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Abstract

Oocyte mitochondria are unique organelles that establish a founder population in primordial germ

cells (PGCs). As the oocyte matures in the postnatal mammalian ovary during folliculogenesis it

increases exponentially in volume, and the oocyte mitochondria population proliferates to about

100 000 mitochondria per healthy, mature murine oocyte. The health of the mature oocyte and

subsequent embryo is highly dependent on the oocyte mitochondria. Mitochondria are especially

sensitive to toxic insults, as they are a major source of reactive oxygen species (ROS), they

contain their own DNA (mtDNA) that is unprotected by histone proteins, they contain the electron

transport chain that uses electron donors, including oxygen, to generate ATP, and they are

important sensors for overall cellular stress. Here we review the effects that toxic insults including

chemotherapeutics, toxic metals, plasticizers, pesticides, polycyclic aromatic hydrocarbons (PAHs),

and ionizing radiation can have on oocyte mitochondria. This is very clearly a burgeoning field,

as our understanding of oocyte mitochondria and metabolism is still relatively new, and we

contend much more research is needed to understand the detrimental impacts of exposure to

toxicants on oocyte mitochondria. Developing this field further can benefit our understanding of

assisted reproductive technologies and the developmental origins of health and disease (DOHaD).

Summary sentence Oocyte mitochondria are unique organelles, which are sensitive targets to

various toxicants.

Key words: oocyte, mitochondria, pesticides, metals, plasticizers, PAHs, ionizing radiation,

chemotherapy.

Introduction

Folliculogenesis and Oocyte Maturation

Mammalian oocytes begin developing in the female fetus as primor-
dial germ cells (PGCs). In the mouse embryo, PGCs arise on embry-
onic day 6.5 (E6.5), begin to proliferate rapidly and migrate to the
developing gonadal ridge, arriving around E10.5. Now oogonia, they
continue to proliferate, forming germ cell nests due to incomplete
cytokinesis [1], and progressively enter meiosis starting on E13.5,

at which point they become oocytes. Eventually, primary oocytes
arrest in the diplotene stage of prophase I of meiosis I [2–4]. In the
mouse, germ cell nests start reorganizing into primordial follicles
prior to birth, beginning around E17.5 [5]. In the postnatal ovary,
follicles are the functional unit containing the maturing oocyte and
its supportive cells. During human fetal development, PGCs begin
migrating by weeks 4 and 5, by the end of week 25 approximately
7 million oogonia populate the fetal ovary [6], and follicle assembly
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begins during midgestation and continues into the third trimester [7].
Follicles are characterized by maturational stage with primordial fol-
licles constituting the ovarian reserve, established before or around
the time of birth in the majority of mammals [3, 4].

As follicles grow, the oocyte increases in volume by more than
100-fold, stockpiling maternal mRNAs, proteins, metabolic sub-
strates, and organelles to support fertilization and preimplantation
development [8]. This is referred to as cytoplasmic maturation,
which in turn is required to support nuclear maturation. The mid-
cycle luteinizing hormone (LH) and follicle-stimulating hormone
(FSH) surges initiate ovulation and meiosis resumption in preovula-
tory follicles. The germinal vesicle (oocyte nucleus) is broken down,
chromosomes align, guided by the meiotic spindle, and the first
meiotic division occurs, extruding the first polar body; this successful
cellular division constitutes nuclear maturation [2, 8]. All of these
events outlined above from onset, resumption, and completion of
meiosis, through preimplantation development require energy, which
is derived from supportive granulosa and cumulus cells, or directly
from the oocyte mitochondria [2, 9, 10].

Oocyte Mitochondria

Mitochondria are integral, highly specialized organelles responsible
for energy production, cell signaling, cellular homeostasis, gene
regulation, induction of cellular arrest, and apoptosis. Mitochondria
contain the electron transport chain, located on the inner mito-
chondrial membrane, which generates an electrochemical gradient,
referred to as mitochondrial membrane potential (��m), that is used
to drive ATP synthesis [11–15].

Mitochondria are the most abundant organelle in the mature
oocyte. PGCs contain a founder population of only 10 mitochondria;
as the oocyte matures this population expands to roughly 100 000
mitochondria per healthy mouse oocyte [2, 15–17] and 300 000–
400 000 mitochondria per healthy human oocyte [2] at the time of
ovulation. During folliculogenesis the oocyte depends on supportive
granulosa and cumulus cells. Once ovulated, the gap junctions
between the oocyte and the cumulus cells break down, leaving the
oocyte dependent on its own metabolic reserves to sustain and
support preimplantation development [2, 8, 18, 19]. Consequently,
any deficiencies in mitochondria or their function more readily affect
the oocyte after ovulation and are thought to be a major cause of
female infertility and chromosomally abnormal conception [16].

