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ABSTRACT OF THE DISSERTATION
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Muzhi Han

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2024

Professor Song-Chun Zhu, Co-Chair

Professor Dennis Hong, Co-Chair

Humans excel at abstracting raw information into meaningful high-level representations, which

builds the foundation for understanding complex situations and making sophisticated decisions in

novel scenarios. In contrast, robots often struggle to solve complex tasks and generalize to unseen

situations due to their limited abstraction capabilities. This dissertation presents a novel scene ab-

straction perspective and a holistic framework for robots to perform long-horizon tasks in unseen

real-world scenarios by: (i) perceiving scenes as abstract states, (ii) acquiring world models that

predict action potentials and consequences on abstract states, and (iii) planning to reach novel goals

within the abstract state space using these world models. We advocate for a scene graph-based rep-

resentation that abstracts objects and their relations as symbols, allowing for strong compositional

generalization to novel objects and goals in planning. The dissertation is structured in three parts,

with focus on perception, planning, and learning, respectively. In the first part, we introduce a

manually-defined contact graph representation that preserves the kinematic state of the environ-

ment for task and motion planning. We develop a scene reconstruction system that recovers this

representation from RGB-D streams, enabling the creation of functionally-equivalent digital twins

ii



for simulating robot interaction. In the second part, we demonstrate closed-loop reasoning and

planning using contact graphs and other feedback forms, leveraging the internal world knowledge

of language models. We show that a Vision Language Model (VLM) can enable closed-loop mo-

bile manipulation in the real world with feedback from the contact graph and images from the

robot’s wrist camera. We also show that an Large Language Model (LLM) can propose Task and

Motion Planning (TAMP) solutions and make corrections by reasoning motion planner feedback.

The third part focuses on learning task-relevant symbolic abstractions and world models that gener-

alize over novel object configurations. We present an interactive framework that learns PDDL-style

symbolic predicates and operators from interaction data and language feedback. Additionally, we

propose a probabilistic framework that learns object symbols and a stochastic grammar captur-

ing state transitions in the context of object cutting. We demonstrate that these learned symbolic

representations and world models can be utilized to solve complex tasks with novel objects and

unseen goals through planning. By placing abstraction at its core, this dissertation seeks to unify

perception, planning, and learning to build more capable and generalizable embodied intelligence.
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CHAPTER 1

Introduction

Humans have long envisioned robotic assistants capable of handling complex household tasks and

adapting to diverse scenarios [Nil84, Gat07]. Consider a household robot tasked with preparing

a meal in the kitchen. It must devise an intricate sequence of actions to locate and retrieve in-

gredients, manipulate various utensils, and adapt these steps based on potentially varied recipes,

object configurations, and cooking goals. While such tasks are manageable for humans, they

pose significant challenges to robots: (i) The long-horizon [ZTB21, CFK22] nature of the task

requires the robot to maintain context and execute a lengthy sequence of interdependent actions,

adapting to intermediate outcomes throughout the process. (ii) The need for task generaliza-

tion [XNZ18, HNX19] demands that a robot trained on one specific task, such as making a sand-

wich, should be able to transfer its knowledge to related tasks, like preparing a salad, even when

confronted with unfamiliar ingredient layouts or kitchen arrangements.

In robotics and AI literature, planning [LaV06] is a fundamental approach that addresses the

aforementioned challenges. Under the Markovian assumption [Put90], planning requires defining

a state space S, an action space A, a world model P ps1|s, aq, and a goal checker Ggpsq or reward

model Rgps, aq. Planning then solves for a plan, i.e., a sequence of actions, to reach a goal state

sg or maximize the cumulative reward from an initial state s0. Ideally, with an appropriate state

representation and generalizable world model, planning can solve very long-horizon tasks with

arbitrary goals in novel scenarios. For instance, recent Large Language Models (LLMs) [ZZL23],

remarkable in understanding natural language and encoding vast world knowledge, can solve di-

verse planning tasks in the natural language domain when used as world models [HGM23] or

1



planners [HAP22, HXX23], achieving few-shot or zero-shot generalization. However, additional

challenges exist in solving real-world robotics tasks with planning. First, a perception model is

required to process raw sensor observations into meaningful state variables, known as “state ab-

straction” or “scene abstraction” [KKL18a, CFK22, SHL22]. Additionally, the world model

must be defined with an appropriate action space that interfaces with low-level joint commands of

robots while being abstract enough to allow effective planning. This perspective is also known as

“action abstraction” [KKL18a, GCS22, YCT23].

