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channel estimator NN(ĥ) utilizes the first element yu(1) = yp of the re-
ceived sequence yu ∈ Ru in order to retrieve an estimated version of the
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Abstract

Learning-Based Frameworks for Space Optical Communications

by

Abdelrahman Elfikky

  This thesis addresses the significant challenges in optical wireless communica-tions in 

space, which are adversely affected by atmospheric turbulence, light attenuation, and 

detector noise, leading to degraded communication reliability. To mitigate these 

issues, this thesis develops a neural network-based channel estimator that is optimized 

across a wide range of signal-to-noise ratio levels. The proposed estimator achieves per-

formance comparable to the minimum mean square error estimator while maintaining 

reduced computational complexity. Additionally, a novel autoencoder (AE) framework 

is introduced, incorporating advanced features such as layer normalization and multiple 

decoders. These enhancements improve receiver learning capabilities and bit error rate 

(BER) performance under both perfect and imperfect channel state information (CSI) 

conditions.

The AE framework presented in this thesis is designed to handle multiple code 

rates across diverse fading channels, making it a scalable and an adaptable solution for 

dynamic SOC environments. Furthermore, as the Poisson channel is the most accurate 

channel model for optical communication, this work addresses the non-differentiability 

of Poisson SOC channels by integrating the covariance matrix adaptation evolution 

strategy with AEs, achieving near-optimal BER performance without relying on Gaus-

                 x



sian approximations. We also propose enhanced AE designs for medium access control

and transport layer settings, utilizing advanced techniques such as formulation layers

to balance computational efficiency and performance.

The proposed solutions are evaluated using a system tool kit simulator for a

downlink SOC channel connecting a geostationary satellite to a ground station. The re-

sults demonstrate that the NN-based channel estimator consistently outperforms state-

of-the-art learning-based frameworks and achieves parity with minimum mean square

error (MMSE) estimators. Similarly, the AE framework surpasses benchmark methods

and popular convolutional coding techniques under both perfect and imperfect CSI con-

ditions with various code rates. Together, the contributions of this thesis represent a

significant advancement in the design of low-complexity, high-performance communica-

tion systems for space optical communications.
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Chapter 1

Introduction and Background

1.1 Motivation

Wireless communication has turned out to be a necessity for our day-to-day

activities. When transmitting data, most current communication strategies rely on

radio frequency (RF) technologies. Bandwidth scarcity is a serious concern due to the

restricted RF spectrum and the ever-increasing demand for wireless data. Accordingly,

it is essential to also take into consideration higher frequency spectrums such as the

optical spectrum for wireless communication. When compared to RF communications,

optical wireless communications (OWC) and space optical communications (SOC) offer

several benefits over their RF counterparts, including lower transmission power, license-

free spectrum, higher throughput, and cost-effective installation [1].

Traditional RF communications have been developed mostly based on mod-

els stemmed from first principles relying on physics, wave propagation, communica-
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tion, and information theories, etc.. Reliability of this model-based approach has been

also strongly supported by sophisticated measurement campaigns throughout the last

60 years. While model-based schemes have demonstrated success in SOC, they have

inherent issues as each system component requires individual optimization, resulting

in increased complexity of optimizing the transmitter and receiver separately. There-

fore, space agencies aim to complement model-based schemes with learning frameworks

to address these issues. For instance, advanced learning frameworks have demon-

strated potential in decreasing bit error rate (BER) for symbol detection in SOC,

albeit additional optimization is necessary to achieve the performance level of capacity-

achieving/approaching codes. Also, constructing channel estimators with low complex-

ity and adequate mean square error (MSE) in SOC is a challenging task due to the

scarcity of realistic data sets. Some research studies have achieved good MSE results in

SOC using learning frameworks, but their designs often involve high-complexity schemes

that somehow undermine their applicability.

SOC stands out due to its ability to provide large information bandwidth, low

transmitted power requirements, enhanced directionality, and immunity to jamming—

critical attributes for modern communication systems. These features have driven global

interest, with space agencies worldwide integrating SOC into a variety of practical appli-

cations. For instance, SOC systems have been successfully employed for communication

between geostationary Earth orbit (GEO) satellites and ground stations. Remarkable

demonstrations, such as the Mars laser connectivity project, have achieved data trans-

mission rates of 10 Mbps between Earth and Mars, showcasing the potential of SOC

2



for interplanetary communication [2]. Additionally, the first-ever two-way optical com-

munication between high-altitude aircraft and a GEO satellite and NASA’s Laser Com-

munication Relay Demonstration highlight SOC’s transformative impact on near-Earth

and deep-space missions [3].

One of the fundamental aspects of SOC is its reliance on intensity modulation

and direct detection (IM/DD), a modulation technique that simplifies implementation

while eliminating the need for more complicated coherent detection [3]. Laser diodes

modulate the data by controlling light intensity, ensuring a proportional relationship

between the transmitted signal and light intensity. At the receiver, a photodiode de-

tects the signal and converts it directly into a current. However, SOC systems face

unique challenges, such as the need for high photon efficiency and peak power capa-

bility in long-distance laser transmissions to achieve acceptable BER. The design of

lasers with narrow linewidths, high beam quality, and low modulation rates is critical

to overcome these hurdles [3]. Moreover, while SOC shares some characteristics with

OWC, such as using lasers as optical transmitters, it operates under distinct constraints.

For downlink channels, geometric beam divergence leads to signal loss, but atmospheric

effects are relatively minimal, given the predominantly non-atmospheric propagation

path. In contrast, uplink channels face significant challenges due to atmospheric turbu-

lence, spatial and temporal fluctuations, and pointing instability caused by refractive

index variations. During satellite-to-ground downlink transmissions, beam divergence

loss dominates, with only minor beam steering variations contributing to additional loss.

Notably, atmospheric turbulence effects are generally small for downlink propagation,

3



as the beam traverses a non-atmospheric path until reaching approximately 30 km from

the Earth’s surface [3].

In conclusion, the advancements in SOC are not merely theoretical pursuits—

they are key enablers of future communication networks that span beyond Earth, offer-

ing unprecedented opportunities for secure, reliable, and high-capacity communication

in both near-Earth and deep-space environments.

Researchers are increasingly exploring the use of deep learning (DL) tech-

niques in physical layer communication networks. This integration has led to significant

progress in coding and decoding, modulation classification, channel estimation, and

equalization [4–8]. AEs have demonstrated strong performance as an end-to-end (E2E)

approach in OWC, particularly in point-to-point SOC. A study on AE-based OWC sys-

tems [6] showed that AEs can outperform hamming codes for BER, even in the presence

of imperfect channel state information (CSI). In [7], AEs were shown to optimize both

transmitter and receiver components, achieving satisfactory BER performance across

interference channel (IC).

1.2 Related State of the Art

In this section, we explore the latest advancements in symbol detection for

SOC systems. Symbol detection plays a crucial role in ensuring reliable and efficient

data transmission in SOC, where unique challenges such as atmospheric turbulence,

signal attenuation, and pointing errors often degrade signal quality. Traditionally, sym-

4



bol detection in OWC systems has been achieved through classical methods, including

channel modeling, modulation and coding techniques, and channel estimation. However,

with the advent of machine learning (ML) and DL technologies, AI-based methods such

as AEs and deep neural networks (DNNs) are now being leveraged to enhance symbol

detection accuracy and robustness. These approaches aim to address the complexi-

ties of SOC by adapting to dynamic communication environments, providing improved

performance over conventional methods.

We will briefly explain how these recent AI-driven techniques have signifi-

cantly advanced symbol detection capabilities in SOC systems. In particular, end-to-

end learning frameworks, including AEs, have emerged as powerful tools for structuring

NNs tailored to the specific challenges of SOC, such as noise and turbulence. In ad-

dition, attention-based models and convolutional neural networks (CNNs) are used to

improve channel estimation and noise suppression. These DL techniques, along with

novel hybrid model-based methods, demonstrate promising results in reducing BER

and achieving more resilient communication links in SOC. This shift towards AI-centric

solutions marks a substantial progression in SOC symbol detection, aligning with the

growing demands for more reliable and adaptive communication networks across space

and terrestrial applications.

1.2.1 Symbol Detection

There exists a wide body of work related to OWC in general and SOC in par-

ticular. This work can be categorized mainly in the following areas: channel modeling,

5



modulation, and coding, channel estimation, and learning-based design leveraging arti-

ficial intelligence (AI) methods such as autoencoder (AE) and/or DNN [7,9]. Since the

scope of the current work contributes to all these areas, we briefly overview the most

notable related state-of-the-art next.

1.2.1.1 Space Optical Channel Model

SOC channels are subject to a unique set of impairments such as pointing er-

rors, beam divergence, atmospheric turbulence, and scattering which are not present in

terrestrial channels. Pointing errors arise due to misalignments between the transmit-

ter and receiver, often caused by platform vibrations, mechanical jitter, or atmospheric

turbulence-induced beam wander. This misalignment reduces the received signal power

and increases the bit error rate. Effective acquisition, tracking, and pointing systems are

critical to maintaining alignment, particularly for long-range systems such as satellite-

to-ground links in SOC. The severity of pointing errors is statistically modeled using

distributions like Gaussian or Rician to predict and mitigate their effects [10]. Beam

divergence occurs because as the optical beam propagates through the atmosphere, its

energy spreads, and the power density at the receiver becomes reduced. While a nar-

row beam can minimize divergence losses, it requires precise alignment to avoid link

failure due to pointing errors. Conversely, a wide beam reduces alignment sensitivity

but increases geometrical losses. Balancing beam divergence involves careful consid-

eration of the system’s link distance, required reliability, and transmitted power [10].

Atmospheric turbulence and scattering add further complexities to SOC systems. Tur-

6



bulence is caused by temperature and pressure variations along the propagation path

which leads to scintillation, beam wander, and spreading, significantly degrading signal

quality. Typically, the Gamma-Gamma distribution is used to model the strong atmo-

spheric turbulence regime, and the Log-normal distribution is used to model the weak

turbulence regime. Scattering, whether Rayleigh or Mie, depends on the size of atmo-

spheric particles, such as rain, fog, or dust [11] that cause additional attenuation and

signal distortion. These impairments necessitate advanced mitigation strategies such as

adaptive optics, diversity techniques, and channel coding to ensure robust communica-

tion over turbulent atmospheric channels.

In [12], the authors integrated a hybrid RF/FSO lunar communications sys-

tem that employed micro satellites in a Low Earth Orbit (LEO) constellation for com-

munications with lunar missions. During this implementation, the channel modeling

for the entire system is performed in the Analytical Graphics System Tool Kit (STK)

simulator. Moreover, the STK program allows the accessibility to the propagation de-

lay, transmission loss, and signal-to-noise ratio (SNR) measurements. Furthermore,

the STK program is utilized to configure two ground stations and two satellites for

point-to-point communications in order to create an SOC system [13]. The authors

in [14] consider utilizing a Log-normal distribution for OWC to accurately represent

the atmospheric modeling in weak turbulence regime. On the other hand, the Gamma-

Gamma distribution is more suitable for strong turbulence regime considering weather

attenuation, random fluctuations in satellite position/orientation and atmospheric tur-

bulence [15]. The authors in [16] proved that double Generalized Gamma distribution
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is an appropriate statistical model to represent the irradiance fluctuations in strong and

weak turbulence regimes for OWC, as it generalizes many existing turbulence channel

models and fits excellently to the published plane and spherical waves simulation data.

On the contrary, laser beam pointing errors arise when the transmitter and receiver are

in motion, an accurate acquisition, tracking, and pointing system (APT) is necessary

for proper reception of the signal in inter-satellite communication [17]. In the down-

link SOC channel, the pointing error can be easily mitigated due to the capability and

stability of the ground station [3].

1.2.1.2 Modulation and channel coding

Coherent communication techniques involving modulation and detection of the

amplitude and phase of the optical carrier can be used for SOC. However, incoherent

modulation as IM/DD is preferred due to its simplicity, cost-effectiveness, and ease of

implementation while having an input constraint of real and positive-valued modulating

signal (electrical current) [18]. It has been shown that the modulation scheme generated

from the AEs-based OWC in [19] and [6] has a similar output constellation as the IM/DD

when trained on the AWGN channel with and without fading conditions. On the other

hand, for increasing the number of accessible modes in limited optical communication

systems, the authors in [20] propose fractional modulation of spatial modes of Bessel-

Gaussian laser beams. To accomplish high-resolution identification of fractional modes,

a convolutional NN decoder is specifically used. Narrowing down to channel coding

schemes in SOC, the convolutional codes have been shown to outperform the Hamming
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and Bose-Chaudhuri-Hocquenghem (BCH) linear block codes for various code rates

while maintaining the same order of complexity [21]. Authors in [6, 19] applied the

channel coding schemes via deep learning (DL) AEs and achieved similar performance

to the Hamming codes in OWC. Instead of adding redundant bits as conventional coding

schemes, researchers utilize the AEs by applying the compression at the encoder and

expansion at the decoder.

1.2.1.3 Channel estimation

Attention-based models have emerged as a transformative paradigm in deep

learning, making notable inroads into various domains. Particularly in the realm of

channel estimation, attention mechanisms have shown the potential to address some

challenges in communication systems [22–24]. Authors in [22] proposed the Chan-

nelformer, a neural framework tailored for enhanced orthogonal frequency-division mul-

tiplexing (OFDM) channel estimation in downlink scenarios. This model capitalizes on

self-attention for input precoding and seamlessly integrates multi-head attention with

residual convolution. Alongside this, they have incorporated a novel weight pruning

technique, driving the architecture towards a leaner, high-performance, low-latency so-

lution that reduces parameters by up to 70%. In addition, authors in [24] put forth

a non-local attention methodology explicitly for OFDM channel estimation in a Mul-

tiple Input, Multiple Output (MIMO) system. This NN-centric approach harnesses

frequency-specific attributes in a data-driven strategy, paving the way for optimized

pilot design and more accurate channel estimation compared to linear minimum mean
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square error (LMMSE) estimation. On the other hand, for slow-fading channels where

channel characteristics largely remain steady over time, the utilization of attention mech-

anisms may not be needed given the low number of pilots needed and the absence of

interpolation schemes. Communications systems that rely on least square (LS) channel

estimators tend to perform poorly in the low SNR regime [25]. This poor performance is

due to the fact that the LS estimation process does not suppress the effect of noise. Com-

pared to LS, minimum mean square error (MMSE) channel estimator mitigates the noise

effect and achieves the optimal performance, in terms of mean square error (MSE) [26].

However, MMSE channel estimation requires computing the cross covariance matrix

between the received signal and the time-domain channel, thus inducing an increased

complexity [26]. To undertake this issue, the authors in [27] proposed a DL-enabled

image denoising network to acquire knowledge from a huge set of training data and to

compute an estimate of the massive MIMO visible light communication (VLC) channel,

where the channel matrix is identified as a two-dimensional natural image since the

channel has sparsity. Furthermore, it was shown in [28] that a NN with one hidden

layer and sigmoid activation functions can be trained to get an accurate CSI estimates

in Log-normal fading conditions. However, the system therein is not practical as it needs

a separate NN for every training SNR. In [25], the authors propose employing only one

NN to rectify the LS estimation error. The results in [25] show that their NN design

outperforms LS estimator but it is simpler in implementation compared with [28]. De-

spite their accurate CSI prediction results, the authors in [25] relied on an unrealistic

assumption that all the input samples are already known in advance for the testing
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phase. This assumption will lead to significant delay in the processing of the signal in

the wireless communication system. The design of channel estimator NN should have

adequate performance on every code word, to fulfill the real-time requirement of 5/6G.

1.2.1.4 End-to-end communication systems

AEs are considered as unsupervised DNNs where the input and predicted out-

put aim to be identical. The input is transformed into a compressed code referred to

as the latent space, using the end-to-end learning concept, which can then be used to

reconstruct the input data [29]. In the landmark paper [7], the AE-based communica-

tions system was introduced and showed adequate performance compared to uncoded

modulations employing maximum likelihood detector. Their approach considered single

and multi-user communications over fading RF channel, and led to the large amount

of work in end-to-end communications systems that followed. In [7], the authors have

shown that it is feasible to create a point-to-point communications system in which

NNs handle all of the physical layer computation over a practical channel. Training a

system as an AE is a good approach for any stochastic channel model; nevertheless,

substantial effort is needed before the system can be employed for transmission over the

air [9]. On the other hand, Turbo AE is a fully end-to-end cooperatively trained neural

encoder and decoder inspired by the turbo coding scheme, and its performance under

canonical channels is close to that of the convolutional codes when using small block

lengths [30]. The authors in [29], proposed Turbo AE with average power constraints

instead of peak intensity constraints required by OWC in general and SOC in partic-
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ular for THz communications. In OWC systems, performance of the AEs has shown

comparable performance to Hamming codes in point-to-point communications [19]. It

should be noted that the study in [19] only assumed the presence of an additive white

Gaussian noise (AWGN) channel and did not investigate the performance of AE in

fading channels. The authors in [6] expanded the work in [19] and incorporated the

turbulence channels, resulting in a performance that is comparable to that of Hamming

codes using the MMSE estimator for both perfect and imperfect CSI. The MMSE esti-

mator can be used with AEs, although this strategy would increase system computation

complexity [26]. On the other hand, the DL models created in [6,19,26] perform worse

in terms of BER than convolutional codes.

