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1.0 : INTRODUCTION

The simulation of subsidence in a geothermal reservoir involves
the solution of equations governing fluid movement, energy transport, and
reservoir skeleton deformation. The three phenomena are, of course,
coupled and in the most rigorous formulation would be considered and
approximated as a single system. In practice, however, deformation of
the reservoir skeleton has only a minor impact on fluid flow and energy
transport whereas these latter phenomena are very important in reservoir
deformation. This type of one-way coupling is not unusual in mathematical
physics and can be used effectively to enhance the efficiency of a geothermal
reservoir subsidence code. The most important consequence of this is a
decoupling of the fluid ffow and energy transport from the deformation
equations such that they caﬁ be solved sequentially rather than simultaneously
without the introduction of significant error. Thus, the geothermal
reservoir model, exclusive of skeletal deformation, can be viewed and

analyzed meaningfully as a separate entity.

The objective of this report is to summarize and, to the degree
possible, evaluate the state of the art in geotehrmal reservoir modelling.
As used herein the term geothermal reservoir model refers ‘to the representation
of the dynamics and thermodynamics of a geothermal ‘reservoir, without
skeletal deformation; using the é&ﬁtépféfof’pdfods*flow physics and the
subsequent so1ution'df’thé'ré§df£fﬁ§5§§§émbTa§¢'of‘differentia]'and partial
differential equations. Only thoééfﬁbdels”ﬁhith have been developed
exclusively for geothermal simulation will be considered within the scope
of this report. Thus, we have exluded from this discussion modéls prepared
for the simulation of steam injection processes in 0il recovery (see for

example, Coats et al. 1973; Coats, 1974; and Weinstein et al. 1974). We




will also focus attention primarily on the two and three diménsional
distributed parameter models. It shouid be pointed out, however, that
"~ considerable success has been achieved in predicting the performance of Gii
the Wairakei geothermal field using zero dimensional or lumped parameter
formulations (see, for example, Whiting and Ramey, 1969; Brigham and

Morrow, 1974).

There are several distinct but interrelated elements of
geothermal reservoir modelling. The most fundamental element is the
conceptual model of the reservoir. While field data is relatively
scarce and, at least in part, not freely available to the scientific o
community, there is nevertheless_a general concensus of opinion on the
fundamental aspects of the reservoir. It is believed, and in some reservoirs
clearly demonstrated, that the primary conduits of energy transport are
fractures. The porous medium blocks, delineated by these fractures, act
as the long-term energy suppliers feeding the fracture system. One can
visualize this system in two distinct ways and we will return to this
later in the report.

Geothermal reservoirs can be classified on the basis of their
fluid composition. The most common type of field is characterized by
reservoir fluid which is predominantly water in the liquid phase. This
type of field,.often‘referred to as a hot water system, is found at Wairakei,
New Zealand, Cerro Prieto, Mexico and many other locations around the world.
Reservoirs which produce primarily steamare called vapour dominated. The

major reservoirs of this class are found at the Geysers in California,
at Larderello in Italy, and at the Matsukawa field in Japan. Hot water
systems characteristically proddce from 70 to 90 percent of their total
mass as water at the surface while vapour dominated systems produce dry to
superheated steam (Toronyi and Farouq Ali, 1977). The pressures of vapour ‘i;

dominated systems are below hydrostatic. Moreover, the initial temperatures




and pressures are very near those corresponding to the maximum enthalpy

of saturated steam; 236°C and 31.8 kg./sq.cm (see figure 5). The

regional distribution of fluids within a reservoir is essentially unknown.

The assumptions inherent in the conceptual model of the

reservoir should diétate the framework of its mathematical description.

In the case of geothermal reservoirs, however, the physical and mathematical
foundations for multiphase mass and energy transport through fractured
porous media do not exist. Consequently, all of the existing multiphase
models assume the reservoir to be a porous medium. When fractures are
included, they are highly idealized geometrically and, although the
parameter values may differ, (Coats, 1977) employ the same governing
equations as the porous medium. Fractured reservoir mass and energy
transport has been considered in a formal way for hot water systems
(0'Neill, 1977) but this has not yet been extended to a steam-water
reservoir.

Given the theoretical constraint cited above, the governing

flow and transport equations for geothermal reservoir simulation are
obtained through one of three ways. The simplest approach is essentially

a macrOScopic mass balance. In other words, one assumes that the balance
laws observed at the microscopic level are, with minor modification, valid
for the porous medium as well. This approach does not provide insight

into the micro-physic5'0f7energy transfer at the pore,lévef but does provide
a set of governing equations not unlike thdse’obtained using more sophisti-
cated techniques. A second approach involves the use of mikture theory as
developed in continuum mechanics. This approachis more rigorous but, while

recognizing the existence of pore level interaction, it does not provide




adequate insight into the nature of this interaction. The most promising
approach to obtaining a rigorous formulation of the governing equations
is through formal integration of the microscopic balance equations over
the porous medium, possibly augmented through constitutive theory. In the
development of the governing equations, we will employ this approach.

Having generated an appropriate set of governing equations, one
is faced with the task of solving a set of highly non-linear partial-
differential equations. In nearly all cases, this is approached numerically.
There are several difficulties encountered in the numerical solution of
the geothermal reservoir equations. The first task is to select a set
of dependent variables since several possibilities exist. One must then
decide upon a method of approximation. Currently, finite difference and
finite element schemes are employed. One is now confronted ‘wi-th the prob]erﬁs
associated with the simulation of convection dominated transport, namely
numerical dispersion (oscillétfons) and diffusion (smearing of a
sharp front). Possibly the most difficult task, however, remains; the
efficient and accurate treatment of the highly non-linear coefficients. As
we shall see virtually every geothermal model handles this problem differently.

From the reservoir engineering point of view, there are two
additional factors to consider. The field application of a geothermal
code requires a proper representation of the well-bore dynamics and thermo-
dynamics. This is particularly important in the case of simulations in the
immediate vicihity of the well. A second practical problem involves the
reduction of the general three-dimensional system to an areal two-dimensional
representation. This requires, of course, formal integration over the

vertical. This integration should be carried out carefully so that essential

elements of the reservoir physics are salvaged.

-




In this report, the general porous flow theory, which

should be common to all models, will be formulated. Then each geothermal
reservoir model known to the author will be examined. In particular,

we will present the governihg equations, method of approximation, treatment
of the convection term, treatment of the nonlinear coefficients, solution
of the resulting algebraic equations, and representation of the well-bore.
We will briefly discuss example problems that have been treated. To
facilitate a comparison of the various models, the attributes of each will

be tabulated.




2.0 GOVERNING POINT EQUATIONS

-

The point of departure for the development of the equaiions
governing mass and energy transport in either the porous medium or
fractured porous medium model is the point balance equations. These
are the expressions derived through averaging of the molecular level
equations and generally encountered in continuum mechanics, fluid and
solid mechanics, heat flow and other fields of science and engineering.

The point balance equations for a continuum are

2.1 Mass Balance
(2.1) 2+ v(ov) = 0

where p is the density [ML'3], and

v is the mass average velocity [Lt']]

H

The first term describes the instantaneous rate of change in mass per unit

volume and the second describes the net outward flow of mass from the

point.
2.2 Momentum Balance
(2.2) 3T (6¥) + Vo (ow) + W - Vor - g = 0

where p 1is the mechanical fluid pressure [ML']t'Z]. and

is the viscous stress tensor (ML™'t"2], and

1

is the gravitational acceleration [Lt-z]

L[l =]




The first term in (2.2) describes the instantaneous rate of change of
momentum per unit volume, fhé second describes the outward flow of
momentum per unit volume from the point, the third and fourth represent
the loss of momentum per unit volume due to viscoué stfess dissipation
and pressure forces and the fifth accounts for the gain in momentum
per unit volume attributable to body forces, in our case gravity;
Equation (2.2) may be rewritten as

oV

(2.3) v-é'%+vV(pv)+pﬁ+pYYY+Vp-V'r>-vpg=0

which, in light of (2.1) becomes

Dv _
(2.4) gt Tr-eg= 0

D. a. . o
where ek = Bl e ven)

(1]

Dv
and is known as the substantial derivative. Because Dt is the acceleration,
f
it is evident that (2.4) simply describes a balance of forces.

2.3 Energy Balance
(2.5) %f (pE) + VepvE + v.q + Vepv - V'[I'v] =0

where E = U + 1/2 v2 + ¢ and
E s the total energy per unit mass [th-z];
U 1is the inié;n51:énergy per unit mass [th'z] R
1/2 v2 is the kinetic energy per unit mass [th-Z].
¢ 1is the potential energy per unit mass [th-z]. and

qQ 1s the heat flux vector [L3t'3]_

Z.




The first term in (2.5) is the rate of gain of total energy per unit
volume, the second is the rate of tota] energy loss per unit volume by
convection, the third is the rate of loss of total energy per unit
volume by conduction, the fourth is the rate of loss of total energy
per unit volume by pressure forces and the last term is the rate of
loss of total energy per unit volume by viscous forces.

Equation (2.5) can also be rewritten more compactly using

the continuity equation (2.1)
DE =
(2.6) P pr- t Vgt Velpv) - Ve[rev] =
f ~ A -~ ~ -~ ~

In our investigations, it is sufficient to work with a simpler form of
the total energy balance. Let us first use the momentum equation to
obtain an expression for the kinetic energy. Thus premultiplying

(2.4) by v, we obtain

-

(2.7) T —Qé%fg—!—) + v Vp - VeVr - vepg = 0

Substitution for E in (2.6) and subsequent subtraction of (7) yields

(2.8) (U+¢>)+Vq+va+TVv+v'pg =0

=~

p

We can further simplify (2.8) by assuming that the body force can be
expressed in terms of the gradient of a scalar function, i.e., g=-v¢

(Bird et al, 1960)




= - pveVd = - p L 3¢

If, as in the case of gravity, we can assume ¢ is time independent

and equation (2.8) becomes

bu_, v q + pvev + TV =0

(2.10) p —

Equation (2.10) describes the internal energy balance. While
some geothermal models elect to use internal energy as a dependent
variable, othersprefer to use enthalpy because it is a "field variable".

From the definition of enthalpy h we have
(2.11)  h=u+E2

)

Thus, the energy balance (2.10) can be written in the equivalent form
(2.12) o - By vqtriov = 0

f - -~ X o~
The three balance equations are now listed for convenience

(2.1) 3%-+ v. (pv) (Mass)




Dv

(2.4) p 5?; +9 - V1o pg=0 (Momentum)
(2.10) P %%— + Veq + pvev + iV =0 (Internal Energy)

or

Y 0 (Enthalpy)

~ o

(2_]2) o Qh__-gL-q.v.q +

e

We now have three equations in six unknowns. It is tempting to introduce
constitutive relationships at this point to reduce the indeterminancy of
this system of equations. This is permitted provided one keeps in mfnd
that 6nce this is done, it precludes the possibility of introducing a

macroscopic constitutive relationship at a later point in the development.

3.0 POROUS MEDIUM EQUATIONS

The purpose of this section is to illustrate a methodology for
formulating the mass, energy, and momentum balance equations for a geothermal
reservoir. The energy equation is selected as an example. This section
can be skipped by the casual reader without loss of continuity in the

discussion.




3.1 Averaging
We now face the task of formally integrating the baltance

equations over the porous medium to obtain a series of macroscopic
rather than microscopic equations. Our objective requires that we
define a smoothly varying functional relationship for each dependent
variable such that the behavior of the system can be described using
partial-differential equations. The procedure involves the definition
of a volume of porous medium which is sufficiently large that micro-
scopic effects can be averaged in a meaningful way, yet not so large
that 1arge:sca1e heterogeneities become significant. In figure 1,

we illustrate the nature of such a VOlume and denote it as a representative
elementary volume (REV) (Bear, 1972). .We assume that a property Yy

(e = s,w,R) can be represented in a statistically meaningful way as the

average defined as

J ¥y dv
¥

g~

(3.1) <>

where Vo is non-zero only in the o phase. One can alternatively write

(3.2) <>

]
W J wyadv
¥
where A is defined for phase a as (Gray and Lee, 1977)
1 re¥a
(3.3) y =y (r,t) = { for all t
[+ 3 [+ S
0 reVB

a,B = S’W,R

1.
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Figure 1: Representative elementary volume (REV) containing steam
(s), water (w) and rock (R) (Vw + VS + Vp =V).




and y is defined simply as a property. Using Y, One can formally

define that part of dV¥ occupied by the a phase, (dva), as

(3.4) dva = dva(f,t) = j Yy (5 + g,t)dvg

dy
where dvg is the microscopic element of volume. Thus, it becomes
apparent that integration is being carried out over the microscopic

local coordinate system £. This formulation leads naturally to the

definition of the macroscopic element of area along dA

(3.5)  dA_ = dA_(xt) = J v, (x+E,t)da,
dA

where dag is the microscopic element of area. Note that dAu is made
up of two parts:

1) the part that makes up the boundary of dA, i.e. dAaa

2) the part wholly within d¥, i.e., it forms the interface

of the a-phase with all other phases i.e.

£ dA
B#a of
thus
- (3.6) dAa = dA + ¢ dA

aa Bfa'_~a3r

13.




It is critical to an_understanding of the volume averaging approach to
realize that the macroscopic variables will represent smooth functions.
That is, in the absence of macroscopic shocks, there will be no discontin-
uities in these functions.

This conceptual model of a meaningful average is the one
employed in all geothermal formulations published to date. There is,
however, an imporfant question that can be raised regarding the adequacy
of this approach. The property y may be either intensive (e.g. density)
or extensive (e.g. mass). In many instances the volume average of an

intensive variable is of questionable validity, i.e.

= 1
By W i Ev,dve
d

This type of.average appears, for example, in Assens (1977) and Faust
and Mercer (1977). The averaging operator can be modified to circumvent
this difficulty as suggested by Hassanizadeh and Gray (1979)

- _ 1
(3-7) 1% “<p>adv" dl lDE'Ya'(:lVg

The use of this average provides a meaningful quantity because the integrand

is now an extensive property. Moreover, it considerably reduces the com-

plexity of surface integral terms which arise in the formal integration

process.  Similar mass-average surface-average operators may also be defined.

-




3.2 Averaging Theorems

While the various definitions of an average form the crux of the
formal averaging procedures, there are several additional concepts that
require consideration. We present these in the form of a series of
theorems but omit the proofs. (for details see Gray and Lee, 1977)

Theorem 1: The integral of the time derivative of a function over dva

is related to the derivative of the integral as

(3.8) l J %% 'yadv = [ %f' J ¢yadv - l ; J w!'ﬂaeda
dv v Bfa dA g

where W is the velocity of the a8 interface, ¥ is the volume
of the entire domain, and we omit the subscript £ on the
local variables.

Theorem 2: The integral of the space derivative of a function over dva

is related to the derivative of the integral as

(3.9) [ ] o= [ o] trev+ Jei | e
a

vV dv vV d¥ ¥ dA
af

Divergence Theorem for Discontinuous Media (Eringen and- Suhubi, 1964).

Substitution of the divergence theorem into (3.9) yields (letting v = wya)

15.




(3.10)

\{

A dA

3.3 Perturbation Quantities

During the formal integration from microscopic to macroscopic

one will encounter several non-linear terms (e.g., pveVv in the momentum

J J (vy)y dv = J I vy nda + J I J vn®Bda
~ [+3 . -~
Bfa
vd

¥ dAaB |

equation (2.4)). There will be considerably fewer of these if mass

avéraging, i.e., (3.7), is used in lieu of (3.2), for selected variables.

To accommodate non-linearities we expand y as follows (assuming mass

averaging)

(3.11)

v(x+E,t) = T (x,t) + PO (x+e,t)

The following identities are useful in simplifying complex integral

relationships:
(3.12) 1)
(3.13) 2)
(3.14) 3)
(3.15) 4)

<p> v j plv -V dv =¥- 3 =0
a
d¥
g
=y ¢ =0 (by equation 3.12)
) e |
N S TrRE S
1 vony da = 1 v(pt%y )dv =
dA v, dA yiew'y
dA dv




(3.16) 5) Py ¢ = ey ¢ =

3.4 Example Problem

Given the tools presented in the preceding sections (3.1 -
3.3) the next step is to apply these to equations (2.1), (2.4), (2.10) or
(2.12). The simplest case is the mass transport equation (2.1). We will,
therefore, consider this equation as an example. Rewriting (2.1)

multiplying by y_ and integrating over the porous medium we obtain
a

(3.17) f J (%‘%"' Y (py))yadv =0
vV d¥

Let us consider the first term

= 3p
(3.18) I] f J 5t Yadv
vV d

v

Application of theorem 1 yields

3
(3.19) J J 35 yadv = j %f' J pyadv - J B:a f py°§“8da

¥V dv v av ¥ dA
aB

The second term in (3.17) can be rewritten using (3.9) as

17.