Existing work that tackles robotic tasks with planning falls into two main categories. One sem-

inal formulation is Task and Motion Planning (TAMP) [KL11, GCH21, SFR14, GLK20], which

manually designs symbolic state and action abstractions and hierarchically decomposes the plan-

ning problem into high-level symbolic task planning and low-level motion planning. The task

planning stage searches for long-horizon symbolic action sequences, using hand-crafted planning

domains consisting of abstract world knowledge represented in Planning Domain Definition Lan-

guage (PDDL) [FL03]. The motion planning stage computes feasible motion trajectories subject

to geometric constraints, which accomplish each abstract action. TAMP can solve long-horizon

robot planning problems with performance guarantees and generalize zero-shot to arbitrary in-

domain scenarios and goals. However, this approach requires human experts to manually define

abstractions and planning domains [HZZ24, SCK23], limiting its application to diverse domains.

Furthermore, TAMP faces significant real-world perception challenges in grounding state symbols

and motion planning goals, constraining its applicability to real-world problems [CFK22].

Another line of work is latent-space Model-based Reinforcement Learning (MBRL) [HLF19,

HLB19, HWS22], which formulates a holistic framework that learns state variables as latent vec-

tors, along with an encoder that abstracts raw observations into state vectors, a world model

that predicts state transitions, and a reward model that implies desired behaviors. The latent

state variables are usually learned with additional auxiliary objectives, such as reconstruction

loss [HLF19, HLB19] and contrastive loss [HWS22], to preserve nontrivial information. Some

works further extend this approach to incorporate hierarchical action spaces [HLF22]. While this

2



Figure 1.1: The scene abstraction framework. Assuming known action abstraction, we acquire a

perception model to abstract observations into abstract states, a world model that captures abstract

state transition, and a goal checker that verifies whether a goal is reached at an abstract state.

approach learns state representations and world models that directly interface with raw observa-

tions and robot actions, it typically works in narrow domains and struggles with generalization.

Moreover, the learned neural network-based world model may suffer from compounded prediction

errors, which limits the planning horizon.

In this dissertation, we aim to address the limitations of existing approaches and enable gener-

alizable long-horizon robot planning. We consider a general scene abstraction framework depicted

in Fig. 1.1. Central to the framework is an abstract state representation that can be perceived from

raw observations with a perception model, and a world model that captures abstract state transi-

tions and enables planning in the abstract state space. Such an abstract state representation should

preserve important task-relevant information such that: (i) it allows checking whether a task goal

is achieved easily, and (ii) it allows a world model to consistently capture abstract state transi-

3



Figure 1.2: Planning with scene abstraction. By converting an initial observation into an abstract

state, scene abstraction allows effective planning in the abstract state space.

tions on robot actions [KKL18b]. We assume that the robot is equipped with a library of primitive

skills tπpθqu each parameterized with discrete object arguments and continuous skill parameters

θ [SCK23]. For example, a skill Pickpaq can be used to pick up an object a, while another skill

Placepb, posq places an object b to position pos. These skills establish effective action abstrac-

tions and can typically be realized through motion planning, imitation learning, or reinforcement

learning. After acquiring the perception model, world model, and goal checker, we can solve com-

plex tasks by first converting the initial observation into an abstract state and then planning skill

sequences in the abstract state space by rolling out with the world model (see Fig. 1.2).

In particular, we advocate for scene graph-based representations [ZM07, AHG19, RGA20] that

abstract observations into objects and their relations. We show an example of scene graph abstrac-

tion in Fig. 1.3. Formally, we define a scene graph as pV,Eq, with the set of nodes V and the set of

directional edgesE. Each node v P V represents an object instance attributed with symbolic object

type c and continuous attributes x that describe additional geometric or semantic information, such

as object pose. Each edge e P E represents an ordered and named symbolic relation among objects,

4



Figure 1.3: An example of scene graph-based state abstraction.

such as on and hold. While Fig. 1.3 only shows binary relations, we allow higher-order relations

that involve more than two objects in the scene graph. Such an abstract state representation enjoys

various advantages: (i) It abstracts out irrelevant information and spans a compact state space,

which allows modeling state transitions with a world model with low complexity. This reduces

the computation load and enables long-horizon planning. (ii) It is object-centric and relational

and aware of individual objects and disentangled relations, allowing compositional generalization

to novel object configurations. We hope that this structural representation unlocks more effective

robot planning.