Possessing few cristae and relatively quiescent in nature, oocyte
mitochondria differ from somatic cell mitochondria [18, 20]. How-
ever, mitochondria are still the primary source of energy in the
oocyte, with oxidation of pyruvate being the most utilized method
of ATP generation during folliculogenesis and fatty acid β-oxidation
being important after ovulation [14, 18, 21–25]. During folliculo-
genesis oocyte mitochondria are homogenously distributed. Upon
germinal vesicle breakdown mitochondria localize around the mei-
otic spindle, presumably providing energy for extrusion of the first
polar body. Once meiosis I is successfully completed, mitochondria
reorganize with highly polarized mitochondria in the subcortical
regions and a cloud of less polarized mitochondria around the
meiotic spindle [18, 26, 27]. However, the latter conclusion that
highly polarized mitochondria are localized in the subcortical region
within the MII oocyte has recently been called into question as due
to experimental artifacts [28].

It is widely accepted that the health and quality of an oocyte
are highly dependent on the health, number, and quality of oocyte
mitochondria [18, 29–32]. Mitochondrial health or quality can be

defined through a myriad of parameters including, but not limited to,
mitochondrial membrane potential (��m), reactive oxygen species
(ROS) production, mtDNA copy number, as well as ATP/ADP ratio
[20, 23, 33, 34]. ROS are created by addition of electrons to
molecular oxygen, yielding superoxide anion radical (SO), hydrogen
peroxide (H2O2), and hydroxyl radical (OH•). Consequently, mito-
chondria are the major producers of ROS in the cell via oxidative
phosphorylation. It is important to note that ROS at low physiologi-
cal levels are necessary cellular signaling molecules. Under conditions
of oxidative stress, when ROS increase, cellular redox circuits are
disrupted, perturbing cellular homeostasis and damaging cellular
macromolecules [35–37].

Mitochondria in somatic cells have long been seen as sensitive
targets of environmental toxicants with evidence of synthetic and
natural compounds exerting their toxicity by affecting mtDNA
integrity, inhibiting proteins along the electron transport chain,
modifying ��m, and activating pro-apoptosis pathways [38–40].
More recently, oocyte mitochondria have been garnering attention as
targets for reproductive toxicants. This review aims to summarize the
current knowledge of how toxic insults specifically damage oocyte
mitochondria, thus impacting oocyte quality, which could ultimately
have broader health implications.

General Toxicant Metabolism and Cellular Responses

Most toxicants undergo metabolism upon uptake into a eukaryotic
cell; a plurality of toxicants must undergo metabolism to undergo
excretion, and in these cases, it is often the metabolite which exerts
the negative, toxic effects on the cell [41–43]. In general, most
toxicants undergo an oxidizing reaction (phase I metabolism) with
the assistance of a myriad of oxidizing enzymes such as cytochrome
P450s or catalase. Following oxidation, the now reactive metabolite
must be made more water soluble to be successfully excreted; this is
accomplished by phase II metabolism reactions, which include con-
jugation by glucuronidation, glutathione conjugation, acetylation,
sulfonylation, and acylation [41–43].

Antioxidants play important roles in combating oxidative stress.
GSH is a critically important antioxidant to reproductive health
[36, 44–48]. It is an endogenous tri-peptide thiol that acts to clear
ROS and reactive metabolites through several mechanisms—direct
reduction of ROS-like hydroxyl radical, reduction with the help of
glutathione peroxidases [36, 49] or glutathione transferase mediated
GSH conjugation with reactive metabolites [42]. Other important
endogenous antioxidants include melatonin [50, 51] and coenzyme
Q10 [52]. Melatonin possesses an electron-rich aromatic indole ring
making it a potent electron donor capable of chelating transition
metals; further, it can activate melatonin receptors, upregulating
antioxidant defense systems such as glutathione peroxidases or
superoxide dismutases [50, 51]. Coenzyme Q10 is found in the
plasma membrane and plays an important role in the electron
transport chain acting as an electron carrier [52]. The reduced
form of coenzyme Q10 is a likely antioxidant [52–56], although
whether exogenous or endogenous coenzyme Q10 is a more effective
antioxidant is up for debate [52].

