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Random Item MIRID Modeling
and Its Application

Yongsang Lee1 and Mark Wilson2

Abstract

The Model With Internal Restrictions on Item Difficulty (MIRID; Butter, 1994) has been useful
for investigating cognitive behavior in terms of the processes that lead to that behavior. The
main objective of the MIRID model is to enable one to test how component processes influence
the complex cognitive behavior in terms of the item parameters. The original MIRID model is,
indeed, a fairly restricted model for a number of reasons. One of these restrictions is that the
model treats items as fixed and does not fit measurement contexts where the concept of the
random items is needed. In this article, random item approaches to the MIRID model are pro-
posed, and both simulation and empirical studies to test and illustrate the random item MIRID
models are conducted. The simulation and empirical studies show that the random item MIRID
models provide more accurate estimates when substantial random errors exist, and thus these
models may be more beneficial.
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Introduction

Although educators and psychologists have recognized that a person’s outcome on the achieve-

ment test, or attitude survey, is made up of several component processes, they have struggled to

model this type of complex thinking. Often, they have ended up with modeling the product or

the outcome only. However, in fact, they may also be interested in knowing about the processes

that contribute to it. To meet the rising demand for models dealing with the relationship

between an outcome and its component processes, various item response models have been

introduced. Such models include the linear logistic test model (LLTM; Fischer, 1973, 1983),

the multi-component latent trait model (MLTM; Whitely, 1980), the general component latent

trait model (GLTM; Embretson, 1984), and the Model With Internal Restrictions on Item

Difficulty (MIRID; Butter, 1994; Butter, De Boeck, &Verhelst, 1998).

Among these models, the MIRID model has been found to be useful for investigating a cog-

nitive behavior in terms of its underlying cognitive processes. For instance, to test the underly-

ing process in the structure of feeling guilty, Smits and De Boeck (2003) provided situations to
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their participants with two types of questions about feeling guilty. The first type of questions

were about the processes (components) that may lead to feeling guilty, and the second type of

question was about feeling guilty itself. As the first type of questions concerned only one com-

ponent process (e.g., norm violation, worrying, etc.), they were named as component items. On

the contrary, the second type of question was designed to cover all the component processes

(e.g., feeling guilty), and this type of question (e.g., summary item or universal task item) was

named as a composite item (Butter et al., 1998).

The original MIRID model is, indeed, a fairly restricted model for a number of reasons. First,

the original MIRID model (i.e., the Rasch-MIRID) was designed for only binary responses. Its

application has been somewhat limited because many measurement instruments in both the cog-

nitive and affective domains commonly use polytomous response item formats. Recent psycho-

metric contributions (Lee & Wilson, 2009; Wang & Jin, 2009), however, enable us to deal with

polytomous responses within the MIRID framework. Second, the original MIRID model does

not allow for any individual differences when interacting with items. For some people, for

example, guilt feelings may depend mainly on whether they feel that they have violated a moral,

ethical, religious, or personal code in the situation (norm violation); whereas, for other people, a

norm violation may be a less important factor in generating feelings of guilt. There may thus be

individual differences in the process structure of feeling guilty, and it may be reasonable to

assume that the effects of components vary from person to person. By introducing random

weight effects for the item part of the MIRID model (e.g., the RW-MIRID; Smits, 2003; the ran-

dom weight partial credit MIRID model [RW-PC-MIRID]; Lee & Wilson, 2009), it is now pos-

sible to investigate individual differences in the effects of the component processes. Because

these extended MIRID models do not specify any random item effects, however, they still have

limitations as follows:

a. They do not include an error term in the linear function for expressing the composite

item parameter; thus, the underlying assumption of this model is that the composite

item parameter is fully explained by the component item parameters. This assump-

tion implies that the explanation of composite items about feeling guilty is perfect,

which is unlikely to be true.

b. As items are fixed, this model cannot quantify the uncertainty of an item parameter

(i.e., variance); however, in the context of item banks or automated item generation,

the reliability of the item parameter is of concern, and the quantification of this

uncertainty is needed to provide reliability information for an item.

c. The fixed-item MIRID model also might provide a biased parameter estimate of the

component items’ effect on the composite item parameter when substantial random

item variance (e.g., random errors for the composite item) exists. Because the main

purpose of the MIRID model is to show how component item parameters contribute

to the composite item parameter, the quality of this component weight parameter is a

main concern.

The need for random item effects may seem to be more theoretical and technical, but,

indeed, there are substantive reasons. It may be more reasonable to treat items as random

effects rather than fixed effects in certain situations, and, thus, the model may need to reflect

these random item effects. In the application of the MIRID model, items may be random in two

ways. First, items and the situations that the items address can be seen as a random sample from

an item or situation universe. In fact, this is not a new concept and it has been addressed in

Generalizability theory (G-theory; Brennan, 2001) and Generalizability in the Item Response

Model (GIRM; Briggs & Wilson, 2007), though the formulation is weaker in both of these as
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there is no specific prediction from component items to composite items. Second, a composite

item parameter may not be fully explained by component item parameters and there will be

random errors. Although theories might identify the major underlying component processes,

there may still be minor processes that the model does not reflect, and, perhaps, there may be

more factors that affect the composite item parameter in addition to the component item para-

meters (e.g., variation of the scenarios that the items address). It is reasonable, therefore, to con-

sider item effects as random under these considerations. To propose the MIRID model with

random item effects, this article first illustrates the Rasch-MIRID model (e.g., the original

MIRID model), and then addresses three types of MIRID models with random item effects.

