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a multi-omics longitudinal 
aging dataset in primary human 
fibroblasts with mitochondrial 
perturbations
Gabriel Sturm  1,2, Anna S. Monzel1, Kalpita R. Karan1, Jeremy Michelson1, Sarah A. Ware3, 
andres Cardenas  4, Jue Lin2, Céline Bris5,6, Balaji Santhanam7, Michael P. Murphy  8,  
Morgan E. Levine9,10, Steve Horvath  10,11, Daniel W. Belsky12, Shuang Wang13, 
Vincent Procaccio5,6, Brett A. Kaufman  3, Michio Hirano14 & Martin Picard1,14,15 ✉

Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets 
with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for 
cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were 
sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial 
disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, 
secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and 
whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as 
outlined by the “hallmarks of aging”, with the descriptive characterization of aging such as epigenetic 
age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset 
includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations 
targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. 
These experiments provide opportunities to test how cellular energetics affect the biology of cellular 
aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-
Lifespan_Study/

Background & Summary
Aging is the major risk factor for all major diseases1. In biological terms, aging involves progressive changes at 
multiple levels of molecular organization, including the genome2–4, epigenome5–7, transcriptome8, proteome9, 
secretome10, and organs and organ-systems11. Advances in aging biology have identified a set of molecular “hall-
marks” or “pillars” thought to represent the root causes of aging-related declines in cellular- and organ-system 
integrity and subsequent disease, disability, and mortality12,13. In parallel, recent expansion of omics technologies 
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have enabled researchers to generate high-dimensional datasets across multiple modalities that illuminate the 
complex molecular landscape of biological aging. These data have been combined with machine-learning meth-
ods to develop molecular “clocks” that track chronological age and mortality risk with remarkable accuracy14,15, 
and to model complex systems-level processes16,17. The clocks and related measures make possible measure-
ments of biological processes of aging in free-living humans. But their connections to the hallmarks of aging 
remain unclear. Research is needed to elucidate fundamental mechanisms that cause aging-related changes, and 
that drive aging-related declines in resilience and increased vulnerability to disease, disability, and mortality.

The ideal approach to meeting this research need would be to longitudinally monitor a population of indi-
viduals over their entire lifespan, taking regular measures of many metrics at frequent intervals. Such stud-
ies represent an important frontier in aging science18,19. However, in addition to resource-constraints and 
participant-burden concerns that limit the frequency and depth of measurements, following a cohort of humans 
over their lifespan requires multiple generations of scientists and faces challenges of ever-changing techniques 
and technology for sample collection and analysis. One complementary strategy is to conduct lifespan studies of 
shorter-lived animals20,21, although these too require substantial time, and may be limited in their translatability 
to humans22. Here we present a further complementary strategy: a “lifespan” study of cultured fibroblasts.

One contribution from cross-species work has been to delineate conserved genes, pathways, and hallmarks of 
aging across multiple experimental modalities12. One major pathway surfacing as a critical and possibly primary 
driver of aging biology is mitochondrial metabolism23. Omics-based discovery studies consistently converge on 
mitochondria as a major molecular signature of biological aging9,24. Beyond providing ATP for all basic cellu-
lar functions, mitochondria produce signals that can trigger multiple hallmarks of aging25. In humans26,27 and 
animals28–30, mitochondrial respiratory chain dysfunction dramatically shortens lifespan, further suggesting a 
primary causal role of mitochondria as a “timekeeper” and driver of the biological aging process.

To examine longitudinal aging trajectories and quantify the influence of mitochondria on canonical and 
exploratory aging markers in a human system, we generated a multi-omics, longitudinal dataset across the 
replicative lifespan of primary human fibroblasts from several healthy and disease donors (Fig. 1). These data 
include genomic, epigenomic, transcriptomics, and protein-based measures along with bioenergetic and mito-
chondrial OxPhos measures. The relatively high temporal resolution of measurements allows for non-linear 
modeling of molecular recalibrations in primary human cells, as recently shown for DNA methylation in a pilot 
cellular lifespan study31. In this cellular lifespan system, the rate of biological aging appears to proceed at a rate 
~40–140x faster than in vivo (i.e., in the human body), such that 200–300 days in vitro corresponds to multiple 
decades of human life31. In addition to the rich descriptive data in multiple donors, this dataset includes experi-
mental conditions with metabolic manipulations targeted to mitochondria, allowing investigators to directly test 
the influence of mitochondrial metabolism on human molecular aging signatures.

Methods
Tissue culture. Primary human dermal fibroblasts were obtained from commercial distributors or in our 
local clinic from 6 healthy control donors, and 3 donors with lethal SURF1 mutations (IRB #AAAB0483) that 
alter mitochondrial respiratory chain complex IV assembly and function32,33, and lead to early death in affected 
patients34 (see Table 1 for descriptive information and distributor). SURF1-mutant fibroblasts were isolated from 
dermal punch biopsies of the forearm skin using standard procedures. After isolation, fibroblasts were cryopre-
served in 10% DMSO (Sigma-Aldrich #D4540), 90% fetal bovine serum (FBS, Life Technologies #10437036) 
in liquid nitrogen. To avoid freeze-shock necrosis cells were frozen gradually in an isopropanol container 
(Thermofisher #5100-0001) at −80 °C overnight before storage in liquid nitrogen. Cells were thawed at 37 °C 
(<4 min) and immediately transferred to 20 ml of pre-warmed DMEM (Invitrogen #10567022).

For replicative lifespan studies, cells were cultured in T175 flasks (Eppendorf #0030712129) at standard 5% 
CO2 and atmospheric O2 at 37 °C in DMEM (5.5 mM glucose) supplemented with 10% FBS (Thermofisher 
#10437010), 50 μg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-essential amino acids (Life Technologies 
#11140050), 10 μM palmitate (Sigma-Aldrich #P9767) conjugated to 1.7 μM BSA (Sigma-Aldrich #A8806), and 
0.001% DMSO (treatment-matched, Sigma-Aldrich #D4540). Cells were passaged approximately every 6 days 
(+/− 1 day), with decreasing passaging frequency as cells enter quiescence, for up to 270 days.

Brightfield microscopy images at 10x and 20x magnification were taken before each passaged using inverted 
phase-contrast microscope (Fisher Scientific #11350119). All images except those of Phase IV can be down-
loaded at FigShare (18444731)35.

Cell counts, volume, and proportion of cell death were determined in duplicates and averaged at each passage 
using the Countess II Automated Cell Counter (Thermofisher #A27977). If the coefficient of variation between 
duplicates was above 10%, sample counts were repeated and the outlier excluded. To determine the number of 
cells to plate at each passage, growth rates from the previous passage were used, pre-calculating the expected 
number cells needed to reach ~90% confluency (~2.5 million cells) by the next passage, ensuring relatively sim-
ilar confluence at the time of harvesting for molecular analyses. Cells were never plated below 200,000 cells or 
above 2.5 million cells to avoid plating artifacts of isolation or contact inhibition, respectively. However, some 
differences in cell density between early and late passages were unavoidable. Study measurements and treatment 
began after 15-days of culturing post-thaw to allow for adjustment to the in vitro environment. Individual cell 
lines from each donor were grown until they exhibited less than one population doubling over a 30-day period, 
at which point the cell line was terminated, reflecting the end of the lifespan. The hayflick limit was calculated as 
the total number of population doublings reached by the end of each experiment.

https://doi.org/10.1038/s41597-022-01852-y
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Experimental treatments. The section below contains the rationale, design, dosage, duration, and portion 
of study over which each treatment was conducted (I-V).

