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Abstract. Hillslope similarity is an active topic in hydrology
because of its importance in improving our understanding of
hydrologic processes and enabling comparisons and paired
studies. In this study, we propose a holistic bottom-up hills-
lope clustering based on a region’s integrative hydrodynamic
response quantified by the seasonal changes in groundwa-
ter levels 1P . The main advantage of the 1P clustering
is its ability to capture recharge and discharge processes.
We test the performance of the 1P clustering by compar-
ing it to seven other common hillslope clustering approaches.
These include clustering approaches based on the aridity in-
dex, topographic wetness index, elevation, land cover, and
machine-learning that jointly integrate multiple data. We as-
sess the ability of these clustering approaches to identify and
categorize hillslopes with similar static characteristics, hy-
droclimate, land surface processes, and subsurface dynam-
ics in a mountainous watershed – the East River – located
in the headwaters of the Upper Colorado River Basin. The
1P clustering performs very well in identifying hillslopes
with six out of the nine characteristics studied. The variabil-
ity among clusters as quantified by the coefficient of vari-
ation (0.2) is less in the 1P and the machine learning ap-
proaches than in the others (> 0.3 for TWI, elevation, and
land cover). We further demonstrate the robustness of the
1P clustering by testing its ability to predict hillslope re-
sponses to wet and dry hydrologic conditions, of which it
performs well when based on average conditions.

1 Introduction

The ability to delineate areas into spatially defined regions
for their use in characterizing hydrologic flow and transport
behavior is important for several reasons, including the as-
sessment, monitoring, and modeling of water quantity and
quality. Hillslopes are the scale at which hydrologic flow and
transport processes can be tractably and frequently measured.
It is also the scale at which flow and travel time are quanti-
fied and the instrumentation, conceptualization, and model-
ing of hydrologic processes occur (Fan et al., 2019, Wain-
wright et al., 2022). While advancements have been made
in the general understanding of hillslope dynamics over the
last several decades, there is yet to be a globally agreed-upon
classification and/or clustering for this important scale of in-
terest in hydrology (McDonnell and Woods, 2004). Hydro-
logic signatures within hillslopes are the result of several
simultaneous and nonlinear above- and below-ground pro-
cesses. The uniqueness of a given location’s characteristics
(for example, the topography, geology, and vegetation) lim-
its our ability to draw general hypotheses and to develop a
similarity framework (Beven, 2000). Nevertheless, a classifi-
cation is needed to provide guidance on catchments and hill-
slopes comparisons (McDonnell and Woods, 2004), paired
studies (Andréassian et al., 2012; Bosch and Hewlett, 1982;
Brown et al., 2005), and improve our understanding of the
changes in hydrologic processes across the world. Further,
hillslope similarity is potentially an important step toward
developing reduced-order models and machine learning al-
gorithms, where identifying regions based on their similar-
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ities can substantially reduce computational costs (Chaney
et al., 2018). The scaling of hillslope to catchment classi-
fications can also be useful in the prediction of hydrologic
behavior in ungauged basins (Sivapalan et al., 2003), an ex-
ceedingly important challenge.

Hillslope similarity clustering approaches include the to-
pographic wetness index (TWI) (Beven and Kirby, 1979),
which was proposed to quantify the topographic control on
hydrology as topography plays a key role in the movement
of water. Many other variants of this index have been later
proposed to improve the definition of topographic similarity
(Grabs et al., 2009; Hjerdt et al., 2004; Loritz et al., 2019).
Other clustering approaches are based on hydroclimate (Car-
rillo et al., 2011), soil type and texture (Bormann, 2010), and
land cover type (e.g., forest, urban; Wagener et al., 2007).
These indices assume that hillslopes with similar topogra-
phy and land cover will have similar hydrologic responses.
However, given that hydrologic processes are governed by
many characteristics of the hillslope, clustering approaches
relying on multiple landscape characteristics have also been
proposed (Aryal et al., 2002; Sawicz et al., 2011). These top-
down clustering approaches assume that areas with similar
physical characteristics will lead to similar hydrologic pro-
cesses (Oudin et al., 2010). Other clustering approaches use
a bottom-up approach, where similarity is based on the hy-
drologic process. This clustering allows the estimation of the
“hidden” hillslope characteristics, such as soil texture and ge-
ology that may drive similar hydrologic responses (Carrillo
et al., 2011). Among the process-based clustering approaches
existing in the literature, we can cite the Péclet number char-
acterizing the diffusive and advective transfer of water at a
hillslope scale (Berne et al., 2005; Lyon and Troch, 2007,
2010) and the catchment seasonal water balance (Berghuijs
et al., 2014). Other authors have derived hillslope similari-
ties from subsurface flow dynamics (Harman and Sivapalan,
2009).

One challenge in developing a similarity framework is
the inherent heterogeneity of a given hillslope. For exam-
ple, snow water equivalent (SWE), infiltration (I ), and actual
evapotranspiration (ET) distributions can range over an or-
der of magnitude within a single hillslope (Wainwright et al.,
2022). Defining a single integrative measure that can capture
this spatio-temporal variability is difficult. However, ground-
water fluctuations are often tightly linked to seasonal changes
in climate and have been shown to play an important role in
surficial processes such as ET (Maina et al., 2022; Maina and
Siirila-Woodburn, 2020; Maxwell and Condon, 2016). Thus,
groundwater measures may serve as a good proxy for the ag-
gregated hydrologic response. Groundwater dynamics could
help overcome the issue of uniqueness of place because even
if there are strong differences in the characteristics of the hill-
slope, the integrated response may be similar, as some of the
processes might not be important. Finally, the implications of
groundwater changes are also important. For example, many
regions are characterized by groundwater-dependent ecosys-

tems or are hypothesized to have water table fluctuations af-
fecting bedrock weathering rates and therefore, the concen-
tration and fluxes of metal and nutrient exports (e.g., Winnick
et al., 2017).

In this study, we define a holistic bottom-up hillslope clus-
tering using the integrative hydrologic response quantified
by the seasonal changes in groundwater levels. A caveat
to this clustering is that groundwater dynamics are difficult
to quantify and their measurements are frequently scarce.
Hence, there are very few studies that use this variable to de-
velop a hillslope similarity classification (Aryal et al., 2002;
Lyon and Troch, 2007). However, today, thanks to advances
in integrated hydrologic modeling (Brunner and Simmons,
2012; Maxwell and Miller, 2005), accurate quantification of
the groundwater dynamics at high resolution in both time
and space and their interaction with the key land surface
processes and features is now feasible. These models (e.g.,
HydroGeoSphere, Brunner and Simmons, 2012; ParFlow,
Maxwell and Miller, 2005; Advanced Terrestrial Simulator,
Coon et al., 2016) that can be constrained with ground obser-
vations and measurements at ultra-high resolutions through
aerial or remote sensing (i.e., drones, planes, or satellites) ac-
count for the two-way interactions between groundwater and
land surface processes. Spatially resolved hydrologic flow
models also enable us to jointly quantify other hydrologic
variables useful to identify hillslopes with similar hydrologic
responses, namely, trends in ET, SWE, and I . Nevertheless,
we acknowledge that groundwater dynamics in some regions
such as arid areas could be disconnected from land surface
processes and less dependent on many key physical features
of the hillslope, which may impede the ability of the pro-
posed clustering in these regions.

