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STRUCTURE OF THE FLOW AND YAMADA POLYNOMIALS OF
CUBIC GRAPHS

IAN AGOL AND VYACHESLAV KRUSHKAL

Abstract. We establish a quadratic identity for the Yamada polynomial of ribbon
cubic graphs in R3 , extending the Tutte golden identity for planar cubic graphs.
An application is given to the structure of the flow polynomial of cubic graphs at
zero. The golden identity for the flow polynomial is conjectured to characterize
planarity of cubic graphs, and we prove this conjecture for a certain infinite family
of non-planar graphs.

Further, we establish exponential growth of the number of chromatic polynomials
of planar triangulations, answering a question of D. Treumann and E. Zaslow. The
structure underlying these results is the chromatic algebra, and more generally the
SO(3) topological quantum field theory.

1. Introduction

Using the interplay between classical and quantum polynomials of graphs and ideas
from topological quantum field theory (TQFT), we establish results on the structure
of the Yamada and flow polynomials of cubic graphs. It has been known since the
work of Birkhoff and Lewis in the 1940s [3] that the values (3 ±

√
5)/2 of the pa-

rameter play a special role in the theory of the chromatic polynomial χT of planar
triangulations. In a series of papers [19, 20] in the 1960s, Tutte established further
remarkable properties, including the golden identity. Formulated dually in terms of
the flow polynomial FG of planar cubic graphs G, it reads

(1.1) FG(φ+ 2) = φE FG(φ+ 1)2,

where E is the number of edges of G and φ denotes the golden ratio (1 +
√
5)/2.

The special role played by φ + 1, and more generally by the Beraha numbers [2]
Bn = 2 + 2cos(2π/n), was conceptually explained in [6] where these results were
placed in the context of SO(3) TQFT.

We show in Theorem 3.1 that Tutte’s identity (1.1) admits an extension to the Ya-
mada polynomial RG of ribbon cubic graphs G in R3 :

(1.2) RG(e
πi/5) = (−1)V−E φE RG(e

−2πi/5)2,

where V,E denote the number of vertices and edges of G, respectively. In fact, (1.2)
is a common extension of (1.1) and of the identity for links, relating the 2-colored
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2 IAN AGOL AND VYACHESLAV KRUSHKAL

Jones polynomial at eπi/10 and the square of the Jones polynomial at e−πi/5 [13,
Corollary 4.16], see section 3.

The Yamada polynomial [24] is a quantum invariant of ribbon graphs [15] in R3 ,
corresponding to the adjoint representation of Uq(so3). Conceptually, as discussed
in [6, Section 5] and also [13, Section 4.4], the reasons underlying the golden identity
are the level-rank duality between the SO(3)4 and the SO(4)3 TQFTs, and the
isomorphism so(4) ∼= so(3)× so(3).

Concretely, the Yamada polynomial is defined by the contraction-deletion rule and
the SO(3) Kauffman skein relation, see section 2.1 for details. For planar graphs G,
the Yamada polynomial coincides with a renormalization of the flow polynomial:

FG(Q) = (−1)V−E RG(q), where Q = q + 2 + q−1.

For non-planar graphs (and for knotted embeddings of planar graphs) the Yamada
polynomial carries a lot of information about the embedding of a ribbon graph in
3-space, and so in general the Yamada polynomial of a ribbon graph and the flow
polynomial of the underlying abstract graph are quite different.

In contrast with (1.1), in [1] we formulated a conjecture that the Tutte golden identity
for the flow polynomial characterizes planarity of cubic graphs:

Conjecture 1.1. For any cubic bridgeless graph G,

(1.3) (−φ)E FG((5−
√
5)/2) ≥ FG((3−

√
5)/2)2,

Moreover, G is planar if and only if (1.3) is an equality.

The inequality at the Galois conjugate values,

(1.4) FG(φ+ 2) ≤ φEFG(φ+ 1)2,

conjecturally also holds for any cubic graph G, with an equality if and only if G is
planar. In section 5 we prove the conjecture for a family of near-planar graphs (which
have a planar projection with a single crossing); Conjecture 1.1 in general remains
open.

It is interesting to note that as a consequence of (1.1), there is a relation between the
values of the flow polynomial of planar cubic graphs at 0 and 4:

(1.5) FG(0) ≡ 3E FG(4)
2 (mod 5),

see lemma 4.1. More generally, a congruence (mod 5) between the values RG(−1),
RG(1) implies an extension of (1.5) to all cubic graphs,

(1.6) FG(0) ≡ 3E RG(1)
2 (mod 5),

where the value RG(1) is also known as the Penrose number of G (defined up to a
sign), see section 4. Using these relations, we give an application to the structure
(mod 5) of the flow polynomial at zero for cubic graphs. This value is known [4] to
count Eulerian equivalence classes of totally cyclic orientations.
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Theorem 1.2. Let G be a cubic graph with V vertices. Then the value of the flow
polynomial of G at zero satisfies:

(1.7) FG(0) ≡ 0, 1, 4 (mod 5) if V/2 is even,

(1.8) FG(0) ≡ 0, 2, 3 (mod 5) if V/2 is odd.

Moreover, suppose G is a snark, that is a bridgeless cubic graph with chromatic index
4 . Then FG(0) ≡ 0 (mod 5) , and therefore FG(0) is divisible by 120 .