The MIRID Model for Dichotomous Data: The Rasch-MIRID Model

The MIRID model for dichotomous data was described by Butter (1994) following original con-

tributions by Paul De Boeck (cited in Butter (1994)) to explore the structure of a cognitive or

affective construct (or task) in terms of its components. The phenomenon of feeling guilty, for

example, can be explained in terms of a number of components such as responsibility, norm vio-

lation, negative self-evaluation, worrying, and tendency to rectify (Smits & De Boeck, 2003).

The MIRID model is designed to handle situations in which one wants to know the underlying

relationship between these components and feeling guilty, but does not know the values of its

components (i.e., component item difficulty values). Under the MIRID framework, feeling

guilty is treated as a composite concept whereas the other concepts (e.g., norm violation, worry-

ing, and tendency to rectify) are treated as component concepts. To formulate the MIRID model,

two different types of items are required (i.e., component items and composite items).

The composite item is an item that measures a concept that is composed of components.

The composite item, with its relevant set of component items, is named as an ‘‘item family’’ in

which it is assumed that the composite item effect is expressed as a linear function of the effect

of the component items. The number of item families is decided based on how many situations

are given to test the concept. To test guilt, for example, Smits and De Boeck (2003), in a

study of Guilt, gave people 10 situations along with a set of items. Among these 10 situations,

Table 1 displays only two situations along with items for illustrative purposes. As can be seen

in this table, their instrument has three component items (i.e., norm violation, worrying, and

tendency to rectify) and one composite item (i.e., guilt) for each situation. Each item family is

thus composed of these four items, and because 10 situations were given to the people, 10 item

families are specified.

The MIRID model for dichotomous responses is given by the following equation:

P Ypi = 1jup

� �
=

exp up � bi

� �

1 + exp up � bi

� � , ð1Þ

where up indicates a person ability parameter for person p, and up;N (0, s2
u), bi indicates an

item parameter for item i, which will vary in its functional form depending on whether the item

is a component item or a composite item, and Ypi indicates the response of person p, with abil-

ity up to item i.

For the component items, bi = bsr, where bsr indicates the rth component item in the sth

item family. For the composite items, b = bs(R + 1), where bs(R + 1) indicates the composite item

in the sth item family; it would be expressed as
PR

r = 1 grbsr + t. To interpret this expression,

refer to the Guilt example described above (and in Table 1). In the Guilt example, there are

three component items (norm violation, worrying, and tendency to rectify) and 10 item families

responding to 10 situations (see the appendix). The composite item difficulty—which is about
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feeling guilty—will, therefore, be expressed as a linear combination using three component

item difficulties and the intercept in the MIRID model. As the composite item parameter is

restricted to being a linear function of component item parameters (bsr), a weight for each com-

ponent (gr), and an intercept (t) without an error term, the MIRID model is in fact a restriction

on the simpler Rasch model just as is the LLTM (Fischer, 1973, 1983). In general, therefore,

the MIRID model may not fit as well as a Rasch model (just as is the case for the LLTM).

The Random Item MIRID (RI-MIRID) Models

The Three Types of RI-MIRID Models

Although the concept of random item parameters is a relatively new concept, its usability has

been discussed in a number of research papers (Brennan, 2001; Briggs & Wilson, 2007; De

Boeck, 2008; Gonzalez, De Boeck, & Tuerlinckx, 2008; Janssen, Schepers, & Peres, 2004;

Mislevy, 1988; Smits & De Boeck, 2004). Brennan (2001) and Briggs and Wilson (2007)

assumed that items are a random sample from an item universe, and, accordingly, they treated

items as random. In research aimed at the explanation of item parameter estimates using item

predictors (item properties, item group, etc.), Janssen et al. (2004) divided items into multiple

groups based on item properties and hence identified a multilevel model for the items. For

example, when each group represents a specific content area, items within a group can be seen

as a random sample from the item universe for that content, and, accordingly, they allow

within-group variation in their model. As well, Mislevy (1988) and De Boeck (2008) shared

essentially the same idea that items cannot be fully explained by item predictors, and the error

term should be incorporated in the model. Finally, Gonzalez et al. (2008) saw the data as the

product of interactions of respondents, items, and situations (i.e., three-mode data;

Kroonenberg, 2005), and incorporated the random variation from both individual and situa-

tional differences into the model (the double structure structural equation model; 2sSEM).

The 2sSEM (Gonzalez et al., 2008) was designed initially in a context of investigating emo-

tions: They modeled a causal relationship among people’s emotional traits (De Boeck & Smits,

2006; Gonzalez et al., 2008) by considering both individual differences and situational differ-

ences in the structure of emotion. The 2sSEM and MIRID models could both be applied to

investigate the structure of emotion with three-mode data, but their approaches are quite differ-

ent, and the scientific questions that they embody are also different. The 2sSEM identifies the

structure of an emotion in terms of people’s emotional latent variables whereas the MIRID

approach attempts to explain it in terms of item difficulties.