In this dissertation, we present three parts of work that attempt to fill in the missing pieces in the

scene abstraction framework in Fig. 1.1 to tackle long-horizon robot planning with generalization:

1. A robust perception system to build scene graphs from raw observations. In Chapter 2,

we design a contact graph representation that preserves environment kinematics and object

supporting relations for robot TAMP. We develop a scene reconstruction system to construct

contact graphs of indoor scenes from RGB-D streams. We show that by replacing objects

in the contact graph with (potentially articulated) CAD models, the reconstructed scene be-

comes interactive and affords robot interaction within.
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2. Closed-loop planning frameworks that handle uncertainties and environmental feed-

back using world model knowledge. We exploit the internal world knowledge of language

models and leverage them as planners to perform open-ended reasoning and planning based

on contact graph and other environment feedback. In Chapter 3, we utilize a Vision Lan-

guage Model (VLM) to reason and plan for a series of real-world mobile manipulation tasks

based on multi-modal feedback of contact graph and camera image. In Chapter 4, we explore

using an Large Language Model (LLM) to propose symbolic plans and action parameters for

TAMP, reacting to the contact graph and detailed feedback from a motion planner.

3. Data-efficient approaches to learn object and relational symbols in scene graphs and

world models with minimal human intervention. We propose to jointly learn symbols and

world models from interaction data. In Chapter 5, we present an interaction framework for

robots to learn relational symbols, i.e., predicates, together with world model, i.e., operators,

from interaction data and human language feedback. The learned predicates and operators

are compiled into a PDDL domain file to enable search-based task planning. In Chapter 6,

we study learning symbolic object types in an object cutting task, which involves handling

object fragments without semantic labels. We propose a probabilistic framework to cluster

object shape features into discrete types and induce a grammar-based world model to capture

state transitions. In both works, we show the learned symbolic representation and world

model enable compositional generalization to novel objects and goals.

6



Part I

Perception: Scene Graph Reconstruction

for Robot Interaction

7



CHAPTER 2

Scene Reconstruction with Contact Graph for Robot

Interaction

This chapter rethinks scene reconstruction from an embodied agent’s perspective: While the clas-

sic view focuses on the reconstruction accuracy, our new perspective emphasizes the underlying

functions and constraints of the reconstructed scenes that provide actionable information for robot

interactions. We first design a contact graph representation that hierarchically organizes functional

objects and contexture relations (e.g., supporting, proximal), which preserves kinematic informa-

tion of the environment and supports task and motion planning in the scene. Then we develop

a perception system that reconstructs contact graphs from RGB-D streams, and further replaces

reconstructed objects with potentially articulated CAD models. The system produces functionally

equivalent and interactive scenes that afford finer-grained robot interactions in simulation. The

materials in this chapter have been published in [HZJ21, HZJ22].

2.1 Introduction

Perception of man-made environments and the objects within inevitably leads to the course of

actions [Gib50, Gib66], which naturally form the basis for a human agent to interact with the en-

vironment and accomplish complex tasks. Crucially, what we “see” is much more than pixels and

semantic labels [KR96]. Instead, we further “see” how to interact with them for our task purposes.

Likewise, an embodied AI agent or a robot must possess a similar perceptual capability to achieve

a wide range of task goals in the physical world. However, this critical perspective is mostly

8
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Figure 2.1: Reconstruction of a functionally equivalent, interactive 3D scene. (a) A contact

graph representation emerged from (b) panoptic mapping. After replacing objects with CAD mod-

els, (c) the functionally equivalent, interactive scene enables simulating robot interactions.

unexplored by the prior scene reconstruction literature in computer vision or Simultaneous Lo-

calization and Mapping (SLAM) methods in robotics. Oftentimes, prior art only captures scenes’

occupancy information and are evaluated primarily by reconstruction accuracy in the Euclidean

space. Without incorporating the actionable information—actions a semantic entity could afford

and the associated physical constraints among entities—in a reconstructed scene, a robot can only

perform relatively simple navigation or pick-and-place tasks, hindering its capability in planning

and executing tasks with a long horizon.