(3200 | [ (von)v- [5 [ tovmgav + | x [ to)-n*taa

vV d¥ V¥ dv ¥ dA
af

Combination of (3.19) and (3.20) yields

- (3.21) J [%f' J pyadv‘+ v J . (pV)YadV + : I p(v-w)-nasd{] =0
- - afa .-

¥ dv dv dA
aB

We can now use either volume or mass averaging i.e., (3.2) or (3.7). Mass

averaging is the most straight-forward and yields directly

[~ %

(3.22) J [%?- <>+ V-(<p>a9) + ; lv- J p(v-w)-nasda] dv =0
. - ata M

¥ dAaB

Assuming certain smoothness conditions, this equation can be written as the

point equation

(3.23) Lo+ vl N+ I g L o (v-4)n®%a

3t a .o Bfa ‘ d
af

Let us now develop the macroscopic equation usin§ the volume average. The

first task is to expand the product pv

(3.24) ov = (<> + p%)(<v>® + V*)

~
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<p>

where <p>® = € and is called the intrinsic phase average density and
¥ “a
€& vV

Expansion of (3.24) yields

(3.25) pvV = <p>a<v>a + 3°<v>° + Va<p>a + 3“3“

Because we require <pv> in (3.21) we average (3.25) to yield

v
(3.26) pv> = <<p>%<v>®> + <p v > = g <px%w® + <%
~ O ~ a ~ [+ 3 s -~ -~ o

The second term in (3.17) now becomes

(3.27) []Geoha= ||
Vd v d

(et s | | G
v LN

v V

Application of the averaging relationships yields

(3.28) J J (Y?(p!))YadV = J v I (ea<p>°<y>“)yadv
¥ dv Vo dv '
4 N ot | e NS 1: T
+ J v. j (<pVv'> )y dv + J D) J (pv)*n da
~ - a” o . . . ~ ~
- S dga e e
Vv dv v dA
: . eB

19.




Substituting (3.28), (3.19) and (3.2) in (3.17), we obtain

af
(3.29) 3_ <p> + Ve(<p>®<cv>) + = L p(v-w)*n da
ot a . - dv -~ -
gfa ‘
v d af

The appropriate point equation becomes

| a8
(3.30) 3 o> 4+ Ve(p®ws)+3 1 | o(v-w)en da
ot a . - dv ML
B#a
dAaB

The surface integral describes mass movement across the interface as
encountered, for example, in the change of phase from water to steam.
Examination of (3.23), obtained using the mass average, and (3.30) obtained
using the volume average, reveals an additional perturbation term
Y'<3“V“> arises in the volume average approach. Assens (1976) indicates
that this accounts for dispersion. In a homogeneous fluid we would not
exﬁect such a term to be significant.

The macroscopic balance equations for momentum and energy are,
of course, considerably more complicated. We can write a general macroscopic

conservation equation (Gray and Hassanizadeh, 1978).
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(3.31) %{ (<0> ¥7) + Y'(<p>a§“$a) - Y’flaf <p>a?a - <p> e” - <o>ai°"

Ta 1 af .

where I = > dv T l ? 'lda ’
a Bta d

aB

i is a surface flux vector,

-~

(=X

T 1[3 - P da
d

< [oad
1

TN =y
f 1is an external supply
‘@ R J ' _af o
e = —— 7 ’ pw_(W'V)'n da, and_
<p>adv Bfa =TT '
~dA

G is a net production.
The appropriate macroscopic balance equation is readily obtained using

(3.31) and table 1. One cantreadi]y verify theffofﬁ;of the mass balance

equation through substitution of row 1 in table 1 into (3.31).
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Quantity v i f G
Mass 1 0 0 0
Linear v T g 0
Momentum ~ ~ -

Angular rXv rxT rxg 0
Momentum - - -~

1.2
Energy U+ 7V tev+( gev + h 0
Entropy $ ¢ b r

Table 1:

lentropy, r

Properties for substitution into the general
balance equation (3.31) where r is the position
vector, U is the internal energy density function,
$ is the internal entropy density function,

T is the stress tensor, q is the heat flux vector,
; is the entropy flux veEtor, g is the external
guppIy of momentum (body forces, h is the external
supply of energy, b is the external supply of

is the total entropy production. (after

Hassanazadeh and Gray, 1979)
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While (3.31) provides an accurate representation of the
physics of the system, it cannot be solved difect1y because of the
presence of microscopic variables within the macroscopic equations, e.g.
$, i etc. Thus, it is necessary to introduce a series of constitutive
relationships to make the system of equations tractable. The rigor
dedicated to this step 1argefy dictates the accuracy of the final set
of governing equations. Formulations currently available in the
literature (Assens, 1976; Faust and Mercer, 1977; Voss, 1978) have not
attempted a rigorous formulation based, for example, on constitutive
theory. Moreover, all attempts to date have employed volume rather
than mass averaging. In the discussion of each model we will provide
the governing equations used in each and the interested reader can
deduce the approximations inherent in the reduction of (3.31).

3.5 Equation Réduction'

As an illustration of the constitutive assumptions employed in formulating
the final set of partial-differential equations, we will present the
energy equation as devé1opéd 5y Voss (1978). To simplify notation, we
will omit the averaging brackéts: variables defined as microscopic will
be denoted as (*). We will begin with the volume averaged equations which

have been summed over each phase.

(3.32) - [(-edoprg + elSgpcrg + 5,0, T,)]

* Y'[(]'E)pRrRYR + e(Ss‘grs\!s * Swpwerw)]
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+

T-L(1-e)ag + e(Sq, + 5,3,)]

V-L(-e)(zpevp) + e(Sgzg-vg *+ Syny V)]

+

~

3t [(-elpg *+ e(S,pg + S,p)T - [(1-e)apyp + e(Sov + S,0,4,) 19

R, s
S TR R W
Rp(t] XOm ALE)
cw | Gl [ Getonte s g [ G
Aglt) - A(L) Aft)
S B ICSAURE AR S AR
Adt) A(t) ALt)
[ it + I [ R n%e
av PRIRVR™IR/ T dv s's'us os! ]
Ag(t) | A(t)
i | ARG -0
A (t)
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In (3.32) (1-¢) is the volumetric fraction of solid matrix and e

is the local porosity; (eSS) and (eSQ) are the volumetric fractions of
steam and water respectively where Ss and Sw are thé local saturations
of steam and water, Ss + Sw = 1; the quantity r is the sum of kinetic

energy and enthalpy, r, = ha +1/2 VE‘

Voss (1978) now assumes that the solid matrix is mechanically

"

non-reactive and rigid such that ¢ # e(t), rp = hR, VR W " ?R = 0,
PR # pR(t) and the pressure in the matrix pp is independent of time and
space. These are reasonable assumptions in describing the reservoir

hydrodynamics. These assumptions reduce (3.32) to the form

3h

R
(3.33) (1 e)pR 3t ¢ (Sspsrs * Swpwrw) * Y [e(sspsrsYs

(1) (2) (3)

*Seuruid ] T l0ze)ag + elSag + 5.q,)]
(4)
+ V [e(S T Vs + S wiw Y )] - € ‘;‘(SSPS + S
(5) | (6)
N
S els,pgy, ¥ S iy | Genias

(7) AR(t) (8)

] 1 o
vy | @t dp [ @
As(t) Aw(t) .
(9) ' (10)

)

w pw

) NN s 1 N W
B CRARYTES T [CRCARL

A(t) (11) ALt (12)

NN [ 1 SN o n, W, |
J ps(‘fs ? Jda + dy J pw(fw.? )da

A(t)  (y3) AL (1a)

afl—
. <

l__ v l_ _ -
t 3V J Pere (vs w ). n Sda + W J P, w(vw Y ). n Yda = 0

A4 (1) AL (1)
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To further simplify (3.33) several assumptioné are introduced

which are common to many geothermal models:

-

(3.34) | p = Ssps + Swpw where p is the local average density of the
fluid,
(3.35) py = Ssps¢s + Swpwww where ¢ is an intensive property, e.g.

r, 1/2 v2. h and

=1 . ) -
(3.36) ’! =9 (SspsYs + Swprw) where v is the mass-average velocity.

Employing (3.34) and (3.35) the second and third terms in (3.33) become

(3.37) € g_t (Sspsl"S + Swpwr‘w) =¢ %{ (pr),
(3.38) V-[e(Sgpgrevs * Swpwerw)]

= Ve(eprv) + v+[( £ )p_p S.S

o 'PsPw’s w(rs'rw)(Ys'Yw)]

where we have used the identity (Voss, 1978)

- 1 - -
(3.39) SsPTsVs * Syl = PTV + ( o 106PSsSu( Ty re)(v,mYs)

While the surface integration expressed in (3.33) is over all interfaces,
i.e., s, w, R, all the fluid and interface velocities are zero on fluid-

rock interfaces. The surface integrals now become




WW' . W
Aws(t)
nNoA a, WS
+ . - . .
(1 ¥y = T5°Vs)] n"da

* J (gw'?js)'nwsda +J @R'gw)TRwda * J @s'?“R)'QSRda

Aws A ASR

Rw

According to the jump energy balance the sum of these integrals must be

zero, i.e., 12 = 0. The macroscopic energy flux q, can be defined

(3.41) q, = -« T

-~ ~

where Ta is the temperature of the o phase and Ko is the thermal con-

ductivity of that phase ( « may be tensorial). Term 4 in equation (3.33)

can now be written

(3.4)  7eL0-e)gg + (8,5 + 5,,)]

- T L(-e)egVT + e(Sgrg + Sk, )71

- Y.(KyT)
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where T = T(x,t) is the equilibrium temperature of the three constituents
at any point in the system and « is an average thermal conductivity Gii

defined as

(3.43) K = (]'C)KR + e(SSgS + Swnw)

Consider now the viscous stress work contribution to the energy balance.
Voss (1978) argues that, because the internal and kinetic energies have

been considered together in this equation, the transfer of energy due to
friction on the solid grains isAimplicitly accounted for. 'Thus, term

4 mustlrepresent only internal f]did interactions and may be neglected.

Term 6 in (3.33) can be written
a = - . 3 .. o
(3.44) - € 5t (SPs * S,p,.) e 5t (SP) - € 3¢ P
where Pe is the capillary pressure

(3.45) P. =P - P,

In general, the capillary pressure is neglected since, for steam-water
systems relatively little is known concerning its existence or behaviour.
This is, of course, an assumption subject to experimental verification.

Substitution of (3.37 - 3.45) into (3.33) yields the simplified
energy equation

ahR 5
(3.46) (1-e)og 3t *t¢ ot (1) + Y'(epry)
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v {18~ )ssswpspw(rs'rw)(Ys'Yw)] = Ve (kvT)

- egp - eelve) -

where we have used (3.36) in modifying the gravity work term. An
equivalent form of the energy equation can be determined from (3.46)
by substitution of the mass conservation equation for the fluid

BhR ar
(3.47) (1-e)pR 3¢t e gy teoveur

+ 9oL E)5G8,000, (rg R (V4,01 - T (<7T)

ap,,
Segp meelvg =0

Finally, one can argue that the internal energy is much greater than the

kinetic and consequently a reasonable approximatibn is
(3.48) r>h

we aiso 1mp11c1t1y assume, however, that the der1vat1ves of r and h are
also approx1mate1y equa], th1s 1s not 1ntu1t1ve1y obv1ous Subst1tut1on
of (3.48) into (3.47) y1e1ds S o |

8hR

(3.49) (]-e)pR 3T + ep 82 + epV Vh
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# 9oL £ )5,8,040,(he-h,) vy )] - +(x7T)

Y
- € J'ED(V'Q) = 0

ot
The approximation (3.48) was tested by Voss .(1978) and found to be
satisfactory.

Equation (3.49) is now in a form amenable to solution. To
solve (3.49) in conjunction with the mass and momentum conse
equations, it is necessary to employ the thermodynamic relationships
of the steam tables. This will be discussed in more detail in section
5 on the specific models.

3.6 Deformation Equations

While we focused attention in the previous section on the
development of an energy relationship for the fluid, a similar development
with different constitutive assumptions can be formulated for a solid.
Employing the same averaging relationships presented above, Bear and
Pinder §1978) have developed the system of equations describing porous
media deformation in multiphase flow. They did not, however, treat the
non-isothermal casé which arises in geothermal simulation. The multiphase
isothermal case was solved by Safai (1977) for a series of hypothetical
subsidence problems. In the work by Bear and Pinder (1978), they demonstrated
that under mild constraints the volume averaged equations reduce to those
developed by Biot (1956) and Verruijt (1969). These equations, modified
to acéommodate non-é]astic deformation and non-isothermal flow, appear to

be suitable for simulating the geothermal system.
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Brownell, et al (1975) have presented equations for a
deformable geothermal reservoir. The macroscopic equations are
presented directly (without the use of averaging). The rock grains
are assumed to be a linear thermoelastic material. The authors
argue that this is a reasonable assumption for the range of
temperatures and pressures encountered in geothermal reservoirs.
In addition to the grain deformation, a constitutive expression
for porosity was required. While the functional form of this
expression was not given, it was suggested that the porosity would,
in general, depend upon mixture pressure P (i.e., Py =P+ (1-e)pR,
fluid pressure pf and deviatoric stress 1.

In summary, the equations describing porous media deformation
and fluid flow arise from the same balance equations, (2.1, 2.4, 2.10,
2.12). When these poinf'equations are properly integrated over the
porous medium, a coupled set of partial differential equations describing
fluid flow and matrix deformation will arise. This system of equations
becomes tractable upon introduction of appropriate constitutive assumptions.
There is no apparent justification for decomposing the problem into
separate flow and deformation components. In other words, the reservoir
model must, in some way, account for deformation and the deformation
model must account for the fluid flow and energy transport. Because the
main purpose of this repdrt‘is-not‘subsidence. we will not present in

detail the formulation of the goverhing equations.
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4.0 , FRACTURED MEDIUM EQUATIONS

4.1 Discrete Fracture Model

There are two schools of thought regarding the mathematical
description of fractured geothermal. reservoirs. One approach is to con-
sider each fracture as a discrete entity defined by its size and
orientatioh. Generally, a different set . of governing equations will
be assumed for the fracture than the adjacent}porous medium. This
approach was employed by Coats (1977) in his analysis of multiphase
geothermal reservoirs. He employed a variable grid finite-difference
network to simulate this system (see figure 2). In simulating the
fracture flow he used sufficient]y large permeabilities ('IO-ZOX'IO'8
cmz) to render vi;cous forcés negligible relative to gravitational
forces. The corresponding matrix permeability was 10']] cm2 with a
porosity of 0.2. A zero capillary pressure was used for the fractures
and a linear relationship between P = 0 at Sw =1 and Pe = 10 at Sw =0

was used for the porous medium. The rock relative permeability was

described by

n
[(S,~5,,c)/(1-8,)1 "

(4.1) krw = W owe

ns
(4.2)  kpg = Kpgoy [(Sg=S¢ )/ (1-S -5, )]
where
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Figure 2: Discrete fracture system modelled used finite differences
(after Coats, 1977). The number of vert1ca1 blocks employed in
the original exper1ment by Coats was 31 S
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S is the irreducible water saturation = 0.2,

wC
Ssc is the critical steam saturation = 0.0, Gii
krscw is the relative permeability to steam at irreducible

water saturation = 0.5,

He observed that the numerical solution exhibited the following interesting
features:

1) Due to the discontinuity in the capillary pressure between
blocks and horizontal fractures, there was poor recovery
of water from the matrix blocks.

2) The horizontal fractures rapidly approach 100% steam. The
water draining vertically downward from the blocks into these"
fractures flows preferentially down into the top of the next
lower matrix block rather than laterally into the vertical
fracture. .

3) In comparison with a standard porous-medium simulation of
the system, the fractured porous medium transition zone is
considerably lower than observed in the standard porous medium
model when viewed either from the fractures or the intervening
porous blocks.

Coats concludes:
"Considering the basic difference in mechanisms for the conventional
and more correct matrix-fissure calculations, we hold little
hope for forcing accuracy from a conventional simulation".

The veracity of this conclusion rests, in large part, on the degree to which

the proposed model represents the physical system. The experiment suggests,
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Figure 3: Conceptual model for overlapping continua, curve (a) is
the plot of a property ¢ measured for different volume (REV) L
of porous media; curve (b) issthe plot of a property y measured
for different volumes (REV) L” of fractured porous media. The
region (c) is the common region where both the :porous medium and
fracture medium physics can be represented as though each were
a continuum.
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however, that a fractured porous medium may behave fundamentally different
than its non-fractured counterpart. ‘ii

4.2 Random Fracture Model

The principa] difficulty associated with the discrete fracture
model, whether forhu]ated using finite difference or more flexible finite
element schemes, is the inability to establish fracture geometry in the
field. This is, of course, essential input into the discre;e fracture
model. There is, however, a second approach to the problem which is
designed to circumvent this difficulty. The conceptual model is
illustrated in figure 3. As in the porous medium case, we select a
REV which manifests certain statistica] properties. We assume the REV
is sufficiently large that a porous media property ¢bm is well behaved
but not so large that the sample is affected by non-homogeneities (see
figure 3). These are the same constraints introduced earlier for the
porous medium equations. In the fracture flow model, however, we impose
an additional constraint. We require that the REV be sufficiently large
that a fracture property wf is also well béhaved in a statistical sense.
The REV must also be sufficiently small that large scale non-homogeneities
in the material do not significantly influence the mean parameter value.
Thus, we must restrict our consideration to REVs which reside within the
area of (c) of figure 3c. In other words, we are required to work at a level
where overlapping porous and fracture continua are meaningful. Whether
such a physical system is realizable in the field remains to be determined
expgrimenta1]y. Certainly such a system will exist if we relegate large
scale discontinuities, faults for example, to a separate but coupled
: system analogous to that defined for the discrete-fracture system.

If we accept the existence of a system such as illustrated in

figure 3b, the ground rules are established for the formal integration
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of the point equations (2.1, 2.4, 2.10 and 2.12) over the fractured porous
media. To date, the only energy transport formulation based on this type
of approach is that of 0'Neill (1977). He restricts his work, however,

to single phase energy transport and does not address the more general
multiphase system encountered in geothermal syStemSa If one éssumes that
two phases, a, are fracture water and pore water, the equatfoh development
is similar to that employed in formulating the porous media equations Qsing
volume averaging. Because of the lengthy development required to

properly present this approach, we omit it in this report and refer the
interested reader to the original work (0'Neill, 1977). Note that the
field parameters arising out of thi§ type of approach are volume averages
and similar in concept to permeability in a porous medium formulation.