The MIRID model specifies two types of items (component and composite items), and,

accordingly, two random effects (the random component items and the random composite inter-

cept) can be formulated in the RI-MIRID model. Depending on which random effect is incor-

porated into the model, three different types of the RI-MIRID model can be formulated: (a) the

fixed component-random composite intercept MIRID (the FR-MIRID), (b) the random

component-fixed composite intercept MIRID (the RF-MIRID), and (c) the random component-

random composite intercept MIRID (the RR-MIRID), which specifies the random component

items and the random composite intercept. It is worth to particularly note that when the compo-

nent items are random, the composite items become random as well because the composite

items are expressed as a linear function of the component items. Thus, we must distinguish

between the ‘‘random composite’’ models and the ‘‘random composite intercept’’ models. This

article uses the term ‘‘FF-MIRID’’ (the fixed component and fixed composite MIRID) for the

original MIRID model to differentiate it from the three types of RI-MIRID models. Table 2

summarizes these four models showing which random effect is incorporated into each model.
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For all three RI-MIRID models, the basic model formulation is the same as for the FF-

MIRID (i.e., the original MIRID) model:

p Ypi = 1jup, b0i
� �

=
exp up � b0i
� �

1 + exp up � b0i
� � , up;N 0, s2

u

� �
: ð2Þ

For the component item, b0i is bsr, and for the composite item, bi
0 is a linear combination of

the component item parameters (bsr), component weights (gr), and the intercept (t). As the RI-

MIRID models incorporate random effects for items, the expression of the item parameters will

be different from the FF-MIRID model, and this expression will depend on which effects are

considered random in the model. The FF-MIRID model expresses the composite item parameter

as a linear function of the component item parameters (bsr), their weight (gr), and an intercept

(t) without any random error.

The first type of random item MIRID model, the FR-MIRID, relaxes one underlying assump-

tion of the FF-MIRID model.

FR-MIRID:

bs0 =
XR

r = 1
grbsr + t + zs, zs;N 0, s2

z

� �

bsr = bsr:
ð3Þ

Note that, in this equation (as for the two that follow), bs0 indicates a composite item para-

meter, bsr indicates a component item parameter for the rth component in the sth item family,

and zs indicates the random effect for the composite item. By adding an error term to the linear

function, the FR-MIRID model relaxes the underlying assumption that the components must

exactly predict the composite. As this model treats component items as fixed effects and the

composite intercept as a random effect by incorporating the random error term into the compo-

site item, the model is called the fixed component-random composite intercept MIRID model

(i.e., the FR-MIRID). This model is useful when there is a considerable random error for the

composite item parameter. Because the main goal of the MIRID model is to quantify the effect

of the component item parameters on the composite item parameter, the component weight is

the main parameter of interest. If there is a considerable random error, and if the MIRID model

does not take this considerable random error into account, the model may estimate the compo-

nent weight parameter inaccurately. The FR-MIRID model, however, specifies this random

error in the model; and it is expected to provide more accurate component weight parameter

estimates, which is a key advantage of the FR-MIRID model.

The second type of random item MIRID model is the RF-MIRID. This model addresses mea-

surement situations where component item effects are random because of randomly sampled

Table 2. Three Types of the Random Item MIRID Models and the Fixed-Item MIRID Model.

Random effect for the component items

No Yes

Random intercept for the composite item No 1. FF-MIRID 3. RF-MIRID
Yes 2. FR-MIRID 4. RR-MIRID

Note. MIRID = Model With Internal Restrictions on Item Difficulty; FF-MIRID = fixed component and fixed composite

MIRID; RF-MIRID = random component-fixed composite intercept MIRID; FR-MIRID = fixed component-random

composite intercept MIRID; RR-MIRID = random component-random composite intercept MIRID.
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scenarios without considering any random composite intercept. This measurement situation

implies that the scenarios (situations or passages) that students face can be seen as random sub-

sets of the universe of possible scenarios and that they affect students’ responses to an item, and

therefore the item parameter.

RF-MIRID:

bs0 =
XR

r = 1

grbsr + t ,

bsr = br + esr, esr;N 0, s2
b rð Þ

� �
:

ð4Þ

In the case of the guilt data, for example, students are given 10 different scenarios to test each

component (e.g., norm violation). Students are asked whether they feel like they violated a

moral, an ethical, a religious, or a personal code given 10 different scenarios to test the norm

violation feeling. Their feelings, in fact, are dependent on the scenario (e.g., break up, pen pal).

They might feel as if they violated a moral code much more in a scenario where they break up

than in a scenario where they do not respond to their pen pal’s letter. Their response to a norm

violation item might consequently vary from scenario to scenario, and so would the norm viola-

tion item parameter. As one can come up with many different scenarios to test this component,

it might be reasonable to assume that these scenarios are just a subset of a universe of scenarios,

and are sampled from that universe at random. At this point, the norm violation item would

have a random effect as a result of the randomness of the scenarios. The RF-MIRID model is

designed to identify this random effect. In the equation, esr indicates this random effect for the

component item.

The third type of random item MIRID model is the RR-MIRID. This model addresses both

random effects in the previous two models: the randomness among scenarios and the random

error of the composite item.

