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ABSTRACT  

We developed a three-photon adaptive optics add-on to a commercial two-photon laser scanning microscope. We 
demonstrated its capability for structural and functional imaging of neurons labeled with genetically encoded red 
fluorescent proteins or calcium indicators deep in the living mouse brain with cellular and subcellular resolution.  

Keywords:  Active or adaptive optics, Nonlinear microscopy, Fluorescence microscopy 
 

1. INTRODUCTION  
Two-photon (2P) microscopy is the leading technique for in vivo optical imaging deep into biological samples with 
subcellular resolution [1, 2]. However, its maximum imaging depth is limited to a few hundred micrometers due to 
scattering and refractive aberration in the tissue [3]. In order to increase the imaging depth, one can reduce scattering and 
absorption by selecting long excitation wavelengths in optical windows with low tissue absorption [4, 5]. One can also 
use adaptive optics (AO) to correct refractive aberration that increases the focal volume and hence decreases two-photon 
fluorescence emission [6-11]. Three-photon (3P) excitation enables imaging of fluorescent proteins (e.g., td-Tomato) and 
molecular sensors (e.g., red calcium indicators) at approximately 3 times the wavelength of their one-photon excitation 
peaks [12]. The third-order nonlinearity in 3P excitation also decreases the out-of-focus background light compared to 
2P excitation [12, 13]. In this study we combine 3P excitation with AO, and demonstrate the capability of structural and 
functional imaging of neurons at the cellular and subcellular level in the living mouse brain.  

2. METHOD 
2.1 System setup 

We integrated a 3P-AO add-on system (Fig. 1) into a commercial 2P laser scanning microscope (FV1000MPE, 
Olympus), so as to take advantage of its user-friendly hardware and software interfaces. The setup retains the option to 
feed the original tunable Ti:Sapphire laser (Mai Tai DeepSee, Spectra-Physics) for 2P imaging into our AO add-on 
system through a dichroic mirror (D1, Di02-R1064, Semrock), which provides the ability to conduct simultaneous 
multiple-excitation multiphoton imaging. 
We used a fiber laser-based chirped pulse amplification system (FLCPA) (Cazadero, Calmar) as the 3P excitation light 
source. The FLCPA delivers up to 900 mW average power at 1550 nm; its repetition rate is tunable from 0.1 MHz to 25 
MHz. Although the 1550 nm laser can generate 3P excitation for several fluorescent proteins, thermal damage due to 
water absorption in the living tissue limits imaging depth and duration. To minimize water absorption, we coupled the 
laser from the FLCPA into a photonic crystal rod (PCR, NKT Photonics) through the lens L1 (30 mm focal length, 
Thorlabs) to shift the output wavelength to around 1700 nm by soliton self-frequency shift [12]. Increasing the pulse 
energy shifts PCR output to longer wavelengths. The PCR confers the additional benefit of pulse compression [12]. The 
output beam from the PCR is collimated by the lens L2 (100 mm focal length, Thorlabs). The beam intensity can be 
adjusted with a variable metallic neutral density filter (NDC-50C-2, Thorlabs) installed on a computer-controlled servo. 
A long-pass filter with cut-on wavelength of 1580 nm (BLP01-1550R-25, Semrock) was used to block the residual pump 
laser. Second harmonic generation (SHG) and three-photon (3P) fluorescence are detected by channels 2 and 4 of the 
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microscope, respectively. The dichroic mirror with a 570nm cutoff wavelength in the Olympus filter cube (FV10-
MRVGR/XRAC) can separate the emission signals between SHG and mCherry or RCaMP.   
To optimize the wavelength for 3P imaging, we adjusted the pulse energy and the dispersion compensation to maximize 
signal intensity from fluorescent microspheres with regular water (H2O) as the immersion medium. We measured the 
spectrum of the PCR output beam with an optical spectrum analyzer (Agilent 86146B), and the pulse width with a 
custom-built interferometric autocorrelator (not shown) using a similar design as described in [14]. The setup is based on 
a Michelson interferometer, where a reference mirror is installed on a nano-stage to scan the pulse separation. A Si 
detector (818-SL, Newport) in front of an objective lens is used as the nonlinear element to generate second harmonic at 
the output. A data acquisition card (PCIe-6363, National Instruments) is used to recorded the signal and generate the 
autocorrelation trace. The FLCPA repetition rate is set to 2 MHz, which provides 131 fs pulses, in close agreement with 
the manufacture’s specification (126 fs pulse width). The pulse width is compressed to 80 fs by the PCR. After the 
objective lens the pulse is broadened to 99 fs due to dispersion in the optical system. We also measured the resolution of 
the microscope with fluorescent microspheres (diameter = 0.02 μm). The lateral and axial resolution is around 0.8 µm 
and 3 µm, respectively. 
We implemented a sensorless AO scheme in the add-on system. We used a low-order continuous membrane deformable 
mirror (DM69, ALPAO) as the wavefront corrector. Its 69 actuators with 40 µm stroke can correct most of the low-order 
refractive aberrations in biological samples.  Lenses L3 and L4 resize the incident beam to fit on the deformable mirror 
(DM).  Lenses L5 and L6 conjugate the DM to the scanner in the FV1000MPV microscope frame.  Inside the frame, a 
custom-made dichroic mirror (D2, not shown in Fig. 1) with a cutoff wavelength of 690 nm (Chroma) separates the 
excitation and emission light. Due to the high polarization dependence of dichroic mirrors, a half-wave plate is installed 
before the AO system to maximize the excitation power reflected by the dichroic mirror D2. The scanner and the tube 
lenses of the original Olympus microscope were replaced by lenses with a coating that is optimal around 1700 nm to 
increase the transmittance of the system. The excitation beam is fed into a 25x water-immersion objective with coating 
for high transmittance (~75%) around 1600 nm (XLPLN25XWMP2, NA 1.05, Olympus). Overall, the transmittance of 
the AO add-on is >80%, and the total transmittance of the microscope frame including the objective is around 60%.  
The Olympus microscope and the AO add-on system are controlled by two computers. One computer is dedicated to 
operate the Olympus microscope control and image capturing software (FV10-ASW, Olympus). The other computer is 
equipped with a data acquisition card (PCIe-6363, National Instruments) to control the AO add-on system. The two 
computers are connected through an Ethernet cable. A custom software program written in Microsoft Visual C++ 2013 
controls the AO system and synchronizes it with the FV1000MPE microscope using trigger signals from the latter. 

