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ABSTRACT OF THE DISSERTATION

Robot learning through Reinforcement Learning, Teleoperation and Scene Reconstruction

by

Quan Ho Vuong

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Henrik Iskov Christensen, Chair

Designing agents that autonomously acquire skills to complete tasks in their environments

has been an ongoing research topic for decades. The complete realization of the vision remains

elusive, yet research pursued in the quest toward this goal has yielded tremendous scientific and

technological advances. The thesis addresses three research areas that are key to progress on this

vision.

The first area is deep Reinforcement Learning (RL), where we develop new algorithms

for both online and offline RL. More specifically, we propose an experimental setting where we

demonstrate that pre-training policies from offline datasets can lead to significant improvement

in online learning sample efficiency on unseen tasks (up to 80% on standard benchmarks). The

xv



second contribution in this area is a novel offline RL algorithm based on Generator Adversarial

Network. In contrast to recent algorithms that enforce distribution constraints, we use a dual

generator formulation to enforce support constraints, leading to improved performance. The

method outperforms recent state-of-the-art algorithms on tasks that require stitching sub-optimal

trajectories to learn performant behavior.

The second is human-machine interfaces for human supervision, e.g. to collect demon-

strations for robotic manipulation. Using a single RGB-D camera as the sensing device to capture

human motion in real-time, we demonstrate that our teleoperation system allows the human

operator to successfully control a 6 degree-of-freedom manipulator to complete complex tasks,

such as peg-in-hole and folding cloth.

The third is the automatic construction of simulated environments for training deep neural

networks. We show the benefit of our framework in the task of grasping objects in clutter using 6

degree-of-freedom grasp. Using only 30 reconstructed scenes and thousands of grasp labels, a

state-of-the-art grasping network architecture when trained using our reconstructions outperforms

by 11% the publicly released pre-trained model that was trained with 17.7 million grasp labels.

xvi



Chapter 1

Introduction

Instead of trying to produce a programme to simulate the adult mind, why not rather
try to produce one which simulates the child’s? If this were then subjected to an
appropriate course of education one would obtain the adult brain. – Alan Turing

In the same chapter where the famous quote above was written, Alan Turing offers a

principle from which such a child machine can be educated: ”We normally associate punishments

and rewards with the teaching process. Some simple child machines can be constructed or

programmed on this sort of principle. The machine has to be so constructed that events which

shortly preceded the occurrence of a punishment-signal are unlikely to be repeated, whereas a

reward-signal increased the probability of repetition of the events which led up to it” [TUR50]

He went on to lament that ”I have done some experiments with one such child-machine,

and succeeded in teaching it a few things, but the teaching method was too unorthodox for the

experiment to be considered really successful.” He would be surely relieved to learn that 70 years

later, reinforcement learning algorithms have been demonstrated to be general-purpose algorithms

that can learn from punishments and reward signals to perform complex tasks.

The basic framework of Reinforcement Learning is as follows. The learning agent

interacts with an environment. The learning agent receives as input observation and outputs an

action, after which the agent receives a scalar reward signal indicating how desirable the action
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Figure 1.1: An illustrations of three research areas that are key ingredients for continued
progress towards general purpose robotics.

was. A successful learning agent must use the reward signal to infer the optimal action that leads

to the highest possible reward. The development of Reinforcement Learning can be traced back to

the work by Richard Bellman on dynamic programming [Bel57] and temporal difference learning

by Richard Sutton [SB18]. Early attempts at developing Reinforcement Learning algorithms that

can solve complex real-world problems were hindered by the lack of expressive representation.

They resorted to table look-up or linear function, neither of which were adequate [Tes95].

However, in recent years, deep neural networks have been proven to be an expressive

class of representation, and when trained with Reinforcement Learning algorithms, can represent

complex behaviors and solve practical real-world problems. A particularly intriguing property

of the approach is its generality, having been successfully applied to problems from seemingly

unrelated domains, such as video games [MKS+15a], robot grasping [KIP+18] and computer

chip design [MGY+21, RRK+21]. Such generality brings a tremendous amount of excitement

because the approach might open the door to previously unsolved scientific and technological

problems.

However, the complete realization of Turing’s original vision in designing agents that

can be educated using reward and punishment signals remain elusive. In this thesis, we will

2



present our research on three research areas that are key to continued progress towards this

vision. Figure 1.1 provides an illustration of the three research areas. We next briefly describe the

motivation that connects these three research areas.

Reinforcement Learning can be thought of as an algorithmic framework to perform task-

oriented end-to-end learning. This is appealing because the algorithm can train deep neural

networks to perform the task of interest without the designer having to explicitly engineer repre-

sentation and reasoning capability into the network. The appropriate representation and reasoning

capability can instead emerge out of the learning procedure. In this case, it is interesting to note

the similarity with behavior-based robotics, which has been argued to lead to intelligent behavior

without explicitly engineered representation [Bro91b] or reasoning system [Bro91a]. Because

of this benefit, our first area of research interest is in designing better Reinforcement Learning

algorithms. However, a fundamental challenge that Reinforcement Learning algorithms face is

the so-called bootstrapping problem, where learning can be prohibitively slow at the beginning

due to the lack of demonstration of the desired behavior. A possible method to circumvent this

issue is to collect human demonstrations, which is a popular practice when applying Reinforce-

ment Learning to robotic manipulation. The importance of human demonstration motivates our

second area of interest, which is in developing new teleoperation systems. Last but not least,

another appealing aspect of Reinforcement Learning is that it has the potential to train agents to

perform many tasks in a scalable manner. To do so, we would need an environment where the

learning agents can propose their own tasks to practice, without the algorithm designer having to

specify what those tasks are a priori. Creating such an environment in the real world is costly and

time-consuming, and therefore we turn our attention to simulation. More concretely, the third

research area that we are interested in is the automatic reconstruction of real-world scenes for

training neural networks.

In the sections below, we describe the contribution in each research area in more details.
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1.1 Algorithms for offline Reinforcement Learning

The successes of deep neural networks in recent years hinge on training them on large-

scale and diverse datasets. In contrast, Reinforcement Learning has been traditionally framed

as an online decision-making problem, where the learning agent interleaves collecting fresh

experiences and learning from them. While such formulation encapsulates the two main steps that

any intelligent agents perhaps should possess, the need to collect new experiences before learning

from them means that the dataset size is often limited, especially in domains where collecting

data is either expensive or unsafe.

The limitation of online Reinforcement Learning therefore has ignited interest in offline

Reinforcement Learning in recent years. In offline Reinforcement Learning [LGR12], sometimes

known as batch Reinforcement Learning, the learning agent must learn from a static dataset

and is not allowed to interact with the environment during the learning process. After learning

finishes, the learning agent is then evaluated in the task of interest, either with or without adapting

to new experiences. If we can develop stable and performant offline Reinforcement Learning

algorithms and train them on large-scale offline datasets, perhaps we will see Reinforcement

Learning agents enjoying the same level of generalization and usefulness that deep networks

trained with supervised learning currently enjoy.

Our first work in this area demonstrates the promise of offline Reinforcement Learning

when trained from diverse datasets. In this work, given multiple datasets collected from different

tasks, we train a multi-task policy to perform well in unseen tasks sampled from the same

distribution. Given the network trained using the offline datasets, when we allow further training

on the unseen tasks, using the trained policy as an initialization leads to significantly faster

convergence compared to randomly initialized policies (up to 80% improvement and across 5

different Mujoco task distributions). We name our method Multi-task Batch RL with Metric

Learning. We discuss this work in detail in chapter 2.
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Offline Reinforcement Learning also faces a unique set of challenges, one of which is

constraining the learned policy to remain close to the data. Such a constraint is essential to prevent

the policy from outputting out-of-distribution (OOD) actions with erroneously overestimated

values. In principle, generative adversarial networks (GAN) can provide an elegant solution

to do so, with the discriminator directly providing a probability that quantifies distributional

shift. However, in practice, GAN-based offline RL methods have not outperformed alternative

approaches, perhaps because the generator is trained to both fools the discriminator and maximize

return - two objectives that are often at odds with each other. In this paper, we show that the

issue of conflicting objectives can be resolved by training two generators: one that maximizes

return, with the other capturing the ”remainder” of the data distribution in the offline dataset,

such that the mixture of the two is close to the behavior policy. We show that not only does

having two generators enable an effective GAN-based offline RL method, but also approximates

a support constraint, where the policy does not need to match the entire data distribution but only

the slice of the data that leads to high long-term performance. We name our method DASCO, for

Dual-Generator Adversarial Support Constrained Offline RL. On benchmark tasks that require

learning from sub-optimal data, DASCO significantly outperforms prior methods that enforce

distribution constraints. We discuss this work in detail in chapter 3.

1.2 Algorithms for online Reinforcement Learning

In spite of the discussions regarding the limitation of online Reinforcement Learning in

the previous subsection, developing efficient online Reinforcement Learning remains an open,

interesting and impactful intellectual endeavor. For example, in Offline Reinforcement Learning

research, we are often interested in using online learning to further improve the performance of the

policy trained with offline data. We will discuss two of our contributions to online Reinforcement

Learning. The first contribution is a theoretically motivated algorithm called Supervised Policy
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Update. In online Reinforcement Learning, given the current policy and a fixed number of recently

collected trajectories, we need to search for a new policy before collecting more experience.

It is often desirable to limit this search to a space of policies close to the current policy to

ensure learning stability. Our algorithm proposes to solve this search by decomposing it into two

steps: solving for the non-parameterized policy, and then parameterizing the non-parameterized

policy with a neural network. Interestingly, the theoretical formulation of the problem suggests a

simple early stopping condition when training using a new batch of experience. The algorithm is

applicable to both discrete and continuous action spaces. We discuss Supervised Policy Update in

chapter 4.

The second contribution that we include in this thesis is an algorithm for better exploration

techniques for actor-critic algorithms. Exploration techniques are crucial to improve the sample

efficiency of online Reinforcement Learning algorithms because exploration directly determines

the quality of data that the learning algorithm is exposed to. In this work, we proposed Optimistic

Actor Critic, which explores more efficiently by operationalizing the principle of optimism in

the face of uncertainty to actor-critic algorithms. We discuss the algorithms in more detail in

chapter 5.

1.3 Teleoperation system

In previous sub-sections, we describe our contributions in the form of new algorithms for

online and offline Reinforcement Learning. These algorithms were tested on standard simulated

benchmarks, which is a helpful step toward demonstrating their usefulness and allowing others to

reproduce the reported results. However, one of the most promising applications of Reinforcement

Learning is to teach robots to perform tasks in the real world, especially tasks that involve

manipulating objects. This is because the real world is unstructured, and dynamic, making it

challenging to develop accurate physical models. Since Reinforcement Learning algorithms do
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not require plausible physical models, applying Reinforcement Learning to robotics, therefore,

holds the promise that robots can autonomously acquire useful skills without needing to have

accurate physical models.

Unsurprisingly, applying learning methods to robotic manipulation has its own sets of

challenges, one of which is how to bootstrap the learning process. Before learning, a learning

agent might not have any useful knowledge of the world, or possesses any skills, it is therefore

unlikely that the agent can produce sequences of interactions that will complete the task of interest.

In such a case, the learning agent can not make any progress. A common method to bootstrap

the learning process is to provide the learning agent with successful demonstrations of the task.

Given the demonstrations, the agent can acquire a baseline level of mastery and therefore obtain

positive rewards, which allow the agent to reinforce behaviors to produce positive rewards and

therefore improve over time.

There are many different methods to provide learning agents with demonstrations to

perform manipulation tasks. While a review of these different methods is beyond the scope of the

thesis, we refer interested readers to [SK07] for a comprehensive discussion. In our work, we pro-

pose a teleoperation system that uses a single RGB-D camera as the human motion capture device.

Our system can perform general manipulation tasks such as cloth folding, hammering, and 3mm

clearance peg-in-hole. We propose the use of a non-Cartesian oblique coordinate frame, dynamic

motion scaling, and repositioning of operator frames to increase the flexibility of our teleoperation

system. Demos of our systems are available online at https://sites.google.com/view/manipulation-

teleop-with-rgbd. We describe the details of our system in chapter 6.

1.4 Real2Sim2Real

Because of the data required in training deep neural networks, learning inside a simulated

environment and then transferring the trained policies to the real world has become an influential
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and active research area. Several impressive demonstrations of Reinforcement Learning on real

robots made extensive use of simulators for learning, including quadrupedal locomotion over

challenging natural terrain [LHW+20] and dextrous manipulation [ABC+].

However, these approaches usually require practitioners to manually curate the object

meshes, place them at realistic poses in the simulation scenes and calibrate their dynamics

parameters. The process of manual scene creation and calibration requires domain expertise

and can be prohibitively costly to scale to large-scale scenes with many objects. Perhaps this

is one of the reasons why applications using Sim2Real have mostly been demonstrated on

manipulation tasks in constrained settings involving a single object [XCB+22], such as rope

manipulation, or when the simulated scenes can be procedurally generated, such as in bin

picking [MLN+17, MPH+16, MML+17]. Recognizing scene creation and calibration as a major

bottleneck of Sim2Real, recent research has attempted to automate this process and dub the

problem Real2Sim2Real [LHC+21].

We present two separate contributions to this research area. In chapter 7, we demonstrate

that the dynamic parameter of the simulated scene can be optimized using RL to maximize the

performance of the trained policies in the test environment. The performance of the policies

trained with the simulation instance tuned using our method improves over the performance of

reasonable default setting of the simulation instance by up to 50%. While our work in chapter 7

is concerned with tuning the dynamics parameter, in chapter 8, we instead focus on the geometric

problem of automatically reconstructing the object meshes in a scene and placing them at realistic

poses. We show the benefit of our framework in the task of grasping objects in clutter using 6

degree-of-freedom grasp. Using only 30 reconstructed scenes and thousands of grasp labels, a

state-of-the-art grasping network architecture when trained using our reconstructions outperforms

by 11% the publicly released pre-trained model that was trained with 17.7 million grasp labels.
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Chapter 2

Multi-task Batch Reinforcement Learning

with Metric Learning

Combining neural networks (NN) with reinforcement learning (RL) has led to many

recent advances [WWVR20, SWD+17, HZAL18a, SLM+15, VZR18]. Since training NNs

requires diverse datasets and collecting real world data is expensive, most RL successes are

limited to scenarios where the data can be cheaply generated in a simulation. On the other hand,

offline data is essentially free for many applications and RL methods should use it whenever

possible. This is especially true because practical deployments of RL are bottle-necked by

its poor sample efficiency. This insight has motivated a flurry of recent works in Batch RL

[SSB+20, ASN19, KFS+19a, FMP19, CZW+19]. These works introduce specialized algorithms

to stabilize training from offline datasets. However, offline datasets are not necessarily diverse.

In this work, we investigate how the properties of a diverse dataset influence the policy search

procedure. By collecting diverse offline dataset, we hope the networks will generalize without

further training to unseen tasks or provide good initialization that speeds up convergence when

we perform further on-policy training.

To collect diverse datasets, it occurs to us that we should collect data from different tasks.
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However, datasets collected from different tasks may have state-action distributions with large

divergence. Such dataset bias presents a unique challenge in robust task inference. We provide

a brief description of the problem setting, the challenge and our contributions below. For ease

of exposition, we refer to such datasets as having little overlap in their state-action visitation

frequencies thereafter.

We tackle the Multi-task Batch RL problem. We train a policy from multiple datasets,

each generated by interaction with a different task. We measure the performance of the trained

policy on unseen tasks sampled from the same task distributions as the training tasks. To perform

well, the policy must first infer the identity of the unseen tasks from collected transitions and then

take the appropriate actions to maximize returns. To train the policy to infer the task identity,

we can train it to distinguish between the different training tasks when given transitions from

the tasks as input. These transitions are referred to as the context set [RZQ+19]. Ideally, the

policy should model the dependency of the task identity on both the rewards and the state-action

pairs in the context set. To achieve this, we can train a task identification network that maps

the collected experiences, including both state-action pairs and rewards, to the task identity or

some task embedding. This approach, however, tends to fail in practice. Since the training

context sets do not overlap significantly in state-action visitation frequencies, it is possible that

the learning procedure would minimize the loss function for task identification by only correlating

the state-action pairs and ignoring rewards, which would cause mistakes in identifying testing

tasks. This is an instance of the well-known phenomena of ML algorithms cheating when given

the chance [CZS17] and is further illustrated in Fig. 2.1. We limit our explanations to the cases

where the tasks differ in reward functions. Extending our approach to task distribution with

different transition functions is easily done. We provide experimental results for both cases.

Our contributions are as follows. To the best of our knowledge, we are the first to highlight

the issue of the task inference module learning the wrong correlation from biased dataset. We

propose a novel application of the triplet loss to robustify task inference. To mine hard negative
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Figure 2.1: A toy example to illustrate the challenge. The agent must navigate from the origin to
a goal location. Left: Goal 1 and Goal 2 denote the two training tasks. The red and blue squares
indicate the transitions collected from task 1 and 2 respectively. We can train the task inference
module to infer the task identity to be 1 when the context set contains the red transitions and
2 when the context set contains the blue transitions. Since there are no overlap between the
red and blue squares, the task inference module learns to correlate the state-action pairs to the
task identity. Right: The failure of the task inference module. The policy must infer the task
identity from the randomly collected transitions, denoted by the green squares. The agent needs
to navigate to goal 1 during testing. However, if the green squares have more overlap with the
blue squares, the task inference module will predict 2 to be the task identity. The agent therefore
navigates to the wrong goal location.

examples, we approximate the reward function of each task and relabel the rewards in the

transitions from the other tasks. When we train the policy to differentiate between the original

and relabelled transitions, we force it to consider the rewards since their state-action pairs are the

same. Training with the triplet loss generalizes better to unseen tasks compared to alternatives.

When we allow further training on the unseen tasks, using the policy trained from the offline

datasets as initialization significantly increase convergence speed (up to 80% improvement in

sample efficiency).

To the best of our knowledge, the most relevant related work is [SSB+20], which is

solving a different problem from ours. They assume access to the ground truth task identity and

reward function of the testing task. Our policy does not know the testing task’s identity and must

infer it through collected trajectories. We also do not have access to the reward function of the

testing tasks.
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2.1 Preliminaries and Problem Statement

We model a task as a Markov Decision Process M = (S ,A ,T,T0,R,H), with state space

S , action space A , transition function T , initial state distribution T0, reward function R, and

horizon H. At each discrete timestep t, the agent is in a state st , picks an action at , arrives at

s′t ∼ T (·|st ,at), and receives a reward R(st ,at ,s′t). The performance measure of policy π is the

expected sum of rewards JM(π) = EτM∼π[∑
H−1
t=0 R(st ,at ,s′t)], where τM = (s0,a0,r0,s1,a1,r1, . . .)

is a trajectory generated by using π to interact with M.

2.1.1 Batch Reinforcement Learning

A Batch RL algorithm solves the task using an existing batch of N transitions B =

{(st ,at ,rt ,s′t)|t = 1, . . . ,N}. A recent advance in this area is Batch Constrained Q-Learning

(BCQ) [FMP19]. Here, we explain how BCQ selects actions. Given a state s, a generator

G outputs multiple candidate actions {am}m. A perturbation model ξ takes as input the state-

candidate action and generates small correction ξ(s,am). The corrected action with the highest

estimated Q value is selected as π(s):

π(s) = argmax
am+ξ(s,am)

Q(s,am +ξ(s,am)) , {am = G(s,νm)}m , νm ∼N (0,1). (2.1)

In our paper, we use BCQ as a routine. The take-away is that BCQ takes as input a batch of

transitions B = {(st ,at ,rt ,s′t)|t = 1, . . . ,N} and outputs three learned functions Q,G,ξ.
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2.1.2 Multi-task Batch Reinforcement Learning

Given K batches, each containing N transition tuples from one task, Bi = {(si,t ,ai,t ,ri,t ,s′i,t)|i=

1, . . . ,K, t = 1, . . . ,N}, we define the Multi-task Batch RL problem as:

argmax
θ

J(θ) = EMi∼p(M) [JMi(πθ)] , (2.2)

where an algorithm only has access to the K batches and JMi(π) is the performance of the policy

π in task i, i.e. EτMi∼π[∑
H−1
t=0 R(si,t ,ai,t ,s′i,t)]. p(M) defines a task distribution. The subscript i

indexes the different tasks. The tasks have the same state and action space and only differ in the

transition and reward functions [ZSI+20]. A distribution over the transition and/or the reward

functions therefore defines the task distribution. We measure performance by computing average

returns over unseen tasks sampled from the same task distribution. The policy is not given identity

of the unseen tasks before evaluation and must infer it from collected transitions.

In multi-task RL, we can use a task inference module qφ to infer the task identity from

a context set. The context set for a task i consists of transitions from task i and is denoted ci.

The task inference module qφ takes ci as input and outputs a posterior over the task identity. We

sample a task identity zi from the posterior and inputs it to the policy in addition to the state,

i.e. π(s,zi). We model qφ with the probabilistic and permutation-invariant architecture from

[RZQ+19]. qφ outputs the parameters of a diagonal Gaussian. For conciseness, we sometimes

use the term policy to also refer to the task inference module. It should be clear from the context

whether we are referring to qφ or π.

We evaluate a policy on unseen tasks in two different scenarios: (1) Allowing the policy

to collect a small number of interactions to infer z, we evaluate returns without further training,

(2) Training the policy in the unseen task and collecting as much data as needed, we evaluate the

amount of transitions the policy needs to collect to converge to the optimal performance.

We assume that each batch Bi contains data generated by a policy while learning to solve
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task Mi. Thus, if solving each task involve visiting different subspace of the state space, the

different batches do not have significant overlap in their state-action visitation frequencies. This

is illustrated in Fig. 2.1.

2.2 Proposed algorithm

2.2.1 Learning multi-task policy from offline data with distillation

In Multi-task RL, [RCG+15, TBC+17, GSR+17, CPO+19, PBS15] demonstrate the

success of distilling multiple single-task policies into a multi-task policy. Inspired by these

works, we propose a distillation procedure to obtain a multi-task policy in the Multi-task Batch

RL setting. In Sec. 2.2.2, we argue such distillation procedure alone is insufficient due to the

constraints the batch setting imposes on the policy search procedure.

The distillation procedure has two phases. In the first phase, we use BCQ to learn a

different policy for each task, i.e. we learn K different and independent policies. While we can

use any Batch RL algorithm in the first phase, we use BCQ due to its simplicity. As described

in Sec. 2.1.1, for each training batch, BCQ learns three functions: a state-action value function

Q, a candidate action generator G and a perturbation generator ξ. The output of the first phase

thus consists of three sets of networks {Qi}K
i=1, {Gi}K

i=1, and {ξi}K
i=1, where i indexes over the

training tasks.

In the second phase, we distill each set into a network by incorporating a task inference

module. The distilled function should recover different task-specific function depending on the

inferred task identity. To distill the value functions {Qi}K
i=1 into a function QD, for each task i, we

sample a context ci and a pair (s,a) from the batch Bi. The task inference module qφ takes ci as

input and infers a task identity zi. Given zi as input, QD should assign similar value to (s,a) as the

value function for the ith task Qi(s,a). The loss function with a β-weighted KL term [RZQ+19]
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is:

LQ =
1
K

K

∑
i=1

E
(s,a),ci∼Bi

[
(Qi(s,a)−QD(s,a,zi))

2 +βKL(qφ(ci)||N (0,1))
]
, zi ∼ qφ(ci) (2.3)

We also use Eq. 2.3 to train qφ using the reparam trick [KW13]. Similarly, we distill the candidate

action generators {Gi}K
i=1 into GD. GD takes as input state s, random noise ν and task identity zi.

Depending on zi’s value, we train GD to regress towards the different candidate action generator:

LG =
1
K

K

∑
i=1

E
s,ci∼Bi

ν∼N (0,1)

[
||Gi(s,ν)−GD(s,ν, z̄i)||2

]
, zi ∼ qφ(ci). (2.4)

The bar on top of z̄i in Eq. 2.4 indicates the stop gradient operation. We thus do not

use the gradient of Eq. 2.4 to train the task inference module [RZQ+19]. Lastly, we distill the

perturbation generators {ξi}K
i=1 into a single network ξD (Eq. 2.5). ξD takes as input a state s,

a candidate action a, and an inferred task identity zi. We train ξD to regress towards the output

of ξi given the same state s and candidate action a as input. We obtain the candidate action a by

passing s through the candidate action generator Gi.

Lξ =
1
K

K

∑
i=1

E
s,ci∼Bi

ν∼N (0,1)

[
||ξi(s,a)−ξD(s,a, z̄i)||2

]
, zi ∼ qφ(ci), a = Gi(s,ν) (2.5)

Note that the gradient of Lξ also updates Gi. The final distillation loss is given in Eq. 2.6. We

parameterize qφ,QD,GD,ξD with feedforward NN.

Ldistill = LQ +LG +Lξ. (2.6)
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Figure 2.2: Top: Value function distillation loss (Eq. 2.3) during training. Bottom: The
performance of the multi-task policy trained with Eq. 2.6 versus BCQ.