RR-MIRID:

bs0 =
XR

r = 1
grbsr + t + zs, zs;N 0, s2

z

� �

bsr = br + esr, esr;N 0, s2
b rð Þ

� �
:

ð5Þ

As the RR-MIRID model considers these two random effects, it is a model that covers both

issues described in the FR-MIRID and the RF-MIRID models. In terms of the random item

effect, the RR-MIRID model is the most complex model, and its complexity pays off when both

of these random effects are considerable. If the model does not consider any random effects in

either the component or composite item parameters, the estimator of the component weight

might not provide an accurate estimate. This is investigated under various conditions through

the comprehensive simulation studies.

Estimation Method: Markov Chain Monte Carlo (MCMC) Algorithm

Because the RI-MIRID models consider person and item parameters (up and bi) as random

effects, they are referred to as crossed random effect models. For estimation in these models,

the MCMC estimation is often applied. The MCMC method (Albert, 1992; Gelfand & Smith,

1990; Geman & Geman, 1984; Tanner, 1996) is frequently used in these kinds of complex

models, and many approaches to implement MCMC have been introduced (Bernardo & Smith,

1994; Carlin & Louis, 1996; Gelfand & Smith, 1990; Gelman, Carlin, Stern, & Rubin, 1995;
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Geman & Geman, 1984), and, accordingly, various computer programs have been developed

(Albert, 1992; Patz & Junker, 1999; Spiegelhalter, Thomas, Best, & Lunn, 2003). Among these

programs, WinBUGS (Bayesian inference Using Gibbs Sampling: Spiegelhalter et al., 2003) is

the most popular and accessible, and thus, this study adopts this software to implement both the

simulations and the empirical studies. As WinBUGS adopts the Bayesian approach for para-

meter estimation, a prior must be specified for all parameters.

In the MCMC methods, unknown parameters are drawn from their posterior distribution via

the Gibbs sampler. For Gibbs sampling, suppose that u is a person location parameter, b is the

mean of the component item parameters, s2
b is the variance of the component item parameters,

g is a component weight, and s2
z is the variance of random errors for the composite item para-

meters. Let u = (u1, u2, . . . , up)0, b = (b1, b2, . . . , br)
0, s2

b = (s2
b(1), s

2
b(2), . . . , s2

b(r))
0, and

g = (g1, g2, . . . , gr)
0; then v = (u, b, g, s2

b, s2
z) would be a vector of parameters governing the

response of person p to item i, which is represented by a random variable ypi where p = 1,2, . . . ,

P and i = 1,2, . . . ,I, and Y is a P 3 I response matrix. As a result, the full posterior distribution of

the parameter given in the data is the conditional posterior for parameter vi given the other para-

meters v(�i), p(vijv(�i), Y) where i = 1,2, . . . k. Therefore, sampling a parameter in the MCMC

algorithm is conditional on the other parameters and the data, so the simulated sample of para-

meters represents a sample from the marginalized posterior (Kim, 2001). In fact, over a Markov

Chain, v(t) is updated to v(t + 1), and the MCMC parameter estimates are obtained by averaging

these values for v.

Simulation Studies

Simulation Study Design

To help understand which MIRID model is the best choice for given conditions, a set of simula-

tion studies was conducted. Previous research showed that the number of item families in the

MIRID model affects the quality of the parameter estimate (Lee & Wilson, 2009), and that, as

the length of the test and the sample size increase, the model fit improves in general (Kang &

Cohen, 2007; Li, Cohen, Kim, & Cho, 2009). This indicates that the parameter quality and

model fit might always be clear with a large sample and a long test. In fact, having a large sam-

ple size and a lengthy test comes with a cost. As large samples are quite challenging to obtain, it

is important to examine the behavior of the models with relatively smaller samples and shorter

tests. Furthermore, depending on the relative size of the random item effects, one MIRID model

might perform better than others, and thus it is also important to explore model performance

depending on the relative size of the random effect for the items (e.g., the random error of the

intercept for the composite items and the random variation of the component items).

The conditions used in the data simulation include (a) the number of item families (10 item

families and 30 item families), (b) the item standard deviation within each component (compo-

nent item standard deviation, 0.5 and 1), (c) the standard deviation of random error of the inter-

cept for the composite item (0, 0.5, and 1), and (d) the number of examinees (300 and 600). To

make the data more realistic, these simulation studies used the parameter estimates from the

empirical study with guilt data (Smits & De Boeck, 2003) as parameters for the item mean of

each component (20.07, 20.5, and 20.6) and component weights (0.025, 0.5, and 0.55). The

intercept is set to be 0 for data generation. A total of 24 (2 3 2 3 3 3 2) conditions were simu-

lated by varying the four simulation design factors. Note that Conditions (b) and (c) above

determine which of the three RI-MIRID models are the data generators. First, as there is no

condition in which both the item standard deviation within each component is 0 and the
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standard deviation of random error of the intercept for the composite item is 0, there is no con-

dition under which FF-MIRID is the generating model. The simulations are not studied under

which FF-MIRID is the generator, as this has been well studied in the past (Butter, 1994;

Butter et al., 1998). Second, as there is no condition under which the item standard deviation

within each component is 0, there is no condition under which FR-MIRID is the data generator.