When cellular stress response mechanisms are overloaded by tox-
icant exposure and irreparably damaged organelles, the cell will often
begin to undergo mitochondria-mediated apoptosis [57]. Under con-
ditions of cytotoxic stress, cytosolic Bax localizes to the mitochon-
drial outer membrane and becomes activated by interaction with
BH3-only proteins [58], eventually creating pores through which
cytochrome C is released into the cytosol [59]. Cytochrome C release
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triggers the oligomerization of Apaf-1 [13], which then recruits and
activates procaspase-9 to cleaved caspase-9 eventually leading to
downstream activation of procaspase-3 to cleaved caspase-3, the
effector caspase, at which point, the cell’s fate is sealed [13, 60].
However, before a cell reaches that point, it may utilize autophagy
[61, 62], a crucial process for the degradation of dysfunctional
organelles, proteins, or other macromolecules, which has been shown
to be an important player in primordial follicle assembly [3, 63],
follicular response to toxicants [64], and germ cell death [65, 66].

Toxicants

Chemotherapeutics

Increased risk of premature ovarian failure for females of repro-
ductive age and younger is a well-documented phenomenon and
devastating tradeoff resulting from cancer treatment [67–72].
Cyclophosphamide (CPA) is a common chemotherapeutic drug
of the alkylating agent class that undergoes metabolic activation
by CYP2B1 and CYP3A4 to 4-hydroxycyclophosphamide and
subsequently is converted to aldophosphamide, which is metabolized
to phosphoramide mustard and acrolein [43]. Ovarian follicles are a
primary target of CPA toxicity [73, 74]. Interestingly, intraperitoneal
injection of rats with 300 mg/kg of CPA led to the induction of
mitochondrial apoptosis in granulosa cells of secondary and antral
follicles [36] and a significant decrease in ovarian GSH levels [75].
Apoptotic destruction of primordial follicle oocytes by CPA in mice
was recently shown to require the BH3-only BCL-2 family protein
PUMA [74]. These data suggest a crucial role for mitochondria
in CPA-induced premature ovarian failure. This further begs the
question, what are the effects of chemotherapeutics on oocyte
mitochondria.

This question is only recently gaining interest from a few
groups. Acrolein, a derivative of CPA and another chemotherapeutic,
tetrahydro-2H-1,3,2-oxazaphosphorin-2-amine 2-oxide (CTX), is a
major source of ROS generation. Two studies by Jeelani et al. [76]
explored the sensitivity of mature oocytes to the chemotherapeutic
drug CTX, or its derivative, acrolein. In one study, denuded MII
oocytes and cumulus-oocyte-complexes (COCs) were exposed to
CTX and acrolein separately, at both 10 and 25 μM for 45 min. Both
high concentrations of CTX and acrolein significantly decreased
��m of exposed oocytes compared with controls, and acrolein
caused activation of caspase 3/7 (CPA was not tested for caspase
activation). In the other study, they observed an increase in ROS in
acrolein exposed oocytes, but not CPA-exposed oocytes, compared
with controls [77], suggesting that acrolein induces oxidative stress
in the oocyte, by way of the mitochondria, ultimately inducing oocyte
apoptosis. This demonstrates that the oocyte toxicity is caused by
reactive metabolites of these chemotherapeutics, a well-characterized
phenomenon for many toxicants.

Even more compelling evidence for mitochondrial toxicity of
anticancer drugs comes from studies of nitrogen mustard, a chemical
warfare agent from which the nitrogen mustard class of chemother-
apeutic drugs was derived. After exposure for 48 h of adult mice to
0.1–1.6 mg/kg nitrogen mustard by intraperitoneal (i.p.) injection,
oocytes had increased mitochondrial SO production and decreased
mitochondrial volume. According to the authors, mitochondrial vol-
ume was calculated from the mitochondrial circumference measured
using 3-D electron microscopy, although the exact calculation was
not defined. Additionally, the remaining mitochondria were observed
to possess fewer cristae and were surrounded by more “cellular

debris” when visualized by electron microscopy [78]. Doxorubicin,
another common chemotherapeutic agent, appears to largely act by
poisoning the mitochondria via redox cycling resulting in ROS gen-
eration, ultimately causing mitochondria-mediated apoptosis [72].
While not exactly surprising, these data together suggest a major
blind spot in the treatment and care for cancer patients moving
forward, as chemotherapeutics have often been shown to exhibit
“off-target” mitochondrial effects in somatic cells. Given the vul-
nerable nature of oocyte mitochondria more exploration needs to
be pursued into understanding how chemotherapeutics alter oocyte
mitochondria and metabolism.

Toxic Metals

Humans are exposed to toxic metals through various routes from
drinking water to particulate matter in air pollution. In drinking
water alone, humans are exposed to lead, chromium, arsenic, and
cadmium [79]. Metal toxicity is of great concern regarding public
health; however, very little attention has been paid to metal toxicity
and female reproductive biology, let alone the effects on oocytes
directly.