The proofs of the results in this paper are given in the context of the chromatic
algebra [6], and more generally the SO(3) TQFT. Using these methods, we also
answer a question of D. Treumann and E. Zaslow [16] about the asymptotics of the
number of chromatic polynomials of planar triangulations, motivated by their work
on Legendrian surfaces [17].

Theorem 1.3. The number of chromatic polynomials of planar triangulations with
n vertices grows exponentially in n.

An exponential upper bound is well-known, and it can be deduced from Tutte’s enu-
meration of planar triangulations [18]. We show that the chromatic algebra contains
a free semigroup, yielding an exponential lower bound, see section 6. Conceptually,
this may be viewed as an application of the Tits alternative for semigroups.

The key ingredients used throughout the paper – the chromatic algebra and the flow
category – are recalled in section 2. The identity (1.2) for the Yamada polynomial
is established in section 3. Section 4 discusses the structure of the flow polynomial
at zero (mod 5) and gives a proof of theorem 1.2. The proof of conjecture 5.1 for a
collection of near-planar graphs is given in section 5. Since the original Tutte golden
identity (1.1) serves as the motivation for several results in this paper, for convenience
of the reader we include its proof in section 7.

2. Graph polynomials, algebras and categories

This section summarizes the relevant background material and notation used in the
paper.

2.1. The chromatic and flow polynomials. The flow polynomial FG(Q) of a
graph G satisfies the contraction-deletion rule: given an edge e of G which is not a
bridge,

(2.1) FG(Q) = FG/e(Q)− FGre(Q).

If G contains a bridge, FG ≡ 0. The flow polynomial of a graph consisting of a single
vertex and n loops is defined to be Qn , and the polynomial is multiplicative with
respect to taking the disjoint union.
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For planar graphs G, the flow polynomial is essentially the chromatic polynomial
χG∗ of the dual graph G∗ :

(2.2) FG(Q) = Q−c χG∗(Q),

where c is the number of connected components of G. The flow polynomial was
defined by Tutte [21], and in fact both the chromatic and flow polynomials are spe-
cializations of the 2-variable Tutte polynomial TG(x, y); (2.2) is a special case of the
duality relation satisfied by the Tutte polynomial: TG(x, y) = TG∗(y, x). Like the
chromatic polynomial, the flow polynomial at positive integers admits a well-known
combinatorial interpretation: for n ∈ Z+ , FG(n) is the number of nowhere-zero flows
with values in an abelian group of order n, cf. [4].

2.2. The Yamada polynomial [24] RG(q) is an invariant of spatial ribbon graphs
G, i.e. ribbon graphs embedded in R3 . A ribbon graph is an abstract graph G with
an embedding into a surface S , so that the complement S rG is a disjoint union of
2-cells. Given such an embedding, a neighborhood of G in S is a compact surface
with boundary, which may be thought of as a choice of a 2-dimensional thickening of
G. Such a thickening of vertices and edges may be also encoded using cyclic ordering
of half-edges incident to each vertex.

The Yamada polynomial is defined using the contraction-deletion rule:

(2.3) RG(Q) = RG/e(Q) +RGre(Q),

and a version of the SO(3) Kauffman skein relations (cf. [7, Section 5]) applied to a
planar projection of G:

(2.4) R
G

∐
[

= (q + 1 + q−1)RG,

(2.5) R
[

= q R
[

+ R
[

+ q−1R
[

(2.6) R
[

= q−1R
[

+ R
[

+ q R
[

As usual in skein-theoretic definitions, the graphs in each of these equations differ
as shown, and are identical outside of the disk. If G has a bridge, RG is set to
be zero. The Yamada polynomial is multiplicative under taking disjoint union, and
RG∨H = −RGRH . RG is an invariant of the isotopy class of an embedding of
the ribbon graph G into R3 . (In terminology of [24, Theorem 2], RG is a regular

deformation invariant of a planar diagram of G; in [11] this equivalence relation is
called rigid vertex isotopy.)

Using just equations (2.4) – (2.6), one gets a (renormalized version of) the SO(3)
Kauffman polynomial of 4-regular ribbon graphs in R3 (cf. [11], [7]). Therefore the
Yamada polynomial may be thought of as the SO(3) Kauffman polynomial, extended
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to spatial ribbon graphs of arbitrary vertex degree using the contraction-deletion rule
(2.3).

If G is planar, then there are no crossings to resolve, and the Yamada polynomial
is determined by the contraction-deletion rule and its loop value (2.4); in this case
FG(Q) = (−1)V−E RG(q), where Q = q+2+q−1. In general, the Yamada polynomial
carries a lot of information about the embedding of G into R3 . For example, tying
a knot into an edge of G results (up to a normalization) in multiplication of RG by
the SO(3) invariant of the knot. Therefore, in general the Yamada polynomial of a
ribbon graph is quite different from the flow polynomial of the underlying abstract
graph.

To describe the TQFT context for the results of this paper, next we give a brief sum-
mary of the relevant material on the Temperley-Lieb algebra, the chromatic algebra
and their structure at roots of unity.

2.3. The Temperley-Lieb algebra. The Temperley-Lieb algebra, TLn , is an al-
gebra over C[d] consisting of linear combinations of 1-dimensional submanifolds,
considered up to isotopy rel boundary, in a rectangle. Each submanifold meets both
the top and the bottom of the rectangle in n points. Deleting a simple closed curve
has the effect of multiplying the element by d . Often d will be specialized to a com-
plex number, and in this case the algebra will be denoted TLd

n . The multiplication is
given by vertical stacking of rectangles. The standard generators of TL4 are shown
in figure 1.