 1. Control (untreated)
 a. Rationale: Cells are grown under metabolically diverse conditions of Dulbecco’s modified Eagle’s 

medium (DMEM, Thermofisher #10569044) containing 5.5 mM glucose, 1 mM pyruvate, 4 mM 
GlutaMAXTM, supplemented with 10% fetal bovine serum, 1% non-essential amino acids, 50 mg/ml 
Uridine, and 10 μM Palmitate.

 b. Design & dose: No treatment. To enable direct comparison of control growth trajectories to  
treatments (diluted in the vehicle DMSO), untreated controls were grown in 0.001% DMSO  
(Sigma-Aldrich #D4540).

 c. Duration: 0–270 days
 d. Study Phase: I–V

 2. Chronic Dexamethasone (DEX)
 a. Rationale: Glucocorticoid receptor agonist, activates transcription of >1,000 genes36. Used as a 

mimetic of chronic neuroendocrine or psychosocial stress in animal studies37. This treatment was 
used to examine the effects of chronic activation glucocorticoid signaling, a major evolutionary  
conserved stress pathway, on aging- and metabolism-related processes.

 b. Design & dose: (PubChem CID: 5743, SID: 46508930) Chronic 100 nM (in EtOh) dose every passage, 
Sigma-Aldrich #D4902.

Fig. 1 Biological and conceptual rationale for the Cellular Lifespan Study. (A) Primary human fibroblasts aged in 
culture (i.e., in vitro) recapitulate several, although not all, molecular hallmarks of human aging. Previous work with 
this replicative lifespan system showed that canonical age-related changes in DNA methylation (DNAm) in human 
tissues, such as hypermethylation of the ELOVL2 gene promoter (cg16867657), global hypomethylation, and the 
rate of epigenetic aging captured by epigenetic clocks, are conserved, but occur at an accelerated rate in cultured 
primary human fibroblasts31. This model provides a system to recapitulate and model some of the longitudinal 
changes in the cells of the same individuals, at high temporal resolution across the replicative lifespan. (B) Electron 
micrograph of a human cultured cell (left) and higher magnification view of the surface of the nucleus and nuclear 
envelope (yellow), with a neighboring mitochondrion. Arrows illustrate the diffusion path for soluble metabolic 
signals to reach the (epi)genome. Illustration modified from80. (C) Micrograph of a whole fibroblast (HC2, P22, 103 
days grown) with fluorescently-labeled mitochondria (MitoTracker green) surrounding the nucleus, from which 
DNA methylation can be measured using the EPIC array, quantified either at the single CpG level, or integrating 
data from multiple CpGs via different DNAm clocks. (D) Illustration of the experimental segment of the Cellular 
Lifespan Study, where specific signaling pathways (glucocorticoid signaling), OxPhos (oligomycin) and glycolytic 
pathways (no glucose, galactose, 2-deoxyglucose), respiratory chain defects (donors with SURF1 mutations), and 
other single and combinations of treatments were used to perturb selected metabolic pathways.

https://doi.org/10.1038/s41597-022-01852-y
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 c. Duration: 20–270 days (chronic)
 d. Study Phase: I-III

 3. Oligomycin (Oligo)
 a. Rationale: Inhibition of the mitochondrial OXPHOS system by inhibiting the ATP synthase (Com-

plex V). Oligo treatment causes depletion of mitochondria-derived ATP, hyperpolarization of the 
membrane potential, and triggers retrograde signaling that activates the integrated stress response 
(ISR)38. This treatment was used to inhibit OXPHOS downstream from the respiratory chain, and 
thereby examine the effect of chronic OXPHOS dysfunction.

 b. Design & dose: Chronic, 1 nM (stored in DMSO) dose every passage, Sigma-Aldrich #75351
 c. Duration: 20–220 days
 d. Study Phase: II

 4. Mitochondrial Nutrient Uptake Inhibitors (mitoNUITs)
 a. Rationale: Inhibiting the import of three major substrates into mitochondria, including i) pyruvate, 

with UK5099, an inhibitor of the mitochondrial pyruvate carrier (MPC); ii) fatty acids, with Etomoxir, 
an irreversible inhibitor of carnitine palmitoyltransferase-1 (CPT-1) that prevents the transport of 
fatty acyl chains from the cytoplasm to the mitochondria; and iii) glutamine, with BPTES, an inhibitor 
of glutaminase GLS1 that converts glutamine to glutamate inside the mitochondria. This treat-
ment was used to starve the tricarboxylic acid (TCA) cycle of carbon intermediates, thus inhibiting 
OXPHOS upstream of the respiratory chain.

 b. Design & dose: UK5099 (PubChem CID: 6438504, SID: 329825569) chronic at 2 μM (in DMSO), Sig-
ma-Aldrich #PZ0160; Etomoxir (PubChem CID: 123823) chronic at 4 μM (in ddH2O), Sigma-Aldrich 
#E1905; BPTES (PubChem CID: 3372016) chronic at 3 μM (in DMSO), Sigma-Aldrich #SML0601; 
dosed every passage.

 c. Duration: 20–210 days
 d. Study Phase: II

 5. Hypoxia
 a. Rationale: Oxygen is the terminal electron acceptor at respiratory chain complex IV (cytochrome c oxi-

dase) and decreasing ambient oxygen tension from 21% to 3% has been shown to influence cellular bioen-
ergetics. In cellular and animal models of mitochondrial disease, including the Ndufs4 deficient mouse30, 
hypoxia treatment has shown promise to alleviate the disease phenotype and extend lifespan. In relation 
to cellular aging, 3% oxygen tension also extends cellular lifespan in murine and human fibroblasts39–43.

 b. Design & dose: Cells chronically grown at 3% O2 (5% CO2), except periodic exposure to ambient 21% 
O2 during passaging (~3 hours, once each week). This experiment was run twice (Study Phase III and 
V). Phase III compared healthy to chronic DEX cells in hypoxia, while Phase V compared healthy to 
SURF1-mutant cells in hypoxia. Additionally, all seahorse bioenergetic measurements were measured 
in 21% oxygen (Phase V included an overnight incubation at 21% O2).

 c. Duration: 0–70 days
 d. Study Phase: III & V

Cell Line 
name

In-house 
name Recived From Tissue Location Genetic SURF1 Mutation Ethnicity Sex

Donor Age 
(years) Passage Cat #

HC1 hFB12 Lifeline Cell 
Technology Dermal Breast Normal N/A Caucasian male 18 1 FC-0024 Lot 

# 03099

HC2 hFB13 LifeLine Cell 
Technology Dermal Breast Normal N/A Caucasian female 18 1 FC-0024 Lot 

# 00967

HC3 hFB14 Corriel Institute Foreskin Normal N/A Black male 0 4 AG01439

HC4 hFB11 Hirano Lab Dermal Upper-
Arm Skin Normal N/A N/A male 3 4

HC5 hFB1 Hirano Lab Dermal Upper-
Arm Skin Normal N/A Caucasian male 29 3

HC6 hFB2 Hirano Lab Dermal Upper-
Arm Skin Normal N/A Caucasian female 26 4

SURF1_1 hFB6 Hirano Lab Dermal Upper-
Arm Skin SURF1 Mutation c.518_519del (p.S173Cfs*7) 

c.845_846del (p.S282Cfs*7) N/A male 0.25 7

SURF1_2 hFB7 Hirano Lab Dermal Upper-
Arm Skin SURF1 Mutation

c.247_248insCTGC 
(p.R83Pfx*7) c.313_321del 
(p.L105_A107del)

N/A male 11 5

SURF1_3 hFB8 Hirano Lab Dermal Upper-
Arm Skin SURF1 Mutation Homozygous c.313_321del 

(p.L105_A107del) N/A female 9 9

Table 1. Cell line metadata. Demographic, tissue of origin, and genetic characteristics of the primary human 
fibroblast cell lines used in the Cellular Lifespan Study dataset. The dataset includes 6 healthy control donors, 
and 3 donors with SURF1 mutations that alter mitochondrial respiratory chain complex IV assembly and 
function, and lead to early death in affected patients.

https://doi.org/10.1038/s41597-022-01852-y
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 6. Contact Inhibition
 a. Rationale: Allowing cells to fill up the dish and enter a quiescent state allows for the experimentally 

untangle the role of cell division in time-dependent changes. Contact-inhibited fibroblasts continue to 
undergo morphological changes, exhibit >88% reduced division rate on average, and display skin-like 
tissue appearance after months in culture.

 b. Design & dose: After thawing and adjustment to culture environment cells are plated in multiple 
flasks at high density with marked collection points with the 0 time point collected 7 days after the 
initial plating. Media is changed weekly, at the same time points as dividing cells are passaged.