Arsenic is one of the most common metals and can form both
organic and inorganic compounds in the environment and the human
body. Although this is highly dependent on location, the most
common sources of arsenic exposure for humans are drinking water
and foods [80]. Arsenate (As(V)) and arsenite (As(III)) are the
predominant oxidation states. These inorganic arsenics can be either
methylated or demethylated, and those that contain arsenite are
more toxic than those containing arsenate [81]. Arsenic-mediated
generation of ROS includes the generation of SO, singlet oxygen,
the peroxyl radical, nitric oxide, hydrogen peroxide, and others.
Under physiological conditions, arsenite is oxidized to arsenate in
the presence of water and oxygen to yield hydrogen peroxide via a
spontaneous reaction [81].

Cultured CD-1 mouse zygotes exposed to 0–8 μg/ml arsenite for
2–96 h displayed compromised cleavage rates in a concentration and
time-dependent manner [82]. The same group further demonstrated
that exposure of zygotes to 8 μg/ml significantly decreased ��m at
1 h of exposure, and ROS significantly increased compared to con-
trols at 2 h of exposure. These effects were rescued by cotreatment
with the antioxidant and glutathione precursor N-acetylcysteine
[82]. These data provide strong support that arsenite toxicity in
zygotes is caused by oxidative stress, mediated through mitochon-
drial dysfunction. The same group exposed CD-1 females to 8 mg/kg
of arsenite, the accepted maternal NOAEL, or 16 mg/kg via i.p.
injections every other day for 14 days [83]. MII oocytes harvested
from treated mice displayed a 25% and 62.5% incidence, respec-
tively, of meiotic spindle abnormalities, compared with controls,
which had none. Further, zygotes derived from arsenite-exposed
animals exhibited dose-dependent and significantly lower cleavage
and development rates in vitro compared with controls [83]. While
not directly related to mitochondria, the formation of the meiotic
spindle and zygotic cleavage rates are energy intensive processes
requiring large amounts of ATP [10, 84]. These data suggest that
metals, and specifically arsenite, have detrimental effects on oocyte
mitochondria. This is not surprising, considering cationic metals
have been shown to preferentially accumulate in the mitochondria
[39], and arsenite specifically is known to uncouple mitochondria,
therefore reducing ATP production and increasing ROS production
[85].
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Cadmium is a heavy metal, and each year roughly 13 000 tons
of cadmium are produced for nickel-cadmium batteries, pigments,
chemical stabilizers, metal coatings and alloys [81]. The main route
of exposure for the general population is through ingestion, as
cadmium readily accumulates in plants from the soil. Inhalation is a
primary route of exposure in occupational settings and is a secondary
route of exposure for the general population. Cadmium alone is
unable to generate free radicals, but it is hypothesized that cadmium
can replace iron and copper within cytoplasmic or membrane-bound
proteins, thus increasing the amount of unbound copper and iron
ions in the cell that can generate OH• via Fenton reactions [81].

Zhu et al. [86] demonstrated that MII oocytes of females treated
with 32 mg/L of cadmium in drinking water for 35 days had
decreased ATP content and aberrant mitochondrial distribution
compared with controls. In a more recent study, cadmium exposure
was observed to disrupt meiotic spindle assembly and chromosome
alignment, two ATP-dependent processes [87]. Further, exposure
increased ROS and led to abnormal mitochondrial distribution
within the oocytes. Additionally, oocytes were observed to have
decreased levels of the epigenetic modifications 5-methylcytosine,
Histone 3, lysine 9 trimethylation (H3K9me3), and Histone 3,
lysine 9 acetylation (H3K9ac) following acute cadmium exposure,
processes that are considered to be, at least in part, dependent on
mitochondria [87]. These findings were later corroborated by Dong
et al. [88], who exposed female mice to 0.5 mg/kg/day of cadmium
chloride for 60 days and observed that oocytes from exposed females
had increased incidence of disrupted spindle assembly and chromo-
some misalignment, as well as increased ROS. These limited data
aggregated provide convincing evidence that arsenic and cadmium
toxicity can impact oocytes and the mitochondria. However, there
are limited data to understand the full effects of various toxic metals
on the oocytes, let alone the offspring.