1 = e1 =
1
d e2 = 1

d e3 =
1
d

Figure 1. Generators of TL4

The trace trd : TLd
n −→ C is defined on rectangular pictures by connecting the top

and bottom endpoints by disjoint arcs in the complement of the rectangle in the plane,
and then evaluating d#circles . The Hermitian product is defined by 〈a, b〉 = tr(a b),
where the involution − reflects pictures in a horizontal line and replaces coefficients
with their complex conjugates.

For special values of the parameter d , d = 2 cos
(

πk
n+1

)

, where k, n+ 1 are coprime,

TLd
n contains a non-trivial ideal, the trace radical consisting of the elements a such

that tr(ab) = 0 for all b ∈ TLd
n . This ideal is generated by the Jones-Wenzl projector

P (n) [23, 10]. At primitive roots of unity (k = 1) the Hermitian product descends to
a positive definite inner product on the quotient of TLd

n by the trace radical.
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2.4. The chromatic algebra Cn . The Temperley-Lieb algebra, discussed above,
underlies the construction of SU(2) TQFT. Next we briefly summarize the definition
and properties of the chromatic algebra, Cn , corresponding to SO(3) TQFT; we refer
the reader to [6, Section 2] for more details. (A similar notion, in a different context,
was considered in [12, Section 2].)

Cn is an algebra over C[Q], whose elements are formal linear combinations of planar
cubic graphs (considered up to isotopy rel boundary) in a rectangle, modulo the local
relations shown in figure 2. The first relation is the analogue of the contraction-
deletion relation for cubic graphs.

+ = + = 0.
,

Figure 2. Relations defining the chromatic algebra.

The intersection of a graph with the boundary of the rectangle consists of 2n points:
n points both at the top and the bottom, figure 3. It is convenient to allow 2-valent
vertices as well, and the value of a simple closed curve is set to be Q− 1. When Q
is specified to a complex number, the algebra is denoted CQ

n .

Figure 3. Examples of graphs in C3 .

The trace tr : CQ
n −→ C is defined by connecting the endpoints of G by disjoint arcs

in the complement of the rectangle in the plane and evaluating the flow polynomial of
the resulting graph at Q. (Or equivalently, the trace equals Q−1 times the chromatic
polynomial of the dual graph.) The trace is well-defined since the local relations
in figure 2 are precisely the relations defining the flow polynomial of a planar cubic
graph. The multiplication and the Hermitian product on CQ

n are defined analogously
to those in the Temperley-Lieb algebra.

There are two variations of the definition of the chromatic algebra, which are going
to be useful. First, rather than using just cubic graphs modulo relations in figure
2, Cn may also be defined using graphs with arbitrary vertex degrees, modulo the
contraction-deletion relation, see [6, Section 5].

Second, instead of using planar graphs, one may consider ribbon graphs in the cylin-
der D2× [0, 1], with n endpoints both at D2×0 and at D2×1, modulo the defining
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relations of the Yamada polynomial, (2.3) - (2.6). This is closely related to the
definition of the SO(3) BMW algebra (cf. [7, Section 5]). Using the relations

[ = q [ + [ + q−1 [ , [ = q−1 [ + [ + q [ ,

all crossings of a ribbon graph in the cylinder may be resolved to give an element of
Cn .

2.5. The map Cn −→ TL2n . Consider the homomorphism Φ: CQ
n −→ TLd

2n , where
Q = d2 , replacing each edge of a graph with the second Jones-Wenzl projector, and
resolving each vertex as shown in figure 4. Moreover, for a trivalent graph G there
is an overall factor dV/2 , where V is the number of vertices of G.

= −1
d

d1/2 ·

Figure 4. The homomorphism Φ: CQ
n −→ TLd

2n , Q = d2 .

Φ induces a well-defined homomorphism of algebras CQ
n −→ TLd

2n , where Q = d2 ,
and moreover it is trace-preserving: the diagram

(2.7) Cd2

n

tr
��

Φ
// TLd

2n

trd
��

C
=

// C

commutes [6, Lemmas 2.4, 2.5]. It follows that the pullback under Φ of the trace

radical in TLd is in the trace radical of Cd2 . As mentioned in section 2.3, the
trace radical in TLd is non-trivial precisely for the values d = 2 cos

(

πk
n+1

)

. The

elements of the trace radical in the chromatic algebra Cd2 are local relations (which
hold in addition to the contraction-deletion rule) on graphs which preserve the flow
polynomial, or equivalently the chromatic polynomial of the dual graph. When d = φ ,
the trace radical of the Temperley-Lieb algebra is generated by the Jones-Wenzl
projector P (4) . In particular, the linear Tutte relation in CQ

4 , where Q = φ+1 = φ2 ,

(2.8) [ = φ−1 [ − φ−2 [ ,

may be seen as a consequence of the structure of TLφ since it is mapped by Φ to
P (4) [6, Section 2, p. 721]. Similarly, the linear relation

(2.9) [ = −φ [ − φ2 [ ,

holds in CQ
4 , at the Galois conjugate value Q = (3−

√
5)/2.
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2.6. The flow category. To study the flow polynomial of non-planar graphs, one
may use abstract (not necessarily planar) graphs to define an algebra along the lines
of the Temperley-Lieb and chromatic algebras [12, 22]. Unlike the chromatic algebra
case, here one does not have a map to the Temperley-Lieb algebra, and the values
Q = d2, d = 2 cos

(

π
n+1

)

do not play a special role since these are artifacts of
planarity. We will not use the algebra structure; the notion of a category is more
suitable for our applications. The construction of the flow category is summarized
below, following [1, Section 3.1].

