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Abstract

This paper presents a stochastic model predictive control approach for nonlinear systems subject to time-invariant
probabilistic uncertainties in model parameters and initial conditions. The stochastic optimal control problem entails
a cost function in terms of expected values and higher moments of the states, and chance constraints that ensure
probabilistic constraint satisfaction. The generalized polynomial chaos framework is used to propagate the time-
invariant stochastic uncertainties through the nonlinear system dynamics, and to efficiently sample from the probability
densities of the states to approximate the satisfaction probability of the chance constraints. To increase computational
efficiency by avoiding excessive sampling, a statistical analysis is proposed to systematically determine a-priori the
least conservative constraint tightening required at a given sample size to guarantee a desired feasibility probability
of the sample-approximated chance constraint optimization problem. In addition, a method is presented for sample-
based approximation of the analytic gradients of the chance constraints, which increases the optimization efficiency
significantly. The proposed stochastic nonlinear model predictive control approach is applicable to a broad class of
nonlinear systems with the sufficient condition that each term is analytic with respect to the states, and separable
with respect to the inputs, states and parameters. The closed-loop performance of the proposed approach is evaluated
using the Williams-Otto reactor with seven states, and ten uncertain parameters and initial conditions. The results
demonstrate the efficiency of the approach for real-time stochastic model predictive control and its capability to
systematically account for probabilistic uncertainties in contrast to a nonlinear model predictive control approaches.

1. Introduction

Model predictive control (MPC) is widely used in the process industry owing to its ability to deal with multi-
variable complex dynamics and to incorporate system constraints into the optimal control problem [1, 2]. However,
parametric uncertainties and exogenous disturbances are ubiquitous in real-world systems, and the classical MPC
framework is inherently limited to systematically account for uncertainties [3]. This consideration has led to the de-
velopment of numerous robust MPC formulations that deal with uncertainties. The robust MPC approaches can be
broadly categorized as deterministic and stochastic approaches based on the representation of uncertainties and the
handling of constraints.

In deterministic robust MPC approaches (for a review see, e. g., [4]), uncertainties are often assumed to be
bounded. The control law is determined such that the control objective is minimized with respect to worst-case
uncertainty realizations, and/or such that the constraints are satisfied for all admissible values of uncertainties. Hence,
robust MPC approaches discard statistical properties of uncertainties and are conservative [5, 6] if the worst-case
uncertainty realizations have a small probability of occurrence.

In stochastic MPC (SMPC) approaches (e. g., see early work [7–9]) uncertainties are described by probability
distributions (instead of bounded sets), which can often be readily obtained from state or parameter estimations.
Such a stochastic approach to MPC not only alleviates the conservatism of worst-case control, but also enables tuning
robustness against performance by allowing prespecified levels of risk during operation. The trade-off between control
performance and robustness is achieved using chance (or probabilistic) constraints, which ensure the satisfaction of
constraints with a desired probability level.
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Stochastic MPC has recently become an active research area [8, 10–21]. These stochastic optimal control ap-
proaches are often limited to linear systems or restricted to certain types of uncertainty distributions (e. g. Gaussian
uncertainties). The reason is twofold: first, the complexity of predicting the propagation of general uncertainty distri-
butions through nonlinear system dynamics; second, chance constrained optimization problems are in general com-
putationally intractable due to computation of multi-dimensional probability integrals. These integrals can only be
evaluated exactly if special probability distributions are assumed (see, e. g., [22, 23]). However, such assumptions
may not hold for the probability distributions of the states, especially in the presence of nonlinear system dynamics.

The restriction to special distributions is alleviated in sampling or scenario-based methods, or randomized algo-
rithms (see, e. g. [5, 6, 8, 15, 24–30]). In scenario-based approaches, for instance, a suitable number of randomly
extracted scenarios of uncertainty and disturbances are used to formulate an optimization problem that replaces the
chance constrained control problem [5, 15, 26–30]. However, these approaches usually assume convexity of the
optimization problem, which often implies linearity of the system dynamics and constraints. Furthermore, high-
dimensional uncertainties often require a large number of samples for accurate prediction of the system dynamics,
which may be prohibitively expensive for real-time control. Bounds on the required sample size in the scenario ap-
proach are given e. g. in [31, 32]. Thus, efficient sampling and evaluation of the randomized constraints is crucial for
the efficiency of these approaches. 1

In addition to the need for accurate and computationally efficient approximation of chance constraints, the eval-
uation of gradients of chance constraints is also critical for real-time control applications. As shown e. g. in [36],
providing analytic forms of the gradients of the objective function and constraints can significantly improve the speed
and accuracy of online optimization. However, the computation of gradients for nonlinear chance constraints is par-
ticularly challenging for general probability distributions, as analytic expressions of the gradients cannot be readily
derived [23]. For sample-based approaches, it is known that a finite-difference approximation of the gradients can be
very inaccurate even for a large number of samples [24, 37].

The contribution of this work is a stochastic nonlinear MPC (SNMPC) framework based on sample approximation
of the chance constraints (Sec. 4) and their gradients (Sec. 5). In addition, a statistical analysis is presented to deter-
mine a-priori (i.e., before the real-time optimizations) the required constraint tightening and the number of samples
that guarantee a desired feasibility probability for a prespecified robustness (or risk) level (Sec. 4). The presented
SNMPC approach is applicable to a broad class of nonlinear systems subject to time-invariant uncertainties in model
parameters and initial conditions. The system dynamics and constraints are required to be analytic with respect to the
states and separable with respect to the inputs, states and parameters. The generalized polynomial chaos (PC) frame-
work is used to obtain a computationally efficient surrogate for uncertainty propagation through the nonlinear system
dynamics in order to generate a large number of Monte-Carlo (MC) samples.2 In the PC framework, spectral expan-
sions in terms of orthogonal polynomials are used to present stochastic quantities [42–45], which allows sampling in
a computationally efficient manner (Sec. 3). The performance of the proposed SNMPC approach is demonstrated for
the Williams-Otto reactor using extensive simulation studies (Sec. 6).

Notation
Bold symbols (e. g. x, ξ) denote vectors. Subscripts at vectors are used for indexing vector elements. nx, nu, . . .

denote dimension of the vectors indicated by the subscripts. N (e. g. Nx, NS ) denote the number of constraints or
samples. Sets are denoted by calligraphic letters (e. g. X,U). Tilde (e. g. x̃, p̃) denotes coefficients in the polynomial
chaos expansion of the corresponding variable, and P̃ denotes the number of terms/coefficients in the polynomial
chaos expansion of order P. Probability distributions are denoted by µ. Expectation of a random variable is denoted
by E [·], variance by V [·], higher order moments by Em[·], and probability by P [·]. Superscripts [i] (e. g. ξ[i]) indi-
cate independent and identically distributed samples. Superscript ∗ denotes the optimal solution of an optimization
problem.