2.2.2 Robust task inference with triplet loss design

Given the high performance of distillation in Multi-task RL [RCG+15, TBC+17, GSR+17,

CPO+19, PBS15], it surprisingly performs poorly in Multi-task Batch RL, even on the training

tasks. This is even more surprising because we can minimize the distillation losses (Fig. 2.2 top)

and the single-task BCQ policies have high performance (Fig. 2.2 bottom). If the single-task

policies perform well and we can distill them into a multi-task policy, why does the multi-task

policy have poor performance? We argue the task inference module has learnt to model the

posterior over task identity as conditionally dependent on only the state-action pairs in the context

set , i.e. P(Z|S,A), where S,A are random variables denoting states and actions, rather than the

correct dependency P(Z|S,A,R) where R denotes the rewards.

The behavior of the trained multi-task policy supports this argument. In this experiment,

each task corresponds to a running direction. To maximize returns, the policy should run with

maximal velocity in the target direction. We found that the multi-task policy often runs in the

wrong target direction, indicating incorrect task inference. At the beginning of evaluation, the

task identity is not provided. The policy takes random actions, after which it uses the collected

transitions to infer the task identity. Having learnt the wrong conditional dependency, the task

inference module assigns high probability mass in the posterior to region in the task embedding
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space whose training batches overlap with the collected transitions (Fig. 2.1).

The fundamental reason behind the wrong dependency is the non-overlapping nature of

the training batches. Minimizing the distillation loss does not require the policy to learn the

correct but more complex dependency. The multi-task policy should imitate different single-task

policy depending on which batch the context set was sampled from. If the batches do not overlap

in state-action visitation frequencies, the multi-task policy can simply correlate the state-action

pairs in the context with which single-task policy it should imitate. In short, if minimizing the

training objective on the given datasets does not require the policy to model the dependency of

the task identity on the rewards in the context set, there is no guarantee the policy will model this

dependency. This is not surprising given literature on the non-identifiability of causality from

observations [Pea09, PJS17]. They also emphasize the benefit of using distribution change as

training signal to learn the correct causal relationship [BDR+20].

Inspired by this literature, we introduce a distribution change into our dataset by approxi-

mating the reward function of each task i with a learned function R̂i. Given a context set c j from

task j, we relabel the reward of each transition in c j using R̂i. Let t index the transitions and c j→i

denote the set of the relabelled transitions, we illustrate this process below :

c j =
{(

s j,t ,a j,t ,r j,t ,s′j,t
)}

t
Relabelling−−−−−−→ c j→i =

{(
s j,t ,a j,t , R̂i(s j,t ,a j,t),s′j,t

)}
t (2.7)

Given the relabelled transitions, we leverage the triplet loss from the metric learning community

[HBL17] to enforce robust task inference, which is the most important design choice in MBML.

Let K be the number of training tasks, ci be a context set for task i, c j be a context set for task j

( j ̸= i) , and c j→i be the relabelled set as described above, the triplet loss for task i is:

L i
triplet =

1
K−1

K

∑
j=1, j ̸=i

[
d
(
qφ

(
c j→i

)
,qφ (ci)

)︸ ︷︷ ︸
Ensure c j→i and ci infer

similar task identities

− d
(
qφ

(
c j→i

)
,qφ

(
c j
))︸ ︷︷ ︸

Ensure c j→i and c j infer

different task identities

+ m
]
+

, (2.8)
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Algorithm 1 Calculating the distillation and triplet loss
Input: Batches {Bi}K

i=1; BCQ-trained {Qi}K
i=1, {Gi}K

i=1, and {ξi}K
i=1; randomly initialized QD,

GD and ξD jointly parameterized by θ; task inference module qφ with randomly initialized φ

1: repeat
2: Sample context set ci from Bi,∀i
3: Obtain relabelled transitions c j→i according to Eq. 2.7 for all pair of task i, j
4: Calculate Ltriplet using Eq. 2.9
5: Calculate LQ,LG,Lξ using Eq. 2.3, 2.4, 2.5
6: Calculate L using Eq. 2.10
7: Update θ,φ to minimize L
8: until Done

where m is the triplet margin, [·]+ is the ReLU function and d is a divergence measure. qφ

outputs the posterior over task identity, we thus choose d to be the KL divergence.

Minimizing Eq. 2.8 accomplishes two goals. It encourages the task inference module

qφ to infer similar task identities when given either ci or c j→i as input. It also encourages qφ to

infer different task identities for c j and c j→i. We emphasize that the task inference module can

not learn to correlate only the state-action pairs with the task identity since c j and c j→i contain

the same state-action pairs, but they correspond to different task identities. To minimize Eq. 2.8,

the module must model the correct conditional dependency P(Z|S,A,R) when inferring the task

identity.

Eq. 2.8 calculates the triplet loss when we use the learned reward function of task i to

relabel transitions from the remaining tasks. Following similar procedures for the remaining tasks

lead to the loss:

Ltriplet =
1
K

K

∑
i=1

L i
triplet . (2.9)

The final loss to train the randomly initialized task inference module qφ, the distilled value

functions QD, the distilled candidate action generator GD, and the distilled perturbation generator

ξD is:

L = Ltriplet +LQ +LG +Lξ. (2.10)
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Alg. 1 illustrates the pseudo-code for the second phase of the distillation procedure. In theory, we

can also use the relabelled transitions in Eq. 2.7 to train the single-task BCQ policy in the first

phase, which we do not since we focus on task inference in this work.

2.3 Experiment Results

We demonstrate the performance of our proposed algorithm (Sec. 2.3.1) and ablate the

different design choices (Sec. 2.3.2). Sec. 2.3.3 shows that the multi-task policy can serve as a

good initialization, significantly speeding up training on unseen tasks.

2.3.1 Performance evaluation on unseen tasks

Figure 2.3: Results on unseen test tasks. x-axis is training epochs. y-axis is average episode
returns. The shaded areas denote one std.

We evaluate in five challenging task distributions from MuJoCo [TET12] and a modified

task distribution UmazeGoal-M from D4RL [FKN+20b]. In AntDir and HumanoidDir-M, a

target direction defines a task. The agent maximizes returns by running with maximal speed in the

target direction. In AntGoal and UmazeGoal-M, a task is defined by a goal location, to which the
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agent should navigate. In HalfCheetahVel, a task is defined as a constant velocity the agent should

achieve. We also consider the WalkerParam environment where random physical parameters

parameterize the agent, inducing different transition functions in each task. The state for each

task distribution is the OpenAI gym state. We do not include the task-specific information, such

as the goal location or the target velocity in the state. The target directions and goals are sampled

from a 120◦ circular arc.

We argue that the version of HumanoidDir used in prior works does not represent a mean-

ingful task distribution, where a single task policy can already achieve the optimal performance

on unseen tasks. We thus modify the task distribution so that a policy has to infer the task identity

to perform well, and denote it as HumanoidDir-M.

There are two natural baselines. The first is by modifying PEARL [RZQ+19] to train

from the batch, instead of allowing PEARL to collect more transitions. We thus do not execute

line 1−10 in Algorithm 1 in the PEARL paper. On line 13, we sample the context and the RL

batch uniformly from the batch. The second baseline is Contextual BCQ. We modify the networks

in BCQ to accept the inferred task identity as input. We train the task inference module using the

gradient of the value function loss. MBML and the baselines have the same network architecture.

We are very much inspired by PEARL and BCQ. However, we do not expect PEARL to perform

well in our setting because it does not explicitly handle the difficulties of learning from a batch

without interactions. We also expect that our proposed algorithm will outperform Contextual

BCQ thanks to more robust task inference.

We measure performance by the average returns over unseen tasks, sampled from the

same task distribution. We do not count the first two episodes’ returns [RZQ+19]. We obtain the

batch for each training task by training Soft Actor Critic (SAC) [HZAL18a] with a fixed number

of environment interactions.

From Fig. 2.3, MBML outperforms the baselines by a healthy margin in all task distribu-

tions. Even though PEARL does not explicitly handle the challenge of training from an offline
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Figure 2.4: MetaGenRL quickly diverges and does not recover. Results obtained from official
MetaGenRL code.

batch, it is remarkably stable, only diverging in AntDir. Contextual BCQ is stable, but converges

to a lower performance than MBML in all task distributions. An astude reader will notice the

issue of overfitting, for example Contextual BCQ in HumanoidDir-M. Since our paper is not

about determining early stopping conditions and to ensure fair comparisons among the different

algorithms, we compute the performance comparisons using the best results achieved by each

algorithm during training.

We also compare with MetaGenRL [KvSS19]. Since it relies on DDPG [LHP+15] to

estimate value functions, which diverges in Batch RL [FMP19], we do not expect it to perform

well in our setting. Fig. 2.4 confirms this, where its performance quickly plummets and does not

recover with more training. Combining MetaGenRL and MBML is interesting since MetaGenRL

generalizes to out-of-distribution tasks.

2.3.2 Ablations

We emphasize that our contributions lie in the triplet loss design coupled with transitions

relabelling. Below, we provide ablation studies to demonstrate that both are crucial to obtain

superior performance.
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Figure 2.5: Ablation study. x-axis is training epochs. y-axis is average episode returns. The
shaded areas denote one std.

No relabelling. To obtain hard negative examples, we search over a mini-batch to find the

hardest positive-anchor and negative-anchor pairs, a successful and strong baseline from metric

learning [HBL17]. This requires sampling N context sets {cn
i }N

n=1 for each task i, where n indexes

the context sets sampled for each task. Let K be the number of training tasks, the triplet loss is:

1
K

K

∑
i=1

[
max

n,n′=1,...,N
d
(

qφ(cn
i
)
,qφ(cn′

i )
)
− min

n,n′=1,...,N
j=1,...,K, j ̸=i

d
(

qφ(cn
i
)
,qφ(cn′

j )
)
+m

]
+

. (2.11)

The max term finds the positive-anchor pair for task i by considering every pair of context sets

from task i and selecting the pair with the largest divergence in the posterior over task identities.

The min term finds the negative-anchor pair for task i by considering every possible pair between

the context sets sampled for task i and the context sets sampled for the other tasks. It then selects

the pair with the lowest divergence in the posterior over task identities as the negative-anchor pair.

No triplet loss. We train the task inference module using only gradient of the value

function distillation loss (Eq. 2.3). To use the relabelled transitions, the module also takes as

input the relabelled transitions during training. More concretely, given the context set ci from task

i, we sample an equal number of relabelled transitions from the other tasks c̃i ∼ ∪ jc j→i. During
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Figure 2.6: Reward prediction error on unseen task.

training, the input to the task inference module is the union of the context set ci and the sampled

relabelled transitions c̃i. In the full model, we also perform similar modification to the input of

the module during training.

No transition relabelling and no triplet loss. This method is a simple combination of a

task inference module and the distillation process. We refer to this algorithm as Neither in the

graphs.

Fig. 2.5 compares our full model and the ablated versions. Our full model obtains higher

returns than most of the ablated versions. For WalkerParam, our full model does not exhibit

improvement over Neither. However, from Fig. 2.3, our full model significantly outperforms the

baselines. We thus conclude that, in WalkerParam, the improvement over the baselines comes

from distillation.

Comparing to the No triplet loss ablation, transition relabelling leads to more efficient

computation of the triplet loss. Without the relabelled transitions, computing Eq. 2.11 requires

O(K2N2). Our loss in Eq. 2.9 only requires O(K2). We also need to relabel the transitions only

once before training the multi-task policy. It is also trivial to parallelize across tasks.

We also study reward estimation accuracy. Fig. 2.6 shows that our reward model achieves

low error on state-action pairs from another task, both with and without an ensemble. We

also compare MBML against an ablated version that uses the ground truth reward function for
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relabelling on UmazeGoal-M. The model trained using the ground truth reward function only

performs slightly better than the model trained using the learned reward function.

2.3.3 Using the multi-task policy to enable faster convergence when train-

ing on unseen tasks

While the multi-task policy generalize to unseen tasks, its performance is not optimal. If

we allow further training, initializing networks with our multi-task policy significantly speeds up

convergence to the optimal performance.

The initialization process is as followed. Given a new task, we use the multi-task policy

to collect 10K transitions. We then train a new policy to imitate the actions taken by maximizing

their log likelihood. As commonly done, the new policy outputs the mean and variance of a

diagonal Gaussian distribution. The new policy does not take a task identity as input. The task

inference module infers a task identity z from the 10K transitions. Fixing z as input, the distilled

value function QD initializes the new value function. Given the new policy and the initialized

value function, we train them with SAC by collecting more data. To stabilize training, we perform

target policy smoothing [FvHM18] and double-Q learning [Has10] by training two identically

initialized value functions with different mini-batches.

Fig. 2.7 compares the performance of the policies initialized with our multi-task policy

to randomly initialized policies. Initializing the policies with the MBML policy significantly

increases convergence speed in all five task distributions, demonstrating our method’s robustness.

Even in the complex HumanoidDir-M task distribution, our method significantly speeds up the

convergence, requiring only 85K environment interactions, while the randomly initialized policies

require 350K, representing a 76% improvement in sample efficiency. Similar conclusions hold

when comparing against randomly initialized SAC where the two value functions are trained using

different mini-batches. We also note that our initialization method does not require extensive

hyper-parameter tuning.
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— : SAC initialized by our multi-task policy (Ours) — : Randomly initialized SAC (Random)

Figure 2.7: Initialization results. x-axis is number of interactions in thousands. y-axis is the
average episode returns over unseen tasks. The shaded areas denote one std.

2.4 Related Works

Batch RL Recent advances in Batch RL [ASN19, KFS+19a, FMP19, CZW+19, KZTL20]

focus on the single-task setting, which does not require training a task inference module. Thus

they are not directly applicable to the Multi-task Batch RL. [SSB+20, CCN+20] also consider

the multi-task setting but assume access to the ground truth task identity and reward function of

the test tasks. Our problem setting also differs, where the different training batches do not have

significant overlap in state-action visitation frequencies, leading to the challenge of learning a

robust task inference module.

Task inference in multi-task setting The challenge of task inference in a multi-task set-

ting has been tackled under various umbrellas. Meta RL [RZQ+19, ZSI+20, FCSS19, HGH+19,

LLGW19, SHD18, ZSK+19] trains a task inference module to infer the task identity from a

context set. We also follow this paradigm. However, our setting presents additional challenge

to train a robust task inference module, which motivates our novel triplet loss design. As the

choice of loss function is crucial to train an successful task inference module in our settings,

we will explore the other loss functions, e.g. loss functions discussed in [RMS+20], in future

work. Other multi-task RL works [ESM+18a, YXWW20, YKG+19, DTB+19] focus on training

a good multi-task policy, rather than the task inference module, which is an orthogonal research

direction to ours.

Meta RL Meta RL [LLGW19, WKT+16, DSC+16, FAL17, NAS18, HCI+18] optimizes

for quick adaptation. However, they require interactions with the environment during training.
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Even though we do not explicitly optimize for quick adaptation, we demonstrate that initializing

a model-free RL algorithm with our policy significantly speeds up convergence on unseen tasks.

[FCSS19] uses the data from the training tasks to speed up convergence when learning on new

tasks by propensity estimation techniques. This approach is orthogonal to ours and can potentially

be combined to yield even greater performance improvement.

2.5 Discussions

The issue of learning the wrong dependency does not surface when multi-task policies are

tested in Atari tasks because their state space do not overlap [PBS15, HSE+19, ESM+18b]. Each

Atari task has distinctive image-based state. The policy can perform well even when it only learns

to correlate the state to the task identity. When Mujoco tasks are used to test online multi-task

algorithms [ZSI+20, FCSS19], the wrong dependency becomes self-correcting. If the policy

infers the wrong task identity, it will collect training data which increases the overlap between the

datasets of the different training tasks, correcting the issue overtime. However, in the batch setting,

the policy can not collect more transitions to self-correct inaccurate task inference. Our insight

also leads to exciting possibility to incorporate mechanism to quickly infer the correct causal

relationship and improve sample efficiency in Multi-task RL, similar to how causal inference

method has motivated new innovations in imitation learning [dHJL19].

Our first limitation is the reliance on the generalizability of simple feedforward NN. Future

research can explore more sophisticated architecture, such as Graph NN with reasoning inductive

bias [XLZ+19, SGT+08, WPC+20, ZCZ+18] or structural causal model [Pea10, P+09], to ensure

accurate task inference. We also assume the learnt reward function of one task can generalize to

state-action pairs from the other tasks, even when their state-action visitation frequencies do not

overlap significantly. To increase the prediction accuracy, we use a reward ensemble to estimate

epistemic uncertainty. We note that the learnt reward functions do not need to generalize to every
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state-action pairs, but only enough pairs so that the task inference module is forced to consider the

rewards when trained to minimize Eq. 2.8. Crucially, we do not need to solve the task inference

challenge while learning the reward functions and using them for relabelling, allowing us to

side-step the challenge of task inference.

The second limitation is in scope. We only demonstrate our results on tasks using

proprioceptive states. Even though they represent high-dimensional variables in a highly nonlinear

ODE, the model does not need to tackle visual complexity. The tasks we consider also have

relatively dense reward functions and not binary reward functions. These tasks, such as navigation

and running, are also quite simple in the spectrum of possible tasks we want an embodied agents

to perform. These limitations represent exciting directions for future work.

Another interesting future direction is to apply supervised learning self-distillation tech-

niques [XLHL19, MFB20], proven to improve generalization, to further improve the distillation

procedure. To address the multi-task learning problem for long-horizon tasks, it would also be

beneficial to consider skill discovery and composition from the batch data [PCZ+19, SAL+20].

However, in this setting, we still need effective methods to infer the correct task identity to

perform well in unseen tasks. Our explanation in Sec. 2.2 only applies when the tasks differ in

reward function. Extending our approach to task distributions with varying transition functions is

trivial. Sec. 2.3 provide experimental results for both cases.
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Chapter 3

Dual Generator Offline Reinforcement

Learning

Offline reinforcement learning (RL) algorithms aim to extract policies from datasets of

previously logged experience. The promise of offline RL is to extract decision making engines

from existing data [LKTF20]. Such promise is especially appealing in domains where data

collection is expensive or dangerous, but large amounts of data may already exists (e.g., robotics,

autonomous driving, task-oriented dialog systems). Real-world datasets often consist of both

expert and sub-optimal behaviors for the task of interest and also include potentially unrelated

behavior corresponding to other tasks. While not all behaviors in the dataset are relevant for

solving the task of interest, even sub-optimal trajectories can provide an RL algorithm with

some useful information. In principle, if offline RL algorithms can combine segments of useful

behavior spread across multiple sub-optimal trajectories together, the combined segments can

then perform better than any behavior observed in the dataset.

Effective offline RL requires estimating the value of actions other than those that were

taken in the dataset, so as to pick actions that are better than the actions selected by the behavior

policy. However, this requirement introduces a fundamental tension: the offline RL method must
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generalize to new actions, but it should not attempt to use actions in the Bellman backup for

which the value simply cannot be estimated using the provided data. These are often referred to in

the literature as out-of-distribution (OOD) actions [KFS+19b]. While a wide variety of methods

have been proposed to constrain offline RL to avoid OOD actions [KTFN21, FMP19, ASN19],

the formulation and enforcement of such constraints can be challenging, and might introduce

considerable complexity, such as the need to explicitly estimate the behavior policy [WTN19]

or evaluate high-dimensional integrals [KZTL20]. Generative adversarial networks (GANs) in

principle offer an appealing and simple solution: use the discriminator to estimate whether an

action is in-distribution, and train the policy as the “generator” in the GAN formulation to fool

this discriminator. Although some prior works have proposed variants on this approach [WTN19],

it has been proven difficult in practice as GANs can already suffer from instability when the

discriminator is too powerful. Forcing the generator (i.e., the policy) to simultaneously both

maximize reward and fool the discriminator only exacerbates the issue of an overpowered

discriminator.

We propose a novel solution that enables the effective use of GANs in offline RL, in the

process not only mitigating the above challenge but also providing a more appealing form of

support constraint that leads to improved performance. Our key observation is that the generative

distribution in GANs can be split into two separate distributions, one that represents the “good

parts” of the data distribution and becomes the final learned policy, and an auxiliary generator

that becomes the policy’s complement, such that the mixture of the two is equal to the data

distribution. This formulation removes the tension between maximizing rewards and matching

the data distribution perfectly: as long as the learned policy is within the support of the data

distribution, the complement will pick up the slack and model the “remainder” of the data

distribution, allowing the two generators together to perfectly fool the discriminator. If however

the policy ventures outside of the support of the data, the second generator cannot compensate for

this mistake, and the discriminator will push the policy back inside the support. We name our
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method DASCO, for Dual-Generator Adversarial Support Constrained Offline RL.

Experimentally, we demonstrate the benefits of our approach, DASCO, on standard

benchmark tasks. For offline datasets that consist of a combination of expert, sub-optimal and

noisy data, our method outperforms distribution-constrained offline RL methods by a large

margin.

3.1 Related Work

Combining behaviors from sub-optimal trajectories to obtain high-performing policies is

a central promise of offline RL. During offline training, querying the value function on unseen

actions often leads to value over-estimation and unrecoverable collapse in learning progress. To

avoid querying the value functions on out-of-distribution actions, existing methods encourage

the learned policies to match the distribution of the dataset generation policies. This principle

has been realized with a variety of practical algorithms [JGS+19, WTN19, PKZL19, SSB+20,

WTN19, KFS+19a, KTFN21, KNL21, WNŻ+20, FG21, CZW+19, FMG22, JLK22, MWY+22,

DBSV22, LTLL22].

For example, by optimizing the policies with respect to a conservative lower bound of

the value function estimate [KZTL20], only optimizing the policies on actions contained in the

dataset [KTFN21], or jointly optimizing the policy on the long-term return and a behavior cloning

objective [FG21]. While explicitly enforcing distribution constraint by adding the behavior cloning

objective allows for good performance on near-optimal data, this approach fails to produce good

trajectories on sub-optimal datasets [KTFN21]. Methods that implicitly enforce distribution

constraints, such as CQL and IQL, have seen more successes on such datasets. However, they still

struggle to produce near-optimal trajectories when the actions of the dataset generation policies

are corrupted with noise or systematic biases (a result we demonstrate in Section 3.4).

However, enforcing distribution constraints to avoid value over-estimation may not be
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necessary. It is sufficient to ensure the learned policies do not produce actions that are too unlikely

under the dataset generation policy. That is, it is not necessary for the learned policy to fully

cover the data distribution, only to remain in-support [KFS+19a, Kum19, LKTF20, WTN19,

ZBH20, CGY+22]. Unfortunately, previous methods that attempt to instantiate this principle

into algorithms have not seen as much empirical success as algorithms that penalize the policies

for not matching the action distribution of the behavior policies. In this paper, we propose a

new GAN-based offline RL algorithm whose use of dual generators naturally induce support

constraint and has competitive performance with recent offline RL methods. In a number of

prior works, GANs have been used in the context of imitation learning to learn from expert

data [HE16, LSE17, HCS+17, LZF+21]. In this work, we show that dual-generator GANs can

be used to learn from sub-optimal data in the context of offline RL.

3.2 Background

Let M = (S ,A ,P,R,γ) define a Markov decision process (MDP), where S and A are state

and action spaces, P : S×A×S→R+ is a state-transition probability function, R : S×A→R is a

reward function and γ is a discount factor. Reinforcement learning methods aim at finding a policy

π(a|s) that maximizes the expected discounted reward R(τ) = ∑
T
t=0 γtR(st ,at) over trajectories

τ = (s0,a0, . . . ,sT ,aT ) with time horizon T induced by the policy π.

In this work, we concentrate on the offline or off-policy RL setting, i.e. finding an optimal

policy given a dataset D of previously collected experience τ∼D by a behavior policy πβ. A

particularly popular family of methods for offline learning are based on training a Q-function

through dynamic programming using temporal-difference (TD) learning [WD92, SB18]. Such

methods train a Q-function to satisfy the Bellman equation:

Q(st ,at) = R(st ,at)+ γEa∼π[Q(st+1,a)].
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π(a|s) = argmaxa Qθ(s,a) In Q-learning, the policy is replaced with a maximization, such that

π(a|s) = argmaxa Qθ(s,a), while actor-critic methods optimize a separate parametric policy

πφ(a|s) that maximizes the Q-function. In this work, we extend the Soft Actor-Critic (SAC)

method [HZAL18a] for learning from diverse offline datasets.

Generative Adversarial Networks (GANs) [GPAM+14] enable modeling a data distribu-

tion pD through an adversarial game between a generator G and a discriminator D:

min
G

max
D

Ex∼pD [log(D(x))]+Ez∼p(z)[log(1−D(G(z)))] (3.1)

For this two player zero-sum game, [GPAM+14] shows that for a fixed generator G, the

optimal discriminator is D∗G(x) =
pD(x)

pD(x)+ pG(x)
and the optimal generator matches the data

distribution p∗g(x) = pD .