The discrete fracture geometry no longer appears explicitly in the governing
equations. Work is currently going on to extend 0'Neill's work to the

case of a steam-water system.

5.0 SUMMARY OF EXISTING MODELS

In this section we will present the sg]ignt features of existing
geothermal models. Each model will be identified by the authors of the
referenced pubiication(s). The summéry will {ncludé the governihg equations,
a description of the numerical procedure used to solve these equations, an
outline of problems considered and a brief discussion of -advantages and
disadvantages, strengths :and weaknesses of each model. We will consider
only distributed parameter multiphase hode]s thereby excluding the zero

dimensional models of Whiting and Ramey (1969) and Brigham and Morrow (1974) and
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the single-phase models of Mercer and Pinder (1975), Lippmann et al.
(1977), Riney et al. (1977), and Sorey (1975). The many analytical
convective models are also beyond'the scope of this report (e.g.
Kassoy, 1976).

5.1 Model of Lasseter, Witherspoon and Lippmann

The model by Lasseter, withérspoon and Lippmann was one of

the first two phase geothermal models. It is described in the papers

by Lasseter, Witherspoon and Lippmann (1975), Lasseter, T. J. (1975),
and Assens'(1976). | |

5.1.1 Governing Equations:

The governing equations were formulated by Lasseter et al
(1975) using a macroscopic mass and internal energy balance. He obtains,

for internal energy

DU DU
f e )2 2nda - | BT
(510 V¥eor By * ™ T, J (Ug-Uglogv™+nda ]"YT nda
A A

-Q+UR¥ = 0

f

where Vf = Vf(t) volume of fluid occupying the control volume V,
Mr is the mass of rock within ¥,
U:,p:,xaand 72 are the fluid internal energy, fluid density,

effective thermal conductivity of the fluid solid matrix,
and matrix temperature evaluated along the surface A,

Q is the internal energy injection rate from sources within ¥, and

R 1is the mass injection rate per unit volume from sources within ¥.
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It is, perhaps, worth noting tha; an internal energy balance is not
a viable concept in an ifreversible thermodynamic system. Only a total
energy balance is meaningful. We also observe that during the
development of (5.1) it is assumed that the variable Ug can be moved through
the area integration. .Because this variable is spatially dependent, it
is not apparent how this procedure can be justified. At a later stage,
it is possible to remove kinetic and potential energy~emp1oying the momentum
equation and certain assumptions on the form of the potential energy function.
Lasseter et al (1975) recognized the limitations of the formulation and
suggested that a compressible work and viscous dissipation term should be
added to the equations. They surmised, however, that these terms would
be small. (this was, in part, demonstrated to be true by Garg and Pritchett,
1977) _ A

Essentially, the same model was proposed by Assens (1976) although
a volume averaging approach was employed to formu]ate‘the'governing, o
equations. His energy equations was reduced to a point equation for the

solid and fluid combined

3
(5'2) 'a_t (CRDRUR + efprf) + Y.(sfprfo) - Y.,:.YT

* p(Y-[ewa +egved) - QR ;,?%,»= 0

Negligible viscous dissipation was also an assumption in this formulation.

39.




The momentum conservation equation is given by Darcy's law

summed for each fluid phase, i.e.,

2 ..
(5.3) PeVs +'("“'s;"s + waw)Ypf - (Mg + ”WPS)S =0

where Ma is the mobility of the o phase and defined as

(5.4) Moo= T2

k is the relative permeability of the o phase,
k js the permeability [LZ], and

u is the dynamic viscosity [ML'1t']]
Mass conservation is straight-forward and given by
3
(5.15) 3 (egpg) + Vo(peve) - R =0
5.1.2 Assumptions:
Because many of the assumptions inherent in this model also hold
" for the remaining models, we will 1ist them only once. When in the dis-

cussion of other models additional assumptions are introduced or some on

the list relaxed, they will be noted.
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1) the porous medium can be assumed to be a continuum,

2) the reservoir is a porous medium, fractures do not
materially influence either the dynamics or thermodynamics
of the system,

3) the system is locally in thermodynamic equilibrium,

4) the thermodynamic pressure is essent1a11y the same as the
mechanical fluid pressure,

5) Darcy's law for a multiphase fluid is valid,

6) the various hypotheses inherent in the averaging formalism
are valid,

7) incompressible, non reacting solid,

8) non deformable solid matrix,

9) fluid inertia is negligible (related to 5),

10) negligible viscous dissipation,

11) negligible capillary pressure,

12) temperature equilibrium between the fluid phases,

13) temperature equilibrium between the solid and fluid,

14) negligible pressure work,

15) the equation of state for water, determined using flat
interfaces, is valid in the reservoir.

5.1.3 Numerical Approximations:

The numerical scheme used to solve (5.2), (5.3), and (5.5) has
been called the integrated finite-difference method. While the general
approach has been known for some time, it has recently been cleverly
implemented in a computer code by Edwards (1972) which he called TRUMP.
This code forms the foundation of the Lasseter, Witherspoon and Lippmann
model. The basic idea is to solve (5.1) directly without reducing it to
a point equation. The volume ¥ is selected to be a multi-faceted sphere
(a polygon in two space dimensions) where the flux across each face is
approximated using a finite difference approximation of these first order
terms. To apply this approach, it is necessary to rewrite (5.3) and (5.5)
as integral equations. Substitution of (5.3) into (5.5) and integration

over V yields
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(5.6) I [-g? (efpf)dv] - I [(Mp)*.Ypf - (Mpz)*g]-[lda G

v A
- J Rdv =0
¥
where (Mp)* = Msps + waw
2. _ 2 2
(Mp®)* = Msps + waw

The finite difference approximation to (5.1) and (5.6) are

(see figure 4 for nomenclature)

du sU
R fn
(5.7) (Vf"f * M@, )n At

n .n n .n n .
- ; [anmswnm * Unmevam ~ Ufn]an
Am
+ )2 RV
Dnm nm m n fn nn

m upnm D nm anm fm U

T oT
-8 zl}su Fh +-—’ﬂ.< M sy, - D aufn§]=o
nm

where an is the fluid flow rate between the nodes n and m (positive if
into n),

n is the time level wheh used as a superscript,

U is the energy of the upstream node,

T is the temperature at the node n, and




XBL 795-9556

Figure 4: Discretization by the integrated finite difference
method (after Lasseter, Witherspoon and Lippmann, 1975).
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Ps is held constant in the partial differentiation

The incremental form sU is obtained from the relationship
U= U™+ (1-0)u" = U™ + o(U™T - u") = U" + eeu

Thus, @ is the4weighting parameter which locates the spatial operator
in the time domain. Numerical round-off error is reduced when one
solves for &U rather than U. Note that (5.7) is now wrifteh in one
dependent variable GUf (assuming a suitab]e choice for 6Uu is made).

p

To achieve this reduction in unknowns, thermodynamic relation-

- dT
ships derived from the steam tables were introduced, i.e., EUE— .

These relationships are highly non-linear coefficients which ;:ke the
solution of the two parameter (here Uf and pf) reservoir simulation
problem very difficult (see figure 5). In this model, the change in the
vapour saturation of the flux is assumed to be the change in the vapour
saturation at the'upstream node. This type'of'upstream weighting of

the convective term is necessary because of the hyperbolic behavior of

this equation. Upstream weighting was also applied to U, i.e. Gunm = 6Uup
To present the finite-difference form of the flow equation,
we proceed in two steps because of the complexity of the thermodynamic

coefficients. Let us first finite difference (5.6)

S
(5.8) (e +p. 2£) y —fn
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Figure 5: Pressure-enthalpy diagram for water and steam with
thermodynamic regions: 1) compressed water, 2) two-phase
steam and water, and 3) superheated steam (after Faust

and Mercer, 1977a).
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A ooy (BrPn) - w2y + RV
nm 1 am D * 1 amYnm9 n'n

z
m

where Yom is the direction cosine between the normal from node n to m
and the gravitational acceleration vector. Equation (5.8) contains the

dependent variable p which we now eliminate through the use of the steam

tables.
8p
d¢e fn
(5.9) G *or tos)n Y m
n n
O [N (il I
nm ! nm D ° )" nmYnm3
nm
d Mp)* ?
+ 0 IA [x ﬁ'ﬂ'l - (Dp) nm ap" ]epf
m nm ™ Chm nm Pfn n
9o (Mp)*nm 3Py
+ xnm D * D 2 spfm + ann
nm nm Pfm
where




* (Mp)*
Mo, = gl nn
n nmt P m T VP g

(Mo?)* 1 * (Mo?)*%, (Mo)* d

2 mn
‘ (Mp )* = * *
nm d (Mp) +d (Mp)

, and

internal energy'is held constant in the differentiation.

5.1.4 Solution of Approximating Equations:
Equations (5.7) and (5.9) form a coupled set of highly non-
linear finite difference equations in terms of the internal energy of the

fluid U, and fluid density P The salient features of the method used

f
to solve these equations, as determined from the publication by Lasseter,

Witherspoon and Lippmann, can be summarized as follows:

a) The density equation (5.9) is solved at t+At using initial
estimates of the internal energy (t =

b) The mass flux is calculated explicitly from the density and
internal energy.

c) The internal energy equation is solved for t+2at using the
density solution obtained at t+at.

d) The time weighting parameter @ is cdmputed for each time
step; it is the same for all nodes during that step.

e) The linearized algebraic equations are solved iteratively
using a scheme similar to, but different from, successive
over-relaxation. The procedure was first derived by Evans
et al, 1954.

47.




5.1.5 Example Problem

Two problems were cdnsidered in the paper of Lasseter,
Witherspoon and Lippmann (1975). The first is an axisymmetric
cross section discretized into a uniform net with 10 rows and 25
columns. A hot water circulation system is established thrbugh a
localized heat and mass source at the base. When a dynamic steady
state is achieved forced convection is introduced by fluid withdrawal
from a node located along the well-bore edge of the model. The
problem was not used to illustrate the accuracy of the model.

The second problem is an idealized representation of
the Geysers field. It is also axisymmetfic with 15 evenly spaced rows
of nodes and 10 nodes in the horizontal with increasing spacing with
radius. The system is almost completely filled with steam initially.
Steam is withdrawn from three nodes along the well-bore side of the
model. ‘The solution is illustrative of the physical processes
encountered, but not designed to demonstrate model accuracy.

5.1.6 Model Evaluation:

This model played an important role in the development of
geothermal reservoir simulators. It demonstrated that the combined-
fluid-flow concept squested by Garg (1974) was workable. Many of the
later models assumed this general methodology. The use of the thermo-
dynamic relationships to reduce the number of dependent variables was
an important contribution. The integrated finite difference scheme could
be used effectively in some problems because of its flexibility through

the use of irregular elements.




The major deficiencies in the model 1ie in the fundamental
equations and the solution of the approximating equations. The
energy equation should be developed complefe]y followed by appropriate
term by term reduction. In the representation of T and P in terms of
Uf and Pes it is assumed T = T(Uf) and p = p(pf). While this assumption
is consistent with the numerical scheme, it requires additional in-
vestigation. A well bore model iS also required before realistic
simulations are undertaken. The numerical scheme does not appear
to solve the non-linear equations. In this highly non-linear problem
this is a serious deficiency. The model does not appear tohave been
"verified" against experimental data or single phase flow analytical
solutions. No mass and energy balance calculations have been presented
but the two phase examp1e problem suggests some difficulties may have
been encountered. In summary, this model was an important step in the
development of geothermal feservoir models but could not be considered
an engineering tool. More recent variations on this code which have
not been published may have rectified these deficiencies.

5.2 Model of Brownell, Garg and Prichett

Brownell, Garg, and Pritchett were among the first to consider
the solution of the multiphase problem using two dependent variables.
Information relevant to their model can be found in éroﬁne]] et al (1975),
Pritchett (1975), and Garg et al (1975). There are also several papers
devoted to the development of the governing equétions for geothermal
reservoir simulation (Brownell, Garg and Pritchett, 1977; Garg and Pritchett,
1977) and a number of compréhensive reports (Garg et al, 1977; Pritchett et
al., 1975; Pritchett et al.,1976; Garg ét al., 1978; Pritchett, 1978).
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5.2.1 Governing Equations
The governing equations are obtained using a mixture theory
approach. For the rigid rock matrix case (analogous to the model of

Lasseter, Witherspoon and Lippmann) we obtain for mass

(5.10a) Y (eS,p,) * Vr(eS,p,,) +m=0 (water)
(5.10b) %f-(essps) + Y'(esspsYs) -m= 0 (steam)

where m.is the mass transfer rate from liquid to vapour due to phase
change. In application the mixture (rock-liquid-vapour) is of primary

importance, thus (5.10a) and (5.10b) are summed to give:

(5.11) € 20 (S0, + Spg) *+ Ve(eS,o,Y, * €SpcVs) = O (combined mass)
This equation no longer contains the condensation term.

In place of the momentum equation, one uses the multiphase

+

Darcy's law:
kk
(5.12a) eSV * u;" (vp, - #,9) =0
(momentum)
kkrs
(5.12b) ;SSYS + ?‘ (Yps - psg) =0
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Assuming capillary pressure to be negligible (5.12) can be substituted

into (5.11) to yield

wkkr‘w p kkr
(5.13) (S0 * Sgps) - V° = [vpg - 0,91 + ——— [, - o 9])-R

€
at W s

where R is added as the source term.

The energy equation, written in terms of internal energy, is

(5.14) at [(-e)ogle] + 5o Dt (5,00 * Dt (SgpgUs) = Tk - Qf = 0

(energy)

where « is the mixture thermal conductivity. In the simulator (5.14) and

(5.13) are simplified, using standard assumptions, (see below), to give

kk
9 _ _ o, W -
(5']5) 3t [(] E)pRUR + €prf] Y prf [BW uw ( pf p g)

kk
+ B T (VPf -p 9)] - VegeVT - Qf (energy)
S -~ ~ - .

A U
whereBw= _(]_-Q.)_[]_GULaE] 3 g =

Sw f°f

1+ (1-Q) Laﬂ]
[_ Ugr g

mm |,OI

51.




psk(1-Q) k - pekQk
S I i rw - frs
(5.16) e ggep -V [ T (%p¢ - p,9) * 35

(Y%"bs?ﬂ'R

W W - $'S

- where Q is the steam quality i.e. Q = ps/(p2 +p.) and Uvap is the latent
heat of vaporization per unit fluid volume. The set of equations (5.15)
and (5.16) aré solved in terms of internal energy and fluid density.
Pritchett (1975) pofnts out that this choice of variabﬁes results

in an exact conservation‘of mass and energy Since these are the dependent
variables rather than an auxiliary property. The solution of (5.15) and
(5.16) requires auxiliary information on the re]afionship’befﬁeen the
dependent variables Uf and Ps and the other unknown quantities such as
pkessure, temperature, steam quality, vapour saturation, latent heat of
vapourization, viscosity, and thermal conductivity. In this model, large

data tables combined with interpolation schemes are used for this purpose.

The relative pérmeabilities are given by the equations of Corey et al

(1956).

(5.172) k= (s0)*

(5.17b) kg = (1-5.2) (1-50)2

(5.17¢) S, = (S, - S, )/(1 =5, - Sg.)
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Other identities employed in the development of (5.16) and not

presented earlier include:

(5.18) 0
(5.19) oyt ep (L)
S

In addition the following constitutive relationship attributed to

Budiansky (1970) is used
K -] K -]
2 , 1 R : 2.1, "w
(5.20) (1-8)[§+§(:’)]+€§Sw[§'+§(.< )]

I
]

e
w
)
./
wiro

and the assumption

U T

R = CvRTR

where CVR is the constant volume heat capacity .of the solid.

In addition to the geothermal reservoir model, Garg has a subsidence
model which works either interactiQe]y dr in tandem wfth the reservoir model.
The governing equations are derived from'the fundamental balance laws
augmented by constitutive relationships from solid mechanics. The momentum

balance yields
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(5.21) - VI(1-e)pp + ePel * V1o + [(1-c)op + eSp, + €5cp51g = 0

-

where P is the solid pressure, and

1p 1S the deviatoric stress tensor for porous rock

It is necessary to compliment (5.21) with the following

constitutive relationships:

(5.22) 1)

XAMe

=1 ty .
=g [ovg + (vvp)7]

wjm e
T
+
Ao

where
is the bulk strain rate tensor for rock,

Mo

is the deviatoric part of the strain rate tensor,

2o

(VVR)t denotes the transpose of (vvR).

PoR 1-¢ -
(5.23)2) =2 _y= [=8] (1+e) -1
Pr 1-¢,

where ¢ 1is the bulk volumetric strain

€ is the rock grain volumetric strain

3) the rock grain is a linear thermoelastic material

e
(5.24) PR = -KR(e - 3nRTR)

where KR(“R) denotes the coefficient of linear thermal expansion for the

rock grain




4) shear stresses are linearly related to shear strains e through

Hooke's law
(5.25) R 2up§
where b is the shear modulus of the porous rock.
(5.26)  5) e = ¢ [1+ alpy-pg)]

where Py = (l-e)pR + epg

—

_ ] (1’80)
(5'27) a = G(pT'pf) = ’%’ KE ST |
K is the bulk modulus of the porous rock, (may have a hysteretic
effect), and

Pr-Ps is the effective pressure.

This model is generally run in sequence with the reservoir model

(Pritchett, 1978).