1.2.2 Non-differentiable Channels

In communication systems, deep learning-based AEs are gaining attention

for their potential to jointly optimize the transmitter and receiver components in an

end-to-end learning framework. A key requirement for training these systems using

gradient-based methods, such as backpropagation, is the differentiability of all system

components, including the channel model. However, certain practical channels, such

as those characterized by Poisson statistics or with quantization effects, are inherently

non-differentiable. This non-differentiability poses a significant challenge, as it prevents

the straightforward application of gradient-based optimization techniques essential for

training.

The challenge of non-differentiable channels has prompted the development of
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alternative approaches to enable effective training under these conditions. Some meth-

ods attempt to approximate the non-differentiable channel with a differentiable model,

such as using a Gaussian distribution to approximate a Poisson channel. While ef-

fective in specific scenarios, these approximations can fail to generalize across varying

channel conditions. Recent advances, including model-free and reinforcement learning

techniques, have been proposed to bypass the need for differentiable channels, enabling

end-to-end optimization by approximating gradients or by using non-traditional training

algorithms. These advancements pave the way for training AEs in real-world communi-

cation environments where non-differentiability is a critical factor. When training AEs,

both the channel model and all the layers of the AE must be differentiable. This poses

a challenge, as some channel models are non-differentiable. In SOC, the received optical

signal is often very weak, leading to the consideration of photon counting statistics. The

Poisson distribution accurately represents the probability distribution of the number of

photon detections in a given time period. One downside is that it cannot be implemented

as an AE channel on its own due to its non-differentiability. Nevertheless, a significant

portion of DL literature tends to avoid considering the Poisson channel [1,6,19,31] due

to its non-differentiable nature, making it impractical for calculating gradients during

the backpropagation process.

In [32], the authors address the non-differentiability of the Poisson channel by

approximating it with a Gaussian distribution, which enables the use of gradient-based

methods for training. This approach leverages the Central Limit Theorem, whereby the

sum of a large number of independent Poisson-distributed events can be approximated
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by a Gaussian distribution, especially in high photon-counting scenarios. The Gaussian

approximation provides a differentiable substitute, allowing AE-based communication

systems to train on channels that would otherwise be inaccessible due to the non-

differentiable nature of the Poisson process.

However, this Gaussian approximation has limitations. While it works well

under high photon-count conditions, where the Gaussian model aligns closely with the

Poisson distribution, it becomes less accurate in low photon-count scenarios, which are

common in low-signal or long-distance communication environments. In these cases,

the discrete, photon-based nature of the Poisson process dominates, and the continuous

Gaussian model fails to capture the true channel characteristics. As a result, using

a Gaussian approximation may lead to suboptimal training and degraded system per-

formance in scenarios that deviate significantly from the assumptions required for the

approximation, highlighting the need for training methods that do not rely on such

approximations.

1.2.3 Multiple Access/Interference Channels

Multiple Access Channels (MAC) and Interference Channels (IC) are two key

multi-user communication scenarios where multiple users transmit information over a

shared medium, leading to interference and competing demands on the channel. In a

MAC, several users transmit to a single receiver, necessitating strategies for managing

interference and resource allocation to maintain reliable communication for all users.

Interference channels, on the other hand, involve multiple transmitters and receivers,
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where each receiver is interested in the message from its corresponding transmitter, but

may also receive interfering signals from other transmitters. Addressing interference and

optimizing transmission and reception in both MAC and IC scenarios is crucial for en-

hancing the overall network performance, especially in terms of BER and computational

efficiency.

MAC: A common scenario in wireless communications is when multiple trans-

mitters send information to a single receiver, such as with the uplink between mobile

phones and a base station, known as the multiple access channel (MAC). At the re-

ceiver’s end, the received signal is represented as:

y = h1x1 + n1 + h2x2 + n2 + · · ·+ hmxm + nm (1.1)

In order to decode each user’s individual data bits, access schemes must be employed.

Traditionally, schemes such as frequency division multiple access (FDMA), time divi-

sion multiple access (TDMA), and code division multiple access (CDMA) were used,

followed by orthogonal multiple access (OMA) schemes like orthogonal frequency divi-

sion multiple access (OFDMA) and single-carrier FDMA (SC-FDMA). Such orthogonal

designs such as OFDMA and SC-FDMA provide the advantage of having no mutual

interference among the receiving user equipment (UE), meaning it is simple to decode

their respective messages with low error. In recent years however, much research has

been done on non-orthogonal multiple access schemes (NOMA) in order to share the

same resources in time, frequency, and/or code in order to acheive better spectral effi-
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ciency. Generally, NOMA schemes are one of two sub-schemes: power-domain NOMA

(PD-NOMA) and code-domain NOMA (CD-NOMA). In PD-NOMA, different users’

signals are transmitted with at different power levels, allowing for an iterative decoding

process at the receiver.

IC: When two transmitter-receiver pairs are communicating at the same fre-

quencies, the respective messages can interfere with each other at the receivers. The

received signals at the two receivers can be represented as:

y1 = h11x1 + h12x2 + n1

y2 = h22x2 + h21x1 + n2

(1.2)

where y1, y2 are the received signals at Receiver 1 and 2, respectively, x1, x2 are the

respective transmitted signals, h11, h22 are the channel coefficients for the direct paths

between each transmitter-receiver pair, h12, h21 are the channel coefficients for the cross

paths, and n1, n2 is the additive noise at the receivers. This issue of multi-user interfer-

ence becomes prevalent when dealing with dense wireless networks that have multiple

transmitter-receiver pairs in close proximity to one another and are using the same

frequency band.

Recent work has demonstrated the potential of AEs to optimize both the trans-

mitter and receiver components in these multi-user settings. In [7], AEs achieved sat-

isfactory BER performance in an interference channel by jointly optimizing the com-

ponents across the IC. Similarly, [19] explored the feasibility of AEs in OWC systems

over a MAC channel, where AEs were compared with traditional time-sharing methods.
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Additionally, [33] introduced a sparse AE, incorporating sparsity regularization to im-

prove BER performance while reducing computational complexity in the MAC setting.

However, while these AE-based approaches show promise, they each have certain limi-

tations. For instance, [19] restricts the AE model to an AWGN channel without fading,

limiting its generalizability to real-world IC scenarios. In [33], although computational

efficiency is prioritized through sparsity, the BER performance does not yet surpass

that of model-based schemes. These challenges highlight the need for further refine-

ment in AE designs to enhance both BER performance and computational efficiency

across varying multi-user channels.

1.3 Thesis outline

The outline of this thesis is shown in Fig. 1.1 and is organized as follows:

Chapter 2 covers the fundamentals of DL and AEs. Chapter 3 introduces the proposed

AE model for symbol detection and channel estimation in SOC, along with results for a

multi-code rate AE model specific to SOC. Chapter 4 presents the proposed AE model

tailored for non-differentiable channel models. Chapter 5 details the AE model designed

for multiple access and interference channels in SOC. Lastly, Chapter 6 concludes the

thesis with a summary of findings and suggestions for future research directions.
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Figure 1.1: Orgnizational outline of the thesis.

1.4 Key contributions

The work in the thesis presents significant advancements in machine learning

frameworks for SOC systems, focusing on low-complexity, high-performance solutions

for symbol detection and channel estimation. By leveraging NNs and AE designs, this

research addresses challenges in non-differentiable channels, scalability, and adaptability

across various fading conditions. Key innovations include robust NN-based channel esti-

mators, enhanced AE frameworks with normalization techniques, and novel approaches

to optimize performance under imperfect CSI. These contributions collectively demon-

strate improved BER performance, computational efficiency, and scalability in SOC
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environments, pushing the boundaries of reliable data transmission. A summary of key

contributions are listed below:

• Developed a single NN-based channel estimator robust across a range of SNRs,

achieving performance comparable to the minimum mean square error (MMSE)

estimator while simplifying complexity [34] (Chapter 3).

• Proposed a novel AE framework incorporating layer normalization for encoders

and decoders, achieving superior BER performance under both perfect and im-

perfect CSI conditions [1, 34] (Chapter 3).

• Combined the proposed NN-based channel estimator and AE frameworks to de-

liver an integrated, low-complexity deep learning solution for symbol detection

and channel estimation in SOC [34] (Chapter 3).

• Designed an AE framework capable of training and handling multiple code rates

simultaneously across diverse fading channels, optimizing scalability and adapt-

ability for SOC environments (Chapter 3).

• Addressed non-differentiability in Poisson SOC channels by integrating covari-

ance matrix adaptation evolution strategy (CMA-ES) with AEs, achieving near-

capacity BER performance without Gaussian approximations [35] (Chapter 4).

• Enhanced AE designs for MAC and IC settings, introducing normalization lay-

ers to significantly improve BER performance while maintaining computational

efficiency [31] (Chapter 5).

19



Chapter 2

Deep Learning Autoencoders

2.1 Artificial neural networks

Neural networks (NNs) are the best known models in deep learning, however

only NNs with a high enough number of ’hidden’ layers can be regarded as ’deep’ NNs

(DNNs). DNNs allow for automatic feature extraction, and by adding more layers and

more units, or neurons, within a layer, a deep NN can represent functions of increasing

complexity [36, Ch. 6].

Feed-forward NNs (FNNs) form the basis of deep learning NNs. A FNN with

L layers describes the mapping of an input vector x0 ∈ RN0 to an output vector xL ∈

RNL given by f(x0; θ) : RN0 → RNL , where θ is the set of all the parameters in the

network θ = {θ1, . . . , θL}. The FNN computes the mapping for each layer ℓ iteratively:

xℓ = fℓ(xℓ−1; θℓ), ℓ = 1, . . . , L (2.1)
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where (2.1) is the mapping carried out at the ℓth layer. The parameters for the ℓth layer

is θℓ = {Wℓ,bℓ}, where Wℓ is the matrix representing the weights of the connections

between neurons of layers ℓ − 1 and ℓ, and bℓ is a vector representing the bias of each

neuron in the ℓth layer.

The goal of the FNN is to select a mapping function f that approximates an

ideal mapping f ⋆, learning the parameters θ that outputs a predicted value xL that is

as close to the ideal output x⋆L as possible, known as minimizing the network’s loss L(θ)

which will be discussed below.

The FNNs hidden layers lie between the input layer (ℓ = 1) and output layer

(ℓ = L), and they are what apply the transformations and feature extraction from the

input vector x0. The number of hidden layers in the FNN is known as the ’depth’

of the network, and generally speaking, having more hidden layers provides a greater

ability for extracting higher-level information from the input data. However, having

unnecessary hidden layers can lead to overfitting the model, meaning that it will learn

the training data well, but will not be able to generalize to new, unseen data. Overfitting

is observed as having a large difference between the training set error and the test set

error [36, Ch. 5], and will be discussed later in this section.
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2.2 Deep learning

2.2.1 Multilayer perceptron

Multilayer Perceptrons (MLPs) represent one of the foundational structures in

deep learning, essential for nonlinear mappings between input and output data. Specif-

ically, MLPs are employed in SOC for optimizing nonlinear functions associated with

signal processing tasks such as channel estimation, symbol detection, and signal regen-

eration. This section delineates the mathematical structure and underlying principles

of MLPs and their applicability to SOC systems.

An MLP is structured as a fully connected feedforward neural network com-

posed of an input layer, multiple hidden layers, and an output layer. Given an input

vector x ∈ Rn, the MLP model seeks to approximate the target function through a

series of nonlinear transformations parameterized by weight matrices and bias vectors.

For a L-layer MLP with dl neurons, the output of each layer l is computed as:

a(l) = σ
(
W(l)a(l−1) + b(l)

)
, (2.2)

where W(l) ∈ Rdl×dl−1 and b(l) ∈ Rdl are the weight matrix and bias vector of layer l,

respectively, σ(·) denotes the non-linear activation function, and a(l−1) represents the

output (or ”activation”) of the previous layer. The output layer activation, a(L), is the

final output of the MLP.

The activation function σ(·) is critical for introducing non-linearity into the
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model, allowing the MLP to capture complex functional mappings. Typical choices

include the Rectified Linear Unit (ReLU):

σ(z) = max(0, z), (2.3)

or other functions such as the sigmoid or hyperbolic tangent (tanh), depending on the

nature of the optimization problem.

2.2.2 Backpropagation and Gradient Descent Optimization

The MLP is trained by minimizing a loss function L, which quantifies the

discrepancy between the predicted output ŷ = a(L) and the true output y over N

training samples. For regression-based tasks typical in physical layer optimization, MSE

is a common choice:

L(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi)2 . (2.4)

Gradient descent optimization is applied to adjust the weights and biases in

each layer. The gradient of the loss with respect to the weights W(l) and biases b(l) in

layer l is computed using the backpropagation algorithm, formulated as follows:

∂L
∂W(l)

=
∂L
∂a(L)

·
L∏

k=l+1

σ′(z(k))W(k) · σ′(z(l))a(l−1)T , (2.5)

∂L
∂b(l)

=
∂L
∂a(L)

·
L∏

k=l+1

σ′(z(k))W(k) · σ′(z(l)), (2.6)

where σ′(·) denotes the derivative of the activation function. This chain of gradients
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enables efficient weight updates for each layer during training, leading to convergence

on the optimal weights for signal processing.

The backpropagation algorithm plays a crucial role in efficiently computing

the gradients needed for training, making it one of the most important innovations in

neural network optimization. The gradients calculated for each layer are influenced by

the activation functions used in the network, with commonly used functions such as

ReLU and sigmoid offering distinct trade-offs. ReLU, for instance, introduces sparsity

in the network by zeroing out negative values, which can improve convergence speed

but may suffer from the “dying neuron” problem if gradients become permanently zero.

On the other hand, the sigmoid function provides smooth gradients but can lead to

vanishing gradients in deep networks. Addressing these issues through careful selection

or design of activation functions is crucial for ensuring effective signal processing in

SOC tasks, where computational resources and performance constraints are stringent.

The efficiency and robustness of the MLP training process are further enhanced by em-

ploying techniques like regularization and normalization. Regularization methods, such

as L1/L2 penalties or dropout, help prevent overfitting by constraining the network’s

complexity or introducing stochasticity during training. Batch normalization, on the

other hand, normalizes layer inputs, stabilizing the training process and enabling the

use of higher learning rates. Together, these strategies ensure that the MLP generalizes

well to unseen data, making it a reliable tool for SOC-based signal optimization tasks.
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2.2.3 Autoencoder

While Multilayer Perceptrons (MLPs) are powerful for modeling complex non-

linear mappings, they lack the inherent structure required to compress and reconstruct

high-dimensional data efficiently. In the context of telecommunications, where the op-

timization of signal representation and noise robustness is paramount, an alternative

architecture is necessary to derive low-dimensional representations that retain essential

signal features. AEs provide such a framework, excelling in capturing latent structures

within data, which is crucial for tasks in wireless communications.

As shown in Fig. 2.1, an AE is an unsupervised neural network model de-

signed to learn a compressed representation of input data. It consists of two primary

components: an encoder network that maps the input x ∈ Rn to a lower-dimensional

latent space z ∈ Rk (with k < n), and a decoder network that reconstructs the original

input from this latent space. Formally, the encoder and decoder functions are defined

as:

z = fenc(x) = σ (Wencx+ benc) , (2.7)

x̂ = fdec(z) = σ (Wdecz+ bdec) , (2.8)

whereWenc, benc, Wdec, and bdec are the weights and biases of the encoder and decoder,

respectively, and σ(·) is the activation function. The optimization objective for an AE

is to minimize the reconstruction error, typically formulated as the MSE between the
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Figure 2.1: Structure of Standard AE in wireless Communications

input x and the reconstructed output x̂:

LAE(x, x̂) =
1

N

N∑
i=1

(xi − x̂i)2 . (2.9)

In SOC, AEs enable effective compression and feature extraction by identifying

latent representations that are resilient to noise and channel distortions. This capability

is particularly advantageous for channel equalization, where high-dimensional received

signals may be projected into a low-dimensional space that preserves essential signal

features while discarding noise. Additionally, the encoder-decoder structure allows the

system to learn representations that are inherently robust, a critical factor in miti-

gating the effects of atmospheric turbulence, scintillation, and signal fading in optical

communication channels.
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2.2.4 End-to-End physical layer learning with Autoencoders

When integrated into an end-to-end framework, AEs can optimize both the

transmitter and receiver parameters by structuring the latent space such that it mini-

mizes channel-induced degradation. In a typical setup, the encoder network functions

as a virtual transmitter, compressing the data prior to transmission, while the decoder

serves as a virtual receiver, reconstructing the data post-channel. This approach not

only improves data fidelity but also allows for adaptive modulation, where the latent

space can dynamically adjust based on channel conditions.

