UCLA UCLA Previously Published Works

Title

The 2-sphere is Wecken for n-valued maps

Permalink

<https://escholarship.org/uc/item/0c52961f>

Journal

Journal of Fixed Point Theory and Applications, 21(2)

ISSN

1661-7738

Authors

Brown, Robert F Crabb, Michael Ericksen, Adam [et al.](https://escholarship.org/uc/item/0c52961f#author)

Publication Date

2019-06-01

DOI

10.1007/s11784-019-0691-1

Peer reviewed

Journal of Fixed Point Theory and Applications

The 2-sphere is Wecken for *n***-valued maps**

Robert F. Brow[n](http://orcid.org/0000-0003-0596-2869)_D, Michael Crabb, Adam Ericksen and Matthew Stimpson

Abstract. We prove the theorem of the title. Every *n*-valued map ϕ : S^2 - \circ $S²$ of the 2-sphere has the Wecken property for *n*-valued maps, that is, it is *n*-valued homotopic to a map with $N(\phi)$ fixed points, where $N(\phi)$ is the Nielsen number of ϕ .

Mathematics Subject Classification. 55M20, 54C60.

Keywords. n-valued map, Wecken property, Nielsen number, Lefschetz coincidence number, configuration space.

In 1942, Wecken proved $[10]$ that if X is a compact, connected triangulated manifold, with or without boundary, of dimension three or greater and $f: X \to X$ is a map, then f is homotopic to a map with exactly $N(f)$ fixed points, where $N(f)$ is the Nielsen number of f. Subsequently, spaces for which all self-maps have this property became known as *Wecken spaces*. One-dimensional manifolds are obviously Wecken. Jiang proved in [\[6](#page-6-1)] that no hyperbolic two-manifold, that is a two-manifold with a negative Euler characteristic, is Wecken. However, the seven non-hyperbolic two-manifolds are all Wecken, see [\[7](#page-6-2)].

In this paper, we explore the Wecken property in the setting of n -valued maps. An n-valued map is a lower semi-continuous and hence also upper semi-continuous (see [\[2](#page-5-0)]) set-valued function $\phi: X \to Y$ such that $\phi(x)$ is n points of Y for each $x \in X$. Schirmer defined the Nielsen number $N(\phi)$ for *n*-valued maps $\phi: X \to X$ of finite polyhedra in [\[8\]](#page-6-3) and proved in [\[9](#page-6-4)] that if X is a compact, connected triangulated manifold of dimension three or greater, then ϕ is *n*-valued homotopic to a map $\psi: X \to X$, that is, there exists an *n*-valued map $H: X \times [0,1] \to X$ such that $H(x,0) = \phi(x)$ and $H(x, 1) = \psi(x)$ for all $x \in X$, such that ψ has exactly $N(\phi)$ fixed points. Thus, X is *Wecken for* n-*valued maps*. For one-dimensional manifolds, the interval is obviously Wecken for n-valued maps and the same property was proved for the circle in [\[1\]](#page-5-1). The Wecken property fails for hyperbolic twomanifolds since, by Jiang's result, it fails when $n = 1$. It is then a natural problem to inquire whether the Wecken property holds for n-valued maps of the non-hyperbolic two-manifolds if $n > 1$.

The disc D^2 possesses this property: for $\phi: D^2 \to D^2$ define $H: D^2 \times$ $[0,1] \rightarrow D^2$ by $H(x,t) = \phi(tx)$, then $N(\phi) = n$ by Corollary 7.3 of [\[8\]](#page-6-3), so ϕ has the Wecken property. Goncalves and Guaschi established the Wecken property for n-valued maps of the projective plane in [\[4](#page-6-5)]. As its title states, the present paper proves that the two-sphere is also Wecken for n-valued maps. It is not known whether the remaining non-hyperbolic two-manifolds are Wecken for n-valued maps.

We thank the National Science Foundation for supporting the research of Adam Ericksen and Matthew Stimpson as a Research Experiences for Undergraduates project under the VIGRE program. Michael Kelly's suggestions improved our exposition.