The simulations have been designed in this way because the main point that is intended to show

in the simulation studies is that, when there are substantial random errors for the composite

item parameter (which the authors believe is the common case in reality), the models that do

not specify any random errors for the composite item parameter provide inaccurate component

parameter estimates (De Boeck, 2008). Thus, all of the generating models are either RF or RR.

After the data were generated, the four different MIRID models (i.e., the FF-MIRID, the FR-

MIRID, the RF-MIRID, and the RR-MIRID) were applied to the simulated data to estimate the

parameters. For the MCMC estimation, priors are needed for each model. Priors for the random

component item effects were N (0, s2
b) and s2

b distributed as an inverse gamma (0.001, 0.001).

For the random composite intercept, the prior was N (0, 1).

For analyses using the four different MIRID models under the 24 conditions, WinBUGS

Version 1.4.3 was run with three chains for 3,000 iterations each, and the burn-in period was

1,000. For the iterative procedure of the simulation studies, R2WinBUGS (Sturtz, Ligges, &

Gelman, 2005) was also applied. For the convergence check, the R̂ index was used. The authors

used the criterion that the R̂ values should be below 1.1 to indicate that the estimation had con-

verged (Gelman & Rubin, 1992). Depending on the simulation conditions and the model, the

time taken to analyze each data set in WinBUGS varied from approximately 20 min to 1 hr.

After the simulation studies, parameter recovery was evaluated to ensure the quality of the

estimators across the conditions based on the root mean square error (RMSE), and these RMSE

values were compared across different conditions and models. The RMSE values are based on

the discrepancy between true parameters and estimated parameters and indicate estimator stabi-

lity and accuracy.

Simulation Results

First, the simulation results show the quality of the component weight estimation is affected by

the random effect for the composite items (zs). On one hand, when the true model does not spe-

cify the random intercept for the composite items, the models which do not consider this effect

(e.g., FF-MIRID and RF-MIRID models) estimate the component weight more accurately than

the other models do. On the other hand, if the true model assumes that there is a random effect

for the composite intercept (zs), the FR- and RR-MIRID models perform better than the FF- and

RF-MIRID models (i.e., the models that do not consider the random intercept for the composite

items (zs)). The simulation results also show that the quality of the estimation is substantially

affected by the simulation conditions that the current study varied, and that it depends also on

the model applied.

The quality of the component weight (ĝr) estimation is significantly different across models.

Table 3 shows the average RMSE values for three component weights across simulations by the

data generator, and box plots visualize these RMSE values. The box plots in Figure 1 show the

distributions of the average RMSE values by simulation conditions when the RF-MIRID model

is the data generator. The x axis indicates the simulation conditions, and the y axis indicates the

RMSE values in the box plot. The first line of box plots shows the simulation results by chang-

ing the number of the item family, the second line is by the number of examinees, and the third

line is by component item standard deviation. As can be seen in the box plots in Figure 1, the

FF-MIRID and RF-MIRID models do better than the FR-MIRID and the RR-MIRID models.
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As the true model is the RF-MIRID model in this figure, estimating error term for the composite

intercept creates variability which leads to poor component weight estimates (ĝr) of the FR-

MIRID and RR-MIRID models. In addition, this figure clearly shows that the FF-MIRID per-

forms better than the RF-MIRID model, and this result can be understood that the FF-MIRID

model is more flexible than the RF-MIRID model because it allows the fixed component item

parameters.

Figure 1. Average RMSE value distribution for the component weight by simulation conditions when
the RF-MIRID is generator.
Note. RMSE = root mean square error; RF-MIRID = random component-fixed composite intercept MIRID; FF = fixed

component and fixed composite; FR = fixed component-random composite intercept; RF = random component-fixed

composite intercept; RR = random component-random composite intercept; MIRID = Model With Internal

Restrictions on Item Difficulty.
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Figure 2 also shows the distribution of the average RMSE values when the RR-MIRID is

the data generator. As can be seen in the box plots, the FR-MIRID and the RR-MIRID models

do much better than the FF-MIRID and RF-MIRID models. This result was, in fact, expected

Figure 2. Average RMSE value distribution for the component weight by simulation conditions when
the RR-MIRID is generator.
Note. RMSE = root mean square error; RR-MIRID = random component-random composite intercept MIRID; FF =

fixed component and fixed composite; RF = random component-fixed composite intercept; FR = fixed component-

random composite intercept; RR = random component-random composite intercept; MIRID = Model With Internal

Restrictions on Item Difficulty.
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because the FR-MIRID and the RR-MIRID models take the random errors in the intercept into

account. As, in reality, it is quite rare that any dependent variable is explained without random

errors (De Boeck, 2008), the FR-MIRID and the RR-MIRID models are more realistic as well

as beneficial in the sense just described.

In this simulation study, it appears that the number of item families and examinees, and com-

ponent item deviations (sb) affect the RMSE values, indicating the quality of estimator. The

advantage of the FR- and RR-MIRID over other MIRID models, however, remains regardless

of the simulation conditions when the intercept random errors exist.