The objects of the flow category are finite ordered sets n = {1, . . . , n} . Consider
Gm,n = {finite graphs with m + n marked univalent vertices} , where the marked
vertices are divided into two ordered subsets of m, respectively n vertices. The
edges incident to the marked vertices are called boundary edges and the rest are
internal edges.

The space of morphisms FQ
m,n in the flow category between m, n consists of formal C-

linear combinations of graphs Gm,n , modulo the contraction-deletion relation which
applies to internal edges, figure 5. Graphs whose equivalence classes are elements
of FQ

m,n may be represented geometrically as in figure 5. (It is important to note
that unlike in sections 2.2, 2.4, over/under-crossings do not carry any information
here since the figure represents the abstract graph structure and not a specific planar
projection.) In addition, the loop value is set to be Q−1, and graphs with a univalent
vertex (other than the specified marked vertices) are set to be zero.

= −
e

Figure 5. The contraction-deletion rule in F4,2 .

A graph without marked vertices, and therefore no boundary edges, considered in
FQ

0,0
∼= C, evaluates to its flow polynomial at Q. The pairing FQ

k,m × FQ
m,n −→ FQ

k,n

is obtained by gluing along m boundary edges. For example, this pairing applied
to two graphs A ∈ G0,m , B ∈ Gm,0 gives 〈A,B〉 = the value of the flow polynomial
FA∪B(Q).

Given any graph representing an element of FQ
m,n , the contraction-deletion rule may

be used to eliminate all internal edges. For example, the four graphs in figure 6 form
a basis of FQ

0,4 . Three of these graphs, viewed relative to a fixed embedding of the
marked vertices in the boundary, are planar, and one, denoted e4 , is non-planar.
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e1 e2 e3 e4

Figure 6. A basis of FQ
0,4 .

It is convenient to introduce the notation CQ
m,n for the planar analogue of FQ

m,n .

That is, CQ
m,n consists of formal C-linear combinations of planar graphs with two or-

dered subsets of m, respectively n marked vertices, modulo the contraction-deletion
relation which applies to internal edges.

2.7. Conventions and notation. Unless stated otherwise, in the following sections
the flow polynomial of planar graphs and the Yamada polynomial of spatial ribbon
graphs will be considered in the context of the chromatic algebra. On the other hand,
the flow polynomial of abstract (non-planar) graphs does not fit in this context, and
it will be studied in the setting of the flow category.

It is convenient to introduce a short-hand notation for the evaluation of graph poly-
nomials. For example, when working with the Yamada polynomial of a graph G with
a specified crossing [ , the notation [ x will stand for the evaluation of RG(x).
Similarly, given two graphs G1, G2 in a disk with the same number of marked points
on the boundary, the notation 〈G1, G2〉Q will stand for the relevant pairing. For
example, in the context of the flow category, it will mean the value of the flow poly-
nomial FG1∪G2

at Q, where the union of G1, G2 is taken along the marked points on
the boundary.

3. The golden identity for the Yamada polynomial

The purpose of this section is to prove the extension (1.2) of the Tutte golden identity
(1.1) to the Yamada polynomial of cubic ribbon graphs in R3 . It is convenient to
allow vertices of degree 2 in the statement of the theorem:

Theorem 3.1. Let G be a ribbon graph in R3 , with vertices of degrees 2 and 3 .
Then

(3.1) RG(e
πi/5) = (−1)V−E φE′

RG(e
−2πi/5)2,

where E ′ = V3−χ(G) , V3 is the number of trivalent vertices of G, χ(G) is the Euler
characteristic, and φ = (1 +

√
5)/2 .

If there are no vertices of degree 2, then E ′ = E , and (3.1) is the same identity
as (1.2). Moreover, since both χ(G) and V3(G) are topological invariants of G,
introducing new 2-valent vertices (i.e. subdividing edges of G) does not affect (3.1).
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In the special case where G has no trivalent vertices, (3.1) gives an identity for the
SO(3) Kauffman polynomial of framed links in R3 , where the factor (−1)V−E φE′

equals 1. Then the left-hand side of (3.1) may be interpreted as the 2-colored
Jones polynomial of the link, and the right-hand side equals the square of the Jones
polynomial. Therefore for links, (3.1) matches the identity stated in [13, Corollary
4.16].

Proof of theorem 3.1. Recall from section 2.2 that if G is planar, one has FG(Q) =
(−1)V−E RG(q), where Q = q + 2 + q−1. In particular, for planar graphs G,

RG(e
2πi/10) = FG(φ+ 2), RG(e

−2πi/5) = FG(φ+ 1).

Therefore in this case, (3.1) is reduced to the Tutte golden identity (1.1).1 In the
general case of a ribbon graph G in the statement of the theorem, the proof is by
induction on the number c of crossings in a planar diagram of G. The base case
corresponds to planar graphs, discussed above.

As in section 2.7, the notation [ q in the proof below will denote the evaluation of
the Yamada polynomial at q .

By induction assume that graphs with fewer than c crossings satisfy (3.1). Consider
a graph with c crossings. For brevity of notation denote x := e2πi/10, y := e−2πi/5 .
Combining the skein relation (2.5) with the contraction-deletion rule (2.3), one has

(3.2) [
x
= e2πi/10 [

x
+ [

x
+ (e−2πi/10 − 1) [

x
.

