

The 2-sphere is Wecken for *n*-valued maps

Robert F. Brown, Michael Crabb, Adam Ericksen and Matthew Stimpson

Abstract. We prove the theorem of the title. Every n-valued map $\phi \colon S^2 \multimap S^2$ of the 2-sphere has the Wecken property for n-valued maps, that is, it is n-valued homotopic to a map with $N(\phi)$ fixed points, where $N(\phi)$ is the Nielsen number of ϕ .

Mathematics Subject Classification. 55M20, 54C60.

Keywords. *n*-valued map, Wecken property, Nielsen number, Lefschetz coincidence number, configuration space.

In 1942, Wecken proved [10] that if X is a compact, connected triangulated manifold, with or without boundary, of dimension three or greater and $f \colon X \to X$ is a map, then f is homotopic to a map with exactly N(f) fixed points, where N(f) is the Nielsen number of f. Subsequently, spaces for which all self-maps have this property became known as Wecken spaces. One-dimensional manifolds are obviously Wecken. Jiang proved in [6] that no hyperbolic two-manifold, that is a two-manifold with a negative Euler characteristic, is Wecken. However, the seven non-hyperbolic two-manifolds are all Wecken, see [7].

In this paper, we explore the Wecken property in the setting of n-valued maps. An n-valued map is a lower semi-continuous and hence also upper semi-continuous (see [2]) set-valued function $\phi \colon X \multimap Y$ such that $\phi(x)$ is n points of Y for each $x \in X$. Schirmer defined the Nielsen number $N(\phi)$ for n-valued maps $\phi \colon X \multimap X$ of finite polyhedra in [8] and proved in [9] that if X is a compact, connected triangulated manifold of dimension three or greater, then ϕ is n-valued homotopic to a map $\psi \colon X \multimap X$, that is, there exists an n-valued map $H \colon X \times [0,1] \multimap X$ such that $H(x,0) = \phi(x)$ and $H(x,1) = \psi(x)$ for all $x \in X$, such that ψ has exactly $N(\phi)$ fixed points. Thus, X is Wecken for n-valued maps. For one-dimensional manifolds, the interval is obviously Wecken for n-valued maps and the same property was proved for the circle in [1]. The Wecken property fails for hyperbolic two-manifolds since, by Jiang's result, it fails when n = 1. It is then a natural problem to inquire whether the Wecken property holds for n-valued maps of the non-hyperbolic two-manifolds if n > 1.

Published online: 24 April 2019

Birkhäuser

The disc D^2 possesses this property: for $\phi \colon D^2 \multimap D^2$ define $H \colon D^2 \times [0,1] \multimap D^2$ by $H(x,t) = \phi(tx)$, then $N(\phi) = n$ by Corollary 7.3 of [8], so ϕ has the Wecken property. Gonçalves and Guaschi established the Wecken property for n-valued maps of the projective plane in [4]. As its title states, the present paper proves that the two-sphere is also Wecken for n-valued maps. It is not known whether the remaining non-hyperbolic two-manifolds are Wecken for n-valued maps.

We thank the National Science Foundation for supporting the research of Adam Ericksen and Matthew Stimpson as a Research Experiences for Undergraduates project under the VIGRE program. Michael Kelly's suggestions improved our exposition.

If $f \colon S^2 \to S^2$ is a single-valued map, then it has long been known that it has the Wecken property. If f is of degree -1 then, by the Hopf Classification Theorem, f is homotopic to the antipodal map which is fixed point free. Otherwise, the same theorem implies that f is homotopic to the suspension of a self-map of the equator and thus homotopic to a map that fixes only the poles. A neighborhood of an arc connecting the poles has the structure of a cone with its vertex at one of the poles. Using the cone structure, the map may then be homotoped to a map with a single fixed point at that vertex, thus completing the proof. 1

Since S^2 is simply connected, if $\phi: S^2 \multimap S^2$ is an *n*-valued map then, by the Splitting Lemma (see [2]), there are single-valued maps $f_0, \ldots, f_{n-1}: S^2 \to S^2$ such that $\phi(x) = \{f_0(x), \ldots, f_{n-1}(x)\}$ for all $x \in S^2$.