1There exists a large literature on alternatives to sampling-based methods [20, 21, 33–35]. See also [23] for a recent review.
2The use of the PC framework for stochastic MPC and optimal control has also been investigated in [35, 38–41].
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2. Stochastic Model Predictive Control Problem

Consider the continuous-time, nonlinear system

ẋ(t) = f (x(t),u(t), p), x(0) = x0, (1)

where t, x ∈ Rnx , u ∈ Rnu and p ∈ Rnp denote time, the states, the inputs and the time-invariant parameters, re-
spectively. x0 denotes the initial states. The function f : Rnx × Rnu × Rnp → Rnx represents the nonlinear system
dynamics. To be able to efficiently employ the framework presented in the subsequent sections, it is assumed that f
can be transformed into a polynomial-in-the-states representation [46]. A sufficient condition for this assumption to
hold is that f is analytic with respect to the states, and separable with respect to the inputs, states and parameters.

2.1. Uncertainties

The system dynamics are subject to the following uncertainties. The time-invariant parameters pi, i = 1, . . . , np are
assumed to be distributed according to the continuous probability distributions µpi (denoted by pi ∼ µpi ). Additionally,
uncertain estimates of the states xi(tk), i = 1, . . . , nx described by continuous probability distributions µxi(tk), can be
used to recursively initialize (1). Such uncertainty descriptions for the initial conditions are often available from state
estimation, for example from Kalman filters. Note that this formulation also allows considering exact state estimates
by choosing µxi(tk) to be a Dirac distribution. For technical reasons, it is assumed that the parameters and initial
conditions are uncorrelated and have finite variances (e. g., V

[
pi
]
< ∞ and V [xi(tk)] < ∞).

2.2. Cost Function and Constraints

This work considers the stochastic optimal control of the system (1) on the finite-time horizon [tk, t f ] 3, while
constraints on the inputs and states should be satisfied in the presence of uncertainties. The cost function of the
stochastic nonlinear model predictive control approach is assumed to be deterministic and defined by

J(x(·),u(·)) B
∫ t f

tk
F

(
u(t),E[x(t)],E2[x(t)], . . .

)
dt + E

(
E[x(t f )],E2[x(t f )], . . .

)
. (2)

Here F and E denote the running and terminal cost functions, respectively, both of which can be functions of the
moments of the states Em[·]. Such a cost function enables shaping state distributions or, in a simpler case, minimizing
the variance of state distributions (e.g., see [35, 47]).

In the following, we assume that (1) and (2) are time-discretized to integrate the nonlinear system dynamics and
to impose constraints on the states and inputs at discrete time-points as described next.

State constraints4 are imposed at Nx different time points tx,i ∈ [tk, t f ], i = 1, . . . ,Nx

X ∈ X B {gi(X) ≤ 0, i = 1, . . . ,Ng} ⊂ Rnx Nx , (3)

where X B
[
x(tx,1)>, . . . , x(tx,Nx )

>
]>, and Ng is the number of constraints. To efficiently employ the proposed control

approach, functions gi(X) are assumed to satisfy the same conditions as f (i.e., being analytic with respect to the states
and separable with respect to the inputs, states and parameters).

In addition to state constraints, inputs are constrained by a compact setU

u(t) ∈ U ⊂ Rnu , ∀t ∈ [tk, t f ]. (4)

For notational simplicity, output constraints are not explicitly considered here, as output constraints can often be
represented in terms of (3). Note that algebraic equations can be straightforwardly incorporated into the considered
stochastic optimal control framework [38].

3Here t f = tk + T (with T being the prediction horizon) for receding horizon control, and fixed t f for shrinking horizon control.
4Output constraints can be considered similarly.
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Under the uncertainties in the system parameters and initial conditions, the solution trajectories of system (1) may
violate the constraints (3). In this work, inputs u(t) are designed to satisfy (4) such that constraints (3) are fulfilled in
a probabilistic manner in the presence of uncertainties. This is formalized by chance constraints [10]

P
[
g(X) ≤ 0

]
≥ β (5)

where β ∈ (0, 1] is a user-specified probability chosen according to process requirements: β = 1 corresponds to hard
constraints that should hold at all times for all uncertainty realizations (i.e., the risk-free case); β < 1 allows for
constraint violation with probability 1 − β in order to trade-off control performance with robustness.

When Ng > 1, (5) entails joint chance constraints, as all constraints g1(X) ≤ 0, . . . , gNg (X) ≤ 0 should be jointly
satisfied with the probability level β. If Ng = 1 or constraints are defined independently using different βi for each
constraint gi(X), (5) will be referred to as individual chance constraints (e. g., see [10]).

2.3. Problem Formulation

This paper considers the nonlinear system (1) with parametric uncertainties, and in which the initial states at
sampling time tk are uncertain, e. g. due to uncertain state estimates. Let tk denote the sampling time instances at
which states x(tk) become available. Furthermore, denote by the vector π ∈ Rnπ and function u a parametrization of
the continuous-time input such that u(t) = u(t,π), t ∈ [tk, t f ].5

This work considers the following main problem.
Finite-horizon stochastic nonlinear MPC with joint chance constraints: At each sampling time tk the following
stochastic optimal control problem is solved

min
π

J(x(·),u(·)) (6a)

subject to: ẋ(t) = f (x(t),u(t,π), p), ∀t ∈ [tk, t f ] (6b)
P

[
g(X) ≤ 0

]
≥ β, (6c)

u(t,π) ∈ U, ∀t ∈ [tk, t f ] (6d)
xi(tk) ∼ µxi(tk), i = 1, . . . , nx (6e)
pi ∼ µpi , i = 1, . . . , np (6f)

where π denote the decision variables, x(t) denotes the states predicted by the nonlinear system model, and µxi(tk)
denotes the probability distributions of the states at time tk.

To facilitate closed-loop control, the stochastic optimal control problem (6) is often implemented in a receding-
horizon mode or shrinking-horizon mode (cf. footnote 3). The closed-loop control that is applied to the system (1) is
defined by the optimal solution π∗ of (6) at the sampling instants: u(t) = u(t,π∗), t ∈ [tk, tk+1].

This work presents a framework to efficiently solve (6). In particular, the following problems are addressed.
Problem 1: Propagation of the time-invariant probabilistic uncertainties (6e) and (6f) through the nonlinear
system dynamics (6b).
The problem is addressed using the polynomial chaos approach as presented in Sec. 3. This allows to efficiently
sample from the probability distributions of the states and cost functions (Sec. 4) to address the next problem.
Problem 2: Efficient evaluation of the chance constraints (6c).
Accurate prediction of uncertain system dynamics typically requires a large number of samples, which can still be
prohibitive even in the polynomial chaos approach. Moreover, sample-based approximations of (6) may yield solu-
tions that are infeasible for the original problem (6) [48]. To reduce the risk of infeasibility due to the statistical error
made due to the finite sample size while avoiding excessive sampling, the constraints can be tightened to make the
entire problem more robust. This is addressed in the following problem.
Problem 3: Tightening the chance constraints (6c) by βcor > β depending on the sample-size to guarantee a
desired feasibility probability.

