

intensity. Finally, if the diffusion-encoding gradient is directed transversely, then the 

portions of the corpus callosum will decrease in signal intensity. (C) DTI color-coded 

fractional anisotropy map. The CSTs running through the posterior limb of the internal 

capsule are denoted by the blue color, which indicates the tracts are coursing in the superior–

inferior direction.
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FIGURE 3. 
Representation of q-space sampling schemes: single-shell (A), multi-shell (B), and Cartesian 

(C). The black dots in the left and middle panel indicate 64 gradient directions, optimized on 

the half-sphere, the red dots those same gradient directions mirrored on the other side of the 

sphere. The blue and green dots in the middle panel represent a similar sampling on a shell 

with a lower b-value (or q-value). The Cartesian sampling is shown for a 7 × 7 × 7 cubic grid 

for visualization purposes (DSI default is 11 × 11 × 11). The black dots again represent 

points in q-space with qz ≥ 0 and the red dots indicate qz < 0.
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FIGURE 4. 
3D ellipsoid with MD and FA.
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FIGURE 5. 
DKI images showing diffusion-encoded color DEC-map (A), and mean and radial kurtosis 

(B and C, respectively). Nonzero Kurtosis means non-Gaussian diffusion, with positive 

kurtosis indicating that the distribution is more peaked. In terms of neuronal tissue, this is 

often caused by restricted diffusion, as for instance is the case inside axons. Arrows indicate 

the posterior limb of the internal capsule (similar to Fig. 2), wherein the high radial kurtosis 

is an indication of restricted diffusion perpendicular to the main fiber orientation (CST). 

Acquisition: 112 × 112 matrix with 22.4 × 22.4 cm field-of-view, 70 axial slices of 2 mm 

thickness. 6 b = 0 images, 60 gradient directions at b ¼ 1200 s/mm2 and 60 gradient 

directions at b = 2500 s/mm2. TE/TR = 107 ms/10.3 s, acquisition time 21m33.
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FIGURE 6. 
Example output from a Q-ball Imaging scan. On the left, a conventional diffusion-encoded 

color map. On the right, a zoomed region—as indicated—with the probability distributions 

in each voxel shown over an FA map. Clear single-fiber areas (corpus callosum) and 

crossing fiber areas (more laterally) can be observed in these voxel-wise distributions, with 

QBI being able to resolve these fiber crossings. QBI acquisition: 112 × 112 matrix with 22.4 

× 22.4cm field-of-view, 70 axial slices of 2 mm thickness. 6 b = 0 images, 60 gradient 

directions at b = 2500s/mm2. SENSE acceleration factor 2, TE/TR = 107ms/10.3 s, 

acquisition time 11m20s.

Douglas et al. Page 21

Top Magn Reson Imaging. Author manuscript; available in PMC 2018 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
Example images from model parameters from NODDI, the intracellular volume fraction 

(ficvf), isotropic volume fraction (fiso), and orientation dispersion index (ODI). The color-

encoded DEC map is shown on the left to indicate location within the brain. Values of ficvf 

are high in neurite-rich areas such as white matter, as can most clearly be seen in the internal 

capsule and the splenium of the corpus callosum. The fiso maps accurately highlight the 

ventricles and surrounding CSF that have a very high isotropic diffusivisity. The orientation 

dispersion index (ODI) maps the dispersion of neurites around the principal diffusion 

direction. In single-fiber regions in the white matter, this can be regarded as an indication of 

the coherence of the axons in that voxel. This can most clearly be seen in the posterior limb 

of the internal capsule, wherein the ODI is low indicating high axonal coherence. NODDI 

scan parameters: 96 × 96 matrix, 240 × 240 mm FOV, 50 slices of 2.5 mm thickness, 11 b = 

0 images, and 8, 32, and 64 DWIs at b-values of 300, 700, and 2500 s/mm2, respectively. 

SENSE acceleration factor 2, TE/TR 71.7/5200 ms, acquisition time 9m58 s.
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FIGURE 8. 
(A) Axial DTI Anisotropy map overlaid on a T1 IR-FSPGR image demonstrates a ‘‘seed’’ 

site at the left CST at the left posterior limb of the internal capsule. (B) Coronal T1 IR-

FSPGR image with the left CST colored and coursing superior-inferior.
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FIGURE 9. 
Figure illustrating fiber tract crossing. (A) The image on the left is a DTI fractional 

anisotropy gray scale image. The dark band denoted by the arrows in the corona radiata 

white matter represents the intersection between the superior-inferior oriented corticospinal 

tract located medially and the anterior-posterior oriented superior longitudinal fasciculus. 

The dark pixels at the interface between these 2 perpendicularly oriented tracts occur 

because the tensor model cannot distinguish between low anisotropy as a result of a weak 

primary bundle and low anisotropy as a result of crossing fibers. (B) The image on the right 

is a DTI anisotropy color map, which shows the blue corticospinal tract and the green 

superior longitudinal fasciculus with a thin black line at the interface.
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FIGURE 10. 
Example of clinical DTI imaging. Axial-fused T1 IR-FSPGR and color FA map with volume 

rendering (left image) was performed for preoperative planning in a patient with a presumed 

cavernous malformation (red arrow) in close proximity to the lateral geniculate nucleus with 

selective tractography of the optic radiations (predominantly green tracts bilaterally). Axial-

fused T1 IR-FSPGR and color FA map with selective tractography of the bilateral optic 

tracts (left side is blue and right side is purple) extending toward the lateral geniculate 

nucleus (red arrow). Note that the chiasm and the optic nerves can also be seen further 

anteriorly.
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TABLE 1.

Summary of Diffusion Techniques

Technique
Information Acquired at 

Each Voxel Advantages Disadvantages

Model-based techniques DTI 3D diffusion tensor Short acquisition time; 
validated metrics; 
reproducible; hardware 
readily available

Hypothesis driven and the 
assumption may not be accurate for 
voxels containing multiple fiber 
orientations

DKI 3D diffusion and 3D 
kurtosis tensors

Better at resolving intravoxel 
crossing fibers; Hardware 
readily available

Longer scan times; Hypothesis 
driven and the assumption may not 
be accurate for voxels containing 
multiple fiber orientations

NODDI Orientation dispersion, 
intracellular volume 
fraction, free water 
component

Intracellular volume fraction 
should be like FA except 
should not go down as much 
in regions of fiber crossings. 
Only a few parameters are 
fitted.

Longer scan times to acquire 2 b-
shells. Long processing time.

CSD 3D fiber orientation 
distribution

Can resolve fiber crossings; 
Tolerable acquisition times

No validated metrics

Model-free techniques DSI 3D diffusion displacement 
distribution

Can resolve fiber crossings Long acquisition time; no validated 
metrics; hardware demands

QBI 3D fiber orientation 
distribution

Can resolve fiber crossings; 
tolerable acquisition times

No validated metrics; hardware 
demands

CSD, constrained spherical deconvolution; DKI, diffusion kurtosis imaging; DSI, diffusion spectrum imaging; DTI, diffusion tensor imaging; 
NODDI, neurite orientation dispersion and density imaging; QBI, Q-ball.
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