Lemma 1. Let $f,g: S^2 \to S^2$ be maps such that $f(x) \neq g(x)$ for all $x \in S^2$, then their degrees are related by $\deg(f) = -\deg(g)$. Consequently, if $\phi = \{f_0, \ldots, f_{n-1}\}: S^2 \multimap S^2$ is an n-valued map for $n \geq 3$, then all the $f_i: S^2 \to S^2$ are inessential maps and, therefore, $N(\phi) = n$.

Proof. Since $f(x) \neq g(x)$ for all $x \in S^2$, then the Lefschetz coincidence number

$$L(f,g) = \sum_{q=0}^{2} (-1)^q \operatorname{trace}(D_q g^* D_q^{-1} f_*) = \deg(f) + \deg(g) = 0,$$

where $D_q: H^{2-q}(S^2) \to H_q(S^2)$ is the Poincaré Duality isomorphism. Therefore, for f_i, f_i, f_k we have

$$\deg(f_i) = -\deg(f_j) = \deg(f_k) = -\deg(f_i)$$

so $\deg(f_i) = \deg(f_j) = \deg(f_k) = 0$. It follows that $N(\phi) = n$ by Corollary 7.3 of [8].

Proposition 3 below is Proposition 4(c)(i) of [4]. We include a proof so that the proof of the Wecken property for all n-valued maps of S^2 will be self-contained in this paper. Our proof is quite different from that in [4].

Lemma 2. Let $\phi: S^2 \longrightarrow \mathbb{R}^2$ be an (n-1)-valued map, then ϕ is (n-1)-valued homotopic to a constant map.

¹The definition of f_0 in Proposition 5 of this paper presents another, more explicit, construction of the required single-valued maps of S^2 .

Proof. As in [2], we view ϕ as the single-valued map $\phi \colon S^2 \to D_{n-1}(\mathbb{R}^2)$, where $D_{n-1}(\mathbb{R}^2)$ is the configuration space of unordered (n-1)-tuples of distinct points of \mathbb{R}^2 . By Chapter IV, Theorem 1.1 of [3], $D_{n-1}(\mathbb{R}^2)$ is aspherical, that is, $\pi_q(D_{n-1}(\mathbb{R}^2)) = 0$ for all q > 1. Thus, in particular, the map $\phi \colon S^2 \to D_{n-1}(\mathbb{R}^2)$ is homotopic to a constant map.

Proposition 3. (Gonçalves–Guaschi) Let $\phi: S^2 \multimap S^2$ be an n-valued map, $n \geq 3$, then ϕ is n-valued homotopic to a constant map and, thus, a map with $n = N(\phi)$ fixed points. Therefore, ϕ has the Wecken property for n-valued maps.

Proof. Let

$$W = \{(u, v) \in S^2 \times S^2 : v \neq -u\}.$$

Define $r: W \to SO(3)$ by letting r(u, u) be the identity and for $(u, v) \in W$ with $v \neq u$, let r(u, v) be the rotation about the axis perpendicular to u and v sending u to v, that is, r(u, v)(u) = v for all $(u, v) \in W$.

Let $\phi = \{f_0, \ldots, f_{n-1}\}: S^2 \multimap S^2$. Since $n \geq 3$, then by Lemma 1 there exists $h: S^2 \times [0,1] \to S^2$ such that $h(x,0) = f_0(x)$ and $h(x,1) = c_0$ for all $x \in S^2$. A map $\rho: S^2 \times [0,1] \to SO(3)$ such that $\rho(x,0) = x$ and $h(x,t) = \rho(x,t)(f_0(x))$ for all $x \in S^2$ and $t \in [0,1]$ may be constructed as follows. Since $S^2 \times [0,1]$ is compact, there exists an integer k such that if $|s-t| \leq \frac{1}{k}$, then $\delta(h(x,s),h(x,t)) < 2$ for all $x \in S^2$, where δ denotes the metric of \mathbb{R}^3 and S^2 is the unit sphere in \mathbb{R}^3 . In particular, if $\frac{j-1}{k} \leq s \leq \frac{j}{k}$, then $h(x,s) \neq -h(x,\frac{j-1}{k})$ for all $x \in S^2$, so there is a rotation $r(h(x,\frac{j-1}{k}),h(x,s))$. Now, for $\frac{j-1}{k} \leq s \leq \frac{j}{k}$, let