Illustration of the RI-MIRID Models Using the Guilt Data

Data and Method

Smits and De Boeck (2003) investigated the components of guilt. They introduced the new

approach using the MIRID model to test this componential structure of guilt, and showed advan-

tages of the MIRID model for examining the componential structure of emotions. In their study,

to test this structure, they collected 10 situations including ‘‘break up’’ and ‘‘trumpet’’ situations

(see the appendix), and also derived five components of guilt from a literature review (responsi-

bility, norm violation, negative self-evaluation, worrying, and tendency to rectify). After prelimi-

nary studies, they selected three components (e.g., norm violation, worrying, and tendency to

rectify) to investigate guilt and its relationship with these three components (see the appendix

for the items) with the MIRID model. They sampled 270 students and then gave them four ques-

tions to which they were to respond for 10 situations asking them to circle one of four choices

(0 to 3). The scale represents as follows: ‘‘0’’ indicated ‘‘no,’’ ‘‘1’’ indicated ‘‘not likely,’’ ‘‘2’’

indicated ‘‘likely,’’ and ‘‘3’’ indicated ‘‘yes.’’ Two hundred sixty-eight students between 17

and 19 years old (138 females and 130 males) responded to their questionnaire.

In this example, the data are dichotomized for simplicity of illustration, so 0 and 1 are

recoded as 0, and 2 and 3 are recoded as 1. Table 4 shows the mean and standard deviation for

each item after dichotomization.

As shown in this table, the mean of responses for each item varies considerably across situa-

tions, but within each situation, the means of the three components and the composite items are

fairly close to each other. These descriptive statistics imply that the random effect for

Table 4. Means and Standard Deviations for Guilt Data.

Component 1 Component 2 Component 3 Composite

Situation Observation (Norm violation) (Worrying) (Tendency to rectify) (Guilt)

Break up 268 0.49 (0.50) 0.77 (0.42) 0.61 (0.49) 0.67 (0.47)
Trumpet 268 0.09 (0.28) 0.15 (0.36) 0.14 (0.35) 0.14 (0.35)
Shoes 268 0.35 (0.48) 0.52 (0.50) 0.42 (0.49) 0.49 (0.50)
Movie 268 0.51 (0.50) 0.57 (0.50) 0.57 (0.50) 0.63 (0.48)
Discussion 268 0.77 (0.42) 0.84 (0.37) 0.90 (0.31) 0.86 (0.35)
Secret 268 0.91 (0.28) 0.87 (0.34) 0.84 (0.37) 0.92 (0.27)
Youth movement 268 0.75 (0.43) 0.84 (0.36) 0.67 (0.47) 0.83 (0.37)
Pen pal 268 0.48 (0.50) 0.45 (0.50) 0.52 (0.50) 0.49 (0.50)
Jacket 268 0.51 (0.50) 0.83 (0.37) 0.94 (0.24) 0.75 (0.43)
Homework 268 0.26 (0.44) 0.23 (0.42) 0.30 (0.46) 0.23 (0.42)

Note. Values in parenthesis indicate standard deviation.
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component items might be considerable but the random error for the composite item is not indi-

cating the component items might substantially explain the composite item.

In this example, three different RI-MIRID models are applied to the guilt data, and the con-

sistency of the parameter estimates across models is examined. Second, the FF-MIRID model is

compared with the RI-MIRID models in terms of model fit.

Results

Table 4 indicates that the results from three RI-MIRID models are consistent with previous

research using the FF-MIRID model which is the original MIRID model (Smits & De Boeck,

2004). Again, depending on whether the model specifies the random effect in the component

items and the composite intercept, the component weights are somewhat different from one

another. The results indicate that the component item variances are fairly large, indicating that

the component item parameters are substantially different across situations while the random

error for the composite intercept is relatively small. The RF-MIRID model, thus, might be the

best choice for this data. Akaike information criterion (AIC) values in Table 5 also indicate that

these component item variances play a role in the model fit, and support that the RF-MIRID

model is the best model for this data.

Discussion and Conclusion

This article presented a motivation for random item modeling for the MIRID model and pro-

posed three types of RI-MIRID models. To clarify the distinctions among the random item

approaches (e.g., the RF-MIRID, the FR-MIRID, and the RR-MIRID) and the fixed-item

approach (e.g., the FF-MIRID), a set of simulation studies were conducted. For illustrative pur-

poses, an empirical study with guilt data was presented as well.

Table 5. Analysis Results Using Three RI-MIRID Models.

FF FR RF RR

g1 0.50 0.55 0.50 0.55
g2 0.55 0.59 0.54 0.40
g3 0.03 20.05 0.04 0.13
t 0.20 0.20 0.20 0.24
s2

u
1.12 1.14 1.13 1.14

b1 20.07 20.06
b2 20.59 20.60
b3 20.51 20.55
s2

b(1)
3.02 2.98

s2
b(2)

2.29 2.88

s2
b(3)

3.36 3.24

s2
z

0.020 0.019

Deviance 10,549 10,035 10,036 10,035
AIC 10,619 10,107 10,050 10,051

Note. RI-MIRID = The Random Item MIRID; FF = fixed component and fixed composite; FR = fixed component-

random composite intercept; RF = random component-fixed composite intercept; RR = random component-random

composite intercept; AIC = Akaike information criterion; MIRID = Model With Internal Restrictions on Item

Difficulty.
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As addressed in this article, the component weights are the most interesting parameters in

the MIRID model, and thus the quality of the estimation of that parameter should be consid-

ered most crucial when using the MIRID model. Based on simulation studies, however, it is

concluded that the FF-MIRID and RF-MIRID models do not estimate the component weights

well when a substantial random error (z) for the composite intercept exists which might be

the common case in reality. This might have been anticipated, as one can expect that the

quality of component weight estimation is very sensitive to the size of the composite inter-

cept deviation.