5For a piecewise-constant control input parameterization u(t) = πi, t ∈ [tu,i, tu,i+1], i = 1, . . . ,Nu, partition the time horizon [tk , t f ] into Nu
subintervals [tu,i, tu,i+1] with tk = tu,1 < . . . < tu,Nu < tu,Nu+1 = t f .
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A solution to this problem is presented in Sec. 4. The last problem addresses the efficiency of solving the stochastic
optimal control problem (6) using gradient-based optimization algorithms.
Problem 4: Determining the gradients of the chance constraints (6c).
A solution to the latter problem is presented in Sec. 5 and the overall framework is demonstrated in Sec. 6.

3. Uncertainty Propagation for Nonlinear Systems Using Polynomial Chaos

This work uses the polynomial chaos framework to solve Problem 1. In the PC framework, spectral expansions in
terms of orthogonal polynomials are used to represent stochastic variables and parameters [42–45]. This allows deriv-
ing surrogate models, based on which the moments of the system states of the original system can be readily obtained.
As shown in Sec. 4, PC also allows for the sampling-based approximation and evaluation of chance constraints in a
computationally efficient manner.

3.1. Polynomial Chaos Expansion
In the following, we assume that all uncertain parameters and uncertain initial conditions are functions of the

standard random variables ξ ∈ Rnξ , which is denoted by x(t, ξ), p(ξ), etc. The random variables ξ j, j = 1, . . . , nξ are
assumed to be independent with known probability distribution functions (PDFs) µξ j , such that ξ j ∈ L2(Ω,F , µ). Here,
L2(Ω,F , µ) is the Hilbert space of all random variables ξ j with finite variance V

[
ξ j

]
< ∞. The triple (Ω,F , µ) denotes

the probability space on the basis of the sample space Ω, σ-algebra F of subsets of Ω, and probability measure µ on
Ω.

Le v(t, ξ) represent a state variable xi(t, ξ) or any other (possibly) nonlinear function such as gi(x(t, ξ)) in the
chance constraints (5). To explicitly derive the dependence of v on the random variables ξ, the following polynomial
chaos expansion can be used [42, 44, 49]

v(t, ξ) =
∑
αi∈I∞

ṽαi (t)Ψαi (ξ). (7)

The variables ṽαi denote the (deterministic) coefficients of the PC expansion (PCE), and Ψαi (ξ) denote multivariate
polynomials in the random variables ξ of total degree

∑nξ
j=1(αi) j. The multivariate polynomials can be written as

products of univariate polynomials: Ψαi (ξ) B
∏nξ

j=1 Φ
(αi) j

ξ j
. The polynomial Φm

ξ j
of the random variable ξ j is of degree

m, where
{
Φm
ξ j

}P
m=0, j = 1, . . . , nξ is an orthogonal basis6 with respect to the corresponding probability measures µ(ξ j).

In (7), αi is the ith multi-index vector from the set

IP B

α : α ∈ Nnξ
≥0,

nξ∑
j=1

α j ≤ P


with P = ∞. For practical reasons, the infinite (weighted) sum of polynomials in Eq. (7) is truncated after P̃ B (nξ+P)!

nξ!P!
terms, where P is called the order of the PC expansion. The truncation can be written in a compact form as

v(t, ξ) ≈ ṽ(t)>Ψ(ξ), (8)

with

ṽ(t) B
[̃
vα1 (t), ṽα2 (t), . . . , ṽαP̃

(t)
]>
∈ RP̃ (9)

being the vector of coefficients for the PC expansion of variable v, and

Ψ(ξ) B
[
Ψα1 (ξ),Ψα2 (ξ), . . . ,ΨαP̃

(ξ)
]>
∈ RP̃ (10)

being the vector of the multivariate polynomials.
The next step is to determine the values of the PC expansion coefficients (9), which will be needed to approximate

the probability distributions for the evaluation of the chance constraints (see Sec. 4). Two different approaches to
determine the PC expansion coefficients are explained in the next two subsections.

6Such orthogonal bases are readily available for well-known standard distributions such as Normal, Uniform or Beta distributions [44], or, in
general, can be constructed for any distribution using moments [50] or Gram-Schmidt orthogonalization [51].
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3.2. Determination of the PC Expansion Coefficients Using Collocation

The PC expansion coefficients can be determined using the so-called probabilistic collocation methods (e.g., see
[39, 52–54] and references within). In the collocation methods, NMC samples are drawn from the known distributions
of uncertainties and, subsequently, are used to solve the nonlinear process model (1). The PC expansion coefficients
can then be obtained in a least squares sense through minimizing the residuals between the PC expansion and the non-
linear model predictions v(t, ξ[ j]). Note that an explicit analytic solution to the resulting unconstrained optimization
problem min

ṽ(t)
∑NMC

j=1

(̃
v(t)>Ψ(ξ[ j]) − v(t, ξ[ j])

)2
is readily available.

The complexity of process dynamics in terms of nonlinearities may require a large number of samples NMC

to obtain adequate estimations of the PC expansion coefficients. This may render real-time control applications
computationally prohibitive. Next, an alternative approach is presented for determining the PC expansion coefficients
that relies on the solution of an extended set of ordinary differential equations.

3.3. Determination of the PC Expansion Coefficients Using Galerkin Projection

In the following it is assumed that the considered system is polynomial in the states, i. e. the dynamics for the ith

state

ẋi(t, ξ) = fi(x(t, ξ),u(t), p(ξ)), ∀i = 1, . . . , nx (11)

is of the form c
∏nx

l=1 xγl
l (t, ξ)σu(u(t))σp(p(ξ)), where c is a constant and γl is the degree of variable xl. σp and σu

are nonlinear functions of the parameters and inputs, respectively. Note that such a representation can always be
obtained exactly by state-lifting or immersion [46] under the conditions given in Sec. 2. Such a polynomial model
structure enables explicit derivation of differential equations for the PC coefficients x̃i using Galerkin projection
[43]. The Galerkin projection requires evaluation of multi-dimensional integrals, which can be solved exactly and
efficiently offline for polynomial systems in the form (11). For generality, the (uncertain) parameters need not appear
polynomially in (11). If σp is not polynomial, a PC approximation of σp can be determined using the collocation
approach described in the previous section 3.2.

3.3.1. Galerkin Projection of the System Dynamics
To obtain the PC coefficients for the states x̃i(t), an extended system of ordinary differential equations is derived us-

ing Galerkin projection [42, 44]. This system is obtained by formal derivative of the PC expansion (8) for the state vari-
ables (yielding ˙̃xi(t)

>
Ψ(ξ)) and by inserting the PC expansion of the state variables (8) into the system dynamics (11).

Subsequently, the projection is performed by computing the inner products
∫

fi (̃x,u(t), p̃)Ψαi (ξ)µ1(dξ1) · · · µnξ (dξnξ )
of the resulting equation and the different polynomials in (10). By employing orthogonality, this results in the set of
ordinary differential equations (ODEs) describing the dynamics of the coefficients

˙̃xi(t) = f̃ i (̃x1(t), . . . , x̃nx (t),u(t), p̃1, . . . , p̃np
),∀i = 1, . . . , nx, (12)

where x̃i and p̃i are the vectors of coefficients of the PC expansions (cf. (9)) of the states and parameters, respectively.
The system (12) has extended state space dimension P̃ nx and describes the dynamics of the PC expansion coeffi-
cients. Thus, by projection onto the orthogonal polynomials, the explicit dependencies on the random variables are
eliminated. The solution to this set of ODEs can then be used for efficient sample evaluations (cf. Sec. 3.4).