If $f: S^2 \to S^2$ is a single-valued map, then it has long been known that it has the Wecken property. If f is of degree -1 then, by the Hopf Classification Theorem, f is homotopic to the antipodal map which is fixed point free. Otherwise, the same theorem implies that f is homotopic to the suspension of a self-map of the equator and thus homotopic to a map that fixes only the poles. A neighborhood of an arc connecting the poles has the structure of a cone with its vertex at one of the poles. Using the cone structure, the map may then be homotoped to a map with a single fixed point at that vertex, thus completing the proof. $¹$ $¹$ $¹$ </sup>

Since S^2 is simply connected, if $\phi: S^2 \to S^2$ is an *n*-valued map then, by the Splitting Lemma (see [\[2](#page-5-0)]), there are single-valued maps f_0, \ldots, f_{n-1} : S² $\rightarrow S^2$ such that $\phi(x) = \{f_0(x), \ldots, f_{n-1}(x)\}\$ for all $x \in S^2$.

Lemma 1. *Let* $f, g: S^2 \to S^2$ *be maps such that* $f(x) \neq g(x)$ *for all* $x \in$ S^2 , then their degrees are related by $deg(f) = -deg(g)$. Consequently, if $\phi = \{f_0, \ldots, f_{n-1}\}$: $S^2 \multimap S^2$ *is an n-valued map for* $n \geq 3$ *, then all the* $f_i: S^2 \to S^2$ are inessential maps and, therefore, $N(\phi) = n$.

Proof. Since $f(x) \neq g(x)$ for all $x \in S^2$, then the Lefschetz coincidence number

$$
L(f,g) = \sum_{q=0}^{2} (-1)^q \operatorname{trace}(D_q g^* D_q^{-1} f_*) = \deg(f) + \deg(g) = 0,
$$

where $D_q: H^{2-q}(S^2) \to H_q(S^2)$ is the Poincaré Duality isomorphism. Therefore, for f_i, f_j, f_k we have

$$
\deg(f_i) = -\deg(f_j) = \deg(f_k) = -\deg(f_i)
$$

so $\deg(f_i) = \deg(f_j) = \deg(f_k) = 0$. It follows that $N(\phi) = n$ by Corollary 7.3 of [\[8\]](#page-6-3).

Proposition [3](#page-3-0) below is Proposition $4(c)(i)$ $4(c)(i)$ of [\[4](#page-6-5)]. We include a proof so that the proof of the Wecken property for all *n*-valued maps of S^2 will be self-contained in this paper. Our proof is quite different from that in [\[4\]](#page-6-5).

Lemma 2. *Let* ϕ : $S^2 \to \mathbb{R}^2$ *be an* $(n-1)$ *-valued map, then* ϕ *is* $(n-1)$ *-valued homotopic to a constant map.*

¹The definition of f_0 in Proposition [5](#page-4-1) of this paper presents another, more explicit, construction of the required single-valued maps of *S*2.

Proof. As in [\[2](#page-5-0)], we view ϕ as the single-valued map $\phi: S^2 \to D_{n-1}(\mathbb{R}^2)$, where $D_{n-1}(\mathbb{R}^2)$ is the configuration space of unordered $(n-1)$ -tuples of distinct points of \mathbb{R}^2 . By Chapter IV, Theorem 1.1 of [\[3](#page-5-3)], $D_{n-1}(\mathbb{R}^2)$ is aspherical, that is, $\pi_q(D_{n-1}(\mathbb{R}^2)) = 0$ for all $q > 1$. Thus, in particular, the map $\phi: S^2 \to D_{n-1}(\mathbb{R}^2)$ is homotopic to a constant map. map $\phi: S^2 \to D_{n-1}(\mathbb{R}^2)$ is homotopic to a constant map.

Proposition 3. (Gonçalves–Guaschi) Let $\phi: S^2 \to S^2$ be an n-valued map, $n \geq 3$, then ϕ *is n-valued homotopic to a constant map and, thus, a map with* $n = N(\phi)$ *fixed points. Therefore,* ϕ *has the Wecken property for* n*valued maps.*

Proof. Let

$$
W = \{(u, v) \in S^2 \times S^2 \colon v \neq -u\}.
$$

Define $r: W \to SO(3)$ by letting $r(u, u)$ be the identity and for $(u, v) \in W$ with $v \neq u$, let $r(u, v)$ be the rotation about the axis perpendicular to u and v sending u to v, that is, $r(u, v)(u) = v$ for all $(u, v) \in W$.