GAN has been extended to the offline RL setting by interpreting the discriminator function

as a measure of how likely an action is under the behavior policy, and jointly optimizing the

policy to maximize an estimate of the long-term return and the discriminator function [WTN19]:

min
π

max
D

Es,a∼pD [log(D(s,a))]+Es∼pD ,a∼π(a|s)[log(1−D(s,a))]−Es∼pD ,a∼π(a|s)[Q(s,a)],

(3.2)

where Q(s,a) is trained via the Bellman operator to approximate the value function of the policy

π(a|s). This leads to iterative policy evaluation and policy improvement rules for the actor and

the policy [WTN19]. During the kth update step, given the most recent values for the policy πk,

the value function Qk, and the discriminator Dk, we perform the following updates to obtain the
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next values for the value function and the policy:

Qk+1←argmin
Q

E
s,a,s′∼D

[(
(R(s,a)+ γ E

a′∼πk(a′|s′)
[Qk(s′,a′)])−Qtarget(s,a)

)2
]

π
k+1←argmax

π

E
s∼D,a∼πk(a|s)

[
Qk+1(s,a)+ logDk(s,a)

] (3.3)

where the logD(a|s) term in the policy objective aims at regularizing the learnt policy to prevent it

from outputting OOD actions. In practice, training the policy to maximize both the value function

and discriminator might lead to conflicting objectives for the policy and thus poor performance

on either objective. This can happen when the data contains a mixture of good and bad actions.

Maximizing the value function would mean avoiding low-reward behaviors. On the other hand,

maximizing the discriminator would require outputting all in-distribution actions, including

sub-optimal ones. Our approach alleviates this conflict and enables in support maximization of

the value function when learning from mixed-quality datasets.

3.3 Dual-Generator Adversarial Support Constraint Offline

RL

We now present our algorithm, which uses a novel dual-generator GAN in combination

with a weighting method to enable GAN-based offline RL that constrains the learned policy

to remain within the support of the data distribution. We call our method Dual-generator

Adversarial Support Constraint Offline RL (DASCO). We will first introduce the dual-generator

training method generically, for arbitrary generators that must optimize a user-specified function

f (x) within the support of the data distribution in Section 3.3.1. We will then show this method

can be incorporated into a complete offline RL algorithm in Section 3.3.2 in combination with

our proposed weighting scheme, and then summarize the full resulting actor-critic method in

Section 3.3.3.
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Figure 3.1: Visualizations to illustrate the benefit of dual generators over single generator when
maximizing a secondary objective f (x) in the GAN framework. In both figures, pD(x) is the
data distribution. The x-axis is a one-dimensional sample space. Left: In this figure, since there
is only a single generator, the generator G is trained to jointly maximize the objective f (x) and
matches the data distribution pD(x). The distribution pG induced by the generator is thus not
very good at either maximizing the objective f (x) or matching the data distribution. Right: In
this figure, we have two generators, inducing two distributions pG and paux. By introducing the
auxiliary generator Gaux into the GAN framework, the primary generator can better maximize
the objective f (x) while staying within the support of the data distribution pD . The mixed

distribution also perfectly matches the data distribution, i.e.
pg(x)+ paux(x)

2
= pD(x). Note

that in these two figures, the primary generator aims to maximize f (x) (instead of minimize) to
allow for more intuitive interpretation.

3.3.1 Dual generator in-support optimization

In this section, we will develop an approach for performing a joint optimization of

adversarial and secondary objectives of the generator in a GAN framework, which we will then

apply to offline RL. This is a necessary component for performing the joint optimization in

Eq. 3.2 without introducing a conflict of these objectives. All proofs for theorems presented in

this section are in Appendix A.

Let’s consider a general objective that requires training a generator G to fool the discrimi-
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nator D while also optimizing the expected value of some other function f :

min
G

max
D

Ex∼pD [log(D(x))]

+ Ez∼p(z)[log(1−D(G(z)))]

+ Ez∼p(z)[ f (G(z))] (3.4)

where the first two terms are the same as the objective of the GAN formulation. We have also

added an additional term Ez∼p(z)[ f (G(z))], where f is a mapping from the generator output to a

scalar value. The third term represents a secondary objective that the generator should optimize.

Theorem 3.3.1. The optimal generator of Eq. 3.4 induces a distribution p∗g(x)= pD(x)
e− f (x)−ν

2− e− f (x)−ν
,

where ν > 0 is the Lagrange multiplier that ensures that p∗g(x) is normalized to 1.

We can see that by adding a secondary objective function for the generator, in general,

the optimal generator does not attempt to match the data distribution pD(x) anymore, but instead

tries to match the data distribution weighted by
e− f (x)−ν

2− e− f (x)−ν
. We expect that in such case, the

discriminator clearly has an advantage in the two player zero-sum game and will be able to

distinguish between real samples and sample generated by the generator.

To allow the generator to specialize in optimizing the secondary objective function, we

propose to introduce a second auxiliary generator that matches the portion of the data distribution

that is not well captured by the primary generator. Let pmix =
pg + paux

2
, consider the min-max

problem:

min
G,Gaux

max
D

Ex∼pD [log(D(x))]+Ex∼pmix [log(1−D(x))]+Ex∼pg[ f (x)], (3.5)

where we mix samples from the primary generator G and the auxiliary generator Gaux to generate

samples that can fool the discriminator. The mixing is indicated by the distribution pmix in the

second term of Eq. 3.5. The first and third term of Eq. 3.5 are the same as the objective in Eq. 3.4.
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We next theoretically demonstrate the benefit of adding the auxiliary generator to the

GAN formulation with the following Theorem.

Theorem 3.3.2 (Informal). The primary generator pG performs in-support optimization of f (x).

We first note that the optimal solution of the mixed distribution from Eq. 3.5 is the real

data distribution:

p∗aux(x)+ p∗g(x)
2

= pD(x) (3.6)

Accordingly, the optimal auxiliary generator distribution can be expressed as

p∗aux(x) = 2pD(x)− p∗g(x) (3.7)

Let x0 to be the element inside the support of the data distribution pD that minimizes f . That is:

x0 = argmin
x∈Supp(pD)

f (x)

When optimizing the secondary objective f (x), the primary generator will maximize the proba-

bility mass of in-support samples that maximize f (x). However, Eq. 3.7 introduces a constraint

that enforces 2pD(x)− p∗g(x)≥ 0 for p∗aux(x)≥ 0 to remain a valid distribution. This leads us to

conclude that the optimal primary generator p∗g assigns the following probability to x0:

p∗g(x0) =


2pD(x0) if 2pD(x0)< 1

1 otherwise
(3.8)

Interestingly, if the global maximum x0 is not taking the full probability mass, the rest of

the probability mass is redistributed to the next best in-support maxima, which we can define
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recursively:

For xi ∈ argmin
x∈Supp(pD)\{x j}i−1

j=0

f (x), p∗g(xi) =


2pD(xi) if ∑

i
j=0 p∗g(x j)< 1

1−∑
i−1
j=0 p∗g(x j) if ∑

i
j=0 p∗g(x j)> 1

0 if ∑
i−1
j=0 p∗g(x j) = 1

(3.9)

We provide more explanation for the solution in Eq. 3.9. In the first case, p∗g(xi) = 2pD(xi)

if ∑
i
j=0 p∗g(x j)< 1. That is, if the optimal solution for the primary generator p∗g can assign the

probability 2pD(xi) to the ith in support minima of f (x) without the total sum of probability

assigned ∑
i
j=0 p∗g(x j) going over 1, then the primary generator p∗g will assign the probability

2pD(xi) to xi.

In the second case, p∗g(xi) = 1−∑
i−1
j=0 p∗g(x j) if ∑

i
j=0 p∗g(x j)> 1. That is, if by assigning

the probability 2pD(xi) to the ith in support minima of f (x), the total sum of probability assigned

∑
i
j=0 p∗g(x j) goes over 1, then the primary generator p∗g will assign the remaining probability

1−∑
i−1
j=0 p∗g(x j) to xi. In the third case, the generator assigns probability 0 to xi because all the

probability has already been assigned.

To summarize the benefit of dual generator, we note that by introducing an auxiliary

generator and mixing it with the primary generator, not only does the optimal solution for the

mixed distribution match the real data distribution, but also the primary generator can better

optimize the secondary objective f on the part of the domain of f that is within the support of the

data distribution pD . To better illustrate the benefit, we provide a visual explanation of the benefit

in Figure 3.1.

3.3.2 Update rules for offline reinforcement learning

We will now incorporate the dual-generator method to train policies for offline RL, based

on optimizing the joint objective from Eq. 3.5. The updates for the actor and the critic are
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generally similar to Eq. 3.3. However, simply combining Eq. 3.5 and Eq. 3.3 can still allow the

policy to exploit errors in the value function during the policy improvement step. We therefore

augment the policy improvement step with an adaptive weight on the Q-value. More concretely,

as the policy improvement step samples actions from the current policy iterate πk to optimize the

policy objective, there is a non-zero probability that the sampled actions will exploit spurious

maxima in the value function and have their probability of being sampled again in the future

increased. If the same actions are sampled during the policy evaluation step, the errors in the

value functions from the next states are backed up into the preceding states, leading to divergent

value functions, as we observe in our experiments. To alleviate this issue, we use the probability

assigned to the sampled actions by the discriminator to weight the value function estimates in the

policy objective, leading to the following updates:

Qk+1←argmin
Q

E
s,a,s′∼D

[(
(R(s,a)+ γ E

a′∼πk(a′|s′)
[Qk(s′,a′)])−Qtarget(s,a)

)2
]

(3.10)

π
k+1←argmax

π

E
s,aD∼D,a∼πk(a|s)

[
Dk(s,a)

Dk(s,aD(s))
Qk+1(s,a)+ logDk(s,a)

]
, (3.11)

where aD(s) is the action from the offline dataset. The term Dk(s,a) down-weights the contri-

bution of the gradient of the value function to the policy update if the discriminator deems the

sampled action too unlikely. We further calibrate the probability Dk(s,a) by dividing it with the

probability Dk(s,aD(s)) that the discriminator assigns to the dataset action aD(s). It should be

noted that during optimization the gradients are not propagated into these weights.

Next, we define the update rules for the auxiliary generator and the discriminator. We mix

the samples from the kth iterate of the policy πk and the distribution paux induced by the kth iterate

of the auxiliary generator Gk
aux, that is, let pmix =

πk + paux

2
. At every iteration k, we update the
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kth iterate of the auxiliary generator Gk
aux and discriminator Dk using the objectives:

Gk+1
aux ←argmin

Gaux

Ex∼pmix [log
(

1−Dk(s,a)
)
] (3.12)

Dk+1←argmax
D

Ex∼pD [log
(

Dk(s,a)
)
]+Ex∼pmix [log

(
1−Dk(s,a)

)
] (3.13)

3.3.3 Algorithm summary

Algorithm 2 provides a step-by-step description of our algorithm. At every training step,

we sample a batch of transitions from the offline dataset and proceed to update the parameters of

the value function, the policy, the auxiliary generator and the discriminator in that order.

Algorithm 2 DASCO algorithm summary
1: Initialize Q-function Qθ, policy πφ, auxiliary generator Gaux,ψ, discriminator Dω

2: for training step k in {1,. . . ,N} do
3: (s,a,r,s′)←D: Sample a batch of transitions from the dataset
4: θk+1← Update Q-function Qθ using the Bellman update in Eq. 3.10
5: φk+1← Update policy πφ using the augmented objective in Eq. 3.11
6: ψk+1← Update auxiliary generator Gaux,ψ using the objective in Eq. 3.12
7: ωk+1← Update discriminator Dω using mixed samples from πφ and Gaux,ψ as in Eq. 3.13
8: end for

3.4 Experiments

Our experiments aim at answering the following questions:

1. When learning from offline datasets that require combining actions from sub-optimal

trajectories, does DASCO outperform existing methods that are based on distribution

constraints?

2. On standard benchmarks such as D4RL [FKN+20a], how does DASCO compare against

recent methods?
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3. Are both the dual generator and the probability ratio weight important for the performance

of DASCO?

3.4.1 Comparisons on standard benchmarks and new datasets

For our first set of experiments, we introduce four new datasets to simulate the challenges

one might encounter when using offline RL algorithms on real world data. These datasets

introduce additional learning challenges and require the algorithm to combine actions in different

trajectories to obtain good performance. We use the existing AntMaze environments from the

D4RL suite [FKN+20a]: antmaze-medium and antmaze-large. In these two environments, the

algorithm controls an 8-DoF “Ant” quadruped robot to navigate a 2D maze to reach desired goal

locations. The D4RL benchmark generates the offline datasets for these two environments using

two policies: 1. a low-level goal reaching policy that outputs torque commands to move the

Ant to a nearby goal location and 2. a high-level waypoint generator to provide sub-goals that

guide the low-level goal-reaching policy to the desired location. We use the same two policies to

generate two new classes of datasets.

For the noisy dataset, we add Gaussian noise to the action computed by the low-level

goal-reaching policy. The noise variance depends on the 2D location of the Ant in the maze –

larger in some 2D regions than others. We intend this dataset to be representative of situations

where the data generation policies are more deterministic in some states than others [KHSL22] –

a robot picking up an object has many good options to approach the object, but when the robot

grasps the object, its behavior should be more deterministic to ensure successful grasp without

damaging or dropping the object [MSZ94].

For a biased dataset, in addition to adding Gaussian noise to the actions as it is done

in the noisy dataset, we also add bias to the actions computed by the low-level policy. The

values of the bias also depend on the current 2D location of the Ant in the maze. This setting is

meant to simulate learning from relabelled data, where the dataset was generated when the data
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Table 3.1: Performance comparison to baselines when learning from the noisy and biased
AntMaze datasets. Our method outperforms the baselines significantly. The value in parenthesis
indicates the standard deviation of mean episode return, computed over 3 different runs.

Dataset BEAR EDAC CQL IQL DASCO (Ours)
antmaze-large-bias - - 61.7 (3.5) 41.0 (7.9) 63.9 (6.0)
antmaze-large-noisy - - 50.3 (2.3) 39.0 (6.4) 54.3 (2.0)
antmaze-medium-bias 0.0 (0.0) 0.0 (0.0) 66.7 (2.9) 48.0 (5.9) 90.2 (2.4)
antmaze-medium-noisy 0.0 (0.0) 0.0 (0.0) 55.7 (4.7) 44.3 (1.7) 86.3 (4.5)
noisy and biased antmaze-v2 total - - 234.4 172.3 294.7

generation policies were performing a different task than the tasks we are using the dataset to

learn to perform. Relabelling offline data is a popular method for improving the performance

of offline RL algorithms [VLL+19, SYF+22], especially when we have much more data for

some tasks than others [KVC+21]. In the AntMaze environment, offline RL algorithms must

combine data from sub-optimal trajectories to learn behaviors with high returns. In addition,

noisy and biased datasets present a more challenging learning scenarios due to the added noise

and systematic bias which vary non-uniformly based on the 2D location of the Ant.

Table 3.1 illustrates the performance comparison of our method and representative meth-

ods that enforce distribution constraints, either through optimizing a conservative lower bound of

the value estimates (CQL) or only optimizing the policy on actions in the dataset using Advantage

Weighted Regression [PKZL19] (IQL). Our method outperforms both CQL and IQL. In these

tasks, to ensure a fair comparison between different methods, we perform oracle offline policy

selection to obtain the performance estimates for CQL, IQL, and our method. We also compare the

performance on standard AntMaze tasks when learning from the datasets in the D4RL benchmark

without modifications in Table 3.2. In these tasks, our method outperforms IQL by a large margin

on two diverse datasets.

By comparing the results in Table 3.1 (learning from noisy and biased datasets) and

Table 3.2 (learning from existing offline datasets in D4RL), we also note that our proposed

algorithm outperforms distribution-constraint offline RL algorithms (CQL, IQL) more consistently

when tested on the noisy and biased datasets. For the results in these two tables, the definition
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Table 3.2: Performance comparison to distribution-constrained baselines on AntMaze tasks
in D4RL. Our algorithm outperforms the baselines when learning from the diverse and play
datasets.

Dataset CQL IQL DASCO (Ours)
antmaze-umaze 97.0 (0.8) 90.3 (1.9) 99.2 (0.0)
antmaze-umaze-diverse 58.7 (12.2) 70.3 (4.6) 89.0 (1.7)
antmaze-medium-play 77.0 (1.6) 82.7 (0.5) 92.3 (1.5)
antmaze-medium-diverse 80.0 (0.0) 82.3 (1.9) 87.1 (0.4)
antmaze-large-play 53.3 (4.6) 55.7 (3.1) 64.4 (1.7)
antmaze-large-diverse 48.0 (2.9) 50.0 (3.6) 74.1 (2.8)
antmaze total 414.0 431.3 506.1

Table 3.3: Performance comparison with recent offline RL algorithms on the Gym locomotion
tasks

Dataset BC 10%BC DT AWAC Onestep RL TD3+BC CQL IQL DASCO (Ours)
halfcheetah-medium-replay 36.6 40.6 36.6 40.5 38.1 44.6 45.5 44.2 44.7
hopper-medium-replay 18.1 75.9 82.7 37.2 97.5 60.9 95.0 94.7 101.7
walker2d-medium-replay 26.0 62.5 66.6 27.0 49.5 81.8 77.2 73.9 74.5
halfcheetah-medium-expert 55.2 92.9 86.8 42.8 93.4 90.7 91.6 86.7 93.8
hopper-medium-expert 52.5 110.9 107.6 55.8 103.3 98.0 105.4 91.5 110.9
walker2d-medium-expert 107.5 109.0 108.1 74.5 113.0 110.1 108.8 109.6 109.3
locomotion total 295.9 491.8 488.4 277.8 494.8 486.1 523.5 500.6 534.9

of the antmaze-medium and antmaze-large environments are the same. The only axis of variation

in the learning setup is the noise and systematic bias added to the actions of the dataset generation

policies. We therefore conclude that our algorithm is more robust to the noise and systematic bias

added to the actions than distribution-constrained offline RL algorithms.

Next, we evaluate our approach on Gym locomotion tasks from the standard D4RL suite.

The performance results on these tasks are illustrated in Table 3.3. Our method is competitive

with BC, one-step offline RL methods [BWRB21], and multi-step distribution-constraint RL

methods [KTFN21, KZTL20]. This is not surprising because in these tasks, the offline dataset

contains a large number of trajectories with high returns.

In terms of total amount of compute and type of resources used, we use an internal cluster

that allows for access up to 64 preemptive Nvidia RTX 2080 Ti GPUs. For each experiment of

learning from an offline dataset, we use half a GPU and 3 CPU cores. Each experiment generally

takes half a day to finish. We implemented our algorithms in Pytorch [PGM+19] and obtained
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results for baselines from the publicly available implementations released by the original authors.

3.4.2 Ablations

We conduct three different sets of experiments to gain more insights into our algorithm.

The first experiment measures the importance of having an auxiliary generator. We recall that

there are two benefits to having the auxiliary generator. Firstly, without the auxiliary generator,

the generator does not in general match the data distribution (Theorem 3.3.1). As such, the

discriminator has an unfair advantage in learning how to distinguish between real and generated

examples. Secondly, the auxiliary generator plays the role of a support player and learns to output

actions that are assigned non-zero probability by the data distribution, but have low Q values.

The support player allows the policy to concentrate on in-support maximization of the Q-function

(Theorem 3.3.2). Table 3.4 demonstrates that having an auxiliary generator clearly leads to a

performance improvement across different task families, from Gym locomotion tasks to AntMaze

tasks and even dexterous manipulation tasks.

The second experiment compares the performance of the policy and the auxiliary generator

on a subset of the Gym locomotion and AntMaze tasks (Table 3.5). The difference in the

performance of the policy and auxiliary generator illustrates their specialization of responsibility:

the policy learns to output actions that lead to good performance, while the auxiliary generator

learns to model the “remainder” of the data distribution. If this “remainder” also contains good

action, then the auxiliary generator will have non-trivial performance. Otherwise, the auxiliary

generator will have poor performance.

In the Gym locomotion tasks, the auxiliary generator has non-trivial performance, but it

is still worse than the policy. This demonstrates that: 1. By optimizing the policy to maximize

the long-term return and the discriminator function, the policy can outperform the auxiliary

generator, which only maximizes the discriminator function, 2. The dataset contains a large

fraction of medium performance level actions contained in continuous trajectories, which the
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Table 3.4: Ablation for training without and with auxiliary generator. The dual generator
technique, which trains the auxiliary generator in addition to the policy, is crucial to obtain good
performance.

Dataset Without With
halfcheetah-medium-expert 79.8 (3.4) 93.8 (0.1)
hopper-medium-expert 95.1 (1.6) 110.9 (0.8)
antmaze-large-bias 55.0 (2.3) 63.9 (6.0)
antmaze-large-noisy 45.1 (1.8) 54.3 (2.0)

Table 3.5: Policy vs Auxiliary Generator. The auxiliary generator has reasonable performance
on the easier locomotion tasks and is significantly worse than the policy on the harder AntMaze
tasks.

Dataset Auxiliary Generator Policy
halfcheetah-medium-expert 48.5 (2.1) 93.8 (0.1)
hopper-medium-expert 70.4 (0.9) 110.9 (0.8)
antmaze-large-bias 0.0 (0.0) 63.9 (6.0)
antmaze-large-noisy 0.0 (0.0) 54.3 (2.0)

auxiliary generator has learnt to output. In contrast, in the bias and noisy AntMaze tasks, the

auxiliary generator fails to obtain non-zero performance while the policy has strong performance.

This reflects the necessity of carefully picking a subset of the in-support actions to obtain good

performance.

The third set of experiments illustrates the importance of weighing the value function in

the policy objective by the probability computed by the discriminator, as described in Eq. 3.11.

Doing so provides a second layer of protection against exploitation of errors in the value function

by the policy. Table 3.6 illustrates that this is very important for the AntMaze tasks, which require

combining optimal and sub-optimal trajectories to obtain good performance. Perhaps this is

because learning from such trajectories necessitates many rounds of offline policy evaluation

and improvement steps, with each round creating an opportunity for the policy to exploit the

errors in the value estimates. On the other hand, the dynamic weight is less important in the

Gym locomotion tasks, presumably because a significant fraction of the corresponding offline

datasets has high returns and therefore incorporating sub-optimal data is less criticial to obtain

high performance.
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Table 3.6: Ablation for dynamic weighting of value function estimates in the policy objective.
When learning from datasets that require combining actions across trajectories, such as the
AntMaze tasks, using the dynamic weighting is vital to obtaining good performance.

Dataset Without With
halfcheetah-medium-expert 91.1 (1.1) 93.8 (0.1)
hopper-medium-expert 106.7 (2.9) 110.9 (0.8)
antmaze-large-play 0.0 (0.0) 64.4 (1.7)
antmaze-large-diverse 0.0 (0.0) 74.1 (2.8)

3.5 Proofs for theorems in Section 3.3.1

3.5.1 Proof for Theorem 3.3.1

In the following proof, we use pdata to refer to the real data distribution, instead of pD as

in Section 3.3.1, to avoid confusion with the discriminator distribution.

We recall Theorem 3.3.1:

Theorem 3.3.1. The optimal generator of Eq. 3.4 induces a distribution p∗g(x)= pD(x)
e− f (x)−ν

2− e− f (x)−ν
,

where ν > 0 is the Lagrange multiplier that ensures that p∗g(x) is normalized to 1.

The optimization problem in Eq. 3.4 is:

min
G

max
D

V (G,D) = Ex∼pdata [log(D(x))]+Ez∼p(z)[log(1−D(G(z)))]+Ez∼p(z)[ f (G(z))]

The proof proceeds as follows: We first simplify the objective function into two terms.

The first term is the Jensen–Shannon divergence between the data distribution and the distribution

induced by the generator [GPAM+14]. The second term is the expected value of the secondary

objective function f . We then show that the problem is convex, where strong duality holds. We

then use the KKT conditions to find the functional form of the optimal solution, which gives us

Theorem 3.3.1.

We only prove the statement for discrete sample space, and we let n be the size of the

sample space – the random variable x can take on n different values.
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Proof. Since the third term in the objective function is not a function of the discriminator

D, for G fixed, the optimal discriminator of Eq. 3.4 is D∗G(x) =
pdata(x)

pdata(x)+ pg(x)
where pg is the

distribution induced by the generator G. (similar to Prop 1 in [GPAM+14] ).

Similarly to how [GPAM+14] shows that the GAN objective in Eq. 3.1 minimizes the JS

divergence between the data distribution and the distribution induced by the generator, we can

now rewrite the objective in Eq. 3.4 as:

V (G,D∗G) (3.14)

= Ex∼pdata[log(D∗G(x))]+Ez∼p(z)[log(1−D∗G(G(z)))]+Ez∼p(z)[ f (G(z))] (3.15)

= 2JSD(pdata||pg)+Ex∼pg[ f (x)]− log4 (3.16)

For conciseness, let g(i)= pg(xi) be the probability that pg assigns to xi and g= [g(1), . . . ,g(n)]T

be a column vector containing the probabilities that pg assigns to each possible values of x, from

x1 to xn.

Similarly, let f (i) = f (xi) be the value that the secondary objective f assigns to xi. We

also overload the notation to let f = [ f (1), . . . , f (n)]T be a column vector containing the values

that the secondary objective f assigns to each possible value of the random variable x, from x1 to

xn.

