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The 2-sphere is Wecken for n-valued maps

Robert F. Brown , Michael Crabb, Adam Ericksen and
Matthew Stimpson

Abstract.We prove the theorem of the title. Every n-valued map φ : S2 �
S2 of the 2-sphere has the Wecken property for n-valued maps, that is,
it is n-valued homotopic to a map with N(φ) fixed points, where N(φ)
is the Nielsen number of φ.
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In 1942, Wecken proved [10] that if X is a compact, connected trian-
gulated manifold, with or without boundary, of dimension three or greater
and f : X → X is a map, then f is homotopic to a map with exactly N(f)
fixed points, where N(f) is the Nielsen number of f . Subsequently, spaces
for which all self-maps have this property became known as Wecken spaces.
One-dimensional manifolds are obviously Wecken. Jiang proved in [6] that no
hyperbolic two-manifold, that is a two-manifold with a negative Euler char-
acteristic, is Wecken. However, the seven non-hyperbolic two-manifolds are
all Wecken, see [7].

In this paper, we explore the Wecken property in the setting of n-valued
maps. An n-valued map is a lower semi-continuous and hence also upper
semi-continuous (see [2]) set-valued function φ : X � Y such that φ(x) is n
points of Y for each x ∈ X. Schirmer defined the Nielsen number N(φ) for
n-valued maps φ : X � X of finite polyhedra in [8] and proved in [9] that
if X is a compact, connected triangulated manifold of dimension three or
greater, then φ is n-valued homotopic to a map ψ : X � X, that is, there
exists an n-valued map H : X × [0, 1] � X such that H(x, 0) = φ(x) and
H(x, 1) = ψ(x) for all x ∈ X, such that ψ has exactly N(φ) fixed points.
Thus, X is Wecken for n-valued maps. For one-dimensional manifolds, the
interval is obviously Wecken for n-valued maps and the same property was
proved for the circle in [1]. The Wecken property fails for hyperbolic two-
manifolds since, by Jiang’s result, it fails when n = 1. It is then a natural
problem to inquire whether the Wecken property holds for n-valued maps of
the non-hyperbolic two-manifolds if n > 1.
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The disc D2 possesses this property: for φ : D2 � D2 define H : D2 ×
[0, 1] � D2 by H(x, t) = φ(tx), then N(φ) = n by Corollary 7.3 of [8], so
φ has the Wecken property. Gonçalves and Guaschi established the Wecken
property for n-valued maps of the projective plane in [4]. As its title states,
the present paper proves that the two-sphere is also Wecken for n-valued
maps. It is not known whether the remaining non-hyperbolic two-manifolds
are Wecken for n-valued maps.

We thank the National Science Foundation for supporting the research
of Adam Ericksen and Matthew Stimpson as a Research Experiences for Un-
dergraduates project under the VIGRE program. Michael Kelly’s suggestions
improved our exposition.

If f : S2 → S2 is a single-valued map, then it has long been known that it
has the Wecken property. If f is of degree −1 then, by the Hopf Classification
Theorem, f is homotopic to the antipodal map which is fixed point free.
Otherwise, the same theorem implies that f is homotopic to the suspension
of a self-map of the equator and thus homotopic to a map that fixes only the
poles. A neighborhood of an arc connecting the poles has the structure of a
cone with its vertex at one of the poles. Using the cone structure, the map
may then be homotoped to a map with a single fixed point at that vertex,
thus completing the proof.1

Since S2 is simply connected, if φ : S2 � S2 is an n-valued map then, by
the Splitting Lemma (see [2]), there are single-valued maps f0, . . . , fn−1 : S2

→ S2 such that φ(x) = {f0(x), . . . , fn−1(x)} for all x ∈ S2.

Lemma 1. Let f, g : S2 → S2 be maps such that f(x) �= g(x) for all x ∈
S2, then their degrees are related by deg(f) = −deg(g). Consequently, if
φ = {f0, . . . , fn−1} : S2 � S2 is an n-valued map for n ≥ 3, then all the
fi : S2 → S2 are inessential maps and, therefore, N(φ) = n.

Proof. Since f(x) �= g(x) for all x ∈ S2, then the Lefschetz coincidence
number

L(f, g) =
2∑

q=0

(−1)q trace(Dqg
∗D−1

q f∗) = deg(f) + deg(g) = 0,

where Dq : H2−q(S2) → Hq(S2) is the Poincaré Duality isomorphism. There-
fore, for fi, fj , fk we have

deg(fi) = −deg(fj) = deg(fk) = −deg(fi)

so deg(fi) = deg(fj) = deg(fk) = 0. It follows that N(φ) = n by Corollary
7.3 of [8]. �

Proposition 3 below is Proposition 4(c)(i) of [4]. We include a proof so
that the proof of the Wecken property for all n-valued maps of S2 will be
self-contained in this paper. Our proof is quite different from that in [4].

Lemma 2. Let φ : S2 � R
2 be an (n−1)-valued map, then φ is (n−1)-valued

homotopic to a constant map.