Pesticides

Many pesticidal compounds have been understood for decades to
be reproductive toxicants. Methoxychlor (MXC) is an effective
organochlorine insecticide that was commonly used on agricultural
crops and livestock, in animal feed, barns, and grain storage prior to
2003 [89]. In vivo treatment of mice with greater than 32 mg/kg of
MXC for 20 days was shown to induce follicular atresia selectively
in antral follicles only [90], and MXC-induced atresia in cultured
antral follicles, which was rescued by the glutathione precursor and
antioxidant N-acetyl cysteine [91]. Even more interesting, mitochon-
dria were isolated from whole CD-1 mouse ovaries and exposed in
vitro to MXC or vehicle control and their respiration was measured
directly. ADP-stimulated State 3 respiration, also known as ADP-
stimulated respiration, was decreased by MXC exposure, and resting
State 4 respiration, driven primarily by proton leak, was increased,
resulting in decreased respiratory control ratio (RCR, ratio of State
3 to State 4) [91]. Additionally, adult, cycling, CD-1 female mice
were either dosed with 20 mg/kg/day of MXC or vehicle control for
20 days. Following exposure, ovarian mitochondria were isolated,
and their respiration was measured. Similar to the in vitro results,
State 3 respiration and RCR were decreased, and State 4 respiration
was increased [91, 92] (Please refer to Brand and Nicholls [93] for
background on mitochondrial respiration). In vivo MXC treatment
also increased hydrogen peroxide production by mitochondria iso-
lated from treated ovaries and increased oxidative DNA and protein
damage in whole ovaries [91].

Another common insecticide and piscicide, rotenone, has been
shown to have detrimental effects on female reproduction. Exposure
of female E11.5 gonads to 0.1 μM of rotenone in vitro resulted
in a decreased proportion of germ cells initiating meiosis [94].
Additionally, rotenone treatment increased ROS generation and
decreased ATP levels in exposed gonads [94]. Interestingly these
effects were partially rescued with the administration of Coenzyme
Q10, suggesting that the electron transport chain is imperative
for meiotic initiation of developing oocytes [94]. In summary, the
pesticides MXC and rotenone induce ovarian oxidative damage
[91, 94], Coenzyme Q10 administration can rescue these effects of
rotenone [94], and N-acetylcysteine can rescue the effects of MXC
[91]. Together, these data suggest that the mitochondria could be a
primary target of the pesticides.

Despite the many indications of mitochondrial sensitivity to pes-
ticides, little has been done to explore the effect of pesticide exposure
on oocyte mitochondria. As discussed above, whole ovary exposure
observations of decreased mitochondrial function and increased
oxidative stress [90, 91, 94] suggest that oocyte mitochondria may
also be an important target. In one recent study, oocytes treated
in vitro with 50 and 100 μM of MXC showed increased ROS
formation, lipid peroxidation, increased incidence of aberrant mito-
chondrial distribution, and reduced ��m compared with controls
[95]. Methyl parathion is an organophosphate insecticide. Nair et al.
[96] orally dosed female Swiss albino mice with a single dose of
5, 10, or 20 mg/kg methyl parathion; females were superovulated
1 week later. Exposed oocytes were observed to have increased
meiotic spindle abnormalities, as well as decreased glutathione lev-
els compared with controls [96]. These results indicate a role for
mitochondria in the oocyte cellular response to pesticide exposure.
ATP is necessary for proper spindle alignment, and glutathione is an
important antioxidant found at very high concentrations in oocytes.
This same group later found that methyl parathion led to aber-
rant mitochondria distribution patterns and increased indicators of
oxidative and endoplasmic reticulum stress, effects that were rescued
by cotreatment with the free radical scavenger, epigallocatechin-3-
gallate [97].

A common herbicide, glyphosate, has also been shown to have
detrimental effects on oocyte mitochondria [98]. Germinal vesicle
stage oocytes were exposed in vitro to 500 μM glyphosate. After
14 h of exposure oocytes displayed increased ROS, abnormal spin-
dle morphology, aggregated mitochondrial distribution, decreased
��m, and decreased expression of autophagy proteins [98]. While
this exposure level is far higher than relevant human exposure levels
to glyphosate [99], these data together suggest detrimental effects on
mitochondria and that glyphosate hinders the ability of the oocyte to
effectively clear and recycle damaged organelles. Altogether, there is
a growing body of evidence that presents a compelling argument for
further exploration of the effects of pesticides on oocyte metabolism,
not only in the directly exposed organism, but also in subsequent
generations.

Plasticizers

Plasticizers are relatively nonvolatile organic compounds which
when incorporated into a material increase a polymer’s flexibility,
toughness, and ductility. The most common class of plasticizers
humans are exposed to are phthalate esters, which are used in the
manufacturing of products made from polyvinyl chlorides such
as upholstery, flooring, food containers, and water bottles [100].
Phthalate esters are endocrine disruptors exhibiting estrogenic effects
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on females, and the detrimental reproductive effects of phthalate
exposure on females have been well documented [101–106]. In
a compelling study, maternal di-(2-ethylhexyl) phthalate (DEHP)
exposure (0, 0.05, 5 mg/kg/day) led to multigenerational and
transgenerational reproductive abnormalities in females [101]. F1,
F2, and F3 female offspring of exposed dams had reduced primordial
follicle numbers, increased antral follicle numbers, and decreased
blastocyst cleavage rates at the 0.05 mg/kg/day dose compared with
controls [101].