Let $\phi = \{f_0, \ldots, f_{n-1}\}$ $\phi = \{f_0, \ldots, f_{n-1}\}$ $\phi = \{f_0, \ldots, f_{n-1}\}$: $S^2 \to S^2$. Since $n \geq 3$, then by Lemma 1 there exists $h: S^2 \times [0,1] \to S^2$ such that $h(x, 0) = f_0(x)$ and $h(x, 1) = c_0$ for all $x \in S^2$. A map $\rho: S^2 \times [0,1] \to SO(3)$ such that $\rho(x,0) = x$ and $h(x,t) =$ $\rho(x,t)(f_0(x))$ for all $x \in S^2$ and $t \in [0,1]$ may be constructed as follows. Since $S^2 \times [0,1]$ is compact, there exists an integer k such that if $|s-t| \leq \frac{1}{k}$, then $\delta(h(x, s), h(x, t))$ < 2 for all $x \in S^2$, where δ denotes the metric of \mathbb{R}^3 and S^2 is the unit sphere in \mathbb{R}^3 . In particular, if $\frac{j-1}{k}$ ≤ s ≤ $\frac{j}{k}$, then $h(x, s) \neq -h(x, \frac{j-1}{k})$ for all $x \in S^2$, so there is a rotation $r(h(x, \frac{j-1}{k}), h(x, s))$. Now, for $\frac{j-1}{k} \leq s \leq \frac{j}{k}$, let

$$
\rho(x,s) = r\left(h\left(x,\frac{j-1}{k}\right), h(x,s)\right) \cdot r\left(h\left(x,\frac{j-2}{k}\right), h\left(x,\frac{j-1}{k}\right)\right)
$$

$$
\cdots r\left(h\left(x,\frac{1}{k}\right), h\left(x,\frac{2}{k}\right)\right) \cdot r\left(h\left(x,\frac{1}{k}\right), h(x,0)\right)
$$

which defines the required map $\rho: S^2 \times [0,1] \rightarrow SO(3)$.

For $i = 0, \ldots, n-1$, define $h_i(x, t) = \rho(x, t)(f_i(x))$ and let

 $H(x, t) = \{h_0(x, t), h_1(x, t), \ldots, h_{n-1}(x, t)\}.$

Then, H is an *n*-valued homotopy because

$$
h_i(x,t) = \rho(x,t)(f_i(x)) \neq \rho(x,t)(f_j(x)) = h_j(x,t)
$$

for $i \neq j$. Now ϕ is homotopic to $\psi = \{g_0, \ldots, g_{n-1}\}\$ defined by $\psi(x) =$ $H(x, 1)$ such that $g_0(x) = c_0$ for all $x \in S^2$. Since ψ is an *n*-valued map, $g_i(x) \neq c_0$ for $i = 1, \ldots, n-1$ and, therefore, we have the $(n-1)$ -valued map

$$
\psi' = \{g_1, \dots, g_{n-1}\} : S^2 \to S^2 \setminus \{c_0\} = \mathbb{R}^2.
$$

By Lemma [2,](#page-2-2) there is an $(n-1)$ -valued homotopy $K' : S^2 \times [0,1] \to S^2 \setminus \{c_0\}$ such that $K'(x, 0) = \psi'(x)$ and $K'(x, 1) = \{c_1, \ldots, c_{n-1}\}\$ for all $x \in S^2$. The homotopy H followed by the *n*-valued homotopy $K: S^2 \times [0, 1] \rightarrow S^2$ defined by $K(x,t) = \{c_0\} \cup K'(x,t)$ is an *n*-valued homotopy of ϕ to a map which is constant and, therefore, has n fixed points. We conclude that ϕ has the Wecken property for *n*-valued maps with $n \geq 3$.

It remains to prove that 2-valued maps of S^2 satisfy the Wecken property. Let $\phi = \{f_0, f_1\}$: $S^2 \to S^2$ then, by Lemma [1,](#page-2-1) deg $(f_0) = -\deg(f_1)$. We define the *degree* of ϕ to be deg(ϕ) = |d|; which is well-defined letting d be the degree of either f_0 or f_1 .

The Hopf Classification Theorem, that is used to prove the Wecken property for single-valued maps of the sphere, can also be applied to understand 2-valued maps, as follows.

Proposition 4. Let $\phi, \psi \colon S^2 \to S^2$ be 2*-valued maps.* If $deg(\phi) = deg(\psi)$, *then* ϕ *and* ψ *are* 2*-valued homotopic.*