Take the scene in Fig. 2.1 as an example, where the robot is tasked to pick up a frozen meal

from the fridge, microwave it, and serve it. The challenges of processing actionable information

are three-fold. First, it needs to recognize the semantics and geometry information of objects

(e.g., this piece of point cloud is a fridge). Although typical semantic mapping and segmentation

techniques can achieve this goal [HLS20, NSI19], a more robust and accurate approach is still

in need to better handle the complexity in clustered real environments given a first-person-view

RGB-D video stream. Second, mere semantics are inadequate to reflect the actions an object

9
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Figure 2.2: System architecture. (A) Per-frame segmentation and global data fusion produce (a) a

3D volumetric panoptic map with fine-grained semantics and geometry, served as the input for (B)

physical common sense reasoning that matches and aligns segmented object meshes with function-

ally equivalent CAD models. Specifically, (b) by geometric similarity, a ranking-based matching

algorithm selects a shortlist of CAD candidates, followed by an optimization-based process that

finds a proper transformation and scaling between CAD candidates and object mesh. A global

physical violation check is applied to finalize CAD replacements to ensure physical plausibility.

(C) This CAD augmented scene can be imported to existing simulators; (c) contact graph encodes

kinematic relations among scene entities and reflects the planning space for a robot.

affords (e.g., whether or how the fridge can be opened). While some existing work attempted to

identify the associations between symbolic actions and objects [MTF15, LLK19] or the underlying

the object’s kinematics [SSB11, CD17, MB19], they are insufficient for robots to execute complex

tasks with multiple steps at the motion level. Third, we quest for a more fundamental question:

How to devise a scene representation with a succinct action specification and task definition to

account for the action opportunities and the accumulated outcome of executed actions. Without

addressing these challenges, a robot can hardly plan for the given task or verify whether its plan is

valid before executing in the physical world.

In this chapter, we propose a new task of reconstructing functionally equivalent and interactive

10



scenes by representing the actionable information of scene entities to support agents’ planning and

simulation. Here we argue that a scene’s functionality is composed by the functions of objects

within the scene. Therefore, the essence of a functionally equivalent scene is to preserve most ob-

jects’ four characteristics with a decreasing propriety: (i) their semantic class and spatial relations

with nearby objects, (ii) their affordance, e.g. what interactions they offer, (iii) similar geometry

in terms of size and shape, and (iv) similar appearance. To address this new task, we devise a

perception system with three unique components; see an illustration in Fig. 2.2:

A) A robust 3D volumetric panoptic mapping module, detailed in Section 2.3, accurately

segments and reconstructs 3D objects and layouts in clustered scenes based on potentially noisy

per-frame segmentation. The term “panoptic,” introduced in [KHG19], refers to jointly segmenting

stuff and things in semantic and instance levels. In this work, we regard objects as things and

layouts as stuff. This module produces a volumetric panoptic map using a novel per-frame panoptic

fusion strategy and a global data fusion procedure performing data association, map integration and

regularization; see Fig. 2.1b and Fig. 2.2a for examples of results.

B) A physical reasoning module, detailed in Section 2.4, replaces the potentially noisy and

incomplete object meshes segmented from the panoptic map with functional (rigid or articulated)

CAD models. This step is achieved by a ranking-based CAD matching and an optimization-based

CAD alignment, which accounts for both geometric and physical constraints. We further introduce

a global physical violation check to ensure that the resulting reconstructed interactive scene is

physically plausible.

C) A contact graph cg representation, detailed in Section 2.2 and illustrated in Fig. 2.3, is

constructed in accordance with the supporting and proximal relations among objects and imposes

physical constraints as well as kinematic information for a robot’s task execution. After retrieving

actionable information annotated in CAD models, this novel representation indicates how an object

can be moved or manipulated (e.g., a table can be moved in 3D space) and how nearby objects

would move correspondingly (e.g., a box on the table would go through a similar transformation if

not slid or tilted). The cg can be interpreted as and converted to a kinematic tree, which is updated

11



Figure 2.3: Contact graph and relations within. Each node denotes an object or a piece of lay-

out, reconstructed and segmented as meshes from the RGB-D stream using the proposed panoptic

mapping module. The directed edges indicate supporting relations—The parent node supports the

child node. (b) The object meshes are replaced by best-fitted CAD models to create a functionally

equivalent and physically plausible reconstructed scene. The directed edges and the constructed

kinematic relations define the action space for robot planning. (c) The supporting relations can

refine (d) the 3D bounding box estimation. Initial: dashed line. Refined: solid line.

following the robot’s actions to support long-horizon task and motion planning. As such, it serves

as an ideal representation that bridges robot perception (scene reconstruction) with robot planning.