By leveraging AEs in this capacity, the system can achieve a more effective

end-to-end optimization of the physical layer, yielding superior performance in terms

of signal fidelity, spectral efficiency, and resilience to channel impairments compared to

standard MLP-based models.
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Chapter 3

Symbol Detection and Channel

Estimation for Space Optical

Communications Using Neural Network

and Autoencoder

3.1 Motivation

This chapter addresses three critical challenges in SOC systems, presenting

novel contributions to advance their efficiency, adaptability, and scalability. One of

the significant challenges in SOC systems is designing a NN-based channel estimator

that performs as well as the MMSE estimator. Traditional approaches typically require

creating separate NNs for each SNR level, which increases system complexity and com-

putational overhead. This approach is impractical in dynamic communication scenarios
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where channel conditions vary frequently. A scalable and efficient channel estimator

is essential for maintaining reliable communication under such conditions. To address

this, we propose a novel NN-based channel estimator trained for a single SNR. This

solution eliminates the need for multiple NNs, reduces complexity, and ensures adapt-

ability, achieving performance comparable to the MMSE estimator while being more

efficient for real-world applications.

Another major challenge in traditional model-based communication schemes is

the independent optimization of the transmitter and receiver. While effective in specific

scenarios, this approach often results in higher system complexity and increased latency

due to the iterative processes required to align the two components. This limitation

becomes especially problematic in SOC systems operating under atmospheric turbu-

lence, where rapid adjustments are necessary to maintain communication quality. In

contrast, joint optimization of the transmitter and receiver offers a more streamlined

approach. By treating the communication chain as a single, unified system, joint op-

timization reduces complexity, lowers processing delays, and improves adaptability to

turbulence-induced impairments. In this chapter, we extend the principles discussed in

Chapter 2 to develop an AE-based communication system. This end-to-end learning

framework leverages deep learning techniques to enable joint optimization, providing

robust performance under severe turbulence while significantly enhancing efficiency.

The third challenge lies in achieving scalability for multi-code rates. Tradi-

tional systems often require separate designs for each code rate, necessitating distinct

AEs for different rates. This approach increases system complexity and limits scala-
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bility, particularly in multi-user environments or scenarios requiring dynamic data rate

adjustments. Scalability is critical for SOC systems to handle varying operational de-

mands efficiently. To overcome this, we propose a single AE capable of operating across

multiple code rates simultaneously. This unified design reduces complexity, enhances

flexibility, and ensures efficient operation in dynamic communication environments, of-

fering a practical solution for multi-user SOC systems.

By addressing these challenges, this chapter provides a comprehensive frame-

work that advances the state of the art in SOC systems. Our contributions include

a robust NN-based channel estimator for single SNR optimization, an AE-based joint

optimization approach for the transmitter and receiver, and a scalable AE design for

multi-code rates. Together, these innovations enable efficient, adaptable, and scalable

solutions for the unique challenges of SOC systems operating under real-world condi-

tions.

3.2 SOC channel model

We define the point-to-point downlink channel between GEO satellite and a

ground station. Following this, we will describe a separate setup for a downlink channel

between a LEO satellite and a ground station. The STK simulator facilitates precise

channel modeling for the point-to-point SOC channels [13, 37, 38]. In the system, the

ground station holds the receiver antenna gimbal and avalanche photo-detector. Addi-

tionally, the GEO satellite holds the laser transmitter and the gimbal for the transmitter
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antenna. The gimbal system can be used to support and stabilize transmitters and re-

ceivers. The laser transmitter is modeled as a Gaussian beam model. The laser utilizes

IM/DD, where the light intensity is modulated as an information-carrying signal, with

data recovery accomplished by the detection of incoming light intensity. In addition,

the generated modulating signal (current) is real and positive as a result of this pro-

cedure. This is a significant difference from RF coherent communications, where the

modulated signal is complex-valued [18]. Furthermore, the modulated signal in IM/DD

is peak-constrained for reasons of operation, safety, and illumination [18].

Encoder DL with
parameters 


Multi-decoder DL with 
parameters


Reconstructed data

Channel
estimation


NN (    )


Joint Optimization

GEO satellite Ground station

Fading Channel 

 proposed from STK


Figure 3.1: An overview of the system implementation for symbol detection and channel
estimation for SOC channel. The transmitter at the GEO satellite employs an encoder
based-GEO satellite to convert a stream of k bits b into a codeword xu of u coded
symbols. The encoded vector xu satisfies the positivity and peak criterion conditions.
The first symbol xu(1) = xp is assumed a pilot, which passes over a Log-normal fading
channel verified from STK. At the receiver side (the ground station), the proposed
channel estimator NN(ĥ) utilizes the first element yu(1) = yp of the received sequence

yu ∈ Ru in order to retrieve an estimated version of the channel gain ĥ. Afterwards,
the muti-decoder AE makes use of ĥ and the received sequence yu to derive an estimate
for the transmitted symbols x̂u and hence the recovered message b̂.

The Log-normal distribution is typically used to describe the weak atmospheric
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turbulence regime and is the best distribution fitting that STK has recommended for

the GEO to ground SOC channel. Changes in atmospheric temperature and pressure

at various points along the signal’s propagation are the cause of atmospheric turbulence

[39]. The probability density function (PDF) for the Log-normal distribution of the

channel gain is given by [14]

fh(h) =
1

hσl
√
2π

exp

{
−(lnh− µ)2

2σ2l

}
, (3.1)

where h represents the positive channel gain, µ represents the mean, and σl denotes the

standard deviation. Next, we outline the downlink configuration from a LEO satellite to

a ground station. Within this context, the presence of atmospheric turbulence leads to

the scintillation effect, causing variations in the received signal power. Under conditions

of strong turbulence, the Gamma-Gamma (GG) distribution emerges as a suitable model

to represent the channel model in such scenarios [40, 41]. The GG model arises when

we assume that the turbulence-induced log-intensity fluctuations can be described by

the product of two statistically independent Gamma-distributed processes, typically

associated with the strong turbulence effects.

The probability density function (pdf) of the Gamma-Gamma distribution is

described as [40]

fh(h) =
2(αβ)

α+β
2 h

α+β
2

−1

γ(α)γ(β)
Kα−β(2

√
αβh), (3.2)

where The parameters α and β represent the shape factors of the distribution, stemming

from the individual shape parameters of the two Gamma distributions associated with
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turbulence effects. The term Kα−β is identified as the modified Bessel function of the

second kind with order α−β, while γ(·) denotes the gamma function. Furthermore, the

received sequence yu is described as

yu = hxu +wu, (3.3)

where wu ∼
(
0, σ2wIu

)
is the Gaussian noise and σ2w is the noise variance. The vectors

yu, xu, and wu have dimensions of Ru, where u represents the length of the sequence of

symbols. In our model, we consider both perfect and imperfect CSI for the Log-normal

fading channel.

The average amount of energy per bit to noise power spectral density ratio Eb
No

in on-off-keying (OOK) is given by [42]

Eb
No

=
A2

4σ2w

u

k
, (3.4)

where A is the peak intensity, k is the the message bits and u is the length of coded

symbols.

3.3 Proposed End-To-End Learning-Based Design

As depicted in Fig. 3.1, we take into account an SOC system in which a

transmitter located in the GEO satellite sends the message b ∈ B,B = {1, 2, . . . , B} to

a certain receiver over a Log-normal fading channel. To model the channel, we use the
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STK simulator, with the encoder on a GEO satellite and the receiver at a ground station.

The message b is first fed into the DL encoder NN producing xu. The elements of xu

are represented as x(i), 1 ≤ i ≤ u, which meets both the peak and the non negativity

constraints required by the optical channel’s physical characteristics, i.e., 0 ≤ x(i) ≤ A.

The data rate is defined as k
u bits/channel use, where k = log2(B) bits are sent through

u coded symbols. Additionally, the encoded vector xu is transmitted through a SOC

channel. The resulting sequence is denoted as yu ∈ Ru. The received sequence which

can be obtained in accordance with the probabilistic law given by

P (yu | xu, h) , (3.5)

where h ∈ R+ denotes the optical fading channel produced by STK and it is considered

to remain constant through the transmission of the sequence xu. The result of P (yu |

xu, h) is a conditional probability distribution that describes the likelihood of receiving

a particular sequence yu ∈ {y1, y2, y3, . . . , yu} given that the transmitted input sequence

xu ∈ {x1, x2, x3, . . . , xu} and the channel fading coefficient h. Understanding P (yu |

xu, h) allows you to build decoders that can perform as efficiently as possible given

the characteristics of the communication channel, thereby enabling more reliable and

robust communication systems [43]. In this chapter, we argue that the proposed channel

estimator NN can be trained to acquire the knowledge of the transition probability law

for an input-output model that could be governed by (2), or could also be more general

as in (4) without an explicit law. The channel estimator NN is based on two inputs
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with a single NN whose parameters are tuned across a wide range of training SNRs.

Furthermore, we take into account a pilot-based channel estimation approach, wherein

the pilot symbol xp is used for channel estimation and is communicated as the first

symbol x(1) of the transmitted sequence, i.e., xp ≜ x(1). For symbols’ detection, we

propose the AE structure and we consider 3 cases: AWGN (no fading), fading with

perfect CSI at the receiver, and fading with imperfect CSI at the receiver. The proposed

AE is developed with multiple decoders along with a layered structure of encoders and

decoders that employs LN layers. Next, design details regarding the proposed NN-based

estimation and the AE-based detection are discussed.

Input layer
Hidden  layers  Output layer

ReLU

Channel estimation NN

ReLU

ReLU


ReLU

ReLU

ReLU

Ground station

M
SE

 lo
ss
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n

Figure 3.2: The implementation of the proposed NN used for channel estimation and
located in the Geo satellite. The inputs are the received pilot yp and the peak intensity
A. The NN is composed of two FC hidden layers. Each neuron is followed by ReLU
activation function for each layer. The output ĥ is an estimated version of the channel
gain

.
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3.4 Proposed NN Design for Channel Estimation

In this section, we present the proposed channel estimator NN NN(ĥ). Addi-

tionally, we derive the mathematical expression for the MMSE estimator in Log-normal

fading channel and apply it in both estimation and detection, as a benchmark. Al-

though, the MMSE estimator provides the optimal performance in terms of MSE, this

estimator has a considerable level of computational complexity and requires an explicit

input-output model like the one in (2). On the contrary, the proposed channel es-

timator NN is capable of predicting the CSI and obtaining equal performance as the

model-based MMSE estimator with far less complexity and without the need of an

explicit input-output model. In addition, the proposed channel estimator NN relies

on two inputs, and we train with a single NN whose parameters are adjusted across a

wide range of training SNRs as opposed to generating a separate NN for each possible

training SNR.

The proposed NN architecture: The proposed NN estimator is installed at

the GEO satellite. It is composed of two fully connected (FC) hidden layers, a rectified

linear activation unit (ReLU) activation function at each hidden layer, and a linear

activation function at the output layer. As shown in Fig. 3.2, the NN has two inputs:

the received signal yp ≜ y(1) and the peak intensity A.

Training methodology: The following steps generate the training data used

in channel estimation:

• We first generate the true channel coefficients based on Log-normal fading channel
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from (1), hn with 1 ≤ n ≤ Ns, where Ns is the number of training samples.

• We distribute the peak intensities uniformly and randomly of the Ns samples.

We then generate various peak intensity constraints A ∈ [Amin, Amax] to cover

a wide range of SNR values. In the training set, samples exhibiting high peak

intensity values have a higher probability of occurring, while samples with low

peak intensity are set to have a lower probability of occurring.

• The NN has two inputs: yp and A. To generate the first element of the received

pilot element y
(n)
p for the nth training sample, we substitute the corresponding

peak intensity A(n) and the true channel coefficients h(n) in (2).

• The label of the training data tuple is based on two inputs as
{
(y

(n)
p , A(n)), h(n)

}
,

where (y
(n)
p , A(n)) is the input tuple to the NN and h(n) is the target value for the

nth training sample.

3.4.1 Learning Algorithm

The proposed channel estimator NN only makes use of two inputs, and we

train with a single NN whose parameters are adapted across a wide range of training

SNRs as opposed to creating a new NN for each possible training SNR. There are

two phases to NN’s learning process: training and testing. The network model must be

trained in three steps before effective channel parameter estimation can be implemented.

The first step is to select the data samples to utilize. Second, the gradient descent

algorithm is used to calculate the partial derivative of the cost function by minimizing
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the difference between the output value and the target value. Specifically, its value

should be adjusted in the direction of the fastest descent of the error function, or the

direction of the negative gradient. Third, when the training data for an epoch is finished,

the validation data is used to determine the best model across all training iterations. In

Fig. 3.2, θlij corresponds to the weight of the link between the jth neuron in the (l−1)th

layer and the ith neuron in the lth layer. The lth layer pre-activation is represented by

z
[l]
i =

∑
j

θ
[l]
ij a

[l−1]
j + b

[l]
i , (3.6)

where b
[l]
i represents the bias of the ith neuron in the lth layer and a

[l−1]
j is the

activation of the jth neuron in the (l − 1)th layer. Employing the rectified linear unit

(ReLU) activation function, the neuron output activation can be rewritten as

a
[l]
i = ReLU(z

[l]
i ) = ReLU

∑
j

θ
[l]
ij a

[l−1]
j + b

[l]
i

 , (3.7)

At the start of the training, the initial point of the weights is selected as a

random number drawn from a Gaussian distribution. Then, the state vector z[l] can be

obtained through each layer using the forward propagation formula as

z[l] = Θ[l]a[l−1] + b[l], (3.8)

where Θ[l] is denoted as the weight matrix with i rows and j columns, a[l−1] is the

activation vector of dimension j in the (l − 1)th layer and the bias vector of dimension
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i in the lth layer is denoted as b[l] .

Afterwards, z[l] is fed into a ReLU activation function resulting the output

vector a[l] at layer l:

a[l] = ReLU(z
[l]
i ). (3.9)

Each hidden layer applies a nonlinear ReLU function fa(x) = max(0, x), after

each neuron to enable the learning of complex, nonlinear relationships between the

inputs and output. By employing network’s hidden layers, inputs from the training

data are extracted and then used to generate estimation results. The NN estimated

channel gain at the final output layer L can be described as

ĥ =
(
Θ[L]a[L−1] + b[L]

)
, (3.10)

where Θ[L] describes the connection weight matrix of the output layer, b[L]

represents the bias vector in the final output layer, and ĥ denotes the estimated channel

gain generated by the output of the entire NN. Then, the loss calculations follow the

feed forward computations. The utlized loss function L(ĥ, h) is the normalized MSE

which is the most suitable function in regression problems, defined as

L(ĥ, h) = 1

Ns

Ns∑
n=1

(
ĥ(n) − h(n)

)2
, (3.11)

where h(n) is the true output of the nth sample, ĥ(n) is the actual output provided by

the NN of the nth sample. Then, the objective of the proposed channel estimator NN
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during the training stage is to minimize the training loss, which can be described as

minimize
ĥ

L(ĥ, h),

subject to 0 ≤ ĥ <∞.
(3.12)

The detailed steps for the backpropagation process which minimizes the train-

ing loss are provided in Appendix B. The learning strategy of the proposed NN estimator

is summarized in Algorithm 1.

Testing stage: The NN-based estimator utilizes the received signal yp ≜ y(1)

to obtain an estimate of the channel gain ĥ.

To demonstrate how the proposed channel estimator NN compares to the

MMSE estimator, we derive the MMSE estimator in a log-normal fading channel. The

MMSE objective function can be described as

ĥMMSE = argmin
ĥ

{
E
[
|ĥ− h|2

]}
. (3.13)

The MMSE algorithm is noise resistant and takes into account the influence of

Gaussian noise on estimation performance, but it has a high computational complexity.