 c. Duration: 20–140 days
 d. Study Phase: III

 7. Galactose
 a. Rationale: Galactose is a non-fermentable sugar and its oxidation into pyruvate through glycolysis 

yields no ATP, thereby forcing cells to rely solely on OXPHOS for ATP production44.
 b. Design & dose: Galactose (PubChem CID: 6036, SID: 178101363) chronic at 5.5 mM (stored in 

ddH2O) dose every passage, Sigma-Aldrich #G5388.
 c. Duration: 20–170 days
 d. Study Phase: IV

 8. 2-deoxy-d-glucose (2-DG)
 a. Rationale: 2-deoxy-d-glucose (2DG) is an inhibitor of hexokinase45 that blocks metabolic flux and 

ATP synthesis from the metabolism of glucose through glycolysis.
 b. Design & dose: 2-DG (PubChem CID: 108223, SID:24893732) chronic at 1 mM (in ddH2O) dose 

every passage, Sigma-Aldrich #D3179.
 c. Duration: 20–170 days
 d. Study Phase: IV

 9. Beta-hydroxybutyrate (and 0 mM glucose)
 a. Rationale: Caloric restriction has been shown to extend lifespan. Beta-hydroxbutyrate is a ketone 

body that is induced in caloric restriction and acts as a signaling metabolite to effect gene expression 
in diverse tissues46.

 b. Design & dose: hydroxybutyrate (PubChem CID: 10197691, SID: 57651496) chronic at 10 mM (in 
ddH2O) dose every passage, Sigma-Aldrich #54965.

 c. Duration: 20–170 days
 d. Study Phase: IV

 10. 5-azacytidine (5-aza)
 a. Rationale: 5-aza was used to induce global demethylation of the genome, thus testing if direct altera-

tion of the methylome would reset the aging of our cells. Note, no significant change was seen in the 
growth rate or global DNA methylation after treatment, suggesting that the dose used may have been 
insufficient to induce robust alterations in DNA methylation.

 b. Design & dose: 5-aza (PubChem CID: 9444, SID: 24278211) acute treatment for 2 passages (~10days) 
at 1 μg/mL (stored in PBS), Sigma-Aldrich #A2385.

 c. Duration: 60–230 days
 d. Study Phase: II

 11. MitoQ
 a. Rationale: MitoQ is a mitochondria-targeted antioxidant compound used specifically in the mito-

chondrial compartment47. MitoQ was used to test how reducing mitochondrial oxidation would 
influence cellular aging, or moderate the influence of chronic stressors (see Treatment 19).

 b. Design & dose: MitoQ (PubChem CID: 11388332, SID:134224101) chronic treatment at 10 nM 
(stored in DMSO), provided by author M.P.M.

 c. Duration: 20–120 days
 d. Study Phase: I

 12. N-Acetyl-L-cysteine (NAC)
 a. Rationale: NAC acts as a precursor of glutathione (GSH), which is itself a direct antioxidant and a sub-

strate for antioxidant enzymes48, NAC also generates H2S and sulfanes that can act as antioxidants49. 
NAC was used to test whether reducing total cellular oxidative stress burden by scavenging of reactive 
oxygen species may influence cellular aging, or moderate the effect of chronic stress (see Treatment 20).

 b. Design & dose: NAC (PubChem CID: 12035, SID: 24277970) chronic treatment at 2 mM (in ddH2O), 
Sigma-Aldrich #A7250.

 c. Duration: 20–120 days
 d. Study Phase: I

 13. α-ketoglutarate (α-KG)
 a. Rationale: α-KG (also 2-oxoglutarate) is a key tricarboxylic acid cycle (TCA) cycle metabolite that is a 

substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDD), and necessary cofactor for enzymes 
that perform demethylation of proteins and DNA50. α-KG was used to shift the α-KG-to-succinate 

https://doi.org/10.1038/s41597-022-01852-y
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ratio, which was hypothesized to promote DNA demethylation51. The cellular uptake and bioavailability  
of α-KG was not monitored.

 b. Design & dose: A-ketoglutarate (PubChem CID: 164533, SID: 329766750) chronic treatment at 1 mM 
(in ddH2O), Sigma-Aldrich #75890.

 c. Duration: 20–130 days
 d. Study Phase: I

 14. Oligomycin + DEX
 a. Rationale: The complex V inhibitor oligomycin was used in combination with DEX to examine their 

interactions. DEX increases mitochondrial OXPHOS-derived ATP production, which is inhibited by 
Oligo, suggesting that DEX and Oligo may have antagonistic effects.

 b. Design & dose: same as Treatments 2 and 3.
 c. Duration: 20–70 days
 d. Study Phase: II

 15. mitoNUITs + DEX
 a. Rationale: Because the increase in mitochondria ATP production induced by DEX requires the uptake 

of carbon substrates, which is inhibited by mitoNUITs. Both treatments were used in parallel to exam-
ine if mitoNUITs would interfere with the effects of DEX on cellular bioenergetics and signaling.

 b. Design & dose: same as Treatments 2 and 4.
 c. Duration: 20–270 days
 d. Study Phase: II

 16. Hypoxia + DEX
 a. Rationale: Hypoxia triggers a shift towards glycolytic metabolism, whereas DEX causes a shift towards 

OXPHOS. Both treatments were used in parallel to examine if DEX hypoxia could rescue the chronic 
effects of DEX on energetic parameters and aging markers.

 b. Design & dose: same as Treatments 2 and 5.
 c. Duration: 20–70 days
 d. Study Phase: III

 17. Contact inhibition + hypoxia
 a. Rationale: Both contact inhibition and hypoxia reduce cellular division rate, and partially recreate 

some of the natural conditions of skin fibroblasts in the human body. Both were used in parallel as an 
attempt to recapitulate as closely as possible in vivo conditions and evaluate the influence of this state 
on aging markers.

 b. Design & dose: same as Treatments 5 and 6.
 c. Duration: 20–140 days
 d. Study Phase: III

 18. 5-azacytidine + mitoNUITs
 a. Rationale: Here we tested the idea that mitochondrial activity stores the memory of epigenetic state. 

By demethylating the genome with 5-azacytidine and then simultaneously diverting energy away 
from the ETC we hypothesized that the genome would take longer to be remethylated back to its 
original state.

 b. Design & dose: same as Treatments 4 and 10.
 c. Duration: 60–230 days
 d. Study Phase: II

 19. MitoQ + DEX
 a. Rationale: DEX causes a bioenergetic shift towards OXPHOS, and causes premature aging based on 

several biomarkers (unpublished). MitoQ was used to examine if these effects of chronic glucocorti-
coid stimulation could be alleviated by buffering mitochondrial ROS, which would suggest that part 
of the accelerated aging phenotype in DEX-treated cells is in part driven by mitochondrial ROS.

 b. Design & dose: same as Treatments 2 and 11.
 c. Duration: 20–130 days
 d. Study Phase: I

 20. NAC + DEX
 a. Rationale: Similar to Treatment 19, NAC was used in parallel with DEX to examine if the chronic 

effects of glucocorticoid signaling could be alleviated by buffering of ROS in the cytoplasmic com-
partment (vs MitoQ, for mitochondrial ROS).

 b. Design & dose: same as Treatments 2 and 12.
 c. Duration: 20–120 days
 d. Study Phase: I

 21. Pulsated DEX
 a. Rationale: This treatment was used to examine the effects of a more physiological pulsatile activation 

of glucocorticoid signaling, compared to its chronic activation (Treatment 2).

https://doi.org/10.1038/s41597-022-01852-y


7Scientific Data |           (2022) 9:751  | https://doi.org/10.1038/s41597-022-01852-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

 b. Design & dose: Same molecular composition as chronic DEX (100 nM, see Treatment 2). Cells were 
treated once, for 30 min, before each passage (every 5–7 days).

 c. Duration: 20–120 days (pulsated)
 d. Study Phase: I

 22. Contact Inhibition & regrowth
 a. Rationale: Allowing cells to continue their replicative lifespan after being held in contact inhibition 

for several weeks allows for the experimental determination of whether cultured cells remember their 
divisional age and contain the same total replicative lifespan.

 b. Design & dose: After 80 days of contact inhibition cells were allowed to continue dividing until rep-
licative exhaustion (i.e., ‘Contact Inhibition Regrowth’).

 c. Duration: 80–210 days
 d. Study Phase: I

Mycoplasma testing. Mycoplasma testing was performed according to the manufacturer’s instructions 
(R&D Systems #CUL001B) on 100 media samples at the end of lifespan for each treatment and cell line used. All 
tests were negative.