Since the three graphs on the right have c− 1 crossings, (3.1) holds for them by the
inductive assumption, thus

(3.3) [
x
= (−1)V−EφE′

(

e2πi/10 [
2

y
− φ3[

2

y
+ (e−2πi/10 − 1) [

2

y

)

.

Because of the normalization sign (−1)V−E in the formula relating the flow and
Yamada polynomials of planar graphs, the linear relation (2.8) at q = e−2πi/5 (corre-
sponding to Q = φ+ 1) for the Yamada polynomial reads

(3.4) [
y
= −φ−1 [

y
+ φ−2 [

y
,

Applying this relation to [
y
in (3.3) gives

(3.5)

[
x
= (−1)V−EφE′

(

(e2πi/10 − φ) [
2

y
+ 2 [

y
[

y
+ (e−2πi/10 − φ) [

2

y

)

.

1Its proof is given in section 7.
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To prove the inductive step, one needs to show that (3.5) equals (−1)V−EφE′

[
2

y
.

Using the skein relation (2.5) and the contraction-deletion rule,

(3.6) (−1)V−EφE′

[
2

y
= (−1)V−EφE′

(

e−2πi/5 [
y
+ [

y
+ (e2πi/5 − 1) [

y

)2

.

To complete the proof, one replaces [
y
with (3.4), and checks that the resulting

expression matches (3.5). �

4. Structure of the flow polynomial (mod 5)

In this section we establish the (mod 5) version of the golden identity, and prove a
theorem stated in the introduction:

Theorem 1.2. Let G be a cubic graph with V vertices. Then the value of the flow
polynomial of G at zero satisfies:

(4.1) FG(0) ≡ 0, 1, 4 (mod 5) if V/2 is even,

(4.2) FG(0) ≡ 0, 2, 3 (mod 5) if V/2 is odd.

Moreover, suppose G is a snark, that is a bridgeless cubic graph with chromatic index
4 . Then FG(0) ≡ 0 (mod 5) , and therefore FG(0) is divisible by 120 .

Remark. [4, Theorem 1.2] interpreted |FG(0)| as the number of Eulerian equivalence
classes of totally cyclic orientations.

Proof of theorem 1.2. We start by stating the (mod 5) version of the golden identity:

Lemma 4.1. For planar cubic graphs G,

(4.3) FG(0) ≡ 3E FG(4)
2 (mod 5),

where E is the number of edges of G. More generally, let G be a ribbon cubic graph
in R3 . Then

(4.4) RG(−1) ≡ (−1)V−E 3E RG(1)
2 (mod 5).

Proof of (4.3). The flow polynomial FG(Q) for Q = (3 −
√
5)/2, (5 −

√
5)/2 takes

values in the ring R = Z[1+
√
5

2
]. Consider the ideal I generated by

√
5. Since

φ
√
5 = (5 +

√
5)/2 ∈ I , it follows that 1 + φ ≡ 4 (mod

√
5), and φ ≡ 3 (mod

√
5).

Plugging this into the golden identity (1.1), one gets FG(0) ≡ 3EFG(4)
2 (mod

√
5).

Since FG(0) and 3EFG(4)
2 are integers, the equivalence holds (mod 5). �

Proof of (4.4). The values of the Yamada polynomial RG(e
πi/5), RG(e

−2πi/5) are
elements of Z[ζ5], where ζ5 = eπi/5 . Consider the ideal generated by eπi/5 + 1.
Modulo this ideal, eπi/5 and e−πi/5 are equivalent to −1, e2πi/5 and e−2πi/5 are
equivalent to 1, and φ = eπi/5 + e−πi/5 ≡ 3. �
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Remark. Another proof of lemma 4.1 may be given by following (mod 5) the steps
of the proofs of the golden identities (1.1), (3.1). For example, the (mod 5) version
at Q = 4 of the Tutte linear relation (2.8) for the flow polynomial of planar graphs,

[
φ+1

= φ−1[
φ+1

− φ−2[
φ+1

, reads [
4
≡ 2 [

4
+ [

4
(mod 5).

Returning to the proof of theorem 1.2, recall that for planar graphs G, FG(Q) =
(−1)V−E RG(q), where Q = q + 2 + q−1. In particular, for planar G, RG(−1) =
(−1)V−EFG(0). The following identity holds for the flow polynomial of all (planar
and non-planar) graphs:

(4.5) [
0
= −[

0
− [

0
− [

0
.

This identity is checked by pairing both sides of (4.5) with the four basis elements

of the flow category FQ
0,4 in figure 6. This relation coincides with the skein relation

(2.5) for the Yamada polynomial, normalized by the factor (−1)V−E , at q = −1.
Thus RG(−1) = (−1)V−EFG(0) for all graphs G. Now it follows from (4.4) that for
any abstract (planar or non-planar) cubic graph G,

(4.6) FG(0) ≡ 3E RG(1)
2 (mod 5).

Remark. Up to a sign, the value RG(1) of the Yamada polynomial of ribbon cubic
graphs equals the Penrose number of G, introduced and studied in [14], [9, Section
2.3]. Indeed, the skein relation [9, Proposition 2], satisfied by the Penrose number,
coincides with the version of the skein relation (2.5) for (−1)V−ERG(1):

(4.7) [
1
= [

1
− [

1
.