We test the proposed hillslope clustering on the site of the
Department of Energy’s (DOE) Watershed Function Scien-
tific Focus Area (SFA) located in the headwaters of the Upper
Colorado River Basin. The East River watershed is not only
representative of many headwater catchments in the western
United States in terms of its spatial heterogeneity of above
and below-ground characteristics, but also serves as an im-
portant proxy of water quantity and quality trends, which
ultimately impact a large population of water supply in the
western United States for municipal, agriculture, and indus-
trial use (Hubbard et al., 2018). We test the robustness of the
proposed hillslope clustering by comparing it to seven other
common hillslope clustering approaches based on the aridity
index (AI), TWI, elevation, land cover, and machine-learning
approaches that jointly integrate multiple input data layers,
such as elevation, land cover, and geology, and model out-
puts including ET and SWE. We assess the ability of these
clustering approaches to identify and categorize hillslopes
with similar physical characteristics (land cover and eleva-
tion), hydroclimate (precipitation and temperature), land sur-
face processes (ET and SWE), and subsurface dynamics (soil
saturation, water table depth (WTD), and seasonal changes
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in groundwater). We aim to provide answers to the following
questions:

– What are the best clustering approaches for identifying
hillslopes with similar hydrologic processes?

– Is a similarity index based on the seasonal groundwater
variations sufficient to capture all the complex processes
taking place at a hillslope scale?

2 Methodology

2.1 Modeling framework

2.1.1 Selected integrated hydrologic model:
ParFlow–CLM

We use the integrated hydrologic model, ParFlow, which
has the advantages of simulating the water and energy bal-
ance from the bedrock to the lower atmosphere and there-
fore, connects groundwater dynamics with land surface pro-
cesses. ParFlow solves the subsurface flow using the three-
dimensional mixed form of the Richards equation (Richards,
1931), given by the following equation:

SSSW(ψP)
∂ψP

∂t
+φ

∂SW(ψP)

∂t

=∇ [K(x)kr(ψP)∇(ψP− z)]+ qs, (1)

where SS is the specific storage [L−1], SW(ψP) is the degree
of saturation [–] associated with the subsurface pressure head
ψP [L], t is the time [T], φ is the porosity [–], kr is the rela-
tive permeability [–], z is the depth [L], qs is the source/sink
term [T−1], and K(x) is the saturated hydraulic conductiv-
ity [LT−1], which is assumed to be a diagonal tensor with
entries given as kx(x), ky(x), and kz(x). In this work, we as-
sumed that the domain is isotropic and that the tensor is equal
to 1 for all the three directions at each cell of the discretized
model. In the unsaturated zone, both SW and kr depend on
the ψ . The relationships between SW and kr and ψ are de-
scribed by the van Genuchten model (van Genuchten, 1980).

Overland flow (Eq. 2) is solved by the kinematic wave
equation in two dimensions:

− k(x)kr(ψ0)∇(ψ0− z)

=
∂||ψ0,0||

∂t
−∇υ||ψ0|| − qr(x), (2)

where ψ0 is the ponding depth, ||ψ0,0|| indicates the greater
term between ψ0 and 0, υ is the depth averaged velocity vec-
tor of surface runoff [LT−1], and qr is a source/sink term rep-
resenting rainfall and evaporative fluxes [LT−1]. Surface wa-
ter velocity at the surface in x and y directions, (υx) and (υy),
respectively, is computed using the following set of equa-
tions:

υx =

√
Sf,x

m
ψ

2
3

0 and υy =

√
Sf,y

m
ψ

2
3

0 , (3)

where Sf,x and Sf,y friction slopes along x and y, respec-
tively, andm is the Manning’s coefficient. ParFlow employs a
cell-centered finite difference scheme along with an implicit
backward Euler scheme and the Newton–Krylov lineariza-
tion method to solve these nonlinear equations. The compu-
tational grid follows the terrain to mimic the slope of the do-
main (Maxwell, 2013).

ParFlow is coupled to the Community Land Model (CLM,
Dai et al., 2003), which allows for the simulation of impor-
tant land surface processes such as ET and SWE, and the
quantification of water leaving or entering the surface and
subsurface (qs and qr, respectively, in the Richards and kine-
matic wave equations). CLMs model the thermal processes
by closing the energy balance at the land surface given by

Rn(θ)= LE(θ)+H(θ)+G(θ), (4)

where Rn is the net radiation at the land surface [W m−2],
a balance between the shortwave and longwave radiation,
LE is the latent heat flux, [W m−2] which captures the en-
ergy required to change the phase of water to or from vapor,
H is the sensible heat flux [W m−2], and G is the ground
heat flux [W m−2]. All terms are a function of θ , the water
content, which is computed by ParFlow.

Computing the different components of the energy bal-
ance requires meteorological forcing, vegetative parameters,
and soil moisture. The latter is computed by ParFlow us-
ing Eqs. (1) and (2). Meteorological forcing includes pre-
cipitation, temperature, east to west and north to south wind
speed, longwave and shortwave solar radiation, air pressure,
and relative humidity. Vegetative parameters include maxi-
mum and minimum leaf area index, stem area index, aero-
dynamic roughness height, optical properties, stomatal phys-
iology, roughness length, and displacement height. More de-
tails about the coupling between ParFlow and CLM and the
equations governing the snow dynamics and ET can be found
in the following papers: Jefferson et al., (2015), Maxwell
and Miller (2005), and Ryken et al. (2020). ParFlow–CLM
has been used in many studies to understand the interac-
tions between groundwater dynamics and lower atmosphere
(Maina et al., 2022; Maina and Siirila-Woodburn, 2020) at
different scales from watershed (Foster and Maxwell, 2019;
Maina et al., 2020) to continental scale (Maxwell and Con-
don, 2016).

2.1.2 East River watershed model setup

The East River watershed (Fig. 1), located in the Upper Col-
orado Basin, is one of the two major tributaries that form
the Gunnison River, which, in turn, accounts for just un-
der half of the Colorado River’s discharge at the Colorado–
Utah border. The total area of this watershed is approxi-
mately 255 km2 and the elevation varies from approximately
2700 to 3900 m. The watershed is characterized by strong
heterogeneities in vegetation, geomorphology, and bedrock
composition (Hubbard et al., 2018). The vegetation includes
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Figure 1. (a) Location of the East River watershed, (b) land cover (NEON data set, 2020), (c) lidar digital elevation, and (d) elevation
distribution within the East River.

grasses, conifers, mixed conifers, aspens, and meadows, and
lies on a complex geologic terrain, which is comprised of
a diverse collection of Paleozoic and Mesozoic sedimentary
and unconsolidated rocks. The watershed is also character-
ized by a strong hydroclimate gradient. The average pre-
cipitation is 1200 mmyr−1, while the average temperature is
around 0 ◦C. Because of its very low cold winter with tem-
perature below 0 ◦C, most of the winter precipitation is in the
form of snow.