To compute the inner products, multi-dimensional integration is required. Even though this is in general cum-
bersome, it is particularly easy for polynomial systems (11). In this case, the integral can be efficiently and exactly
computed using Gauss Quadrature [55]. In addition, due to (power) orthogonality [55] most projection integrals
(∼97%) are zero such that the computational burden can be reduced significantly. For more details and the structure
of (12), see [56].

3.3.2. Galerkin Projection of the Initial Conditions
Once (12) has been determined as described in Secs. 3.2 and 3.3, the initial conditions x̃i(tk) are needed for

numerical solution of the set of ODEs. Since the initial conditions x(tk) are assumed to be functions of the uncertainties
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ξ, they can be obtained by projection of the corresponding PC expansion (7) onto the different orthogonal polynomials
Ψ̃αi (ξ)

x̃i, j(tk) =

∫
x(tk, ξ)Ψαi (ξ)µ1(dξ1) · · · µnξ (dξnξ )∫ (

Ψαi (ξ)
)2 µ1(dξ1) · · · µnξ (dξnξ )

,∀i = 1, . . . , nx,∀ j = 1, . . . , P̃. (13)

3.4. Computation of the Moments and Efficient Sampling to Approximate Probability Distributions
Once the PC expansion coefficients (9) are determined, the probability density of v(t, ξ) can be approximated using

sampling. With that, the approximation of the probability distributions of stochastic variables v or the evaluation of
chance constraints can be done efficiently as shown in Sec. 4.

Let ξ[ j] be samples drawn from the multivariate distributions of ξ. Then v(t, ξ[ j]
i

) is obtained from (8) by evaluating
the orthogonal polynomials (10) for the different samples ξ[ j], and by vector multiplications with the vector of the PC
expansion coefficients obtained from the solution of (12).

Besides such a sampling-based approach, the probability distributions can be approximated based on moments
(see discussion and references in [56]). The moments can be determined directly from polynomial chaos expansions
without further approximations (see [47, 56]), which is computationally cheap for low-order moments. The moments
are also required to compute the cost function (2) in (6).

4. Sample Approximation of Chance Constraints with Guaranteed Feasibility Probability

In this section, Problems 2 and 3 are addressed. In particular, the satisfaction probability of the joint chance
constraint (5) is approximated using samples generated with the PC framework. Even though a large number of
samples can be generated in a computationally efficient manner using the PC expansion (see Sec. 3), the evaluation
of the nonlinear functions gi

(
X̃, ξ

)
, i = 1, . . . ,Ng and their gradients (see Sec. 5) may still be prohibitive for a large

sample size or large Ng. To increase the computational efficiency, it is therefore desired to evaluate as few samples as
possible. However, fewer samples increase the width of the confidence interval (i. e. reduce the quality) of the estimate
of the satisfaction probability. A low confidence bears the risk that a feasible solution to the sample-approximated
chance constrained optimization problem is infeasible for the original problem (e. g. for a different or larger set of
samples) [48]. To increase the confidence level of feasibility, which we call feasibility probability, one can make the
controller more robust by tightening the chance constraints (i. e., using a βcor > β in Eq. (5)). This section proposes
a statistical analysis to determine a-priori the the constraint tightening βcor for which a desired feasibility probability
1 − α (α ∈ (0, 1)) and a desired robustness level (satisfaction probability β) can be guaranteed.

Note that this section considers the PC expanded system (12) rather than the original nonlinear system (6b).

4.1. Satisfaction Probability
Suppose that the inequalities in the chance constraints (5) are expressed using the PC expansion

P
[
g
(
X̃, ξ

)
≤ 0

]
≥ β, (14)

with β as in (5), and
X̃ B

[̃
x1(tx,1)>, . . . , x̃nx (tx,1)>, . . . , x̃1(tx,Nx )

>, . . . , x̃nx (tx,Nx )
>
]>

are given from the simulation of the PC expanded system (12). The probability of satisfaction in (14) is given by

P
[
g
(
X̃, ξ

)
≤ 0

]
B

+∞∫
−∞

+∞∫
−∞

· · ·

+∞∫
−∞

IG (ξ) µ1(dξ1)µ2(dξ2) · · · µnξ (dξnξ ). (15)

IG is the indicator function

IG (ξ) B

1 if ξ ∈ G
0 otherwise,
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where G ∈ Rnξ denotes the set where all constraints are satisfied

G B
{
ξ ∈ Rnξ | gi

(
X̃, ξ

)
≤ 0,∀i = 1, . . . ,Ng

}
.

Evaluation of the multidimensional integral in (15) is in general very difficult due to the non-convexity of the set
G and the weighting with respect to the probability measures µ(ξi), i = 1, . . . , nξ.

In this work, sampling is used to approximate the probability of satisfaction (15). For this purpose, nξ-dimensional
independent and identically distributed samples ξ[1], . . . , ξ[NS ] are drawn from the distributions µi(ξi), i = 1, . . . , nξ.
The sample-average approximation of P

[
g
(
X̃, ξ

)
≤ 0

]
is given by

P
[
g
(
X̃, ξ

)
≤ 0

]
≈

1
NS

NS∑
j=1

IG
(
ξ[ j]

)
. (16)

4.2. Required Sample Size and Constraint Tightening for a Guaranteed Feasibility Probability
The main results of this section are the following theorems that allow determining systematically the constraint

tightening and sample size for which desired confidence level in the approximation (16) of (15) is guaranteed.

Theorem 1 (Constraint Tightening and Confidence in the Sample Approximation of the Chance Constraints):
If βcor > β is chosen such that

1 − betainv
(
1 −

α

2
,NS + 1 − bβcorNS c, bβcorNS c

)
≥ β, (17)

then the sample approximation (16) of the tightened chance constraints P
[
g
(
X̃, ξ

)
≤ 0

]
≥ βcor using NS samples

guarantees a confidence level of 1 − α of the original chance constraint P
[
g
(
X̃, ξ

)
≤ 0

]
≥ β ((14) resp. (6c)). Fur-

thermore, βcor is the least conservative constraint tightening that can be chosen.
The operator b·c denotes rounding towards −∞, and betainv denotes the inverse of the cumulative Beta-distribution.
Proof: The proof uses standard results in statistics and is presented in Appendix A. �

The theorem tightens the chance constraints βcor to compensate for the statistical error made due to the finite sam-
ple size NS . To this end, it employs the lower bounds of the confidence interval obtained from a statistical analysis
(details see the proof). Note that the analysis is independent of the specifics of the optimization problems, in partic-
ular of the chance constraints and the system dynamics. Note also that the analysis neither depends on the number
of decision variables nor requires convexity assumptions as in [5, 26–28, 57]. Furthermore, bounds on the sample
complexity have been presented in [31, 32] in a different context.