More recently DEHP effects on oocyte mitochondria have been
shown to have impacts far beyond the ovary. Oocytes derived
from female mice treated with 40 μg/kg DEHP in corn oil for
14 days demonstrated increased ROS levels, decreased ATP levels,
and decreased mitochondrial content, ultimately leading to meiotic
defects in exposed oocytes compared with oocytes derived from
females fed corn oil alone [107]. Interestingly, the detrimental effects
of phthalate exposure seem to persist in embryos derived from
the oocytes. Seven-day blastocysts derived from COCs exposed
to MEHP (20–1000 nM) and estradiol (0–2000 ng/ml) in vitro
displayed impaired transcription of three genes belonging to the
electron transport chain, Cyc1, Mt-co1, and Atp5b (Cytochrome
C1, Mitochondrially Encoded Cytochrome C Oxidase 1, and ATP
Synthase F1 Subunit beta). MEHP treatment alone also led to mild
decreases in Cyc1 and Atp5b transcript levels in 7-day blastocysts
[108].

Other plasticizers besides phthalates have been shown to be
detrimental to oocyte mitochondria. Bisphenol A (BPA) treatment
of MII oocytes (75 μm) for 22 h in vitro resulted in a significant
increase in intracellular ROS generation, including mitochondrial SO
production [109]. Further, this study demonstrated that treatment
of MII oocytes decreased ��m and increased BAX expression,
suggesting activation of the mitochondrial apoptosis pathway [109].
Similar studies have yielded corroborating evidence. GV oocytes
exposed for 12 h in vitro to 100 μM of the BPA substitute bisphenol
AF had significantly increased vSO generation and increased SOD2
expression compared with controls [110]. Treatment of MI oocytes
in vitro with 50–150 μM of the BPA substitute fluorene-9-bisphenol
for 12 h resulted in a dose-dependent depletion of ATP, with a
statistically significant depletion following exposure to 100 μM for
2 and 12 h and virtually no detection of ATP in oocytes treated
with 150 μM after 12 h [111]. Additionally, exposure to 100 μM of
fluorene-9-bisphenol led to an increase in cellular ROS and reduced
mtDNA levels, often considered a proxy for mitochondrial load, in
exposed oocytes [111]. Together these data suggest that exposures to
phthalate and bisphenol plasticizers not only deplete the ovary of the
precious ovarian reserve, but also damage the oocytes that survive
exposure, and this damage is largely at the mitochondrial level.
However, much more exploration of this topic into all commercially
used plasticizers is necessary.

Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are the products of incom-
plete combustion of organic materials and are found in air pollution,
cigarette, and cannabis smoke, as well as burnt and barbequed foods.
Many PAHs are known carcinogens and reproductive toxicants
[112]. PAHs require metabolic activation, mostly undergoing oxida-
tion by prostaglandin endoperoxide synthase, epoxide hydrolase, or
microsomal cytochrome P450s to produce metabolites that interact
with cellular macromolecules which, in most cases, are thus oxidized
[41, 113]. It has been well established that PAHs destroy ovarian

follicles of all stages and corpora lutea, thus leading to premature
ovarian failure in the females exposed [114].

Female mice exposed to a single dose of 80 mg/kg of the PAHs,
benzo (a) pyrene (BaP), 7,12-dimethylbenz (a) anthracene (DMBA),
or 3-methylcholanthrene (3MC) via i.p. injection, 40 h prior to
sacrifice, displayed a 50% decrease in primordial follicles compared
with controls, as early as 1 day after the injection of DMBA. Half the
primordial oocytes were destroyed in 3MC and BaP exposed mice
by 2 to 3 days after exposure [115]. In a later study, Mattison [116]
demonstrated that BaP and 3MC acutely induced pyknotic degen-
eration of primordial follicle oocytes without apparent effects on
later stages of follicle development, while DMBA induced pyknotic
degeneration of oocytes and granulosa cells in growing follicles in
addition to primordial oocytes. We have demonstrated that cultured
preovulatory rat follicles exposed to DMBA underwent concentra-
tion and time-dependent granulosa and theca cell apoptosis, pre-
ceded by an increase in ROS following exposure [117]. Interestingly,
preantral mouse follicles cultured in increasing concentrations of
1.5–45 ng/ml of BaP in vitro for 13 days displayed delayed antral
follicle development and decreased follicular survival at the highest
concentration compared with unexposed controls [118]. Further,
more recently we observed that adult female mice exposed via
oral dosing to their mothers with 2 or 10 mg/kg/day of BaP for
10 days in utero had decreased follicular counts at all stages, and
mice genetically deficient in the antioxidant glutathione were more
sensitive to these detrimental effects of prenatal exposure to BaP
[119]. All these data indicate that PAH exposure is detrimental to
the ovary. The evidence of increased ROS and the protective effects
of glutathione, an antioxidant, suggest these deleterious effects may
be, at least in part, due to mitochondrial dysfunction.