ParFlow–CLM used here is based on a previous version of
the East River watershed model, as described by Foster and
Maxwell (2019). Five layers constitute the model in the ver-
tical direction, with varying thickness from 0.1 m at the land
surface to 21 m at the bottom of the domain. The land use and
land cover are derived from the high-resolution airborne re-
mote sensing NEON campaign (Chadwick et al., 2020; Falco
et al., 2020; Goulden et al., 2020). From the hyperspectral
spectrometer and lidar readings, four major types of land
cover are grouped as follows: forests (i.e., conifers and as-
pens), mixed forests, grasses, and bare soil. Parameterization
of these different land cover types is derived from the Inter-
national Geosphere–Biosphere Programme (IGBP) database
(IGBP, 2018).

The subsurface of the study area is heterogeneous in both
vertical and horizontal directions. The subsurface of the top
1 m corresponds to three soil layers as defined by the Soil
Survey Geographic Database (SSURGO) database, and then
corrected based on the land cover and geologic maps to in-

clude the outcropping of the bedrock. Two main types of soil
are distinguished within the area: sandy loam and clay loam.
The geology of the subsurface between 1 and 8 m below the
ground was defined with United States Geological Survey
(USGS) maps, which were further improved by local knowl-
edge by Pribulick et al., (2016). This subsurface region is
highly heterogeneous with different formations such as crys-
talline, sedimentary rocks, unconsolidated rocks, alluvial de-
posits, and debris flow. The bottom layer of the domain (ex-
tending from 8 m below the ground surface to the bottom of
the model) is assumed homogeneous and represents the frac-
tured bedrock.

We simulated the water year (WY) of 2015, which was
a relatively average WY in the region based on average pre-
cipitation and temperature patterns. The meteorological forc-
ing of the model has a resolution of an hour and is derived
from two gridded data sets: Parameter-elevation Regressions
on Independent Slopes Model (PRISM) and North Ameri-
can Land Data Assimilation System (NLDAS). The PRISM
data set (Daly et al., 2008) is used for precipitation and tem-
perature because of its accuracy and high spatial resolution
(800 m). However, the daily resolution of PRISM impedes
its ability to be used to reproduce diurnal cycles, an impor-
tant factor when studying land surface processes requiring
hourly forcing. Phase 2 of the North America Land Data As-
similation System NLDAS-2 forcing (Cosgrove et al., 2003),
on the contrary, provides hourly changes in precipitation and
temperature, yet is only available at coarser 1/8◦ resolutions.

Hydrol. Earth Syst. Sci., 26, 3805–3823, 2022 https://doi.org/10.5194/hess-26-3805-2022
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As such, we employ a mass-conservative temporal interpo-
lation, which disaggregates the total daily PRISM precip-
itation into an hourly time series, based on the signal of
the NLDAS-2 precipitation and temperature trends. For the
other forcing variables (i.e., shortwave and longwave radia-
tion, wind speed, atmospheric pressure, and specific humid-
ity), we use NLDAS-2 forcing, (Cosgrove et al., 2003). Sim-
ulated river stages and SWE were compared to observations
in previous studies (Maina et al., 2022; Foster and Maxwell,
2019). Groundwater measurements are scarce in the water-
shed and the majority of the measurements are performed
near a station measuring changes in river stages. Therefore,
river stages and groundwater measurements at this point pro-
vide similar information.

2.2 Hillslope delineation

As shown in Fig. 1b, 127 hillslopes are delineated in the
East River watershed based on the elevation following Noël
et al., (2014) and using Topotoolbox developed by Schwang-
hart and Scherler (2014). A threshold of flow accumulation
was set to match the stream observations at major tributaries
of the East River (Carroll et al., 2018). Because the hills-
lope delineation could be sensitive to the threshold of the
drainage area, we tested different threshold values to find that
the selected threshold value (810 000 m2) represents the scale
of hillslope at which the within-hillslope variability of key
properties (such as elevation and aspect) is minimized and
hillslope-averaged properties can account for the majority of
watershed-scale variability (Wainwright et al., 2022).

2.3 Hillslope clustering approaches

We use eight hillslope clustering approaches:

1. The 1P1 clustering proposed in this study identifies
hillslopes with similar groundwater dynamics. Figure 2
shows the temporal variations of the simulated SWE
and WTD at a selected hillslope (see its location in
Fig. 1). All hydrologic variables have been computed
at a hillslope scale by computing the arithmetic average
of all cells in each hillslope. In this mountainous wa-
tershed where the largest changes in WTD are mostly a
result of snowmelt, WTD decreases from the beginning
of the WY (i.e., October) to the beginning of snowmelt
(i.e., starting from April). As the snow starts to melt
and precipitation starts to fall as rain instead of snow,
WTD starts to rise. The shallowest WTD is June and
July when the snow has completely melted and has had
time to percolate through the unsaturated zone into the
groundwater. This period also corresponds to the period
of high ET, because both the evaporative demand and
the water availability are high.

The dynamics show two periods that characterize the
dynamics of the hillslope: from the initial conditions

to the baseflow conditions when the hillslope is los-
ing water, then from baseflow conditions to the peak of
WTD when the hillslope is gaining water. To charac-
terize these groundwater dynamics, we define two vari-
ables:

– 1P1 represents the change in WTD between the
beginning of the water year and the deepest WTD
during the baseflow conditions. This variable quan-
tifies the amount of water released by the hillslope
during the dry period at the beginning of the water
year. It thus contains information about the amount
of water that the hillslope typically releases/loses,
mainly by ET and discharge, given its physical
characteristics and climate dynamics.

– 1P2 represents the changes in WTD between the
peak flow (i.e., the period with the shallowest
WTD) and the baseflow conditions. 1P2 quanti-
fies the amount of water gained in the hillslope by
recharge and thus contains information about the
recharge ability of the hillslope given its physical
characteristics and climate dynamics.

These two key variables allow us to quantify water
release (1P1) and recharge (1P2) within a hillslope;
two key dynamics of the watershed hydrologic func-
tion (Sivapalan, 2006; Wagener et al., 2007, Wainwright
et al., 2022). We note that these dynamics are also illus-
trated by the changes in measured groundwater levels as
depicted in Appendix A.

2. Elevation: in mountainous watersheds, because the dif-
ferences in hydroclimate are primarily driven by eleva-
tion, hillslopes with similar elevations could potentially
have similar land surface processes signatures.