Bioenergetic parameters and calculations of metabolic rate. Bioenergetic parameters were meas-
ured using the XFe96 Seahorse extracellular flux analyzer (Agilent)52,53. Oxygen consumption rate (OCR) and 
extracellular acidification rate (ECAR, i.e., pH change, was measured over a confluent cell monolayer. Cells were 
plated for Seahorse measurement every 3 passages (~15 days) with 10–12 wells plated per a treatment group. 
Each well of the Seahorse 96-well plate was plated with 20,000 cells and incubated overnight under standard 
growth conditions, following the manufacturer’s instructions, including a plate wash with complete Seahorse XF 
Assay media. The complete XF media contains no pH buffers and was supplemented with 5.5 mM glucose, 1 mM 
pyruvate, 1 mM glutamine, 50 μg/ml uridine, 10 μM palmitate conjugated to 1.7 μM BSA, to ensure that cells have 
access to a variety of energetic substrates. After a wash with XF media, the plate was incubated with XF media in 
a non-CO2 incubator for one hour to equilibrate temperature and atmospheric gases before the assay.

Different respiratory states were assessed using the MitoStress Test54. Basal respiration, ATP turnover, 
proton leak, coupling efficiency, maximum respiration rate, respiratory control ratio, spare respiratory capac-
ity, and non-mitochondrial respiration were all determined by the sequential additions of the ATP synthase 
inhibitor oligomycin (final concentration: 1 μM), the protonophore uncoupler FCCP (4 μM), and the electron 
transport chain Complex I and III inhibitors, rotenone and antimycin A (1 μM). The optimal concentration for 
the uncoupler FCCP yielding maximal uncoupled respiration was determined based on a titration performed 
on young healthy fibroblasts (data not shown). The final injection included Hoechst nuclear fluorescent stain 
(Thermofisher #62249) to allow for automatic cell counting. After each run, cell nuclei density in each well were 
counted using the Cytation1 Cell Imager (BioTek) and raw bioenergetic measurements were normalized to 
relative cell counts on a per-well basis. This normalization method was selected due to reduced well-to-well var-
iability by approximately half compared to other normalization techniques (e.g., normalization to μg of protein).

ATP production rates from oxidative phosphorylation (OxPhos, JATP-OxPhos) and glycolysis (JATP-Glyc), as well 
as total cellular ATP production and consumption (JATP-Total) were estimated using the method described by 
Mookerjee et al.52. Briefly, the method relies on the phosphate-to-oxygen (P/O) ratios of OxPhos and glycolysis, 
using oxygen consumption and proton production rates (PPR) as input variables. The same constants were 
used for all estimations, assuming glucose as the predominant carbon source, and constant coupling efficiency. 
Changes in substrate consumption along the lifespan would require parallel assessments of metabolic flux to 
resolve, and assuming the same major substrate across the lifespan and treatment conditions could have a minor 
influence on calculated ATP production rates that are not reflected in the ATP-related metrics in this bioener-
getics data. All raw seahorse data files are available on FigShare (20277606)55.

mtDNA next-generation sequencing and eKLiPse analysis. The entire mtDNA was amplified in two 
overlapping fragments using a combination of mtDNA primers. The primer pairs used for PCR amplicons were 
tested first on Rho zero cells devoid of mtDNA to remove nuclear-encoded mitochondrial pseudogene (NUMTS) 
amplification

•	 PCR1: 5′-AACCAAACCCCAAAGACACC-3′ and 5′-GCCAATAATGACGTGAAGTCC-3′
•	 PCR2: 5′-TCCCACTCCTAAACACATCC-3′ and 5′-TTTATGGGGTGATGTGAGCC-3′

Long-range PCR was performed with the Kapa Long Range DNA polymerase according to the manufactur-
er’s recommendations (Kapa Biosystems, Boston, MA, USA), with 0.5 µM of each primer and 20 ng of DNA. The 
PCR products were analyzed on a 1% agarose gel electrophoresis.

NGS Libraries were generated using an enzymatic DNA fragmentation approach using Ion Xpress Plus 
Fragment Library Kit. Library were diluted at 100 pM before sequencing and pooled by a maximum of 25 
samples.

Sequencing was performed using an Ion Torrent S5XL platform using Ion 540 chipTM. Signal processing and 
base calling were done by the pre-processing embedded pipeline. Demultiplexed reads were mapped according 
to the mtDNA reference sequence (NC_012920.1) before being analysed with a dedicated homemade pipeline 
including eKLIPse56 (https://github.com/dooguypapua/eKLIPse) using the following settings:

https://doi.org/10.1038/s41597-022-01852-y
https://github.com/dooguypapua/eKLIPse


8Scientific Data |           (2022) 9:751  | https://doi.org/10.1038/s41597-022-01852-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Read threshold: min Quality = 20 | min length = 100 bp
•	 Soft-Clipping threshold: Read threshold: Min soft-clipped length = 25pb | Min mapped Part = 20 bp
•	 BLAST thresholds: min = 1 | id = 80 | cov = 70 | gapopen = 0 | gapext = 2
•	 Downsampling: No

mtDNA copy number. Cellular mtDNA content was quantified by qPCR on the same genomic material 
used for other DNA-based measurements. Duplex qPCR reactions with Taqman chemistry were used to simulta-
neously quantify mitochondrial (mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as described previously57. 
The reaction mixture included TaqMan Universal Master mix fast (life technologies #4444964), 300 nM of custom 
design primers and 100 nM probes:

•	 ND1-Fwd: 5′-GAGCGATGGTGAGAGCTAAGGT-3′
•	 ND1-Rev: 5′-CCCTAAAACCCGCCACATCT-3′
•	 ND1-Probe: 5′-HEX-CCATCACCCTCTACATCACCGCCC-3IABkFQ-3′
•	 B2M-Fwd: 5′-CCAGCAGAGAATGGAAAGTCAA-3′
•	 B2M-Rev: 5′-TCTCTCTCCATTCTTCAGTAAGTCAACT-3′
•	 B2M-Probe: 5′-FAM-ATGTGTCTGGGTTTCATCCATCCGACA-3IABkFQ-3′

The samples were cycled in a QuantStudio 7 flex qPCR instrument (Applied Biosystems) at 50 °C for 2 min, 
95 °C for 20 sec, 95 °C for 1 min, 60 °C for 20 sec, for 40 cycles. qPCR reactions were setup in triplicates in 384 
well qPCR plates using a liquid handling station (epMotion5073, Eppendorf), in volumes of 20ul (12ul master-
mix, 8ul template). Triplicate values for each sample were averaged for mtDNA and nDNA. Ct values >33 were 
discarded. For triplicates with a coefficient of variation (C.V.) >0.02, the triplicates were individually examined 
and outlier values removed where appropriate (e.g., >2 standard deviations above the mean), with the remain-
ing duplicates were used. The final cutoff for acceptable values was set at a C.V. = 0.1 (10%); samples with a C.V. 
>0.1 were discarded. A standard curve along with positive and negative controls were included on each of the 
seven plates to assess plate-to-plate variability and ensure that values fell within measurement range. The final 
mtDNAcn was derived using the ΔCt method, calculated by subtracting the average mtDNA Ct from the aver-
age nDNA Ct. mtDNAcn was calculated as 2ΔCt × 2 (to account for the diploid nature of the reference nuclear 
genome), yielding the estimated number of mtDNA copies per cell.

