
Lawrence Berkeley National Laboratory
LBL Publications

Title
Derivation of Aberration Coefficients for Single-Element Plane-Symmetric Reflecting 
Systems Using Mathematica{TM}

Permalink
https://escholarship.org/uc/item/0c34x4bq

Author
Mckinney, W.R.

Publication Date
1997

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0c34x4bq
https://escholarship.org
http://www.cdlib.org/


.· 

0 

0 

LBNL-40849 
. UC-410 

ERNEST ORLANDO LAWRENCE 
NATIONAL LABORATORY BERKELEY 

Derivation of Aberration 
Coefficients for Single-Element 
Plane-Symmetric Reflecting 
Systems Using Mathematica™ 

W.R. McKinney and Christopher Palmer 

Accelerator and Fusion 
Research Division 

Sept~wl?.~r)997 .... 
Pres~nie<f~t--ihe . -"' . 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



DERIVATION OF ABERRATION COEFFICIENTS 

FOR SINGLE-ELEMENT PLANE-SYMMETRIC 

REFLECTING SYSTEMS USING MATHEMATICA™ 

W .R. McKinney 
Advanced Light Source 

Ernest Orlando Lawrence Berkeley National Laboratory 
University of California, Berkeley, California 94720 

Christopher Palmer 
Richardson Grating Laboratory 

820 Linden Avenue 
Rochester, New York 14625 

/ 

LBNL-40849 
· LSBL-416 

UC-410 

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
Materials Sciences Division, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 



Derivation of Aberration Coefficients for Single-Element Plane-Symmetric; 
Reflecting Systems using Mathematica TM 

Wayne R. McKinney 
Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory 

MS 2-400, One Cyclotron Road, Berkeley, California 94720-0001 USA 

Christopher Palmer 
Richardson Grating Laboratory, 820 Linden Avenue, Rochester, New York 14625 USA 

ABSTRACT 

The definition of the generalized optical path function for a grating or mirror with a single plane of 
symmetry is reviewed. The generalized optical path function is then expanded in a series of 
wavefront aberration terms using only a few lines of code in the Mathematica™ scientific 
programming environment. The use of the algebraic capabilities of the Mathematica ™ environment 
allows straightforward calculation of aberration coefficients that would normally require 
considerable effort if undertaken by paper and pencil. In addition, the derivation can be carried out 
to higher order aberration terms, limited only by the capabilities of the computer platform used. 

Keywords: gratings, aberrations, Mathematica™ 

1. INTRODUCTION 

Many designers of grazing-incidence optical systems use specialized, non-axially-symmetric 
aberration coefficients to model the imaging properties of the system. For many years these 
aberration coefficients were taken from the scientific literature and could not be readily confirmed 
without extensive, laborious calculation by hand. With the development of software for symbolic 
algebraic manipulation, it is now relatively straightforward to check the results in the literature. 
Moreover, symbolic algebra programs can be readily adapted to derive aberration coefficients for 
higher orders and for other geometries. 

Generally, aberration coefficients found in the literature are available only to fourth order in the 
aperture and field variables. The increasing use of sharply curved aspheric mirror figures for 
adaptive optical elements requires terms higher than fourth order for modeling in wavefront 
aberration theory (as opposed to raytrace analysis), particularly for bendable mirrors in the 
tangential direction. I 



2. WAVEFRONT ABERRATIONS & GRATING SYSTEM GEOMETRY 

The most often used set of off-axis aberration coefficients is that presented in 1974 by Noda, 
Namioka and Seya.2 Noda et al. extended the earlier work by Beutler3 and Haber-4. We used the 
coordinate system used by Noda et al. in our calculations below. 

For demonstration purposes we have chosen to derive one part of the optical path function for a 
curved Row land diffraction grating with a plane of symmetry. Figure 1 shows the basic geometry. 
The "path" consists of three terms: (a) the two geometrical lengths AP and PB which (in air or 
vacuum) are'the distances from the source point to an arbitrary point on the grating surface and the 
distance from that same point to the image point, and (b) the diffraction term: 

F=AP+PB+NmA. (1) 

The third term allows for the fact that the outgoing wavefront is really a combination of wavefronts 
which left the source point at different times. We will limit our discussion to the first term, AP. 

The second term PB can be easily generated using the functional dependence of the first with the 
proper substitution of variables, and attention to signs. 

The term AP is the optical distance from point A(xa, Ya· Za) to point P(x, y, z); in air or vacuum, 
this equals the geometric distance between the two points, which can be expressed in the familiar 
way: 

(2) 

Converting Xa and Ya to cylindrical coordinate form yields 

(3) 

The term PB can be obtained by replacing r with r' and a with {3 in Eq. (3). 