Due to the independence of the analysis on the specifics of the optimization problems and constraints, Theorem 1
can be applied offline (and needs to be done only once) to systematically satisfy prespecified probabilistic require-
ments. The implicit relationships of (17) are plotted in Fig. 1 for selected values of α, β, and NS as a reference,
and can be derived for other values similarly. It is noteworthy that more samples does not necessarily mean a tighter
confidence interval [58], which can be also seen at the lack of monotonicity of the curves in the inset of Fig. 1.

Theorem 1 can now be used to guarantee a certain confidence level of the feasibility of a solution to (6).

Theorem 2 (Feasibility Probability): Consider the chance constrained stochastic optimal control problem (6) and
let π′ be a feasible solution to the sample-approximated form of problem (6) for a given βcor according to Theorem 1.
Then π′ is a feasible point of (6) with probability not less than 1 − α.
Proof: See Appendix B. �

Theorem 2 guarantees that a solution found by sample approximation is also a solution to the original problem (6)
(i. e. for an infinite number of samples) with the specified confidence level 1 − α.

5. Sample Approximation of the Gradients for Efficient Optimization

This section proposes a solution to Problem 4, that is a sample-based approximation of the analytic expressions
of the gradients of the chance constraints. The proposed approach avoids approximations of the gradients by finite
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Figure 1: Sample size NS and corrected satisfaction probability βcor (i. e. chance constraint tightening) for different required satisfaction proba-
bilities β for a feasibility probability of 1 − α = 0.99 (solid lines) and 1 − α = 0.95 (dashed lines). The inset shows the non-monotonicity of the
curves.

difference methods, which typically slows down gradient-based optimization algorithms (see e. g. [36]). Further-
more, finite-differencing of the chance constraints can leads to poor estimates due to the discrete nature of sample-
approximations as explained in Fig. 2a and [24, 37]. 7

The gradients of the joint chance constraints with respect to the input parametrization π are formally given by

dP
[
g
(
X̃, ξ

)
≤ 0

]
dπ

=
∂P

[
g
(
X̃, ξ

)
≤ 0

]
∂X̃

∂X̃
∂π

. (18)

Note that the first-order sensitivities ∂X̃
∂π are obtained from the solution of the sensitivity equations, which are

almost always needed to speed up gradient-based optimization algorithms.
The main result of this section is the following proposition, namely sample-based approximation of the analytic

gradients of (15) with respect to the input parametrization variables π. Note that the dependence of the states X̃ on
π is not explicitly written to shorten the notation. The derivation is illustrated in Fig. 2b and the constructive proof is
given with all technical details in the Appendix C.

Proposition 1 (Gradients of the Sample-Approximated Chance Constraints): Suppose the following to be given:

1. first-order sensitivities ∂X̃
∂π ;

2. ξ
[ j]

, j = 1, . . . ,NS independent and identically distributed samples from the vector ξ B [ξ2, . . . , ξnξ ];

3. for each sample ξ
[ j]

the vector r[ j] B [r[ j]
0 , r[ j]

1 , . . . , r[ j]
n[ j]

r +1
] with unique elements and sorted in ascending order;

the vector is defined by the solutions of g(X̃, ξ1, ξ
[ j]

) = 0 with respect to ξ1; r[ j]
0 (r[ j]

n[ j]
r +1

) is the minimum (resp.
maximum) of the support of ξ1.

Then a sample-based approximation of
∂P

[
g
(
X̃,ξ

)
≤0

]
∂X̃

in (18) is given by

∂P
[
g
(
X̃, ξ

)
≤ 0

]
∂X̃

≈
1

NS

NS∑
j=1

[ n[ j]
r∑

i=0

IG

 r[ j]
i + r[ j]

i+1

2
, ξ

[ j]
 µ1

(
r[ j]

i+1

) ∂r[ j]
i+1

∂X̃
− µ1

(
r[ j]

i

) ∂r[ j]
i

∂X̃

 ], (19)

in which

∂r[ j]
i

∂X̃
=


0, i ∈ {0, n[ j]

r + 1}

−
∂g

(
X̃,r[ j]

i ,ξ
[ j]

)
∂X̃

 ∂g
(
X̃,r[ j]

i ,ξ
[ j]

)
∂ξ1

−1

, i ∈ {1, . . . , n[ j]
r }.

(20)

7Note that more sophisticated sampling methods such as importance sampling could be used at the cost of much higher computational demands.
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violation boundary
after finite-difference

perturbation

satisfied
samples

violating
samples

(a) (b)

Figure 2: (a) Samples satisfying g(·) ≤ 0 are shown by blue +, and violating samples by purple ◦. The satisfaction probability is given by ratio
“number of satisfying samples”/“total number of samples”. This ratio changes discontinuously due to finite-difference perturbations X̃ + ∆X̃
because a discrete number of samples change their validity. Note that the ratio may not even change at all if the validity of none of the samples is
affected. (b) The samples ξ

[1]
, ξ

[2]
, ξ

[3]
(symbol +) are drawn at random from the distributions µ2(ξ2), where ξ = ξ2. The equation g(X̃, ξ1, ξ

[ j]
) = 0

defines the violation boundary (shown in green) and it is solved for ξ1. For ξ
[1]

, this yields three solutions r[1] = [r[1]
1 , r[1]

2 , r[1]
3 ] (shown in red).

A different number of (real-valued) solutions is obtained for the other samples as shown for the red and black dashed lines. Piecewise integration
of the probability measure µ1(ξ1) is performed with integration limits given by the elements of r[1]. Note that the integral between the limits r[1]

1
and r[1]

2 contributes to the approximation of the gradient only if the constraint g(X̃, r̂[1]
1 , ξ) ≤ 0 for an arbitrary point r̂[1]

1 (not shown) between the
integration limits.

Proof: See Appendix C. �

The vector r[ j] defines the limits of the integration of the PDF of the random variable ξ1 (for further explanations
see Fig. 2 and the proof). Note that it is required to solve polynomial equations g in ξ1 to obtain the vector of inte-
gration limits. However, the polynomials can be solved either analytically for low order polynomials, or numerically
using efficient root finding algorithms.

It is important to note that Proposition 1 makes the implicit assumption that only samples with unique roots r[ j]

are used. It is expected that samples with nonunique roots are relatively rare, such that the error will be negligible
when such samples are discarded (in the case study in Sec. 6 no samples were discarded).

With Proposition 1, the gradients can be computed efficiently since time-consuming finite differencing is avoided.
Furthermore, the approach does not suffer from the discretization effects shown in Fig. 2a. Note that the presented
approach is inspired by [24]. However, the extension made in Proposition 1 allows for a much broader applicability
such as polynomial and joint chance constraints, as well as non-gaussian probability distributions.

6. Stochastic NMPC of a Williams-Otto Reactor

In this section, the solution to (6) will be illustrated based on shrinking horizon SNMPC of a William-Otto semi-
batch reactor. To this end, uncertainties are propagated through the nonlinear system dynamics using the polynomial
chaos approach presented in Sec. 3. The sample-average approximation of the chance constraints (16) and of their
gradients (19) proposed in Sec. 4 resp. Sec. 5 are used. The theorems presented in Sec. 4.2 are used to guarantee a
desired feasibility probability by choosing the required constraint tightening and sample size according to equation
(17).