RNA sequencing. Total genomic RNA was isolated for 360 samples every ~11 days across the cellular lifespan 
for control lines and selected treatments. RNA was stabilized using TRIzol (Invitrogen #15596026) and stored at 
−80 °C until extraction as a single batch. RNA was extracted on-column using a RNeasy kit (Qiagen #74104), 
DNase treated according to the manufacturer’s instructions, and quantified using the QUBIT high sensitivity kit 
(Thermofisher #Q32852). RNA integrity was quantified on Bioanalyzer (Agilent RNA nano kit 6000, #5067-1511) 
and Nanodrop 2000. Of the 360 samples, 352 had an RNA integrity number (RIN) score >8.0, a A260/A280 ratio 
between 1.8–2.2, and no detectable levels of DNA. For cDNA library preparation, 1,500 ng of RNA at 50 ng/μl 
was processed using Ribo-Zero Gold purification (QIAseq FastSelect -rRNA HMR Kit #334387) and NEBNext® 
UltraTM II RNA Library Prep Kit (Illumina #E7770L). cDNA was sequenced using paired-end 150 bp chemistry 
on a HiSeq. 4000 instrument (Illumina, single index, 10 samples/lane, Genewiz Inc). Sequencing depth was on 
average 40 million reads per sample. Post-sequencing QC (multiQC, v1.8) excluded 6 more samples, for a final 
sample set of 345. Sequenced reads were then aligned using the pseudoalignment tool kallisto v0.44.058. This data 
was imported using txi import (‘tximport’, v1.18.0, length-scaled TPM), and vst normalized (‘‘DEseq2’, v1.30.1).

DNA methylation. Global DNA methylation was measured on 512 samples using the Illumina EPIC 
microarray (Illumina, San Diego). Arrays were run at the UCLA Neuroscience Genomic Core (UNGC). DNA 
was extracted using the DNeasy kit (Qiagen #69506) according to the manufacturer’s protocol and quantified 
using QUBIT broad range kit (Thermofisher #Q32852). At least 375 ng of DNA was submitted in 30 µl of ddH2O 
to UNGC for bisulfite conversion and hybridization using the Infinium Methylation EPIC BeadChip kit. Samples 
with DNA below 12.5 ng/ul (~90 of 512 samples) were concentrated using SpeedVac Vacuum Concentrator 
(Thermofisher #SPD1030A-115) for <1 hour. Sample positions were randomized across six assay plates to avoid 
systematic batch variation effects on group or time-based comparisons.

All DNA methylation data was processed in R (v4.0.2), using the ‘minfi’ package (v1.36.0). Quality control 
preprocessing was applied by checking for correct sex prediction, probe quality, sample intensities, and exclud-
ing SNPs and non-CpG probes. Of the 512 samples, 22 failed quality control and were excluded from further 
analysis, yielding a final analytical sample of n = 479. Data was then normalized using functional normalization 
(Fun Norm). Using the R package ‘sva’ (v3.12.0), both RCP and ComBat adjustments were applied to correct 
for probe-type and plate bias, respectively. After quality control, DNAm levels were quantified as beta values for 
865,817 CpG sites.

DNA methylation clocks and related measures. We used DNA methylation data to calculate a series of 
measures broadly known as epigenetic clocks15. We computed four clocks designed to predict the chronological 
age of the donor, Horvath1 (i.e., PanTissue clock)5, Horvath2 (i.e., Skin&Blood clock)59, Hannum60, and PedBE61 
clocks; two clocks designed to predict mortality, the PhenoAge62 and GrimAge63 clocks; a clock to measure tel-
omere length, DNAmTL64; a clock designed to measure mitotic age, MiAge65; a clock trained to predict cellular 
senescence, DNAmSen (Levine et al., unpublished), and two DNA methylation measure of the rate of deteriora-
tion in physiological integrity, DunedinPoAm17, and DundedinPACE66.
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For the Horvath, Hannum, PhenoAge, GrimAge, and DNAmTL clocks, this dataset includes both the origi-
nal versions of these clocks, calculated using the online calculator hosted by the Horvath Lab (https://dnamage.
genetics.ucla.edu/new) and versions developed using the methods proposed in Higgins-Chen et al. (https://
github.com/MorganLevineLab/PC-Clocks)67. Briefly, this method replaces the clock’s individual illumina probe 
measurements (5–500 CpGs) with the shared extracted variances among genome-wide CpGs from principal 
components (PC), yielding the PC-adjusted DNAmAges for each clock. Chronological age values used in the 
calculations of these clocks were the ages of the donors at the time of sampling. The MiAge clock was computed 
using the software published by in65 (http://www.columbia.edu/~sw2206/softwares.htm). The Pace of Aging 
clocks, DunedinPoAm and DunedinPACE, were computed using the software published in17,66 (https://github.
com/danbelsky/DunedinPACE).

Whole genome sequencing (WGS). Total genomic DNA was isolated for 94 samples across cellular 
lifespan using column based DNeasy blood and tissue kit (Qiagen #69504) and quantified using Qubit dsBR assay 
(ThermoFisher #Q32850). Sample quality assessment, library preparation, whole genome sequencing and data 
pre-processing was performed by Genewiz using standard Illumina workflow. Briefly, WGS paired-end (PE) reads 
with 2x150bp configuration were obtained from Illumina HiSeq platform and processed using SAMtools (v1.2) 
and BaseSpace workflow (v7.0). PE reads were aligned to hg19 genome reference (UCSC) using Isaac aligner 
(v04.17.06.15) and BAM files were generated. Duplicate reads were identified and filtered using Picard tools 
(GATK). More than 80% of the bases were of high quality with a score >Q30. Mean depth of sequencing coverage 
was >20x with more than 90% of the genome covered at least 10 times. Variant calling from the entire genome 
was performed using Strelka germline variant caller (v2.8) for small variants including single nucleotide variants 
(SNVs) and insertion/deletion (Indels) and structural variants (SVs) were identified using Manta (v1.1.1).

Telomere length. Relative telomere length was evaluated on the same genomic material used for other 
DNA-based measurements. Measurements were performed by qPCR and expressed as the ratio of telomere 
to single-copy gene abundance (T/S ratio), as previously described68,69. The reaction mixture included 20 mM 
Tris-HCl, pH 8.4; 50 mM KCl; 200 µM each dNTP; 1% DMSO; 0.4x Syber Green I; 22 ng E. coli DNA; 0.4 units 
of Platinum Taq DNA polymerase (Thermo Fisher Scientific #10966018) with custom design primers. The 
primers utilized were the following: i) For the telomere (T) PCR: tel1b [5′-CGGTTT(GTTTGG)5GTT-3′], 
used at a final concentration of 100 nM, and tel2b [5′-GGCTTG(CCTTAC)5CCT-3′], used at a final 
concentration of 900 nM; ii) For the single-copy gene (S, human beta-globin) PCR: HBG1 Fwd:[5′ 
GCTTCTGACACAACTGTGTTCACTAGC-3′], used at a final concentration of 300 nM, and HBG2 Rev: 
[5′-CACCAACTTCATCCACGTTCACC-3′], used at a final concentration of 700 nM. Approximately 6.6 ng of 
DNA template was added per 11 μL of the reaction mixture. A standard curve of human genomic DNA from buffy 
coat (Sigma-Aldrich #11691112001) along with positive and negative controls were included on each of plates to 
assess plate-to-plate variability and ensure that values fell within measurement range. The qPCR reactions were 
performed in triplicate using a LightCycler 480 qPCR instrument (Roche) using the following thermocycling 
conditions: i) For the telomere PCR: 96 °C for 1 min, one cycle; 96 °C for 1 sec, 54 °C for 60 sec with fluorescence 
data collection, 30 cycles; ii) For the single-copy gene PCR: 96 °C for 1 min, one cycle; 95 °C for 15 sec, 58 °C for 
1 sec, 72 °C for 20 sec, 8 cycles; 96 °C for 1 sec, 58 °C for 1 sec, 72 °C for 20 sec, 83 °C for 5 sec with data collection, 
35 cycles. Triplicate values of T and S for each sample were used to calculate the T/S ratios after a Dixon’s Q test for 
outlier removal. T/S ratio for each sample was measured twice. For duplicates with C.V. >0.07 (7%), the sample 
was run a third time and the two closest values were used. Only 5% of the samples (25 of 512 samples) had a C.V. 
>0.01 after the third measurement, and the inter-assay C.V. = 0.03 ± 0.043. Telomere length assay for the entire 
study were performed using the same lots of reagents. Lab personnel who performed the assays were provided 
with de-identified samples and were blind to other data.