Also let p(i)data = pdata(xi) be the probability that the data distribution assigns to xi.

We can then rewrite the problem in Eq. 3.4 in a standard form [BV04] as:

min
g

2JSD(pdata||pg)+gT f (3.17)

s.t. −g(i) ≤ 0 (3.18)

1T g−1 = 0 (3.19)

where 1 is a column vector of 1, which has the same number of entries as the vector g. The
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constraint 3.18 ensures that the probability that pg assigns to any x is non-negative and the

constraint 3.19 ensures the probabilities sum up to 1.

The problem is convex because the objective function is a nonnegative weighted sum of

two convex functions (JSD is convex because JSD is itself a nonnegative weighted sum of KL,

which is a convex function).

Strong duality also holds because Slater’s condition holds. A strictly feasible point for

Slater’s condition to hold is the uniform distribution, i.e. g(i) =
1
n
,∀i.

The Lagrangian is:

L = 2JSD(pdata||pg)+gT f −∑
i

λ
(i)g(i)+ν(1T g−1) (3.20)

where λ(i) and ν are the Lagrangian multipliers.

For any i ∈ [1,n], the partial derivative of the Lagrangian with respect to g(i) is:

∂L
∂g(i)

= log

(
2g(i)

p(i)data +g(i)

)
+ f (i)−λ

(i)+ν (3.21)

Let g∗ and (λ∗,ν∗) be the primal and dual optimal solutions of the optimization problem.

As the strong duality holds, the variables g∗ and (λ∗,ν∗) must satisfy the KKT conditions. For

any i ∈ [1,n], the following holds:

−g(i)∗ ≤ 0 (3.22)

1T g∗−1 = 0 (3.23)

λ
(i)
∗ ≥ 0 (3.24)

λ
(i)
∗ g(i)∗ = 0 (3.25)

∂L
∂g(i)

= log

(
2g(i)∗

p(i)data +g(i)∗

)
+ f (i)−λ

(i)
∗ +ν∗ = 0 (3.26)
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From Equation 3.26, we have λ
(i)
∗ = log

(
2g(i)∗

p(i)data +g(i)∗

)
+ f (i)+ν∗, and substitute into

Equation 3.25:

[
log

(
2g(i)∗

p(i)data +g(i)∗

)
+ f (i)+ν∗

]
g∗i = 0 (3.27)

We consider what happens when g∗i > 0, due to complementary slackness, we have:

log

(
2g(i)∗

p(i)data +g(i)∗

)
+ f (i)+ν∗ = 0 (3.28)

=⇒ g(i)∗ =
p(i)datae− f (i)−ν∗

(2− e− f (i)−ν∗)
(3.29)

p∗g(xi) = pdata(xi)
e− f (xi)−ν∗

2− e− f (xi)−ν∗
(3.30)

We can then pick an appropriate value for the Lagrange multiplier ν such that the probabilities

p∗g(xi) normalize to 1. QED.

3.5.2 Proof for Theorem 3.3.2

In the following proof, we use pdata to refer to the real data distribution, instead of pD as

in Section 3.3.1, to avoid confusion with the discriminator distribution.

Recall that we define pmix as pmix =
pg + paux

2
. Theorem 3.3.2 is stated in reference to

the optimization problem in Eq. 3.5, which we restate here:
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min
G,Gaux

max
D

V (G,Gaux,D) = Ex∼pdata [log(D(x))]+Ex∼pmix [log(1−D(x))]+Ex∼pg[ f (x)]

(3.31)

where the first two terms in the objective function are the GAN objective and the last term

is the secondary objective function.

Similar to the proof for Theorem 3.3.1, we can rewrite the objective function in Eq. 3.31

as [GPAM+14]:

V (G,Gaux,D∗) (3.32)

= 2JSD(pdata||
pg + paux

2
)+Ex∼pg[ f (x)]− log4 (3.33)

We are only interested in optimizing for the secondary objective function f in the space

of optimal GAN solutions. We therefore enforce that pmix =
pg + paux

2
= pdata, which makes the

JSD term vanish in Eq. 3.33 and allows us to solve the following optimization problem.

min
G

Ex∼pg [ f (x)] (3.34)

s.t. pg ≤ 2pdata (3.35)

paux = 2pdata− pg (3.36)

We claim that the solution to the optimization problem above is as follows. We define

x0 to be the element inside the support of the data distribution pdata that minimizes f , i.e.
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x0 = argmin
x∈Supp(pdata)

f (x). The optimal primary generator p∗g assigns the following probability to x0:

p∗g(x0) =


2pdata(x0) if 2pdata(x0)< 1

1 otherwise
(3.37)

If the global maximum x0 is not taking the full probability mass, the rest of the probability

mass is redistributed to the next best in-support maxima, which we can define recursively:

For xi ∈ argmin
x∈Supp(pdata)\{x j}i−1

j=0

f (x), p∗g(xi) =


2pdata(xi) if ∑

i
j=0 p∗g(x j)< 1

1−∑
i−1
j=0 p∗g(x j) if ∑

i
j=0 p∗g(x j)> 1

0 if ∑
i−1
j=0 p∗g(x j) = 1

(3.38)

Proof.

We show the proof by contradiction. That is, assume that there exists another distribution

pa
g with the following properties:

• There exists x where pa
g(x) ̸= p∗g(x)

• pa
g satisfies the constraint (3.35)-(3.36)

• The value of the objective function achieved by pa
g is better than the value achieved by p∗g.

That is, Ex∼pa
g[ f (x)]< Ex∼p∗g [ f (x)].

We will show that the existence of such a distribution pa
g will lead to contradiction,

We separate the analyses into three different cases, depending on the property of p∗g:

• Case 1: p∗g assigns all probability mass to x0

• Case 2: If p∗g assigns non-zero probability to x, then p∗g = 2pdata(x)
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• Case 3: There exists an x where 2pdata(x)> p∗g(x)> 0

We will walk through the three cases independently and show the contradiction in each

case.

Case 1: p∗g assigns the full probability mass to x0, that is p∗g(x0) = 1, and assigns zero

probability to every x not equal to x0. Without loss of generality, we consider pg that assigns

non-zero probability to a xk ̸= x0, assigns the remaining probability mass to x0, and assigns zero

probability to all x that is not equal to either x0 or xk. That is, assume there exists pa
g such that:

0 > pa
g(x0)> 1 (3.39)

pa
g(xk) = 1− pa

g(x0)> 0 for some xk ∈ Supp(pdata) (3.40)

Ex∼p∗g [ f (x)]−Ex∼pa
g[ f (x)]> 0 (3.41)

where xk ∈ Supp(pdata) follows from constraint 3.35 (pg ≤ 2pdata, and thus pa
g can only assign

non-zero probability to x within the support of pdata). We can then show that:

Ex∼p∗g [ f (x)]−Ex∼pa
g [ f (x)] (3.42)

= f (x0)− pa
g(x0) f (x0)− pa

g(xk) f (xk) (3.43)

=(1− pa
g(x0)) f (x0)− pa

g(xk) f (xk) (3.44)

=pa
g(xk) f (x0)− pa

g(xk) f (xk) (3.45)

=pa
g(xk)[ f (x0)− f (xk)]≤ 0 (contradiction with Eq.3.41) (3.46)

where the last inequity follows from these two facts:

x0 = argmin
x∈Supp(pdata)

f (x) (3.47)

xk ∈ Supp(pdata) (3.48)
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Case 2:

p∗g(x) =


2pdata(x) if p∗g(x)> 0

0 otherwise
(3.49)

Let {x0, . . . ,xi} be the set of x where p∗g(x)> 0, then we also require that ∑
i
j=0 p∗g(x) = 1.

Without loss of generality, we assume a distribution pa
g exists with the following properties.

There exists xm,xn such that:

p∗g(xm) = 2pdata(xm)> 0 and pa
g(xm)< 2pdata(xm) (3.50)

p∗g(xn) = 0 and pa
g(xn) = 2pdata(xm)− pa

g(xm)> 0 (3.51)

p∗g(x) = pa
g(x) otherwise (that is, for all x /∈ {xm,xn}) (3.52)

Ex∼p∗g[ f (x)]−Ex∼pa
g[ f (x)]> 0 (3.53)

We note that f (xm)≤ f (xn) since p∗g assigns non-zero probability to xm and assigns zero proba-

bility to xn.
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We can show that:

Ex∼p∗g[ f (x)]−Ex∼pa
g[ f (x)] (3.54)

=p∗g(xm) f (xm)− pa
g(xm) f (xm)− pa

g(xn) f (xn) (3.55)

=p∗g(xm) f (xm)− pa
g(xm) f (xm)− pa

g(xn) f (xn) (3.56)

=p∗g(xm) f (xm)− pa
g(xm) f (xm)− (2pdata(xm)− pa

g(xm)) f (xn) (3.57)

=p∗g(xm) f (xm)− pa
g(xm) f (xm)−2pdata(xm) f (xn)+ pa

g(xm) f (xn) (3.58)

=p∗g(xm) f (xm)− pa
g(xm) f (xm)− p∗g(xm) f (xn)+ pa

g(xm) f (xn) (3.59)

=p∗g(xm)[ f (xm)− f (xn)]− pa
g(xm)[ f (xm)− f (xn)] (3.60)

=[ f (xm)− f (xn)][p∗g(xm)− pa
g(xm)]≤ 0 (contradiction with Eq.3.53) (3.61)

where the last inequality is true because f (xm) ≤ f (xn) as we noted above, and p∗g(xm) =

2pdata(xm)> pa
g(xm).

Case 3:

There exists xi such that 2pdata(xi)> p∗g(xi)> 0. For all x ̸= xi:

p∗g(x) =


2pdata(x) if p∗g(x)> 0

0 otherwise
(3.62)

Let {x0, . . . ,xi} be the set of x where p∗g(x)> 0, we also require ∑
i
j=0 p∗g(x) = 1.

Without loss of generality, there are three cases we need to consider for the distribution

pa
g, each yielding a contradiction:

• pa
g(xi) = p∗g(xi), but there exists x such that pa

g(x) ̸= p∗g(x).

• pa
g(xi)> p∗g(xi).

• pa
g(xi)< p∗g(xi).
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In each case, the proof by contradiction is similar to the proof in Case 2 above, where we pick a

pair of xm,xn and shows that pa
g can not achieve a lower value of the objective function than p∗g.

We thus do not repeat the argument here. QED

3.6 Conclusions

In this paper, we introduced DASCO, a GAN-based offline RL method that addresses the

challenges of training policies as generators with a discriminator to minimize deviation from the

behavior policy by means of two modifications: an auxiliary generator to turn the GAN loss into

a support constraint, and a value function weight in the policy objective. The auxiliary generator

makes it possible for the policy to focus on maximizing the value function without needing to

match the entirety of the data distribution, only that part of it that has high value, effectively

turning the standard distributional constraint that would be enforced by a conventional GAN into

a kind of support constraint. This technique may in fact be of interest in other settings where there

is a need to maximize some objective in addition to fooling a discriminator, and applications of

this approach outside of reinforcement learning are an exciting direction for future work. Further,

since our method enables GAN-based strategies to attain good results on a range of offline RL

benchmark tasks, it would also be interesting in future work to consider other types of GAN

losses that induce different divergence measures. We also plan to explore robust methods for

offline policy and hyper-parameter selection in the future.
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Chapter 4

Supervised Policy Update for Deep

Reinforcement Learning

The policy gradient problem in deep reinforcement learning (DRL) can be defined as

seeking a parameterized policy with high expected reward. An issue with policy gradient

methods is poor sample efficiency [Kak03, SLM+15, WMG+17, SWD+17]. In algorithms such

as REINFORCE [Wil92a], new samples are needed for every gradient step. When generating

samples is expensive (such as robotic environments), sample efficiency is of central concern. The

sample efficiency of an algorithm is defined to be the number of calls to the environment required

to attain a specified performance level [Kak03].

Thus, given the current policy and a fixed number of trajectories (samples) generated, the

goal of the sample efficiency problem is to construct a new policy with the highest performance

improvement possible. To do so, it is desirable to limit the search to policies that are close to the

original policy πθk [Kak02, SLM+15, WMG+17, AHTA17, SWD+17, TAS18]. Intuitively, if

the candidate new policy πθ is far from the original policy πθk , it may not perform better than the

original policy because too much emphasis is being placed on the relatively small batch of new

data generated by πθk , and not enough emphasis is being placed on the relatively large amount of
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data and effort previously used to construct πθk .

This guideline of limiting the search to nearby policies seems reasonable in principle, but

requires a distance η(πθ,πθk) between the current policy πθk and the candidate new policy πθ,

and then attempt to solve the constrained optimization problem:

maximize
θ

Ĵ(πθ | πθk , new data) (4.1)

subject to η(πθ,πθk)≤ δ (4.2)

where Ĵ(πθ | πθk , new data) is an estimate of J(πθ), the performance of policy πθ, based on the

previous policy πθk and the batch of fresh data generated by πθk . The objective equation 4.1

attempts to maximize the performance of the updated policy, and the constraint equation 4.2

ensures that the updated policy is not too far from the policy πθk that was used to generate

the data. Several recent papers [Kak02, SLM+15, SWD+17, TAS18] belong to the framework

equation 4.1-equation 4.2.

We propose a new methodology, called Supervised Policy Update (SPU), for this sample

efficiency problem. The methodology is general in that it applies to both discrete and continuous

action spaces, and can address a wide variety of constraint types for equation 4.2. Starting with

data generated by the current policy, SPU optimizes over a proximal policy space to find an

optimal non-parameterized policy. It then solves a supervised regression problem to convert

the non-parameterized policy to a parameterized policy, from which it draws new samples. We

develop a general methodology for finding an optimal policy in the non-parameterized policy

space, and then illustrate the methodology for three different definitions of proximity. We also

show how the Natural Policy Gradient and Trust Region Policy Optimization (NPG/TRPO)

problems and the Proximal Policy Optimization (PPO2017) problem can be addressed by this

methodology. While SPU is substantially simpler than NPG/TRPO in terms of mathematics and

implementation, our extensive experiments show that SPU is more sample efficient than TRPO in
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Mujoco simulated robotic tasks and PPO2017 in Atari video game tasks. Our work also strikes

the right balance between performance and simplicity. The implementation is only slightly more

involved than PPO2017 [SWD+17]. Simplicity in RL algorithms has its own merits.

Off-policy RL algorithms generally achieve better sample efficiency than on-policy al-

gorithms [HZAL18a]. However, the performance of an on-policy algorithm can usually be

substantially improved by incorporating off-policy training ([MKS+15a], [WBH+16]). Our

paper focuses on igniting interests in separating finding the optimal policy into a two-step process:

finding the optimal non-parameterized policy, and then parameterizing this optimal policy. We

also wanted to deeply understand the on-policy case before adding off-policy training. We thus

compare with algorithms operating under the same algorithmic constraints, one of which is being

on-policy. We leave the extension to off-policy to future work. We do not claim state-of-the-art

results at the time of publication of this contribution.

4.1 Preliminaries

We consider a Markov Decision Process (MDP) with state space S , action space A , and

reward function r(s,a), s ∈ S , a ∈ A . Let π = {π(a|s) : s ∈ S ,a ∈ A} denote a policy, let Π be

the set of all policies, and let the expected discounted reward be:

J(π)≜ E
τ∼π

[
∞

∑
t=0

γ
tr(st ,at)

]
(4.3)

where γ ∈ (0,1) is a discount factor and τ = (s0,a0,s1, . . .) is a sample trajectory. Let Aπ(s,a)

be the advantage function for policy π [Lev17]. Deep reinforcement learning considers a set

of parameterized policies ΠDL = {πθ|θ ∈ Θ} ⊂ Π, where each policy is parameterized by a

neural network called the policy network. In this paper, we will consider optimizing over

the parameterized policies in ΠDL as well as over the non-parameterized policies in Π. For

concreteness, we assume that the state and action spaces are finite. However, our methodology
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also applies to continuous state and action spaces, as shown in the Appendix.

One popular approach to maximizing J(πθ) over ΠDL is to apply stochastic gradient

ascent. The gradient of J(πθ) evaluated at a specific θ = θk can be shown to be [Wil92a]:

∇J(πθk) = E
τ∼πθk

[
∞

∑
t=0

γ
t∇ logπθk(at |st)A

πθk (st ,at)

]
. (4.4)

We can approximate (4.4) by sampling N trajectories of length T from πθk :

∇J(πθk)≈
1
N

N

∑
i=1

T−1

∑
t=0

∇ logπθk(ait |sit)A
πθk (st ,at)≜ gk (4.5)

Additionally, define dπ(s)≜ (1− γ)∑
∞
t=0 γtPπ(st = s) for the the future state probability distribu-

tion for policy π, and denote π(·|s) for the probability distribution over the action space A when

in state s and using policy π. Further denote DKL(π ∥ πθk)[s] for the KL divergence from π(·|s) to

πθk(·|s), and denote the following as the “aggregated KL divergence”.

D̄KL(π ∥ πθk) = E
s∼d

πθk
[DKL(π ∥ πθk)[s]] (4.6)

4.1.1 Surrogate Objectives for the Sample Efficiency Problem

For the sample efficiency problem, the objective J(πθ) is typically approximated using

samples generated from πθk [SLM+15, AHTA17, SWD+17]. Two different approaches are

typically used to approximate J(πθ)− J(πθk). We can make a first order approximation of J(πθ)

around θk [Kak02, PS08a, PS08c, SLM+15]:

J(πθ)− J(πθk)≈ (θ−θk)
T∇J(πθk)≈ (θ−θk)

T gk (4.7)
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where gk is the sample estimate equation 4.5. The second approach is to approximate the state

distribution dπ(s) with dπθk (s) [AHTA17, SWD+17, Ach]:

J(π)− J(πθk)≈ Lπθk
(π)≜

1
1− γ

E
s∼d

πθk
E

a∼πθk (·|s)

[
π(a|s)

πθk(a|s)
Aπθk (s,a)

]
(4.8)

There is a well-known bound for the approximation equation 4.8 [KL02, AHTA17]. Furthermore,

the approximation Lπθk
(πθ) matches J(πθ)−J(πθk) to the first order with respect to the parameter

θ [AHTA17].

4.2 Related Work

Natural gradient [Ama98] was first introduced to policy gradient by Kakade [Kak02] and

then in [PS08a, PS08c, Ach, SLM+15]. referred to collectively here as NPG/TRPO. Algorithmi-

cally, NPG/TRPO finds the gradient update by solving the sample efficiency problem (4.1)-(4.2)

with η(πθ,πθk) = D̄KL(πθ ∥ πθk), i.e., use the aggregate KL-divergence for the policy proximity

constraint equation 4.2. NPG/TRPO addresses this problem in the parameter space θ ∈Θ. First,

it approximates J(πθ) with the first-order approximation equation 4.7 and D̄KL(πθ ∥ πθk) using

a similar second-order method. Second, it uses samples from πθk to form estimates of these

two approximations. Third, using these estimates (which are functions of θ), it solves for the

optimal θ∗. The optimal θ∗ is a function of gk and of hk, the sample average of the Hessian

evaluated at θk. TRPO also limits the magnitude of the update to ensure D̄KL(πθ ∥ πθk)≤ δ (i.e.,

ensuring the sampled estimate of the aggregated KL constraint is met without the second-order

approximation).

SPU takes a very different approach by first (i) posing and solving the optimization

problem in the non-parameterized policy space, and then (ii) solving a supervised regression

problem to find a parameterized policy that is near the optimal non-parameterized policy. A recent

paper, Guided Actor Critic (GAC), independently proposed a similar decomposition [TAS18].
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However, GAC is much more restricted in that it considers only one specific constraint criterion

(aggregated reverse-KL divergence) and applies only to continuous action spaces. Furthermore,

GAC incurs significantly higher computational complexity, e.g. at every update, it minimizes the

dual function to obtain the dual variables using SLSQP. MPO also independently propose a similar

decomposition [AST+18a]. MPO uses much more complex machinery, namely, Expectation

Maximization to address the DRL problem. However, MPO has only demonstrates preliminary

results on problems with discrete actions whereas our approach naturally applies to problems with

either discrete or continuous actions. In both GAC and MPO, working in the non-parameterized

space is a by-product of applying the main ideas in those papers to DRL. Our paper demonstrates

that the decomposition alone is a general and useful technique for solving constrained policy

optimization.

Clipped-PPO [SWD+17] takes a very different approach to TRPO. At each iteration, PPO

makes many gradient steps while only using the data from πθk . Without the clipping, PPO is the

approximation equation 4.8. The clipping is analogous to the constraint equation 4.2 in that it has

the goal of keeping πθ close to πθk . Indeed, the clipping keeps πθ(at |st) from becoming neither

much larger than (1+ ε)πθk(at |st) nor much smaller than (1− ε)πθk(at |st). Thus, although the

clipped PPO objective does not squarely fit into the optimization framework (4.1)-(4.2), it is quite

similar in spirit. We note that the PPO paper considers adding the KL penalty to the objective

function, whose gradient is similar to ours. However, this form of gradient was demonstrated to

be inferior to Clipped-PPO. To the best of our knowledge, it is only until our work that such form

of gradient is demonstrated to outperform Clipped-PPO.

Actor-Critic using Kronecker-Factored Trust Region (ACKTR) [WMG+17] proposed

using Kronecker-factored approximation curvature (K-FAC) to update both the policy gradient and

critic terms, giving a more computationally efficient method of calculating the natural gradients.

ACER [WBH+16] exploits past episodes, linearizes the KL divergence constraint, and maintains

an average policy network to enforce the KL divergence constraint. In future work, it would of
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interest to extend the SPU methodology to handle past episodes. In contrast to bounding the

KL divergence on the action distribution as we have done in this work, Relative Entropy Policy

Search considers bounding the joint distribution of state and action and was only demonstrated to

work for small problems [PMA10].

4.3 SPU Framework

The SPU methodology has two steps. In the first step, for a given constraint criterion

η(π,πθk)≤ δ, we find the optimal solution to the non-parameterized problem:

maximize
π∈Π

Lπθk
(π) (4.9)

subject to η(π,πθk)≤ δ (4.10)

Note that π is not restricted to the set of parameterized policies ΠDL. As commonly done, we

approximate the objective function (4.8). However, unlike PPO/TRPO, we are not approximating

the constraint equation 4.2. We will show below the optimal solution π∗ for the non-parameterized

problem (4.9)-(4.10) can be determined nearly in closed form for many natural constraint criteria

η(π,πθk)≤ δ.

In the second step, we attempt to find a policy πθ in the parameterized space ΠDL that is

close to the target policy π∗. Concretely, to advance from θk to θk+1, we perform the following

steps:

1. We first sample N trajectories using policy πθk , giving sample data (si,ai,Ai), i = 1, ..,m.

Here Ai is an estimate of the advantage value Aπθk (si,ai). (For simplicity, we index the

samples with i rather than with (i, t) corresponding to the tth sample in the ith trajectory.)

2. For each si, we define the target distribution π∗ to be the optimal solution to the constrained

optimization problem (4.9)-(4.10) for a specific constraint η.
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3. We then fit the policy network πθ to the target distributions π∗(·|si), i = 1, ..,m. Specifically,

to find θk+1, we minimize the following supervised loss function:

L(θ) =
1
N

m

∑
i=1

DKL(πθ ∥ π
∗)[si] (4.11)

For this step, we initialize with the weights for πθk . We minimize the loss function L(θ)

with stochastic gradient descent methods. The resulting θ becomes our θk+1.

4.4 SPU Applied to Specific Proximity Criteria

To illustrate the SPU methodology, for three different but natural types of proximity

constraints, we solve the corresponding non-parameterized optimization problem and derive the

resulting gradient for the SPU supervised learning problem. We also demonstrate that different

constraints lead to very different but intuitive forms of the gradient update.

4.4.1 Forward Aggregate and Disaggregate KL Constraints

We first consider constraint criteria of the form:

maximize
π∈Π

∑
s

dπθk (s) E
a∼π(·|s)

[
Aπθk (s,a)

]
(4.12)

subject to ∑
s

dπθk (s)DKL(π ∥ πθk)[s]≤ δ (4.13)

DKL(π ∥ πθk)[s]≤ ε for all s (4.14)

Note that this problem is equivalent to minimizing Lπθk
(π) subject to the constraints

equation 4.13 and equation 4.14. We refer to equation 4.13 as the ”aggregated KL constraint”

and to equation 4.14 as the ”disaggregated KL constraint”. These two constraints taken together

restrict π from deviating too much from πθk . We shall refer to equation 4.12-equation 4.14 as the
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forward-KL non-parameterized optimization problem.

Note that this problem without the disaggregated constraints is analogous to the TRPO

problem. The TRPO paper actually prefers enforcing the disaggregated constraint to enforcing

the aggregated constraints. However, for mathematical conveniences, they worked with the

aggregated constraints: ”While it is motivated by the theory, this problem is impractical to solve

due to the large number of constraints. Instead, we can use a heuristic approximation which

considers the average KL divergence” [SLM+15]. The SPU framework allows us to solve the

optimization problem with the disaggregated constraints exactly. Experimentally, we compared

against TRPO in a controlled experimental setting, e.g. using the same advantage estimation

scheme, etc. Since we clearly outperform TRPO, we argue that SPU’s two-process procedure has

significant potentials.