There is accumulating evidence that exposure to PAHs could
result in persistent damage to the oocyte, and more specifically the
oocyte mitochondria, thus inhibiting preimplantation development
[120–122]. The high lipid content of mitochondria facilitates the
accumulation of lipophilic compounds such as PAHs [123]. One of
the primary metabolism pathways for PAHs is oxidative metabolism
through cytochrome P450s, of which some isoforms are located
on the inner mitochondrial membrane, yielding reactive metabolites
which then react with other macromolecules generating ROS [35, 36,
41, 124–126]. This was demonstrated by Sobinoff et al. [120], who
administered 0, 1.5, or 3 mg/kg/day of BaP for seven consecutive days
by i.p. injection of PND4 female Swiss neonatal mice. At 6 weeks of
age, oocytes were observed to have a BaP dose-dependent increase
in mitochondrial SO production and increased lipid peroxidation
levels, compared with controls. These results are consistent with
persistent oxidized environment, initiated by the BaP exposure. In
a later study, 4–6-week-old female ICR mice were orally dosed with
0, 10, 20, or 40 mg/kg/day of BaP in corn oil for 10 days. Oocytes
derived from mice exposed to 40 mg/kg/day had increased levels of
ROS compared with controls [121].

Moreover, mouse zygotes exposed in vitro to 5 and 50 nM BaP,
for up to 96 h, demonstrated a concentration-dependent increase in
ROS production and a significant reduction in blastocyst formation
[122]. These findings support a recent study from Sui et al. [127],
which observed that maternal exposure of 40 mg/kg/day BaP for
10 days preconception decreased polar body extrusion and increased
incidence of aberrant meiotic spindle assembly in F1 oocytes. In
this same study, oocytes from maternally exposed F1 females had
decreased mitochondria content, ATP production, and decreased
ROS generation although it is not clear whether the unit of sta-
tistical analysis was the F0 mother, F1 female, or the number of
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Figure 1. Overview of effects of chemotherapeutics, plasticizers, IR, PAHs, metals, and pesticides on oocyte mitochondria and the observed cellular effects related

to mitochondria dysfunction. Electron transport is depicted on cristae, Bax/Bak pores depicted as blue channels, cytochrome C depicted as red circles.

oocytes [127]. These data together suggest that BaP, a model PAH,
is metabolized in the oocyte making it more oxidized by increasing
lipid peroxidation and disrupting mitochondrial function. However,
much more work is needed to understand how various PAHs impact
the mitochondria in the oocyte.

Ionizing Radiation

Ionizing radiation is energy emitted from a source strong enough to
strip an electron from an atom, causing that atom to become charged,
or ionized [128]. Ionizing radiation (IR) exists as electromagnetic
or particulate energy. Electromagnetic radiation includes X- and
gamma-rays, while particulate radiation is made up of energetic
protons, neutrons, alpha particles, and heavy charged particles [35].
IR exposure of cells can directly disrupt the atomic structures of cells
or damage cellular structures through radiolysis of water producing
reactive oxygen and nitrogen species resulting in damage to proteins,
nucleic acids, lipids, and other macromolecules in the cell [35].

Our work [129, 130] and that of others [131, 132] has cumula-
tively demonstrated that IR increases cellular stress in the ovary and
oocyte through the increased production of ROS. We have shown
that these increased ROS levels lead to more heavily oxidized and
apoptotic cells in ovaries and overall fewer follicles [129, 130]. We
observed that ovaries of female mice exposed to 0–50 cGy charged
oxygen particles in vivo had dose-dependent increased incidence of
DNA double-strand breaks, lipid peroxidation, and pro-apoptotic
protein PUMA expression in both the oocytes and the granulosa
cells of follicles [129]. These deleterious effects resulted in dose-
dependent decreases in primordial, primary, and secondary follicles
of exposed females. We observed similar results in females exposed
to 0–50 cGy charged iron particles [130]. Females exposed to 30 or
50 cGy charged iron particles had statistically significant decreases
in follicles at all stages of development at 1 and 8 weeks after
IR exposure. Further, these decreases preceded by increased DNA