2.2 System operation 

Our 3P-AO add-on uses a simple modal sensorless wavefront correction scheme based on the Zernike modes, similar to 
the 3N algorithm [15].  In this scheme, phase aberration is represented as a linear combination of Zernike polynomials.  
Optimization proceeds in two steps: selection of a region-of-interest (ROI), and iterative wavefront correction (Fig. 2).  
In the ROI selection step, the scanned image is retrieved from the FV10-ASW software (microscope control) into the 
AO add-on software through the Ethernet connection, and a ROI on the image is selected by the user.  A quality metric, 
defined as the cube root of the average signal intensity in the ROI, is computed.  The signal can be either the 
fluorescence or the third harmonic generation (THG) channel of the image. THG signals can yield more stable results 
due to the absence of photobleaching.  In the wavefront correction step, repeated for every sample, each Zernike mode is 
corrected sequentially. To increase the stability over a large aberration range, 5N method is applied in the system [15]. 
For each Zernike mode, five images are taken with the phases displayed on the DM defined as (ki + jφ)Zi, where i 
indexes the Zernike mode, ki is the index factor of the mode, φ is the search step size, and j indexes the steps from -2 to 
2.  The quality metrics on the five images are computed and fit with a Gaussian function [15].  Then the phase 
corresponding to the peak of the quality metric is calculated.  Optimization proceeds through all the modes up to order M 
= 22. Since defocus is coupled with the spherical aberration, additional defocus is applied to compensate for the focal 
plane shift during the optimization of spherical aberration.  Depending on the amplitude of the aberrations, multiple 
iterations of optimization may be applied. The optimization time is limited by the microscope’s image acquisition 
software and the file transfer between the two computers. It takes 20 seconds for one iteration. Bypassing the Olympus 
software could further improve the operation speed. After the final phase is set on the DM, 3P imaging can be performed 
using the microscope PC. For imaging of a small volume, such as shown in Fig. 8 (118µm × 118µm × 63µm), a single 
correction is applied for the whole image stack. The corrected volume depends on the isoplanatic patch for specific 
samples [16]. For larger volume imaging, multiple corrections may be required to achieve a wider correction volume.   
 

Proc. of SPIE Vol. 10051  100510R-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/2/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

L1 L2

Ti-sapphire laser Power adjustment & 
beam shaping

FV1000MPV

λ/2 plate
DM

L5 L6
L3L4

ND LPF

PC for AO PC for FV1000MPV

Images

triggers

Control Signal

ST

PCR

3P AO add-on

D1
FLCPA

 
Figure 1. (a) System diagram. L, lens; DM, deformable mirror; ST, shutter; ND, variable metallic neutral density filter; 
LPF, long pass filter; D1, dichroic mirror; PCR, photonic crystal rod. 
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Figure 2. Flow chart for sensorless wavefront correction 
 

2.3 Sample preparation 

 