The estimated channel gain for the MMSE estimator in the log-normal fading channel

can be described as
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ĥMMSE =

∫ ∞

0

e−
(y−hA)2

2 exp
{

−(log h+µ)2

0.18

}
∫∞
0 e−

(y−hA)2

2
1
h exp

{
−(log h+0.045)2

0.18

}
dh
dh.

(3.14)

The detailed steps for the derivation are provided in the Appendix C.

Algorithm 1 Proposed NN estimator

Require: Ns fading coefficients (h1, h2, . . . , hNs), peak intensity constraints A ∈
[Amin, Amax], batch size m, and learning rate η.

Ensure: ĥ(i) = h(i) ∀i ∈ {1, 2, . . . ,m}.
1: θ ← initialize neural network parameters.
2: repeat
3: Draw m minibatch samples (h(1), h(2), . . . , h(m)) and m minibatch peak intensities

(A(1), A(2), . . . , A(m)).
4: for i← 1 to m do
5: y

(i)
p ← A(i)h(i) + w(i)

6: ĥ(i) ← Nθ(y
(i)
p , A(i))

7: end for
8: Calculate minibatch loss: L ← 1

m

∑m
i=1(ĥ

(i) − h(i))2
9: Calculate gradients: ∇θL ← ∂L

∂θ
10: Update parameters: θ ← θ − η∇θL
11: until convergence.

3.5 Symbol Detection

In this section, we present two subsections. The first subsection discusses the

proposed AE for symbol detection with a single code rate, detailing its design and

performance. The second subsection addresses the scalability of the AE, focusing on its

ability to handle multiple code rates efficiently.
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3.5.1 Proposed Autoencoder for Symbol Detection with a Single Code
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Figure 3.3: The proposed AE(k, u) architecture has a code rate of R = k/u, where
k = 7 is the number of bits in the input message, and u = 21 is the length of the
encoded message. The encoder is located on a GEO satellite, while the receiver is based
at a ground station. The message b is represented by the one hot vector 1b of length
2k = 128. The input hot vector 1b is passed through a sequence of multiple dense layers
in order to construct the encoded vector xu of length u = 21. The normalization layer,
the last layer of the transmitter, uses a weighted sigmoid A × sigmoid (·) to ensure
that xu lies inside the interval [0, A]. The input to the receiver is the corrupted vector
yu that is produced when the encoded vector x is transmitted across the SOC channel.
The receiver is composed of three decoders. The entire input hot vector with dimension
2k is estimated independently by the three decoders. The first decoder’s input vector
r1 of length u1 = 7 is fed into multiple dense layers and the output vector is denoted
as o1. Additionally, the second and the third decoder map the vectors r2 and r3, of
length 7 each, into the output vectors o2 and o3, respectively. The length of o1,2,3 is
equivalent to M = 2k = 128. The vector v has the dimension (3 × 2k) as a result of
the concatenation of the output vectors o1, o2 and o3. Afterwards, vector v is fed into
multiple layers. Finally, the estimated hot vector 1b̂ of dimension 2k is then output
from the softmax activation layer.

An AE can be described as an unsupervised NN that auto-learns how to com-

press the data efficiently via an encoding process. In addition to compressing data, the

AE learns how to recreate the original data from the compressed form. Furthermore,

the AE system can be expressed by the pair (k, u), where k and u are the number of

message bits and the codeword length, respectively. The channel code rate is described
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Figure 3.4: Proposed decoder architecture at the receiver in the ground station.

as R = k/u. The proposed AE(k, u) is illustrated in Fig. 3.3 for SOC system with code

rate 1/3 without loss of generality. The receiver is based at a ground station, whereas

the encoder is on a GEO satellite. The channel coding code rate is 1/3, where k = 7

and u = 21. The system is composed of three components: the transmitter, the SOC

channel, and the receiver. First, the transmitter sends one out of M possible messages

b ∈ M,M = {1, . . . ,M} as one hot vector 1b of dimension 2k bits. The transmitter

then uses the mapping function f : M → Ru to transform the input hot vector 1b

into the encoded vector xu. The benefits of one-hot-encoding are that the output is

binary rather than ordinal. The one-hot vector has all zero inputs, except one indexing

a message m ∈ M. The symbol vector xu generated by the normalization stage of the

transmitter satisfies the positivity and peak requirements for SOC. Then, it is trans-

mitted through the SOC channel provided by STK. The SOC channel is constructed

from both Log-normal fading and AWGN channel with zero mean and unit variance.

Subsequently, the estimated hot vector 1b̂ is generated by the receiver, which uses a

43



multiple-decoder approach to recover the the message b from the corrupted vector yu.

Moreover, the transmitter model is based on FC layers, with LN layers oc-

curring after each FC layer and a Randomized Leaky Rectified Linear Unit (RReLU)

activation function in between. In order to generate more accurate models, AE can

make use of RReLU activation, a non-saturated function that produces simultaneous

activations associated with regression and classification [44]. The RReLU activation

outperforms the Sigmoid and Tanh activations in terms of both training time and gen-

eralization capabilities [44].

In addition, for both the encoder and each decoder, we utilize LN on all of the

hidden units in the same layer. LN is a technique to normalize the distributions of inter-

mediate layers. It enables smoother gradients, faster training, and better generalization

accuracy [30]. LN re-centers and re-scales the input vector c as

f = g ⊙N(c) + b, (3.15)

where the input vector to LN is denoted as c = (c1, c2, . . . , cD) of size D, ⊙ is the

dot product operand, and f is the output of a LN layer. Since it transforms the

input distribution into a standard normal distribution (SND) with zero mean and a

unit standard deviation, the standard score N(c) is denoted as

N(c) =
c− µ
σ

, (3.16)
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where, the mean and standard deviation of input c is µ and σ =
√

1
D

∑H
i=1 (ci − µ)

2,

respectively.

While most existing learning-based frameworks only employ a single decoder

at the receiver [19], [6], we employ a multi-decoder scheme. Using a set of several

decoders and LN-based layered structure of both encoders and decoders, we found that

the gradient descent can significantly improve the BER performance over the existing

state-of-the-art models by minimizing the error loss function.

The BER improves when the error loss function decreases. When this occurs,

our AE model provides predictions that are close to the actual data. Through the multi-

decoder approach, more than one path can be employed to update encoder and decoder

weights during training, resulting in a more robust model than that would be possible

with a single decoder architecture. Furthermore, during the training phase, the encoder

and decoder operate as a unified NN. This means that the backpropagation method can

be employed simultaneously to compute error gradients for both components in every

training iteration. This concurrent computation facilitates the combined training of the

encoder and decoder. The feedback from backpropagation guides each layer on how to

adjust its parameters to reduce the error in the cross-entropy loss function. Employing

optimization strategies such as stochastic gradient descent, the parameters of both the

encoder and decoder are refined. This iterative process continues until the error reaches

the lowest possible value.

Figure 3.3 shows that the input to the first decoder is r1 of length u1 = 7.

Similarly, r2, r3 correspond to the second and third decoder inputs. Every decoder
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makes an independent prediction of the estimated input hot vector with dimension 2k.

Each decoder, as shown in Fig. 3.4, is built from a sequence of dense layers based on FC,

RReLU, and LN layers, which is similar to the construction of the encoder. To estimate

the input hot vector, each decoder maps the input vector rj to the corresponding

output vector oj of length M = 2k, where j ∈ {1, 2, 3}. The estimated vectors from

each decoder are then combined into a vector v of dimension (3×2k). Then, vector v is

fed into FC, RReLU, and LN layers to produce a vector d of dimension 2k. The softmax

activation function is applied to the resultant vector d to get a probability vector over

all possible messages p of length M = 2k. The decoded message b̂ is the index of the

highest probability. A definition of the softmax function is:

p(i) =
ed(i)∑M
t=1 e

d(t)
∈ [0, 1], (3.17)

where i ∈ {1, 2, . . . ,M}. Cross-Entropy loss is a significant cost function for improving

classification model precision. The cross entropy loss function can be described as

L = −
M∑
i=1

1b(i) logp(i), (3.18)

Our NN is trained at a fixed peak intensity A or a corresponding SNR according

to (3). To determine which training peak intensity A value yields the lowest cross

entropy loss, we investigate a wide variety of values throughout the AE training stage.

The best value of training A for AWGN, perfect CSI, and imperfect CSI for a particular

code rate will be demonstrated in the numerical results. In addition, training with
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a peak intensity A higher than necessary is not promising because the network will

only update its weights for the high SNR regimes, which might produce good results

during training but poor results while testing. During the testing phase, we do not

only assess our model’s performance at the trained SNR but also across a broad range

of SNRs. Tables 3.1 and 3.2 detail the relevant parameters for AE (7, 21) and AE

(7, 14), respectively. In addition, we evaluate the AE (7,14) and AE (7,21) against

convolutional codes and state-of-the-art learning-based frameworks in terms of BER

performance. Algorithm 2 summarizes the learning strategy for the novel AE design.

Table 3.1: Encoder and decoder layers of AE (7,21) utilized in Fig. 3.3.

Modules Number of
layers

Input dimension of
each layer

Output dimension
of each layer

Encoder 2 128, 100 100, 21

First decoder 2 7, 50 50, 128

Second decoder 2 7, 50 50, 128

Third decoder 2 7, 50 50, 128

Table 3.2: Encoder and decoder layers of AE (7,14).

Modules Number of
layers

Input dimension of
each layer

Output dimension
of each layer

Encoder 2 128, 100 100, 14

First decoder 2 9, 50 50, 128

Second decoder 2 5, 20 20, 20

3.5.2 Scalable AE for multi-code rates

Scalability across multiple code rates is a critical attribute in modern commu-

nication systems, particularly in space optical communications, where adaptability to

varying channel conditions and data requirements is essential. A single autoencoder ca-
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Algorithm 2 Proposed AE training algorithm

Require: M messages (1, 2, . . . ,M), transmitter peak intensity A, batch size m, learn-
ing rate η.

Ensure: argmax(d(i)) = b(i) ∀i ∈ {1, 2, . . . ,m}
1: Eθ ← initialize encoder parameters.
2: Dϕ1 , Dϕ2 , Dϕ3 ← initialize decoder units parameters.
3: FCψ ← initialize FC layer parameters.
4: LNυ ← initialize LN parameters.
5: repeat
6: Draw m minibatch messages (b(1), b(2), . . . , b(m)).
7: for i← 1 to m do
8: 1b(i) ← one hot vector(b(i)) {1b(i) ∈ {0, 1}M}
9: x(i) ← Eθ(1b(i) , A) {x(i) ∈ [0, A]u}

10: y(i) ← x(i)h(i) +w(i) {y(i) ∈ Ru}
11: y(i) ← y(i)/ĥ

(i)

12: r
(i)
1 , r

(i)
2 , r

(i)
3 ← Split y(i) into three segments of equal length.

13: for j ← 1 to 3 do

14: o
(i)
j ← Dϕj (r

(i)
j ) {o(i)

j ∈ RM}
15: end for
16: v(i) ← concatenate(o

(i)
1 ,o

(i)
2 ,o

(i)
3 ) {v(i) ∈ R3M}

17: d(i) ← LNυ(RReLU(FCψ(v
(i)))) {d(i) ∈ RM}

18: p(i) ← Softmax(d(i)) {p(i) ∈ [0, 1]M}
19: end for
20: Calculate minibatch loss:

L ← −
∑m

i=1

∑M
t=1 1b(i)(t) log(p

(i)(t))
21: Calculate gradients:

∇θL ← ∂L
∂θ , ∇ϕ1L ←

∂L
∂ϕ1

, ∇ϕ2L ← ∂L
∂ϕ2

,

∇ϕ3L ← ∂L
∂ϕ3

, ∇ψL ← ∂L
∂ψ , ∇υL ←

∂L
∂υ

22: Update parameters:
θ ← θ − η∇θL
ϕ1 ← ϕ1 − η∇ϕ1L
ϕ2 ← ϕ2 − η∇ϕ2L
ϕ3 ← ϕ3 − η∇ϕ3L
ψ ← ψ − η∇ψL
υ ← υ − η∇υL

23: until convergence
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pable of handling multiple code rates offers significant advantages in terms of efficiency

and practicality. By eliminating the need for separate models for each code rate, such

a scalability greatly reduces system complexity, resource consumption, and hardware

requirements. This consolidation not only minimizes computational overhead but also

streamlines memory and processing needs, resulting in a more efficient and compact

design.

The dynamic nature of communication channels in space optical systems de-

mands robust adaptability. Atmospheric turbulence, scintillation, and fading introduce

varying levels of noise and degradation, which require flexible solutions to maintain per-

formance. A scalable autoencoder can seamlessly adapt to these conditions, ensuring

reliable and robust communication without the need to switch between distinct mod-

els for different code rates. This adaptability enhances the system’s ability to operate

effectively across a wide range of scenarios, making it a crucial feature for real-world

applications.

Integrating a single autoencoder for multiple code rates simplifies system ar-

chitecture and integration, reducing the complexity of development and testing. With

fewer distinct models to design and verify, the process becomes faster and more error-

resistant. This uniformity benefits multi-user scenarios as well, where different users

may require diverse data rates or levels of error protection. A scalable solution accom-

modates these varying needs efficiently, enhancing overall user experience and system

flexibility.

From a cost perspective, scalability translates to significant savings in design,
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implementation, and maintenance. By training and deploying a single model capable

of handling multiple configurations, system developers can avoid the expense and labor

of maintaining multiple models. This cost-effectiveness is particularly valuable in large-

scale applications, such as satellite constellations or extensive ground station networks,

where operational and maintenance efficiencies are paramount.

Scalability also ensures that communication systems remain future-proof. As

standards evolve and new requirements emerge, a flexible autoencoder can adapt with-

out necessitating an overhaul of the entire system. This adaptability ensures the

longevity and relevance of the framework, providing a robust foundation for future de-

velopments. Additionally, training a single model for multiple code rates fosters shared

learning, improving generalization, performance, and convergence during the training

phase.

In the context of emerging technologies like intelligent reflecting surfaces and

software-defined networks, scalable solutions align perfectly with the priorities of flexi-

bility and adaptability. By addressing the critical need for scalability, systems equipped

with a single multi-code rate autoencoder pave the way for more efficient, resilient,

and forward-compatible communication frameworks. This capability is instrumental

not only in enhancing current applications but also in preparing for the future of space

optical communication technologies.

Accordingly, we trained our proposed scalable autoencoder using a parallel

and sequential approach, shown in Fig. 3.5 and Fig. 3.6, respectively. In the parallel

model, a shared layer module compresses the input bits from 128 to 100, then an encoder
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Figure 3.5: Parallel model structure for scalable AE for multi-code rate.

model is chosen that determines the code rate. In the sequential model, certain layers

are skipped in the encoding/decoding corresponding to the code rate chosen.

Accordingly, we trained our proposed autoencoder using a sequential approach,

achieving impressive results. The model was simultaneously trained for three code rates:

1/2, 1/4, and 1/3. Our primary objective was to develop a single autoencoder capable

of effectively handling multiple code rates. In the numerical results section, we will

present the performance of our model for a code rate of 1/2, along with comparisons to

uncoded On-Off Keying and Convolutional code-based On-Off Keying.

3.6 Simulation Results

In this section, the proposed channel estimator NN is compared to the MMSE

estimator and different state-of-the-art learning-based estimations. Then, in the pres-
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Figure 3.6: Sequential model structure for scalable AE for multi-code rate.

ence of AWGN and Log-normal fading channels, we compare the BER performance of

AE-based SOC systems with the learning-based frameworks and convolutional codes at

code rates 1/2 and 1/3 for perfect and imperfect CSI. Additionally, we train with a

single NN whose parameters are adjusted across a wide range of training peak inten-

sities. Following the procedures outlined in Section 3.3, the input tuple to the NN is

based on two inputs (y
(n)
p , A(n))), where y

(n)
p and A(n) are the pilot received sequence

and corresponding peak intensity of the nth sample, respectively. The distribution of

the peak intensity A among the training samples is uniform except for the high peak
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Figure 3.7: Constellation points of training peak intensity A versus probability of oc-
currence.: (a) Log-normal fading channel and (b) Gamma-Gamma fading channel.