$$\rho(x,s) = r\left(h\left(x,\frac{j-1}{k}\right),h(x,s)\right) \cdot r\left(h\left(x,\frac{j-2}{k}\right),h\left(x,\frac{j-1}{k}\right)\right)$$
$$\cdots r\left(h\left(x,\frac{1}{k}\right),h\left(x,\frac{2}{k}\right)\right) \cdot r\left(h\left(x,\frac{1}{k}\right),h(x,0)\right)$$

which defines the required map $\rho \colon S^2 \times [0,1] \to SO(3)$.

For $i=0,\ldots,n-1$, define $h_i(x,t)=\rho(x,t)(f_i(x))$ and let

$$H(x,t) = \{h_0(x,t), h_1(x,t), \dots, h_{n-1}(x,t)\}.$$

Then, H is an n-valued homotopy because

$$h_i(x,t) = \rho(x,t)(f_i(x)) \neq \rho(x,t)(f_j(x)) = h_j(x,t)$$

for $i \neq j$. Now ϕ is homotopic to $\psi = \{g_0, \ldots, g_{n-1}\}$ defined by $\psi(x) = H(x,1)$ such that $g_0(x) = c_0$ for all $x \in S^2$. Since ψ is an n-valued map, $g_i(x) \neq c_0$ for $i = 1, \ldots, n-1$ and, therefore, we have the (n-1)-valued map

$$\psi' = \{g_1, \dots, g_{n-1}\} \colon S^2 \multimap S^2 \setminus \{c_0\} = \mathbb{R}^2.$$

By Lemma 2, there is an (n-1)-valued homotopy $K'\colon S^2\times [0,1] \multimap S^2\setminus \{c_0\}$ such that $K'(x,0)=\psi'(x)$ and $K'(x,1)=\{c_1,\ldots,c_{n-1}\}$ for all $x\in S^2$. The homotopy H followed by the n-valued homotopy $K\colon S^2\times [0,1] \multimap S^2$ defined by $K(x,t)=\{c_0\}\cup K'(x,t)$ is an n-valued homotopy of ϕ to a map which is constant and, therefore, has n fixed points. We conclude that ϕ has the Wecken property for n-valued maps with $n\geq 3$.

It remains to prove that 2-valued maps of S^2 satisfy the Wecken property. Let $\phi = \{f_0, f_1\}: S^2 \multimap S^2$ then, by Lemma 1, $\deg(f_0) = -\deg(f_1)$. We define the *degree* of ϕ to be $\deg(\phi) = |d|$; which is well-defined letting d be the degree of either f_0 or f_1 .

The Hopf Classification Theorem, that is used to prove the Wecken property for single-valued maps of the sphere, can also be applied to understand 2-valued maps, as follows.

Proposition 4. Let $\phi, \psi \colon S^2 \multimap S^2$ be 2-valued maps. If $\deg(\phi) = \deg(\psi)$, then ϕ and ψ are 2-valued homotopic.

Proof. By Theorem 8 of [5] applied to maps of $S^2 \times [0,1]$ to the configuration space $D_2(S^2)$, the 2-valued homotopy classes of 2-valued maps of S^2 are $[S^2, D_2(S^2)]$, the unbased homotopy classes of maps. There is a homotopy equivalence $RP^2 = S^2/\{\pm 1\} \to D_2(S^2)$ given by sending $x \in S^2$ to $\{x, -x\}$. The reason is that there is a homeomorphism from the open unit disc bundle $B(H^\perp)$ in the orthogonal complement of the Hopf line bundle H in \mathbb{R}^3 to $D_2(S^2)$. It is defined by sending $(\pm x, y)$, where $y \in \mathbb{R}^3$ is orthogonal to x and $\|y\| < 1$ to $\{(tx,y),(-tx,y)\}$ where $t^2 + \|y\|^2 = 1$. A map $a: S^2 \to RP^2$ lifts to two maps $\tilde{a}, -\tilde{a}: S^2 \to S^2$. Suppose $H: S^2 \times [0,1] \to RP^2$ such that H(x,0) = a(x) and H(x,1) = b(x) for all $x \in S^2$ and b lifts to $\tilde{b}, -\tilde{b}: S^2 \to S^2$. If H is lifted to $\tilde{H}: S^2 \times [0,1] \to S^2$ such that $\tilde{H}(x,0) = \tilde{a}(x)$, then either $\tilde{H}(x,1) = \tilde{b}(x)$ for all $x \in S^2$ or $\tilde{H}(x,1) = -\tilde{b}(x)$ for all $x \in S^2$. Since, by the Hopf Classification Theorem, the homotopy classes of single-valued self-maps of S^2 are determined by the degree, the homotopy class of a is determined by $|\deg(\tilde{a})|$. It follows that $[S^2, D_2(S^2)]$ is classified by the degree |d|. \square