Cytokines. Two multiplex fluorescence-based arrays were custom-designed with selected cytokines and 
chemokines based on human age-related proteins. Analytes were selected based on reported correlations of their 
levels in human plasma with chronological age70, and based on their availability on R&D custom Luminex arrays 
(R&D, Luminex Human Discovery Assay (33-Plex) LXSAHM-33 and LXSAHM-15, http://biotechne.com/l/rl/
YyZYM7n3). Cell media samples were collected at selected passages across cellular lifespan and frozen at −80 °C 
until analysed as a single batch. Thawed samples were centrifuged at 500 g for 5 min and supernatant transferred 
to a new tube. Media samples were ran undiluted, and the plates were incubated, washed, and signal intensity 
quantified on a Luminex 200 instrument (Luminex, USA) as per the manufacturer’s instructions. Positive (>200 
days aged healthy fibroblast) and negative controls (fresh untreated media) samples were used in duplicates on 
each plate to quantify and adjust for batch variations. Data was fitted and final values interpolated from a standard 
curve in xPONENT v4.2. Cytokine concentrations were then normalized to the number of cells counted at the 
time of collection to produce estimates of cytokine production on a per-cell basis.

Quantification of two selected cytokines, interleukin 6 (IL-6, Abcam#ab229434) and growth differentia-
tion factor 15 (GDF15, R&D#DGD150), were repeated using enzyme-linked immunosorbent assays (ELISAs), 
according to the manufacturer’s instructions.

Automated cell-free DNA isolation from cell culture media. Total cell-free DNA (cf-DNA) was iso-
lated from cell culture media using a previously published automated, high throughput methodology71. In brief, 
thawed cell culture media was centrifued at 1000 g for 5 min. 75 µL of supernatant was then dispensed into a clean 
96 deep-well plate (Thermo Fisher, cat#95040450) using a Freedom EVO 150 automated liquid handler (Tecan, 
cat#10641150). 5.7 µL of 20 mg/mL Proteinase K (VWR, cat#97062-242) and 7.5 µL of 20% sodium dodecyl sul-
fate (Boston BioProducts, cat#BM-230) were subsequently dispensed into each well using a HandyStep digital 
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repeater pipette (BrandTech Scientific, cat#705002). The plate was sealed with an adhesive PCR seal (Thermo 
Fisher Scientific, cat#AB0558) and covered with generic packaging tape. The plate was centrifuged at 500 × g 
for 1 minute (min), then incubated in an New Brunswick Innova 44 incubator shaker (Eppendorf, cat#M1282-
0000) at 70 °C for 16 hours. Following the overnight incubation, the plate was left at room temperature for 15 min 
and centrifuged again. After the seal was removed, 125 µL of MagMAX Cell Free DNA Lysis/Binding Solution 
(Thermo Fisher cat#AM8500) and 5 µL of Dynabeads MyOne Silane magnetic beads (Thermo Fisher cat#37002D) 
were dispensed into each well using the repeater pipette. The plate was loaded onto a KingFisher Presto (Thermo 
Fisher, cat#5400830) magnetic particle processor to begin the extraction process. The DNA-bound magnetic 
beads were washed three times with the following solutions: 1) 265 µL of MagMAX Cell Free DNA Wash Solution 
(Thermo Fisher, cat#A33601), 2) 475 µL of 80% ethanol, and 3) 200 µL of 80% ethanol. The cf-DNA was resus-
pended in 60 µL of MagMAX Cell Free DNA Elution Solution (Thermo Fisher, cat#33602) and stored at −20 °C 
in a sealed 96-well PCR plate (Genesee Scientific, cat#24–302).

Quantification of cf-mtDNA and cf-nDNA abundance. qPCR. cf-mtDNA and cf-nDNA levels were 
measured simultaneously by qPCR. Taqman-based duplex qPCR reactions targeted mitochondrial-encoded ND1 
and nuclear-encoded B2M sequences as described previously71–73. Each gene assay contained two primers and a 
fluorescent probe and were assembled as a 20X working solution according to the manufacturer’s recommenda-
tions (Integrated DNA Technologies). The assay sequences are:

•	 ND1-Fwd: 5′-GAGCGATGGTGAGAGCTAAGGT-3′
•	 ND1-Rev: 5′-CCCTAAAACCCGCCACATCT-3′
•	 ND1-Probe: 5′-5HEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABkGQ-3′
•	 B2M-Fwd: 5′-TCTCTCTCCATTCTTCAGTAAGTCAACT-3′
•	 B2M-Rev: 5′-CCAGCAGAGAATGGAAAGTCAA-3′
•	 B2M-Probe: 5′-56FAM-ATGTGTCTG-ZEN-GGTTTCATCCATCCGACCA-3IABkFQ-3′

Each reaction contained 4 µL of 2X Luna Universal qPCR Master Mix (New England Biolabs, cat#M3003E), 
0.4 µL of each 20X primer assay, and 3.2 µL of template cf-DNA for a final volume of 8 µL. The qPCR reactions 
were performed in triplicate using a QuantStudio 5 Real-time PCR System (Thermo Fisher, cat#A34322) using 
the following thermocycling conditions: 95 °C for 20 s followed by 40 cycles of 95 °C for 1 s, 63 °C for 20 s, and 
60 °C for 20 s. Serial dilutions of pooled human placenta DNA were used as a standard curve.

Digital PCR (dPCR). mtDNA and nDNA copy number (copies/µL) of the standard curve used in cf-mtDNA/
cf-nDNA assessment were measured separately using singleplex ND1 and B2M assays using a QuantStudio 3D 
Digital PCR System and associated reagents (Thermo Fisher, cat#A29154) according to the manufacturer’s pro-
tocol. The values obtained for the standard curve were used to calculate the copy number for the experimental 
samples. All reactions were performed in duplicate (two chips). Because the same standard curve was used on 
all plates, its copy number was applied uniformly to all qPCR plates.

Data Records
This multi-omics cellular lifespan dataset includes longitudinal data across 13 major biological outcomes, 
including cytological measures (growth rate, cell size), cellular bioenergetics (respiratory capacity, total energy 
consumption), transcriptomics (bulk RNA-seq), DNA methylation (EPIC array), whole genome sequencing 
(WGS), secreted factors (cytokines, cell-free DNA), and others (Fig. 2 and Table 2). These outcomes differ by 
the number of samples, repeat experiments, and length of timecourses for each donor line and treatment group 
(Figs. 3,4, Supplemental Fig. 1, and Table 3). All expected hallmarks of cellular aging were observed in this 
model, including the upregulation of quiescence and senescence markers, and downregulation of genes associ-
ated with cell division (Fig. 5).

Table 1 contains information about all cell lines used, including the biopsy site, sex and age of the donor, as 
well as known clinical and genetic information.

Table 2 lists the assessed biological outcomes along with their dimensionality (number of parameters quan-
tified), the number of samples available across all cell lines, their temporal frequency, and the total size or num-
ber of datapoints. For example, there is available transcriptomic (i.e., gene expression) data quantified by RNA 
sequencing, which includes read counts for each annotated gene expressed as transcripts per million (TPM), on 
360 samples collected on average every 11 days (min: 5 days, max 15 days), and each cell line has on average 8 
timepoints (min:2, max:19). The transcriptomic dataset includes a total of 9.88 million (genes x timepoints) dat-
apoints; the total number of mRNA reads is 12.6 billion, available in the source data for detailed analyses of tran-
scripts (i.e., alternative splicing). Although multiple treatments were used to perturb bioenergetic and endocrine 
pathways, the dataset is most extensive and is of highest temporal resolution for cell lines from healthy controls.

Table 3 lists the five main phases for which the study was conducted (Phases I-V). The time periods and 
experimenters associated with each study phase.

Data can be accessed, visualized, and downloaded without restrictions at https://columbia-picard.shinyapps.
io/shinyapp-Lifespan_Study/. This simple interface allows users to select the donors of interest, select the exper-
imental treatment(s), and visualize the time course data in a realtime-updatable display panel (Fig. 6). Users can 
select multiple donors and-or treatments simultaneously to visualize the effects of interest and explore the data. 
All data visualized is downloadable as a .csv file which can further be found directly at FigShare (18441998)74. 
The app will be updated with new data as additional lifespan experiments and analyses are performed.
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The unprocessed RNAseq (GSE179848)75 and EPIC DNA methylation array data (GSE179847)76 can also 
be accessed and downloaded in full through Gene Expression Omnibus (GEO)77. Additional EPIC DNA 
methylation data (n = 31 samples) collected on the same donor fibroblasts from earlier work31 is available at 
(GSE131280)78. Brightfield microscopy images can be downloaded at FigShare (18444731)35 and raw Seahorse 
assay files can be found at FigShare (20277606)55.