53



0 2 4 6 8 10 12 14 16 18 20
10-3

10-2

10-1
N

M
S

E

LS estimator
Proposed NN estimator with uniform training strategy
MMSE estimator
NN estimator in [1]
Proposed NN estimator with non-uniform strategy 
NN estimator in [43] trained at peak intensity A= 3 
NN estimator in [43] trained at peak intensity A= 7 
NN estimator in [43] trained at peak intensity A= 20

14 16 18 20

4

6

8

10
12
14

10-3

(a)

0 2 4 6 8 10 12 14 16 18 20

10-2

10-1

100

N
M

S
E

LS estimator
Proposed NN estimator with uniform training strategy
MMSE estimator
NN estimator in [1]
Proposed NN estimator with non-uniform strategy
NN 
NN
NN

estimator in [43] trained at peak intensity A= 3  
estimator in [43] trained at peak intensity A= 7  
estimator in [43] trained at peak intensity A= 20

16 17 18 19 20

0.01

0.015

0.02

0.025

(b)

Figure 3.8: The NMSE versus Eb/No of the proposed channel estimator NN compared
with the MMSE estimator and learning based frameworks: (a) Log-normal fading chan-
nel and (b) Gamma-Gamma fading channel.
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Figure 3.9: BER versus SNR for the proposed AE (7, 21) compared to the convolutional
codes using IM/DD and benchmark learning frameworks for code rate 1/3 in a SOC
channel with AWGN.
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Figure 3.10: BER versus SNR for the proposed AE (7,21) compared to the convolutional
codes using IM/DD and benchmark learning frameworks for code rate 1/3 in a SOC
channel with σ = 0.3 for perfect Log-normal channel.
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Figure 3.11: BER versus SNR for the proposed AE (7,21) compared to the convolutional
codes using IM/DD and benchmark learning frameworks for code rate 1/3 in a SOC
channel with σ = 0.3 for imperfect Log-normal channel.

intensities as depicted in Fig. 3.7. The batch size is 1000 and number of training, val-

idation, testing samples are 40, 5, 10 million samples, respectively. The output of the

NN is a single neuron representing the estimated channel gain ĥ.

As can be seen in Fig. 3.8, the proposed channel estimator NN exhibits the

same normalized mean square error (NMSE) performance as the MMSE estimator and

the channel estimator NN in [28] across all SNR ranges in the testing phase for a Log-

normal fading channel. In contrast to [28], where a NN is designed for each SNR, we

only need to develop a single NN that is optimized for all training SNR levels. Moreover,

authors in [25] need to build three NN in order to achieve the MMSE estimator perfor-

mance; one trained at A = 3 yields the best estimation from 0 to 7 dB, another trained

56



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Conv(7,21) with LS estimator
Conv(7,21) with proposed NN estimator
Conv(7,21) with proposed perfect CSI
Proposed AE(7,21) with LS estimator
Proposed AE(7,21) with NN proposed estimator
Proposed AE(7,21) with perfect CSI

12 13 14 15 16
10-6

10-5

10-4

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Standard AE(7,21) in [16] with LS estimator
Standard AE(7,21) in [16] with proposed NN estimator
Standard AE(7,21) in [16] with perfect CSI
Proposed AE(7,21) with LS estimator
Proposed AE(7,21) with NN proposed estimator
Proposed AE(7,21) with perfect CSI

10 12 14 16

10-5

10-4

10-3

(b)

Figure 3.12: The BER versus SNR of the AE (7,21)-based detection in the existence of
imperfect CSI against: (a) convolutional codes employing IM/DD and (b) benchmark
learning frameworks for a SOC channel at a code rate of 1/3.
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Figure 3.13: BER versus SNR for the proposed AE (7,14) compared to the convolutional
codes using IM/DD and benchmark learning frameworks for code rate 1/2 in a SOC
channel for AWGN channel.
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Figure 3.14: BER versus SNR for the proposed AE (7,14) compared to the convolutional
codes using IM/DD and benchmark learning frameworks for code rate 1/2 in a SOC
channel with σ = 0.3 for perfect CSI.
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Figure 3.15: BER versus SNR in the existence of imperfect CSI for the proposed AE
(7,14) compared with the convolutional codes employing IM/DD for code rate 1/2 in a
SOC channel.

at A = 7 provides the estimation range from 7 to 14 dB, and another trained at A = 20

gives the estimation range from 14 to 20 dB. Their approach appears to yield good

results with lower complexity compared to the MMSE estimator and channel estimator

NN in [28]. However, it relies on the impractical assumption that the statistical data of

testing samples are known in advance. The proposed single channel estimator NN out-

performs the MSE performance of [25] and does not require any prior knowledge of the

statistics of the testing samples nor does use multiple NNs. The proposed channel esti-

mator NN achieves MSE improvement of 15% for SNR 6 dB over the estimation in [25]

trained at peak intensity A = 20. When compared to the estimation in [25] trained at

peak intensity 3, the proposed channel estimator NN yields MSE improvement of 37%

in SNR 12 dB. We note that the MMSE estimator is designed using equation (13).
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Figure 3.16: The BER versus SNR of the AE (7,14)-based detection in the existence of
imperfect CSI against: (a) convolutional codes employing IM/DD and (b) benchmark
learning frameworks for a SOC channel at a code rate of 1/2.
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Figure 3.17: BER versus SNR for the proposed AE (7,14) compared to the convolutional
codes using IM/DD and benchmark learning frameworks for code rate 1/2 in a SOC
channel with Gamma-Gamma fading channel for perfect CSI.

Next, we demonstrate the BER performance of the proposed AE-based SOC

at 1/2 and 1/3 coding rates. In addition, we compare the proposed AE model to both

state-of-the-art learning-based approaches and model-based coding schemes. Figures

3.3 and 3.4 illustrate the simulation layout for the proposed AE. A total of 20,000,000

samples were used for training, and 10,000,000 used for testing. We accomplish both

training stability and the effective learning weights by employing the Adam optimizer

and a learning rate of 0.0001 throughout 100 training epochs. Convolutional codes using

IM/DD at code rates of 1/2 and 1/3, as well as uncoded IM/DD, are implemented and

compared in terms of BER with the proposed AE.

In addition, we evaluate our results against the benchmarking AE models as

described in [6, 19, 30]. Although [19] demonstrates the viability of standard AE in
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Figure 3.18: The BER versus SNR of the AE (7,14)-based detection in the existence
of imperfect CSI against for Gamma-Gamma fading channel: (a) convolutional codes
employing IM/DD and (b) benchmark learning frameworks for a SOC channel at a code
rate of 1/2.
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Figure 3.19: Constellation points against relative frequency generated by the proposed
AE (7,21) with AWGN, perfect and imperfect CSI for peak intensity A = 4.

Figure 3.20: Constellation points against relative frequency developed by the proposed
AE (7,14) with AWGN, perfect and imperfect CSI for peak intensity A = 4.

63



OWC channels under the assumption of an AWGN channel, they do not explore the

performance of AE in fading channels. By extending the work of [19] to include tur-

bulence channels, the authors of [6] were able to apply changes for standard AE to

adapt with both perfect and imperfect CSI. In addition, the Turbo AE [30] perfor-

mance in SOC was not satisfactory after optimizing the training SNR and switching

to positive normalization, which is suitable for SOC. The proposed AE outperforms

learning-based frameworks presented in [6,19,30] for code rates of 1/2 and 1/3, respec-

tively. This improvement can be attributed to the utilization of a new layered structure

that incorporates Log-normal (LN) encoders and decoders, along with a multi-decoder

approach. The convolutional codes (7,21) in Fig. 3.9 are expressed by the polynomial

z3 + z + 1, z3 + z2 + 1, z3 + z2 + 1 [45].

As can be seen in Fig. 3.9, the AE (7,21)’s BER performance is 0.6 dB better

than the convolutional codes at BER 10−6 for AWGN channel. For BER 10−4 the AE

outperforms the Turbo AE and standard AE by 2.1 dB and 1.4 dB, respectively. Fur-

thermore, at BER 10−4 for code rate 1/3, the proposed AE performance is superior

than the uncoded SOC system employing uncoded IM/DD and a maximum likelihood

decoder by 2.9 dB. The proposed AE (7,21) is developed in an AWGN channel with

a training peak intensity A = 3. In Fig. 3.10, we observe that the proposed AE

(7,21) achieves 0.3 dB better performance than the convolutional codes at a BER of

10−4 and 0.1 dB better performance at a BER of 10−6 when using a Log-normal fading

channel with perfect CSI at the receiver. For BER 10−5, it exceeds the performance

of the learning-based framework of standard AE and Turbo AE by 1.1 dB and 2.1 dB,
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respectively. The training peak intensity A employed with a Log-normal fading channel

is set to 4.

In Fig. 3.11, the proposed AE (7,21)-based detection utilizing the MMSE

estimator exhibits the same performance as the proposed channel estimator NN. Despite

its superior estimation performance, the MMSE estimator involves high implementation

complexity [26]. The same BER performance is also obtained when utilizing the channel

estimator NN provided in [28] which uses a design for a NN for each training SNR. In

contrast to [28], we only need to develop a single NN to achieve the same results.

In both the low and high SNR regimes, convolutional codes (7,21) exhibit same BER

performance when using the MMSE, [28], and the proposed channel NN estimator.

As can be seen in Fig. 3.12a, the proposed AE (7,21) outperforms the convo-

lutional codes for a Log-normal fading channel with imperfect CSI at the receiver by

0.9 dB at a BER of 10−4 and by 0.6 dB at a BER of 10−6, provided that both convo-

lutional codes and AE are using the proposed channel estimator NN. Furthermore, the

performance for BER 10−4 is 0.8 dB better than that of the learning-based frameworks

of standard AE as depicted in Fig. 3.12b. The proposed AE (7,21) employing channel

estimator NN is inferior by 0.5 dB compared with the perfect CSI case at BER 10−6.

Moreover, it has the same performance when utilizing [28] which use a training NN for

each training SNR. The training peak intensity is set to A = 4 in the imperfect scenario.

Figure 3.13 demonstrates that the proposed AE yields a significant improve-

ment of 1.6 dB over the standard AE at a BER of 10−4. We also discover that for BER

10−6, the AE’s performance is 0.25 dB greater than that of the convolutional codes in
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AWGN channel. Furthermore, the uncoded SOC system employing IM/DD is inferior

by 2.3 dB at BER 10−6 compared to the proposed AE (7,14). For convolutional code

(7,14) with 3 memory registers, we use the polynomials z3 + z, z3 + z2 + 1. At BER

10−4, the AE outperforms the convolution code (7,14) by 1 dB. As illustrated in Fig.

3.14, at a BER of 10−4, the proposed AE (7,14) surpasses the standard AE by 1.6 dB

with the presence of fading channels. Moreover, when compared to the convolutional

code (7,14), the proposed AE (7,14) offers a 0.8 dB improvement at BER 10−4 and a

0.3 dB improvement at BER 10−6.

In Fig. 3.15, the BER performance of convolutional code (7,14) using the

MMSE estimator is identical to that of convolutional code (7,14) using the proposed

channel estimator NN in [28]. Again, we achieve similar behavior as Fig. 3.11 when

code rate 1/3 is used. While utilizing the estimator presented in [28], which employs

a design for a NN for each training SNR, it achieves the same BER performance as

convolutional code (7,14) utilizing the proposed channel estimator NN. The proposed

AE (7,21) performs the same operations as convolutional codes, demonstrating that the

BER is consistent across a wide range of SNR values, whether the proposed channel

estimator NN or the MMSE estimator is used.

As illustrated in Fig. 3.16a, the proposed AE (7,14) with the proposed channel

estimator NN only deviates from the perfect CSI case by 0.8 dB for a BER of 10−6.

Narrowing down to the imperfect CSI, the proposed AE outperforms the convolutional

codes by 0.4 dB for BER 10−6. In Fig. 3.14b, we further investigate this behavior for

standard AE and reveal that AE in [6] utilizing the proposed channel estimator NN
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only differs from the perfect CSI case by 1.1 dB at a BER of 10−4. For BER 10−6,

the proposed AE (7,14)-based detection achieves 1.6 dB better performance than the

learning-based framework of standard AE. In contrast to the perfect CSI case, where

the training peak intensity is A = 5, the training peak intensity is increased to A = 6 in

the imperfect scenario. As illustrated in Fig. 3.19, the proposed AE (7,21) has roughly
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Figure 3.21: The BER versus SNR of the Proposed scalable AE -based detection in
the existence of Proposed AE for single code rate=1/3, convolutional codes employing
IM/DD and uncoded modulations.

learned an IM with constellation points located at 0 and A = 4 for both AWGN and per-

fect and imperfect CSI. Similarly, AE (7,14) has roughly learned IM with probability of

occurrence mostly located at A = 0 and A = 4 as depicted in Fig. 3.20. Both Figs. 3.19

and 3.20 are trained and tested at A = 4. The results presented in this section demon-

strate that the proposed channel estimator NN outperforms learning-based frameworks

while performing as well as MMSE estimator in terms of MSE. The proposed AE for
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Figure 3.22: The BER versus SNR of the Proposed scalable AE -based detection in
the existence of Proposed AE for single code rate =1/2, convolutional codes employing
IM/DD and uncoded modulations.

both 1/2 and 1/3 code rates has learned encoding and decoding functions that outper-

form convolutional codes with IM/DD and learning-based frameworks in terms of BER

for AWGN as well as perfect and imperfect CSI.

As illustrated in Fig. 3.21, at a code rate of 1/3, the proposed multi-code

rate AE achieves performance nearly identical to that of the AE designed for a single

code rate 1/3. Moreover, it consistently outperforms both convolutional code(7,21) and

uncoded modulations across all SNR levels. At a BER of 10−4, the proposed scalable

AE at code rate 1/3 offers a 1.3 dB improvement over the convolutional code (7,21).

Similarly, as shown in Fig. 3.22, for a code rate of 1/2, the proposed AE sur-

passes the convolutional code (7,14) by 1 dB at a BER of 10−4. Furthermore, the

proposed scalable AE demonstrates a 2 dB performance advantage over uncoded mod-
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ulations at a BER of 10−3. This shows that the scalable AE achieves the same perfor-

mance as the single code rate AE and has been validated across different code rates.

3.7 Concluding Remarks

This work presents a novel channel estimator NN that is optimized in a wide

range of SNR levels in the training stage. The numerical results demonstrate that the

proposed channel estimator NN outperforms learning-based frameworks and performs

as the optimal MMSE estimator. Further, we propose an AE detection for creating

an end-to-end communication system for SOC over AWGN and fading channels with

perfect and imperfect CSI at the receiver. The proposed AE further employs multi-

ple decoders and a stacked structure for building encoders and decoders that is based

on LN. Compared to the state-of-the-art models, the innovative method can facilitate

the training, which reduces the computation complexity. To the best of our knowl-

edge, this is the first time that AE-based detection has been demonstrated to be su-

perior than the state-of-the-art capacity-approaching convolutional codes in SOC. This

study shows that the proposed AE holds considerable potential for use in future SOC

systems that will benefit from more efficient coding, modulation, and decoding strate-

gies.
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Chapter 4

End-to-End Learning Framework for

Space Optical Communications in

Non-Differentiable Poisson Channel

4.1 Motivation

Training AEs requires both the channel model and AE layers to be differen-

tiable, posing a challenge for SOC, where non-differentiable channel models like the

Poisson channel often arise. In SOC, weak received optical signals necessitate the use

of photon counting statistics, accurately modeled by the Poisson distribution, which

represents the probability distribution of photon detections over time. Despite its ac-

curacy, the Poisson channel cannot be directly implemented in an AE due to its non-

differentiability, a limitation that many DL studies avoid by approximating it with

differentiable models like Gaussian noise. However, such approximations often lack
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generalizability across SOC scenarios.

The Poisson model excels in SOC by characterizing discrete photon arrival

statistics, offering valuable insights into photon count probabilities. Conventional con-

tinuous models, by contrast, fail to capture this discrete nature. Nonetheless, its non-

differentiability challenges the use of DL frameworks for gradient-based optimization.

Prior work has addressed this limitation by approximating the Poisson channel with

Gaussian distributions, but this approach compromises accuracy in various contexts.

In this work, we tackle the challenges of training AEs on Poisson channels

without resorting to approximations. To handle the non-differentiability during back-

propagation, we integrate CMA-ES with the proposed AE, enabling efficient gradient

estimation for the Poisson channel. Furthermore, the AE employs BN layers in both

encoders and decoders, ensuring regularization and consistent data distributions dur-

ing training. Comparative evaluations reveal that our AE model achieves notable im-

provements in BER over non-gradient-based optimization models and standard AEs,

performing on par with channel-capacity-approaching convolutional codes and uncoded

modulation schemes. These advancements showcase the potential of addressing non-

differentiability in SOC, providing robust and accurate solutions for photon-limited

communication systems.
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Ground
station


(Decoder)

GEO Satellite

(Encoder)

Figure 4.1: The system model for point-to-point SOC over the Poisson channel.

4.2 System Model

We model a geostationary satellite with a laser transmitter, and the detector is

located at the ground station as shown in Fig. 4.1. The SOC channel is represented using

the Poisson channel, known for its precision in capturing optical channel impairments.