Having established Proposition 4, to complete the proof of the Wecken property for n-valued maps of the 2-sphere, for each integer d we will exhibit a 2-valued map $\phi_d \colon S^2 \multimap S^2$ of degree |d| that has $N(\phi_d)$ fixed points. If $\phi = \{f_0, f_1\} \colon S^2 \multimap S^2$, then $N(\phi) = N(f_0) + N(f_1)$ by Corollary 7.2 of [8]. For $f \colon S^2 \to S^2$, we have N(f) = 1 except that N(f) = 0 if $\deg(f) = -1$ so $N(\phi) = 1$ if $\deg(\phi) = 1$ and $N(\phi) = 2$ otherwise.

A constant 2-valued map $\phi_0: S^2 \multimap S^2$ has two fixed points. For |d| = 1, let $\phi_1 = \{f_0, f_1\}$ where f_0 is a small deformation of the identity map with one fixed point and f_1 is the antipodal map, so ϕ_1 has one fixed point.

Proposition 5. For each integer d with $|d| \ge 2$, there exists a 2-valued map $\phi_d = \{f_0, f_1\} \colon S^2 \multimap S^2$ such that $\deg(\phi_d) = |d|$ and ϕ_d has $N(\phi_d) = 2$ fixed points.

Proof. Choose a map $q: S^1 \to S^1$ of degree d+1. Let τ be the tangent bundle of S^2 , then $\mathbb{R} \oplus \tau$ is the trivial bundle with fiber $\mathbb{R} \oplus V$ where $V = \mathbb{R}^2$. We can think of selfmaps of S^2 as sections of the trivial sphere bundle $S(\mathbb{R} \oplus V)$ with the identity map corresponding to the constant section $(1, \mathbf{0})$, where $\mathbf{0} \in V$ is the zero vector. Therefore, for $\phi_d = \{f_0, f_1\}$, the maps $f_0, f_1: S^2 \to S^2$ will be specified by sections s_0 and s_1 with $s_0(x) \neq s_1(x)$ for all $x \in S^2$.

Consider the hemispheres

$$S_{+} = \{(t, \mathbf{u}) \in S(\mathbb{R} \oplus V) \, | \, t \geq 0\}, \quad S_{-} = \{(t, \mathbf{u}) \in S(\mathbb{R} \oplus V) \, | \, t \leq 0\}$$

and choose orthogonal trivializations $\theta_{\pm} : \tau | S_{\pm} \to V$ over the hemispheres such that θ_{+} restricts to the identity at the north pole $(1, \mathbf{0})$ and θ_{-} is the identity at the south pole $(-1, \mathbf{0})$. Let $\kappa : S(V) \to O(V)$, where S(V) denotes the unit sphere in V and O(V) the orthogonal transformations of V, be the clutching map on the equator: $\kappa(v)(\theta_{+})_{v} = (\theta_{-})_{v}$ for $v \in S(V)$.