1The definition of f0 in Proposition 5 of this paper presents another, more explicit, con-
struction of the required single-valued maps of S2.
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Proof. As in [2], we view φ as the single-valued map φ : S2 → Dn−1(R2),
where Dn−1(R2) is the configuration space of unordered (n − 1)-tuples of
distinct points of R

2. By Chapter IV, Theorem 1.1 of [3], Dn−1(R2) is as-
pherical, that is, πq(Dn−1(R2)) = 0 for all q > 1. Thus, in particular, the
map φ : S2 → Dn−1(R2) is homotopic to a constant map. �
Proposition 3. (Gonçalves–Guaschi) Let φ : S2 � S2 be an n-valued map,
n ≥ 3, then φ is n-valued homotopic to a constant map and, thus, a map
with n = N(φ) fixed points. Therefore, φ has the Wecken property for n-
valued maps.

Proof. Let

W = {(u, v) ∈ S2 × S2 : v �= −u}.

Define r : W → SO(3) by letting r(u, u) be the identity and for (u, v) ∈ W
with v �= u, let r(u, v) be the rotation about the axis perpendicular to u and
v sending u to v, that is, r(u, v)(u) = v for all (u, v) ∈ W .

Let φ = {f0, . . . , fn−1} : S2 � S2. Since n ≥ 3, then by Lemma 1 there
exists h : S2 × [0, 1] → S2 such that h(x, 0) = f0(x) and h(x, 1) = c0 for all
x ∈ S2. A map ρ : S2 × [0, 1] → SO(3) such that ρ(x, 0) = x and h(x, t) =
ρ(x, t)(f0(x)) for all x ∈ S2 and t ∈ [0, 1] may be constructed as follows.
Since S2 × [0, 1] is compact, there exists an integer k such that if |s − t| ≤ 1

k ,
then δ(h(x, s), h(x, t)) < 2 for all x ∈ S2, where δ denotes the metric of
R

3 and S2 is the unit sphere in R
3. In particular, if j−1

k ≤ s ≤ j
k , then

h(x, s) �= −h(x, j−1
k ) for all x ∈ S2, so there is a rotation r(h(x, j−1

k ), h(x, s)).
Now, for j−1

k ≤ s ≤ j
k , let

ρ(x, s) = r

(
h

(
x,

j − 1
k

)
, h(x, s)

)
· r

(
h

(
x,

j − 2
k

)
, h

(
x,

j − 1
k

))

· · · r
(

h

(
x,

1
k

)
, h

(
x,

2
k

))
· r

(
h

(
x,

1
k

)
, h(x, 0)

)

which defines the required map ρ : S2 × [0, 1] → SO(3).
For i = 0, . . . , n − 1, define hi(x, t) = ρ(x, t)(fi(x)) and let

H(x, t) = {h0(x, t), h1(x, t). . . . , hn−1(x, t)}.

Then, H is an n-valued homotopy because

hi(x, t) = ρ(x, t)(fi(x)) �= ρ(x, t)(fj(x)) = hj(x, t)

for i �= j. Now φ is homotopic to ψ = {g0, . . . , gn−1} defined by ψ(x) =
H(x, 1) such that g0(x) = c0 for all x ∈ S2. Since ψ is an n-valued map,
gi(x) �= c0 for i = 1, . . . , n−1 and, therefore, we have the (n−1)-valued map

ψ′ = {g1, . . . , gn−1} : S2 � S2 \ {c0} = R
2.

By Lemma 2, there is an (n−1)-valued homotopy K ′ : S2× [0, 1] � S2 \{c0}
such that K ′(x, 0) = ψ′(x) and K ′(x, 1) = {c1, . . . , cn−1} for all x ∈ S2. The
homotopy H followed by the n-valued homotopy K : S2 × [0, 1] � S2 defined
by K(x, t) = {c0} ∪ K ′(x, t) is an n-valued homotopy of φ to a map which
is constant and, therefore, has n fixed points. We conclude that φ has the
Wecken property for n-valued maps with n ≥ 3. �



   55 Page 4 of 6 R. F. Brown et al.

It remains to prove that 2-valued maps of S2 satisfy the Wecken prop-
erty. Let φ = {f0, f1} : S2 � S2 then, by Lemma 1, deg(f0) = −deg(f1). We
define the degree of φ to be deg(φ) = |d|; which is well-defined letting d be
the degree of either f0 or f1.

The Hopf Classification Theorem, that is used to prove the Wecken prop-
erty for single-valued maps of the sphere, can also be applied to understand
2-valued maps, as follows.

Proposition 4. Let φ, ψ : S2 � S2 be 2-valued maps. If deg(φ) = deg(ψ),
then φ and ψ are 2-valued homotopic.