5.2.2 Assumptions:

The assumptions differ from those presented in 5.1.2 as

follows:

1) The solid is not assumed incompressible in the presence of
the deformation model,
2) The solid matrix is not assumed non-deformable in the

presence of the deformation model,

550




3) The assumption of negligible pressure work and

viscous dissipation are demonstrated theoretically
and through numerical experiment rather than assumed

(Garg and Pritchett, 1977)

5.2.3 Numerical Approximations:

The geothermal reservoir model is approximated using

standard finite difference methods with the following features:

1) First order space terms are represented using a one-
sided difference in the upstream direction>(upstream
weighting).

2) Equations are formulated in 1-D areal, 1-D cylindrical,
1-D spherical, 2-D areal or cross section, 2-D
axisymmetric, and 3-D cartesian geometries.

The subsidence model is approximated using a standard

finite element formulation, modified to account for material non-
linearities. The code is also designed to accommodate plastic

deformation. The code is 2-D (axisymmetric+)

5.2.4~ Well-bore Model:

Recently a "near well-bore" model was added to this simulator
which permits calculations with wells that penetrate more than one
zone (Pritchett, 1978). The relationship between well-block pressure,
sandface pressure and flow rate for a single well in a single zone is
computed by the model. The well blocks are then coupled together by
insisting that the pressure distribution in the open interval in the well
be hydrostatic. One version of the well bore model accounts for the

discharge of methane in solution in a geothermal fluid (single water phase).

+assumed by author.



5.2.5 Solution of the Approximating Equations

The iterative alternating direction implicit procedure ADIP
is used to solve the reservoir simulation equations. In this scheme,
the md]ti-dimensiona] problem is decomposedAinto a series'of one-
dimensional problems. This corresponds to a particular form of matrix
decomposition. In linear cases, it is often possible to solve the
series of one-dimensional problems without iteration. For large time
steps, hbwever, it is generally advisable to iterate betwéen the rows.
and column solutions. There is question that ADIP, when applicable,
is an exceedingly powerful numerical approach.

Each one-dimensional problem is generally solved using
direct methods. The Thomas algorithm, an efficient Gaussian elimination
method, is particularly effective. In geothermal simulation, these one-
dimensional problems are highly non-linear and must be solved iteratively.
That is to say one must iterate within, as well as between, each row
and co1uhn calculation. While the details of the algorithms are not
available, Pritchett (f978) reports that the iteration scheme designed
to accommodate the non-linearity employs a Newton Raphson proceduré within
_each one-dimensional calculation. Additional information on the methodology
can be found in Pritchett et al. (1975).

When the solution oscillates across the steam-water boundary of
the thermodynamic diagram (figure 5), the oscillations are damped by
requiring that the amplitude of each oscillation decrease by a specified
amount (Pritchett, 1978). This is the only model developed to date that
employs an ADIP approach.

The consolidation model is brobably solved using a direct solution

algorithm (Gaussian elimination) although this has not been stated explicitly.
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5.2.6 Example Problems:
This model has been applied to a number of test problems:

1) One dimensional simulations of the laboratory experiments
by Kruger and Ramey (1974) and Arihara (1974).

2) Injection into and production from a hypothetical right
circular cylinder. Production takes place from a central
vertical crack and fluid reinjection is into two similar
cracks located at the reservoir periphery. The reservoir
initially contains pressurized water. This model consisted
of 384 nodes.

3) A homogeneous, isotropic, initially isothermal circular
reservoir with a well located at the center. The initial
pressure in the reservoir is specified such that in the three
cases considered the first is in a liquid state, the second
is a pure vapor reservoir and the third is initially
liquid but yields two-phase flow near the well as the
simulation proceeds. The purpose of these experiments was
to demonstrate the significance, or lack thereof, of the
pressure-work and viscous dissipation terms in the energy
equation.

4) Preliminary calculations on the Wairakei geothermal field.

The one-dimensional simulation (1) was an attempt to verify the accuracy
of the code. Several groups have used those experiments as a means of
demonstrating the validity of their models. Unfortunately, several
material parameters are unknown in this experiment and only one
thermodynamically independent variable was measured at the exit point.
Thus, an ability to reproduce the experiment numerically is a necessary
but not sufficient condition to demonstrate its veracity. The second
experiment is important in that the system must move from pressurized
water to a steam-water mixture; a good test for any geothermal model.

In addition to the test problems, a two-dimensional vertical

cross section of Wairakei was simulated. The section was selected to pass

through the principal features of the reservoir. A successful history




match of pressure decline in the system was achieved.

An analysis was also performed of the Salton Sea geothermal
reservoir. A two-dimensioﬁa1, areal simulation wés performed to
establish the importance of lithologic variations on the response
of the reservoir to production.

To demonstrate the application of their simulator to problems
involving subsidence and methane production, a model of the Brazoria
County, Texas project was undertaken. Vertical and horizontal displace-
ments were computed for a problem case in cylindrical coordinates.

A similar model was developed to demonstrate the ability of
their simulator to describe the precipitation of salt during flashing
of geothermal brines. Simulations using 70 and 100 percent salt-
saturated brine were 'successfully conducted. For the 70 percent case
precipitation of salt in the pores did not occur: it did occur,

however, in the 100 percent case.

5.2.7 Model Evaluation:

The Brownell, Garg and Pritchett model(s) appears to be
theofetica]]y sound and should be computationally efficient. The code
employs governing equations which have been carefully derived and appear
to encompass the salient physics of the geothermal system. 1t is the
only model which incorporates a non-isothermal subsidence formulation
and salt precipitation. The numerical scheme is one of the most efficient
currently available for reservoir engineering problems.

While the model(s) are generally of high caliber, they have some
negative aspects. The finite-difference formulation on a rectangular

net is somewhat 1imiting in terms of flexibility in discretization when
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compared with integrated finite differences or finite elements. This -

is largely offset by the efficiency of the ADIP algorithm. The use

of an artificial constraint in the solution of the non-1inear

equations is undesirable and casts suspicion on the convergence properties
of the non-linear algorithm. Information on maSs and energy balances

would assist in evaluating this possibility.

5.3 Model of Faust and Mercer

The model of Faust and Mercer was developed in parallel with but
independent from the work of Brownell, Garg and Pritchett. While many
of the features of the two models are similar, others are distinctly
different. The essential elements of the Faust and Mercer model
are described in a number of publications (Faust and Mercer, 1975 ;
Mercer and Faust, 1975; Faust 1976; Faust and Mercer, 1977a; Faust
and Mercer, 1977b; Faust and Mercer, 1978a; Faust and Mercer, 1978b).

5.3.1 Governing Equations:

The governing equations for this model were formulated using
a volume averaging approach (Faust, 1976; Faust and Mercer, 1977b). The
resulting equations for mass and momentum are the same as presented for
the model of Brownell, Garg, and Pritchett. Because Faust and Mercer
wish to solve the energy equation in terms of enthalpy rather than
internal energy, they use (2.12) as the point of departure for formulating
their energy equations. Writing (2.12) in combination with the continuity

equation, one obtains




(5.28) 2 (ph) + v<(pvh) - bp_, veq + T:VW =0
ot Dt
- -~ f ™~

Assuming viscous dissipation can be neglected, Faust and Mercer present

the following macroscopic energy balance equations

) D
(5.292) 3¢ (eSgpshy) + Y'(Esspsths),' Dt (eSgPs) + 7-(9y*ay )
- Q; - Rshs = 0 (steam)
—a_- L] - —D—- . :
(5.29p) ot (eSyeuhy) v (Eswpwthw) Dt (eS,p,) * v (9]w+92w)
- Qw - Rwhw = 0 (water)

1
o

(5.29¢) g [(1-e)oghg] + v-a;0 - Qg
(rock)

where h; is the enthalpy of the source fluid, Q& are interphase energy
exchange terms and N and q,, are heat flux by virtue of conduction and
dispersion respectively. Imposing the generally accepted assumptions on (5.29)

the three separate energy relationships can be combined to yield
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Bepf

3 .
(5.30) 5% [(1-e)oghg + epfhf] v (eSgpghgve) + Y'(Eswpwthw) Y

- (eSSYS + ESWYW).Ypf - v-(nyT) - RshS - Rwhw = 0

-~

The final form of the balance equations is obtained by
combining the mass conservation equation for the three phases and by
introducing the momentum balance into the mass and energy balances.

Thus, we obtain, assuming %%— =0,
a

(5.41) g—t (epg) - V-

S w

kk_p kk._ o
1 rs - .| rww _
- [u (Ypf 959)] v [ u (Ypf pwg)]'Rf

= 0
kk. p_h
(5.42)  Gg [epgh + (1-e)oghgl - v- [ IS (vpg - psg)]
: R . :
kk .o h
Sge |EWW W - - v 3T 3T
! [ My (Ypf pwg)] Y [}m ( ap I TPe? %p ( ah )thf]

' -
- RshS Rwhw 0




It is interesting to compare (5.41) and (5.42) with the final form of
the equations used by Brownell, Garg and Pritchett (5.15) and (5.16).
The difference in these two equations is due to the fact that for (5.15)
and (5.16) the solution variables are Uf and Pe while for (5.41) and
(5.42) the solution variables are hf and Pe-

Faust and Mercer (1978a) have also provided balance equations
which are vertically integrated over the reservoir. The procedure for
vertical integration is well known and was used for some time in surface
water hydrodynamics before being introduced into hydrology. It is,
nevertheless, a useful tool to assure that a consistent areal formulation
is obtained from the three dimensional eduations‘ In some ways, the
procedure is analogous to the volume averaging introduced earlier and
suffers from the same limitations. The basic rules follow. Let us assume
that the operator in question is L(y) = 0. Integration over y yields:

22
(5.43) J L(p)dz = 0

4

One now applies Leibnitz' rule to the various terms in L. Consider for
example an extensive quantity y such that
z z
2 ay ; 2 3z, . 9z,
(5.44) [ ax 927 ox J vdz + B(xy,2q5t) 3 - b(xy,2,,t) =5
4 2

We now define the averaging operator

L)

vdz b

|~

(5.45) <p> =
4
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Equation (5.45) can now be used in an obvious way to modify (5.44)

z
2
Y4 9z
(5.46) J gz = bap> + v(x:¥s2zgst) g;l = ¥(x:¥52p,t) g;g

when non-linear terms are encountered, we draw on theory which is again
analogous to the volume averaging theory developed earlier. Let a

property @ be defined such that (see figure 6)
(5.47) v = <p> + ¢

One can then treat the product <yy> as the equivalent expression

An

(5.48) <Py> = <p><y> + <py>

which can be readily handled.

‘While this formalism leads naturally to an averaged equation
in the areal plane, one must be careful that at each stage of the
integration meaningful variables are generated. Making certain assumptions
regarding the orientation of coordinate axes and the time invariance of
the thickness of the reservoir, one obtains for the vertically averaged

form of (5.41) and (5.42) (Faust and Mercer, 1978a)

ap .
3_ .9 _f _f
(5.49) b3y <erp> - 5% [bewe> < 3% > * <oy 3% >)]
3p . 3p
- 9 _f _f
5y [b(<wy>< 5y > + <wy % >)]



- beRe> + vl +V(z-2y) - vg| +V(z-2,) = 0

4 2y

f

where

L <
-

+
eSgPsVs * ES P Ve and

X

1}

=
£

+

e

ap

op - ap
9_ —f _f A _f

- %5 [b(<why>< " > + <“’hy % >)] Y [b<wcp>< ol
oh - aﬁ - aﬂ op
£ _f . -

+ <wch>< Yy > + <wcp o > + <wch ™ >)] %y [b((wcp>< % >
3hf - 3[3 - 3ﬁf '

+ <wp>< 3y > + <wcp 3y >+ <y B >)] - b(<RShS>+ <Rwhw>)

L R I A B R N I TR Gy
1 2 1 2
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where

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

Rkt Rokes®s
X L Ug
k. k
o = Kok, FaxkrsPs"s
hx
Fw Mg

- T
Yep *m (%E;)hf

“ch = *m (%%;)

Pr
o = K22% rwPud ' k22X psPsd
gz My Mg ?
2 2
o = K2 2K Py + Kzz2KrsPs s
hgz Mw ¥s ’
ap 3z ap 3z,
Vlrez.) = (o —F 1. _f 1
V¢ Y(Z z]) (wx X ) X y 2y ) oy
z, 7, Z,
ap
_f
oy 37 wgz) .
1
ap 3z p 0z
‘ L) - = - —f- -—i - _.._f _--]—
heve Y(z z]) (opx 3x ) 3x (“hy ay ) 3y
Z, z, Z,
3P,

]

tlop, 37 % u’hgz) ;
1
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Figure 6: Definition sketch for the vertical integration of the
parameter ¢ (z) = <y>(z) (after Faust and Mercer, 1978a).
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(5.59) A -Y(z—z]) = -

4 4
3p oh 9z op
- _f _f 1 _f 3h
(“cp 3y | “ch 3y ) ay (wcp 2z Ych 3z

r4 z

1 1
and similar expressions can be written for Z,-

Let us now examine (5.50). Terms of the form <epfhf> are
meaningful in the sense that the integrand (epfhf) is an extensive
variable. This is not true, however, for all terms in (5.50). Consider,

ah
for example, the term <« —f 5. The integrand in this case is not

)
an extensive variable andyits volume infegra] appears to have no
physical meaning. In other words, we are employing variables which
are mathematical abstractions without physical interpretation. The
impact of this questionable step in the formulation is difficult to
judge but certainly warrants additional study.
Faust and Mercer (1978a) now investigate the evaluation of the

averaged terms appearing in (5.49 - 5.59). Employing a definition of

hydrostatic pressure and Leibnitz' rule, one obtains for pressure

apf ) o<D> 1 2= 9<D>
(5.60) <3 >= X PP " eg® 5 T b TfP oy
3z 9z
2 L A
where o <D> 2 ( ~ ' x )

and for enthalpy




ohe 3 1 32, 4
(5.61) <5 >= fx<he -y lhe - hel ) 5 +p(<he-hel) 25

ax aX

To eva]uate>the averaged coefficients Faust and Mercer (1978a)
assume local vertical equilibrium. They have used field data and simulation
runs to establish the equiiibrium form of pressure and enthalpy. They
assume that, in the absence of significant capillary pressure, steam and water
segregate due to gravity and a steam cap i§ produced with a water saturation
equal to residual water saturétion. Below the cap, the saturation is unity.
This provides a series of relationships which are subsequently used in
obtaining(the averaged values of the coefficients‘appearing in (5.49) and
(5.50). Certain relatively mild assumptions must be made to achieve the
final form. The principaf assumption here is vertical equilibrium - an
assumption which can in a sense be checked using'a three-dimensional

simulator.

5.3.2 Assumptions:

The only new assumption associated with this model involves the
two dimensional formulation wherein one assumes the reservoir has a
high degree of vertical communication such that vertical gradients can be

disregarded.

5.3.3  Numerical Approximations: N

A standard finite-difference scheme is used/for’the,primary
simulator. - The grid is block centered (nodes: are placed in.the center of
each block). The‘grid b]ocks'may change .size but must remain rectangles.
In formulating the coefficients of the difference equations, the following

rules were observed:
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a
T

a1
, and _Bh_

h f/Ps
evaluated as arithmetic averages of values in adjacent blocks.

1) Density, viscosity, are

2) Relative permeabilities and enthalpies are usually assigned
the upstream value.

3) Other space dependent terms are determined as harmonic means
of the values in the two adjacent blocks.

The same basic scheme is used for both the two and three-dimensional models.

5.3.4 So]utibn of the Approximating Equations:

The resulting set of finite-difference approximating equations
are highly hon-]inear, as with all preceeding mdde]s. Faust and Mercer
(1978a) use a slightly different scheme fof approximating the three and two-
dimensional equations. The three-dimensional model uses a fully implicit
scheme to approximate the transmissivity, accumulation, and source terms.
(i.e., these parameters are evaluated at the new time 1éve1 (n+1)) To
achieve this implicit formulation, Newton-Raphson iteration was applied
- to these non-linear terms. For the areal model, only the accumulation and
source terms were treated implicitly and Picard iteration was used for the
transmissivity.

The three-dimensional model is solved using a block iterative
- scheme called s]ice successive over-relaxation (SSOR) (see Wattenbarger
and Thurnaw, 1976). The blocks in this case are vertical cross-sections of
the grid. Each block (a two-dimensional problem) is solved implicitly using
a standard band solver based on Gaussian elimination. Each node carries
an unknown value of pressure and enthalpy. The SSOR is imbedded within

the Newton-Raphson iteration. This is in contrast to the Brownell, Garg

and Pritchett model (section 5.2) where the Newton-Raphson iteration is
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imbedded within each one-dimensional 1mp11c1t solution generated using
ADIP. The advantage to solving only 11near equations in SSOR is that
the matrix must be decomposed only once per Newton-Raphson iteration.

In the areal model, the two equations (5.49 and 5.50) are
solved sequentially. This is the approach taken by Lasseter, Witherspoon
and Lippmann (section 5.1). The scheme used by Faust and Mercer is
described in Coats et al. 1974. In this scheme, Gaussian elimination
is applied to the linearized Newton-Raphson equations in such a way
as to upper triangularize the 2x2 blocks associated with each node.
Consider, for example, the typical pair of equations written for an

arbitrary node
, n+l
‘i G2 | |%Pf o inf In
(5.62) - .
n+l
€1 S22 | [%P¢ 0 1| [y2] ("2

where, for the flow equation (5.49 and 5.50)
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S [Epfhf + (1'€)pRhR]

X =
M:‘:pr
Vb is the grid-block volume
IRE AR STICONN
* +
v = ALTa(spE™ )] + alTia(shd™)]
ryo= AL(T + TO)a ™y bR, - (MM - M) ‘b
] w s /4P At
= a1 o0f"T) + A(T, Ahn+]) + bR.h! - BR h! - (" - " ‘b
r2 h P W W At
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a 2u
o
L A
c 2 ahf Pe
* * KmA 3T
Th=Th +Tsh + . ('an-)hf

where Km is a combined isotropic conduction - thermal dispersion coefficient
and A and 2 are the grid cross sectional areasperpendicular to the flow
direction and the length increment in the flow direction respectively.