We define the sections s_0 and s_1 as follows. For $v \in S(V)$ and $0 \le t \le 1$, let

$$(1 \oplus \theta_+) s_0(t, (1 - t^2)^{1/2} v) = (t, (1 - t^2)^{1/2} q(v))$$

$$(1 \oplus \theta_+) s_1(t, (1 - t^2)^{1/2} v) = (-t, -(1 - t^2)^{1/2} q(v))$$

and for -1 < t < 0 let

$$(1 \oplus \theta_{-})s_{0}(t, (1-t^{2})^{1/2}v) = (t, (1-t^{2})^{1/2}\kappa(v)q(v))$$
$$(1 \oplus \theta_{-})s_{1}(t, (1-t^{2})^{1/2}v) = (-t, -(1-t^{2})^{1/2}\kappa(v)q(v)).$$

By construction, $s_0(x) \neq s_1(x)$ for all $x \in S(\mathbb{R} \oplus V)$. Furthermore, $s_0(x) = (1, \mathbf{0})$ if and only if $x = (1, \mathbf{0})$ and $s_1(x) = (-1, \mathbf{0})$ if and only if $x = (-1, \mathbf{0})$. Thus, the north pole $(1, \mathbf{0})$ is the single fixed point of f_0 and the south pole $(-1, \mathbf{0})$ is the fixed point of f_1 .

In a neighborhood of its fixed point $(1, \mathbf{0})$, the map f_0 can be described in suitable coordinates by the self-map of V that takes rv, for $r \geq 0$ and $v \in S(V)$, to rv + rq(v) so that its fixed point is $\mathbf{0} \in V$. The Lefschetz index of f_0 is equal to the degree of the map $-q: S(V) \to S(V)$, that is, $\deg(q)$. We conclude that $1 + \deg(f_0) = \deg(q)$ so, since $\deg(q) = d + 1$, then $\deg(f_0) = d$ and consequently $\deg(f_1) = -d$ by Lemma 1; thus $\deg(\phi_d) = |d|$. \square

Propositions 4 and 5 complete the proof of

Theorem 6. The 2-sphere S^2 has the Wecken property for n-valued maps, that is, every n-valued map $\phi \colon S^2 \multimap S^2$ is n-valued homotopic to a map with $N(\phi)$ fixed points.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Brown, R.: Fixed points of n-valued multimaps of the circle. Bull. Polish Acad. Sci. Math. 54, 153–162 (2006)
- [2] Brown, R., Gonçalves, D.: On the topology of n-valued maps. Adv. Fixed Point Theory 8, 205–220 (2018)
- [3] Fadell, E., Husseini, S.: Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics (2000)

²The same construction, with $V = \mathbb{R}^m, m \geq 2$, and q of degree $d + (-1)^m$, produces an explicit 2-valued map $\{f_0, f_1\}: S^m \multimap S^m$ with $\deg f_0 = d$ and $\deg f_1 = (-1)^{m+1}d$. For spheres S^m with m > 2 this construction may be used to realize the general result of Schirmer [9].

- [4] Gonçalves, D., Guaschi, J.: Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach. Sci. China Math. 60, 1561–1574 (2017)
- [5] Gonçalves, D., Guaschi, J.: Fixed points of multimaps, the fixed point property and the case of surfaces—a braid approach. Indag. Math. 29, 91–124 (2018)
- [6] Jiang, B.: Fixed points and braids, II. Math. Ann. 272, 249–256 (1985)
- [7] Jiang, B.: The Wecken property of the projective plane. Nielsen Theory Reidemeister Torsion Banach Center Publ. 49, 223–225 (1999)
- [8] Schirmer, H.: An index and Nielsen number for n-valued multifunctions. Fund. Math. 121, 201-219 (1984)
- [9] Schirmer, H.: A minimum theorem for n-valued multifunctions. Fund. Math. **126**, 83–92 (1985)
- [10] Wecken, F.: Fixpunktklassen, III. Math. Ann. 118, 544–577 (1942)

Robert F. Brown Department of Mathematics University of California Los Angeles CA90095-1555 USA

e-mail: rfb@math.ucla.edu

Michael Crabb Institute of Mathematics University of Aberdeen Aberdeen AB24 3UE UK

e-mail: m.crabb@abdn.ac.uk

Adam Ericksen Applied Materials 3050 Bowers Ave. Santa Clara CA95054

USA

e-mail: adam.ericksen.phd@gmail.com

Matthew Stimpson Department of Sociology University of California Berkeley CA94720

e-mail: mstimp@berkeley.edu