For each λ > 0, define: πλ(a|s) =
πθk(a|s)

Zλ(s)
eA

πθk (s,a)/λ where Zλ(s) is the normalization

term. Note that πλ(a|s) is a function of λ. Further, for each s, let λs be such that DKL(π
λs ∥

πθk)[s] = ε. Also let Γλ = {s : DKL(π
λ ∥ πθk)[s]≤ ε}.

Theorem 1. The optimal solution to the problem equation 4.12-equation 4.14 is given by:

π̃
λ(a|s) =


πλ(a|s) s ∈ Γλ

πλs(a|s) s /∈ Γλ

(4.15)

where λ is chosen so that ∑s dπθk (s)DKL(π̃
λ ∥ πθk)[s] = δ (Proof in subsection 4.6.1).

Equation equation 4.15 provides the structure of the optimal non-parameterized policy.

As part of the SPU framework, we then seek a parameterized policy πθ that is close to π̃λ(a|s),

that is, minimizes the loss function (4.11). For each sampled state si, a straightforward calculation

shows:

∇θDKL(πθ ∥ π̃
λ)[si] = ∇θDKL(πθ ∥ πθk)[si]−

1
λ̃si

E
a∼πθk (·|si)

[∇θ logπθ(a|si)A
πθk (si,a)] (4.16)
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where
∼
λsi = λ for si ∈ Γλ and λ̃si = λsi for si /∈ Γλ. We estimate the expectation in equation 4.16

with the sampled action ai and approximate Aπθk (si,ai) as Ai (obtained from the critic network),

giving:

∇θDKL(πθ ∥ π̃
λ)[si]≈ ∇θDKL(πθ ∥ πθk)[si]−

1
∼
λsi

∇θπθ(ai|si)

πθk(ai|si)
Ai (4.17)

To simplify the algorithm, we slightly modify (4.17). We replace the hyper-parameter δ with the

hyper-parameter λ and tune λ rather than δ. Further, we set
∼
λsi = λ for all si in equation 4.17 and

introduce per-state acceptance to enforce the disaggregated constraints, giving the approximate

gradient:

∇θDKL(πθ ∥ π̃
λ)≈ 1

m

m

∑
i=1

[∇θDKL(πθ ∥ πθk)[si]−
1
λ

∇θπθ(ai|si)

πθk(ai|si)
Ai]1DKL(πθ∥πθk )[si]≤ε (4.18)

We make the approximation that the disaggregated constraints are only enforced on the states

in the sampled trajectories. We use (4.18) as our gradient for supervised training of the policy

network. The equation (4.18) has an intuitive interpretation: the gradient represents a trade-off

between the approximate performance of πθ (as captured by
1
λ

∇θπθ(ai|si)

πθk(ai|si)
Ai) and how far πθ

diverges from πθk (as captured by ∇θDKL(πθ ∥ πθk)[si]). For the stopping criterion, we train until
1
m

∑i DKL(πθ ∥ πθk)[si]≈ δ.

4.4.2 Backward KL Constraint

In a similar manner, we can derive the structure of the optimal policy when using the

reverse KL-divergence as the constraint. For simplicity, we provide the result for when there are
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only disaggregated constraints. We seek to find the non-parameterized optimal policy by solving:

maximize
π∈Π

∑
s

dπθk (s) E
a∼π(·|s)

[
Aπθk (s,a)

]
(4.19)

DKL(π ∥ πθk)[s]≤ ε for all s (4.20)

Theorem 2. The optimal solution to the problem equation 4.19-equation 4.20 is given by:

π
∗(a|s) = πθk(a|s)

λ(s)
λ′(s)−Aπθk (s,a)

(4.21)

where λ(s)> 0 and λ′(s)> maxa Aπθk (s,a) (Proof in subsection 4.6.2).

Note that the structure of the optimal policy with the backward KL constraint is quite

different from that with the forward KL constraint. A straight forward calculation shows:

∇θDKL(πθ ∥ π
∗)[s] = ∇θDKL(πθ ∥ πθk)[s]− E

a∼πθk

[
∇θπθ(a|s)
πθk(a|s)

log
(

1
λ′(s)−Aπθk (s,a)

)]
(4.22)

The equation (4.22) has an intuitive interpretation. It increases the probability of action a

if Aπθk (s,a)> λ′(s)−1 and decreases the probability of action a if Aπθk (s,a)< λ′(s)−1. (4.22)

also tries to keep πθ close to πθk by minimizing their KL divergence.

4.4.3 L∞ Constraint

In this section we show how a PPO-like objective can be formulated in the context of SPU.

Recall from Section 4.2 that the the clipping in PPO can be seen as an attempt at keeping πθ(ai|si)

from becoming neither much larger than (1+ε)πθk(ai|si) nor much smaller than (1−ε)πθk(ai|si)
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for i = 1, . . . ,m. In this subsection, we consider the constraint function

η(π,πθk) = max
i=1,...,m

|π(ai|si)−πθk(ai|si)|
πθk(ai|si)

(4.23)

which leads us to the following optimization problem:

maximize
π(a1|s1),...,π(am|sm)

m

∑
i=1

Aπθk (si,ai)
π(ai|si)

πk(ai|si)
(4.24)

subject to
∣∣∣∣π(ai|si)−πθk(ai|si)

πθk(ai|si)

∣∣∣∣≤ ε i = 1, . . . ,m (4.25)

m

∑
i=1

(
π(ai|si)−πθk(ai|si)

πθk(ai|si)

)2

≤ δ (4.26)

Note that here we are using a variation of the SPU methodology described in Section 4.3 since

here we first create estimates of the expectations in the objective and constraints and then solve

the optimization problem (rather than first solve the optimization problem and then take samples

as done for Theorems 1 and 2). Note that we have also included an aggregated constraint (4.26)

in addition to the PPO-like constraint (4.25), which further ensures that the updated policy is

close to πθk .

Theorem 3. The optimal solution to the optimization problem (4.24-4.26) is given by:

π
∗(ai|si) =


πθk(ai|si)min{1+λAi,1+ ε} Ai ≥ 0

πθk(ai|si)max{1+λAi,1− ε} Ai < 0
(4.27)

for some λ > 0 where Ai ≜ Aπθk (si,ai) (Proof in subsection 4.6.3).

To simplify the algorithm, we treat λ as a hyper-parameter rather than δ. After solving for

π∗, we seek a parameterized policy πθ that is close to π∗ by minimizing their mean square error

over sampled states and actions, i.e. by updating θ in the negative direction of ∇θ ∑i(πθ(ai|si)−

π∗(ai|si))
2. This loss is used for supervised training instead of the KL because we take estimates
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before forming the optimization problem. Thus, the optimal values for the decision variables

do not completely characterize a distribution. We refer to this approach as SPU with the L∞

constraint.

Although we consider three classes of proximity constraint, there may be yet another

class that leads to even better performance. The methodology allows researchers to explore other

proximity constraints in the future.

4.5 Algorithmic Description for SPU

4.6 Proofs for non-parameterized optimization problems

4.6.1 Forward KL Aggregated and Disaggregated Constraints

We first show that equation 4.12-equation 4.14 is a convex optimization. To this end, first

note that the objective equation 4.12 is a linear function of the decision variables π = {π(a|s)

:́ s ∈ S , a ∈ A}. The LHS of equation 4.14 can be rewritten as: ∑a∈A π(a|s) logπ(a|s)−

∑a∈A π(a|s) logπθk(a|s). The second term is a linear function of π. The first term is a convex

function since the second derivative of each summand is always positive. The LHS of equa-

tion 4.14 is thus a convex function. By extension, the LHS of equation 4.13 is also a convex

function since it is a nonnegative weighted sum of convex functions. The problem equation 4.12-

equation 4.14 is thus a convex optimization problem. According to Slater’s constraint qualification,

strong duality holds since πθk is a feasible solution to equation 4.12-equation 4.14 where the

inequality holds strictly.

We can therefore solve equation 4.12-equation 4.14 by solving the related Lagrangian
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Algorithm 3 Algorithmic description of forward-KL non-parameterized SPU
Require: A neural net πθ that parameterizes the policy.
Require: A neural net Vφ that approximates V πθ .
Require: General hyperparameters: γ,β (advantage estimation using GAE), α (learning rate), N

(number of trajectory per iteration), T (size of each trajectory), M (size of training minibatch).
Require: Algorithm-specific hyperparameters: δ (aggregated KL constraint), ε (disaggregated

constraint), λ, ζ (max number of epoch).
1: for k = 1, 2, . . . do
2: under policy πθk , sample N trajectories, each of size T (sit ,ait ,rit ,si(t+1)), i =

1, . . . ,N, t = 1, . . . ,T
3: Using any advantage value estimation scheme, estimate Ait , i = 1, . . . ,N, t = 1, . . . ,T
4: θ← θk
5: φ← φk
6: for ζ epochs do
7: Sample M samples from the N trajectories, giving {s1,a1,A1, . . . ,sM,aM,AM}
8: L(φ) =

1
M

∑
m
(V targ(sm)−Vφ(sm))

2

9: φ← φ−α∇φL(φ)

10: L(θ) = 1
M ∑

m

[
∇θDKL(πθ ∥ πθk)[sm]−

1
λ

∇θπθ(am|sm)

πθk(am|sm)
Am

]
1DKL(πθ∥πθk )[sm]≤ε

11: θ← θ−αL(θ)

12: if
1
m

∑m DKL(π ∥ πθk)[sm]> δ then
13: Break out of for loop
14: end if
15: end for
16: θk+1← θ

17: φk+1← φ

18: end for

problem. For a fixed λ consider:

maximize
π∈Π

∑
s

dπθk (s){ E
a∼π(·|s)

[Aπθk (s,a)]−λDKL(π ∥ πθk)[s]} (4.28)

subject to DKL(π ∥ πθk)[s]≤ ε for all s (4.29)
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The above problem decomposes into separate problems, one for each state s:

maximize
π(·|s)

E
a∼π(·|s)

[Aπθk (s,a)]−λDKL(π ∥ πθk)[s] (4.30)

subject to DKL(π ∥ πθk)[s]≤ ε (4.31)

Further consider the unconstrained problem equation 4.30 without the constraint equation 4.31:

maximize
π(·|s)

K

∑
a=1

π(a|s)
[

Aπθk (s,a)−λ log
(

π(a|s)
πθk(a|s)

)]
(4.32)

subject to
K

∑
a=1

π(a|s) = 1 (4.33)

π(a|s)≥ 0, a = 1, . . . ,K (4.34)

A simple Lagrange-multiplier argument shows that the opimal solution to (4.32)-(4.34) is given

by:

π
λ(a|s) =

πθk(a|s)
Zλ(s)

eA
πθk (s,a)/λ

where Zλ(s) is defined so that πλ(·|s) is a valid distribution. Now returning to the decomposed

constrained problem (4.30)-(4.31), there are two cases to consider. The first case is when

DKL(π
λ ∥ πθk)[s]≤ ε. In this case, the optimal solution to (4.30)-(4.31) is πλ(a|s). The second

case is when DKL(π
λ ∥ πθk)[s] > ε. In this case the optimal is πλ(a|s) with λ replaced with λs,

where λs is the solution to DKL(π
λ ∥ πθk)[s] = ε. Thus, an optimal solution to equation 4.30-

equation 4.31 is given by:

π̃
λ(a|s) =


πθk(a|s)

Z(s)
eA

πθk (s,a)/λ s ∈ Γλ

πθk(a|s)
Z(s)

eA
πθk (s,a)/λs s /∈ Γλ

(4.35)

where Γλ = {s : DKL(π
λ ∥ πθk)[s]≤ ε}.
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To find the Lagrange multiplier λ, we can then do a line search to find the λ that satisfies:

∑
s

dπθk (s)DKL(π̃
λ ∥ πθk)[s] = δ (4.36)

□

4.6.2 Backward KL Constraint

The problem equation 4.19-equation 4.20 decomposes into separate problems, one for

each state s ∈ S :

maximize
π(·|s)

E
a∼πθk (·|s)

[
π(a|s)

πθk(a|s)
Aπθk (s,a)

]
(4.37)

subject to E
a∼πθk (·|s)

[
log

πθk(a|s)
π(a|s)

]
≤ ε (4.38)

After some algebra, we see that above optimization problem is equivalent to:

maximize
π(·|s)

K

∑
a=1

Aπθk (s,a)π(a|s) (4.39)

subject to −
K

∑
a=1

πθk(a|s) logπ(a|s)≤ ε
′ (4.40)

K

∑
a=1

π(a|s) = 1 (4.41)

π(a|s)≥ 0, a = 1, . . . ,K (4.42)

where ε′ = ε+ entropy(πθk). equation 4.39-equation 4.42 is a convex optimization problem with

Slater’s condition holding. Strong duality thus holds for the problem equation 4.39-equation 4.42.

Applying standard Lagrange multiplier arguments, it is easily seen that the solution to (4.39)-(4.42)
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is

π
∗(a|s) = πθk(a|s)

λ(s)
λ′(s)−Aπθk (s,a)

where λ(s) and λ′(s) are constants chosen such that the disaggregegated KL constraint is binding

and the sum of the probabilities equals 1. It is easily seen λ(s)> 0 and λ′(s)> maxa Aπθk (s,a) □

4.6.3 L∞ constraint

The problem (4.24-4.26) is equivalent to:

maximize
π(a1|s1),...,π(am|sm)

m

∑
i=1

Aπθk (si,ai)
π(ai|si)

πk(ai|si)
(4.43)

subject to 1− ε≤ π(ai|si)

πθk(ai|si)
≤ 1+ ε i = 1, . . . ,m (4.44)

m

∑
i=1

(
π(ai|si)−πθk(ai|si)

πθk(ai|si)

)2

≤ δ (4.45)

This problem is clearly convex. πθk(ai|si), i = 1, . . . ,m is a feasible solution where the inequality

constraint holds strictly. Strong duality thus holds according to Slater’s constraint qualification.

To solve equation 4.43-equation 4.45, we can therefore solve the related Lagrangian problem for

fixed λ:

maximize
π(a1|s1),...,π(am|sm)

m

∑
i=1

[
Aπθk (si,ai)

π(ai|si)

πk(ai|si)
−λ

(
π(ai|si)−πθk(ai|si)

πθk(ai|si)

)2
]

(4.46)

subject to 1− ε≤ π(ai|si)

πθk(ai|si)
≤ 1+ ε i = 1, . . . ,m (4.47)
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which is separable and decomposes into m separate problems, one for each si:

maximize
π(ai|si)

Aπθk (si,ai)
π(ai|si)

πk(ai|si)
−λ

(
π(ai|si)−πθk(ai|si)

πθk(ai|si)

)2

(4.48)

subject to 1− ε≤ π(ai|si)

πθk(ai|si)
≤ 1+ ε (4.49)

The solution to the unconstrained problem equation 4.48 without the constraint equation 4.49 is:

π
∗(ai|si) = πθk(ai|si)

(
1+

Aπθk (si,ai)

2λ

)

Now consider the contrained problem equation 4.48-equation 4.49. If Aπθk (si,ai) ≥ 0 and

π∗(ai|si) > πθk(ai|si)(1+ ε), it follows that the optimal solution is πθk(ai|si)(1+ ε). Similarly,

If Aπθk (si,ai)< 0 and π∗(ai|si)< πθk(ai|si)(1− ε), then the optimal solution is πθk(ai|si)(1− ε).

Rearranging the terms give us Theorem 3. To determine the value of λ, we can perform a line

search over λ so that the constraint equation 4.45 is binding. □

4.7 Experimental Results

We provide extensive experimental results which demonstrate SPU outperforms recent

state-of-the-art methods for environments with continuous or discrete action spaces. We also

provide ablation studies to show the importance of the different algorithmic components, and a

sensitivity analysis to show that SPU’s performance is relatively insensitive to hyper-parameter

choices. There are two definitions of superior sample complexity performance that we use to

compare two different algorithms A and B: (i) A is better than B if A takes fewer interactions

with the environment to achieve a pre-defined performance threshold [Kak03]; (ii) A is better

than B if the averaged final performance of A is higher than that of B given the same number of

interactions with the environment[SWD+17]. Implementation details are provided in Appendix

section 4.8.
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4.7.1 Results on Mujoco

The Mujoco [TET12] simulated robotics environments provided by OpenAI gym [BCP+16]

have become a popular benchmark for control problems with continuous action spaces. In terms

of final performance averaged over all available ten Mujoco environments and ten different seeds,

SPU with L∞ constraint (Section 5.3) and SPU with forward KL constraints (Section 5.1) outper-

form TRPO by 6% and 27% respectively. Since the forward-KL approach is our best performing

approach, we focus subsequent analysis on it and hereafter refer to it as SPU. Figure 4.1 illustrates

the performance of SPU versus TRPO for each of the ten Mujoco environments. We observe that

SPU clearly outperforms TRPO throughout training in the upper 5 environments while being

roughly the same as TRPO in the lower 5. We also note that SPU significantly outperforms

TRPO on the 3 most challenging Mujoco environments, which are listed in the top left corner in

Figure 4.1. Algorithm 3 in the Appendix provides the complete description of the SPU algorithm.

4.7.2 Ablation Studies for Mujoco

We refer to the indicator variable in equation 4.18 as per-state acceptance. Removing this

component is equivalent to removing the indicator variable. We refer to using ∑i DKL(πθ ∥ πθk)[si]

to determine the number of training epochs as dynamic stopping. Without this component, the

number of training epochs is treated as a hyper-parameter. We also tried removing ∇θDKL(πθ ∥

πθk)[si] from the gradient update step in equation 4.18. Table 4.1 illustrates the contribution of

the different components of SPU to the overall performance. The third row shows that the term

∇θDKL(πθ ∥ πθk)[si] makes a crucially important contribution to SPU. Furthermore, per-state

acceptance and dynamic stopping are both also important for obtaining high performance, with

the former playing a more central role. When a component is removed, the hyper-parameters are

retuned to ensure that the best possible performance is obtained with the alternative (simpler)

algorithm.
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Figure 4.1: Performance of SPU versus TRPO on 10 Mujoco environments. The x-axis indicates
timesteps. The y-axis indicates the average episode reward of the last 100 episodes.

4.7.3 Results on Atari

It has recently been observed that deep neural networks is not needed to obtain high

performance in many Mujoco environments [RLTK17a]. To more conclusively evaluate SPU,

we compare it against state-of-the-art method on the Arcade Learning Environments [BNVB12]

exposed through OpenAI gym [BCP+16]. Using the same network architecture and hyper-

parameters, we learn to play 60 Atari games from raw pixel observations and rewards. This

is highly challenging because of the diversity in the games and the high dimensionality of the

observations.

Here, we compare SPU against PPO because PPO outperforms TRPO by 9% in Mujoco.

Averaged over 60 Atari environments and 20 seeds, SPU is 55% better than PPO in terms of

averaged final performance. Figure 4.2 provides a high-level overview of the result. The dots in
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Table 4.1: Ablation study for SPU

Approach Percentage better than TRPO Performance vs. original algorithm
Original Algorithm 27% 0%

No grad KL on line 5 4% - 85%
No dynamic stopping 24% - 11%

No per-state acceptance 9% - 67%

the shaded area represent environments where their performances are roughly similar. The dots to

the right of the shaded area represent environment where SPU is more sample efficient than PPO.

We can draw two conclusions: (i) In 36 environments, SPU and PPO perform roughly the same ;

SPU clearly outperforms PPO in 15 environments while PPO clearly outperforms SPU in 9; (ii)

In those 15+9 environments, the extent to which SPU outperforms PPO is much larger than the

extent to which PPO outperforms SPU. SPU’s high performance in both the Mujoco and Atari

domains demonstrates its high performance and generality.

Figure 4.2: High-level overview of results on Atari

4.8 Implementation Details and Hyperparameters

4.8.1 Mujoco

As in [SWD+17], for Mujoco environments, the policy is parameterized by a fully-

connected feed-forward neural network with two hidden layers, each with 64 units and tanh

nonlinearities. The policy outputs the mean of a Gaussian distribution with state-independent
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variable standard deviations, following [SLM+15, DCH+16]. The action dimensions are assumed

to be independent. The probability of an action is given by the multivariate Gaussian probability

distribution function. The baseline used in the advantage value calculation is parameterized by a

similarly sized neural network, trained to minimize the MSE between the sampled states TD−λ

returns and the their predicted values. For both the policy and baseline network, SPU and TRPO

use the same architecture. To calculate the advantage values, we use Generalized Advantage

Estimation [SML+15]. States are normalized by dividing the running mean and dividing by

the running standard deviation before being fed to any neural networks. The advantage values

are normalized by dividing the batch mean and dividing by the batch standard deviation before

being used for policy update. The TRPO result is obtained by running the TRPO implementation

provided by OpenAI [DHK+17], commit 3cc7df060800a45890908045b79821a13c4babdb. At

every iteration, SPU collects 2048 samples before updating the policy and the baseline network.

For both networks, gradient descent is performed using Adam [KB14] with step size 0.0003,

minibatch size of 64. The step size is linearly annealed to 0 over the course of training. γ and λ for

GAE [SML+15] are set to 0.99 and 0.95 respectively. For SPU, δ,ε,λ and the maximum number

of epochs per iteration are set to 0.05/1.2, 0.05, 1.3 and 30 respectively. Training is performed for

1 million timesteps for both SPU and PPO. In the sensitivity analysis, the ranges of values for the

hyper-parameters δ,ε,λ and maximum number of epochs are [0.05,0.07], [0.01,0.07], [1.0,1.2]

and [5,30] respectively.

4.8.2 Atari

Unless otherwise mentioned, the hyper-parameter values are the same as in subsec-

tion 4.8.1. The policy is parameterized by a convolutional neural network with the same architec-

ture as described in [MKS+15a]. The output of the network is passed through a relu, linear and

softmax layer in that order to give the action distribution. The output of the network is also passed

through a different linear layer to give the baseline value. States are normalized by dividing by 255
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before being fed into any network. The TRPO result is obtained by running the PPO implementa-

tion provided by OpenAI [DHK+17], commit 3cc7df060800a45890908045b79821a13c4babdb.

8 different processes run in parallel to collect timesteps. At every iteration, each process collects

256 samples before updating the policy and the baseline network. Each process calculates its own

update to the network’s parameters and the updates are averaged over all processes before being

used to update the network’s parameters. Gradient descent is performed using Adam [KB14] with

step size 0.0001. In each process, random number generators are initialized with a different seed

according to the formula process seed = experiment seed +10000∗ process rank. Training is

performed for 10 million timesteps for both SPU and PPO. For SPU, δ,ε,λ and the maximum

number of epochs per iteration are set to 0.02, δ/1.3, 1.1 and 9 respectively.
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Chapter 5

Better Exploration with Optimistic

Actor-Critic

5.1 Introduction

A major obstacle that impedes a wider adoption of actor-critic methods [LHP+16,

SLH+14, Wil92b, SMSM99] for control tasks is their poor sample efficiency. In practice, de-

spite impressive recent advances [HZAL18b, FHM18], millions of environment interactions are

needed to obtain a reasonably performant policy for control problems with moderate complexity.

In systems where obtaining samples is expensive, this often makes the deployment of these

algorithms prohibitively costly.

This paper aims at mitigating this problem by more efficient exploration . We begin by

examining the exploration behavior of SAC [HZAL18b] and TD3 [FHM18], two recent model-

free algorithms with state-of-the-art sample efficiency and make two insights. First, in order to

avoid overestimation [Has10, vHGS16], SAC and TD3 use a critic that computes an approximate

lower confidence bound. The actor then adjusts the exploration policy to maximize this lower

bound. This improves the stability of the updates and allows the use of larger learning rates.
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However, using the lower bound can also seriously inhibit exploration if it is far from the true Q-

function. If the lower bound has a spurious maximum, the covariance of the policy will decrease,

causing pessimistic underexploration, i.e. discouraging the algorithm from sampling actions that

would lead to an improvement to the flawed estimate of the critic. Moreover, Gaussian policies are

directionally uninformed, sampling actions with equal probability in any two opposing directions

from the mean. This is wasteful since some regions in the action space close to the current policy

are likely to have already been explored by past policies and do not require more samples.

We formulate Optimistic Actor-Critic (OAC), an algorithm which explores more efficiently

by applying the principle of optimism in the face of uncertainty [BT02]. OAC uses an off-policy

exploration strategy that is adjusted to maximize an upper confidence bound to the critic, obtained

from an epistemic uncertainty estimate on the Q-function computed with the bootstrap [OBPR16].

OAC avoids pessimistic underexploration because it uses an upper bound to determine exploration

covariance. Because the exploration policy is not constrained to have the same mean as the target

policy, OAC is directionally informed, reducing the waste arising from sampling parts of action

space that have already been explored by past policies.