The finite difference operator A is defined, in the x direction for

example,




n+l, _ ntl  _  n+l n+l _ whtl
A (a8 b)) = a0 o5 (Birsk = Pk ) - 25-1723kPigk T Pi-1jk!)

where P(x,y,z) = P(iax, jay, kaz).

Application of Gaussian elimination to (5.62) yields

(Faust and Mercer, 1978b)

[ n+l i ]
%2 8p¢ LI £ "
(5.63) N .
C C (o}
21 n+l 21 21
0 Conm —/™ C sh - =1 y r, - r, —
_ 227¢)y 12|\ ERIRK 2" "¢,

Note that [c] contains only time matrix information. This is because

only the accumulation and source terms were treated implicitly. One can

now solve a set of N equations in 6h'13.+'I and subsequently a set of N equations
in 6p2+]. The coefficient matrices involved are symmetric and can be

solved efficiently using D4 ordering (Price and Coats, 1974). One must
iterate between sequential solutions within each Newton-Raphson iteration.
Only one decomposition per Newton-Raphson iteration is required. Faust

and Mercer (1978b) claim this procedure (sequential solution and D4 ordering)
reduces the computational effort required to solve the set of algebraic
equations to %—to %E of that required for simultaneous solution and normal
ordering.

It is not apparent from the available literature how the

transition from a water to a steam-water system is accomplished. It
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reportedly involves a modified Newton-Raphson scheme similar to that

presented later in Huyakorn and Pinder (section 5.6) (Faust, 1978). iii

5.3.5 Example Problems:

The model .of Faust and Mercer has been tested extensively
and applied to a number of physical situations, In addition they have
compared their model against other methodologies. Some of the
problems they consider are:

1) one-dimensional single phase flow: a problem which has an
analytical solution

2) one-dimensional experiment of Kruger and Ramey (1974):
reproduction of this experiment should be considered a
necessary but not sufficient condition for model verifica-
tion. This problem was solved using finite difference

- and finite element techniques.

3) hypothetical cross section with two phase flow: designated
to evaluate the validity of assumptions used in the
vertically integrated areal model. The model consists of
either 48 or 80 equally spaced grid blocks.

4) hypothetical three-dimensional reservoir: used to
evaluate the ability of the areal model to reproduce three-
dimensional systems.

5) hypdthetica] three-dimensional reservoir solved using areal,
vertically integrated model

6) vertical cross sectional model of Wairakei, New Zealand.

7) vertically integrated three-dimensional model of Wairakei,
New Zealand, Faust (1978c)

Thé‘primary objéctive of many of the simulations was the
5u$tificatioh of vertical integration in simu]afing three-dimensional
problems. Their genera]‘conciusions are as follows: (Faust and Mercer,
1978b).

a) assumption of vertically uniform properties is suitable for
hot water systems and two phase systems in thin reservoirs.

b) assumption of no gravity segregation or vertical variation
in thermodynamic properties, for most two-phase problems
gives erroneous pressures and saturations leading to an
incorrect prediction of early reservoir depletion.
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c) the cross-section-and three-dimensional models converge
to the pressure solution of the vertical equilibrium
model as az -» O.

d) the vertical equilibrium model is most useful for reservoirs
less than 500 meters thick with relatively high permeability
and a thin steam cap.

5.3.6 Model Evaluation:

The model of Faust and Mercer is the most thoroughly tested
and documented multiphase geothermal model available in the public
domain. It has been carefully developed and employs the most current
methodologies in both the theoretical formulation and numerical solution of
the resulting approximate equations. The reduction of the three-
dimensional formulation to two dimensions through vertical integration
is important. Considerable savings ih both man hours and computer time
can be realized using the vertically integrated model.

The only major deficiency in this model is the lack of an
accurate well-bore simulator. Thus, the model is essentially restricted
from application in near well bore regions.

There are several minor theoretical questions which require
further study.

1) the vertical integration of intensive variables leading
to non-physical parameters.

2) the method of represénting the non-linear coefficients
in the neighborhood of the phase transition boundary

3) the accuracy of the numerical solutions, i.e., some informa-

tion on global and local mass and energy balances. (this
apparently has been included in a recent paper).
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5.4 Model of Toronyi and Farouq Ali

The Toronyi and Faroug Ali model was possibly the first of the
multi-phase models. It was first described\in the thesis of Toronyi (1974)
and later in a journal article (Toronyi and Faroug Ali, 1975). The model
is more restrictive than those discussed thus far inasmuch as the fluid

must be two phases.

5.4.1 Governing Equations: |

The governing equations afe obtained through a macroscopic
mass and energy balance. As in earlier cases, the mass and energy balance
relationships are derived for a mixture, i.e., the water and steam are
combined to form a single fluid. Cqmbination of Darcy's law written
for the two phases and the continuity equation written for each phase

and summed yields

9
(5.64) <% (en, S, *+ €pSc)

kk kk P
- V- [ T o (vpg - p,g) + I3 -(vpf-osg)]- Re = 0
w - - S - -

This expression is similar to the continuity of mass expressions presented
earlier, eg. equation (5.13).

The conservation of energy equatibn is expressed in terms of
enthalpies. The simplest form of this formulation yields

9 -
(5.65) ot Lelph S, + pshsSs) + (T-e)ophe]

* Y'(pwhweswfw + pghgeS Vo) = T (k¥T) - Qg = 0
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This equation is an approximation to the true energy balance inasmuch
as the pressure work term does not appear. Coats (1977) claims this to
be an erroneous formulation wherein an enthalpy balance relationship was
used. It is not clear from the paper by Toronyi and Farouq Ali whether
such a balance was implied, but no mention is made of the assumption
of negligible pressure work. Substitution of Darcy's law into (5.65)

yields

9
(5.66) 3t I:e:(pwthw + pShSSS) + (1-e)pRhR]

kk . p h kk o h
- Ve

T (T - 0,9) + RS (e - °59)]

M s

t

1
<

'(KYT) - Qf =0

We note that in the original paper by Toronyi and Faroug Ali (1975), there
appears to be a typographical error and the sign of the convective term
is incorrect.

To this point, the form of the equations is totally general.
Only when the constitutive equations are introduced and the dependent
variables selected does the restriction to the two phase region appear.
The density, viscosity and enthalpy for bofh water and steam are assumed
functionally dependent on presSurevand temperature at saturated conditions.
The temperature and pressure within the reservoir are related by

(5.67)  (Faroug Ali, 1970) T=115.1 pg.zzs
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where Ps has the units of lbf/sq.in.vand T is in °F. The dependent
variables are chosen as saturation and pressure: this choice is obviously Gii

meaningful only in the two phase region (see figure 5).

5.4.2 Assumptions:
The principal new assumption is that the fluid is two phase
only. A second relationship of intefest is the functional dependence
of ¢ = ¢(p), i.e., the function is assumed separable into spacial and pressure

dependent parts.
(568) € = e] (xs.Y)Ez(pf)
(5.69) N [1+c.(p-p,)]

where C, is the rock compressibility.

5.4.3 Numerical Approximations:
The equations (5.64) and (5.66) are approximated using standard
finite-difference procedures with the'following idiosyncrasies:

1) saturation dependent terms are assumed non-linear and
evaluated at the new (n+1) time level

2) backward difference approximation is used for the time
derivative

3) for pressure dependent terms, a linear average of adjacent
grid point values is used

4) for saturation dependent terms, upstream saturations are
used based on fluid potentials

5) permeability is taken as the harmonic mean of édjacent grid
point values
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The well bore model is formulated as follows: 1let the

heat sink term in the energy equation be written:
(5.70) Q= hwR + (hs-hw)Rs

The steam production rate is determined by fractional flow as

(5.71a) Rs = osR
where
krs
(5.71b) g = ——————  and
S krs * Akrw

U, P
(5.71¢) A =2 X

Yy Ps

Substitution of (5.71a) into (5.70) yields, in finite difference form,

+]
+ S w''rs Rq+1

1j w n+l n, n+1 ij
Kps + A Kpy ij

n+l

where Q?;l appears in the energy equation (5.66) and Rij appears in

the flow equation (5.64).

5.4.4 Solution of the Approximating Equations:

When N nodes are considered a system of 2N equations is generated

by the finite difference equations. These non-linear equations are solved

using a Newton-Raphson technique. At each iteration, a direct solution

scheme is used to solve the linearized equations.
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5.4.5 Example Problems:

Several example problems were run using a two-dimensional
areal and cross-sectional model. The cross-section does not appear
to have been formulated in cylindrical coordinates although a “well"
was involved in the simulation. The models involved 36 nodes each.

A5 x 2 x 2 x 2 factorial experiment was run where the
factors were as follows: initial saturation 1.0, 0.8, 0.6, 0.4, 0.2;
porosity 0.05 and 0.35; initial pressure 650 psia and 450 psia;
permeability 1.0 and 0.10 darcy. For the cross section, the initial
saturations were 0.50, 0.40, 0.30, 0.20, and 0.10. The convergence

9 and the typical mass and energy residuals

9 -1

tolerance used was 10

-12 . .-15

10 and 10°° - 10 respectively. The percent error

9 to 10710,

were 10

in both incremental and cumulative mass balances was 10

A stability parameter was defined as the dimensionless throughput.

(5.73) NTP = —

where mp is the total mass per cell containing the well

At is the time step size , and

R is the total mass production rate

The maximum stable value of NTP‘was from about 1.0 to 33. It is interesting
fhat for higher levels of initial saturation NTp was not a good measure
of stability. Toronyi and Faroug Ali (1975) suggest this is due to the
importance of thermal effects, such as flashing, on the stability of the

system.




5.4.6 Model Evaluation:

The Toronyi-Farouq Ali model was an important contribution in
the development of geothermal simulators. It was designed to examine
various geothermal réservoir phenomena under the constraint of two
phase flow. Several interesting aspects of geothermal reservoir
behavior were elucidated.

The formulation of the governing equations was not presented
in any detail. The final expressions, however, are the same as those
generated by others for the case of negligible pressure work. The
choice of saturation and pressure as dependent variables has the advantage
of eliminating problems associated with the transition from water to
steam. The obvious disadvantage is that the model is not readily applicable
to the majority of geothermal reservoirs.

The numerical scheme appears sound. ‘The general approach is
mathematically sound. Moreover, mass and energy balances are
presented such that the éccufacy of the non-linear ajgorithm can be
evaluated. The choice of a stability criteria is worthwhile although
the one that was selected probably has little relevance to a model designed

to simulate the transition from pure liquid water to steam.

5.5 Model of Coats

While the particular model we identify with Coats was published
in 1977, he and his colleagues presented earlier a number of related
simulators. (Coats, 1974, Coats et al., ]974)= We focus oh the paper
Coats (1977) because it describes a scheme designed specifically for geo-
thermal reservoir simulatiqn..’1t>will Pecome apparent in the course of
this discussion that the‘CoatgPﬁddéiiis brobab]y the most advanced formula-

tion for the general simulation of multi-dimensional reservoirs.

81.




5.5.1 Governing Equations:
The governing equations are formulated using a macroscopic
balance approach. The mass and energy balance is formulated forvthe

combined steam-water mixture, as in earlier examples. The mass balance

.+
is,
3 )
(5.74) 3t (eprw + epsSS)
kk p kk  p
2rs’s | _ SrWW _ _ -
-V Mg (Yps psg) * ™ (pr pw?) Rg =0

This is similar to (5.64), the mass balance of Toronyi and Farouq Ali,
but we do not assume a single fluid pressure, i.e., capillary pressure
may exist.’

The energy equation, with potential and kinetic terms ignored,

becomes
) 9
(5.75) 3 [e(prwa + pSSSUS) + (1-e)pchRT]
kk o h kk_ _p_h
= 'WWW . - = rs’'s S . _
- ™ (pr °w9) * Mg (Yps °sg)

- VOSCVT - QHL - QH = 0

*The continuoUs form is not presented and here the partial differential
equations are formulated from the difference equations.




where Q, s a heat gain rate and

Q, 1is an enthalpy injection rate.
H

We have not specified fhe form of QHL or QH as in the case of the Faust
and Mercer model (5.42). A1l of the functions in (5.74) and (5.75) can
be expressed as single valued functions of T, Ss’ Ps- Note that the

water saturation and pressure are also known through the relationships
(5f76) Sw +S_=1
(3.45) P. =Pg - P

where, once again, Pe is the capillary pressure.
Examination of'figuhe 5 reveals that the three variables T,
Ss’ pg are not independent everywhere on the thermodynamic diagram.
In the water region 1) the two independent variables are pressure P
and temperature T. The independent variab]es in region 2) are pressure
Ps and saturation Sggi this we have seen was the choice of Toronyi and
Faroug Ali in their two-phase model: in the superheated steam region
3) ‘temperature_and pressure are once again the dependent variables of choice.
In the water region Uw is assumed to be a singlefvalued fﬁnction ofv

temperature and the density is obtained from
5. 2 (TY[] - -
(5.77) Py = Pyus (1 + ¢ (T)(pg-pg (T))]

where the subscript ss.denotes}satqreteg conditions. Constitutive
relationships are also obtained for the other variables functionally related
to the dependent variables of choice. Thus, the algorithm employs three

different formulations of the governing equations; one for each of the
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regions indicated in'figure 5. The question which arises is how does one

.

operate in the vicinity of the water-multiphase fluid boundary of the
thermodynamic diagram? In other words, the troublesome non-linearity

has been artifically removed from the govefning equationé but must,
nevertheless, exist in the model formulation. Coats (1977) does not detail

the iterative procedure involved.

5.5.2 Assumptions:
The assumption of zero capillary pressure is relaxed in this
model. There is also an attempt to employ a discrete fracture reservoir

formulation (see section 4.1). A sophisticated well bore model is employed.

5.5.3 Numerical Approximations:

The appropriate governing equations are approximated using
standard block-centered finite-difference approximations. Idiosyncrasies
of this particular formulation follow:

1) relative permeabilities and enthalpies are evaluated at
the upstream grid block conditions

2) interblock pa/ua and Y, are evaluated as arithmetic averages
of their values in the two grid blocks.
5.5.4 Well-bore Model:
Coats (1977) has gdne to considerable trouble to formulate a
meaningful well-Bore model. The development is long and rather tedious
but essentially addresses the»fo1lowing possible cases:

1) the production rates of water phase, steam phase and total
water and enthalpy from a given layer

2) the information obtained in 1) but extended to consider the
case of a multilayer well completion

3) the formulation presented in 2) but assuming a semi-implicit
.well treatment (the model otherwise is totally implicit)
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4) in single well problems defined in cylindrical geometry,
the well is treated implicitly by simply incorporating
the well bore in the reservoir grid system. Because of the
unique flow characteristics of the well bore, one must
either employ a code suitable to fully developed turbulent
multiphase flow or modify the normal Darcy formulation
through the use of psuedo relative permeabilities which
accomplish the same effect. A problem encountered in
this type of formulation involves the throughput ratio
in the very small well-bore blocks.

5.5.5 Solution of Approximating Equations

The totally implicit solution of the approximating algebraic
equatiohs is achieved using Newton-Raphson iteration. While this
accounts for the relatively weak non-linearity within a phase region
(see figure 5), it does not indicate the technique employed in resolving
the extreme non-linearity encountered in moving between phases.

The convergence criteria associated with the Newton-Raphson

change 6(~)+ is reported as

Max|sp ik | < 0.1
Max|6Tijk,| < 1°F
Max |8S ijkl < 1%

The time truncation error was examined using sequentially smaller time
steps. For the problem considered time steps of 1000 days produced
an "acceptable" error. The rate of convergence Qf the -method was such

that the first time step required 20-23 iterations while each additional

step required only two to three. In the one-dimensional problem considered,

convergence was achieved using a throughput rate, here defined as,

"Note that 8(+) here denotes changes between iterations rather than time
levels.
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(5.78) ﬁrp = gqu

of 52.45 x 10°. In (5.78),¥, is the finite-difference grid block pore
volume and q, is the total volumetric flow rate through the grid

block. In a two-dimensional problem twice as large a throughput ratio
was achieved and this was under a range of saturations, i.e.,

0<S, < 0.8993. Note that this corresponds to a value of approximately
30 in the Toronyi and Faroug Al1i model. It would be very interesting

to know the mass and energy balance achieved in the Coats model.

The 2N algebraic equations generated at each iteration level
are solved using a "reduced band width direct solution" algorithm
attributed to Pricé and Coats (1974). This is the same scheme employed
by Faust and Mercer (1978b) in their vertically integrated, areal,

two-dimensional model (section 5.3.4).

5.5.6. Example Problems:
A number of problems have been run using the Coats simulator.
They'are summarized as follows:

1) a radial test problem designed to compare the simulators
calculated deliverability against an analytical determined
value. In addition, this problem was used to examine
stability and time-truncation error. In these experiments,
zero capillary pressure was used. A maximum deviation
between the numerical and analytical of approximately 10%
was observed. This is probably within the tolerance
associated with the discrepancy between the assumptions
required in the analytical solution and those realized in
the numerical simulator. Time steps of 1000 days resulted in

a small truncation error and stable throughput ratios of 107
were observed. Nine nodes were used in this model.