3. Land cover: hillslopes can also be clustered by their
dominant land cover. Land cover shapes land surface
processes, which in turn affect subsurface dynamics and
the water balance at the hillslope scale.

4. TWI: The topographic wetness index commonly used to
cluster hillslopes is given by ln( α

tan(β) ), where α is the
upslope draining area and β is the local angle.

5. AI: the AI (ETP/precipitation, where ETP is the poten-
tial evapotranspiration) represents the ratio of the av-
erage demand for moisture to the average supply of
moisture. We derive the spatial distribution of the AI
in the East River from the Global Aridity Index data set
(CGIAR-CSI, 2019).

6. Machine-learning-based clustering: we define the hills-
lope similarity using the clustering of ParFlow–CLM in-
put and output data layers. Clustering was performed in
three different ways using the following data: (1) model
input (elevation, percentage of the main land cover type,

https://doi.org/10.5194/hess-26-3805-2022 Hydrol. Earth Syst. Sci., 26, 3805–3823, 2022
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Figure 2. Temporal variations of water table depth (WTD) and
SWE at an example hillslope. The location of the hillslope is shown
in Fig. 1.

TWI, and AI), referred to hereafter as the “clustering in-
put” (C.I.) method, (2) model output (ET, SWE, WTD,
and 1P1), referred to hereafter as the “clustering out-
put” (C.O.) method, and (3) both model input and output
data layers, referred to hereafter as the “clustering input-
output” (C.I.O.) method. We use hierarchical clustering,
which is a decision-tree-based method that divides data
points based on a series of binary splits (Devadoss et al.,
2020; Kassambara, 2017; Wainwright et al., 2022). We
define the linkage (or the distance) between any two
clusters based on the Euclidian distance and the Ward
method that computes the variance within each cluster,
measuring the distance between each observation and
the cluster’s mean, and then taking the sum of the dis-
tances’ squares.

2.4 Hillslope clustering comparisons

To test the ability of the eight selected clustering approaches
to identify and categorize hillslopes with similar static char-
acteristics and dynamics, we assess each clustering’s ability
to describe several characteristics of the hillslope. These are
elevation, land cover, hydroclimate (i.e., precipitation), land
surface processes (SWE and ET), and subsurface dynamics
(WTD values and variations). For each clustering, we define
three zones. For each variable, zone, and clustering, we com-
pute the mean (µ) of the hillslope values and the correspond-
ing coefficient of variation (CV). We also calculate the mean
of the CV of the different zones for each variable and clus-
tering.

3 Results

3.1 Hillslope characteristics

Figure 3 shows the spatial distribution of hillslope tempera-
ture, precipitation, SWE, ET, WTD, and 1P1.

As expected, the hillslopes characterized by high SWE
have high precipitation and low temperatures in contrast to

Figure 3. Spatial distributions of hillslope annual average values of
(a) temperature, (b) precipitation, (c) snow water equivalent (SWE),
(d) evapotranspiration, (e) water table depth (WTD) and (e) 1P1.

the hillslopes with low SWE. However, ET shows a differ-
ent pattern, as it depends on both water availability and ET
demands, which depends on the type of land cover. The mid-
elevation zone (i.e., Zone 2) with a high coverage of forests
has high ET. Hillslopes with high 1P1 have a deep WTD
on average because the WTD increases significantly during
baseflow conditions and reaches very large values as quanti-
fied by 1P1. Hillslopes with high 1P1 values generally cor-
respond to hillslopes with high precipitation and low temper-
ature and therefore, high SWE values.

Hydrol. Earth Syst. Sci., 26, 3805–3823, 2022 https://doi.org/10.5194/hess-26-3805-2022
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Figure 4. Pearson’s correlations between the selected variables for hillslope clustering approaches: elevation, percent of the main land cover
type (forest, grassland, and bare soil), topographic wetness index (TWI), aridity index (AI), evapotranspiration (ET), snow water equivalent
(SWE), water table depth (WTD), and seasonal changes in groundwater 1P1. Note that correlation coefficients are color-coded based on
their values.

To better understand the relationship between1P1 and the
hillslope physical characteristics and hydrologic processes,
we study the Pearson correlation coefficient between 1P1
and the elevation, the percent of the dominant land cover,
TWI, AI, ET, SWE, and WTD (Fig. 4).

Results for 1P2 are not shown because 1P2 is strongly
correlated to 1P1. Bare soil, TWI, AI, SWE, and 1P1 are
strongly correlated (we define this as Pearson’s correlation
coefficient higher than 0.7) with elevation (Fig. 4, column 1,
lines d, e, f, h, and j). In particular, elevation has a dominant
control on AI and SWE, with a Pearson’s correlation coeffi-
cient higher than 0.9. We observe nonlinearity such that TWI
increases in the lower elevation and that AI becomes constant
at the lower elevation. A high percentage of forest is only
found in mid-elevation (Fig. 4, 2a), whereas a high percent-

age of grassland is well correlated to low elevations (Fig. 4,
3a). ET is positively correlated to the percent of forests (Pear-
son’s correlation coefficient is higher than 0.9, Fig. 4, 2g).
1P1 has a Pearson’s correlation coefficient higher than 0.7
for 6 out of 9 studied variables (elevation, percent of bare
soil, TWI (correlation coefficient equal to 0.67), AI, SWE,
and WTD, Fig. 4, line j, columns 1, 4, 5, 6, 8 and 9). It there-
fore indicates that changes in 1P1 can reflect the changes
of these variables. The two variables with low correlations
with 1P1 are ET and the percent of forests (Fig. 4, line j,
columns 2 and 7). ET is related to groundwater dynamics in a
nonlinear way (Condon et al., 2013; Ferguson and Maxwell,
2010; Rahman et al., 2016). As shown in these studies, re-
gions with shallow WTDs have the highest ET fluxes and
this flux typically decreases significantly with WTD. When

https://doi.org/10.5194/hess-26-3805-2022 Hydrol. Earth Syst. Sci., 26, 3805–3823, 2022



3812 F. Z. Maina et al.: On the similarity of hillslope hydrologic function

Figure 5. Spatial distribution of hillslope zones derived from the eight selected clustering approaches: (1) 1P1, (2) elevation, (3) land cover
(LULC), (4) topographic wetness index (TWI), (5) aridity index (AI), and clustering with (6) inputs, (7) outputs, and (8) input and output
variables.

WTD reaches a critical depth, the groundwater and the atmo-
sphere disconnect and changes in WTD do not impact ET.

3.2 Hillslope clustering

For each clustering, we identify three zones (Fig. 5). For the
1P1, elevation, TWI, and AI clustering approaches, we de-
fine the thresholds of each zone by analyzing the distribu-
tions of the hillslope values of the following indices:

1. 1P1: Zone 1 comprises hillslopes whose 1P1 is less
than 1.5 m, 1P1 of hillslopes in Zone 2 are comprised
between 1.5 and 2.5 m, and Zone 3 groups all hillslopes
with 1P1 greater than 2.5 m.