Off-policy Reinforcement Leaning is known to be prone to instability when combined

with function approximation, a phenomenon known as the deadly triad [SB18, vHDS+18]. OAC

achieves stability by enforcing a KL constraint between the exploration policy and the target

policy. Moreover, similarly to SAC and TD3, OAC mitigates overestimation by updating its target

policy using a lower confidence bound of the critic [Has10, vHGS16].

Empirically, we evaluate Optimistic Actor Critic in several challenging continuous control

tasks and achieve state-of-the-art sample efficiency on the Humanoid benchmark. We perform

ablations and isolate the effect of bootstrapped uncertainty estimates on performance. Moreover,

we perform hyperparameter ablations and demonstrate that OAC is stable in practice.
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5.2 Preliminaries

Reinforcement learning (RL) aims to learn optimal behavior policies for an agent acting

in an environment with a scalar reward signal. Formally, we consider a Markov decision process

[Put14], defined as a tuple (S,A,R, p, p0,γ). An agent observes an environmental state s∈ S =Rn;

takes a sequence of actions a1,a2, ..., where at ∈ A⊆Rd; transitions to the next state s′ ∼ p(·|s,a)

under the state transition distribution p(s′|s,a); and receives a scalar reward r ∈ R. The agent’s

initial state s0 is distributed as s0 ∼ p0(·).

A policy π can be used to generate actions a∼ π(·|s). Using the policy to sequentially gen-

erate actions allows us to obtain a trajectory through the environment τ = (s0,a0,r0,s1,a1,r1, ...).

For any given policy, we define the action-value function as Qπ(s,a) = Eτ:s0=s,a0=a[∑t γtrt ], where

γ ∈ [0,1) is a discount factor. We assume that Qπ(s,a) is differentiable with respect to the action.

The objective of Reinforcement Learning is to find a deployment policy πeval which maximizes

the total return J = Eτ:s0∼p0[∑t γtrt ]. In order to provide regularization and aid exploration, most

actor-critic algorithms [HZAL18b, FHM18, LHP+16] do not adjust πeval directly. Instead, they

use a target policy πT , trained to have high entropy in addition to maximizing the expected return

J.1 The deployment policy πeval is typically deterministic and set to the mean of the stochastic

target policy πT .

Actor-critic methods [SMSM99, BB00, BBW01, BB01] seek a locally optimal target

policy πT by maintaining a critic, learned using a value-based method, and an actor, adjusted

using a policy gradient update. The critic is learned with a variant of SARSA [vSvHWW09,

SB18, Sut95]. In order to limit overestimation [Has10, vHGS16], modern actor-critic methods

learn an approximate lower confidence bound on the Q-function [HZAL18b, FHM18], obtained

by using two networks Q̂1
LB and Q̂2

LB, which have identical structure, but are initialized with

different weights. In order to avoid cumbersome terminology, we refer to Q̂LB simply as a lower

1Policy improvement results can still be obtained with the entropy term present, in a certain idealized setting
[HZAL18b].
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bound in the remainder of the paper. Another set of target networks [MKS+15b, LHP+16] slowly

tracks the values of Q̂LB in order to improve stability.

Q̂LB(st ,at) = min(Q̂1
LB(st ,at), Q̂2

LB(st ,at)) (5.1)

Q̂{1,2}LB (st ,at)← R(st ,at)+ γmin(Q̆1
LB(st+1,a), Q̆2

LB(st+1,a)) where a∼ πT (·|st+1). (5.2)

Meanwhile, the actor adjusts the policy parameter vector θ of the policy πT in or-

der to maximize J by following its gradient. The gradient can be written in several forms

[SMSM99, SLH+14, CW18, HWS+15, GLT+17, GLG+17]. Recent actor-critic methods use a

reparametrised policy gradient [HWS+15, GLT+17, GLG+17]. We denote a random variable

sampled from a standard multivariate Gaussian as ε∼N (0, I) and denote the standard normal

density as φ(ε). The re-parametrisation function f is defined such that the probability density

of the random variable fθ(s,ε) is the same as the density of πT (a|s), where ε ∼ N (0, I). The

gradient of the return can then be written as:

∇θJ =
∫

s ρ(s)
∫

ε
∇θQ̂LB(s, fθ(s,ε))φ(ε)dεds (5.3)

where ρ(s) ≜ ∑
∞
t=0 γt p(st = s|s0) is the discounted-ergodic occupancy measure. In order to

provide regularization and encourage exploration, it is common to use a gradient ∇θJα that adds

an additional entropy term ∇θH (π(·,s)).

∇θJα

Q̂LB
=

∫
s ρ(s)

∫
ε
∇θQ̂LB(s, fθ(s,ε))φ(ε)dε+α

∫
ε
−∇θ log fθ(s,ε)φ(ε)dε︸ ︷︷ ︸

∇θH (π(·,s))

ds (5.4)

During training, equation 5.4 is approximated with samples by replacing integration over ε with
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Figure 5.1: Exploration inefficiencies in actor-critic methods. The state s is fixed. The graph
shows Qπ, which is unknown to the algorithm, its known lower bound Q̂LB (in red) and two
policies πcurrent and πpast at different time-steps of the algorithm (in blue).

Monte-Carlo estimates and integration over the state space with a sum along the trajectory.

∇θJα

Q̂LB
≈ ∇θĴα

Q̂LB
= ∑

N
t=0 γt∇θQ̂LB(st , fθ(s,εt))+α−∇θ log fθ(st ,εt). (5.5)

In the standard set-up, actions used in equation 5.1 and equation 5.5 are generated using

πT . In the table-lookup case, the update can be reliably applied off-policy, using an action

generated with a separate exploration policy πE . In the function approximation setting, this leads

to updates that can be biased because of the changes to ρ(s). In this work, we address these issues

by imposing a KL constraint between the exploration policy and the target policy. We give a more

detailed account of addressing the associated stability issues in section 5.4.3.

5.3 Existing Exploration Strategy is Inefficient

As mentioned earlier, modern actor-critic methods such as SAC [HZAL18b] and TD3

[FHM18] explore in an inefficient way. We now give more details about the phenomena that lead

to this inefficiency.
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Pessimistic underexploration. In order to improve sample efficiency by preventing the catas-

trophic overestimation of the critic [Has10, vHGS16], SAC and TD3 [FHM18, HZH+18, HZAL18b]

use a lower bound approximation to the critic, similar to equation 5.1. However, relying on this

lower bound for exploration is inefficient. By greedily maximizing the lower bound, the policy

becomes very concentrated near a maximum. When the critic is inaccurate and the maximum is

spurious, this can be very harmful. This is illustrated in Figure 5.1a. At first, the agent explores

with a broad policy, denoted πpast. Since Q̂LB increases to the left, the policy gradually moves

in that direction, becoming πcurrent. Because Q̂LB (shown in red) has a maximum at the mean µ

of πcurrent, the policy πcurrent has a small standard deviation. This is suboptimal since we need

to sample actions far away from the mean to find out that the true critic Qπ does not have a

maximum at µ.

The phenomenon of underexploration is specific to the lower as opposed to an upper

bound. An upper bound which is too large in certain areas of the action space encourages the agent

to explore them and correct the critic, akin to optimistic initialization in the tabular setting [SB18].

Due to overestimation, we cannot address pessimistic underexploration by simply using the upper

bound in the actor [FHM18]. Instead, recent algorithms have used an entropy term equation 5.4

in the actor update. While this helps exploration somewhat by preventing the covariance from

collapsing to zero, it does not address the core issue that we need to explore more around a

spurious maximum. We propose a more effective solution in section 5.4.

Directional uninformedness. Actor-critic algorithms that use Gaussian policies, like SAC

[HZH+18] and TD3 [FHM18], sample actions in opposite directions from the mean with equal

probability. However, in a policy gradient algorithm, the current policy will have been obtained

by incremental updates, which means that it won’t be very different from recent past policies.

Therefore, exploration in both directions is wasteful, since the parts of the action space where past

policies had high density are likely to have already been explored. This phenomenon is shown in
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Figure 5.1b. Since the policy πcurrent is Gaussian and symmetric around the mean, it is equally

likely to sample actions to the left and to the right. However, while sampling to the left would be

useful for learning an improved critic, sampling to the right is wasteful, since the critic estimate

in that part of the action space is already good enough. In section 5.4, we address this issue by

using an exploration policy shifted relative to the target policy.

5.4 Better Exploration with Optimism

Optimistic Actor Critic (OAC) is based on the principle of optimism in the face of

uncertainty [Zie10]. Inspired by recent theoretical results about efficient exploration in model-

free RL [JABJ18], OAC obtains an exploration policy πE which locally maximizes an approximate

upper confidence bound of Qπ each time the agent enters a new state. The policy πE is separate

from the target policy πT learned using equation 5.5 and is used only to sample actions in the

environment. Formally, the exploration policy πE = N (µE ,ΣE), is defined as

µe,ΣE = argmax
µ,Σ:

DKL((∥)N(µ,Σ),N (µT ,ΣT ))≤δ

Ea∼N (µ,Σ)
[
Q̄UB(s,a)

]
. (5.6)

Below, we derive the OAC algorithm formally. We begin by obtaining the upper bound

Q̄UB(s,a) (section 5.4.1). We then motivate the optimization problem equation 5.6, in particular

the use of the KL constraint (section 5.4.2). Finally, in section 5.4.3, we describe the OAC algo-

rithm and outline how it mitigates pessimistic underexploration and directional uninformedness

while still maintaining the stability of learning. In Section 5.4.4, we compare OAC to related

work.
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5.4.1 Obtaining an Upper Bound

The approximate upper confidence bound Q̄UB used by OAC is derived in three stages.

First, we obtain an epistemic uncertainty estimate σQ about the true state-action value function Q.

We then use it to define an upper bound Q̂UB. Finally, we introduce its linear approximation Q̄UB,

which allows us to obtain a tractable algorithm.

Epistemic uncertainty For computational efficiency, we use a Gaussian distribution to model

epistemic uncertainty. We fit mean and standard deviation based on bootstraps [ET94] of the

critic. The mean belief is defined as µQ(s,a) = 1
2

(
Q̂1

LB(s,a)+ Q̂2
LB(s,a)

)
, while the standard

deviation is

σQ(s,a) =
√

∑i∈{1,2}
1
2

(
Q̂i

LB(s,a)−µQ(s,a)
)2

=
1
2

∣∣Q̂1
LB(s,a)− Q̂2

LB(s,a)
∣∣ . (5.7)

The bootstraps are obtained using equation 5.1. Since existing algorithms [HZAL18b, FHM18]

already maintain two bootstraps, we can obtain µQ and σQ at negligible computational cost.

Despite the fact that equation 5.1 uses the same target value for both bootstraps, we demonstrate

in Section 5.5 that using a two-network bootstrap leads to a large performance improvement in

practice. Moreover, OAC can be easily extended to to use more expensive and better uncertainty

estimates if required.

Upper bound. Using the uncertainty estimate equation 5.7, we define the upper bound as

Q̂UB(s,a) = µQ(s,a)+βUBσQ(s,a). We use the parameter βUB ∈R+ to fix the level of optimism.

In order to obtain a tractable algorithm, we approximate Q̂UB with a linear function Q̄UB.

Q̄UB(s,a) = a⊤
[
∇aQ̂UB(s,a)

]
a=µT

+ const (5.8)
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By Taylor’s theorem, Q̄UB(s,a) is the best possible linear fit to Q̂UB(s,a) in a sufficiently small

region near the current policy mean µT for any fixed state s [Cal10, Theorem 3.22]. Since the gra-

dient
[
∇aQ̂UB(s,a)

]
a=µT

is computationally similar to the lower-bound gradients in equation 5.5,

our upper bound estimate can be easily obtained in practice without additional tuning.

5.4.2 Optimistic Exploration

Our exploration policy πE , introduced in equation 5.6, trades off between two criteria: the

maximization of an upper bound Q̄UB(s,a), defined in equation 5.8, which increases our chances

of executing informative actions, according to the principle of optimism in the face of uncertainty

[BT02], and constraining the maximum KL divergence between the exploration policy and the

target policy πT , which ensures the stability of updates. The KL constraint in equation 5.6 is

crucial for two reasons. First, it guarantees that the exploration policy πE is not very different

from the target policy πT . This allows us to preserve the stability of optimization and makes it

less likely that we take catastrophically bad actions, ending the episode and preventing further

learning. Second, it makes sure that the exploration policy remains within the action range where

the approximate upper bound Q̄UB is accurate. We chose the KL divergence over other similarity

measures for probability distributions since it leads to tractable updates.

Thanks to the linear form on Q̄UB and because both πE and πT are Gaussian, the maxi-

mization of equation 5.6 can be solved in closed form. We state the solution below.

Proposition 1. The exploration policy resulting from equation 5.6 has the form πE = N (µE ,ΣE),

where

µE = µT +
√

2δ∥∥∥[∇aQ̂UB(s,a)]a=µT

∥∥∥
Σ

ΣT [∇aQ̂UB(s,a)]a=µT
and ΣE = ΣT . (5.9)

We stress that the covariance of the exploration policy is the same as the target policy.
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Algorithm 4 Optimistic Actor-Critic (OAC).
Require: w1, w2, θ ▷ Initial parameters w1,w2 of the critic and θ of the target policy πT .

1: w̆1← w1, w̆2← w2,D← /0 ▷ Initialize target network weights and replay pool
2: for each iteration do
3: for each environment step do
4: at ∼ πE(at |st) ▷ Sample action from exploration policy as in equation 5.9.
5: st+1 ∼ p(st+1|st ,at) ▷ Sample transition from the environment
6: D←D ∪{(st ,at ,R(st ,at),st+1)} ▷ Store the transition in the replay pool
7: end for
8: for each training step do
9: for i ∈ {1,2} do ▷ Update two bootstraps of the critic

10: update wi with ∇̂wi∥Q̂i
LB(st ,at)−R(st ,at)−γmin(Q̆1

LB(st+1,a),Q̆2
LB(st+1,a))∥2

2

11: end for
12: update θ with ∇θĴα

Q̂′LB
▷ Policy gradient update.

13: w̆1← τw1 +(1− τ)w̆1, w̆2← τw2 +(1− τ)w̆2 ▷ Update target networks
14: end for
15: end for
Output: w1, w2, θ ▷ Optimized parameters

5.4.3 The Optimistic Actor-Critic Algorithm

Optimistic Actor Critic (see Algorithm 4) samples actions using the exploration policy

equation 5.9 in line 4 and stores it in a memory buffer. The term
[
∇aQ̂UB(s,a)

]
a=µT

in equation 5.9

is computed at minimal cost2 using automatic differentiation, analogous to the critic derivative in

the actor update equation 5.4. OAC then uses its memory buffer to train the critic (line 10) and

the actor (line 12). We also introduced a modification of the lower bound used in the actor, using

Q̂′LB = µQ(s,a)+βLBσQ(s,a), allowing us to use more conservative policy updates. The critic

equation 5.1 is recovered by setting βLB =−1.

OAC avoids the pitfalls of greedy exploration Figure 5.2 illustrates OAC’s exploration policy

πE visually. Since the policy πE is far from the spurious maximum of Q̂LB (red line in figure 5.2),

executing actions sampled from πE leads to a quick correction to the critic estimate. This way,

OAC avoids pessimistic underexploration. Since πE is not symmetric with respect to the mean of

2In practice, the per-iteration wall clock time it takes to run OAC is the same as SAC.
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Figure 5.2: The OAC exploration policy πE avoids pessimistic underexploration by sampling
far from the spurious maximum of the lower bound Q̂LB. Since πE is not symmetric wrt. the
mean of the target policy (dashed line), it also addresses directional uninformedness.

πT (dashed line), OAC also avoids directional uninformedness.

Stability While off-policy deep Reinforcement Learning is difficult to stabilize in general

[SB18, vHDS+18], OAC is remarkably stable. Due to the KL constraint in equation equation 5.6,

the exploration policy πE remains close to the target policy πT . In fact, despite using a separate

exploration policy, OAC isn’t very different in this respect from SAC [HZAL18b] or TD3

[FHM18], which explore with a stochastic policy but use a deterministic policy for evaluation.

In Section 5.5, we demonstrate empirically that OAC and SAC are equally stable in practice.

Moreover, similarly to other recent state-of-the-art actor-critic algorithms [FHM18, HZH+18],

we use target networks [MKS+15b, LHP+16] to stabilize learning.

Overestimation vs Optimism While OAC is an optimistic algorithm, it does not exhibit catas-

trophic overestimation [FHM18, Has10, vHGS16]. OAC uses the optimistic estimate equation 5.8

for exploration only. The policy πE is computed from scratch (line 4 in Algorithm 4) every time

the algorithm takes an action and is used only for exploration. The critic and actor updates

equation 5.1 and equation 5.5 are still performed with a lower bound. This means that there

is no way the upper bound can influence the critic except indirectly through the distribution of

state-action pairs in the memory buffer.
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5.4.4 Related work

OAC is distinct from other methods that maintain uncertainty estimates over the state-

action value function. Actor-Expert [LJL+18] uses a point estimate of Q⋆, unlike OAC, which

uses a bootstrap approximating Qπ. Bayesian actor-critic methods [GE07, GMPT15, GEV16]

model the probability distribution over Qπ, but unlike OAC, do not use it for exploration. Ap-

proaches combining DQN with bootstrap [CSAS17, OAC18] and the uncertainty Bellman equa-

tion [OOMM18] are designed for discrete actions. Model-based reinforcement learning methods

thet involve uncertainty [GMR16, DHLDVU16, CCML18] are very computationally expensive

due to the need of learning a distribution over environment models. OAC may seem superficially

similar to natural actor critic [Ama98, Kak01, PS06, PS08b] due to the KL constraint in equa-

tion 5.6. In fact, it is very different. While natural actor critic uses KL to enforce the similarity

between infinitesimally small updates to the target policy, OAC constrains the exploration policy

to be within a non-trivial distance of the target policy. Other approaches that define the exploration

policy as a solution to a KL-constrained optimization problem include MOTO [ALP+15], MORE

[ANAA16] and Maximum a Posteriori Policy optimization [AST+18b]. These methods differ

from OAC in that they do not use epistemic uncertainty estimates and explore by enforcing

entropy.

5.5 Experiments

Our experiments have three main goals. First, to test whether Optimistic Actor Critic

has performance competitive to state-of-the art algorithms. Second, to assess whether optimistic

exploration based on the bootstrapped uncertainty estimate equation 5.7, is sufficient to produce a

performance improvement. Third, to assess whether optimistic exploration adversely affects the

stability of the learning process.
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Figure 5.3: OAC versus SAC, TD3, DDPG on 5 Mujoco environments. The horizontal axis
indicates number of environment steps. The vertical axis indicates the total undiscounted return.
The shaded areas denote one standard deviation.

MuJoCo Continuous Control We test OAC on the MuJoCo [TET12] continuous control

benchmarks. We compare OAC to SAC [HZH+18] and TD3 [FHM18], two recent model-free

RL methods that achieve state-of-the art performance. For completeness, we also include a

comparison to a tuned version of DDPG [LHP+16], an established algorithm that does not

maintain multiple bootstraps of the critic network. OAC uses 3 hyper-parameters related to

exploration. The parameters βUB and βLB control the amount of uncertainty used to compute the

upper and lower bound respectively. The parameter δ controls the maximal allowed divergence

between the exploration policy and the target policy. Results in Figure 5.3 show that using

optimism improves the overall performance of actor-critic methods. On Ant, OAC improves the

performance somewhat. On Hopper, OAC achieves state-of the art final performance. On Walker,

we achieve the same performance as SAC while the high variance of results on HalfCheetah

makes it difficult to draw conclusions on which algorithm performs better.

State-of-the art result on Humanoid The upper-right plot of Figure 5.3 shows that the vanilla

version of OAC outperforms SAC the on the Humanoid task. To test the statistical significance of

our result, we re-ran both SAC and OAC in a setting where 4 training steps per iteration are used.
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Figure 5.4: Impact of the bootstrapped uncertainty estimate on the performance of OAC.

Figure 5.5: Left figure: individual runs of OAC vs SAC. Right figure: sensitivity to the KL
constraint δ. Error bars indicate 90% confidence interval.

By exploiting the memory buffer more fully, the 4-step versions show the benefit of improved

exploration more clearly. The results are shown in the lower-right plot in Figure 5.3. At the end

of training, the 90% confidence interval for the performance of OAC was 5033±147 while the

performance of SAC was 4586±117. We stress that we did not tune hyper-parameters on the

Humanoid environment. Overall, the fact that we are able to improve on Soft-Actor-Critic, which

is currently the most sample-efficient model-free RL algorithm for continuous tasks shows that

optimism can be leveraged to benefit sample efficiency.

Usefulness of the Bootstrapped Uncertainty Estimate OAC uses an epistemic uncertainty

estimate obtained using two bootstraps of the critic network. To investigate its benefit, we

compare the performance of OAC to a modified version of the algorithm, which adjusts the

exploration policy to maximize the approximate lower bound, replacing Q̂UB with Q̂LB in equation
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equation 5.9. While the modified algorithm does not use the uncertainty estimate, it still uses a

shifted exploration policy, preferring actions that achieve higher state-action values. The results

is shown in Figure 5.4. Using the bootstrapped uncertainty estimate improves performance on

the most challenging Humanoid domain, while producing either a slight improvement or a no

change in performance on others domains. Since the upper bound is computationally very cheap

to obtain, we conclude that it is worthwhile to use it.

Sensitivity to the KL constraint OAC relies on the hyperparameter δ, which controls the

maximum allowed KL divergence between the exploration policy and the target policy. In Figure

5.5, we evaluate how the term
√

2δ used in the the exploration policy equation 5.9 affects average

performance of OAC trained for 1 million environment steps on the Ant-v2 domain. The results

demonstrate that there is a broad range of settings for the hyperparameter δ, which leads to good

performance.

Learning is Stable in Practice Since OAC explores with a shifted policy, it might at first

be expected of having poorer learning stability relative to algorithms that use the target policy

for exploration. While we have already shown above that the performance difference between

OAC and SAC is statistically significant and not due to increased variance across runs, we

now investigate stability further. In Figure 5.5 we compare individual learning runs across both

algorithms. We conclude that OAC and SAC are similarly stable, avoiding the problems associated

with stabilising deep off-policy RL [SB18, vHDS+18].

5.6 Conclusions

We present Optimistic Actor Critic (OAC), a model-free deep reinforcement learning

algorithm which explores by maximizing an approximate confidence bound on the state-action

value function. By addressing the inefficiencies of pessimistic underexploration and directional
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uninformedness, we are able to achieve state-of-the art sample efficiency in continuous control

tasks. Our results suggest that the principle of optimism in the face of uncertainty can be used to

improve the sample efficiency of policy gradient algorithms in a way which carries almost no

additional computational overhead.
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Chapter 6

Single RGB-D Camera Teleoperation for

General Robotic Manipulation

6.1 Introduction

Figure 6.1: We propose a teleoperation system which uses a single RGB-D camera to capture
human intent. We also show successful pick-and-place trials while only using RGB without
depth sensing. The human operator does not have access to any form of tactile feedback. Tasks
(a)-(g) are evaluated on a real robot arm. Dual arm task (h) is performed in simulation.

Teleoperation is an essential interaction mode for many robot systems. As we remove

fences and allow robots to operate in mixed environments, it is a challenge to provide fully
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autonomous operation. We are increasing seeing systems where ”sometimes” the last inch of

motion is a challenge to perform robustly. For level 4 cars, the expectation is that operators

will take over control as needed. For manipulation tasks, the same might be true. With ML

based programming, pure ”learning by demonstration” might not always be possible due to

safety consideration, access to workspace, etc. In many use-cases, teleoperation of a robot is a

convenient modality for interaction with the robot.

Design of a system for teleoperation for remote-operation, intervention or task learning all

have to consider three aspects: i) Detection of operator actions to control the robot, interpretation

of the operator intent, ii) mapping of intent to task coordinates, and iii) coordinated execution of

operator commands and providing feedback.

Recently, cameras have become omnipresent due to low price and access to computing

power to process data. To capture the intents of the users, we propose a minimalist approach

which uses single RGB-D camera to capture the intents expressed as changes in users hand poses.

Frequently, the operator and the robot do not operate in the same coordinate frames. Using

oblique coordinates is a flexible and convenient mechanism to define a mapping from operator to

robot frames. Defining the operator reference frame using oblique coordinates also allows for

motion repeatability between the reference frame definition procedure prior to teleoperation and

during teleoperation trials. Finally, for execution of commands, there is a need to make part of

the control local. Physical interaction is close to impossible to perform in a closed loop involving

the operator, especially when the system has any level of delays.

We present a methodology to teleoperate a physical robot manipulator. We discuss two

approaches to hand detection, tracking and intent recognition. We transfer commands from user

coordinates to task space using oblique coordinates. Finally, we describe the design of a control

system for physical task execution. We demonstrate the performance of the system using both

simulations and real-world tests.

A key assumption of our approach and also of prior works [MSPK13, VJK12, SGJ+12,
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DZML12] is the availability of the depth modality in the camera observation to estimate the 3D

positions of skeletal keypoints. By approximating the true camera projection model with a weak

perspective transformation, our system enables the operator to perform pick-and-place tasks using

only RGB and without depth sensing. Differently from previous works which use the Kinect and

the accompanying proprietary human pose tracker for tele-operation, we use state-of-the-art and

open-sourced human pose estimation machine learning models to estimate the hand poses.