6.1. Williams-Otto Reactor

The Williams-Otto semi-batch reactor is considered, in which the reactions A + B
ρ1
→ C, C + B

ρ2
→ P + E, and

P + C
ρ3
→ G take place with the associated reaction rates ρ1, ρ2, and ρ3 [59, 60]. The reactant A is introduced into the

reactor at the beginning of the batch process, whereas reactant B is fed into the reactor with feed rate u1(t). During
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the exothermic reactions, the products P and E as well as the side-product G are formed. The reactor temperature is
directly manipulated using input u2(t).

The dynamic model consists of seven differential equations

ẋ1(t) = −ρ1(t) −
x1(t)u1(t)

x7(t)

ẋ2(t) = −ρ1(t) −ρ2(t) +
cB,inu1(t)

x7(t) −
x2(t)u1(t)

x7(t)

ẋ3(t) = ρ1(t) −ρ2(t) −ρ3(t) −
x3(t)u1(t)

x7(t)

ẋ4(t) = ρ2(t) −ρ3(t) −
x4(t)u1(t)

x7(t)

ẋ5(t) = ρ2(t) −
x5(t)u1(t)

x7(t)

ẋ6(t) = ρ3(t) −
x6(t)u1(t)

x7(t)
ẋ7(t) = u1(t),

(21)

where x(t) B [x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)]> denotes the molar concentrations (in units of mol/m3) of A, B, C,
P, E, and G with respect to the volume x7(t) (in units of m3) contained in the reactor at time t (in seconds). cB,in = 5 is
the molar concentration of B in the inlet reactor feed u1 (in units of m3/s) and u2 (in units of K). The last terms in the
first six equations are the dilution effect due to inflow of reactant B. The nonlinear state and input dependent reaction
rates are

ρ1(t) = k1x1(t)x2(t) exp(−6666.7/u2(t))
ρ2(t) = k2x2(t)x3(t) exp(−8333.3/u2(t))
ρ3(t) = k3x3(t)x4(t) exp(−11111/u2(t)).

The parameter values of the reaction kinetics are taken from [59, 60] and have been converted to SI units. The initial
conditions at the beginning of the batch are:

x(0)> = [10 0 0 0 0 0 2] .

6.1.1. Stochastic Optimal Control Problem
The reaction rate constants k1, k2, and k3 (in units of m3/(mol s)) are uncertain and probabilistically distributed

according to Normal distributions.

k1 ∼ Norm(1.6599 · 106, 1.6599 · 105)

k2 ∼ Norm(7.2117 · 108, 7.2117 · 107)

k3 ∼ Norm(2.6745 · 1012, 2.6745 · 1011),

where the first argument in Norm(·, ·) specifies the mean and the second the variance. The variances are chosen to be
10 % of the mean values taken from [60].

The objective of the process is to maximize the profit at the end of the batch, which is the difference between the
sales of the products E and P (1.0 monetary units per mole given by x4(t f )x7(t f ) resp. x5(t f )x7(t f ) with x7(t) being the
volume at time t) and the costs of raw material B (0.5 monetary units per mole). The objective is defined by

J(x(·),u(·)) = −0.5cB,in

(
E

[
x7(t f )

]
− E [x7(t0)]

)
+ E

[
x5(t f )x7(t f )

]
+ 2E

[
x4(t f )x7(t f )

]
− 10

(
V

[
x5(t f )x7(t f )

]
+ V

[
x4(t f )x7(t f )

] )
,

where the expectations and variances are computed as shown in Sec. 3.4. The objective takes into account the mean
values of the amounts of the desired end-products P and E, as well as the variances of the end products weighted by
a positive constant (in units of 1/mol) to reduce the variance of the end-products.
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During the batch, constraints on the inputs must be satisfied at the time-points tu,k

0 ≤ u1(t) ≤ 0.002 (22a)
313 ≤ u2(t) ≤ 363 (22b)
|u2(t) − u2(t)| ≤ 1. (22c)

In addition, a constraint on the side-product G (x6) at the final time t f is defined to keep the amount of the undesired
side-product at the end of the batch below a certain threshold. This is because the batch products would be worthless
(due to expensive filtering or purifications) if the threshold is exceeded. Due to physical limitations, the volume x7 at
the final time t f is also kept below a certain threshold. Since x6(t f ) and x7(t f ) depend on the random reaction rates
and uncertain initial conditions, joint chance constraints are considered with required minimum constraint satisfaction
probability β = 0.98 and a confidence level of 1 − α = 0.99. It can be seen in Fig. 1 that the desired satisfaction
probability is guaranteed for βcor = 0.985 and a sample size of NS = 5 000 samples. This implies

P
[

x6(tF) ≤ 0.6
x7(tF) ≤ 7.0

]
≥ βcor = 0.985. (23)

6.1.2. Polynomial Chaos Expansion
The system (21) is not polynomial, which makes computation of the integrals in the Galerkin projections difficult

(cf. Sec. 3.3). A polynomial-in-the-states representation was obtained by defining a new state x8(t) B x7(t)−1 and its
derivative by ẋ8(t) = −u1(t)/x7(t)2 = −x8(t)2u1(t). With this reformulation, (21) becomes polynomial-in-the-states
where each term is separable in the states, parameters and the inputs. However, the employed transformations of the
initial conditions x8(tk) = x7(tk)−1 are not polynomials. Hence, the collocation approach in Sec. 3.2 was exploited to
obtain a PC approximation (of order P = 3) of x8(tk) by sampling x7(tk). From the PC approximation of x8(tk), the
coefficients x̃8(tk) were used as the initial conditions for the extended set of ordinary differential equations obtained
by Galerkin projections (12).

Note that similar transformations are always possible if the system has analytic nonlinearities [46] such as expo-
nential terms, rational functions, etc. Therefore, the Galerkin-based PC expansion as presented in Sec. 3 is applicable
to a broad class of systems.

The PC expansion in conjunction with the Galerkin projection was applied to the polynomial-in-the-states sys-
tem using a PC order P = 3. The random variables were the reaction rates k1, k2, k3 and the initial conditions
x1(tk), . . . , x7(tk). This lead to P̃ = 286 terms in the expansion of each state (cf. Eq. (8)), resulting in 2 002 differential
equations altogether. The first-order sensitivities of the states with respect to the inputs were used to compute the
sensitivities and gradients, which resulted in a sensitivity system of 27 456 differential equations.

6.2. Closed-Loop Simulations
The shrinking horizon SNMPC was implemented with batch end-time t f = 4 000 s and sampling times tk ∈

{0, 250, 500 . . . , 3 500, 3 750}. A piecewise-constant input parametrization was chosen with the initial values u1(t) =

0.002 and u2(t) = 318.
In the closed-loop simulations, the nonlinear model (21) was used as the true plant, whose random parameters

were drawn from the uncertainty distributions given above. To update the the controller’s state information at the
beginning of each sampling time interval, normally distributed measurement/observer noise with a standard deviation
of 1 % of the mean value was considered.