Because the samples are derived from historic collections there was no means to validate that consent was 
obtained from the donors for sharing the WGS data. In light of this, the Columbia University Irving Medical 
Center IRB was unable to grant or waive permissions for data sharing. However, WGS coverage and variant 
information can be accessed on the ShinyApp, and additional data is available to users on request via email to 
the corresponding author (martin.picard@columbia.edu), and the SURF1-mutant cells can be requested from 
Dr. Michio Hirano (mh29@cumc.columbia.edu). All other data are publicly available.

Fig. 2 Overview of the study design and temporality of outcome measures. The outcome measures listed on the 
left were collected longitudinally at multiple time points following different periodicity, determined by resource 
or cell number constraints. The duration and periodicity of measurements vary by experimental conditions and 
cell line. See Tables 1 and 2 for details.

Biological measures Platform # of parameters
# of 
Samples

Timepoints per 
cell line&

Frequency 
(days) *

Total data 
points

Cell cytology Countess 3 1,547 Avg. 21 (7,41) Avg. 7 (5,22) 5 × 10e3

Cell morphology Bright field 
microscopy 2 1,547 Avg. 21 (7,41) Avg. 7 (5,22) 3 × 10e3

Bioenergetics Seahorse XFe96 34 468 Avg. 9 (3,18) Avg. 6 (6,7) 16 × 10e3

Transcriptomics RNAseq Illumina 
HiSeq 28,633 345 Avg. 8 (2,19) Avg. 11 (5,15) 1 × 10e7

Telomere length qPCR 1 496 Avg. 7 (2,15) Avg. 8 (4,15) 500

DNA methylation Illumina EPIC Bead 
Array 865,817 479 Avg. 7 (2,15) Avg. 8 (4,15) 427 × 10e6

Whole Genome 
Sequencing Illumina HiSeq ~3,200,000,000 94 Avg. 6 (2,11) Avg. 18 (8,28) 301 × 10e9

IL6 ELISA 1 695 Avg. 10 (5,20) Avg. 8 (5,15) 700

GDF15 ELISA 1 100 Avg. 9 (7,10) Avg. 21 (10,60) 100

Cytokines Luminex array 52 76 Avg. 8 (6,10) Avg. 21 (10,60) 4 × 10e3

cf-mtDNA qPCR 2 695 Avg. 12 (6,20) Avg. 8 (5,15) 1.4 × 10e3

mtDNA copy number qPCR 2 494 Avg. 10 (5,20) Avg. 8 (4,15) 1 × 10e3

mtDNA sequencing Ion Torrent 10 120 Avg. 8 (4,14) Avg. 8 (8,8) 1.2 × 10e3

Table 2. Dimensionality of biological measures available in this dataset. Molecular, cellular and bioenergetic 
features, the technique or platform used to generate the data, their temporal resolution, and the dimensionality 
of datasets for each biological measure. &Values are averages with minimum and maximum number of 
timepoints (min, max). * The frequency of passaging differs by study Phase: Phase I, 5 days; Phase II, 5 days; 
Phase III, 7 days; Phase IV, 7 days; Phase V, 5 days.
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technical Validation
The number of days per passage were systematically recorded (and can be derived from the ‘Date_time_of_pas-
sage’ variable, for each cell count timepoint in the database). Variation and deviations in the number of days 
between passages increase towards the latter part of the lifespan for all lines and treatments because of the lim-
ited number of cells once enter quiescence and senescence (Fig. 7A).

Two of the 6 healthy controls’ growth curves were repeated 4 times, over a ~2 year period, in separate phases 
by different experimenters (see Table 3), confirming that the growth curves were reproducible (Fig. 7B). Chronic 
DEX (Treatment 2) was repeated in study Phases I, II, and III. Hypoxia (Treatment 5) was repeated in study 
Phases III and V. SURF1-mutant cells were run in both study Phases II and V. All data reflecting independent 
growth curves on multiple parameters can be visualized on our webtool (https://columbia-picard.shinyapps.io/
shinyapp-Lifespan_Study/) and from the downloaded data.

The telomere length qPCR assay contained 5 technical replicates of the same sample (HC1, passage 10, 42 
days grown). Replicates had a C.V. of 9% (range of 0.21 T/S units) (Fig. 7C).

The mtDNA copy number qPCR assay contained 7 technical replicates across 7 plates of the same 2 samples 
(HC5 & HC6). Replicates had an average C.V. of 3.5% (range: 95.05 copies/cell) (Fig. 7D).

The cell-free DNA qPCR assay contained 9 technical replicates across 8 plates of the same samples (HC3, 
passage 32, 189 days grown). An aged sample was selected to ensure robust extracellular DNA levels. Replicates 

Fig. 3 Cell lines and treatments for the Cellular Lifespan Study. Experimental conditions, or absence thereof, 
applied to each primary human fibroblast cell line. Orange indicates fibroblasts from healthy donors, and blue 
indicates fibroblasts from patients with lethal SURF1 mutations.

https://doi.org/10.1038/s41597-022-01852-y
https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/
https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/


13Scientific Data |           (2022) 9:751  | https://doi.org/10.1038/s41597-022-01852-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

of cf-mtDNA and cf-nDNA measurements had an average C.V. of 25% and 40% (range: 100,609 and 166 copies/
mL/106 cells, respectively) (Fig. 7E).

The IL6 ELISA assay contained 9 technical replicates across 8 plates of the same samples (HC3, passage 
32, 189 days grown). An old media sample (robust extracellular IL6 levels) was selected as a positive control. 
Replicates had a C.V. of 49% (range: 101.5 pg/mL/106 cells) (Fig. 7F).

The technical variation in DNAm on the EPIC array was also previously determined on six DNA replicates 
from HC5 (GEO #GSE131280)78. DNAmAge computed from the combination of multiple probes or CpG sites 
showed a coefficient of variation, for selected clocks, of 3% for the Horvath1 (PanTissue) clock, 4% for the 

Fig. 4 Data availability for each measured parameter. Heatmap of sample availability for each parameter 
(columns) associated with a given donor cell line and treatment (rows).
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Horvath2 (Skin&Blood) clock, and 13% for the PhenoAge clock (Fig. 7G). After PC-adjustment67 based on the 
technical variation between samples was reduced to 2%, 8%, and 2%, respectively, indicating moderately robust 
technical validity at the single-CpG level, but high validity when multiple CpGs are combined into multivariate 
DNAm clocks. The DNAm dataset also contains 3 replicate longitudinal experiments of HC1 & HC2 that can 
be used to quantify the variability in the longitudinal rates of epigenetic aging using the investigator’s preferred 
clock(s) or individual CpGs.

Technical variation for RNA- and DNA-based omics measures with > 100 samples (i.e., RNAseq, DNAm, 
telomere length etc.) was determined by distributing the same biological sample (healthy HC1 fibroblasts, 
untreated, passage 6, 21 days grown) across multiple plates and sequencing lanes. For RNAseq, the technical 
assay variation was determined from 7 biological replicates. The average coefficient of variation (C.V., standard 
deviation divided by the mean) in normalized read counts across all genes was 1.47% (range = 3.42 normalized 
expression units (Fig. 7H). Figure 7J shows the frequency distribution of C.V. for each mapped gene, and how 
technical variation for individual genes influenced sample position on a 2-component principal component 
analysis (PCA) across all study samples, indicating good reliability (Fig. 7I).

The mean sequencing depth for WGS was >20X for most samples, as shown in Fig. 7K.

Usage Notes
Here we mention some of the limitations of the dataset that should be considered for the analysis and interpre-
tation of findings.

Sample exclusion. All samples and measurements that did not pass quality control, regardless of the assay, 
were excluded from the published dataset (i.e., FigShare 1844199874 & ShinyApp). See ‘Data Records’, section for 
access to raw data files.