Proof. By Theorem 8 of [\[5](#page-6-6)] applied to maps of $S^2 \times [0, 1]$ to the configuration space $D_2(S^2)$, the 2-valued homotopy classes of 2-valued maps of S^2 are $[S^2, D_2(S^2)]$, the unbased homotopy classes of maps. There is a homotopy equivalence $RP^2 = S^2/\{\pm 1\} \rightarrow D_2(S^2)$ given by sending $x \in S^2$ to $\{x, -x\}$. The reason is that there is a homeomorphism from the open unit disc bundle $B(H^{\perp})$ in the orthogonal complement of the Hopf line bundle H in \mathbb{R}^{3} to $D_2(S^2)$. It is defined by sending $(\pm x, y)$, where $y \in \mathbb{R}^3$ is orthogonal to x and $||y|| < 1$ to $\{(tx, y), (-tx, y)\}$ where $t^2 + ||y||^2 = 1$. A map $a: S^2 \to RP^2$ lifts to two maps \tilde{a} , $-\tilde{a}$: $S^2 \rightarrow S^2$. Suppose $H: S^2 \times [0, 1] \rightarrow RP^2$ such that $H(x, 0) = a(x)$ and $H(x, 1) = b(x)$ for all $x \in S^2$ and b lifts to $\tilde{b}, -\tilde{b} : S^2 \to S^2$. If H is lifted to \tilde{H} : $S^2 \times [0, 1] \rightarrow S^2$ such that $\tilde{H}(x, 0) = \tilde{a}(x)$, then either $\tilde{H}(x, 1) = \tilde{b}(x)$ for all $x \in S^2$ or $\tilde{H}(x, 1) = -\tilde{b}(x)$ for all $x \in S^2$. Since, by the Hopf Classification Theorem, the homotopy classes of single-valued self-maps of $S²$ are determined by the degree, the homotopy class of a is determined by $|\deg(\tilde{a})|$. It follows that $[S^2, D_2(S^2)]$ is classified by the degree $|d|$.

Having established Proposition [4,](#page-4-0) to complete the proof of the Wecken property for *n*-valued maps of the 2-sphere, for each integer d we will exhibit a 2-valued map ϕ_d : $S^2 \to S^2$ of degree |d| that has $N(\phi_d)$ fixed points. If $\phi = \{f_0, f_1\}$: $S^2 \to S^2$, then $N(\phi) = N(f_0) + N(f_1)$ by Corollary 7.2 of [\[8\]](#page-6-3). For $f: S^2 \to S^2$, we have $N(f) = 1$ except that $N(f) = 0$ if $\deg(f) = -1$ so $N(\phi) = 1$ if deg(ϕ) = 1 and $N(\phi) = 2$ otherwise.

A constant 2-valued map $\phi_0: S^2 \to S^2$ has two fixed points. For $|d| = 1$, let $\phi_1 = \{f_0, f_1\}$ where f_0 is a small deformation of the identity map with one fixed point and f_1 is the antipodal map, so ϕ_1 has one fixed point.

Proposition 5. For each integer d with $|d| \geq 2$, there exists a 2-valued map $\phi_d = \{f_0, f_1\}$: $S^2 \multimap S^2$ *such that* $\deg(\phi_d) = |d|$ *and* ϕ_d *has* $N(\phi_d) = 2$ *fixed points.*

Proof. Choose a map $q: S^1 \to S^1$ of degree $d+1$. Let τ be the tangent bundle of S^2 , then $\mathbb{R} \oplus \tau$ is the trivial bundle with fiber $\mathbb{R} \oplus V$ where $V = \mathbb{R}^2$. We can think of selfmaps of S^2 as sections of the trivial sphere bundle $S(\mathbb{R} \oplus V)$ with the identity map corresponding to the constant section $(1, 0)$, where $0 \in V$ is the zero vector. Therefore, for $\phi_d = \{f_0, f_1\}$, the maps $f_0, f_1 : S^2 \to S^2$ will be specified by sections s_0 and s_1 with $s_0(x) \neq s_1(x)$ for all $x \in S^2$.

Consider the hemispheres

$$
S_{+} = \{(t, \mathbf{u}) \in S(\mathbb{R} \oplus V) | t \ge 0\}, \quad S_{-} = \{(t, \mathbf{u}) \in S(\mathbb{R} \oplus V) | t \le 0\}
$$

and choose orthogonal trivializations $\theta_{\pm} : \tau | S_{\pm} \to V$ over the hemispheres such that θ_+ restricts to the identity at the north pole (1, **0**) and θ_- is the identity at the south pole $(-1, 0)$. Let $\kappa: S(V) \to O(V)$, where $S(V)$ denotes the unit sphere in V and $O(V)$ the orthogonal transformations of V, be the clutching map on the equator: $\kappa(v)(\theta_+)_v = (\theta_-)_v$ for $v \in S(V)$.