double strand breaks, oxidative lipid damage, and protein nitration
in the oocytes of primordial, primary, and secondary follicles [130].
Interestingly, the early effects of IR exposure in this study were
mitigated by a chow diet supplemented with 150 mg/kg of alpha-
lipoic acid, but ultimately this antioxidant was not effective in
abrogating the persistent oxidative stress caused by IR 8 weeks after
irradiation [130]. Together these data suggest at least the initial
deleterious effects of IR exposure in the ovary are mediated, at least
in part, through the mitochondria, however much more exploration
is needed.

Interestingly, treatment with 100 μg of melatonin, an antioxidant,
was significantly effective in protecting against gamma-radiation-
induced primordial follicle loss, suggesting that radiation-induced
depletion of primordial follicles could be attributed to ROS excess
[133]. This supports that the deleterious reproductive effects of
IR are mediated, in large part, through oxidative stress. Given the
mitochondria consume 90% of the body’s oxygen and can take up
to 25% of the mass of the cell, these organelles are a likely target
for radiation. In fact, radiation exposure initiates increased electron
leakage from the basal level of the electron transport chain, with
additional effects observed including perturbations in ��m, mito-
chondrial protein import, and oxidative damage to mitochondrial
proteins [35].

In recent years there has been a growing interest in IR effects
on oocytes directly and their mitochondria, though the exploration
remains shallow at best. In a recent study, oocytes collected from
prepubertal females exposed to 0.1 cGy of gamma radiation were
analyzed for radiation-induced mitochondrial damage at 3, 6, and
24 h postirradiation. No differences were observed between control
and irradiated oocytes when characterizing mitochondrial number
and distribution patterns. However, ��m was lost in oocytes at
3 and 6 h postirradation, but, interestingly, no differences were
observed at 24 h between the two treatment groups, and ATP levels
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were found to be the same across treatments [134]. More exploration
of this topic needs to be pursued to determine if any discernable
effects from IR persist in the mature oocyte following treatment,
as the oocytes nearest to ovulation seem to be the most sensitive to
radiation-induced cellular stress [135].

Implications for Fertility and Human Health

It is well established that oocyte mitochondria have a crucial impact
on oocyte quality [2, 14, 16, 20, 136]. Proximally, oocyte mito-
chondria are of great interest in assisted reproductive technologies
as their dysfunction has been implicated in reduced female fertility
with aging and obesity [31, 137–139], characterized by decreased
ATP production [140], compromised mtDNA integrity [26], ��m
[141], mitochondrial load [142], and redox imbalance [14]. Further,
oocyte mitochondria have been suggested to be important mediators
of the developmental origins of disease, as all the mitochondria in
the oocyte and subsequent embryo are derived from a bottleneck
of merely 10 maternal mitochondria beginning at the onset of PGC
development [2, 31].

Of interest to this review is exposure to environmental tox-
icants and the subsequent impact on oocyte mitochondria. We
have observed that many of the same mitochondrial dysfunctions
documented in aging and obesity, which reduce female fertility, were
documented following exposure to chemotherapeutics [76, 78], toxic
metals [83, 88], pesticides [97, 98], plasticizers [108, 111], PAHs
[121, 122], and ionizing radiation [134] (Summarized in Figure 1).
When extrapolated further, maternal exposure to environmental
toxicants and other stressors over the course of her life could
irreparably damage or alter oocyte mitochondria which are then
directly inherited by her offspring. In fact, a recent study has demon-
strated that maternal preconception exposure to BaP significantly
altered the quality of the oocyte mitochondria, and consequently,
the oocyte [127]. While it is currently unknown if this mitochondrial
dysfunction would persist once the oocyte is fertilized and beyond,
this demonstrates the urgent need for more exploration. Persistent
mitochondrial dysfunction could have wide-ranging effects as mito-
chondria are important organelles for many other cellular functions
outside of metabolism, such as cell signaling and participating in
regulation of the preimplantation epigenome [143].

Mitochondria play an indispensable role in the oocyte prior to
and during development. Perhaps even more important is the role
that they play in determining an individual’s health later in life, as
well as the health of their offspring. While this is still a relatively
young field with more exploration needed on all fronts, we contend
that more care and attention need to be paid to address environ-
mental exposures, their proximal effects on oocyte mitochondria,
their ultimate multigenerational and transgenerational effects on the
developmental origins of health and disease, and reproduction for
generations to come.
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