Recordings of teleoperation trials are available at https://sites.google.com/view/manipulation-

teleop-with-rgbd

6.2 Related Work

In the 50s, Raymond Goertz developed teleoperation systems of pairs of mechanically

linked parent-children robots. These systems allowed operators to handle radioactive material

and transmitted forces through the connected mechanical system. Such connectivity limited

the physical distance between the operator and the robot. Teleoperation systems have found

widespread applications [SK07].

To extend the operators-robots physical distance and reduce the needs for special purpose

hardware to capture the operators’ intents, researchers turned their attention to vision-based

motion capture system. Pioneering motion capture works use special-purpose markers or gloves

to track the 2D or 3D positions of critical points [Dor94, FSL+17, TAH+04]. The tracking

results can be further combined with Virtual Reality devices for better feedback to human

operators [WP09]. The marker-based solution often suffers from self-occlusion, thus redundant

markers are often placed on the gloves to improve tracking consistency. Additional hardware,

such as inertia measurement unit [MJKM04], electromyography [LLLY19], and haptic devices

[KT15], can be used to further improve tracking performance. Tactile feedback [BRS04, JF09]

to the human operator provided by specially-design gloves also improves the controllability of
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the teleoperated robots. While these systems offer good teleoperation performance, they require

the human operator to have access to hardware that are not widely available, and are thus difficult

to deploy widely.

Due to their less stringent hardware requirement, vision-based markerless hand tracking

has received significant attention from the teleoperation community. [SKR+15, LML+19,

AGHK18] tracks the hand poses via monocular camera or depth sensor. A hand model can be

also be used to improve tracking performance [KVW07, DZML12]. These works use the hand

pose tracking results to control a robot arm with parallel gripper for simple tasks, e.g. pick and

place. In contrast, our teleoperation system can perform complex tasks such as cutting and cloth

folding. DexPilot [HVWY+20] also demonstrates successful completion of complex tasks using

a multi-finger hand. However, DexPilot requires high tracking accuracy of most finger joints. The

human operators require access to four RGB-D cameras with calibrated extrinsic to register the

complete points of human hand. The human operator in our teleoperation system can perform

complex tasks while using only 1 RGB-D camera without extrinsic calibration. We however

recognize that the multi-fingered setting studied in DexPilot is significantly more challenging

than our parallel yaw setting.

Both marker-based and vision-based teleoperation system make use of hand pose estima-

tion techniques, which have advanced rapidly due to the integration of deep learning and hand mod-

els. Motivated by the success of blend skinning techniques [LMR+15, KŽ05], MANO [RTB17]

models shape variation from hand scans by learning pose dependent blend shapes and represents

the hand as a combination of shape parameters and pose parameters. [BBT19, LJX+21, RSJ20]

also adopt linear blend skinning model for hand pose estimation and tracking. Our teleoperation

system illustrates that state-of-the-art vision-based hand pose estimation techniques are accurate

enough to allow for the completion of tasks that require mm-level precision, such as peg-in-hole.

Given the estimated human hand poses, a wide spectrum of possible motion correspon-

dence strategy exists to compute the desired robot poses. Our work uses direct motion control
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Figure 6.2: Control flow of our teleoperation system. The wrist and side camera in the robot
workspace send RGB streams to a display device in the operator space. The operator watches
the display device and move their hands to signal intent to the robot controller. The hand capture
camera in the operator space observes the hands movement and sends the RGB-D streams to
an edge computing device. The device then estimates the hand poses, transforms the changes
in human hand poses to changes in desired robot poses, and send the desired changes to the
computer in the robot space controlling the robot motion.

[SK07]. Another common strategy is gesture-based control, where the operator communicates

their intent through changes in hand gestures, instead of changes in hand poses. In such system,

the changes in robot motion is often a pre-defined and fixed function of the changes in hand

gestures. As such, the teleoperation system can limit the operators to perform simple task such as

grasping [OTM21] or limit the degree of freedom of movement of the end effector [JKP21]. Our

work demonstrates successful completion of complex tasks such as cutting and also allows for

controlling the 6 degrees of freedom of the end effector. A gesture-based teleoperation system

also requires the operator to remember the mapping between hand gestures and robot motion

[ZTC+20].

6.3 Architecture

Figure 6.2 illustrates the control flow of our tele-operation system. In this section,

we explain the hand pose estimation models, the mapping from operator workspace to robot

workspace (which we refer to as motion correspondence), dynamic motion scaling, and the

hardware system.
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6.3.1 Hand pose estimation from RGB-D observation

The hand pose estimator takes as input a RGB-D frame and outputs 21 2D positions of

hand keypoints in pixel space and the wrist pose in camera frame for each hand. Compared

to previous works which use the built-in pose tracker in the Kinect sensor [VJK12, SGJ+12,

DZML12], we use state-of-the-art machine learning models to estimate the hand poses. Such

approach allows us to implement our system on commodity camera, is not restricted to the Kinect

sensor and thus might be more scalable. Given the RGB frame, we use MediaPipe [ZBV+20]

to estimate the 2D positions of hand keypoints. Given the keypoints, we compute axis-aligned

bounding-box to crop the image around hand region. The cropped images are then input into the

Frankmocap [RSJ20] hand pose regressor to predict the orientation of the wrist in camera frame.

We also obtain the 3D positions of the wrist by un-projecting the coordinates of the corresponding

keypoint using the depth map. The hand pose estimator is implemented as a ROS [QCG+09]

node with publish rate of 10Hz. Given the 2D positions in pixel space of the hand keypoints, we

send a command to the robot controller to close the robot parallel yaw gripper if the distance

between the right thumb and index tips falls below a pre-defined threshold [DZML12, KVW07].

6.3.2 Hand pose estimation from RGB without depth sensing

A key limitation of Kinect-based approach [VJK12, SGJ+12, DZML12] is the require-

ment of depth sensing to estimate the 3D positions of skeletal keypoints. Using RGB instead of

RGB-D camera is a promising extension to our method. The main challenge is to obtain accurate

3D positions of operator wrists without depth information. Monocular depth estimation is in

general a challenging problem. However, given that we only requires the 3D positions of the

wrists, we were nevertheless able to obtain promising results. In addition, the neural network

based hand pose estimation models have strong prior over the shape and size of the human hand.

To estimate 3D hand pose from RGB, we crop the image around the hand region and
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Figure 6.3: Illustration of the Cartesian operator frame and the robot wrist camera frame.
The left and middle figures illustrate the axes of the Cartesian operator frame {c f} as seen
from the operator space camera and by the operator respectively. The middle and right figures
illustrate the robot wrist camera frame {wc f} as seen by the operator and in the robot space. The
alignment between the operator frame {c f} and camera frame {wc f} from the perspective of
the operator, as shown by the middle figure, mitigates viewpoint and reference frame mismatch
between the operator and the robot.

predict the weak perspective transformation scale sh using the model from FrankMocap [RSJ20].

The weak perspective transformation approximates the true camera projection model. It assumes

that for a small object, such as human hand, the depth value of any point on this object is the

same. If the assumption holds, the pixel coordinates from weak projection well approximate the

real projection model. We can thus approximate the depth simply by
C f
sh

, where f is the focal

length, C is a scalar constant. Given the estimated depth and camera projection model, we can

obtain the 3D position of the wrist expressed in the operator workspace camera frame.

6.3.3 Motion correspondence

The motion correspondence module computes the desired pose of the robot end effector

given the current estimates of the operator hand poses. To do so, the motion correspondence

module uses a define-at-runtime reference frame in the operator workspace. In this sub-section,

we motivate the need for the reference frame, introduce its Cartesian and non-Cartesian oblique

instantiations and describe how they are used to find the desired robot end effector pose. We refer

to the reference frame in the operator workspace as the operator frame. We will use monogram

notation [TtDDT] in the subsequent description of the motion correspondence module.

Why is the operator frame useful? An issue that frequently appears in teleoperation is viewpoint
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mismatch. Human operators naturally interpret their motion commands to the robots with respect

to an egocentric frame. If the axes of the egocentric frame are not aligned with the axes of the

frame in the robot workspace used to represent the desired robot end effector pose, the operators

need to understand the relationship between their egocentric frames and the robots’ frame of

reference and perform mental rotation during teleoperation [KH01, SWD10, MCM+17]. Such

calculation severely impedes the ease of teleoperation. To mitigate the issue, our system allows

the operator to define an egocentric frame that aligns with the frame in the robot workspace used

for representing the desired robot end effector pose. We refer to such an egocentric frame in the

operator workspace as an operator frame.

Constructing the Cartesian operator frame. In our system, the desired robot end effector pose

is represented with respect to a robot wrist camera frame {wc f}, illustrated in Figure 6.3. Our

system defines the wrist camera frame {wc f} prior to teleoperation and keeps it fixed. Given the

robot wrist camera frame {wc f}, our system defines the Cartesian operator frame in the operator

workspace as follows. For each axis of the robot wrist camera frame {wc f}, the system asks the

operator through a GUI to move their right wrist in a direction such that if the operator moves

their wrist in the same direction during teleoperation, the end effector will move in the direction

of the corresponding axis of the robot wrist camera frame {wc f}. As such, the frame with which

the desired robot end effector pose is represented with respect to is aligned with the egocentric

Cartesian operator frame, thus mitigating the viewpoint mismatch issue.

More concretely, let {c} represents the frame of the camera in the operator workspace.

During the Cartesian operator frame definition procedure, the hand pose estimator predicts the

positions of the operator right wrist with respect to the operator workspace camera frame {c}. Our

system thus obtains three sets of wrist positions, one for each axis of the robot wrist camera frame

{wc f}. For each set of positions, we perform RANSAC line fitting to each set and then normalize

the resulting lines to unit length. Let the resulting unit vector corresponding to the x-axis of the

wrist camera frame {wc f} be nx ∈ R3. We similarly estimate ny,nz ∈ R3. We then define the
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matrix
[
nx,ny,nz

]
∈ R3×3 with the column vectors being nx,ny,nz and project the matrix to the

closet orthogonal matrix R ∈ SO(3). We also compute the point p closest to the three vectors

nx,ny,nz in a least square sense. Let {c f} denotes the Cartesian operator frame. The procedure

above produces p and R, which together form the pose cT c f = (p,R) ∈ SE(3) of the Cartesian

operator frame {c f} with respect to the operator workspace camera frame {c}.

Motion correspondence between operator and robot. Given the pose of the Cartesian operator

frame cT c f , we now describe how to compute the desired pose of the end effector given the

current pose of the operator right hand wrist during teleoperation. Let {wr} denotes the frame

attached to the operator right hand wrist. Let {w},{e} denote the robot world and end effector

frames respectively. Given cT wr, we need to compute wT e
desired . We compute the desired position

and orientation separately. Given the current position of the right hand wrist c pwr, we first express

it with respect to the Cartesian operator frame: c f pwr =c f T c · c pwr.

We then treat a scaled version of c f pwr to be the desired end effector position with respect

to the robot wrist camera frame {wc f}: wc f pe = α ·c f pwr.

Since our system defines the robot wrist camera frame {wc f} prior to teleoperation and

keeps the pose of {wc f} with respect to the robot world frame {w} fixed during teleoperation,

the desired end effector position is:

w pe
desired =w T wc f ·wc f pe

α is a scalar to control the scaling between human and robot motion. If α = 1, the end effector

moves the same distance as the operator wrist. The appropriate value of α depends on the task.

For task like peg in hole, we might want to use a smaller α to allow for more precise robot control.

Similarly, given the orientation cRwr of the operator right hand wrist frame {wr} with

respect to the operator space camera frame {c}, we represent the orientation cRwr with respect to

the Cartesian operator frame {c f}. We then use the wrist camera frame {wc f} to find the desired
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orientation of the end effector in the robot workspace world frame wRe
desired .

Oblique operator frame. To construct the Cartesian operator frame {c f}, for each axis of the

robot wrist camera frame {wc f}, our system asks the operator through a GUI to move their

right wrist in a direction such that if the operator moves their wrist in the same direction during

teleoperation, the end effector will move along the same axis of the wrist camera frame {wc f}.

However, such promise by the system is often not possible because the 3 best fit vectors nx,ny,nz

to the operator wrist positions are usually not orthogonal. This necessitates the projection step

to SO3 as discussed above. However, projecting to SO3 the matrix whose columns are the three

best-fit vectors nx,ny,nz implies that as the operator moves their wrist in the same direction as

one of the best fit vector, the robot end effector might not move along the corresponding axes of

the wrist camera frame {wc f}. In other words, if the operator repeats the same motion during the

operator frame definition procedure and during teleoperation, the robot end effector might move

in different directions. We therefore introduce the use of non-Cartesian oblique coordinate frame

to ensure motion repeatability.

An oblique frame is a frame whose axes are not orthogonal [Fro]. The difference between

Cartesian and oblique coordinate frames are further illustrated in Figure 6.4. Given an arbitrary

point in space, to find the measure number of a point with respect to an axis of an oblique

coordinate frame, we project the point onto the axis along the direction parallel to the hyper-plane

defined by the remaining axes.

Let {o f} denotes the oblique operator frame. We next explain how to obtain the oblique

frame {o f} from the cartesian frame {c f}. We express the axes of the oblique coordinate frame

as vector in the Cartesian operator frame. To find the x-axis of the oblique coordinate frame, we

find the vector passing through the origin of the Cartesian operator frame and is parallel to the

best fit vector nx of the 3d wrist positions obtained when defining the x-axis of the Cartesian

operator frame. Denote the x-axis of the oblique frame in the Cartesian frame by c f o f x ∈ R3.

Similarly, we can obtain the y-axis and z-axis of the oblique frame c f o f y,
c f o f z ∈ R3. The normal
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(a) Cartesian operator frame. The
z-axis of the Cartesian operator
frame (blue vector) is not parallel
with the best fit lines of the blue
points. Let the blue points rep-
resent the captured operator wrist
positions during the definition pro-
cedure of the z-axis of the Carte-
sian operator frame. If the opera-
tor moves their wrist again along
the direction represented by the
blue points during teleoperation,
the robot end effector would move
in the direction represented by the
blue vector. This is an issue be-
cause of the lack of motion re-
peatability between operator frame
definition and during teleoperation
trials. We discuss this issue in
more details in subsection 6.3.3 un-
der Oblique operator frame.

(b) Oblique operator frame. The
axes of the oblique operator frame,
indicated by the 3 vectors, are the
best fit vectors to the three sets
of captured wrist positions during
the operator frame definition pro-
cedure.

(c) Computing coordinates in
oblique frame: the black point
is projected onto the z-axis, indi-
cated by blue cross, along the di-
rection parallel to the hyperplane
defined by the x and y axes.

Figure 6.4: An illustration of the the differences between Cartesian and oblique operator frame.
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to the hyperplane defined by the x and y axes of the oblique frame is c f nxy =
c f o f x×c f o f y.

Similarly, the normal the hyperplane defined by the remaining pairs of axes are c f nxz and c f nyz.

Having defined these quantities, the computation to transform the position c pwr of operator wrist

represented with respect to the camera frame in operator workspace to desired robot end effector

position in the robot workspace world frame w pe
desired is:

c f pwr =c f T c.c pwr

o f pwr
x =

〈c f pwr,c f nyz
〉/〈c f o f x,

c f nyz
〉

o f pwr
y =

〈c f pwr,c f nxz
〉/〈c f o f y,

c f nxz
〉

o f pwr
z =

〈c f pwr,c f nxy
〉/〈c f o f z,

c f nxy
〉

wc f pe = α.
[o f pwr

x ,o f pwr
y ,o f pwr

z
]
∈ R3×1

w pe
desired =w T wc f .wc f pe

, where ⟨·, ·⟩ is the inner product operator.

6.3.4 Dynamic motion scaling

The scaling factor α determines the distance the end effector moves for each unit of

operator movement. A smaller α allows for more precise control of the end effector. For example,

if α = 0.02, then the end effector will only move 2mm if the operator right wrist moves by 10cm.

This allows the operator to precisely control the position of the end effector without having to

precisely control their wrist movement. Picking good values for α is thus important to successful

task completion. However, good values for α change across tasks and even within one trial of a

task depending on task progression. For example, in peg in hole, when the robot has not grasped

the peg, a high value of α allows the operator to quickly command the robot to a good pre-grasp

pose. When the peg is grasped and ready to be inserted into the hole, smaller values of α are
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(a) The scene set-up in robot workspace. The
wrist and side cameras stream RGB to a computer
screen in the operator space to allow the operator
to monitor the motion of the 6DOF arm.

(b) Hardware used by the operator to communi-
cate their intent and observe the robot motion.

Figure 6.5: An illustration of the hardware used by our teleoperation system.

preferable.

Thus, when our teleoperation system only controls one robot arm, we use the left hand

poses to dynamically adjust the value of α during task execution. If the y coordinate of the

left hand wrist with respect to the camera frame is below a certain threshold, we set α to 0.02.

Otherwise, we set α to 0.3. In addition, if the distance in image space between the left hand

thump and pinky tips is below a threshold, we set α to 0. If α = 0, there is no robot motion.

Whenever α changes, we reinitialize the origin of the operator frame to be the current right wrist

3d position with respect to the camera frame in the operator workspace. This allows the operator

to reset their position when they are almost out of the field of view of the camera. Dynamic

motion scaling is an extremely useful yet simple technique that the operator takes advantage of

extensively for difficult tasks such as peg in hole. A small value of α also reduces the effect of

the noise in hand pose estimates, since pose estimate inaccuracies are also scaled by α during

motion correspondence.
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6.3.5 Hardware system

Figure 6.5 illustrates the hardware used in the robot and operator workspace. The operators

observe the current status of the robot workspace, such as the state of the robot and the objects,

via a display device in real-time. The RGB-D stream of human motion captured by the operator

workspace camera is processed by a laptop to estimate the operator hand poses. The laptop then

performs motion correspondence as describe in subsection 6.3.3 to compute the desired robot end

effector pose. The desired robot end effector pose is transmitted to the robot controller, which

outputs joint torque to achieve the desired pose. The robot controller takes into consideration

self-collision and collision with the mounting table, and thus no further motion planning is

required. There are two cameras in the robot workspace: a wrist-mounted camera to capture high

precision interaction between the grippers and objects, and a tripod-mounted camera to observe

the full view of the robot workspace. The RGB video from the two cameras are streamed to the

display device in the operator workspace.

6.4 Experiments

6.4.1 Task descriptions

The key question we investigate is whether given only a single RGB-D camera as the

operator motion capture device, can a trained operator teleoperate the robot to perform complex

manipulation tasks? To answer this question, we design a set of single arm manipulation tasks

in real world or a dual arm coordination task in simulation as shown in Figure 6.1. For the real

robot experiments, we consider seven object manipulation tasks: pick and place, peg in hole,

hammering, cutting fruit, folding cloth, cord untangling, and object storage in drawer. For the

simulated experiment, we consider two-arm manipulation. We describe the tasks in more details

below:
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Pick and Place At the beginning of each episode, three typical objects from the YCB Dataset [CSB+17]

are placed in random positions on a table. The robot needs to grasp the object and move at least

0.6 meters to reach the target position. The pick and place serves as the entry level manipulation

task.

Peg in Hole Three different types of pegs and holes are used, ranked by difficulty from easy

to hard: cylinder, pentagon, and hexagon. When the pegs are fully inserted in the holes, the

clearance between them is at most 3 mm. We use this task to demonstrate the precision of our

tele-operation system since a small position error will lead to task execution failure.

Hammering In this task, the robot first picks up a hammer with the gripper. The robot then

needs to reach a small bench and hammer the wooden cylinder into the hole. This task evaluates

whether the operator can grasp the hammer with a suitable pose and transmit force to the

cylinder in the correct direction. Such tool manipulation tasks are of common interest in robotics

community [BK19, FZG+20].

Cutting Fruit Cutting fruit is another tool manipulation task. The robot uses a knife to slice a

watermelon chunk into two pieces. Similar to hammering, cutting requires the robot to grasp the

knife with the right pose and transmit force in the correct direction to the watermelon chunk.

Folding Cloth A piece of cloth lies flat on a table. The robot folds the cloth twice along the

diagonal. This task demonstrates deformable object manipulation ability.

Moving Large Container Two robot arms move a large container from one planar surface to

another. Due to a lack of hardware, we demonstrate the successful completion of this task by our

system in the simulator DRAKE [TtDDT19]. This task tests the coordination of two arms where

each hand of the operator controls each robot arm. To control the second robot arm, we apply the

same motion correspondence procedure described in subsection 6.3.3 to the left hand wrist.

Cord Untangling One end of a cord is fixed. The remaining cord section is tangled to make a

knot. The robot untangles the cord by grasping and pulling the cord in the right direction.
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(a) Peg in Hole. (b) Pick and Place.

Figure 6.6: The x-axis in both figures is the trial duration. The y-axis is the dynamic translational
motion scaling α. Top: For peg in hole, the operator switches back and forth between large
and small α values depending on current task progress Bottom: For simple pick and place, the
operator can finish the task with a constant high scaling factor.

Object Storage in Drawer This task requires executing four primitive manipulation skills: pull

the drawer to open, pick an object, place it into the drawer, and close the drawer. The task also

requires manipulating articulated object, a problem which recently receives significant attention

[UHC+19, XQM+20].

For each tasks, the operator performs 3 evaluation trials after a period of practice, except

for Pick and Place where we perform 5 trials and Moving Large Container where we only perform

1 trial.

We highlight that the Cord Untangling and Object Storage in Drawer tasks were not seen

by the operator before evaluation. The first time the operator interacts with the objects present in

these two tasks is during evaluation. Such unseen tasks allow us to test the adaptability of the

system and the operator to new tasks and operating conditions.

6.4.2 Results of using RGB-D camera to capture hand poses

For all the tasks, our teleoperation system successfully completes the evaluation trials.

This fact is even more surprising for the Cord Untangling and Object Storage in Drawer tasks

where the operator has not practiced with the objects before the evaluation trials. Such successes
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Pick and Peg in Cutting Folding Object Storage Cord
Tasks Place Hole Hammering Fruit Cloth in Drawer Untangling
Time 8.9±1.3 9.7±0.8 3.8±0.8 3.9±0.1 5.7±0.7 7.0±1.2 4.4±1.1

Table 6.1: Time to complete each task (in minutes, ± indicate std). Given desired end effector
pose, our teleoperation system uses the controller provided by the robot manufacturer to control
joint torque. The controller has high latency, leading to high task time-to-completion. Reducing
the controller latency will significantly reduces the time-to-completion.

on unseen tasks demonstrate the generality of our teleoperation system and can potentially

allow human operators to remotely control robot in the wild in unseen conditions. The time to

completion for each tasks are shown in Table 6.1.

We notice interesting failure recovery behavior. In the first trial of the Cord Untangling

task, the end effector became stuck under a table in the robot workspace. Without manual reset

of the robot, the operator was able to unstuck the end effector by moving under the table and

eventually complete the task. A common failure mode is closing the gripper without grasping the

objects. This happens more frequently with small objects since neither the wrist camera or the

side camera in the robot space provide distinctive visual cues to the operator whether the object is

between the two gripper pads. However, this failure mode is easy to recover from because the

operator can retry the grasp.

In addition to failure recovery, the operator also discovers interesting manipulation strategy

such as dynamic manipulation. In the Cord Untangling task when the end of the cord (with higher

mass density) is stuck underneath itself, the operator quickly moves their wrist to induce a large

position error, thus inducing a large acceleration of the robot, which unstucks the end of the cord

due to inertia.

To ablate the benefit of the dynamic motion scaling scheme introduced in subsection 6.3.4,

the operator performs the peg in hole task while using a constant translational scaling factor α.

For a range of α values in 0.03,0.3,0.5,1.0, the operator was not able to successfully accomplish

the task when given 15 minutes to teleoperate the robot. For α = 0.03, the operator can not

command the robot to reach the peg before going out of the field of view of the operator space
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camera. For higher values of α ∈ 0.3,0.5,1.0, the operator fails to control the robot precisely

enough to insert the peg into the hole. The ability to dynamically modify the scaling factor α is

most beneficial for precision manipulation tasks and less important for simple task, as illustrated

in Figure 6.6.

6.4.3 Results of using RGB camera to capture hand poses

Using only RGB to capture hand pose leads to successful completion of 1 out of 3 trials in

the pick and place task. In the first two trials, the operator can grasp and move the three objects,

but ends up knocking one of the objects over due to noisy depth estimates. The main failure

modes of pose estimation occur when then palm plane is not parallel to the image plane or when

the right hand index and thump tips come close together to signal that the gripper should close.

These situations violate the weak perspective assumption and leads to a non-trivial drop in the

estimated depth accuracy. After becoming accustomed to the failure modes of the systems, the

operator successfully completes the third trials.