2. Elevation: Zone 1 characterizes low elevation areas (av-
erage hillslope elevation is less than 3000 m), Zone 2
is mid (average hillslope elevation comprises between
3000 and 3500 m), and Zone 3 is high elevation (hill-
slopes with an average elevation greater than 3500 m).

3. Land cover: Zone 1 describes hillslopes that have pre-
dominantly grasses as land cover, Zone 2 describes hill-
slopes with more than 50 % of forest, and Zone 3 de-
scribes hillslopes where bare soil is the dominant land
cover.

4. TWI: we define 3 zones with high (TWI> 1, Zone 1),
mid (TWI comprises between 1 and 0.2, Zone 2), and
low (TWI< 0.2, Zone 3) TWI.

5. AI: Zone 1 comprises hillslopes with AI less than 0.45,
Zone 2 describes hillslopes with AI between 0.45 and

0.55, and hillslopes of Zone 3 have an AI greater than
0.55.

6. Machine-learning-based clustering: the approaches au-
tomatically regroup the similar hillslopes into three
zones.

3.3 Comparisons of the eight selected hillslope
clustering approaches

Table 1 depicts the mean (µ) and the corresponding coeffi-
cient of variation (CV) of hillslope values for each variable,
zone, and clustering.

3.3.1 Similarities in hillslope structure

Elevation plays an important role in the hydroclimate of a re-
gion, especially in mountainous watersheds where it controls
snow accumulation and controls the downstream hydrology.
Figure 6 shows the elevation frequency distributions associ-
ated with the three zones derived from the eight clustering
approaches.

By classifying the hillslopes using their similarity in1P1,
we observe that hillslopes with low 1P have the lowest el-
evation, while the hillslopes of Zone 3 (high 1P1) have the
highest elevation. Unsurprisingly, the second clustering (i.e.,
elevation) clearly identifies the hillslopes with similar eleva-
tion. The AI clustering also identifies hillslopes with simi-
lar elevation, as shown in Figs. 4 and 6. The TWI clustering
performs moderately, where Zones 1 and 2 are characterized
by similar elevation distributions. Hillslopes with lower TWI
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Table 1. Mean µ and coefficient of variation CV of each variable and hillslope zone derived from the eight clustering approaches. LULC
stands for land cover and land use.

Elevation (m)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 3027 0.25 2884 0.02 3099 0.06 2853 0.25
Zone 2 3226 0.06 3233 0.06 3065 0.16 2637 0.41
Zone 3 3593 0.04 3641 0.04 3595 0.04 1999 0.84

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 2947 0.03 3202 0.04 3029 0.04 3232 0.049
Zone 2 3285 0.03 2903 0.03 3175 0.04 2904 0.034
Zone 3 3625 0.03 3592 0.03 3605 0.03 3658 0.025

Precipitation (mmd−1)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 2.24 0.21 2.11 0.22 2.42 0.22 2.38 0.23
Zone 2 2.68 0.18 2.77 0.22 2.39 0.2 2.37 0.22
Zone 3 3.26 0.15 3.55 0.03 3.26 0.16 2.74 0.23

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 2.10 0.15 2.68 0.18 2.33 0.22 2.73 0.18
Zone 2 2.74 0.17 2.06 0.16 2.63 0.18 2.07 0.17
Zone 3 3.39 0.12 3.41 0.11 3.43 0.11 3.56 0.06

Temperature (K)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 276.5 0.001 276.2 0.003 276.1 0.002 276.3 0.002
Zone 2 275.9 0.002 276.0 0.003 276.4 0.001 276.2 0.001
Zone 3 274.5 0.002 274.4 0.002 274.4 0.002 275.6 0.003

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 276.6 0.001 276.2 0.002 276.2 0.002 276.1 0.002
Zone 2 275.8 0.002 276.5 0.001 276.3 0.002 276.5 0.001
Zone 3 274.3 0.002 274.4 0.003 274.3 0.002 274.1 0.002

SWE (mm)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 152 0.30 149 0.38 181 0.34 169 0.20
Zone 2 204 0.34 201 0.43 151 0.29 165 0.39
Zone 3 355 0.31 389 0.26 339 0.29 234 0.46

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 137 0.18 191 0.32 173 0.34 200 0.33
Zone 2 206 0.25 145 0.17 179 0.30 146 0.20
Zone 3 360 0.24 359 0.25 365 0.23 396 0.18

ET (mmd−1)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 0.42 0.47 0.35 0.75 0.31 0.36 0.37 0.58
Zone 2 0.41 0.47 0.48 0.54 0.61 0.27 0.25 0.49
Zone 3 0.17 0.74 0.15 0.90 0.19 0.69 0.12 0.57
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Table 1. Continued.

ET (mm d−1)

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 0.40 0.46 0.49 0.37 0.27 0.29 0.48 0.38
Zone 2 0.45 0.45 0.25 0.32 0.55 0.29 0.25 0.31
Zone 3 0.14 0.58 0.19 0.68 0.18 0.65 0.12 0.57

Saturation (–)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 0.77 0.14 0.75 0.23 0.75 0.14 0.81 0.14
Zone 2 0.69 0.10 0.73 0.16 0.71 0.15 0.72 0.12
Zone 3 0.66 0.11 0.67 0.13 0.68 0.09 0.70 0.13

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 0.75 0.15 0.72 0.11 0.76 0.15 0.72 0.10
Zone 2 0.73 0.13 0.77 0.16 0.72 0.10 0.78 0.15
Zone 3 0.68 0.11 0.69 0.09 0.68 0.09 0.66 0.08

WTD (m)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 2.9 0.06 3.4 0.1 3.0 0.06 2.4 0.01
Zone 2 3.7 0.05 3.2 0.07 3.5 0.07 3.3 0.04
Zone 3 4.8 0.07 4.6 0.08 4.7 0.07 4.0 0.1

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 3.1 0.06 3.2 0.04 2.8 0.05 3.3 0.04
Zone 2 3.5 0.07 2.6 0.04 3.2 0.04 2.5 0.04
Zone 3 4.7 0.08 4.4 0.06 4.5 0.05 4.8 0.05

WTD (m)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 2.9 0.06 3.4 0.1 3.0 0.06 2.4 0.04
Zone 2 3.7 0.05 3.2 0.07 3.5 0.07 3.3 0.04
Zone 3 4.8 0.07 4.6 0.08 4.7 0.07 4.0 0.1

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 3.1 0.06 3.2 0.04 2.8 0.05 3.3 0.04
Zone 2 3.5 0.07 2.6 0.04 3.2 0.04 2.5 0.04
Zone 3 4.7 0.08 4.4 0.06 4.5 0.05 4.8 0.05

1P2 (m)

1P1 Elevation LULC TWI

µ CV µ CV µ CV µ CV

Zone 1 2.9 0.06 3.4 0.1 3.0 0.06 2.4 0.04
Zone 2 3.7 0.05 3.2 0.07 3.5 0.07 3.3 0.04
Zone 3 4.8 0.07 4.6 0.08 4.7 0.07 4.0 0.1

AI C.I C.O C.I.O.