The empirical study displays the application of the RI-MIRID models to the data of feeling

guilty and demonstrates the interpretation of the parameter estimates. The results indicate that

the parameter estimates from the RI-MIRID models are consistent with previous research

using the FF-MIRID model, and fit better compared with the FF-MIRID, although the RI-

MIRID models are fairly restricted models. For the RF-MIRID and RR-MIRID results, the

component item variances (s2
b(1), s2

b(2), s2
b(3)) were found to be substantial whereas the ran-

dom error (z) for the composite intercept is relatively small indicating the RF-MIRID model

can be the most appropriate for this data. As the component and composite items are identi-

fied with a unique situation (stimulus), they may be dependent. This local item dependency

is a typical issue that one should consider, and it is well known that the violation of local

independence can lead to inaccurate parameter estimates of the item response models. The

advantage of the RI-MIRID model is that it allows one to detect this local item dependency.

When the effect size of the component item parameter on the composite item parameter is

substantial, that might indicate local item dependency across situations (e.g., stimulus, sce-

narios, or item families). The other advantage of the RI-MIRID model is that this model

allows to expand the usual set of possible tactics for dealing with local item dependence

(which includes multidimensionality, item bundling, differential item functioning [DIF],

etc.) by introducing an item family into the model. As the RI-MIRID models take account of

the local item dependency by specifying the item family in the model formulation, they may

fit the data better than other Rasch models.

Further Steps to Develop MIRID Models

The models discussed in this article are all unidimensional, but different cognitive components

do not always fit a unidimensional model (Butter, 1994); for example, norm violation, worrying,

and tendency to rectify in the guilt feeling data may represent three different dimensions, and

multidimensionality should be incorporated into the MIRID model. To deal with this multidi-

mensional situation, Butter (1994) proposed the multidimensional MIRID model. His approach

is, however, the consecutive approach to multidimensionality (i.e., treating each dimension

independently) and does not consider random item effects. Therefore, a further study should be

carried out to overcome the limitations of the consecutive approach within the random item

MIRID model framework.

In the RF- and the RR-MIRID models of the study, a common variance is specified for all

components. If there is, however, any strong theory or empirical evidence to support a unique

variance for each component, this unique variance for each component should be formulated in

the RF- and RR-MIRID models. The RF- and RR-MIRID models with unique component var-

iances are, in fact, more flexible compared with the models in the current study, and thus fit

data better reflecting measurement situations more accurately. These advantages may, however,

come with challenges in estimation, thus need to be examined with various conditions.
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Appendix

Guilt Items

Situation 1. You have been dating for some time a person you are not really in love with. When

you break up, you find out that he or she was in love with you (and was taking the relationship

very seriously). The break up hurts him or her considerably. (Break up)

Situation 2. You have been a member of a brass band for some years now. As a result, you

learned to play trumpet for free. Now that you are skilled enough, you leave the band because

you do not like the members of the band any more. (Trumpet)

Situation 3. During the holidays, you are working as a salesperson in a clothing and shoe

store. One day, a mother with four children enters the store. One of the kids wants Samson-

shoes (Samson is a popular doll figuring in a Belgian TV-series for children). The mother

leaves the child with you while she goes on to look for clothes for the other children. The

child tries on different types and sizes of shoes, but after a while the child gets tired of fitting

the shoes and refuses to continue. She picks a pair she has not tried on before and you sell

this pair to the mother afterward. The next day, the mother wants to return the shoes because

they do not fit. Your boss takes back the shoes and reimburses the mother. The shoes have

been worn, however, and they are dirty. Because of this, they cannot be sold anymore. Your

boss says that it does not matter, and that everyone is capable of mistaking the size of shoes.

(Shoes)

Situation 4. A not so close friend asks you if you want to join him or her to go to the movies.

You tell him or her that you do not feel like it, and want to spend a quiet evening at home. That

evening you do go out with a closer friend. (Movie)

Situation 5. During a discussion, you make a stinging remark toward one of your friends. You

notice that it hurts him or her, but you pretend not to see it. (Discussion)

Situation 6. A friend tells you something in confidence, and adds that he or she would not like

you to spread it around. Later, you do tell it to someone else. (Secret)

Situation 7. You are a member of a youth movement. One day the group leaders hang a rope

between two trees, so you can glide from one tree to another. Jokingly, some other members

make the stop of the pulley unclear. You see them doing it, but you do not help them. The fol-

lowing member, who wants to glide to the other tree, did not see that the stop was made

unclear. You do not warn him or her. Halfway he falls from the rope, and he passes out. (Youth

movement)

Situation 8. You have a pen pal. You get bored of writing with him or her, and suddenly, you

stop corresponding with him or her. After 1½ year, he or she writes you again, and again, but

you do not respond. (Pen pal)

Situation 9. You borrowed a jacket from a friend to wear when you go out. At the party, you

leave the jacket on a chair. When you are about to leave, you notice the jacket has disappeared.