6.3. Numerical Results
The SNMPC was implemented in Matlab R2012a using fmincon with SQP method. Time-critical code (including

the ODEs, the Jacobians, the sensitivity equations) was written in C using Matlab CMEX-functions. In particular, the
integration of the differential equations was done using the SUNDIALS integrator suite [61] using the nonlinear inte-
grator Functional in conjunction with the Adams method. The optimization was run on a Linux PC (IntelTMCoreTM2
Q6600, 2.4 GHz, 4 cores, 4 GB Ram).

The results of the closed-loop SNMPC are shown in Fig. 3 and, for comparison, the results from the closed-loop
NMPC are depicted in Fig. 4. The results show that the presented SNMPC approach guarantees satisfaction of the
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Figure 3: Shrinking horizon SNMPC. (a), (b) and (c) Concentrations of the end-products P (x4), E (x5), and side-product G (x6). Depicted are
regions containing 90 %, 95 % and 100 % of 350 closed-loop simulations. As can be seen in (c), the uncertainties lead to constraint violations in no
cases. (d) Optimal input profile for one representative sample.

joint chance constraint. In contrast, the nominal NMPC caused violation of the constraints (i. e. infeasible solutions)
in about 25% of the cases.

Table 1 summarizes the optimization time of the chance constrained optimal control problem at the first sampling
time-point. It can be seen that the evaluation of the Jacobians and sensitivity equations, which are required for the
computation of the gradients, took the longest. In case of finite-differencing approximation of the gradients, the
optimization of the optimal control problem of the first horizon was prematurely stopped after several hours without
finding a solution. This demonstrates that the presented approximation of the gradients speeds up the optimization
significantly.

The simulation and evaluation of 5 000 samples using the PC approach was on average about 100 times faster
(about 2 s) than simulation of the same number of Monte-Carlo samples (about 200 s). This also emphasizes the
advantage of the PC approach over a pure sampling or scenario-based approaches in the investigated context. The
accuracy of the PC approximation is compared with Monte-Carlo samples in Fig. 5 demonstrating adequate approxi-
mation quality.

7. Conclusions and Outlook

This work demonstrates the feasibility of a SNMPC approach for real-time control of a chemical process with
uncertain parameters and initial conditions. Polynomial chaos is used for uncertainty propagation and Monte Carlo
sampling, which is significantly more efficient than Monte Carlo simulations based on the nonlinear system model.
The approximation of the probability densities reduces to solving an expanded set of differential equations (to get
the values of the PC coefficients) and matrix multiplications to evaluate the chance constraints. The proposed sample
approximation of the joint chance constraints is very flexible and the gradient approximation improves efficiency of
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Figure 4: Shrinking horizon NMPC obtained by considering the mean values for each uncertain variable. (a), (b) and (c) Concentrations of the
end-products P (x4), E (x5), and side-product G (x6). Depicted are regions containing 90 %, 95 % and 100 % of 1 000 closed-loop simulations.
Note that in 225 cases (22.5 %) fmincon failed to find a feasible solution. Out of the remaining 775 cases, 37 (4.8 %) do not satisfy the nominal
MPC’s inequality constraint x6(t f ) ≤ 0.6. (d) Optimal input profile for one representative sample.
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Figure 5: Accuracy of the PCE approximation illustrated through a comparison of 5 000 Monte Carlo samples and samples generated using the
PCE. Depicted is the absolute error of the mean, the variance, the skewness and kurtosis for the concentration of G (x6(t)). Note that the curves are
not plotted for t < 2 000 since the values are very small (i. e. approach −∞ in the semi-logarithmic plot).

the overall optimization significantly. The confidence analysis provides a systematic way to determine the sample size
and the chance constraint tightening required to guarantee a desired feasibility probability and constraint satisfaction
probability. This allows the systematic trade-off between large sample sizes (i. e. accurate results, time-consuming)
and small sample sizes (i. e. less accurate results, less time-consuming). This could also be useful when one wants
to adapt the SNMPC approach to hardware with less computational power, or where timing-constraints have to be
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Computing Times for Stochastic NMPC
Joint chance constraints (5 000 samples, 12 calls)

Probability of satisfaction and gradients 2.3 s
Integration (24 calls)

System dynamics 65 s
Evaluation of the Jacobian 162 s
Sensitivity differential equations 288 s

Total time (including fmincon and
further auxiliary functions) 404 s

Table 1: Averaged computing times in seconds for the chance constrained optimal control problem for the initial time-horizon [0, 4 000]. The
optimization times for the subsequent sampling time-points were much shorter and the total time ranged from 60 to 150 seconds.

satisfied. Note that the sample approximations and confidence analysis is quite general and independent of the used
method to generate samples, and independent of the properties (e. g. convexity) of the optimization problem.

It is important to remark that the probabilities of satisfaction and feasibility hold only for the PC approximation,
but not necessarily for the original uncertain nonlinear system. However, as illustrated in the example in this work
and mentioned in other work (see introduction), PC allows for accurate predictions of the propagation of stochastic
uncertainties through (nonlinear) system dynamics. However, the accuracy is clearly system dependent and to the best
of our knowledge no systematic method exist to determine a-priori or depending on the system dynamics the PC order
required to achieve a certain accuracy of the estimates. However, there has been recent progress in the error analysis
of PC expansions [62] and a line of future research could be to include the error analysis in the synthesis of a robust
controller.

From Eq. (7) it becomes clear that the number of monomials required in the PCE grows rapidly with the chosen
PC order and number of uncertain variables. Using sparse PCE, i. e. different polynomial orders for different variables
[63], is one solution to reduce this complexity. It has been noted [51] that PCE provides accurate predictions for
small time only and that the predictions may become inaccurate for increasing time. We believe, however, that the
error is negligible in a controlled system with constant update by measurements. In any case, the prediction could
be improved by adapting the orthogonal basis as proposed in [51]. Another interesting future extension could be the
consideration of time-dependent disturbances (e. g. [40]).
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Appendix A. Derivation and Proof of Theorem 1

To determine the least conservative constraint tightening, a statistical analysis for the sample approximation (16)
(with a given number of samples NS and confidence level α) is used.

Let p B P
[
g
(
X̃, ξ

)
≤ 0

]
(cf. (15)), and the sample approximation p̂ B 1

NS

∑NS
j=1 IG

(
ξ[ j]

)
(cf. (16)). The estimation

of p is a well-known problem in statistics and corresponds to estimating the success probability of a sequence of
Bernuoulli trials [58, 64, 65]. This is due to the fact that testing whether a sample ξ[ j] lies in G (i. e., evaluation of
IG(ξ[ j])) is a Bernoulli trial with a “yes” or “no” outcome (i. e., “satisfied” or “violated”). Therefore, p̂ is a realization
of the random variable P̂ that is distributed according to a binomial distribution, P̂ ∼ 1

NS
Bin(NS , p). The confidence

interval [plb(α,NS , P̂), pub(α,NS , P̂)] consists of a range of values that, with a certain confidence level of 1−α, contains
the true value p. Furthermore, the probability of p ≥ β given the observation that plb(α,NS , P̂) ≥ β is not less than
1 − α:

P
[
p ≥ β | plb(α,NS , P̂) ≥ β

]
≥ 1 − α. (A.1)
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Since plb(α,NS , P̂) is monotonically increasing in P̂, it holds that

∃ βcor ∈ [β, 1] s. t. P̂ ≥ βcor iff plb(α,NS , P̂) ≥ β. (A.2)

It follows from (A.1) and (A.2) that

P
[
p ≥ β | P̂ ≥ βcor

]
≥ 1 − α.