There are only two degrees of freedom in the position of point P, since it must lie on the grating 
surface; the coordinate x, therefore, is represented in terms of y and z: 

(4) 

The coefficients aij determine the shape of the grating surface. For systems with a plane of 
symmetry, aij = 0 ifj is odd. Gratings whose surfaces are planar, cylindrical, spherical, toroidal, 
etc., can be represented by Eq. (4) with the correct choice of aij coefficients.5 
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With the help of Eqs. (3) and (4), the optical path difference F given by Eq. (1) can be expressed 
as a power series whose independent variables are y and z on the grating surface (the "aperture" 
variables) and the coordinate Za of the object point (the "field" variable): 

~~~ i j k F = L..J L..J L..J F;jky Z Za (5) 
i=O j=O k=O 

The coefficients Fijk are independent of y, z and za, and depend only on the characteristics of the 

grating and the optical system (e.g., r, r', a,~. and the groove pattern). The coefficients describe 

the aberrations of the grating system; the Mathematica ™ code we present below derives the AP 
part of these coefficients (i.e., that part containing rand a), from which the part for PB can be 
easily determined. 

To simplify the program output, we will use where possible the terms s and t introduced by Noda 
et al.; their AP parts are given below, and their PB parts can be found above: 

cos2 a 
t= -2~0 cosa, 

1 s = -- 2a02 cos a. (6) 
r r 

3. COMPUTER SYSTEM 

The hardware used for the derivation of the aberration terms was an Apple Macintosh Power PC 
computer model 7500 with 112MB of RAM and a 132 MHz processor card. It was running 
system 7.6 arid Mathematica™ version 2.2 for Macintosh. The "front end" for the program was 
allotted 10Mb of memory, and the kernel was allotted 90 MD. Mathematica™ has a considerable 
software overhead, necessitating several Mb of memory just to properly run the basic program. 
The use of Mathematica™ to do intensive symbolic calculation in a reasonable time requires even 
more RAM. 

Mathematica ™ is an interpreted language. Because of the intense software overhead, it is slow, but 
it is extremely powerful and convenient. To si.xth order in the field and aperture variables the 
longest calculation with the above configuration took 5 to 6 hours. With less memory, using virtual 
memory swapping, full sixth-order calculations took approximately 24 hours. 

4. MATHEMATICA ™ DEVELOPMENT 

In this section, the Mathematica™ code used to derive the aberration terms is presented. The flow 
of the program is sequential, and below we have divided the program into six sequential steps. We 
have used a for a; all other variable names are self-explanatory. Comments are contained within 

the symbols ( * and * > . 

4 



4.1. Define the sag x in terms of the aij coefficients and the aperture variables. This statement 
contains the non-zer<~ terms in Eq. (4): 

X = a20 y"2 + a02 z"2 ( * 2nd order terms *) 

+ a30 y"3 + a12 y z"2 (* 3rd order *) 

+ a40 y"4 + a22 y"2 z"2 + a04 z"4 (* 4th order *) 

+ a50 y"5 + a32 y"3 z"2 + a14 y z"4 (* 5th order *) 

+ a60 y"6 + a42 y"4 z"2 + a24 y"2 z"4 ( * 6th order *) 

+ a06 z"6 

4.2. Expand AP2 to order ord in y, z and Za. Using the statement above for the sag x, the optical 