Fluorescent microspheres with 0.02 µm diameter (Invitrogen, 580/605) were used to measure microscope resolution. 
Fluorescent microspheres with 1.1 µm diameter (Invitrogen, 540/560) were used to test wavefront correction.  The 
microspheres were spread onto a glass slide with mounting medium (Fluoromount-G, Cell Lab) and sealed with a 170 
µm cover slip.  
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We used several transgenic mouse lines in conjunction with viral injection to label selected populations of neurons with 
either structural markers (red fluorescent proteins) or functional sensors (red calcium indicators).  A cross between 
Gad2-IRES-Cre (JAX #010802) and Ai14(RCL-tdT)-D (JAX #007908) mouse line was used to label inhibitory 
interneurons with cytosolic td-Tomato. The Thy1-GFP line M mice (JAX #007788) received intracortical injection of 
adeno-associated viruses (AAV) encoding the Cre-DOG system and Flex-td-Tomato (both generously provided by Dr. 
Constance L. Cepko and Dr. Jonathan C. Y. Tang at Harvard Medical School) to sparsely label deep layer neurons and 
their dendritic structures with td-Tomato. The C57BL/6J mice received intracortical injection of AAV encoding the Cre 
recombinase and floxed jRGECO1a for calcium imaging (both purchased from University of Pennsylvania Vector Core).  
Mice 6 weeks or older of both sexes were used in this study.  All procedures were conducted in accordance with 
protocols approved by the Institutional Animal Care and Use Committee, University of California Santa Cruz.   
 
The mouse was anesthetized with isoflurane (1.5%) and injected with dexamethasone (2mg/kg body weight) 
intramuscularly and carprofen (0.3 ml from 0.50 mg/ml stock) intraperitoneally to prevent brain swelling. The 
craniotomy was performed with a trephine (Fine Science Tools) driven by a high-speed micro drill (Foredom). A chronic 
imaging glass window was then implanted and secured with cyanoacrylic glue (Vetbond). A custom head-plate was 
secured onto the skull with dental acrylic. At the end of surgery, buprenorphine (0.1 mg/kg body weight) and 
enrofloxacin (5 mg/kg body weight) were injected subcutaneously to reduce pain and prevent infection, respectively. For 
structural imaging of neurons and dendrites, mice were anesthetized by intraperitoneal injection of a mixture of ketamine 
(87 mg/kg body weight) and xylazine (8.7 mg/kg body weight).  
 

3. Experimental results 
 

3.1 3P-AO imaging of fluorescent microspheres  

 
With 3P excitation, fluorescence emission scales as the cube of excitation intensity.  To verify the order of nonlinearity 
in our system, we measured fluorescence intensity of microspheres under different excitation power (Fig. 3). We fit the 
data with both quadratic and cubic curves, and found that the cubic curve fit better.  In addition, the same excitation 
power generated much stronger fluorescence emission when heavy water (D2O) was used instead of regular water (H2O) 
as the immersion medium, because D2O absorbs much less at this wavelength than H2O [12]. 
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Figure 3. Cubic scaling relationship between fluorescence emission and excitation power at the objective indicates three-
photon excitation.  Cubic and quadratic curve fitting are shown as solid and dashed curves, respectively. RMSE, root 
mean square errors.   
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Refractive aberrations affect 3P imaging more severely than 1P or 2P imaging due to the higher order non-linearity[10]. 
In order to characterize the aberration-induced signal loss, we used the DM to introduce primary spherical aberrations 
with different amplitudes, and measured the intensity of fluorescence emitted by microspheres.  We found a cubic decay 
with the root mean square (RMS) of the wavefront (Fig. 4a). To test the correction ability of the AO system, we then 
introduced spherical aberration by adjusting the correction collar on the objective lens and corrected it with the DM.  
The RMS wavefront error due to the collar adjustment was around 0.15λ, which reduced the signal intensity (Fig. 4b, left 
panel). The RMS wavefront error is estimated by the final shape of the pre-calibrated DM after optimization. If this error 
is fully corrected by AO, the signal intensity should be improved by more than two-fold as predicted by the scaling 
relationship shown in Fig. 4(a). Indeed, AO correction restored the wavefront (Fig. 4d) and markedly improved the 
signal to noise ratio as expected (Fig. 4b-c).  
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Figure 4. 3P-AO imaging of fluorescent microspheres. (a) Fluorescence intensity decreases as spherical aberration 
increases. Red line: cubic curve fitting. (b) Images of microspheres before and after AO correction, where the aberration 
was introduced by adjusting the correction collar of the objective lens. (c) The intensity profiles along the lines in (b). (d) 
The final phase on the DM.  