Proof. By Theorem 8 of [5] applied to maps of S2× [0, 1] to the configuration
space D2(S2), the 2-valued homotopy classes of 2-valued maps of S2 are
[S2,D2(S2)], the unbased homotopy classes of maps. There is a homotopy
equivalence RP 2 = S2/{±1} → D2(S2) given by sending x ∈ S2 to {x,−x}.
The reason is that there is a homeomorphism from the open unit disc bundle
B(H⊥) in the orthogonal complement of the Hopf line bundle H in R

3 to
D2(S2). It is defined by sending (±x, y), where y ∈ R

3 is orthogonal to x
and ‖y‖ < 1 to {(tx, y), (−tx, y)} where t2 + ‖y‖2 = 1. A map a : S2 → RP 2

lifts to two maps ã,−ã : S2 → S2. Suppose H : S2 × [0, 1] → RP 2 such that
H(x, 0) = a(x) and H(x, 1) = b(x) for all x ∈ S2 and b lifts to b̃,−b̃ : S2 → S2.
If H is lifted to H̃ : S2 × [0, 1] → S2 such that H̃(x, 0) = ã(x), then either
H̃(x, 1) = b̃(x) for all x ∈ S2 or H̃(x, 1) = −b̃(x) for all x ∈ S2. Since, by the
Hopf Classification Theorem, the homotopy classes of single-valued self-maps
of S2 are determined by the degree, the homotopy class of a is determined
by |deg(ã)|. It follows that [S2,D2(S2)] is classified by the degree |d|. �

Having established Proposition 4, to complete the proof of the Wecken
property for n-valued maps of the 2-sphere, for each integer d we will exhibit
a 2-valued map φd : S2 � S2 of degree |d| that has N(φd) fixed points. If
φ = {f0, f1} : S2 � S2, then N(φ) = N(f0) + N(f1) by Corollary 7.2 of [8].
For f : S2 → S2, we have N(f) = 1 except that N(f) = 0 if deg(f) = −1 so
N(φ) = 1 if deg(φ) = 1 and N(φ) = 2 otherwise.

A constant 2-valued map φ0 : S2 � S2 has two fixed points. For |d| = 1,
let φ1 = {f0, f1} where f0 is a small deformation of the identity map with
one fixed point and f1 is the antipodal map, so φ1 has one fixed point.

Proposition 5. For each integer d with |d| ≥ 2, there exists a 2-valued map
φd = {f0, f1} : S2 � S2 such that deg(φd) = |d| and φd has N(φd) = 2 fixed
points.

Proof. Choose a map q : S1 → S1 of degree d+1. Let τ be the tangent bundle
of S2, then R⊕τ is the trivial bundle with fiber R⊕V where V = R

2. We can
think of selfmaps of S2 as sections of the trivial sphere bundle S(R⊕V ) with
the identity map corresponding to the constant section (1,0), where 0 ∈ V is
the zero vector. Therefore, for φd = {f0, f1}, the maps f0, f1 : S2 → S2 will
be specified by sections s0 and s1 with s0(x) �= s1(x) for all x ∈ S2.

Consider the hemispheres

S+ = {(t,u) ∈ S(R ⊕ V ) | t ≥ 0}, S− = {(t,u) ∈ S(R ⊕ V ) | t ≤ 0}
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and choose orthogonal trivializations θ± : τ |S± → V over the hemispheres
such that θ+ restricts to the identity at the north pole (1,0) and θ− is the
identity at the south pole (−1,0). Let κ : S(V ) → O(V ), where S(V ) denotes
the unit sphere in V and O(V ) the orthogonal transformations of V , be the
clutching map on the equator: κ(v)(θ+)v = (θ−)v for v ∈ S(V ).

We define the sections s0 and s1 as follows. For v ∈ S(V ) and 0 ≤ t ≤ 1,
let

(1 ⊕ θ+)s0(t, (1 − t2)1/2v) = (t, (1 − t2)1/2q(v))

(1 ⊕ θ+)s1(t, (1 − t2)1/2v) = (−t,−(1 − t2)1/2q(v))

and for −1 ≤ t ≤ 0 let

(1 ⊕ θ−)s0(t, (1 − t2)1/2v) = (t, (1 − t2)1/2κ(v)q(v))

(1 ⊕ θ−)s1(t, (1 − t2)1/2v) = (−t,−(1 − t2)1/2κ(v)q(v)).

By construction, s0(x) �= s1(x) for all x ∈ S(R ⊕ V ). Furthermore,
s0(x) = (1,0) if and only if x = (1,0) and s1(x) = (−1,0) if and only if
x = (−1,0). Thus, the north pole (1,0) is the single fixed point of f0 and the
south pole (−1,0) is the fixed point of f1.

In a neighborhood of its fixed point (1,0), the map f0 can be described
in suitable coordinates by the self-map of V that takes rv, for r ≥ 0 and
v ∈ S(V ), to rv + rq(v) so that its fixed point is 0 ∈ V . The Lefschetz index
of f0 is equal to the degree of the map −q : S(V ) → S(V ), that is, deg(q). We
conclude that 1+deg(f0) = deg(q) so, since deg(q) = d+1, then deg(f0) = d
and consequently deg(f1) = −d by Lemma 1; thus deg(φd) = |d|.2 �

Propositions 4 and 5 complete the proof of

Theorem 6. The 2-sphere S2 has the Wecken property for n-valued maps,
that is, every n-valued map φ : S2 � S2 is n-valued homotopic to a map with
N(φ) fixed points.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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