path AP given by Eq. (3) can be expanded in a power series in y, z and Za as in Eq. (5). The 
"rules" in the third and fourth statements impose trigonometric simplification that may not be 
automatically noticed by Mathematica ™ . 

ord = 6; 

f = Normal[Series[ 

Expand[(r Cos[a] - x)"2 + (r Sin[a] - y)"2 + (za- z)"2] 1 

{y I 0 I ord} I { z, 0, ord} , { za, 0 I ord} ] ] ; 

f = Normal[f I. (r"2 Cos[a]"2 + r"2 Sin[a]"2 -> r"2); 

f = f I. (Sqrt[r"2 Cos[a]"2 + r"2 Sin[a)"2 -> r; 

f = PowerExpand(f]; 

f = Cancel[f]; 

4. 3. Create a table of coefficients of y, z and Za and define a function to relate to aberration terms. 
These two statements simply collect the coefficients of the power series of f ( = AP2) 
determined above. 

m[i_ 1 j_, k_] := list[[i+l, j+l, k+l]]; 

list= CoefficientList[f, {y, z, za}]; 

4.4. Expand the series of AP2 and substitute in the quantities rs and rt where possible. These 
statements introduce the terms sand t given in Eqs. (6). 

t = Cos[a]"21r - 2 a20 Cos[a] 

s = llr - 2 a02 Cos[a] 

cf = ExpandAll[f]; 

cf = cf 

- z"2 + 2 a02 r Cos[a] z"2 + r s z"2 

- y"2 + y"2 Sin[a]"2 + 2 a20 r Cos[a] y"2 + r t y"2; 

5 



4.5. Take the square root in a series of the same order. For simplicity we have manipulated AP2, 
but it is the quantity AP whose power series terms provide the aberration expressions. The 
statements below are analogous to those in section 4.2. · 

fs = Norrnal[Series[Sqrt[Expand[cf]], 

{y, 0 ~ ord}, { z, 0, ord}, { za, 0, ord}] ] ; 

fs = Norrnal[fs /. (r"2 Cos[a]"2 + r"2 Sin[a]"2 -> r"2]; 

fs = fs I. (Sqrt [r"2 Cos [a] "2 + r"2 Sin [a] "2 -> r; 

fs = PowerExpand[fs]; 

fs Cancel[fs]; 

fs ExpandAll[fs]; 

4.6. Display the non-zero aberration terms. These Do loops determine those aberration terms that 
equal zero, so that only non-zero ones will be printed. 

Clear[ia, ja, ka, la, ib, jb, kb]; printlist {}; 

Do[ 

If[ 

EvenQ[ja+ka] :== True && 0 <= ia+ja+ka <= ord, 

AppendTo[printlist, {ia,ja,ka}J; ], 

{ia, 0, ord, 1}, {ja, 0, ord, 1}, {ka, 0, ord, 1}] 

Do[ 

ib = printlist[[la,1]]; 

jb = printlist[[la,2]]; 

kb = printlist[[la,3]]; 

Print [ib, jb, kb, " InputForrn[rna[ib,jb,kb]]], 

{la, 1, Length[printlist]}] 

This completes the Mathematica ™ notebook. 

5. MATHEMATICA™ RESULTS 

The output of the above code is the set of non-zero aberration terms, up to and including sixth 
order in y, z and Za, given in Figure 2. The terms from order zero through order four match those 
in the literature. Note again that only the AP part of the aberration terms is presented. 

6. CONCLUSIONS 

We have calculated the aberration terms F ijk for a plane-symmetric grating system using a few 
dozen lines of Mathematica TM code. Terms up to sixth order have been presented. These 
expansions are readily calculable with modem software to higher order in the aperture and field 
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r 002 1/(2*r) 004 -1/(8*r"3) 
1/(16*r"5) 011 -r"(-1) 013 1/(2*1""3) 
-3/(8*r"5) 020 s/2 022 -1/(2*r"3) - s/(4*r"2) 
3/(4 *r"5) + (3*s)/(16*r"4) 031 s/(2*r"2) 03 3 -1/(2*r"5) - (3*s)/(4 *r"4) 
a02"2/(2*r) - s"2/(8*r) - a04*Cos[a] 
-a02"2/(4*r"3) + (3*s)/(4*r"4) + (3*s"2)/(16*r"3) + (a04*Cos[a])/(2*r"2) 
a02"2/(2* r"3) - (3* s"2)/(8* r"3) - ( a04 *Cos[ a])/r"2 
(a02*a04)/r - (a02"2*s)/(4*r"2) + s"3/(16*r"2) - a06*Cos(a] + (a04*s*Cos(a])/(2*r) 