µ CV µ CV µ CV µ CV

Zone 1 3.1 0.06 3.2 0.04 2.8 0.05 3.3 0.04
Zone 2 3.5 0.07 2.6 0.04 3.2 0.04 2.5 0.04
Zone 3 4.7 0.08 4.4 0.06 4.5 0.05 4.8 0.05
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Figure 6. Frequency distributions of hillslope elevation. Cluster-
ing approaches are based on 1P1, elevation, land cover (LULC),
topographic wetness index (TWI), aridity index (AI), and machine-
learning approaches (with inputs C.I., outputs C.O., and inputs and
outputs C.I.O.). Hillslope clustering approaches are located across
the x axis. Note that we plotted the distributions of the eight clus-
tering approaches on the same graph and between each dotted line
(with a frequency from 0 to 0.5), the frequency distributions of the
three zones derived from the clustering are plotted.

are mostly located in high elevation areas compared to the
low elevation hillslopes. In the land cover clustering, most of
the grassed hillslopes (Zone 1) are in low elevation, forests
(Zone 2) are in mid-elevation, and hillslopes whose land-
scape is mainly bare soil (Zone 3) are in high elevation areas
above the tree line. The three clustering approaches using
machine learning allow the identification of hillslopes with
similar elevation, as their coefficients of variation are of the
same order as the elevation clustering.

Table 2 describes the average hillslope ratio of land cover
type (forests, grassland, and bare soil) for each zone and
type of clustering. The land cover clustering indicates that
grassland is the dominant land cover of Zone 1, forests in
Zone 2, and bare soil in Zone 3. Only the machine-learning
clustering approaches using outputs lead to a similar conclu-
sion, whereas while the other clustering approaches capture
the characteristics of Zone 1 and 3, they do not identify a
distinct forested Zone 2. For the 1P1 clustering, this could
be attributed to the disconnection between groundwater dy-
namics and land surface processes that takes place in certain
forested zones. Since clustering based on landscape charac-
teristics and 1P1 do not identify such a distinct zone, it sug-
gests that this zone may not be indicative of distinct hydro-
logic behavior.

Table 2. Average values of the hillslope ratio of forests, grasslands,
and bare soil for each zone and clustering.

Forest Grassland Bare soil

1P1
Zone 1 0.35 0.55 0.10
Zone 2 0.35 0.43 0.22
Zone 3 0.11 0.27 0.62
CV 0.97 0.56 0.69

Elevation
Zone 1 0.28 0.56 0.15
Zone 2 0.41 0.42 0.17
Zone 3 0.07 0.26 0.68
CV 1.33 0.76 1.07

Land cover
Zone 1 0.23 0.67 0.14
Zone 2 0.72 0.26 0.12
Zone 3 0.12 0.22 0.66
CV 0.67 0.45 0.64

Topographic wetness index (TWI)
Zone 1 0.24 0.66 0.10
Zone 2 0.35 0.51 0.14
Zone 3 0.32 0.35 0.33
CV 1.47 0.49 0.95

Aridity index
Zone 1 0.34 0.57 0.09
Zone 2 0.37 0.41 0.22
Zone 3 0.07 0.32 0.61
CV 0.91 0.56 0.69

Clustering with input layers
Zone 1 0.44 0.42 0.14
Zone 2 0.11 0.83 0.06
Zone 3 0.12 0.25 0.63
CV 0.83 0.38 0.62

Clustering with output layers
Zone 1 0.14 0.77 0.09
Zone 2 0.52 0.34 0.15
Zone 3 0.11 0.25 0.64
CV 0.77 0.38 0.61

Clustering with inputs and outputs
Zone 1 0.42 0.40 0.18
Zone 2 0.12 0.82 0.06
Zone 3 0.05 0.24 0.70
CV 0.87 0.41 0.65

3.3.2 Similarities in hydroclimate

Figure 7a and b depicts the distributions of precipitation and
temperature obtained with the eight selected clustering ap-
proaches. The AI clustering allows the identification of hill-
slopes with a similar hydroclimate because they have low
values of coefficients of variation. Zone 1, located in low ele-
vation, has low precipitation and high temperatures, contrary
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Figure 7. Frequency distributions of hillslope (a) annual average daily rates of precipitation and (b) annual average temperature. Clustering
approaches are based on 1P1, elevation, land cover (LULC), topographic wetness index (TWI), aridity index (AI), and machine-learning
approaches (with inputs C.I., outputs C.O., and inputs and outputs C.I.O.). Hillslope clustering approaches are located across the x axis. Note
that we plotted the distributions of the eight clustering approaches on the same graph, and between each dotted line (with a frequency from 0
to 0.5), the frequency distributions of the three zones derived from the clustering are plotted.

to Zone 3. Zone 2 is characterized by a hydroclimate that is
in between those of Zone 1 and 3. Our 1P1 clustering leads
to conclusions similar to the machine-learning-based cluster-
ing and AI. These three clustering approaches have the same
average CV and are the only methods that allow the identifi-
cation of hillslopes with a similar hydroclimate. However, we
note that in the three machine-learning-based clustering and
in the 1P clustering, Zones 1 and 2 have a similar hydrocli-
mate, which is not the case in the AI clustering. While the
land cover clustering approaches clearly identify the typical
hydroclimate of the hillslopes of Zone 3, the two remaining
zones have the same hydroclimate. The TWI clustering does
not identify hillslopes with a similar hydroclimate because
it relies on the hydrologic processes driven by the topogra-
phy. TWI shows that clustering that includes only hydrocli-
mate would miss important information on distinct hillslope
hydrologic processes that strongly affect the response of the
hillslope to meteorological forcing.

3.3.3 Similarities in hydrologic processes

In this section, we study the ability of the selected cluster-
ing approaches to identify hillslopes with similar hydrologic
processes, which are snow dynamics, evapotranspiration, and
WTD values and variations.

Land surface processes

A robust clustering in mountainous watersheds should iden-
tify hillslopes with similar snow dynamics. Figure 8a illus-
trates the SWE frequency distribution associated with each

zone and clustering. Because SWE dynamics are primarily
driven by elevation and precipitation, the AI and machine-
learning-based clustering have the lowest average of the CV,
followed by the land cover and the 1P1 clustering. The
land cover spatial distribution contains information about el-
evation, especially in high elevation areas where some hill-
slopes are located above the tree line. The1P1 clustering ac-
counts for SWE dynamics because 1P1 is highly correlated
to SWE, as discussed in Sect. 3.1.