It is an invariant of ribbon graphs where the ribbon structure affects only its sign, so
|RG(1)| is an invariant of abstract cubic graphs.

The congruence (4.6), the relation 3V = 2E for cubic graphs, and the fact that
perfect squares are congruent to 0, 1, or 4 (mod 5) conclude the proof of (4.1), (4.2).

To prove the last statement of the theorem, consider a planar diagram of a ribbon
cubic graph G. In other words, the graph is immersed in the plane, with some edge
crossings. The value RG(1) is independent of which strand is over/under in each
crossing. Using the recursion relation (4.7) at q = 1, one checks that (−1)V−ERG(1)
equals the signed count of 3-edge colorings of G, where the sign gets a (−1) factor
for each pair of edges that cross with a different color. This is invariant of regular
homotopy of the planar diagram, and it satisfies the skein relation: each 3-coloring
of the graph on the left in (4.7) corresponds (with the same sign) to a 3-coloring of
precisely one term on the right.

This implies that the Yamada polynomial of snarks at q = 1 is zero. (More gener-
ally, there is a well-known correspondence between 3-edge-colorings and 4-flows, cf.
Proposition 6.4.5 (ii) in [5], so for any cubic graph |RG(1)| ≤ FG(4), with equality for
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planar graphs.) Now the congruence FG(0) ≡ 0 (mod 5) follows from (4.6). Finally,
since the flow polynomial FG(Q) of a snark is divisible by

∏4
k=1(Q − k), FG(0) is

also divisible by 4!. �

5. Golden inequality for non-planar cubic graphs

Unlike the golden identity for the Yamada polynomial, Theorem 3.1, which holds for
any spatial cubic graph G, in [1] we stated a conjecture that the golden identity for
the flow polynomial characterizes planarity:

Conjecture 5.1. For any cubic bridgeless graph G,

(5.1) (−φ)E FG((5−
√
5)/2) ≥ FG((3−

√
5)/2)2,

Moreover, G is planar if and only if (5.1) is an equality.

In this section we develop methods to prove this conjecture for a certain family of
non-planar cubic graphs. We will call a graph G near-planar if it admits a planar
projection with a single crossing, for example K3,3 in figure 7. We will view such

graphs as G = [ ∪G where G is a planar graph in a disk (the complement in S2

of the shaded disk in figure 7) with 4 endpoints on the boundary circle.

Figure 7.

Considered as an element of the chromatic algebra CQ
2 , G may be expressed as a

linear combination of the three basis elements without internal edges. The coefficients
depend on Q; denote by α, β, γ their values at Q = (3 −

√
5)/2, figure 8. In the

following lemma the graph G outside a disk will be fixed throughout the proof,
and (as in section 2.7) the notation [

Q
will stand for the evaluation of the flow

polynomial at Q.

Lemma 5.2 (Golden identity for the flow polynomial of near-planar graphs).

Let G = [ ∪ G be a near-planar graph. Then the following identity holds for the
evaluations of the flow polynomial of G and of the two planar graphs obtained from
G by resolving the crossing:

(5.2) [
z
= (−φ−E)

(

[
2

w
+ φ−1[

w
[

w
+ [

2

w

)

,

where z = (5−
√
5)/2, w = (3−

√
5)/2 .
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G = α + β + γ

Figure 8. A planar cubic graph in CQ
2 , Q = (3 −

√
5)/2, expressed

as a linear combination of basis vectors.

We remark that this lemma is motivated by D.W. Hall’s version of the golden iden-
tity for constrained chromials [8]. The proof of lemma 5.2 relies on the following
statement.

Proposition 5.3. Fix Q 6= (3 ±
√
5)/2 , and let G = [ ∪ G be a near-planar

graph. Then

FG(Q) = [
Q

= − 1

Q2 − 3Q + 1
[

Q
+

Q− 1

Q2 − 3Q+ 1
[

Q
− 1

Q2 − 3Q+ 1
[

Q
.

The proof of proposition 5.3 amounts to checking that both sides have identical
evaluations when paired up with the three basis elements [ , [ and [ of the

chromatic algebra CQ
2 . (As discussed in section 2.5, the bilinear pairing 〈. , .〉Q on

CQ
2 is non-degenerate precisely for Q 6= (3±

√
5)/2.)

Proof of lemma 5.2. Setting Q to equal z = (5−
√
5)/2 in proposition 5.3 and using

the contraction-deletion rule, one has the following equality:

(5.3) [
z
=

φ

2
[

z
− φ−1

2
[

z
+

1

2
[

z

Equation (5.2) is obtained by applying the golden identity (1.1) to the three planar
cubic graphs on the right in (5.3). �

It follows from lemma 5.2 that conjecture 5.1 for near-planar graphs is equivalent to
the inequality

(5.4) [
2

w
≤ [

2

w
+ [

2

w
+ φ−1 [

w
[

w
.

Remark 5.1. It is interesting to note that the inequality (5.4) can be restated in
terms of the Yamada polynomial:

(5.5) F
[

(

3−
√
5

2

)

≤ R
[

(e4πi/5) R
[

(e4πi/5),

where the left-hand side is the evaluation of the flow polynomial of the abstract near-
planar graph, and the right-hand side is the product of the Yamada polynomials of
two spatial ribbon graphs corresponding to the two possible crossings. The proof
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of the equivalence of (5.4), (5.5) consists of applying the Yamada polynomial skein
relations to the crossings, and simplifying using the linear relation (2.9).