3.2 3P imaging of the live mouse brain 

We then tested the ability of the add-on system for in vivo 3P imaging in the mouse brain. The laser power was increased 
gradually with the imaging depth from 5 mW to 90 mW. Figure 5(a) shows imaging of cortical neurons labeled with td-
Tomato. The images were collected with a Z step size of 3 µm.  The fluorescence signal in the td-Tomato channel 
remains fairly strong down to a depth of 750 µm.  Imaging of the THG signal in the brain tissue, which likely includes 
contributions from lipid-rich structures such as myelin sheaths of axons and blood vessels [17], shows that the add-on 
system is able to penetrate up to 1 mm below dura mater (Fig. 5b). At a more moderate depth, the system can resolve 
dendritic spines (minuscule protrusions on neuronal dendrites, which host the postsynaptic sites of the majority of 
excitatory synapses) without AO correction, as shown in the maximum intensity projection image from 440 µm to 490 
µm depth (Figure 5c). The spine head and the parent dendritic branch, separated by only 2.4 µm, are clearly resolved 
(Figure 5d). 
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Figure 5. Three-photon imaging of the live mouse brain. (a) Imaging of neurons labeled with td-Tomato up to a depth of 
765µm (Visualization 1 and 2). (b) Deep THG imaging up to a depth of 1mm (Visualization 3 and 4). (c) 3P imaging of 
dendritic spines from 440µm to 490µm below the cortical surface (Visualization 5). (d) Intensity profile along the line 
across the dentrite and the spine in (c).  Scale bar, 20µm. 
  
The long excitation wavelength of red-fluorescent calcium indicators facilitates deep brain imaging. Thus we tested the 
ability of our system for 3P imaging of the genetically encoded calcium indicator jRGECO1a. The mouse was placed on 
a custom-built rotating disk with its head secured to a metal holder via the head-plate. It remained awake throughout the 
experiment and could voluntarily run on the disk. Fig. 6(a) shows an example of jRGECO1a-labeled neurons in the 
motor cortex, and Fig. 6(b) shows calcium transients (ΔF/F0) of these neurons. This result shows the ability of 3P 
excitation of  red fluorescent calcium indicators for functional imaging.   
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 Figure 6.  3P calcium imaging of cortical neurons in awake mouse (Visualization 6 and 7). (a) Maximum intensity 

projection of the time series of neurons labeled with the genetically encoded red calcium indicator jRGECO1a. Images 
were taken with 256 x 256 pixels per frame at 2.33 Hz (pixel dwelling time = 2 µs). (b) Calcium transients of selected 
neurons in (a) shown as ΔF/F0.  
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3.3 3P imaging of live mouse brain with wavefront correction  

 
We tested the effect of the AO add-on for in vivo deep brain imaging by applying wavefront correction at the depth from 
505 µm to 543 µm below the cortical surface.  The strong signal from the td-Tomato-labeled cell bodies provided a good 
reference for sensorless wavefront correction. A 10x10 µm ROI was selected over a cell body as shown in Fig. 7(a).  The 
DM was optimized by maximizing the average intensity in the ROI.  The RMS wavefront error before correction was 
found to be around 0.18λ.  Figure 7(b) shows the image after correction. Applying the final phase (Fig. 8d) on the DM 
significantly improves signal intensity across the entire 250x250 µm field of view (compare Fig. 7a with 7b). The 
intensity profiles along the lines across two dendrites show more than three-fold improvement.  
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Figure 7. 3P-AO imaging of neurons in a live mouse brain (Visualization 8). (a,b) Neurons at the depth from 505 µm to 
543 µm below the cortical surface (a) without and (b) with AO correction. Dashed square: ROI selected as reference. (c) 
Intensity profiles along the lines in (a,b). (d) The final phase on the DM, RMS = 0.18λ 
 
 
Conclusion and Discussion 
 
 
In conclusion, we have developed a 3P-AO add-on system on a commercial laser scanning microscope that is equipped 
with a Ti:Sapphire laser for 2P imaging up to 1060 nm. We added a 1550 nm femtosecond fiber laser chirped pulse 
amplification system and a photonic bandgap crystal that shifts the wavelength up to 1700 nm for 3P microscopy. The 
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maximum average power and the pulse width after the objective lens of the microscope were measured to be ~100 mW 
and ~100 fs, respectively. Using this system we have demonstrated 3P structural imaging of td-Tomato labeled neuronal 
somata, dendrites and dendritic spines in live mouse brains, and showed that AO improved fluorescence intensity by 
over three-fold at the depth of 505 µm to 540 µm below the cortical surface. We have also demonstrated functional 
imaging of cortical neurons labeled with the genetically encoded red calcium indicator jRGECO1a in awake, head-
restrained mice. Overall, we have demonstrated the feasibility of in vivo structural and functional imaging in the mouse 
brain with our add-on system, which will help disseminate the use of 3P and AO for biological imaging. 
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