We define the sections s_0 and s_1 as follows. For $v \in S(V)$ and $0 \le t \le 1$, let

$$
(1 \oplus \theta_+)s_0(t, (1-t^2)^{1/2}v) = (t, (1-t^2)^{1/2}q(v))
$$

$$
(1 \oplus \theta_+)s_1(t, (1-t^2)^{1/2}v) = (-t, -(1-t^2)^{1/2}q(v))
$$

and for $-1 \le t \le 0$ let

$$
(1 \oplus \theta_{-})s_0(t, (1-t^2)^{1/2}v) = (t, (1-t^2)^{1/2}\kappa(v)q(v))
$$

$$
(1 \oplus \theta_{-})s_1(t, (1-t^2)^{1/2}v) = (-t, -(1-t^2)^{1/2}\kappa(v)q(v)).
$$

By construction, $s_0(x) \neq s_1(x)$ for all $x \in S(\mathbb{R} \oplus V)$. Furthermore, $s_0(x) = (1, 0)$ if and only if $x = (1, 0)$ and $s_1(x) = (-1, 0)$ if and only if $x = (-1, 0)$. Thus, the north pole $(1, 0)$ is the single fixed point of f_0 and the south pole $(-1, 0)$ is the fixed point of f_1 .

In a neighborhood of its fixed point $(1, 0)$, the map f_0 can be described in suitable coordinates by the self-map of V that takes rv, for $r \geq 0$ and $v \in S(V)$, to $rv + rq(v)$ so that its fixed point is $\mathbf{0} \in V$. The Lefschetz index of f_0 is equal to the degree of the map $-q: S(V) \to S(V)$, that is, deg(q). We conclude that $1 + \deg(f_0) = \deg(q)$ so, since $\deg(q) = d+1$, then $\deg(f_0) = d$ and consequently $\deg(f_1) = -d$ by Lemma [1;](#page-2-1) thus $\deg(\phi_d) = |d|$.² \Box

Propositions [4](#page-4-0) and [5](#page-4-1) complete the proof of

Theorem 6. *The* 2*-sphere* S² *has the Wecken property for* n*-valued maps, that is, every n*-valued map ϕ : $S^2 \to S^2$ *is n*-valued homotopic to a map with $N(\phi)$ *fixed points.*

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Brown, R.: Fixed points of n-valued multimaps of the circle. Bull. Polish Acad. Sci. Math. **54**, 153–162 (2006)
- [2] Brown, R., Gonçalves, D.: On the topology of n -valued maps. Adv. Fixed Point Theory **8**, 205–220 (2018)
- [3] Fadell, E., Husseini, S.: Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics (2000)

²The same construction, with $V = \mathbb{R}^m, m \geq 2$, and q of degree $d + (-1)^m$, produces an explicit 2-valued map $\{f_0, f_1\}$: $S^m \to S^m$ with deg $f_0 = d$ and deg $f_1 = (-1)^{m+1}d$. For spheres S^m with $m > 2$ this construction may be used to realize the general result of Schirmer [\[9\]](#page-6-4).

- [4] Gonçalves, D., Guaschi, J.: Fixed points of *n*-valued maps on surfaces and the Wecken property—a configuration space approach. Sci. China Math. **60**, 1561–1574 (2017)
- [5] Gonçalves, D., Guaschi, J.: Fixed points of multimaps, the fixed point property and the case of surfaces—a braid approach. Indag. Math. **29**, 91–124 (2018)
- [6] Jiang, B.: Fixed points and braids, II. Math. Ann. **272**, 249–256 (1985)
- [7] Jiang, B.: The Wecken property of the projective plane. Nielsen Theory Reidemeister Torsion Banach Center Publ. **49**, 223–225 (1999)
- [8] Schirmer, H.: An index and Nielsen number for n-valued multifunctions. Fund. Math. **121**, 201–219 (1984)
- [9] Schirmer, H.: A minimum theorem for *n*-valued multifunctions. Fund. Math. **126**, 83–92 (1985)
- [10] Wecken, F.: Fixpunktklassen, III. Math. Ann. **118**, 544–577 (1942)

Robert F. Brown Department of Mathematics University of California Los Angeles CA90095-1555 USA e-mail: rfb@math.ucla.edu

Michael Crabb Institute of Mathematics University of Aberdeen Aberdeen AB24 3UE UK e-mail: m.crabb@abdn.ac.uk

Adam Ericksen Applied Materials 3050 Bowers Ave. Santa Clara CA95054 USA e-mail: adam.ericksen.phd@gmail.com

Matthew Stimpson Department of Sociology University of California Berkeley CA94720 USA e-mail: mstimp@berkeley.edu