We are now in a position to give a reformulation of conjecture 5.1 for near-planar
graphs.

Lemma 5.4. Let G be a cubic graph in a disk, with 4 marked points on the bound-
ary. Considered in the chromatic algebra CQ

2 , Q = (3−
√
5)/2 , G = α[ +β[ +

γ[ . Conjecture 5.1 for near-planar graphs is equivalent to the inequality

(5.6) (1 + 3φ)αβ ≤ γ (α+ β + γ).

Proof. The term being squared on the right-hand side of (5.1) equals:

FG(w) = 〈[ , G〉w = 〈[ , α[ + β[ + γ[ 〉w

= −φ−1(α + β) + φ−2γ.

Analogous calculations for [ and [ in place of [ yield

−φ−1β + φ−2(α + γ), −φ−1α + φ−2(β + γ)

respectively. Equation (5.2) expresses the left-hand side in (5.1) in terms of [
w

and [
w
. Multiplying out the resulting expressions, (5.1) is seen to be equivalent

to (5.6). �

Next we establish the inequality (5.6) for an infinite family of near-planar graphs.

G G
′
:= G

Figure 9. A modification of G: addition of a peripheral edge (con-
necting two boundary edges of a cubic graph G).

Lemma 5.5. Conjecture 5.1 holds for the family of near-planar graphs G = [ ∪G ,

where G is inductively built by addition of peripheral edges.

Examples of graphs, considered in this lemma, are shown in figure 10. The graph
on the left, capped with [ , is K3,3 . An analogous proof shows that the inequality

(1.4) at the Galois conjugate values φ + 1, φ + 2 also holds for the same family of
graphs.
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Figure 10. Examples of graphs G in lemma 5.5.

Proof of lemma 5.5. It suffices to prove that the inequality (5.6) is preserved under
addition of a peripheral edge. We will also show that whenever the coefficients α, β, γ
are non-zero, they satisfy

(5.7) sign(α) = sign(β) = −sign(γ) = (−1)V/2,

where V is the number of vertices of G. The result of adding a peripheral edge to

G = α[ +β[ + γ[ is the graph G
′
shown in figure 11. (There are 4 possible

peripheral edges; by symmetry between α and β the proof below applies to each
one.)

G
′

= α + β + γ

Figure 11. A peripheral edge added to G.

Applications of the contraction-deletion rule give

G
′
= −α [ + (−φβ + γ) [ + (α− φ2γ) [ .

Denote the coefficients of G
′
by α′, β ′, γ′ :

(5.8) α′ = −α, β ′ = −φβ + γ, γ′ = α− φ2γ.

This gives an inductive proof of the statement (5.7). A direct calculation shows that

the desired inequality for the coefficients α′, β ′, γ′ of G
′
,

(5.9) (1 + 3φ)α′ β ′ ≤ γ′ (α′ + β ′ + γ′),

is equivalent to

(5.10) φ2 αβ ≤ γ (α+ β + γ).

Since sign(α)= sign(β), φ2 αβ ≤ (1+3φ)αβ .Therefore the assumed inequality (5.6)
for α, β, γ implies the inequality (5.9) for α′, β ′, γ′ .
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Finally, consider the last statement in conjecture 5.1. Note that the inequality
φ2 αβ ≤ (1+3φ)αβ in the previous paragraph is strict precisely when both α, β are
non-zero. Suppose the inductive construction of the family of graphs in the statement
of the lemma starts with [ , and consider the first time a horizontal peripheral

edge is added. Before this step, the graph G is of the form shown on the left in
figure 12: there is a vertical line in the disk, intersecting the graph G in a single
edge. The vector space of graphs in a disk with three boundary points, modulo the
defining local relations of the chromatic algebra, is 1-dimensional. Hence it is clear
that G = λ[ in C2 , and the coefficient β (defined in figure) 8 is zero. Then

G = H1 H2 = λ

Figure 12.

adding a horizontal edge gives a scalar multiple of the graph on the right in figure
12, resulting in non-zero coefficients α, β . At this point, the graph G = [ ∪ G
is still planar, since one of the crossing strands may be drawn within the rectangle
in the graph on the right in the figure. Since both coefficients α, β are non-zero,
the addition of any new peripheral edge after this step makes the inequality (5.9)
strict. (And of course the graph becomes non-planar.) It follows from (5.8) that all
further additions of edges increase α, β in absolute value, so the difference of the two
sides of the inequality (5.9) continues strictly increasing. Thus the inequality detects
planarity in this family of graphs. �

6. Exponential growth of the number of chromatic polynomials

In this section we prove theorem 1.3, working dually with the flow polynomial of pla-
nar cubic graphs. Consider CQ

1,3 , the vector space consisting of C-linear combinations
of planar cubic graphs in a rectangle with one marked point at the bottom and three
marked points at the top of the rectangle, modulo the relations in figure 2. (This
notion was also discussed at the end of section 2.6.) The loop value is Q− 1, and for
the remainder of this section we fix Q = (3−

√
5)/2. As discussed in section 2.5, at

this value of Q there is an additional local relation

(6.1) [ = −φ [ − φ2 [ .

CQ
1,3 is a module over the chromatic algebra; the action is by vertical concatenation,

matching three marked points on the boundary.
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e1 = e2 = A = B =

Figure 13. Elements e1, e2 ∈ CQ
1,3 and A,B ∈ CQ

3

For a generic Q, the vector space CQ
1,3 is 3-dimensional. At the specified value

Q = (3−
√
5)/2, the additional relation (6.1) reduces the dimension to two. Consider

its basis e1, e2 , shown on the left in figure 13, and let A,B be elements of C3 shown
on the right in the same figure. The action of A,B on e1, e2 is calculated in figures
14, 15.