In all probability, it has been stolen. (Jacket)

Situation 10. One evening, you do not feel like doing your homework. The following day, you

copy the assignment of a friend who clearly has gone though a lot of trouble finishing it. You

get a good grade for your assignment, the same grade as your friend. (Homework)
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Items

1. Do you feel like having violated a moral, an ethic, a religious, and/or a personal

code? (Norm Violation)

2. Do you worry about what you did or failed to do? (Worry)

3. Do you want to do something to rectify what you did or failed to do? (Tendency to

rectify)

4. Do you feel guilty about what you did or failed to do? (Guilt)

Acknowledgments

The authors thank Dr. Smits and Dr. De Boeck for making the data available for this study. They also thank

two anonymous reviewers for their insightful comments on the earlier version of this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or pub-

lication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling.

Journal of Educational Statistics, 17, 251-269.

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. Chichester, UK: Wiley.

Brennan, R. (2001). Generalizability theory. New York, NY: Springer.

Briggs, D. C., & Wilson, M. (2007). Generalizability in item response modeling. Journal of Educational

Measurement, 44, 131-155.

Butter, R. (1994). Item response models with internal restriction on item difficulty (Unpublished doctoral

thesis). K.U. Leuven, Belgium.

Butter, R., De Boeck, P., & Verhelst, N. D. (1998). An item response model with internal restrictions on

item difficulty. Psychometrika, 63, 1-17.

Carlin, B. P., & Louis, T. A. (1996). Bayes and empirical Bayes methods for data analysis. London,

England: Chapman and Hall.

De Boeck, P. (1991). Componential IRT models. Unpublished manuscript, University of Leuven, Belgium.

De Boeck, P. (2008). Random item IRT models. Psychometrika, 73, 533-559.

De Boeck, P., & Smits, D. (2006). A double-structure structural equation model for the study of emotions

and their components. In Q. Jing, M.R. Rosenzweig, G. d’Ydewalle, H. Zhang, H. Chen, & K. Zhang

(Eds.), Progress in psychological science around the world: Vol. 1. Neural, cognitive and developmental

issues (pp. 349–365). Hove, United Kingdom: Psychology Press.

Embretson, S. E. (1984). A general multicomponent latent trait model for response process. Pychometrika,

49, 175-186.

Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta

Psychologica, 37, 359-374.

Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometirka, 48, 3-26.

Gelfand, A. E., & Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities.

Journal of the American Statistical Association, 85, 398-409.

Lee and Wilson 113



Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London, England:

Chapman and Hall.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.

Statistical Science, 7, 457-511.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.

Gonzalez, J., De Boeck, P., & Tuerlinckx, F. (2008). A double-structure structural equation model for

three-mode data. Psychological Methods, 13, 337-353.

Janssen, R., Schepers, J., & Peres, D. (2004). Models with item and item group predictors. In P. De Boeck

& M. Wilson (Eds.), Explanatory item response models: A generalized linear and nonlinear approach

(pp. 189-212). New York, NY: Springer.

Kang, T., & Cohen, A. S. (2007). IRT model selection methods for dichotomous items. Applied

Psychological Measurement, 31, 331-358.

Kim, S. (2001). An evaluation of a Markov Chain Monte Carlo method for the Rasch model. Applied

Psychological Measurement, 25, 163-176.

Kroonenberg, P. (2005, April). Three-mode component and scaling methods. In B. Everitt & D. Howell

(Eds.), Encyclopedia of statistics in behavioral science (Vol. 4, pp. 2032-2044). New York, NY: John

Wiley.

Lee, Y., & Wilson, M. (2009). An extension of the MIRID model for polytomous responses and random

effects. Paper presented at the annual meeting of American Educational Research Association, San

Diego, CA.

Li, F., Cohen, A. S., Kim, S., & Cho, S. (2009). Model selection methods for mixture dichotomous IRT

models. Applied Psychological Measurement, 33, 353-373.

Mislevy, R. J. (1988). Exploiting auxiliary information about items in the estimation of Rasch item

difficulty parameters. Applied Psychological Measurement, 12, 725-737.

Patz, R. J., & Junker, B. W. (1999). A straightforward approach to Markov Chain Monte Carlo methods

for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.

Smits, D. J. M. (2003). Item response model for self-report data on emotional responses (Unpublished

doctoral thesis). K.U. Leuven, Belgium.

Smits, D. J. M., & De Boeck, P. (2003). A componential IRT model for guilt. Multivariate Behavioral

Research, 38, 161-188.

Smits, D. J. M., & De Boeck, P. (2004). Latent item predictors with fixed effects. In P. De Boeck & M.

Wilson (Eds.), Explanatory item resposne models: A generalized linear and nonlinear approach (pp.

267-287). New York, NY: Springer.

Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS (Version 1.4) [Computer program].

Cambridge, UK: MRC Biostatistics Unit, Institute of Public Health.

Sturtz, S., Ligges, U., & Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R.

Journal of Statistical Software, 12, 1-16.

Tanner, M. A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions

and likelihood functions (2nd ed.). New York, NY: Springer.

Wang, W., & Jin, Y. (2009). Multilevel, two-parameter, and random-weights generalizations of the model

with internal restrictions on item difficulty. Applied Psychological Measurement, 34, 46-65.

Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45, 479-494.

114 Applied Psychological Measurement 41(2)