In low-received power conditions within the SOC, individual photons gain prominence.

The Poisson model excels in such scenarios by effectively characterizing the statistical

behavior of discrete photon arrival, offering insights into the probability of observing a

specific photon count within a given timeframe. On the other hand, the conventional

continuous models may not accurately reflect the discrete nature of photon interactions.

The emitted light intensity transmitted from the laser terminal on the GEO satellite

can be expressed as follows [46]:

x(i) =


0 ≤ x(i) ≤ A

E
[
x(i)

]
≤ E

, for i ∈ [1, n], (4.1)

where n is the number of codeword symbols, x(i) follows the positivity, peak constraint

of A, and average power constraint of E . The optical wireless channel employing IM-DD

is modeled by a Poisson distribution as follows [46]:
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pY |X

(
y(i) | x(i)

)
= e−(αx

(i)+λ)
(
αx(i) + λ

)y(i)
y(i)!

, (4.2)

where y(i) is the channel output, α > 0 represents the channel gain, and λ ≥ 0 is the

dark current rate of the photodetector. While the Poisson channel is an accurate model

in SOC, it faces a challenge related to non-differentiability, which can complicate its

implementation in DL modes. In the following section, we elaborate on how to address

the non-differentiable issue in DL models.

4.3 Proposed AE model over Poisson channel
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Figure 4.2: Diagram of proposed AE model with Poisson channel.

In this section, we describe the structure of the proposed AE, including the

normalization layers. Following that, we discuss how we utilize a CMA-ES in conjunc-

tion with the proposed AE to effectively estimate the gradients of the Poisson channel.

First, the AE can be described as an unsupervised NN that auto-learns how to

compress the data efficiently via an encoding process. In addition to compressing data,

the AE learns how to recreate the original data from the compressed form. The AE
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system can be expressed by the pair (k, n), where k and n are the number of message bits

and the codeword length, respectively. The channel code rate is described as R = k/n.

As shown in Fig. 4.2, the proposed AE consists of both a transmitter and a receiver

neural network (NN), which are jointly optimized to streamline the learning process.

A binary message ci is taken from {1, ...,M}, where M = 2k. The vector 1c used as

input is the one-hot encoding of c. We perform one-hot encoding on the input message

to ensure that the model is not biased toward any specific value. The input vector is

then passed through the transmitter NN and encoded into the vector xn of length n,

which is used as input to the channel. In our study, we consider the Poisson distribution

P(λ) to model a low-power SOC channel. After xn passes through the channel, it is

distorted into the noisy signal yn and reaches the ground station. There, the receiver NN

outputs its reconstruction of the original one-hot encoded vector, denoted as 1̂c. Unlike

the standard AE model, we introduce normalization layers in between fully connected

(FC) layers to reduce the effect of poor gradient exploding and increase the speed of

convergence during training. The encoder utilizes batch normalization (BN), which is

applied across each batch. The BN can be defined as

BNγ,β (z) = γẑ + β, (4.3)

where β and γ are considered as learnable parameters similar to the weights and the

input vector to the BN layer z = {z1, z2 . . . zB}. The normalized output ẑ = z−µB√
σ2
B+ϵ

where µB, σB are the mean and variance of the mini batch input data of size B, re-
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spectively. Although BN has provided good results when employed in the encoder, it

does not deliver satisfactory results in the decoder, mainly because of the changes in

peak intensity during the testing stage. Resulting in a shift in the mean of the data

distribution, it becomes necessary to adjust the normalization scheme in the decoder.

Consequently, we employ layer normalization, which treats each sample independently.

This normalization method ensures consistent performance in both training and testing

phases for the decoder.

At the last layer on the decoder NN, we use a softmax activation function

to determine the most likely value of the original message. The softmax activation is

defined as

p(i) =
ed(i)∑M
t=1 e

d(t)
∈ [0, 1]. (4.4)

The goal of the AE during training is to construct an output that is identical

to the input. This is achieved through minimizing the AE Cross-Entropy (CE) loss as

follows [31]:

L = −
M∑
i=1

1c(i) logp(i). (4.5)

In addition, the Poisson channel considered in this work is not differentiable,

so using the back-propagation algorithm along with gradient descent to tune the AE pa-

rameters becomes unfeasible. To handle the non-differentiability of the Poisson channel,

we set the gradient of the channel to a constant, denoted as J , during back-propagation.
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This constant J can be considered as a hyper-parameter and thus can be tuned using

hyper-tuning optimization algorithms. In this study, we utilize the CMA-ES to optimize

the hyper-parameters selection process. It was shown to be consistently outperforming

other ES methods, especially on non-separable problems, functions that cannot be solved

with a comparatively small number of function evaluations, or larger-dimensional search

spaces [47]. Also, CMA-ES are stochastic, derivative-free methods utilized to solve non-

linear or non-convex optimization problems. In CMA-ES, candidate solutions (often

denoted as x) are produced in a stochastic manner in each iteration, based on the exist-

ing candidate solutions from the previous iteration. Subsequently, a selection process is

conducted to determine which candidate solutions will serve as parents in the ensuing

iteration, with the criteria usually being their value of the objective function, denoted

as f(x). As this process unfolds across successive iterations, candidate solutions with

progressively improving ’f-values’ are generated.

In CMA-ES, the normal probability distribution responsible for generating new

candidate solutions, given the distribution parameters such as mean, variances, and co-

variances, represents the maximum entropy probability distribution over Rp, where p

denotes the number of parameters in the candidate solutions. In other words, this dis-

tribution reflects the sample distribution with the least amount of prior information

embedded into it. During the kth iteration, the process initiates by sampling β > 1 can-

didate solutions xi ∈ Rp, where i = [1, . . . , β], from a multivariate normal distribution

N (mk, σ
2
kΣk).
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xi ∼ N (mk, σ
2
kΣk) , (4.6)

where mk ∈ Rp is the distribution mean and current solution to the optimiza-

tion problem, σk > 0 is the step-size, andΣk ∈ Rp×p is a symmetric and positive-definite

covariance matrix. The candidate solutions xi are evaluated using the objective function

f : Rp → R and are subsequently sorted as follows [48]:

{xj:β | j = 1 . . . β} = {xj | j = 1 . . . β}, (4.7)

where f(x1:β) ≤ · · · ≤ f(xµ:β) ≤ f(xµ+1:β) ≤ · · · , and µ ≤ β/2 is the number

of best candidate solutions selected at each iteration. The mean is updated as follows:

mk+1 =

µ∑
r=1

wrxr:β. (4.8)

In this context, the positive recombination weights w1 ≥ w2 ≥ · · · ≥ wµ > 0 are

selected such that their sum equals one. Conventionally, these weights are determined

to satisfy the condition 1/
∑µ

r=1w
2
r ≈ β/4.

The step-size σk is updated using cumulative step-size adaptation (CSA), some-

times also denoted as path length control [47].

σk+1 = σk × exp(
cσ
dσ

(
∥pσ∥

E∥N (0, I)∥
− 1

)
, (4.9)

where c−1
σ ≈ p/3 is the backward time horizon for the evolution path pσ and larger than
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one, and dσ is the damping parameter.

Finally, the covariance matrix is updated as follows [48]:

Σk+1 =

(
1− p2 − µw

p2
+ cs

)
Σk + c1pcp

T
c +

cµ

µ∑
r=1

wi
xr:β −mk

σk

(
xr:β −mk

σk

)T (4.10)

where c−1
c ≈ p/4 is the backward time horizon for the evolution path pc,

which is greater than one, µw = 1/
(∑µ

i=1w
2
i

)
is the variance effective selection mass,

and cs =
(
1− 1[0,1.5√p] (∥pσ∥)

2
)
c1cc (2− cc). The indicator function 1[0,1.5√p] (∥pσ∥),

yields a value of one if and only if ∥pσ∥ ≤ 1.5
√
p.

4.4 Numerical Results
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Figure 4.3: BER versus Eb for λ = 1 of the proposed AE with model-based frameworks.
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Algorithm 3 CMA-ES

Require: number of parameters p, number of iterations v number of candidate solu-
tions β, number of solutions selected at each iteration µ, recombination weights
w1, w2, . . . , wµ.

Ensure: minimize f(xi) ∀i ∈ {1, 2, . . . , µ}
1: m0 ← initialize mean vector.
2: σ0 ← initialize step size.
3: Σ0 ← initialize covariance matrix.
4: for k ← 1 to v do
5: for i← 1 to µ do
6: xi ← sample multivariate normal(mk−1, σ

2
k−1Σk−1)

7: fi = f(xi)
8: end for
9: x1...µ ← xs(1)...s(µ)

with s(i) = argsort (f1...µ, i) {sort solutions}
10: mk ← update m(x1, . . . , xµ) {move mean to better solutions}
11: pσk ← update ps(pσk−1, σ

−1
k−1Σk−1

−1/2 (mk −mk−1)) {update isotropic
evolution path}

12: pc ← update pc
(
pc, σ

−1 (mk −mk−1) ,
∥∥pσk−1

∥∥) {update anisotropic evolution
path}

13: Σk ←
update cov(Σk−1,pck, (x1 −mk−1) /σk−1, . . . , (xµ −mk−1) /σk−1) {update
covariance matrix}

14: σk ← update step (σk−1, ∥pσk∥) {update step-size}
15: end for
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Figure 4.4: BER versus Eb for λ = 1 of the proposed AE with learning frameworks.
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Figure 4.5: BER versus Eb for λ = 2 of the proposed AE with model-based schemes
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Figure 4.6: BER versus Eb for λ = 2 of the proposed AE with learning frameworks.

Figure 4.7: The constellation points versus the relative frequency: Proposed AE with
CMA-ES algorithm,
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Figure 4.8: The constellation points versus the relative frequency: AE without fixing
the channel gradient.

In this section, we evaluate the performance of our proposed AE with nor-

malization layers and gradient fix against several channel coding schemes for code rate

R = 1
2 across the Poisson channel. The proposed AE presented in Fig. 4.2 is trained

over 25 epochs with 8 million training samples. Not only utilize the CMA-ES algorithm

for the channel gradient of the Poisson channel, but also for the learning rate, peak

intensity, and batch size. The hyper-tuning parameters, optimized by the CMA-ES al-

gorithm for λ = 1, are as follows: A = 7.3, learning rate = 0.00045, batch size = 32, and

Poisson channel gradient = 1.23. For λ = 2, the optimized hyper-tuning parameters

are A = 7.8, learning rate = 0.00012, batch size = 32, and Poisson channel gradient

= 1.8. To evaluate training loss, we utilize the CE loss and for updating the weights

we utilize Adam optimizer. Finally, in testing, we utilize 5 million samples and the
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optimal learnable parameters proposed from the training stage. Figs. 4.3 and 4.4 show

the result of testing models on the Poisson channel with λ = 1, while Figs. 4.5 and 4.6

refer to the results with λ = 2.

In Figs. 4.3 and 4.5, the proposed AE is compared to the standard AE(7, 14),

uncoded IM/DD, proposed AE(7, 14) without gradient fix, and convolutional codes.

These results show that the proposed AE achieves better performance than model-

based and other DL approaches across the Poisson channel. In Fig. 4.5, at BER

10−5, the proposed AE has an improvement of about 1.5 dB over convolutional codes.

Additionally, Fig. 4.3 shows that the proposed AE is better by at least 1 dB over all

other encoding schemes tested. Through these baselines, the proposed AE is shown to

be more effective across the Poisson channel than both the model and learning-based

frameworks.

In Figs. 4.4 and 4.6, the proposed AE is compared to the standard AE(7,

14) and uncoded IM/DD again, as well as the sparse AE(7, 14) and standard AE with

gradient fix. In Fig. 4.4, at BER 10−5, the proposed AE is better by about 1 dB over

the standard AE with gradient fix. Similarly, Fig. 4.6 also shows an improvement of

approximately 1 dB over the standard AE. The better performance of the proposed AE

over the standard AE with gradient fix proves that introducing normalization layers

into the AE model greatly improves the accuracy. Finally, since the AE is shown to

have relatively low Eb for each given BER, it can be more efficiently implemented in

hardware for SOC than other methods, as the proposed AE can get accurate results

using less power.
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As shown in Fig. 4.7, upon calculating the channel gradient for the Poisson

channel, the histogram illustrates that the modulation utilized by the proposed AE

resembles on-off keying modulation at its peak intensity A = 8. Conversely, when

employing the AE without estimating the channel gradient as illustrated in Fig. 4.8,

the histogram displays a randomly distributed pattern of the modulated signal from the

AE. This randomness substantiates the notable degradation in BER performance of the

AE when the gradient of the Poisson channel is not estimated.

4.5 Conclusion

This chapter explores the utilization of an AE model within a point-to-point

SOC scenario, considering the impact of a practical channel model referred to as the

Poisson channel. While the Poisson channel model effectively characterizes the SOC,

its non-differentiable attributes pose challenges for DL models. A novel non-gradient-

based optimization framework has been employed to estimate the channel gradient,

effectively tackling the non-differentiable nature of Poisson channels. Moreover, our

AE integrates normalization layers in both the encoding and decoding modules. The

numerical results demonstrate that the proposed AE outperforms both state-of-the-art

learning frameworks and model-based schemes in BER performance within the Poisson

channel. Our model presents a promising solution that incorporates the Poisson channel

into deep learning models without relying on approximations or transformations.
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Chapter 5

Learning-Based Autoencoder for

Multiple Access and Interference

Channels in Space Optical

Communications

5.1 Motivation

The study of MAC and IC channels is fundamental in SOC systems, particu-

larly under the influence of Log-normal fading. These channels are essential for enabling

efficient communication in multi-user environments where resources such as power and

bandwidth are shared. SOC systems, which operate under unique constraints like Log-

normal fading, weak turbulence, and high path loss, require a thorough understanding

of MAC and IC models to address inter-user interference, optimize resource utilization,
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and ensure reliable data transmission.

In MAC channels, multiple users transmit to a single receiver, such as a satel-

lite receiving data from various ground stations. The efficient operation of MAC systems

in SOC ensures fair resource allocation, effective scheduling, and minimized inter-user

interference, which are vital for applications like satellite broadband and remote sensing.

IC channels, on the other hand, represent a more complex scenario with multiple trans-

mitters and receivers, leading to significant interference between links. This is especially

challenging in SOC, where Log-normal fading amplifies signal variations, making robust

interference management critical for maintaining performance.

The importance of studying MAC and IC in SOC extends to practical appli-

cations in satellite IoT, collaborative sensing, and inter-satellite communication. Ad-

vancements in these channels facilitate improved spectral efficiency, reduced latency,

and enhanced resilience to Log-normal fading, enabling SOC systems to meet the grow-

ing demand for reliable and high-capacity multi-user communication. Furthermore,

addressing the complexities of interference in Log-normal fading conditions supports

the scalability of SOC systems, ensuring efficient operation across diverse applications.

This chapter presents an AE model for multi-user SOC systems operating un-

der Log-normal fading in the weak turbulence regime. The proposed model incorporates

batch normalization in encoders and layer normalization in decoders, enabling effective

gradient-based optimization while mitigating the challenges posed by Log-normal fad-

ing and inter-user interference. Numerical results demonstrate that the AE achieves

a 1 dB performance improvement over state-of-the-art frameworks with a 20% reduc-
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tion in computational complexity. Moreover, the model’s superior BER performance in

both MAC and IC scenarios underscores its potential to enhance inter-user interference

mitigation, optimize resource allocation, and advance the scalability of SOC systems.

5.2 SOC Channel Model

A MAC channel is established between K GEO satellites that transmit sig-

nals to a shared receiver located on the ground station. The use of system tool kit

(STK) simulator enables accurate modeling of the SOC channels [38]. In the system,

the ground station holds the receiver antenna gimbal and avalanche photo-detector.

Unlike RF coherent communication, the modulated signal in intensity-modulation and

direct-detection (IM/DD) is real and non-negative. Additionally, the signal is peak-

constrained in SOC for operation and safety regulations [46]. The Log-normal distri-

bution is commonly used to describe weak atmospheric turbulence, recommended by

STK for the GEO to ground SOC channel [1]. In our model, we take into consideration

both additive white Gaussian noise (AWGN) and slow fading channels in the multi-user

SOC channel. In this particular configuration, we assumed the Gaussian channel; how-

ever, when operating at low power levels, a better channel model would be a Poisson

channel [46].
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5.3 Multi-User SOC Channel Based on Autoencoders

The notation (k, L) is used to denote the proposed AE model, where k repre-

sents the number of message bits and L represents the codeword length. The proposed

AE(k, L) in the SOC system with rate R = k/L. The system consists of three distinct

modules: the transmitter, receiver, and channel layers. There are K independent trans-

mitters and one shared receiver in this MAC channel. Each transmitter is located in a

GEO satellite, while the common receiver is the ground station. Over a SOC channel,

transmitter i ∈ {1, 2, ...,K} send the message bi to the common receiver in the ground

station, where bi ∈ M = {1, . . . ,M}, and M = 2k.