Study 
Phase Investigator Time period Cell lines Treatments

Phase I G.S. Oct 2017-Feb 
2018 (4 mo) HC5,6 1,2,6,11,12,13,19,20,21,22

Phase II G.S. Aug 2018-May 
2019 (10 mo) HC1,2,3, SURF1_1,2,3 1,2,3,4,10,14,15,18

Phase III G.S. Feb 2019-April 
2019 (3 mo) HC1,2,4 1,2,5,6,16,17

Phase IV J.M. May 2019-Oct 
2019 (6mo) HC1,2 1,7,8,9

Phase V A.S.M. Oct 2020-June 
2021 (8mo) HC1,2,3, SURF1_1,2,3 1,5

Table 3. Study phases, cell lines used, and treatments applied in the Cellular Lifespan Study. Five phases 
conducted by different investigators with varying study lengths, cell lines, treatments, and exposures.

Fig. 5 Intersection between the Cellular Lifespan Study conditions and the hallmarks of aging. Schematic of the 
hallmarks of aging adapted from López-Otín et al.12, annotated with the treatments and datasets that directly or 
indirectly enable to longitudinally investigate their interplay with molecular features of cellular aging in aging 
cultured primary human fibroblasts.
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Prestudy passaging. Fibroblast cell lines were sourced from different vendors and isolated using varying 
culture methods (Table 1). Additionally, donor medical history, chronological age, and environmental expo-
sures add additional variability between cell lines. Due to these constraints, it is not possible to determine the 
exact number of population doublings cells underwent before performing the study. These constraints could 
influence the cumulative population doublings of each cell line but should not affect rates of aging or age-related 
trajectories.

Pre-study freeze-thaw cycles. Study Phases I and II involved a single freeze-thaw cycle in liquid nitrogen 
in our laboratory from the cell obtained; while an additional cycle occurred in cells used in Phases III, IV, V.

Normalization to cell numbers. The raw values for some features are influenced by the number of cells 
in the culture flask at each passage. For example, secretome data that includes extracellular levels of cytokines or 
cell-free mitochondrial DNA (cf-mtDNA) in the cell media are determined not only by the secretion rate, but also 
by the total number of cells contributing to the signal in the flask. Therefore, secreted factors levels are normalized 
to cell number at the time of harvesting media, which represents the amount of analyte released per cell counted. 
To obtain raw concentrations media concentrations, the investigator can multiply the normalized values (varia-
ble_name_example e.g. ‘IL6_ELISA_Upg_per_ml’) by the cell count (variable_name_in_database_for_cellcount, 
e.g. ‘Cells_counted_UmillionCells’) at each time point. Cell counts should include the fraction of dead cells at any 
given passage unless otherwise established secretion from exclusively live cells.

Fig. 6 Data visualization and exploration on the Cellular Lifespan ShinyApp. (A–C) Visualization example of 
high-dimensionality epigenetic DNA methylation (DNAm) data using tools on the ShinyApp. (A) Interactive 
timecourse of the DNAm Skin&Blood clock (Horvath2, a multivariate algorithm trained using penalized 
elastic net regression) across the cellular lifespan of HC1 fibroblasts, both untreated (grey) and treated 
chronically (red) with 100 nM of dexamethasone (DEX, glucocorticoid receptor agonist) to mimic chronic 
stress exposure. Note that the x axis represents time in culture, which can be changed using the selector menu 
on the left to “population doublings” to take into account the reduced division rate in Dex-treated cells. Other 
biological measures are visualized via tabs on the top. (B,C) Interactive principal component analysis of the 
45,000 significant age-related CpGs in 2D (B) and 3D (C). The frequency and duration of different cytological, 
molecular, and bioenergetic measurements vary by cell lines and experimental conditions. See Figs. 3,4, 
Tables 2,3, and Supplemental Fig. 1 for details. The Shiny App can be accessed, and the data downloaded, at 
https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study.
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Cell seeding density. In Phase V of the study, we improved our calculation of seeding numbers to ensure 
<80% confluency at each passage. This minor change in protocol could contribute to differences between repli-
cate experiments and trajectories of metabolic rate and other potential differences between Phase V and earlier 
phases.

Sample size and robustness of experimental treatments. As detailed in Supplemental Fig. 1, this 
Cellular Lifespan dataset includes longitudinal assessments of treatment conditions in primary human fibroblasts 

Fig. 7 Experimental replication and technical variation across multi-modal measurements. (A) Timecourse 
of the number of days between each passage for each phase of the study. (B) Growth curves of donors repeated 
at different phases of the study. Color indicates phase of study and shape indicates cell line donor. (C–H) 
Variation in technical replicates for (C) telomere length, (D) mtDNA copy number, (E) cell-free DNA, (F) IL6 as 
measured by ELISA, (G) DNAmAge as estimated by three epigenetic clocks and there PC-adjusted calibrations, 
and (H) average RNAseq-based transcript levels across all expressed genes. (I) Principal component analysis of 
all expressed genes for the full 354 sample RNAseq dataset. Technical replicates are highlighted in blue (n = 7). 
(J) Coefficient of variations in transcript per million (TPM) across the 7 RNAseq technical replicates for each 
mapped gene. The majority of genes have CVs <5%, and 99% of genes have CVs <10%. (K) Mean sequencing 
coverage for whole genome sequencing (n = 94 samples).
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from multiple independent donors, in some cases replicated multiple times. This is the case for untreated 
(Treatment #1), chronic DEX (#2), and hypoxia (#5) treatments. These time-series data enable robust modeling 
of time-related dynamics and treatment effects, using the user’s preferred methods. Other treatment conditions 
were either performed in a smaller number of donors, particularly HC1 (male) and HC2 (female), and/or for 
some treatments the timecourse experiment was not subsequently repeated. These conditions should be consid-
ered exploratory and may serve as preliminary data for subsequent experiments. All treatment conditions were 
conducted in at least two different donors, and each experiment contained multiple timecouse data points. The 
more limited domains of the dataset enable to calculate robust estimates of effect sizes, directionality of effects, 
and effects across two donors of different biological sex.

Rate of epigenetic aging. To obtain stable estimates of epigenetic aging without potential artifacts attrib-
utable to the early effects of culture or before the onset of treatments, or to later alterations in the epigenome (i.e., 
non-linear trajectories on DNAmAge clocks) related to quiescence or senescence towards the end of life, rates of 
epigenetic aging were determined by taking the linear slope for each cell line from 25 to 75 days of growth.

Future analyses. This dataset contains multi-modal data that can be used to investigate each of the hall-
marks of aging (see Fig. 5). In particular, the high-resolution timecourses are ideal to model age-related trajecto-
ries with either linear or complex non-linear functions. These models could then be systematically classified and 
statistically examined using functional regression approaches, for example, to identify (groups of) parameters 
exhibiting similar related age-associated trajectories. Such parameters would indicate co-regulation and could 
inform subsequent mechanistic studies aiming to establish causal pathways, bioenergetic parameters, enzymes, or 
genes that drive specific aging trajectories. Because the average timecourse contains ~12 timepoints, and because 
interpolation likely overfits beyond the 3-sample resolution rule-of-thumb, non-linear modeling efforts should 
be limited to 4 inflection points across the cellular lifespan.

It is also possible to leverage the repeated measures design across portions of the lifespan, or across the whole 
lifespan, to examine stable (i.e., time-invariant) differences between treatment groups. Examples include: i) the 
SURF1 mutant cells effects relative to control, which triggers hypermetabolism, a robust hypersecretory phenotype,  
the transcriptional integrated stress response, and accelerates several markers of cellular aging79, and ii) the 
chronic Dex treatment effects on control fibroblasts, which alters cytological, transcriptional, secretory, and (epi)
genomic aging markers (Bobba-Alves et al., unpublished).

Finally, these longitudinal data can be used to develop or validate new penalized regression algorithms or 
“epigenetic clocks”67.

Code availability
Source code is available at https://github.com/gav-sturm/Cellular_Lifespan_Study which includes data 
preprocessing, modeling, and analysis scripts. We have further included source code of the associated ShinyApp.
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