2) a problem cast in cylindrical coordinates with 50 nodes. A
straight-1line pseudo capillary pressure curve was used such
that p. = 18.45 psi when Sy = Sy..= 0.2 and p_ = -18.45 when
S, = 1:0. To demonstrate “spacYi1 convergencE, the problem
was 21so run using twice as many nodes in the vertical i.e.
a total of 100 nodes in the problem. The time truncation
error was also examined and At = 500 days produced little
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truncation error. A stable throughput ratio of 108

was achieved with a saturation change from 0 to 0.8993.
This problem was run using several initial pressures,
permeabilities of 100 and 500 md and porosity values of
0.05 and 0.35. Average computer time for the 50 node
problem was 0.016 seconds per grid block-time step.

This figure compares with 0.01 seconds for semi-implicit
models used by Coats.

3) a two-dimensional (cylindrical) discrete fracture model
was formulated and tested. The details of this probiem
were presented earlier (section 4.1).

4) a three-dimensional (5x5x5) model of a vertical fracture
in a hot, dry rock. Tests were conducted to achieve a
suitable spacial truncation error. Several matrix
permeabilities were considered. The model considered
only one half of the symmetric problem. An automatic
time step selector was used which employs steps ranging
from 0.1 days to 500 days.

5.5.7 Model Evaluation:

The Coats (1977) model represents the state of the art in
geothermal reservoir engineering. It incorporates, in addition to
the features of other models considered, the possibility of discrete
fractureirepresentation (albeit somewhat 1dealized) in addition to an
effective well bore model. The stability and time truncation aspects
of the algorithm employed are quite impressive.

While stéb]e solutions for difficult problems were achieved
it is not apparent how the iterative algorithm which employs three
different equations was applieﬂ at thé phase transition boundary. Becaﬁse
no mass or energy balances Qeré employed, the convergence characteristics
of the algorithm are not evident. Moreover, none of the experimental
problems simulated by others were attempted by Coats. It would be
particularly interesting to investigate the impact of non-zero capillary
pressure since it is one of the few models currently available to handle

this situation.
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5.6 ‘ Model of Huyakorn and Pinder

The model of Huyakorn and Pinder is principally of interest
because it demonstrates that a finite element formulation can be used
to solve the multiphase geothermal reservoir equations. It should be
considered as an alternative formulation to that presented by Faust
(1976) wherein he experienced difficulties when applying a standard
Galerkin formulation. The Huyakorn and Pinder model is presented in

Huyakorn and Pinder (1977).

5.6.1 Governing Equations:

The governing équations were not formulated from first
principles but rather adopted directly from Mercer and Faust (1975).
The mass and energy balance for the combined wafer-steam system in a

horizontal column can be written

kk . p kk__p ap
3 _ 3 ™ W rs’s fl .
(5.79) Y eSwpw + eSSps) ™ ( n, + > 0

(mass)

kk o_h
A _ _ 9 rss s

vy, X 89X

kk_p h 3p p)
+ W fl.a_ [ 2T P 3 (K aT
f/n

= 0 (energy)




The nonlinear coefficients appearing in (5.79) and (5.80) eg. <%>h
f)"f

are obtained from formulae written in terms of Pe and hf.

5.6.2 Assumptions:
The standard assumptions outlined earlier are applicable to

this model.

5.6.3 Numerical Approximation:

The numerical scheme used to approximate (5.79) and (5.80)
is a modification of the Galerkin finite element method. Because this
formulation is not as well known as standard finite difference approximations
we will outline it here. Let us rewrite (5.79) and (5.80) in an equivalent

but more compact form

) S I Py -
S 2y B (gahy
where T T, + Tg
kk_ p -
T = ro o . a': w’s
o] Ua
F = ep
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AoE ok |5 +hSTS+thW (hwfhfhs)
Pt fhe
o= oo |- + 1 h (h<h, orh>h)
- Bpf aa W S
f .
= T
B = "(ahfp
f
H = epfhf + (1-e)pRhR

The first step in the numerical development is the
representation of the unknown functions and the coefficients using
finite series involving undetermined coefficients and basis functions

(we drop the subscript on Ps and hf for clarity)

(5.8%)  plxt) T plut) = N (xpy(t)
(5.838)  h(x,t) = h(x,t) = Nj(x)hy(t)
(5-83)  plx,t) = plx,t) = Ny(x)oy(t)
(5.83d)  F(x,t) = F(x,t) = Nj(x)F(t)
(5.83¢)  A(x,t) = A(xst) = Nj(x)ay(t)
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Figure 7: Linear 'chapeau' basis functions.

XBL 795-9553

Figure 8: Asymmetric weighting function W -
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(5.83f) B(x,t)* B(x,t) = Ny(x)8,(t)

(5.83g) H(x,t) = H(x,t) = Ny(x)Hy(t)
' N
where summation notation is assumed, i.e., N,p, = £ N,p,. The
Jrd J=1 J"d

functional form of NJ(x) has not been specified but a number of possibilities
exist: the simplest choice is the piecewise linear chapeau function

illustrated in figure 7.

The method of weighted residuals assumes a residual exists

when (5.83) is substituted into (5.81) and (5.82) i.e.,

(5.84) Lf(ﬁ) = R¢

One then minimizes this residual in an average sense using weighting

- functions, wx(x).

(5.85) J Rwydx = I L(Pwgdx =0 1=1,2,...N
X X

When wI(x) z Nl(x). the method of weighted residuals becomes the Galerkin

method. Substitution of (5.81), (5.82) and (5.83) into (5.85) yields:

2 dN,
(5.86) J ﬁ- NI-'S"Z ‘l’-&— pJ WI dx = 0
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aN, dN
oM )
(5.87) f at N1 T [ax Car) i R hd)] “’1)“"

X

L]
o

Note that in (5.86) and (5.87) we have used Wy = NI for the time derivative.
The remaining W functions are asymmetric basis functions designed to
accommodate upstream weighting (see figure 8).

One normally modifies (5.86) and (5.87) using Green's theorem

to transform the second derivative terms:

} L2
dw dN "
3F _1 _d _ . 3 -
(5.88) J o1 NI+de ax pJ dx - t ox wI 0
X
XO
1=1,2,...N
dw, dN
oH 1 Ny
- (5.89) J Moy v L L (py +oen) | ox
X
| .,
o ) L
-(A—R+ g )W | =0 I=1,2,...N
XO

Thus, we have 2N equations in the 2N unknowns Py and hJ, provided, of course,
one performs the appropriate integration. The rema1n1ng task is to
investigate the boundary terms, i.e., those terms located at X, and Xg*

Let us rewrite the last term on (5.89) as
X X X

L : R T
_E 8h = 3T , 3P
(5.90) (A + 8 = ) Wil =Wk gy + Wpe s
%o %o %o
where © = A-x %%- .
h
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The first term on the right hand side of (5.90) is the conductive heat
flux and is generally known (assuming f itself is not avaiiable). The
second term is generally unknown and thus must be carried as part of the

coefficient matrix. We will return to this problem shortly.

5.6.4 Solution of Approximating Equations:

The non-linear equations (5.88) and (5.89) are solved using a
Newton-Raphson procedure. The resulting linear algebraic equations are
solved directly: a trivial task since the problem is one-dimensional.
Inasmuch as we haye not described the Newton-Raphson procedure to this
point, we will now do so using the relatively simple system of (5.88)

and (5.89).

5.6.4.1 Newton-Raphson Approximation:

The Newton-Raphson procedure is modified slightly to account
for discontinuities in the derivatives of the non-linear coefficients when
phase conversion occurs. Let us first define the equations (5.88) and

(5.89) using operator notation

) Fn+'l - " de dNJ n+]
Gon myo= [y Tt o gt B
X
_ Wl ooyn o dwpdNy g e
(5.92) GI = J NI it + F—x—-(kpd +BhJ )] dx
X

where we have temporarily dropped the boundary terms. In a completely
implicit formulation, we also assume the non-linear coefficients A and
are to be evaluated at the n+] level. When a solution for (5.88) and

(5.89) is achieved RI = GI = 0. We now generate a Taylor series expansion
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around the desired zero residual, i.ef,

3R

=0 = e k+t1 _ k b k+1 _ Kk
(5.93) R, 0 Rll o ' (oK*! - k) s | (T - hk )
k+1 k k
where the superscript of pJ and h.J has been suppressed.
3G 3G
- N = 1 k+#1 _ Kk 1 k+1 _ Kk
(3:94) Gyl L0 ey Py g Y g | (hgT o)
aGI
Let us now examine the form of the derivatives My etc.
J
(5.95) s e O t N, p, & dx
' apJ At apJ dx dx dx " "J apJ
x .
aR N .en+l dw, dN '
iy 1 aF 3T I
(5-96) 3, J <At oh, Tany & & Po |
X f : y
N

36 ntl  dw, dN ‘
o R Y 1 9 AL, %
(5.97) 7, J (At %, * dx dx [* PP oty BpJ] dx
x Cy

) Py Sh—
At 3h dx dx J ahJ J P,

3G N, .ntl dw, dN
(5.98) 1 - J<—“’” + L _J [ 8, g+ pM _QB_] dx
J

X
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We can now combine (5.91 - 5.98) to yield

dN,  dN ‘
- Mpap™t M N Ny n+l
(5.99) J at apJ * dx T dx dx Py apJ dx ApJ
X k
: N n+l dw, dN
I oF 9t 1 74 n+l
J &t ahy  *any dx dx Po 4| ohy
X k
Ml _en dw, J n+1 i
* f N Tt tga Py x| <O
X k
N n+l dw, dN
- N aH 1N 28
(5.100) J atap, ' X [" * P apy * hy apJ] dxi ap,
X
k

Ah
k

. N n+l  dw, dN
.+I B T, A I..J[ “+s+h"+1ai]dx ;
34

p
At dh, dx dx J 3h, J 3p

X

=0
k

Pl oo dwp dNy n+1]
* I Np TRt e dx |[MPo e

X

(5.101a) where apy = p§+] ps

_ k¥l Lk
(5.101b) ahy = i - n]




Equations (5.99 - 5.101) can be written in matrix form

(5.102)

(5.103a)

(5.103b)

(5.103c)

(5.103d)

(5.103e)

(5.103f)

(5.103g)

[A]
where fI = -
gI = - J

X
%0 7 J
X
by = J
X
‘o ° J
X
dg = J

o

T Pt

N

N
k k I ryntl,k _ o
[apy + ghy] + ¢ [H H'] | dx

dw dN dN
1 J J R
{T x Tdx P 3p, } dx

k

aFn+1 , 3t de dNJ i
ah 3h. dx dx PJ
J J K
El ! + My M A+ p B 3B ) ax
At apJ_ dx dx J apJ J apJ
k
n+l dw, dN .
3H PN 3 n+l 3B
o tax dx [FJ %h teth 3, ] dx

97.




The procedure from this point forward can be summarized as:

1) Solve (5.102) for the incremental pressures (APJ) and
enthalpies (AhJ)

2) The increments are used to update Py and hJ

3) The new values, p, and hJ are used to update the
coefficients in [ﬂ] and the right-hand-side vectors.

4) Steps 1) - 3) are repeated until the increments 4py and
AhJ are within a prescribed tolerance

The derivatives of the non-linear coefficient v, F etc. are approximated
by a chord slope determined using nodal values pg and hg and taking small
increments from them. These increments are taken such that one avoids
the possibility of crossing the phase boundary, i.e., either a positive
or negative increment may be used, depending upon the location of the

point (pJf hs ) . We have not presented the formulation for the boundary terms

but they are approximated using a procedure analogous to that outlined above.

5.6.5 Example Problems:

Two one-dimensional problems were simulated. The first was the
Arihara experiment mentioned in earlier examples. A solution which
suitably matched the experimental data was obtained. The second problem
was a modification of the first. Using the same experimental set up, the
sandstone core was initially filled with hot water and then subjected to
a rapid pressure drop. This is a severe test of the ability of the model
to accommodate highly non-linear flow. Mass lumping, which is the
diagonalization of the matrix associated with the time derivative,
produced good results in both of the above problems. Using a convergence
criteria of 0.05 percent satisfactory mass and energy balance checks were

achieved.



5.6.6 Model Evaluation:

The Huyakorn and Pinder model is important only in the sense
that it demonstrates that finite element schemes, suitably modified,
can be used to simulate geothermal reservoir behavior. The model in its
present form cannot be considered an important reservoir engineering
tool. The iterative scheme is interesting and effective. The treatment
of the downstream boundary of the Arihara experiment appears to work

well (this is discussed at length in the paper (Huyakorn and Pinder, 1977)).

5.7 Model of Thomas and Pierson

The three dimensional finite difference model of Thomas and
Pierson is described in Thomas and Pierson (1976). It is capable of
handling multiphase flow using an implicit pressure, explicit saturation
formulation.
5.7.1 Governing Equations:

The governing equations are not formally developed. The

combined water and steam mass and energy balances are presented

0
(5.111) 3 (epSSS + eprw)
kk. p : kk_p -
x WP W = Srs
AN B - (W, - 0, @) +ES— - (Tpg - 0g9)
w S
-R,-R =0 | (mass)
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. )
(5.112) 3 [e(prwa + pSSSUS) + (]-e)prpT]

kk p h kk_p_h
T WrwW W s Srss - u. _ v v
Y Py ¥ Hg Ypf Y KYT' Rwhw Rshs Q

In addition, Thomas and Pierson provide the following relationships to

further determine the physical state of the water

n

. (water phase only)

n+l n_
(5.113a) Ss - SS = -5

(5.113b) Pe =P (T) (saturated steam)

sat

(5.113c) (superheated steam)

5.7.2 Assumptions:
The standard assumptions have been made in this model. It
would appear that additional assumptions regarding the gravity force term

are employed in (5.112) although this may be a misprint or my misinterpretation.

5.7.3 Numerical Approximation and Solution of Approximating Equations:
The governing equations are approximated using standard finite-

difference procedures. Because the scheme employed in the solution of

these equations is rather unusual and not considered heretofore in this

report, we now consider it in some detail. Let us first expand the time




derivative of (5.111)

3S 3S 3p
P - s . W sy T
(5.114a) ot (epgSg + e Sy) = ePs 3t T ey ot t eSg (aT’) ot

P
ap 5T ap Bpf ap apf
+ €S (—l)—— + €S (—S) -+ €S (-—"‘ —
W oT pfat s\ /7 ot W\ /1 ot
In finite difference form, this becomes:
3 - n+1 n+l n+l n+1]
(5.114b) 3% (EQSSS + Eprw) z ZE-{ E: pg T E Py, §S,,

n+l

1
n )N

(5.115) where 8S, = ) S: or, in general, &§(-) =‘(-)

c, is the‘compreésibility of water
cq 1is the formation compressibility

€ is the initial bofosity
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Note that (5.115) can be written

()™ = 5(e) + ()"

such that the second term in (5.111) can be written
(5.16)  v-[Mo (v, - 0,9) + Mo (VP - 0 g)] *

A
A = n_ n
v, [wawfépf + Mspsfspf] + Ve [waw(épw pwg) * Msps(éps

- psg)]

where o is the standard finite difference spatial operator.

Combination of (5.116), (5.114), and (5.113) yields

(5.117) 13-[(waw + Msps)édpf] = cncsW + c126T tcygop R] (mass)

where the €y are

Vb r n+l n+l n+l n+l
T At T

3p 3p
= ¥b [ n+lfen( W ng__s
“2 7 at [e (Sw(aT ) * S (aT )p )]

f

_ ¥ [ n, n+l n+l n n n+l [ap nn ]
C13 = 2t Dwl® Pw Cw * PusiCe) * Sg e (apf )T * Sepg £4Cs

Pe

where Cy is water compressibility and Cs is formation compressibility.
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R] is given by the second term on the right-hand-side of (5.116) plus

the source terms. One can follow a similar development and arrive at

the following expression for energy

(5.118) f\[(thwpw + hsMsps)]fapf = c2]65w + c226T * Cyap + R2

(energy)

where Cp; are non-linear coefficients and R2 is once again the known

th level. Now, following the same logic as Coats

information at the n
(1977) we recognize that the constraints of (5.113) arise from the fact
that only two of pr, 5T, asw are independent in any given phase.

Thus, (5.117) and (5.118) must be modified to account for this. Thomas

and Pierson accomplish this through an additional constraint equation

§T + c.

(5.119) 33

sp+R, =0

5sw +c 3

C3 32

To illustrate the use of (5.119) let us consider the case when steam and

liquid water coexist at n+1. From (5.113b)

- n, ap _ N
ép psa'c(T )+ (aT)p 6T - p
f
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where

n+] n
(AB) - psat(T ) - psat(T )
3 Tn+1 _ Tn

Thus, the coefficients of (5.119) become

= . = .a.R . = . = n - n
3 70 C3 (aT)L b G337 i Ry =P -
f

One can now visualize (5.117), (5.118) and (5.119) as a system of three
equations in three unknowns. The solution procedure involves the
following steps (Thomas and Pierson, 1976).
1) eliminate §S, and 6T from (5.117 - 5.119) by multiplying
(5.118) and (5.119) by appropriate coefficients and adding
(5.117 - 5.119)
2) solve the resulting equation in one unknown using the
reduged band width direct solution method (Price and Coats,
1974).

3) eliminating &S, from equations (5.117) and (5.118) we have
the following "explicit relationship for &T.