6.5 Conclusions

We present a teleoperation system for a 6-DOF robot arm that uses a single RGB-D

camera to capture the operator intent. The operator actions are mapped to robot coordinates. We

demonstrate successful teleoperation for a broad set of tasks such as cutting, hammering, peg-in-

hole, folding deformable materials, etc. Interesting future works include dual arm manipulation,

performing more complex tasks using only RGB sensing and teleoperating multi-finger robot

hand.
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Chapter 7

How to pick the domain randomization

parameters for sim-to-real transfer of

reinforcement learning policies?

7.1 Introduction

Recently, reinforcement learning (RL) algorithms have demonstrated remarkable suc-

cess in learning complicated behaviors from minimally processed input ([HZAL18a, VZR18,

SLM+15, FvHM18, BHB+18, CPPH+19]). However, most of this success is limited to simula-

tion. While there are promising successes in applying RL algorithms directly on real systems

([ZVS+18, MKV+18, CFFF19, FRF+18, TZC+18]), their performance on more complex sys-

tems remains bottle-necked by the relative data inefficiency of RL algorithms. Domain random-

ization is a promising direction of research that has demonstrated impressive results using RL

algorithms to control real robots ([TFR+17, PAZA17, YLT18, OAB+18, JWK+18]).

At a high level, domain randomization works by training a policy on a distribution of

environmental conditions in simulation. If the environments are diverse enough, then the policy
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trained on this distribution will plausibly generalize to the real world. A human-specified design

choice in domain randomization is the form and parameters of the distribution of simulated

environments. It is unclear how to the best pick the form and parameters of this distribution and

prior work uses hand-tuned distributions. This extended abstract demonstrates that the choice

of the distribution plays a major role in the performance of the trained policies in the real world

and that the parameter of this distribution can be optimized to maximize the performance of the

trained policies in the real world.1

7.2 Background and Notation

In RL, the robotic learning problem is abstracted as a discrete time sequential decision

making problem in a Markov decision process (MDP). An MDP is a tuple (S ,A ,r,T,γ,ρ)

with state space S , action space A , reward function r : S ×A → R, state transition function

T : S ×A → S , a discount factor γ and a distribution over the initial state ρ. Given a state s ∈ S ,

a policy πθ defines a distribution πθ(.|s) over the action space A . θ represents the parameters

of the policy, which can be linear operators ([RLTK17b, MGR18]) or the weights and biases

of a deep neural network. Let m denotes one specific MDP (S(m),A(m),r(m),T (m),γ,ρ(m)). The

performance of a policy πθ with respect to the MDP parameterized by m is evaluated by:

J(m)(πθ)≜ Eτ∼ πθ

∞

∑
t=0

γ
tr(st ,at)

where τ = (s0,a0,r0,s1, . . .) is a trajectory generated by using the policy πθ to interact with the

MDP m. Let mreal denotes the MDP representing the real world. Formally, domain randomization

1Dockerized code to reproduce our experiments is available at https://github.com/quanvuong/domain
randomization.
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performs the optimization

θ
∗ = argmax

θ

Em∼ pφJ(m)(πθ)

where pφ is a distribution over MDPs parameterized by φ. πθ∗ is then used to perform the task of

interest in mreal. For example, in [PAZA17] where domain randomization was successfully used

to transfer a policy trained in simulation to the real world on object pushing tasks, φ parameterizes

the distribution over the masses and damping coefficients of the robot’s links in addition to other

environmental conditions.

7.3 Optimization of the domain randomization parameters

At a high level, domain randomization is a technique to accomplish the general goal:

“Given a simulator, we want to use it such that when we train a policy in the simulator, the policy

will perform well in the real world”. We argue that this is an objective that we can optimize

for directly. In prior works, the parameter φ of the distribution over MDPs is chosen by hand,

presumably using domain knowledge and through trial-and-error; it is also kept fixed throughout

the training process. Prior works also assume that there is a clear demarcation between training

and testing, i.e. during training in simulation, the policy does not have access to the real system.

However, in practice, this assumption could be incorrect, as we may have limited or costly access

to the real system. In such scenarios, we could use the real system to provide some signal for

domain randomization.

With access to the real environment mreal, we can formalize domain randomization as a
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bilevel optimization problem:

argmax
φ

J(mreal)(πθ∗(φ)) (7.1)

such that θ
∗(φ) = argmax

θ

Em∼ pφJ(m)(πθ) (7.2)

To establish that this is a research direction worth pursuing, we need to demonstrate the

following:

• The choice of the parameter φ plays a major role in the performance of the policies in the

real environment.

• φ can be optimized to increase the performance of the trained policies in the real environ-

ment.

We experimentally demonstrate these two points by using Cross Entropy Method (CEM)

to approximately solve the outer problem (Equation 7.1) and Proximal Policy Optimization

(PPO) [SWD+17] to solve the inner problem (Equation 7.2). The closest related work to ours is

[CHM+18b], which finds the simulation parameters that bring the state distribution in simulation

close to the state distribution in the real world. We argue that this is only a proxy measure of the

actual objective we ultimately care about and optimize for directly, i.e. the performance of the

trained policy in the real environment. Other than domain randomization, other parallel research

directions for sim-to-real transfer exist and have been demonstrated to be promising research

areas as well ([HLD+19, YKTL19, ICT+18, ZGB+17, TZC+18]).

7.4 Algorithmic Description

CEM is a simple iterative gradient-free stochastic optimization method. Given the decision

variable φ, CEM alternatives between evaluating its current value on the objective function
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(Equation 7.1) and updating φ. We refer interested readers to [dBKMR] for a more detailed

description. We initialize φ with φ0, evaluate φ0 to obtain J(mreal)(πθ∗(φ0)), use the evaluation

result to update φ0 to obtain φ1, and so on.

7.5 Experimental Settings and Results

To demonstrate the potential of our research direction, we focus on transferring learned

policies between two simulators. Specifically, we focus on transferring policies for the environ-

ments Hopper and Walker from the Dart simulator [LGH+18] to the Mujoco simulator [TET12].

Thus, mreal represents the parameters of the MDP in the Mujoco simulator. Transferring between

these two simulators has been demonstrated to be a fruitful experimental testbed for sim-to-real

studies [YLT18]. In our setting, the MDPs in both simulators are parameterized by the masses,

damping coefficients of the robot’s links and the gravity constant (R9 for Hopper and R15 for

Walker).

φ represents the parameters of a distribution over m. In our experiments, φ is the mean

and variance of a diagonal Gaussian distribution over the simulation parameters. The initial mean

φ0 is set to mdart and initial variance set to 1 for all parameters. These values are reasonable

defaults for the domain randomization distribution parameters without domain knowledge or

trial-and-error. CEM is then used to optimize for φ.

We replicate our results for each setting over 5 different random seeds. In the Hopper

environment, the performance of the policies trained with the optimized φ is on averaged 102%

higher than the performance of the policy trained with the initial value φ0 with a standard deviation

of 48% and minimum improvement of 28%. In the Walker environment, the performance of the

policies trained with the optimized φ is on average 80% higher than the performance of the policy

trained with the initial value φ0 with a standard deviation of 53% and minimum improvement of

19%. The existence of a better value for φ than φ0 shows that environment distributions chosen
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by hand can be improved with optimization. Furthermore, our result is consistent with ongoing

research in domain randomization for supervised learning which demonstrated the importance of

the sampling distribution for sim-to-real transfer success ([RSC18, PBB+18]).

7.6 Future Research Directions

7.6.1 Learning complex distributions

We assume a diagonal Gaussian sampling distribution for simplicity, but learning a

more complex distribution could result in a better randomized environments. For example,

deep generative modeling approaches such as variational autoencoders ([KW13, RMW14]) and

autoregressive flows ([PPM17, KSJ+16]) could be used to model complex dependencies and

correlations between simulation parameters.

7.6.2 Optimization techniques

CEM was chosen to solve the outer problem (7.1) due to its simplicity. We are interested

in more advanced gradient-free optimization methods, such as CMA [LH16] or Bayesian opti-

mization [KVN+19]. If we assume that the parameter φ is parameterized by a distribution pω,

it can be shown that ∇ω E
φ∼pω

[J(mreal)(πθ∗(φ))] = E
φ∼pω

[∇ω log pω(φ)J(mreal)(πθ∗(φ))] and we could

apply stochastic gradient-based techniques to directly optimize for ω. We are also particularly

excited about asynchronous evolutionary algorithms (AEA). Whereas previous techniques are

synchronous by nature, AEA enables simultaneously training policies in simulation and evaluating

in reality, thereby making the best use of the available resources in terms of wall-clock time.
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7.6.3 Off-policy Reinforcement Learning

PPO, an on-policy RL algorithm, was chosen to solve the inner problem (7.2) due to its

simplicity and speed. However, off-policy training of the policy with real world data has been

demonstrated to improve the policy performance ([JWK+18, GHLL16]). In our setting, the real

world data generated to evaluate the policy at every iteration of solving the outer problem (7.1)

can be used to optimize the next policy in an off-policy fashion. Preferably, the inner problem

(7.2) is solved by an off-policy algorithm to allow for easy fine-tuning of the trained policy on

real world data.

7.6.4 Transferable Domain Randomization Parameters and Testing On

Real Robots

It would be of interest to understand if there exists general principles to determine the

value of φ or transferable initial values for φ that works for domain randomization across a wide

range of tasks and robots. This is so that the expensive problem (Equation 7.1 and 7.2) does not

have to be solved from scratch for every problem instance. Ultimately, the goal is to test our

approach to domain randomization on real robots.
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Chapter 8

Automatically reconstructing scenes to train

grasping network

8.1 Introduction

Figure 8.1: A visualization of our test scene. Given objects placed on a tabletop surface, a robot
should pick up the objects and move them above the tabletop surface.

Learning robotic manipulation skills in simulation and executing the learnt skills in the real

world, often termed Sim2Real, has fueled many recent advances in robot manipulation [MLN+17,

MPH+16, MML+17, HRX+20, XCB+22]. These approaches usually require practitioners to
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manually curate the object meshes, place them at realistic poses in the simulation scenes and

calibrate their dynamics parameters. The process of manual scene creation and calibration

requires domain expertise and can be prohibitively costly to scale to large-scale scenes with many

objects. Perhaps this is one of the reasons why applications using Sim2Real have mostly been

demonstrated on manipulation tasks in constrained settings involving a single object, such as rope

manipulation, or when the simulated scenes can be procedurally generated, such as in bin picking.

Recognizing scene creation and calibration as a major bottleneck of Sim2Real, recent research

has attempted to automate this process and dub the problem Real2Sim2Real [LHC+21].

In fact, we can refer to these recent research as dynamics Real2Sim2Real since they

have mostly focused on estimating the dynamic parameter of the physics simulation [CHM+18a,

DWD+21]. Relatively less attention has been paid to the challenge of geometric Real2Sim2Real –

automatically constructing the geometry of the objects in the scenes and placing them at realistic

poses that allow for forward simulation. Constructing object meshes and placing them into

simulated scenes in a way that represents the distributions of objects in the real world remains a

highly manual process [KMH+17, LXMM+21, SCU+21]. In contrast, research in autonomous

driving has benefited tremendously from efforts to automatically reconstruct virtual clones that

mimic the realistic diversity captured in the real world [KPL+19, DKF20, GWCV16, CMH20,

IKK+22]. These virtual clones of outdoor driving scenes have allowed for the collection of

large-scale ground truth labels for vision tasks [CMH20], simulation of pedestrian behaviors

[IKK+22], and even training driving policy end-to-end inside simulation [BRL+18]. However,

these virtual clones stop short of allowing for forward simulation of dynamics, which is often

necessary for application in robotic manipulation. Can we create virtual clones of the real world

that allow for forward simulation? Will these virtual clones be useful for manipulation research?

Are there existing methods that tackle this challenge? What are their strengths and weaknesses?

To answer these questions, we develop a benchmark for geometric Real2Sim2Real. We

use the task of grasping in clutter as a testbed to study different algorithms. The benchmark
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consists of 30 testing scenes. Figure 8.1 provides a visualization of the test scene. Each scene

comprises objects resting on a tabletop surface and a six degree of freedom robot arm placed next

to the table. Given observations of the scene captured from vision sensors, an algorithm must

first create a clone of the scene in a simulation instance (the Real2Sim step). That is, for each

object in the scene, the algorithm should generate a mesh for the object and place the mesh in the

simulation environment near the ground truth pose of the object. After this step, the algorithm

uses the reconstructed scene to find successful grasps for objects in the real scene (the Sim2Real

step).

Several recent works attempt to automate the reconstruction of scene geometry in the

forms of object meshes [HZJ+21, JHZ22]. However, in these prior works, the reconstructed

scenes have not been used to learn robotics skills. We demonstrate that neural networks that

learn to output implicit representation can reconstruct the test scene in an automated fashion

with excellent results. We demonstrate that the reconstructed scenes allow training a recent

state-of-the-art grasping network. The trained network outperforms a publicly available grasping

model, with the same architecture but different weights. Most notably, the publicly available

models were trained using 17.7 million simulated grasp labels. In contrast, the same architecture

obtains higher test performance while using only the reconstructions of the 30 test scenes and

thousands of grasp labels for training.

8.2 Problem Statement

We test our approach on the task of grasping objects in clutter using 6 degree-of-freedom

grasp. There are 30 test scenes. In each test scene, objects are placed on a table top next to a robot

arm equipped with a parallel yaw gripper. The objects belong to four categories: bottle, bowl, can,

and mug. Bottles are articulated models collected from PartNet-Mobility [XQM+20], while the

rest of the categories are rigid models from ShapeNetCorev2 [CFG+15]. Each scene consists of
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5 to 10 randomly chosen objects. To place the objects on the table, we use random object poses

while ensuring that the objects are standing upright, there are no intersection between the objects,

and there are no object stacked on top of another object.

In each test scene, depth cameras are placed above the table and their poses are set

such that they look at the center of the table. Given the depth map captured by each camera,

an algorithm should reconstruct the test scene in simulation and use the test scene to train a

grasping network. The performance of the reconstruction algorithm is then evaluated by the

performance of the trained grasping network, when evaluated in the test scene on the task of

grasping object using 6 degree-of-freedom grasp. To ensure realistic sensor noise in the captured

depth map, we use SimKinect to add noise to the noise-free depth map captured by the cameras

[HWMD14, BM13, BRHS14].

8.3 Method

We provide description of the reconstruction framework in subsection 8.3.1, the grasping

algorithm in subsection 8.3.2 and implementation details in subsection 8.3.3.

8.3.1 Reconstruction framework

Our reconstruction framework takes as input depth maps captured by the cameras of

the test scenes and produces object meshes and their poses. The object meshes and their poses

allow us to place the objects in a simulation environment, which is subsequently used to train

the grasping network. The first step of our framework consists of converting the depth maps into

point clouds and then fusing the point clouds corresponding to different cameras in the scene into

a single scene-level point cloud. We then use object segmentation to segment the scene-level point

cloud into object-level point clouds. That is, each object-level point cloud only contains points

that lie on the surface of the same object instance. Given an object-level point cloud as input, we
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use a trained Convolutional Occupancy Network (ConvONet) [PNM+20] to produce an implicit

representation of the object surface. The object mesh can then be obtained from the implicit

representation by the Multiresolution Isosurface Extraction procedure introduced in [MON+18].

We next describe how we place the reconstructed object meshes into the scene. Given

an object-level point cloud, represented with respect to the world frame, centering and scaling

operations are applied to the point cloud before the point cloud is inputted into the ConvONet.

The parameters of the centering and scaling operations are computed from the object-level point

cloud such that the resulting point cloud center coincides with the origin of the world frame.

Additionally, after the scaling operation, the largest edge length of the axis-aligned bounding

box of the point cloud should be 1. Given the reconstructed object mesh corresponding to one

object-level point cloud, we apply the inverse of the centering and scaling operations to the

object mesh to place the object mesh into the simulation scene. In other words, the inverse of the

centering and scaling operations can be interpreted as the object pose.

Algorithm 5 provides the step-by-step description of our reconstruction framework. In

addition to the steps discussed above, we apply two additional steps to improve the reconstruction

quality. Firstly, we use statistical point cloud outlier removal [ZPK18] to remove outlier points

in the object-level point cloud before computing the parameters for the centering and scaling

operations. This is because these two operations are sensitive to noise in the observed point

cloud. Figure 8.2 provides an example that illustrates the benefit of this step. Secondly, given

the object mesh constructed by the Multiresolution Isosurface Extraction (MISE) procedure, we

perform approximate convex decomposition to obtain a simplified and smoother object mesh

representation [Mam16], since the mesh obtained by MISE often has complex geometry, leading

to slow collision detection during simulation.

To train the ConvONet, we generate the training data from 80 training scenes. The training

scenes are generated using the same methodology we use to generate the test scenes. However,

the objects used to generate the training and test scenes form disjoint sets, i.e. no object mesh

126



(a) Visualization of a reconstructed scene without
applying point cloud outlier removal to the ob-
served point cloud. The outliers in the point cloud
drastically affect the centering and scaling oper-
ations, leading to incorrect reconstructed shape
(the big blob under the table).

(b) Visualization of the reconstruction of the same
scene with point cloud outlier removal applied
to the observed point cloud. The previously er-
roneously reconstructed mesh shown in the left
figure now has more accurate reconstruction.

Figure 8.2: The figure illustrates the importance of applying point cloud outlier removal to the
observed point cloud to ensure the quality of the reconstructed meshes.

used to generate the training data for ConvONet exist in the test scenes and vice versa. For each

object in each training scene, we obtain the object-level point cloud by fusing multi-view depth

maps. The object-level point clouds are the input into ConvONet during training. To obtain the

ground-truth annotation, we use ground-truth occupancy labels. We train ConvONet using the

binary cross entropy loss. We refer interested readers to [PNM+20, MON+18, JHZ22] for more

details on the training details of ConvONet.

In our reconstruction framework, we assume that we have access to the ground truth mesh

and pose of the table in the test scene. The reconstruction algorithm, therefore, does not have to

reconstruct the table. We also assume access to the ground truth semantic segmentation when

reconstructing the test scenes.

8.3.2 Grasping Network

Given the reconstructed scene obtained from the framework described in subsection 8.3.1,

we measure the benefit of the reconstruction depending on whether the reconstruction allows
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Algorithm 5 Step-by-step description of our reconstruction framework to convert depth maps
and camera poses to a simulation environment

Input: N depth maps, semantic segmentation maps and camera poses
Output: A simulation environment

1: Convert the depth maps to point clouds and fuse the point clouds
2: Extract object-level point clouds using the semantic segmentation maps
3: for Each object-level point cloud do
4: Perform point cloud outlier removal
5: Compute the centering and scaling operation T ∈ SE(3)
6: Apply T to the point cloud
7: Use a trained ConvONet to obtain an implicit representation from the point cloud
8: Use Multiresolution Isosurface Extraction to obtain object mesh from the implicit repre-

sentation
9: Perform approximate convex decomposition to the object mesh

10: Set the object pose to be T−1

11: Place the object mesh into the simulation scene using T−1

12: end for

us to train neural network. This is different from the standard metrics often used in the vision

community, which only measures how well the reconstructed shape approximates the ground

truth shape, such as the Chamfer distance. More specifically, we use the reconstructions of the

test scenes to generate ground truth grasp pose and grasp success label to train a grasping network.

We then use the grasp success of the trained network when evaluated on the test scenes to judge

whether the reconstruction is of high quality. In our work, we use Contact-GraspNet (CGN)

[SMTF21] as the grasping network architecture. CGN takes as input as point cloud and predicts

for every point in the point cloud a corresponding grasp pose and the probability of grasp success.

We pick CGN over existing grasping network architecture for a few reason. The network

takes as input point cloud, and does not require color information as input. Such input requirement

is suitable for our reconstruction because our reconstruction framework only reconstructs the

shape and not the color of the object. We therefore only have access to the depth maps of

the scenes and not color images. CGN is also a recent state-of-the-art grasping network with

excellent reported performance. Last but not least, a pre-trained CGN model is released by the

original author. The model was trained using 17.7 million simulated grasp. The pretrained-model
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serves as a strong baseline for us to compare the performance of the model trained using our

reconstructions to.

8.3.3 Implementation Details

To perform grasping, we use a panda robot arm with a fixed base. Given a desired pose of

the gripper, we use the MPlib library [MG21] to plan a trajectory in joint space the moves the

robot gripper from the current to the desired pose while avoiding collision. We use a parallel-yaw

gripper and the gripper width is always set to a predefined width before executing the grasp.

8.4 Experimental Results

Grasp Proposal Network Grasp success averaged over
30 test scenes

CGN trained on 30 reconstructed scenes 0.756
Pre-trained CGN (trained with 17.7 million grasps) 0.68

Table 8.1: The table demonstrates the quality of the reconstructed scene. The CGN model
trained using our reconstructed scenes outperforms the publicly available model by 11%, even
though the publicly available model was trained using 17.7 million grasp labels.

Table 8.1 illustrates the quality of our reconstructed scenes, in the sense that the CGN

model trained using our reconstructed scenes outperforms the publicly available model by 11%.

This is a particularly exciting result because the publicly released model was trained using 17.7

million simulated grasps. Even more importantly, these grasps were taken from Acronym, a

large-scale grasp dataset [EMF20]. The corresponding object meshes used in the Acronym dataset

are also placed on a tabletop surface using random poses, a training setting very similar to our test

conditions. This ensures that the pre-trained model does not suffer from obvious generalization

challenges when evaluated on our test scenes. We, therefore, conclude that the reconstructed

scenes allow the trained CGN model to generalize better to the test scenes, leading to improved
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performance compared to the randomly generated scenes used to train the pre-trained model.

Grasp success averaged over
30 test scenes

Determining grasp label using mean success rate 0.756
Determining grasp label using one execution 0.716

Table 8.2: The table demonstrates the importance of determining grasp success label by
executing the grasp multiple times, and only label as successful grasp pose whose mean success
rate is above a pre-defined threshold.

We also found that to obtain good performance, it was important to determine the grasp

success label by executing the grasp multiple times, and only label it as a successful grasp pose

when the mean success rate is above a pre-defined threshold. Table 8.2 illustrates quantitatively

the importance of doing so, measured by the grasp success rate of the CGN model trained using

grasp pose labels generated from the reconstructed scene.
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Chapter 9

Conclusion

This thesis describes our work in areas key to developing agents that can autonomously

acquire skills in physical environments. In this chapter, we discuss limitations and potential areas

for future work.

Developing robust Reinforcement Learning (RL) algorithm that can learn well from data

distribution with different properties while requiring minimal tuning effort remains an extremely

challenging problem. While this thesis introduces novel RL algorithms and demonstrates their

performance on standard benchmarks commonly used by researchers, the potential for these

algorithms has yet to be explored on a wide range of real-world robotics problems. Perhaps what

is missing is a tried-and-true recipe for applying RL to real-world problems, a comprehensive

guide on how to analyze the performance of the trained policies and various metrics for effective

debugging, and a theory that accurately and precisely predicts under what conditions would

applying RL yields the desirable level of performance.

The RL algorithms develop in this thesis also learn exclusively from interaction data,

which can be hard to collect in practice. Humans can learn from more diverse data sources, such

as by observing other humans’ behavior, reading instructions in textual format, or more generally

by processing data not directly experienced by oneself. Endowing RL agents with the ability to
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learn from more diverse sources of data, such as video or text, can be a highly impactful endeavor

that improves generalization and learning efficiency.

Yet another limitation is the task-centric perspective of the proposed algorithms. That is,

a task needs to be manually defined by the algorithm designer before the agent can start learning.

Even if the agent masters this specific task, it does not generalize in a zero-shot manner to other

tasks. Learning to perform another task often requires another expensive round of data collection

and training. As such, the task-centric nature of the proposed algorithms seems hard to scale to

flexible agents that can perform many useful tasks. While our work in chapter 2 demonstrates

initial promise in training RL agents that can perform many tasks, the algorithm still relies on a

manually defined task distribution. We are very interested in continuing to develop RL agents that

define their tasks to practice on their own, learn many tasks and demonstrate zero-shot capability

to tasks not seen during training.

Switching gear, we believe that developing novel interfaces to collect human supervision

and demonstration will play a key role in scaling up RL agents for robotic manipulation. Our

system presented in chapter 6 can allow the teleoperator to perform complex tasks. But the

time taken for each task tends towards to higher range due to the latency of the robot controller.

Reducing the response time of the robot controller, or even developing new controllers that can

preemptively move before the teleoperator provides explicit commands are interesting directions

for future work.

Last but not least, to the best of our knowledge, our work in chapter 8 is the first to

demonstrate that we can improve the performance of neural networks when they are trained using

object meshes generated automatically by another neural network. We believe this is very exciting

progress, and we look forward to the days when there are plenty of large-scale reconstructions of

diverse real-world environments that allow for forward simulation. These reconstructions may

serve as a playground for RL agents to hone their skills before being released into the real world,

as we have discussed previously as another avenue for future work. The most obvious limitation
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of our current work is that we do not reconstruct the color information of the objects in the scenes,

only their geometric shape. It would be interesting to apply recent advances in recovering color

information of objects from sensor data, such as Neural Radiance Fields [MST+20], and test

whether the resulting reconstructed scenes allow for training RL agents.
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