-Sin[ a] 
Sin[a]/(2*r"2) 
(-3*Sin[a])/(8*r"4) 

-(Sin[a]/r"2) 
(3*Sin[ a])/(2*r"4) 
-(a 12*Cos[a]) + (s*Sin[a])/(2*r) 
(a 12*Cos[a])/(2*r"2) - (3*Sin[a])/(2*r"4) - (3*s*Sin[a])/(4 *r"3) 

-((a 12*Cos[a])/r"2) + (3*s*Sin[a])/(2*r"3) 
(a02*a 12)/r - a 14 *Cos[ a] + (a 12*s*Cos[a])/(2*r) + (a02"2*Sin[a])/(2*r"2)-(3*s"2*Sin[a])/(8*r"2) - (a04 *Cos[a]*Sin[a])/r 

t/2 
-t/(4*r"2) + Sin[a]"2/(2*r"3) 
(3*t)/(16*r"4) - (3*Sin[a]"2)/(4*r"5) 

t/(2*r"2) - Sin(a]"2/r"3 
(-3*t)/(4*r"4) + (3*Sin(a]"2)/r"5 
(a02*a20)/r - (s*t)/(4*r) - a22*Cos[a] - (a12*Cos[a]*Sin[a])/r + (s*Sin[a]"2)/(2*r"2) 
-(a02*a20)/(2*r"3) + (3*t)/(4*r"4) + (3*s*t)/(8*r"3) + (a22*Cos[a])/(2*r"2) + (3*a12*Cos[a]*Sin[a])/(2*r"3) - (3*Sin[a]"2)/r"5 

-( 3* s *Sin[ a]"2)/(2*r"4) 
(a02*a20)/r"3 - (3*s*t)/(4*r"3) - (a22*Cos[a])/r"2 - (3*a12*Cos[a]*Sin[a])/r"3 + (3*s*Sin[a]"2)/r"4 
a 12"2/(2*r) + (a04 *a20)/r + (a02*a22)/r - (a02*a20*s)/(2*r"2) - (a02"2*t)/(4*r"2) + (3*s"2*t)/(16*r"2) - a24*Cos[a] + (a22*s*Cos[a])/(2*r) + 

(a04*t*Cos[a])/(2*r) - (a12"2*Cos[a]"2)/(2*r) + (a02*a12*Sin[a])/r"2 - (a14*Cos[a]*Sin[a])/r + (3*a12*s*Cos[a]*Sin[a])/(2*r"2) + 
(a02"2*Sin[a]"2)/(2*r"3) - (3*s"2*Sin[a]"2)/(4*r"3) - (a04*Cos[a]*Sin[a]"2)/r"2 

-(a30*Cos[a]) + (t*Sin[a])/(2*r) 
(a30*Cos[a])/(2*r"2) - (3*t*Sin[a])/(4*r"3) + Sin[a)"3/(2*r"4) 
-((a30*Cos[a])/r"2) + (3*t*Sin[a])/(2*r"3) - Sin[a]"3/r"4 
(a 12*a20)/r + (a02*a30)/r - a32*Cos(a] + (a30*s*Cos[a])/(2*r) + (a 12*t*Cos[a])/(2*r) + (a02*a20*Sin[a])/r"2 - (3*s*t*Sin[a])/(4*r"2) -

(a22*Cos[a]*Sin[a])/r - (a12*Cos[a]*Sin[a]"2)/r"2 + (s*Sin[a]"3)/(2*r"3) 
a20"2/(2*r) - t"2/(8*r) - a40*Cos[a) - (a30*Cos[a]*Sin[a])/r + (t*Sin[a]"2)/(2*r"2) 
-a20"2/(4*r"3) + (3*t"2)/(16*r"3) + (a40*Cos[a])/(2*r"2) + (3*a30*Cos[a]*Sin[a])/(2*r"3) - (3*t*Sin[a]"2)/(2*r"4) + Sin[a]"4/(2*r"5) 
a20"2/(2*r"3) - (3*t"2)/(8*r"3) - (a40*Cos[a])/r"2 - (3*a30*Cos[a]*Sin[a])/r"3 + · (3*t*Sin[a]"2)/r"4 - Sin(a]"4/r"5 
(a20*a22)/r + (a 12*a30)/r + (a02*a40)/r - (a20"2*s)/(4 *r"2) -(a02*a20*t)/(2*r"2) + (3*s*t"2)/(16*r"2) - a42*Cos(a] + (a40*s*Cos[ a])/(2*r) + 

(a22*t*Cos[a])/(2*r) - (a12*a30*Cos[a]"2)/r + (a12*a20*Sin[a])/r"2 + (a02*a30*Sin[a])/r"2 - (a32*Cos[a]*Sin[a])/r + 
(3*a30*s*Cos[a]*Sin[a])/(2~r"2) + (3*a12*t*Cos[a]*Sin[a])/(2*r"2) + (a02*a20*Sin[a]"2)/r"3 - (3*s*t*Sin[a]"2)/(2*r"3) -

(a22*Cos[a]*Sin[a]"2)/r"2 - (a12*Cos[a]*Sin[a]"3)/r"3 + (s*Sin[a]"4)/(2*r"4) 
500 (a20*a30)/r - a50*Cos[a] + (a30*t*Cos[a])/(2*r) + (a20"2*Sin[a])/(2*r"2) - (3*t"2*Sin[a])/(8*r"2) - (a40*Cos[a]*Sin[a])/r -

(a30*Cos[a]*Sin[a]"2)/r"2 + (t*Sin[a]"3)/(2*r"3) 
600 a30"2/(2*r) + (a20*a40)/r - (a20"2*t)/(4*r"2) + t"3/(16*r"2) - a60*Cos[a] + (a40*t*Cos[a])/(2*r) - (a30"2*Cos[a]"2)/(2*r) + 

(a20*a30*Sin[a])/r"2 - (a50*Cos[a]*Sin[a])/r + (3*a30*t*Cos[a]*Sin[a])/(2*r"2) + (a20"2*Sin[a]"2)/(2*r"3) - (3*t"2*Sin[a]"2)/(4 *r"3) -
(a40*Cos[a]*Sin[a)"2)/r"2 - (a30*Cos[a]*Sin[a]"3)/r"3 + (t*Sin[a]"4)/(2*r"4) 

Figure 2 The Aberration Terms 



variables, as required for adaptive optical systems. Higher orders are possible by changing the 
value of the variable ord, but this requires considerable computing power and computing time. 

Except for known errata, the power series expansions of the generalized optical path functions for 
reflective grating systems as given in the literature are correct. 
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