Transmitter: The transmitter starts by selecting bi, which is one of M possi-

ble messages and then converts it into a one-hot vector 1bi of size M, which has a 1 in the

message index position and 0’s elsewhere. Utilizing a one-hot encoded vector ensures

equal significance for all messages since they are all in binary rather than ordinal format.

Then, using the mapping function u : M → RL, each transmitter converts the input

one-hot vector 1bi into the encoded vector xLi . Obviously, each encoder applies both

modulation and channel coding simultaneously. The codebook consists of all possible

codewords generated by the encoder of the AE, i.e., the set {xLi }, with cardinality 2k.

When the transmitter normalization stage outputs the symbol vector xLi , it meets the

non-negativity and peak conditions for SOC. To meet the constraints 0 ≤ xLi (l) ≤ A

with l = 1, . . . , L, each transmitter applies a normalization layer to the transmitted

symbols using the weighted sigmoid function. We examine a two-user MAC channel
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depicted in Fig. 5.1, without loss of generality. Fully connected (FC) layers provide

the basis of the transmitter model, with a subsequent BN layer added directly after

each FC layer. The BN normalizes the layer’s inputs for each mini-batch, which both

shortens the training time and keeps the learning process stable. The gradient explo-

sion issues are also lessened by the BN, according to [49]. Until the weighted sigmoid

normalization step in the encoder, it is clear that no input scaling takes place. Since the

input scaling does not change between training and the testing, BN parameters learned

during training will lead to the same superior performance throughout testing.

SOC Channel Model: The normalized vector xLi for both transmitters are

fed into the SOC channel. The SOC channel is composed of two components: an AWGN

channel, and a Log-normal fading model with a standard deviation of σ. The channel

parameters are provided by the STK simulator discussed earlier. The input to the neural

networks on the receiver’s side is represented as yL.

yL =

K∑
i=1

hix
L
i +wL, (5.1)

where wL ∼ N (0, In) and the Log-normal fading coefficient, represented by hi for the

transmitter i.

Common Receiver: Lastly, the receiver-based ground station processes the

corrupted vector yL and generates the estimated one-hot vector 1b̂i . The common

receiver includes K decoders, each is composed of multiple FC layers followed by Layer

Normalization (LN). Since the received symbols yL will be scaled with different A values
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Figure 5.1: Proposed AE architecture in a two-user MAC channel.
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Figure 5.2: The proposed AE architecture in a two-user IC setting.
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than the one used in training, using BN in the decoder can not aid to standardize the

data, since the testing input scale differs from the training due to varying A values.

BN’s learned parameters can not work well in testing unless A matches the trained

value.

To prevent this issue, the receiver could wait and collect a certain amount

of samples in order to produce the desired results. This implies that the BN will

continue to work in the same manner during both training and testing. However, this

assumption is impractical in wireless communications. Accordingly, we need to design

the system for deployment to deal with received codewords independently without the

need for a significant number of samples before the processing begins. Therefore, LN

is introduced in the decoders, which operates sample by sample, in order to maintain

efficient standardization across the entire AE system. The process of LN involves re-

centering and re-scaling its input. Since LN works in the same manner in both training

and testing phases, the effect of scaling the input to the decoder is mitigated, and

trained decoder weights are effective in testing. Additionally, the corrupted vector yL

undergoes a single LN unit before being inputted to the decoders. This guarantees

consistent scaling and enhances system performance during testing across various SNR

values. The cross-entropy (CE) loss function for each AE is defined as

Cj = −
M∑
r=1

1bi(r) logpj(r), (5.2)

where 1bi(r) ∈ {0, 1}, i = j is the rthvalue in the input one-hot vector 1bi . The softmax
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is applied at the last layer of the jth decoder producing the probability value pj(v) and

it can be expressed as follows

pj(v) =
eqj(v)∑M
t=1 e

qj(t)
, (5.3)

where qj is the j
th decoder final layer output. By employing the min-max algorithm, it

is possible to decrease the error probability as follows

max
(
Pr

{
b1 ̸= b̂1

}
,Pr

{
b2 ̸= b̂2

}
, ...,Pr

{
bK ̸= b̂K

})
. (5.4)

The use of the min-max algorithm can lead to a decrease in error probability by

selecting a decision rule that aims to minimize the maximum possible loss [19]. In light

of this, in a given step, only the weights corresponding to the maximum loss are updated,

while all other weights are left intact. Overall, the system’s loss function is given by

C = max (C1, C2, ..., CK) . (5.5)

Algorithm 1 summarizes the learning strategy for the novel AE design in the

MAC channel.

Interference channel: The idea of MAC AE can be easily expanded to

incorporate multiple transmitters and receivers that utilize a shared channel. Both

transmitter-receiver pairs are implemented as NNs and the difference with respect to

the MAC AE is that the encoded vectors xLi ,∀i ∈ {1, 2, ...,K} now interfere at the
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receivers, resulting in the noisy observations

yLj =
K∑
i=1

hijx
L
i +wL

j ,∀j ∈ {1, 2, ...,K} (5.6)

The Log-normal fading coefficient, represented by hij , refers to the coefficient that

connects the ith transmitter with the jth receiver, where i and j ∈ {1, 2, ...,K}. The

target for receiver j now is to estimate the message bi transmitted by the ith transmitter,

while ignoring any other messages that may interfere with it. Furthermore, since the

decoders are located at different ground stations, each decoder will have a separate

LN unit at its input to negate the effect of scaling yLi with different SNR values during

testing. Without loss of generality, we consider here the two-user IC as shown in Fig. 5.2.

Transmitter 1 wants to communicate message b1 ∈M to receiver 1 while transmitter 2

wants to communicate message b2 ∈M to receiver 2.

5.4 Simulation Results

In this section, we present the symbol detection performance evaluated for

the proposed AE for code rate R = 1/3 in two different scenarios: MAC and IC with

two users. Also, the proposed AE architecture follows the layout given in Figs. 5.1

and 5.2. The learnable parameters are tuned using the stochastic gradient descent

(SGD) algorithm with the Adam optimizer and a learning rate of 0.0001. The model is

trained using 5, 000, 000 randomly generated samples for 20 epochs with the objective

of minimizing the training loss. Finally, the system BER performance is evaluated
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Algorithm 4 AE training algorithm in a K-user MAC channel

Require: M messages (1, 2, . . . ,M) ∈ M, transmitter peak intensity A, batch size m,
learning rate η.

Ensure: argmax(q
(t)
j ) = b

(t)
i ∀t ∈ {1, 2, . . . ,m}, i, j ∈ {1, 2, . . . ,K}

1: θ1, . . . , θK ← initialize encoder units parameters.
2: ϕ1, . . . , ϕK ← initialize decoder units parameters.
3: υ ← initialize LN layer parameters.
4: repeat

5: Draw m minibatch samples for each user ((b
(1)
1 , . . . , b

(1)
K ), . . . , (b

(m)
1 , . . . , b

(m)
K )).

6: for t← 1 to m do
7: for z ← 1 to K do
8: 1

b
(t)
z
← one hot vector(b

(t)
z ) {1

b
(t)
z
∈ {0, 1}M}

9: x
(t)
z ← Eθz(1b(t)z

, A) {x(t)
z ∈ [0, A]L}

10: end for
11: y(t) ←

∑K
z=1 x

(t)
z h

(t)
z +w(t) {y(t) ∈ RL}

12: y(t) ← y(t)/ĥ
(t)

13: for z ← 1 to K do
14: q

(t)
z ← Dϕz(LNυ(y

(t))) {q(t)z ∈ RM}
15: p

(t)
z ← Softmax(q

(t)
z ) {p(t)

z ∈ [0, 1]M}
16: end for
17: end for
18: for z ← 1 to K do
19: Cz ← −

∑m
t=1

∑M
r=1 1b(t)z

(r) log(p
(t)
z (r))

20: end for
21: C = max(C1, C2, . . . , CK)
22: for τ ← θ1, . . . , θK , ϕ1, . . . , ϕK , υ do
23: ∇τC ← ∂C

∂τ
24: τ ← τ − η∇τC
25: end for
26: until convergence
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Table 5.1: Layers design of the AE(k, L).

Module Layer
Input
shape

Output
shape

Number of
parameters

T
ra
n
sm

it
te
r Fully connected M 100 100(M + 1)

Batch normalization 100 100 400
Fully connected 100 L 101L

Batch normalization L L 4L
Weighted sigmoid L L 0

Normalizer Layer normalization L L 2L

D
ec
o
d
er

Fully connected L 100 100(L+ 1)
Layer normalization 100 100 200
Fully connected 100 M 101M

Layer normalization M M 2M

over 1, 000, 000 testing samples. The computational complexity of the system can be

optimized by assigning the appropriate number of learnable parameters for each layer.

We make our source code publicly available at https://github.com/abdo-ui. Our dataset

is generated using Python as random binary data and the fading coefficients are obtained

from the STK simulator. To ensure a fair comparison, all benchmark models were

trained with equal numbers of epochs and training samples. This ensures that any

advantages observed in the proposed model can be attributed solely to its design. Also,

note that the training is often done off-line and only once so that only the complexity

during testing really matters. In addition, Table 5.1 provides a breakdown of the relevant

parameters for each layer of the proposed AE(k, L) model.

The proposed AE(7, 21) is compared with the uncoded IM/DD, LDPC with

time sharing, the standard AE(7, 21) presented in [19], and the sparse AE(7, 21) pre-

sented in [33] based on the BER performance metric. The comparison is made under

two channel conditions: AWGN MAC and Log-normal fading MAC. Figures 5.3 and
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5.4 present the MAC channel results. The LDPC scheme, which utilizes IM/DD mod-

ulation with time sharing settings, is characterized by a block length of bl = 100. The

design of this LDPC configuration of code rate 1/3 follows the guidelines in [45]. In

AWGN MAC channel illustrated in Fig. 5.3, our proposed model outperforms the stan-

dard AE by 2.1 dB at BER 10−6 and is ahead of both the sparse AE and uncoded

IM/DD by 4 and 5.7 dB, respectively. As shown in Fig. 5.4, the proposed AE(7,21) is

better than the standard AE by 1.5 dB at a BER of 10−6. In addition, the proposed

AE(7,21) with time sharing settings outperforms the LDPC with time sharing at low

SNR regime and has 1.3 dB gain at BER 10−4. Also, the proposed AE with time shar-

ing has the same performance as the LDPC at BER 10−6. In the Log-normal MAC

and IC channel, the standard deviation σ is set to 0.2 [6]. The discrepancy in BER

performance between the standard AE, sparse AE, and the proposed AE highlights the

positive impact of integrating normalization layers and the min-max algorithm in the

proposed model. In addition, we compare our system against the uncoded IM/DD,

LDPC IM/DD, the sparse AE, and the AE system presented in [7] in the presence of

two-user IC for Log-normal fading channel.

Fig. 5.5 illustrates the evaluation of the proposed AE in an IC channel-based

AWGN setting. The results indicate that the proposed AE outperforms the sparse AE

and the uncoded IM/DD by 3 dB and 5.5 dB, respectively. In addition, Fig. 5.6 shows a

comparison of all models in a Log-normal two-user IC channel with σ = 0.2. The results

demonstrate that the proposed AE achieves better performance than the standard AE

proposed in [7], with an improvement of 1.8 dB at a BER of 10−6. In addition, the
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proposed AE with time sharing is just inferior with 0.3 compared to the LDPC with

time sharing at BER 10−6. However, the proposed AE with time sharing is better

by 1.2 and 0.8 dB compared to the LDPC with time sharing at BER 10−3 and 10−4,

respectively.

Furthermore, Table 5.2 reveals that the proposed AE is more computationally

efficient than the latest learning-based models. In the AWGN MAC channel, the stan-

dard AE(7, 21) requires more 2.1 dB more in terms of SNR than the proposed AE(7, 21)

to achieve a BER of 10−6, even though it has 23% more learnable parameters. Moreover,

the sparse AE(7, 21) requires a 4 dB higher SNR value than the proposed AE(7, 21) to

achieve 10−6 BER, despite having only 3% fewer learnable parameters. Fig. 5.7 vi-

sualizes the learned representations x of all messages as real constellation points for

the proposed AE(7, 21) in MAC channel. The histogram in Fig. 5.7 is a visualization

of the learned constellations at the transmitter for all possible messages trained and

tested for A = 4 over a two-user AWGN and log-normal fading channels. Obviously,

the results in Fig. 5.7 are applied in the testing stage after achieving the best weights

for minimizing the loss according to the min-max problem. The results in Fig. 5.7 are

in symbol representations as the transmitter in the AE applies both channel coding and

symbol mapping simultaneously considering both the peak and positivity constraints.

The distribution of the encoded symbols is generated after the training stage. While

Fig. 5.7 looks like an on-off-keying modulation and similar constellation points as rep-

resented in [6, 19], the scattering of the points is still different and not all points are

exactly located in 0 and A. In particular Fig. 5.7, verifies that the AE output follows
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Table 5.2: Computational complexity for each learning-based model.

Model Number of learnable parameters

Sparse AE(7,21) [33] 60,298

Standard AE(7,21) [7, 19] 77,098

Proposed AE(7,21) 62,220

both positivity and peak intensity intensity constraints ∈ [0, A]. It is interesting to ob-

serve that the learned constellation points for the AE(7,21) are scattered in the interval

[0, A] with different relative frequencies. These findings indicate that the AE effectively

acquired efficient coding, modulation techniques in a MAC scenario.
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Figure 5.3: BER versus Eb
No

in a two-user MAC AWGN channel.
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Figure 5.7: The constellation points against the relative frequency generated by the
proposed AE(7, 21) considering a peak intensity of A = 4.
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5.5 Conclusion

In this chapter, we develop a DL AE model using a novel layered framework

that incorporates BN in the encoder and LN in the decoders in SOC specifically tai-

lored for multi-user environments. A realistic SOC channel model for fading channels

is created using the STK simulator. Our model focuses not only on enhancing the BER

performance but also on optimizing computational complexity making it a promising

solution for improving communication reliability and efficiency in SOC systems. The

proposed AE enables scalability for any number of users in a multi-user environment.

The numerical results indicate that the proposed AE exhibits superior performance in

terms of BER and computational complexity compared to the existing learning frame-

works in both MAC and IC channels. The proposed AE results yields better results that

all E2E learning frameworks currently considered in the state-of-the-art, to the best of

our knowledge.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, significant advancements were made in addressing the

challenges of SOC through learning-based frameworks. Chapter 3 introduced a neu-

ral network-based channel estimator optimized for single-signal-to-noise ratio training,

which eliminates the need for multiple estimators and reduces complexity. The proposed

design achieved performance comparable to the MMSE estimator while demonstrating

superior computational efficiency. Additionally, an AE-based symbol detection frame-

work was developed, enabling joint optimization of transmitter and receiver components.

The innovative multi-code rate AE model demonstrated adaptability across various fad-

ing channel conditions, achieving robust performance under both perfect and imperfect

knowledge of the CSI.

In Chapter 4, the focus shifted to channels governed by Poisson statistics, a
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critical challenge in SOC. Traditional approaches often rely on Gaussian approxima-

tions, which are limited in photon-constrained scenarios. This work proposed an AE

framework integrated with the CMA-ES, achieving near-optimal error rate performance

while bypassing the limitations of differentiable channel models. This contribution is

particularly significant for photon-limited applications, where channel characteristics

differ from conventional assumptions.

Chapter 5 expanded the scope to multi-user SOC environments, particularly

addressing scenarios with multiple users transmitting over shared channels and inter-

ference between users. The proposed AE models incorporated layer normalization, sig-

nificantly improving error rate performance while maintaining computational efficiency.

These designs demonstrated the ability to handle multi-user interference effectively and

adapt to diverse operational conditions. By achieving scalability and robust performance

in these multi-user scenarios, the work set a new benchmark for practical applications

of SOC in complex communication networks.

Collectively, these contributions advance the field by addressing key challenges

in symbol detection, channel estimation, and multi-user environments. The proposed

frameworks are not only computationally efficient but also highly adaptable, providing

robust solutions to critical limitations in current SOC systems. This work lays a strong

foundation for future developments in efficient and scalable communication frameworks

for both near-Earth and deep-space applications.