Thus, the lower confidence bound is used to determine βcor, since we demand that plb(α,NS , P̂) ≥ β, meaning that
the confidence interval shall not cover the infeasible interval p < β. The lower confidence bound can be determined
approximatively from the quantiles of a normal distribution or exactly from the percentiles of the inverse cumulative
Beta distribution betainv [58, 64, 65] as

plb(α,NS , bβcorNS c) = 1 − betainv
(
1 −

α

2
,NS + 1 − bβcorNS c, bβcorNS c

)
.

Here bβcorNS c ∈ N is the number of “satisfied” Bernoulli trials, and βcor represents a corrected (i. e. tightened) sat-
isfaction probability. Since the quantiles are exact and due to the equivalence above, it follows that βcor is the least
conservative constraint tightening. The statement (17) in the theorem follows directly from (A.3) and from the re-
quirement plb(α,NS , bβcorNS c) ≥ β. �

Appendix B. Proof of Theorem 2

Sampling only affects the cost function (6a) and the chance constraints (6c), which means that π′ satisfies all other
constraints in (6). Due to Theorem 1, π′ satisfies the chance constraint (6c) with a confidence level not less than 1−α.
From this it can be concluded that π′ is a feasible point of (6) with a probability not less than 1 − α. �

Note that π′ is not necessarily an optimal solution to (6) because the sample approximation of the cost function
may differ from the exact value of the cost function.

Appendix C. Derivative and Proof of Proposition 1

For simpler presentation, we provide the proof for a scalar function g(·) (i. e. for individual chance constraints)
first. The extension to vector-valued functions g(·) (i. e. joint chance constraints) is straightforward and is done last.

The proof follows from the construction as described in the following.

Reformulations
Since the first-order sensitivities are assumed to be given, what remains to be computed are the partial derivatives

∂P[·]
∂X̃

For this purpose, we derive another approximation of the satisfaction probability (15), which then allows to

determine ∂P[·]
∂X̃

. The main idea is to approximate the nξ-dimensional integration in (15) by integration over only

one random variable, say ξ1, while keeping the remaining nξ − 1 variables in ξ B [ξ2, . . . , ξnξ ] fixed to values as
determined by sampling. We assumed, without loss of generality, that we integrate with respect to ξ1. The analysis
can be performed analogously for any other random variable ξi, i = 2, . . . , nξ.

Assume (for now) that for each sample ξ
[ j]

, a vector defining the integration limits r[ j] B [r[ j]
0 , r[ j]

1 , . . . , r[ j]
n[ j]

r +1
] (see

Fig. 2b) is given. 8 With these integration limits given, Eq. (15) can be approximated9 as

P
[
g
(
X̃, ξ1, ξ

)
≤ 0

]
≈

1
NS

NS∑
j=1


nr[ j]∑
i=0

IG
(
r̂[ j]

i , ξ
[ j]

) r[ j]
i+1∫

r[ j]
i

µ1(dξ1)

 , (C.1)

8The integration limits formally depend on X̃ and on the sample ξ
[ j]

, and that the number nr[ j] may be different for each sample. See Fig. 2b for
further explanations. However, we omit this dependency for shorter notation.

9Eq. (C.1) provides a better approximation of (15) than (16) since the entire probability distribution of ξ1 is taken into account; however, this
approximation requires the evaluation of the cumulative probability density function of µ1, which is for many distributions not available in an
analytic form.
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where the indicator function is evaluated at the point (r̂[ j]
i , ξ

[ j]
), with r̂[ j]

i being an arbitrary point from the interior of

the integration interval (r[ j]
i , r[ j]

i+1), as e. g. the mid-point r̂[ j]
i =

r[ j]
i +r[ j]

i+1
2 in (19).

Based on the vector of integration bounds r[ j], the gradient can be approximated by derivative of (C.1) with respect
to X̃, which gives (19). Note that we used the facts that the order of integration and differentiation can be changed.

Since the integration limits r[ j]
i in Eq. (C.1) depend on the (known and constant) X̃, the partial derivatives ∂r[ j]

i

∂X̃
have to

be taken into account, and they are given by (20). The first row in (20) follows from the fact that r[ j]
0 and r[ j]

nr[ j] +1 are
constants and defined by the minimum and maximum of the support of ξ1; the second row in (20) follows from the
implicit function theorem.

From Eq. (20) it becomes clear that one has to avoid division by zero, which is the case if g
(
X̃, ξ1, ξ

)
= 0

has multiple roots with respect to ξ1. These cases have to be treated and are first discussed for individual chance
constraints. The extension to joint chance constraints follows immediately from that.

Integration Limits for Individual Chance Constraints

As illustrated in Fig. 2, the integration limits are defined by the solutions of g
(
X̃, ξ1, ξ

[ j]
)

= 0 or, in other words,

the values of ξ1 where the indicator function IG
(
r[ j]

i , ξ
[ j]

)
changes its value when traversing along the direction of ξ1

for fixed values of ξ
[ j]

. In the first step, we therefore solve the equations gi

(
X̃, ξ1, ξ

[ j]
)

= 0 for ξ1 and determine all
its (real-valued) roots on the support of the random variable. Due to the PC expansion involving polynomials in ξ1 of
order usually greater than one, the equation is possible to have no unique (real-valued) solution. From Eq. (20) it is
clear that roots with multiplicity greater than 1 lead to division by zero and therefore cannot be considered, and the
sample has to be discarded.

In the next step, all (real-valued) roots are sorted such that r[ j]
1 ≤ r[ j]

2 ≤ · · · ≤ r[ j]
nr[ j] , where nr[ j] denotes the number

of real-valued roots. As the last step, we introduce r[ j]
0 (resp. r[ j]

nr[ j] +1) corresponding to the lowest (resp. largest) value

that ξ1 can take on its support (which may also be ±∞). With that, one obtains the vector r[ j] B [r[ j]
0 , r[ j]

1 , . . . , r[ j]
nr[ j] +1].

Integration Limits for Joint Chance Constraints

One proceeds similar as for individual chance constraints and determines the real-valued roots on the support of
ξ1 for each equation gi(·), i = 1, . . . ,Ng. As for individual chance constraints, samples having (real-valued) roots
with multiplicity greater than one are discarded. In addition, one has to take care of the fact that roots of the different
equations may coincide. To avoid such degenerate cases and the ambiguity in applying equation (20), such samples
are also discarded. After that, all roots as well as r[ j]

0 and r[ j]
nr[ j]+1

(see individual chance constraints) are collected in
vector in ascending order. When evaluating (20), one has to use the function gi(·) for which r[ j]

i is a root.
With that, all elements and equations are established, which completes the proof. �
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