The spatial distribution of ET is controlled by many fac-
tors, including soil moisture, land cover, and subsurface flow.
The land cover clustering performs well in identifying hill-
slopes with similar ET because the latter strongly depends
on the land cover (Fig. 8b). Consistent with the aforemen-
tioned results, the other clustering approaches that perform
well are the machine-learning-based clustering and the AI.
The TWI and elevation clustering approaches do not separate
hillslopes by their ET values because they do not account for
varying land cover and soil properties that influence ET. The
average CV of the1P1 clustering is close to those of the land
cover and AI clustering. As stated in many studies (Fergu-
son and Maxwell, 2010; Maina and Siirila-Woodburn, 2020;
Maina et al., 2022), subsurface flow affects ET as this infor-
mation about subsurface flow contains valuable information
about the ET, even if the correlation between 1P1 and ET is
nonlinear.

Similarities in subsurface hydrodynamics

We investigate the ability of the eight selected clustering ap-
proaches to identify hillslopes with similar subsurface hydro-
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Figure 8. Frequency distributions of hillslope land surface variables: (a) annual average SWE and (b) annual average daily rates of ET.
Clustering approaches are based on 1P1, elevation, land cover (LULC), topographic wetness index (TWI), aridity index (AI), and machine-
learning approaches (with inputs C.I., outputs C.O., and inputs and outputs C.I.O.). Hillslope clustering approaches are located across the
x axis. Note that we plotted the distributions of the eight clustering approaches on the same graph and between each dotted line (frequency
from 0 to 0.5), the frequency distributions of the three zones derived from the clustering are plotted.

dynamics. We study the average saturation of the first 10 cm
of the soil throughout the WY, the yearly average of WTD,
and 1P2. Soil saturation is a key feature in both subsurface
and atmospheric dynamics; it controls ET and groundwa-
ter recharge. The average CV of the 1P1, TWI, AI, land
cover, and clustering approaches are very similar (Fig. 9a).
As the land cover clustering adequately regroups hillslopes
with similar ET, it also allows the regrouping of hillslopes
with similar soil saturation. Because the TWI describes the
characteristics that drive flow, it serves as a good indicator of
soil saturation like the AI. Similar to the results above, the
machine-learning-based clustering perform well. The 1P1
clustering has a low average CV due to the strong connection
between the changes in WTD and soil saturation. It is only
the elevation clustering that fails to identify hillslopes with
similar soil saturation, where the distributions of the three
defined zones show overlap.

WTD is an important variable for determining groundwa-
ter storage. Here, we rely on the average WTD throughout
the year. As expected, the1P1 clustering identifies hillslopes
with similar WTD (Fig. 9b). Zone 1 located in low eleva-
tion has the shallowest WTD and the lowest1P1, contrary to
Zone 3. Zone 2 exhibits a behavior that is in between those of
Zone 1 and 3. The TWI and land cover clustering approaches
also are good for identifying hillslopes with similar WTD.
Hillslopes with low TWI (Zone 3) have the deepest WTD,
contrary to the hillslopes of Zone 1. The TWI identifies hill-
slopes with similar WTD because of the high relief of the wa-
tershed that drives its hydrology (Fan et al., 2019). The land
cover clustering indicates that most of the forest (Zone 2)

and bare soil (Zone 3) hillslopes have deep WTD, whereas
grass (Zone 1) hillslopes have the shallowest WTD. The ele-
vation clustering does not accurately identify hillslopes with
similar WTD and its average CV remains higher than the 4
other clustering approaches. The AI, like the elevation, is not
a good variable for identifying hillslopes with similar WTD.
All their three zones overlap in terms of WTD. Results from
the machine-learning-based clustering are similar to the1P1
clustering with a CV of the same order, yet there is no clear
distinction between Zone 1 and 2 in these machine-learning-
based clustering approaches.

Figure 9c illustrates the distributions of the 1P2 for each
clustering approach and zone. 1P1 clusters hillslopes with
similar 1P2, as expected. Another suitable clustering ap-
proach for hillslopes with similar 1P2 is the land cover.
Zone 3, characterizing bare soil hillslopes, has the highest
1P 2, unlike, zones 1 and 2. The AI clustering shows that
the majority of Zone 3 hillslopes have high 1P2, whereas
Zone 2 hillslopes have low 1P 2,, followed by Zone 1 hill-
slopes. In terms of 1P2 similarity, the elevation clustering
outperforms the TWI. The machine-learning-based cluster-
ing approaches are good for identifying hillslopes with simi-
lar1P2, especially the clustering using inputs variables (CI).
The two other machine-learning-based clustering approaches
(outputs and inputs and outputs) do not distinguish Zone 1
from Zone 2.
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Figure 9. Frequency distributions of hillslope (a) saturation, (b) WTD, and (c) 1P2. Clustering approaches are based on 1P1, elevation,
land cover (LULC), topographic wetness index (TWI), aridity index (AI), and machine-learning approaches (with inputs C.I., outputs C.O.,
and inputs and outputs C.I.O.). Hillslope clustering approaches are located across the x axis. Note that we plotted the distributions of the
eight clustering approaches on the same graph and between each dotted line (frequency from 0 to 0.5) the frequency distributions of the three
zones derived from the clustering are plotted.

4 Discussions

In this section, we discuss the advantages of the proposed
1P clustering compared to the other clustering approaches,
and its ability to capture dry and wet hydrologic conditions.

4.1 Advantages of the 1P clustering

Depending on the purpose of the identification of similar hill-
slopes, the appropriate clustering may change. Nonetheless,
it is important for any clustering approach to identify hill-
slopes with similar hydrologic processes. As demonstrated
here, the advantage of using 1P1 to identify similar hill-

slopes is that many hydrologic processes are embedded in
1P1. Our comparisons have shown that by using a1P1 clus-
tering, one is able to identify hillslopes with not only similar
subsurface hydrodynamics, but also similar land surface pro-
cesses. Because these processes are intimately linked to the
physical characteristics of the hillslope, its hydroclimate, and
its land cover, the1P1 clustering also allows for the identifi-
cation of hillslopes with the aforementioned similar charac-
teristics.

However, we highlight that other clustering approaches
may outperform the 1P1 when looking at a single charac-
teristic. For instance, our results show that the elevation and
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AI (or other clustering approaches based on the hydroclimate
e.g., Carrillo et al., 2011) clustering approaches may be ex-
cellent at identifying hillslopes with a similar hydroclimate
and snow dynamics. The land cover clustering allows for
better identification of hillslopes with similar land surface
processes, such as ET and soil saturation. Lastly, the TWI
clustering (e.g., Beven and Kirby, 1979; Grabs et al., 2009;
Hjerdt et al., 2004; Loritz et al., 2019) allows the identifi-
cation of hillslopes with similar groundwater dynamics and
soil saturation values, as it describes the topographic flow. In
terms of overall performance, our results show that for the
study site considered here, the machine-learning-based clus-
tering approaches are also very good at identifying similar
hillslopes.