C
1 ,
(5.120)  &T = 3 {8 [(Mp +Mo )asp,] - R
c]2 c”c32 - ww s s’ Tf ]
“{CyaCnq = CaqCnan) c ,
13%1 " sy’ L g
C3 ¢y 3

4) calculate the change in water saturation from (5.117)

= 1.
(5.121) csw =z {a<[(M o

7 (Lo, * Mopg)aspel = By = €y 8T - €p580)
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5) steps 1-4 are repeated using updated coefficients until
a prescribed convergence criteria is achieved. Thomas
and Pierson (1977) report two to three iterations per time

step.
This scheme is known as the implicit pressure explicit saturation method

(IMPES) and was discussed in Coats (1977) for geothermal simulation.

5.7.3.1 Implicit Production Rate:

The production rate can be considered implicitly (e.g. Faust
and Mercer, 1978b; Cpats, 1977). In the Thomas and Pierson model, this
is achieved using the following approach. Let the production rate be

written

R aR 3R
(5.122) R = R" + (3——) sp. + (———) §S + (———-) sp
v op f 3S w ap f
| f Sw,pw w wf Sv

where p . is flowing bottom-hole pressure

- R" is the explicit production rate defined by

2nT*k 0/ WPgP, )

(2n (;Q) + s~ 1/2)

w

(5.123) -R" =

where T* is the vertically integrated permeability [L3].
r is external radius,

r., s well-bore radius,

s is skin effect [L°], and

¥ _ is grid block bulk volume
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. . aRn . . n
The derivative 56—4 is obtained from R
f .

on 27Tk p/u
(5.124) R . r

" ap r ;
o (o (;e-) + 5= 1/2)
W

This term is kept in the impiicit preSsure calculation. This type of
development can be extended to multiwell simulations. The final

step is the determination of the fractional f]bw of water, fw' The

procedure described by Thomas and Pierson (1976) is

"After pressure and temperature convergence is reached

and 8S_ is calculated explicitly, an implicit 8S_ calculation
is mad¥ using implicit production rates with resHect to water
saturation. The difference between implicit and explicit

production is given by

n+1
n+l n _ .
(5.125) - RS+ RE = JZT (5, - 8St)

where §S* is saturation change calculated using explicit
productifin rates and §S_ is the implicit saturation change.
The term f_ 1is the fracYional flow of water and R is the
total prodﬂction rate.

R = Rw + RS

Fractional water flow is written at time n+l as

n+l




n
w r o e——
here Aw

Substituting the above expressions into (5.125) yields a
quadratic equation which can be solved directly for GSW."

Note that equation (5.125) appears to .contain a typographical error

since the dimensions on each side of the equation do not match.

5.7.4 Example Problems:

One-dimensional, two-dimensional cylindrical and areal,

and three-dimensional problems were simulated.

1)

one dimensional problems: The problem considered
is the laboratory experiment of Arihara wherein

a core, initially saturated with hot water, is
subjected to decreasing pressure until flashing
occurs. It is worth noting that in this example
the initial conditions dictated saturated water so
the transition period was simulated. Pinder and
Huyakorn also simulated the problem through the
difficult transition period. Automatic time step
selection yielded steps of one to ten seconds.
Satisfactory results were achieved. There appear
to have been 14 nodes used in the problem with
Ax/2 spacing used for the first and .last block.

areal two dimensions: This problem is the same as
that treated by Toronyi, 1974 and discussed in section
5.4.5. The results were essentially identical to
those obtained by Toronyi. A 36 node block centered
grid was used. R

radial two dimensions: This problem involved the -
simulation of the behavior of a reservoir initially
containing subcooled water and subjected to production
at a constant rate. The reservoir was initially at a
temperature of 500°F and a pressure of 1000 psia.
Seventy nodes were used in this example problem.
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4) three-dimensional:. A three-dimensional reservoir with
a 10° dip is simulated. The model contained a well
in the top five blocks and,due to symmetry, only half
the region was modelled. The grid was 12x3x10 = 360
nodes. The model used implicit rates with respect to
pressure and saturation and with implicit transmissivities.
(this option is not discussed herein but can be found
in Thomas and Pierson, 1976) Mass and energy balances of
1.0020 and 0.9998 respectively were achieved. Explicit
transmissivities yielded mass and energy balances of
0.9998 and 1.0003. The implicit formulation required
approximately 10% fewer time steps. Minor oscillations
were observed at the bottom perforations of the well using
the explicit scheme.

5.7.5 Model Evaluation:
The Thomas and Pierson model is similar to the Coats model
in theoretical foundation and flexibility in application. Both models

have some semblance of a well bore model, can be applied to a range

of dimensions and geometries and éppear to be both accurate and efficient.
The principal differences involve solution technique (direct versus

IMPES) and fracture representation (only attempted in Coats). The Thomas
and Pierson model appears to have beenmore thoroughly tested, i.e., its
solutions were cpmpared‘with experiment and other numerical simulators,
and mass and energy balances were reported. The Coats model would appear
to be more computationally efficient although no direct comparisons were
attempted. Tﬁe‘methodoiogy fqr crossing the water-two phase boundary

is particu]af]y interesting.

The model appears to satisfy most of the requirements of a geo-
thermal reservoir simulator. It does not have some of the practical
features df the Coats model such as an effective methodology for simulating
flow from adjacent formations. It has the inherent limitations in

discretization normally associated with standard finite difference schemes.
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5.8 Model of Voss and Pinder N

The Voss and Pinder model was deéigned fo-demonstrate that
the finite-eIément method could be employed in a large scale simulator.
There are several new concepts in this mode]vincluding the governing
equations and method of solution. The model has been used primarily
as a research tool and consequently lacks the practical features which
would qualify it as an effective reservoir engineering tool. This

model is described in Voss (1978).

5.8.1 Governing Equations:

The governing equations were formulated from the primitive
point balance equations using the volume averaging approach (see section
3.0). In contrast to other workers, this formulation carries the kinetic
and internal energy components through the entire development and then
imposes simp]ifications based on the magnitude‘of the kinetic energy com-
ponent. The mass balance expression written in termsvof pressure and

enthalpy is

ap op 3p oh kk__p kk_ o
f f f f T rss T rWw W
(5.126) € (apf)hf it T e(ﬁ;) ot W * ™ VP¢
2 ' 2
- 9. KkpsPs . 5krwpw gl= o0
. M My ~ '
(mass)
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The energy equation without assumptions regarding the importance of

kinetié or potential energy yields

ah ar _
—R _f . Jdle-) - -
(3.47) | (1-edop 55 * P 3p * PgVe Mgt ¥ [(pf> SsSwPsPw(Ts ") (Vg Yw)]

ap |
- e (kTT) - & ggt - eoglverg) = 0

Nj—
<
- N

where re = hf +

If we assume %-v2<<hf, then rf:hf. Further, if we assume the derivatives in

r and hf are essentially the same, we obtain

hp o,
(3.49)  (l-elop 3x-+ epg3p *+ ergVe Vg

op
€ . - e =N .
¥ Y'[ (E;) Ssswpspw(hs'hw)(Ys'Yw)] -V (KYT) €3t epf(Yf 9)

Let us now rewrite (3.49), using thermodynamic relationships, to obtain an

expression in terms of enthalpy and pressure




sh
(5.127) [(1-s)pm (;5';—‘)"
- |

kk kk
T rw = rs - _Bl__ .
Ssswpspw(hs'hw)(s S u ) . (Bpf>h I-vpe

+
g
DI_L

—h

N

H
WW S$'S f
kk  p kk__p
aT 1 _ T rww _zrss).
: Y'(sh‘;Y“f)'?'?‘p”sswpspw‘“s (o 8 M.

- Epf(Vf'g) =0

5.8.2 Assumptions:

In the most general form, three of the generally accepted assﬁmptions
have been relaxed:

1) pressure work is not considered negligible

2) kinetic energy is not assumed negligible

3) no assumptions have been made regarding potential energy

5.8.3 Numerical Approximations

The governing equations (3.4a) and (5.127) are approximated using
a Galerkin finite element method. The only modification to the basic theory is
the use of asymmetric weighting functions for the convective term. Symmetric

weighting is used for the dispersive term. The mass matrix was not lumped.
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Isoparametric quadrilateral and brick finite elements defined
in two and three space dimensions respectively were used. The isoparametric iii
finite element has the advantage that the subspaces can be quite general in
shape: those employing higher degreé polynomials can actually have curved
sides. In this model only straight-sided isoparametrics were employed.
Thus, this model and that of Lasseter, Witherspoon and Lippmann both have
greater flexibility in application than standard finite-difference schemes.
Because it is impossible to summarize jsoparametric finite element theory
in a few paragraphs we refer the reader to Voss, 1978 and standard texts

such as Pinder and Gray (1977).

5.8.4 Solution of the Approximating Equations:

The approximating equations are linearized using the total increment
method of Settari and Aziz (1975). The scheme is similar to the Newton-Raphson
method, yet quite different in some ways. Let us consider a nonlinear coefficient

S(v)w(t). From our earlier development

(5.128) sM1 2 g 4 45

(5.129) L S

Thus, the non-linear product can be written

(5.130) . (o)™ = (sMess) (¢ +sy) = Sy es + SMsy + 656y

The change in the non-linear coefficient S can be written (considering only

one node) as

na.




Substitution of (5.131) into (5.130) yields

sy + S5y + 3§-c¢5¢

(5:132) (™! = sty B T

Y

To handle the non-linearities, we introduce the iteration level k and

define
as  BE. ST - s
+
X Sk 0

(5.133b) cwk = w"+]’k - w"
(5.133¢) skt = mTskel o

35K k41
(5.133d) 8S = — &y

Y
At convergence ka = 6wk+] = §y.

Substitution of (5.133) into (5.132) yields

k
9S k+1 | k+1
e A

n sk K+l K+1

(5.138)  (sp)™T = s"" 4y o 00+ STey

We now apply the Newton-Raphson method to the last term in (5.134) and

obtain (see Nolen and Berry, 1972).

n3.:




k

(5.135) 2 (sy

k+l
W s

K
kely . a8t (;5+16wk v sksekt! - kaswk)

v -

The final relationship for (S¢)"+] is obtained through combination of

(5.135) and (5.134)

K k k

ntl _ n.n naS . on, 3 .k k) k+1 _ 3S” . k. k
(Sy)™ " =Sy + (@ e TS Ty v &)y 2y OV OV
' ask
Notice that in this formulation, the derivative B is not the tangent at
the point wn+]’k but rather the chord slope between w"+1’k and wn as

determined by (5.133a). In practice, the derivatives would be taken with
respect to each nodel value of y, i.e., Vo k =1,2,...N.

It is recognized that the situation may arise where the numerical
solution will occur exactly on the two phase boundary. Hhi]e this may
seem unlikely, numerical experiments indicate certain problems are solvable
only when this possibility is accounted for. An algorithm for achieving
this goal is presented in Voss (1978).

The linear algebraic equations are solved using'a block iterative
scheme which circumvents the need to integrate the coefficients of the
matrix equation after each iteration. This technique is rather involved
and is described in Voss and Pinder (1978). The time integration parameters
(i.e., 0.5 is Crank-Nicolson) were selected to minimize mass and energy

balance errors.
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5.8.5 Example Problem:
Several problems were considered in order to demonstrate the
Q') accuracy and applicability of the model. The following one-dimensional
simulations were conducted:
1) single-phase flow with diffusion dominated energy transport
2) single phase flow with convection domfnated energy transport
3) 1linearized two phase flow: a check on the pressure solution
4)7,two phase flow with phase change (severél problems including
the Arihara depletion experiment). Both Carey and Arihara
permeabilities were employed. Twenty finite elements (21
nodes) were used with a varying time step size. Satisfactory
solutions were obtained.
The two and three dimensional problems involved simulation of the production-
reinjection problem. The two dimensional areal problem required 29 nodes
(see figure 9). The three dimensional simulation required 73 nodes and
29 elements. No difficulties were encountered in the simulation of either
of the above problems.
5.8.6 Model Evaluation
The Voss and Pinder model was deve]oped-as a‘prototype to evaluate
new ideas in large scale geothermal reservoir simulation. ‘Several concepts
were introduced all the way from the formulation of the équations through to
their numerical solution. By and large, the new aspects of this simulator
have proven satisfactory and improved modelling efficiency. The model has
been tested carefully and probab]y is tﬁe most accurate currently available.
The model does not incorporate certain features which are
important in practical reservoir engineering. In particular, it does not
include a well bore model or enhanced input-output devices. The program

is highly complex because it attempts to utilize the ideosyncrasies of the

IBM installation to achieve increased efficiency. It would probably be
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Figure 9: Two-dimensional finite element mesh for production}reinjection
problem (after Voss, 1978).
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" difficult to convert the computer code to computers outside the IBM series.
The Voss and Pinder model should probably be:viewed primarily

as a research tool although problems of'practica1 interest have been

:’investigated during the course of its development. Many of the ideas

1ntrodoced in this.code should prove va]uabTe in the formuiation of the

next generation of geothermal reservoir models.

6.0 SUMMARY AND CONCLUSIONS

6.1 Conceptual Mode]

Geothermal reservoirs are difficult to cata]ogue physically.
:They are re]at1ve1y scarce and tend to be rather un1que in their res-
pect1ye settings. Moreover, they are difficult to instrument because
of the adverse nature of the geothermal environment. Fortunately, a
few fie]ds, partico1ar1y those at wairakei in New Zealand, The Geysers
'15 California, Larderello in Italy, ano more recent]y Cerro Prieto in
Mexico are monitored. With the exception of The Geysers, these installa-
tions are publicly administered and thus the field data‘is generally
avai]able. | |

whi1e there is still a great deal to 1earn about geothermal
reservo1rs, a knowledge of the phys1cs of the system is gradua]\y emerging.
Interact1on between mathemat1ca1 mode]]ers and reservo1r eng1neers has shed
Tight on many aspects of the prob]em By and 1arge th1s 1nformat1on
tends to corroborate concepts formu]ated b}bear11er sc1ent1sts and engineers
working in the f1e]d Neverthe]ess, fundamenta] quest1ons remain. At
the megascop1c 1eve1 there 1s st111 specu]at1on on the ro]e of recharge
in the overall system and the source of energy at depth is poor]y understood.

At the macroscopic scale, the role of fractures in mass and energy transport

is not well understood and the interaction between fractures and‘porous blocks
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is vfrtua11y unknown.

| The conceptual model of the reservoir is particu}arly ‘
important in fabricating the initial and.boundary conditions on the system
and the source terms. In the short term, the flux terms are probab]y
of the greatest concern. As the pressure decline approachés the
boundaries of the reservoir, boundary conditions obviously begin to
play an important role. Fortunately, or perhaps unfortunately in the
case of newly developed fields, long term records in conjunction with
geohydrologic information can provide important insight into boundary
type and locations. To achieve reliable forecasts of productivity in
an undeveloped geothermal reservoir new or improved geophysical techniques

for the definition of reservoir geometry and properties will be required.

6.2 Reservoir Physics

By reservoir physics we refer to those physical phenomena
that invo}ve the transport of energy mass and momentum within a geothermal
reservoir. The mathematical rea]ization of these phenomena give rise to
the governing equations of the reservoir simulator. Until very recently
the procedure for éstab]ishing these equations was based on analogy with

point equations .derived using the concepts of continuum mechanics.

This approach was extended, in the case of porous media, using mixture theory.

Another methodology which appears to bé gaining favour is based on the

concepts of mass and volume averaging (see sections 3.0). This approach

appears to»provide enhanced physical insight into the interaction between the

various phases encountered in the reservoir. 1 believe we are now at the
stage where a rigorous development of the equations governing multiphase

mass and energy transport in a porous medium reservoir is possible. The

next cha]]enge will be to establish techniques for measuring the parameters

arising in these new and more comprehensive equations. While these develop-
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ments will provide a better understanding of the physical processes
encountered in the reservoir, they will probably not materially influence
the accuracy of long-term reservoir performance.

The role of fractures in geothermal reservoir performance,
however, is quite a different matter. Wairakei and The Geysers depend
upon fracture permeability to achieve satisfactory mass flows. To date
we know very little about modelling fractured reservoir systems and even less
about how to determine accurately important properties such as fracture
permeability, porosity, orientation and extent. Two schools of thought
exist on how fractured reservoirs should be modelled. The first we
denote as the dfscrete fracture approach: this conceptua] model requires
information‘on discrete fractures. These are subsequently modelled in
combination with their neighboring porous medium blocks. Unless there are
major advances in field measurement methodology, it is unlikely such data will
even occasionally be available. The second approach is based on the concept
of overlapping continua: one for the fractures and the other for the
porous blocks. In this approach, several new sets of field parameters would
be necessary: these would be volume averaged parameters similar to
permeability. Although this may provide a viable tool for modelling fractured
reservoirs, it is a rather recent concept and probably betongs within the
realm of research at this time.

Unlike porous-flow physics, advances ih fracture flow physics
could result in important changes in our ideas about geotherma] reservoir

simulation.
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6.3 Constitutive Equations

We have rather arbitrarily extracted this discussion of
constitutive theory from the preceeding section on reservoir physics.
It is a very important area which is receiving only token attention.
The Stanford Geothermal program is responsible for the majority of
research relevant to this topic. While it is possible to determine
a great deal about the functional form of constitutive equations
| arising in reservoir physics, experiments are essential to verify
hypotheses and measure parameters. Fundamenta] relationships such as
relative perméabi]ity curves are not available; the existence or
nonexistence of important capillary effects has yet to be established;
the thermodynamic relationships for curved steam-water interfaces are
not available; elasticity-plasticity models require additional
investigation. Needless to say, the introduction of fracture flow,
chemical precipitation and dissolution further aggravates the problem
of an inadequate experimental program in this area.