103



6.2 Future Work

6.2.1 Secure AEs in Wiretap Channels

Physical layer security remains a cornerstone of modern communication sys-

tems, especially in scenarios where data confidentiality is critical. Our initial results

show that leveraging AEs for wiretap channels significantly enhances secrecy by reduc-

ing information leakage to eavesdroppers while improving reliability for legitimate users.

These findings indicate that our proposed AE-based models outperform state-of-the-art

techniques and approach the performance of convolutional codes operating near channel

capacity. This highlights their promise as a robust framework for secure communica-

tion. Future research will focus on fine-tuning these AE architectures to address diverse

channel conditions and adversarial scenarios, with an aim to set new benchmarks for

secure wireless communications.

6.2.2 AE in Relay SOC

Relay-based SOC systems are pivotal for extending communication reach and

reliability in space and terrestrial networks. Our proposed AE models have shown su-

perior performance in symbol detection and channel estimation compared to existing

methods. Notably, these models demonstrate potential for achieving near-capacity per-

formance similar to advanced convolutional codes. This establishes a strong foundation

for using AEs to tackle the challenges of signal degradation and relaying delays. Future

work will explore the integration of hybrid model-based and learning-driven approaches
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to further optimize relay SOC systems for higher throughput and energy efficiency.

6.2.3 AE in Intelligent Reflecting Surface

Intelligent Reflecting Surfaces (IRS) have emerged as a transformative technol-

ogy for enhancing communication by dynamically altering propagation environments.

Our initial studies reveal that AE-based frameworks can effectively adapt IRS config-

urations to improve data fidelity and enhance channel reliability. These models, which

outperform traditional approaches and approach the performance limits of capacity

codes, provide a promising starting point for IRS-aided secure communication. Moving

forward, we will develop adaptive AE algorithms that fully exploit IRS capabilities for

secure, efficient, and dynamic communication in challenging scenarios, such as high-

mobility or multi-user environments.

6.2.4 Full Hardware Implementation for Proposed AE Model

To determine the feasibility of deploying our deep learning AE model in low-

power hardware, a necessity for satellites where power is an extremely valuable resource,

we deployed our AE model on a Raspberry Pi 4, as shown in Fig. 6.1. A video

presentation showing this project can be found at the website of Zouheir Rezki’s lab.

To do this, we first pruned the weights of our DNN in order to preserve the

scarce memory resources of the Raspberry Pi 4, reducing their amounts by 25%. Due

to being able to effectively deploy our code on low power hardware, this means that

it is feasible for deployment in power-constrained environments, such as on satellites.
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Figure 6.1: The proposed AE model running on Raspberry Pi 4 hardware.

After proving the feasibility of deployment, the next step in our research is to fully

implement our model in hardware. This would consist of converting the data from the

AE’s encoder into analog values that would modulate the intensity of a laser diode at

the transmitter using IM/DD, sending the laser beam across a channel of predetermined

length, and receiving the laser beam with a photo-detector at the receiver.
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[80] Yusuf Acar, Hakan Doğan, and Erdal Panayırcı. Spline based channel estimation

for stbc-sm systems over fast-varying rician fading channels. In 2015 23nd Signal

Processing and Communications Applications Conference (SIU), pages 188–191.

IEEE, 2015.

[81] Weile Zhang, Feifei Gao, and Qinye Yin. Blind channel estimation for mimo-

119



ofdm systems with low order signal constellation. IEEE Communications Letters,

19(3):499–502, 2015.

[82] Abla Kammoun, Mérouane Debbah, Mohamed-Slim Alouini, et al. Asymptotic

analysis of rzf over double scattering channels with mmse estimation. IEEE Trans-

actions on Wireless Communications, 18(5):2509–2526, 2019.

[83] S Morteza Razavi and Tharmalingam Ratnarajah. Adaptive ls-and mmse-based

beamformer design for multiuser mimo interference channels. IEEE Trans. Veh.

Technol., 65(1):132–144, 2015.

[84] Salil Kashyap, Christopher Mollén, Emil Björnson, and Erik G Larsson.

Frequency-domain interpolation of the zero-forcing matrix in massive mimo-ofdm.

In 2016 IEEE 17th International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), pages 1–5. IEEE, 2016.

[85] Masumi Kuriyama and Tomoaki Ohtsuki. Low complexity and high accuracy

channel interpolation with dividing ura into small uras for 3d massive mimo. In

2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pages 1–5.

IEEE, 2019.

[86] Alexander Osinsky, Andrey Ivanov, and Dmitry Yarotsky. Bayesian approach to

channel interpolation in massive mimo receiver. IEEE Communications Letters,

24(12):2751–2755, 2020.

[87] Ling Zhang and Xianda Zhang. Mimo channel estimation and equalization us-

120



ing three-layer neural networks with feedback. Tsinghua science and technology,

12(6):658–662, 2007.

[88] Syed Junaid Nawaz, Sajjad Mohsin, and Ataul Aziz Ikaram. Neural network

based mimo-ofdm channel equalizer using comb-type pilot arrangement. In 2009

International Conference on Future Computer and Communication, pages 36–41.

IEEE, 2009.

[89] Ling Yang, Binbin Xue, Mingming Nie, Changnian Liu, and Qiang Zhang. Semi-

blind channel estimation of mimo-ofdm system based on extreme learning ma-

chine. In 2013 Sixth International Symposium on Computational Intelligence and

Design, volume 2, pages 164–168. IEEE, 2013.

[90] Tao Cui and Chintha Tellambura. Channel estimation for ofdm systems based

on adaptive radial basis function networks. In IEEE 60th Vehicular Technology

Conference, 2004. VTC2004-Fall. 2004, volume 1, pages 608–611. IEEE, 2004.

[91] Imad Barhumi, Geert Leus, and Marc Moonen. Optimal training design for mimo

ofdm systems in mobile wireless channels. IEEE Transactions on signal processing,

51(6):1615–1624, 2003.

[92] Hongxiang Xie, Feifei Gao, and Shi Jin. An overview of low-rank channel estima-

tion for massive mimo systems. IEEE Access, 4:7313–7321, 2016.

[93] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. Channel

state information prediction for 5g wireless communications: A deep learning

121



approach. IEEE Transactions on Network Science and Engineering, 7(1):227–

236, 2018.

[94] P Vimala and G Yamuna. Pilot design strategies for block sparse channel es-

timation in ofdm systems. Indian Journal of Science and Technology, 10(24),

2017.

[95] Ajay B Singh and Vivek K Gupta. Performance evaluation of mmse and ls channel

estimation in ofdm system. International Journal of Engineering Trends and

Technology (IJETT), 15(1):39–43, 2014.

[96] Yawei Li, Lizuo Jin, A Kai Qin, Changyin Sun, Yew Soon Ong, and Tong Cui.

Semi-supervised auto-encoder based on manifold learning. In 2016 International

Joint Conference on Neural Networks (IJCNN), pages 4032–4039. IEEE, 2016.

[97] Ling Yang, Ming Ming Nie, Zi Long Zhong, Bin Bin Xue, and Na Lv. Channel

equalization of mimo-ofdm system based on extreme learning machine. In Applied

Mechanics and Materials, volume 536, pages 1751–1757. Trans Tech Publ, 2014.

[98] Tianqi Wang, Chao-Kai Wen, Hanqing Wang, Feifei Gao, Tao Jiang, and Shi Jin.

Deep learning for wireless physical layer: Opportunities and challenges. China

Communications, 14(11):92–111, 2017.

[99] Zhijin Qin, Hao Ye, Geoffrey Ye Li, and Biing-Hwang Fred Juang. Deep learning

in physical layer communications. IEEE Wireless Communications, 26(2):93–99,

2019.

122



[100] Chao-Kai Wen, Wan-Ting Shih, and Shi Jin. Deep learning for massive mimo csi

feedback. IEEE Wireless Communications Letters, 7(5):748–751, 2018.

[101] Tianqi Wang, Chao-Kai Wen, Shi Jin, and Geoffrey Ye Li. Deep learning-based

csi feedback approach for time-varying massive mimo channels. IEEE Wireless

Communications Letters, 8(2):416–419, 2018.

[102] Shuichi Ohno and Georgios B Giannakis. Capacity maximizing mmse-optimal

pilots for wireless ofdm over frequency-selective block rayleigh-fading channels.

IEEE Transactions on Information Theory, 50(9):2138–2145, 2004.

[103] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sig-

moid in deep learning through dynamical isometry: theory and practice. Advances

in neural information processing systems, 30, 2017.

[104] Ranjitha Prasad, Chandra R Murthy, and Bhaskar D Rao. Joint channel esti-

mation and data detection in mimo-ofdm systems: A sparse bayesian learning

approach. IEEE Transactions on signal processing, 63(20):5369–5382, 2015.

[105] Zhou Zhou, Jun Fang, Linxiao Yang, Hongbin Li, Zhi Chen, and Rick S

Blum. Low-rank tensor decomposition-aided channel estimation for millimeter

wave mimo-ofdm systems. IEEE Journal on Selected Areas in Communications,

35(7):1524–1538, 2017.

[106] Wenbo Ding, Fang Yang, Wei Dai, and Jian Song. Time–frequency joint

123



sparse channel estimation for mimo-ofdm systems. IEEE communications letters,

19(1):58–61, 2014.

[107] Marco A. Fernandes, J. Leonardo Nascimento, Paulo P. Monteiro, and Fernando P.

Guiomar. Highly reliable outdoor 400g fso transmission enabled by ann channel

estimation. In 2022 Optical Fiber Communications Conference and Exhibition

(OFC), pages 1–3, 2022.

[108] Laialy Darwesh and Natan S. Kopeika. Deep learning for improving performance

of ook modulation over fso turbulent channels. IEEE Access, 8:155275–155284,

2020.

[109] Zhan Gao, Mark Eisen, and Alejandro Ribeiro. Resource allocation via model-

free deep learning in free space optical communications. IEEE Trans. Commun.,

70(2):920–934, Feb. 2022.

[110] Mohammad Ali Amirabadi, Mohammad Hossein Kahaei, and S Alireza Nezamal-

hosseni. Low complexity deep learning algorithms for compensating atmospheric

turbulence in the free space optical communication system. IET Optoelectronics,

16(3):93–105, 2022.

[111] Maged A. Esmail, Waddah S. Saif, Amr M. Ragheb, and Saleh A. Alshebeili. Free

space optic channel monitoring using machine learning. Opt. Express, 29(7):10967–

10981, Mar 2021.

[112] Mohamed Mahmoud, Ayman I. Boghdady, Abd El-Rahman A. El-Fikky, and

124



Moustafa H. Aly. Statistical studies using goodness-of-fit techniques with dynamic

underwater visible light communication channel modeling. IEEE Access, 9:57716–

57725, 2021.

[113] Hyeji Kim, Sewoong Oh, and Pramod Viswanath. Physical layer communication

via deep learning. IEEE J. Sel. Areas Inf. Theory, 1(1):5–18, May. 2020.

[114] H. Hemmati, Abhijit Biswas, and Ivan Djordjevic. Deep-space optical communi-

cations: Future perspectives and applications. Proceedings of the IEEE, 99:2020

– 2039, 12 2011.

[115] Amos Lapidoth, Stefan M Moser, and Michele A Wigger. On the capacity of

free-space optical intensity channels. IEEE Trans. Inf. Theory, 55(10):4449–4461,

October 2009.

[116] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Turbo

autoencoder: Deep learning based channel codes for point-to-point communication

channels. In Proc. Conf. Neural Informat. Process. Syst, 2019, pp. 4381–4391.

[117] Larry C Andrews and Ronald L Phillips. Laser Beam Propagation Through Ran-

dom Media. SPIE Pres, 2005.

[118] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Un-

derstanding and improving layer normalization. volume 32, page 4381–4391, 2019.

[119] Mohammed Elamassie, Murat Uysal, Yahya Baykal, Mohamed Abdallah, and

125



Khalid Qaraqe. Effect of eddy diffusivity ratio on underwater optical scintillation

index. J. Opt. Soc. Am. A, 34(11):1969–1973, Nov. 2017.
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Appendix A

List of Acronyms

SOC Space Optical Communications

OWC Optical Wireless Communications

RF Radio Frequency

GEO Geostationary Earth Orbit

AE Autoencoder

NN Neural Network

CSI Channel State Information

BER Bit Error Rate

MSE Mean Squared Error

IM/DD Intensity Modulation Direct Detection
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AWGN Additive White Gaussian Noise

MMSE Minimum Mean Square Error

SNR Signal-to-Noise Ratio

PDF Probability Density Function

GG Gamma-Gamma

STK System Tool Kit

LEO Low Earth Orbit

MAC Multiple Access Channel

IC Interference Channel

ReLU Rectified Linear Unit

DL Deep Learning

DNN Deep Neural Network

MLP Multilayer Perceptron

CSI Channel State Information

VL Visible Light

VLC Visible Light Communication

LS Least Square
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OFDM Orthogonal Frequency Division Multiplexing

MIMO Multiple Input, Multiple Output

LMMSE Linear Minimum Mean Square Error

AWGN Additive White Gaussian Noise

CMA-ES Covariance Matrix Adaptation Evolution Strategy

FNN Feedforward Neural Network
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Appendix B

Proof for Gradient Descent Calculations

The parameter d[L] of the single neuron output layer is defined as follows

d[L] =
∂L
∂z[L]

= 2
(
h− ĥ

)
. (B.1)

The vector d[l] in the lth layer is given as

d[l] =
∂L
∂z[l]

=
(
Θ[l+1]⊤d[l+1]

)
⊙ ReLU′

(
z[l]

)
. (B.2)

The gradient decent algorithm is employed in conjunction with backpropaga-

tion solving the optimization problem in (3.12) to reduce the loss function by updat-

ing the weights at the hidden and output layers.

Based on (10), (18) and (19), the gradient calculations are computed as follow:

∂L
∂Θ[l+1]

= d[l+1]a[l]⊤ , (B.3)
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∂L
∂b[l+1]

= d[l+1]. (B.4)

Moreover, the proposed channel estimator NN makes use of the Adaptive Mo-

ment Estimation (Adam) optimizer. Adam is a technique for computing adaptive learn-

ing rates for each weight parameter. In addition to storing a decaying average of past

squared gradients vt, we also keep track of them individually. We compute the expo-

nentially decaying averages of past and past squared gradients as follows

mt = β1mt−1 + (1− β1) gt, (B.5)

vt = β2vt−1 + (1− β2) g2t , (B.6)

where the first and the second moment estimates are denoted by mt and vt, respectively.

The decay rates for the first and second moment are defined as β1 and β2, respectively.

Then the weight parameters are updated according to

θt+1 = θt −
η

√
vt + ϵ

mt. (B.7)

Finally, updating weights stop functioning whenever the difference in error

between the two most recent times is negligible or the allocated number of epochs has

been reached.
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Appendix C

Proof for MMSE Channel Estimator in

Log-normal Fading Channel

The received element y can be given by

y = hx+ w, (C.1)

where h is the true channel coefficients based on Log-normal fading channel and AWGN

w ∼ N(0, 1). The criteria of MMSE estimator is based on

ĥ = E[h | y] =
∫ ∞

0
hf(h/y)dh, (C.2)

where f(h | y) is defined as

f(h | y) = f(y | h)f(h)
f(y)

, (C.3)
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where fh(h) is the PDF of the Log-normal distribution. Furthermore, the PDF of the

received element y can be denoted as

f(y) =

∫ ∞

0
f(y | h)f(h)dh, (C.4)

where f(y | h) follows a Gaussian distribution with a mean µ = hA and unit variance,

by substituting (27) and (28) in (26), E[h/y] can be described as

E[h/y] =

∫ ∞

0
h

f(y | h)fh(h)∫∞
0 f(y/z)fz(z)dz

dh, (C.5)

where fh(h) follows a Log-normal distribution and the PDF fh(h) is given by

fh(h) =

1

hσ
√
2π

exp

{
−(log h+ µ)2

2σ2

}
, for h > 0.

(C.6)

Afterwards, we deduce that f(y | h) can be described as

f(y | h) = 1√
2πσ

e−
(y−hA)2

2 . (C.7)

Following along the same lines, by substituting (31) in (29), this yields to

ĥ =

∫ ∞

0
h

1√
2πσ

e−
(y−hA)2

2 fh(h)∫∞
0

1√
2πσ

e−
(y−hA)2

2 fz(z)dz
dh. (C.8)
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Now, based on (C.6) and (C.8), we finally obtain the channel estimate ĥ based MMSE

estimator

ĥ =

∫ ∞

0

e−
(y−hA)2

2 exp
{

−(log h+µ)2

2σ2

}
∫∞
0 e−

(y−zA)2

2
1
z exp

{
−(log z+µ)2

2σ2

}
dz
dh.

(C.9)
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