Wainwright et al., (2022) use an unsupervised clustering
method and remote sensing data layers, which include eleva-
tion, SWE, radiation, resistivity, and normalized difference
vegetation index (NDVI) to define seven clusters in the East
River watershed. While their clustering method has more
zones (7) than ours (3), it leads to similar conclusions as our
study, where Zones 1 and 2 are characterized by low eleva-
tion, high TWI, and low SWE values, contrary to Zones 5
and 6.

Other hillslope clustering approaches based on hydrologic
processes relied on the Péclet number (Berne et al., 2005;
Lyon and Troch, 2007, 2010), which describes the subsur-
face hydrological response and is derived from an analytical
solution of the subsurface flow (e.g., the Boussinesq storage
equation, Lyon and Troch, 2010). However, while the three-
dimensional Richards equation has the advantage of better
representing the subsurface flow, it cannot be solved analyt-
ically. Hence, these indices cannot be applied to integrated
hydrologic models. Our approach has demonstrated that the
1P helps quantify the subsurface hydrologic responses with-
out using these indices and therefore overcomes the limita-
tion of the use of attributes – such as the Péclet number – on
integrated hydrologic models to categorize hillslopes.

4.2 Similarities in hydrologic responses to wet and dry
conditions

According to McDonnell and Woods (2004) and Wagener
et al., (2007), any classification should be able to predict
the dynamics of hillslopes. We test the ability of the 1P1
clustering to predict the dynamics of hillslopes in wet and
dry conditions. A possible limitation of a clustering based
on a hydrologic process is that the latter may be linked to
the conditions of the selected year. Hydrologic responses are,
by essence, nonlinear and may strongly change from year to
year. In addition, compared to the intrinsic characteristics of
the hillslope (elevation, topographic index, and land cover),
which are only variable if long periods of time are consid-
ered, the scale at which hydrologic processes change is much
shorter. Therefore, a clustering based on a hydrologic pro-
cess may be time-dependent. We previously quantified 1P1

using an average WY. In this section, we compare the re-
sponse of each zone to dry and wet conditions. We extend
our simulation from the WY 2015 to include the WYs 2016,
2017, and 2018, then, we analyze WYs 2017 and 2018. This
four-year simulation covers a relatively wet (2017) and dry
(2018) WY. The annual average precipitation in 2017 was
∼ 15 % higher than the annual average precipitation in 2015.
After this wet WY, the watershed is characterized by a dry
climate in 2018, with average precipitation almost 50 % be-
low the normal conditions. Figure 10 shows the distributions
of hillslope annual average values of precipitation and ET,
the hillslope 1P2 associated with the defined 1P1 zones,
and for both the wet WY 2017 and the dry WY 2018. We
have selected the key variables describing the hydroclimate
(precipitation), land surface processes (ET), and subsurface
hydrodynamics (1P2).

At first glance, for both dry and wet years and selected pro-
cesses, all zones remain distinct. Zone 1 with hillslopes with
low 1P1, located in low elevation, remains with low precip-
itation and high ET through both wet and dry years. Zone 3
describing hillslopes with high 1P1, has the highest precip-
itation in the area during both the wet and dry years. The
hillslopes of Zone 2, located in mid-elevation, have most of
their hydrologic dynamics in between those of Zone 1 and 3,
except their ET, which is the highest in the area due to the
presence of forests. Our results show that although we de-
fined hillslope clustering based on a hydrologic process dur-
ing an average WY, our clustering approach can predict the
similarity of the dynamics of these hillslopes in wet and dry
conditions. The 1P1 clustering is, therefore, robust in pre-
dicting similarity in hydrologic responses under both wet and
dry conditions.

5 Summary and conclusions

In this study, we use seasonal changes in groundwater levels
– termed 1P1 – to identify and categorize similar hillslopes.
1P1 is an important variable controlled by many hydrologic
processes, including land surface processes and hydrocli-
matic. We defined three zones based on their similarity in
1P1. For a test case site in the East River watershed, Zone 1
characterizes hillslopes with low 1P1; these hillslopes are
mostly located in low elevation areas, their main land cover
is grassland, and their ET is high because their WTDs are
shallow. Zone 3, on the opposite of Zone 1, is located in high
elevation areas and has high 1P1; the hydroclimate leads to
high snow accumulation and low ET. Hillslopes of Zone 3
are mostly bare soil. Zone 2 is in between these two zones
and most of the hillslopes of this zone are covered by forests.

We tested the performance of the proposed1P1 clustering
by comparing it with other existing clustering approaches.
This was based on elevation, land cover, aridity index, a topo-
graphic wetting index, and three clustering approaches based
on machine learning, which uses multiple data layers includ-
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Figure 10. Frequency distributions of hillslope annual average daily rates of precipitation and evapotranspiration (ET), and the hillslope
seasonal changes in groundwater levels (1P2), in 2017 (wet WY) and 2018 (dry WY) of the three zones derived from the WY 2015 1P1.

ing model inputs and outputs. Our results show that the 1P1
clustering is robust as it reasonably identifies and categorizes
hillslopes with similar elevation, land cover, hydroclimate
characteristics, land surface processes (ET and SWE), and
subsurface hydrodynamics (WTD, soil moisture, and 1P1).
In general, the other clustering approaches are good in iden-
tifying similarity in a single characteristic related to the vari-
able determining the clustering. Our work also demonstrates
that a clustering using machine learning, either based on top-
down (inputs) or bottom-up (outputs), performs well. Nev-
ertheless, these clustering approaches, like the 1P1, require
multiple data sets, each one with its own associated uncer-
tainty. We further demonstrate the robustness of the pro-
posed 1P1 clustering by testing its ability to predict hill-
slope responses to wet and dry hydrologic conditions. The
1P1 values are derived from a model and could be a lim-
itation for sites where simulated outputs are unavailable or
the spatio-temporal resolution of groundwater observations
are limited. In addition, one of the main limitations of the
proposed clustering is that due to the disconnection between
land surface processes and structures and the subsurface dy-
namics in some regions, this clustering approach cannot be
used in these conditions.

Future studies could aim to identify similar hillslopes us-
ing 1P1 and sophisticated machine learning approaches or
optimization procedures. Our results are limited to one catch-
ment, which has snow-dominated hydrology. Future studies
could expand the comparison shown here to other watersheds
to include additional clustering approaches and for different
hydroclimate and durations of time (for example, sub-annual
or multi-annual clustering).

Appendix A

Figure A1. (a) Measured groundwater levels in WY2016 at a sta-
tion located in blue in (b).

Code and data availability. The ParFlow-CLM integrated hydro-
logic model can be found here: https://parflow.org/#download
(ParFlow, 2022). Data supporting the findings of this study are
freely available on ESS-DIVE: https://ess-dive.lbl.gov (ESS-DIVE,
2022: Wainwright et al., 2022; https://doi.org/10.15485/1602034:
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