Ae1= = −φ , Ae2 = = −φ −φ2

Figure 14. The action of A

Be1= =−φ2 −φ , Be2 = = −φ

Figure 15. The action of B

In other words, with respect to the chosen basis, A and B are represented by the
matrices

A = −φ

[

1 1
0 φ

]

, B = −φ

[

φ 0
1 1

]

.

The squares of these matrices are given by

A2 = φ2

[

1 φ2

0 φ2

]

, B2 = φ2

[

φ2 0
φ2 1

]

.

It follows from the ping pong lemma for semigroups that A2, B2 generate a free semi-
group in the chromatic algebra CQ

3 . (Consider vectors v with positive components
with respect to the basis e1, e2 , and let u = A2v, w = B2v . Then the components
of u, w satisfy u1 > u2, w1 < w2 .) Therefore words {W} of length n in A2, B2

represent 2n distinct elements in CQ
3 .
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Given two elements a, b ∈ CQ
1,3 , the product a · b (where b ∈ CQ

3,1 is obtained from b

by reflection in a horizontal line) is an element of CQ
1 . Here the product is given by

vertical concatenation, matching three marked boundary points. C1 is 1-dimensional,
and the trace CQ −→ C is an isomorphism. Denote 〈a, b〉 := tr(a · b). Note that the
Gram matrix 〈ei, ej〉i,j∈{1,2} is non-degenerate at Q = (3 −

√
5)/2. Therefore if two

words W1,W2 in A2, B2 are not equal as 2×2 matrices, then 〈W1ei, ej〉 6= 〈W2ei, ej〉
for some i, j ∈ {1, 2} . Words in A2, B2 are represented geometrically by planar
cubic graphs G in a rectangle, and (as discussed in section 2.4) 〈Wei, ej〉 is the flow
polynomial of the graph obtained by gluing ei on the bottom of G, ej on top, and
then taking the trace, i.e. connecting the endpoints by an arc in the plane, figure 16.

e1 BB AA A A e2

Figure 16. The flow polynomial of the pictured graph at (3−
√
5)/2

equals 〈A4B2e1, e2〉 . (The multiplication is represented horizontally,
rather than vertically, to conserve space.)

Since words of length n in A2, B2 give 2n distinct matrices, there are at least 2n/4

distinct values for one of the matrix entries. This translates into at least 2n/16 values
FG((3−

√
5)/2) of the flow polynomial of planar trivalent graphs G with n vertices.

�

Remark: After the paper was written, we discovered that one may also prove ex-
ponential growth at Q = 4, observing that A2e1 = 4e1, A

2e2 = e1 + e2, B
2e1 =

e1 + e2, B
2e2 = 4e2 , and completing the argument as above.

7. Appendix: A proof of the golden identity for planar cubic graphs

This section gives a variation of the proof [6] of the Tutte golden identity [20] for the
flow polynomial of planar cubic graphs:

(7.1) FG((5−
√
5)/2) = (−φ)−E FG((3−

√
5)/2)2,

We include a proof since this identity underlies several results in this paper. The
version of the proof presented here has more of a computational flavor; it might be
useful in numerical investigation of whether there are identities at other parameter
values.

Denote z := (5 −
√
5)/2, w := (3 −

√
5)/2. Let G be a graph in the disk with 4

marked points on the boundary, and consider its coefficients with respect to the usual



20 IAN AGOL AND VYACHESLAV KRUSHKAL

basis of CQ
2 (as in figure 8),

G = αQ [
Q
+ βQ [

Q
+ γQ [

Q

for Q = z, w . Flips [ ↔ [ acts transitively on connected planar cubic graphs
with a fixed number of vertices, and it suffices to prove that the golden identity for

[ , [ , and [ imply the golden identity for [ .

Consider the evaluations:

〈[ , G〉Q = αQ(Q− 1)2 + βQ(Q− 1) + γQ(Q− 1)2,

〈[ , G〉Q = αQ(Q− 1) + βQ(Q− 1)2 + γQ(Q− 1)2,

〈[ , G〉Q = αQ(Q− 1)(Q− 2) + γQ(Q− 1)(Q− 2)2,

〈[ , G〉Q = βQ(Q− 1)(Q− 2) + γQ(Q− 1)(Q− 2)2.

The golden identity for G = G, capped off with [ , [ , [ , [ , respectively,
is equivalent to quadratic equations on the coefficients at z and w :

(A) αzφ
−4 + βzφ

−2 + γzφ
−4 −

(

αwφ
−2 − βwφ

−1 + γwφ
−2
)2

= 0,

(B) αzφ
−2 + βzφ

−4 + γzφ
−4 −

(

−αwφ
−1 + βwφ

−2 + γwφ
−2
)2

= 0,

(C) − αzφ
−3 + γzφ

−4 − (αw − γwφ)
2 = 0,

(D) − βzφ
−3 + γzφ

−4 − (βw − γwφ)
2 = 0.

The left-hand sides of these four equations satisfy the relation (φ−2−φ−4)(A−B) =
C −D , so the validity of any three of them implies the fourth. The proof of (7.1) is
completed by comparing the loop values: [ z = [ 2

w . �
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