Of more pressing importance to the reservoir engineer is the
measurement of constitutive parameters at the field level. Given
various rather reasonable assumptions, some of the constitutitve knowledge
gaps outlined above can be set aside, at least momentarily. One cannot,
however, disregard problems in the measurement of important parameters
such as permeability, porosity and thermal conductivity. Accurate
forecasts reflect accurate parameter estimates and these are exceedingly
difficult to come by in the geothermal environment. The impact of this

parameter uncertainty we will examine separately in a later section.




6.4 Numerical Approximations

The numerical schemes employed in existing geothermal models
have been described in the body of this report (section 5.x). The
salient features of each are a1sd summarized in table 2. The important
elements of the discussion can be briefly stated as follows:

DEPENDENT VARIABLES: variables solved for explicitly in the governing
equations
Variables are defined in 1list of variables

WELL APPROXIMATION: the utilization of a,mode] of the well bore

EQUATION APPROXIMATION: the mathematical formalism employed in obtaining
the governing porous medium equations
MACRO designates a macroscopic balance
MIX designates mixture theory methodology of continuum
mechanics
VINT denotes volume integration from the microscopic level
to the macroscopic level.

DIMENSIONS: -number of space dimensions employed in example problems

PHASES: The number of phases that can coexist at any given point in space
and time.

SPACIAL APPROXIMATION: The numerical scheme used to approximate Space
derivatives _
IFD denotes integrated finite difference
FD ‘denotes finite difference
FE denotes finite element

TEMPORAL APPROXIMATION: The numerical scheme used to approximate the time
derivative
FD denotes finite difference

VERTICAL INTEGRATION: The formal procedure of integrating the three dimensional
equations vertically when generating a two-dimensional areal model

CONVECTIVE TERM: form in which the convective term appears in the model
CONVECTIVE TERM APPROX.: numerical scheme employed in approximating the
convective term

UFD denotes upstream weighted finite difference
UFE denotes upstream weighted finite element
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TIME INTEGRATION OF UNKNOWNS: type of time derivative approximation
employed
8 denotes a general formulation 0.5 < 8 < 1
CENT denotes a Crank-Nicolson scheme ~(i.e., 6 = O. 5)
IMP denotes a backward difference approximation

TIME INTEGRATION COEFFICIENTS: The location in the time domain where the
non-linear coefficients are evaluated. Nomenclature the same
-as previous case.

NON-LINEAR APPROX.: method used to linearize non-linear equations
NRA denotes Newton-Raphson iteration
IMPES denotes implicit pressure, explicit saturation
. TIM denotes the total increment method

PHASE CHANGE METHOD: technique used to more numerically across the

phase change boundary

. LEX denotes limited excursion techn1que
At ADJ denotes a modification of At as the phase boundary
is approached
TAN denotes a modification of Newton-Raphson to allow the
tangent to be taken in a direction away from the phase
boundary
IMP denotes a formulation accounting for the phase change
with the equations
SLA denotes saturation line adjustment

SOLUTION SCHEME: The method used to solve the two coupled governing
equations .
SEQ denotes the sequential solution of each, i.e., N
equat1ons are solved twice per iteration
SIM denotes the simultaneous solution of 2N equations at
each iteration

MATRIX SOLUTION: Technique used to solve linear algebraic equations
ITR denotes an iterative method
ADI denotes alternating direction implicit procedure
D denotes a direct solution scheme
SSOR denotes slice successive over relaxation
IMPES denotes implicit pressure explicit saturation method
BIFEPS denotes block iterative finite element preprocessed
scheme

AVAILABILITY: designation of availability of model to the public
. PUB designates models funded through public monies and
therefore available to the public-
PRIV designates models developed with private funds and
thus probably proprietary.
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Table 2b:

1)

Nomenclature for table 2a.

The sets of dependent variables employed in so]v1ng the f]ow
and energy -transport equat1ons are (p )s (Peshy)s (Pf,S
(P ,T,p,S ) and (p s T3S ,p§1' The éhofce betwe n

§ and (pgs ) seems rather arbitrary since one is readily
ﬁ gd from tﬁ gther for presentation.

The majority of models will accommodate one, two, and three
space dimensions: the notable exceptions are Toronyi and Faroug-
Ali and Huyakorn and Pinder.

With the exception of the Toronyi and Faroug-Ali model, all
simulators can handle either one or two phase flow.

Finite differéncé, finite element, and integrafed finite
difference methods have been used in spacial approximations:
the majority of models employ finite difference methods

A1l models approximate the time dimension using finite difference

 methods

Explicit, implicit, and mixed explicit-implicit schemes are
employed in the representation of the non-linear coefficients:
the majority of algorithms employ an implicit formulation

Where an implicit formulation is used, either Newton-Raphson or
the total increment method is employed to linearize the
approximating equations.

The only vertically integrated areal model is the one developed
by Faust and Mercer. :

A11 methods employ some form of upstream we1ght1ng for the
c0nvect1ve term.

The transition across the phase_ boundary is accomplished in a
number of ways. Most schemes involve some method of numerical
damping which. stops the oscillation across this boundary. Only
the - model of Voss and Pinder completely resolves the phase
change problem. - The: approach of Thomas and Pierson deserves

additional study: it was d1ff1cu1t to evaluate based on the available

literature.
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Toronyi and Pe ~YES MACRO 2 2 FD FD NO Y‘vfhf UFD IMP [IMP |NRA - SIM D PRIV
Farouwq Ali Sw
Lasseter, of NO MACRO 1 1 IFD FD NO V-vtllf UFD *] EXP | NONE | NONE |SEQ | ITR | PUB
Witherspoon U 2 2 -
and Lippmann f 3.
Brownell LF YES MIX 1 1 FD FD NO V'Vfuf UFD CENT |IMP |[NRA LEX ISIM | ADI { PRIV
Garg and U 2 2 -
Pritchett f 3
Faust and pf NO VINT 1 1 FD FD | YES V~v{,.h1r UFD ] IMP {NRA 2D SEQ D PUB
Mercer he 2 {2 | F®) exe TAN| 3D | STM | SSOR
Coats poT |YES |macRo | 2 (1 | FD | FD INO jvevh | UFD | INP|IMP NRA | 7 |smM| D |PRIV
Pg S 3 |2
Huyakorn P¢ NO MACRO 1 1 FE FD {NO V-vfhf UFE IMP |IMP |NRA |TAN SIM| D PUB
and Pinder h -
f 2
Thomas and [ YES MACRO 1 1 FD FO |NO v-vch ? IMP  JIMP  |IMPES {IMP SIM | IMPES | PRIV
Pi w . f f
erson 5T 2 |2 EXP
w' 3
PgsT
Voss and P¢ NO VINT 2 1 FE FD |NO v-vhf UFE 0 0 TIM LA SIM |BIFEPS)PUB
Pinder h . -~ '
£ 3 2
Table 2a: Comparison of Multiphase Distributed Parameter Geothermal Reservoir Mode];

(*ratings are subjective)



11) A well bore model is included in the models of Toronyi and
Farouq-Ali, Coats, Thomas and Pierson and Brownell, Garg and
Pritchett.

The formulation of the approximating equations is relatively
straightforward. The linearization of the resulting non-linear equations
is rather challenging. The Achilles' heel of the methodology is the
treatment of the phase change. For some problems, probably the majority
of those encountered in the field, the problem can be treated rather
crudely. For others, which are dominated by the phase change phenomenon,'
an accurate formulation is essential. Because fhere is no test which
is sufficient to demonstrate the accuracy of geothermal reservoir
simulators, we can only speculate on the adequacy of fhis element of the
development.

6.5 Solution Scheme

The flow and energy equations can be solved either sequentially
or simultaneously. The sequential solution employs estimates of the
energy variable when solving the flow equation and gstimates of the flow
variable when solving the energy equation. This unéoup1ing is desirable
because it is more efficient to solve N eqyations twice than 2N equations
once. The disadvantage is that it is generally necessary tq iterate
between the equations and convergence is not, in general, guaranteed.

The majority of existing models solve the two equations simultaneously
and employ Newton-Raphson type schemes to accommodate the non-linearity
which arises. Thé two dimensional model of Faust énd Mercer and the
formulation of Lasseter, wifherspoon and Lippmannvare exceptions to this

general rule.
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The matrix equations‘which arise in either approach may be soived
either directly or iteratively. Direct methods are based on Gaussian
elimination and are reliable when applied to a well behaved system of equa-
tions. Iterative methods ténd to be more efficient for 1argé problems
(e.g., more than 500 equafions) buf generally require a highekiléVel of
numerical ingenuity to program and apply effectively. The'majority of
iterative schemes are block iterative and thus incorporate a direct
solution module in the iterative a1gokithm. This is true for the models
considered with the exception of Lasseter, Witherspoon and Lippmann.

The primary factors to consider‘in therselection of a solution
scheme are accuracy and efficiency. Ease of programming wii] probably play
‘a secondary role because of the considerable computer costs involved in
geothermal reservoir simulation. Because a comparison of the accuracy
and efficiency of the models outlined in table 2 has never been undertaken,
‘one cannot select an optimal approach directly. |

The complexity of geotherma] reservoir physics essentially pre-
cludes the verificiation of existing codes using analytical solutions.

One can, however, compare solutions generated Sy a model against other
- numerical solutions or experimental data. This has been done to varying

degrees by the majority of modellers.
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6.6 The Question of Uncertainty

In this section, we attempt to address the question of simulation
uncertainty. In fact, each of the preceeding sections 6.x have addressed
this problem indirectly. Because the history of geothermal reservoir
simulation is very short, we have little experience on which to estimate
the accuracy of our forecasts. Thus, this discussion must draw on personal
experience and stﬁdies in related areas. In figure 10, we present a
completely subjective estimate of the distribution of uncertainty in the
reservoir simulation process. We wish to emphasize that uncertainty
does not reside within the technology of equation solving but rather in
the formulation of the equations and the measurements of field paramefers.

The classical approach to estimating the impact of parameter
uncertainty on calculated solutions is through sensitivity analysis. The
method involves simulation using maximum and miniﬁum parameter estimates
from a reasonable ensemble of values. Thus, the range of solution uncertainty
is, in some sense, bracketed. We will not pursue this approach further
because this data is not currently available for the geothermal case.

Let us consider a more generic approach wherein we investigate
the impact of parameter uncertainty for an operator of the form encountered
in geothermal reservoir sihu]ation.. The objectivé'is to estimate imput
uncertainty and compute the resu]tanf output uncertainty. The approach and
results are taken from Tang and Pinder (1977;1978).

The coupled non-linear set of equations has not been considered in
the literature. A set of equations similar to a linearized version of the

geothermal reservoir equations has been examined. These equations are
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32u 82u U
(6.1) T—5+T=%-8%" Rwd(x-xo,y-yo) =0 (mass)

3x 3y ot

where

T dis transmissivity,

u is fluid potential,

g is the storage coefficient

6§ is the Dirac delta function, and

du du D AU\ -

(6.2) t + v o 5;—(0 ™ Yy =20 (energy)
where

u would be temperature,

v the x velocity component,

D the dispersion coefficient,
D = D{a,v) and

a is the medium dispersivity

Equations (6.1) and (6.2) were solved using uncertain values for T, v, and
o. While a rather extensive analysis was performed, we will consider here
only an overview of the results.

Let us define a measure of coefficient uncertainty using the

& 4100 where ¢ is the variance and
o> . o ! A

coefficient of variation i.e. CV =
<a> the mean of the parameter a. In equation (6.1) we employed input

7 6

parameters of o = 6.6 x 107 cmz/sec. and <T> = 6.6 x 10° cmz/sec. The
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coefficient of variation is

6.6 x 107/

C.V. =
6.6 x 10°°

x 100 = 10%

For the case of a radial flow problem defined on a re;tangu]ar net,

we obtain as a solution 02 = 6.0 x 102 and <u> = 0.5 x ]02.
u,max '
cv. = 2422y 100 = 20.40%
1.2 x 10

Thus, the uncertainty in the input generated uncertainty in output of about
the same magnitude.

The transport equation exhibits a simular tendency. The input

2 ‘]2(

parameters in this case were op = 87.10 cmz/sec)z and <D> = 6.6 x 10-5

cmz/sec which yields a coefficient of variation of

2.94 x 1076

C.V. =
6.6 x 10°°

x 100 = 4.45%

The solution to a one dimensional transport problem yields 05 = 2.4 x 10.4

and <u> = 0.82 with a coefficient of variation of
CV., = —=——= = 1.8%

The results of the above analyses suggest that the flow equation
tends to amplify uncertainty while theAtransport equation tends to dampen'
uncertainty. An examfnation’of the results in their entirety wouid fevea]
that, as time elapses, the variance in the solution tends to decrease.

Thus, the impact of initial uncertainty in parameter values is less as
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boundary values begin to influence the solution.

With respect to geothermal reserVoir simu1ation we are led
to conclude that uncertain input data generates solution uncertainty
of about the same magnitude (using the coefficient of variation as the
uncertainty measurement). The greatest uncertaiﬁty in the solution
occurs during the period of maximum change in the system. As the
system approaches steady state the solution uncertainty decreases.

The problem that remains to be considered is the estimation of the

input uncertainty.

7.0 NOMENCLATURE
7.1 Upper Case Roman Letters
A grid cross-sectional area perpendicular to flow
direction
Dnrn distance between node n and m
2
E total energy (U + %— + 9)
F €p
G net production
H epfhf + (]-e)pRhR
Km medium thermal conductivity and dispersion
M | €P ¢
kkr
M £ . mobility of the o phase

o}
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D, (Mo ) (Mo)2

*
Mm@ eyr ¥ d )7
2 * * *
" 2)* (Mp™)x(Mo) ¥ d i * (Mo )X (Mo)xd
P /nm d_(Mo)* +d (M)
N basis function
Q internal energy injection rate per volume
Q pe/ (o, * pg)
R mass injection rate per volume
Rf residual
S volume saturation
SSc critical steam saturation
ch irreducible water saturation
Sw (Sw B ch)/(l-ch B ssc)
) entropy per unit mass
T temperature
kAo k
T* worw
w luw
kAp _k
ST __ SIS
Zus
KA
* * * LU T
Th Twhw * Tshs Ay (apf)h
f
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7.2

1D

[XYe]

L

K (@L)
[) ahf b

internal energy per 'unit mass

f

weighting functions

3(Mp)* Pn ™ P _ 8§M92}* g
3pf Dnm apf Yam
nm

nm

Lower Case Roman Letters

reservoir thickness
compressibility of water
formation compressibility
heat capacity

rock compressibility

distance between nodal point n and interface between

nodes n and m

deviatoric part of the strain rate‘tensor
gravitational force vector

enthalpy -per unit mass

intrinsic permeability tensor

relative permeability

length increment in the flow direction
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7.3

m total mass per cell containing the well

n unit outward normal vector
p | pressure

Pe capillary pressure

Pr (1-e)pg + eps

Peat " pressure of saturated steam
Puf bottom well-bore pressure

q heat flux vector

W velocity of the interface
At time step

Upper Case Greek Letters

thermal conductivity tensor

nux

A finite difference operator
X epfhf + (1-e)pRhR
' 3T
e A - K (Spf)
: hf

U P
A sw

MwPs
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7.4

Lower Case Greek Letters

1
[ = - (]'EO)/KJ/EO

R
(%)

ahf pf
]-Q- <]‘Q Uvag )
Sw Ufpf
Q

L i+ g 2
fof

directional cosine between normal from node m to n and g

weighting factor in numerical scheme

bulk volumetric strain

porosity

Va/V

rock grain volumetric strain

microscopic position vector

(™"

dynamic viscosity
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u skew modulus of the porous rock
oT
A K (Spf)hf + hSTS + thw hw < h < hS

oT
K f— + 1h
(apf)hf a o

p density

k V‘apa

Mo

e

stress tensor
® potential energy per unit mass

Y example variable

Subscripts

f fluid

i,j,.k position index in finite difference scheme
m mixture

n node index

R ~ rock

S steam

W water (liquid)
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7.6

nm between nodes n and m

a,B phases

Operators

ST SORRAI0

dv
S0 _ v - lI}C!
<lp>
<> = &
€
a
"= Lo f n®®ida
p a 8fa ~ -

% = %K’ J [i - 0¥™V*]-ny"da

dA

= aB
o T [eunen)
@ B ga

137




Figure Captions

Figure 1: Representative elementary volume (REV) containing steam
(s), water (w) and rock (R) (Vw + VS + VR = V)

Figure 2: Discrete fracture system modelled used finite differences
(after Coats, 1977). The number of vertical blocks em-
ployed in the original experiment by Coats was 31.

Figure 3: Conceptual model for overlapping continua, curve(a) is
the plot of a property y measured for different volume
(REV) LS of porous media; curve (b) is the plot of_a
property y measured for different volumes (REV) L3 of
fractured porous media. The region (c) is the common
region where both the porous medium and fracture medium
physics can be represented as though each were a continuum.

Figure 4: Discretization by the integrated finite difference method
(after Lasseter, Witherspoon and Lippmann, 1975).

. Figure 5: Pressure-enthalpy diagram for water and steam with

: thermodynamic regions 1) compressed water 2) two-phase
steam and water and 3) superheated steam (after Faust and
Mercer, 1977a) :

Figure 6: | Definition sketch for the vertical integration of the para-
meter y(z) = <y> + y(z) (after Faust and Mercer, 1978a)

Figure 7: Linear 'chapeau' basis functions

Figure 8: Asymmetric weighting function W,

Figure 9: Two-dimensional finite element mesh for production-reinjection

problem (after Voss, 1978).

Figure 10: Estimate of the uncertainty distribution among elements of
geothermal reservoir simulation.
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