2.1.1 Related Work

Modern semantic mapping [NSI19, GFN19, PHN19] and object SLAM [YS19a, MCB18] meth-

ods can retrieve object semantic segmentation, 6 DoF poses, and 3D bounding boxes during re-

construction. Physical cues, such as support and collision [YS19b, WSJ20, SCX20] and robot

proactive actions [XHS15, LXS18], can be further integrated to better estimate and refine the

scene semantics. In parallel, significant efforts have been made for object instance segmentation

12



from point clouds [ZZC19]; e.g., [YZW19] can segment an object with fine-grained part instances,

and [PNH19] jointly perform semantic and instance segmentation. The above work, however,

could only produce incomplete objects (in contrast to full 3D) due to confined viewpoints in the

physical world, which prohibits the complex robot interaction and task execution in the recon-

structed scenes. To alleviate this issue, researchers have recently attempted to align CAD models

to these incomplete objects based on single RGB image [HQZ18, CHY19], single RGB-D im-

age pair [GAG15, ZGL19], and scanned scene meshes [DCS17, ADD19, ADN19] to incorporate

richer scene semantics. Following this trend, our system further aligns (part-based) CAD models

to segmented objects to enable robot manipulation and interaction.

Devising an appropriate scene representation for scene reconstruction remains an open prob-

lem [CCC16]. Existing SLAM and semantic mapping approaches reviewed above oftentimes rep-

resent a reconstructed scene and its entities as sparse landmarks [PJ12, YS19a], surfels [MHD17,

HLS20], volumetric voxels [GFN19, MCB18], or semantic objects [YS19a, MCB18]. Such a

paradigm only provides geo-information of what and where to a robot without any actionable in-

formation for its interactions or planning. Meanwhile, graph-based representations for 3D scene

further identify the hierarchical and relational structure among the scene entities [ZM07, ZZ11,

ZZ13, ZZY15, HQX18, JQZ18, CHY19, AHG19, WDN20, RGA20], providing better structural

and contextual information of the reconstructed scenes. In particular, [RGA20] explicitly incorpo-

rate actionable information to support robot planning, though limited to navigation and traversal

tasks as the representation only models the connectivity between entity nodes. [RGA20] is also

limited in that it is conducted in a simulated environment without accounting for real perception

challenges. By leveraging the advantages of prior arts and addressing the shortcomings, the pro-

posed system takes a real RGB-D stream as input and produces a contact graph representation

based on the identified supporting relations among scene entities. This representation for scene

reconstruction indicates how an entity can be interacted with and what the effect would be after an

interaction, capable of supporting more complex manipulation planning.
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2.1.2 Contributions

To our knowledge, ours is the first work that introduces a comprehensive system that reconstructs

a full 3D scene from an embodied agent’s perspective to provide actionable information for simu-

lating robot interactions. It makes three major contributions:

1. We introduce a novel scene representation using a contact graph, whose structure is determined

by the supporting and proximal relations among scene entities. It imposes physical constraints

for a physically plausible scene and kinematic information that indicates whether and how an

object can be interacted with. This contact graph representation is constructed and maintained

for the scene reconstruction, and converted to a kinematic tree, which reflects the full geometric

state of a scene and updates to keep track of every interaction. As such, our contact graph

representation can facilitate the functionally equivalent scene reconstruction, as well as the

robot learning and planning for complex long-horizon tasks.

2. Leveraging (i) local geometric similarity on the basis of relative sizes and surfaces of each

object, and (ii) global physical constraints regarding the plausibility of stable support and non-

penetration, we align rigid or articulated CAD models to object meshes to generate a physically

plausible, fully interactive scene.

2.2 Contact Graph Representation

We devise a graph-based representation, contact graph cg, to represent a 3D indoor scene and the

relations among scene entities. Formally, a contact graph cg “ ppt, Eq contains (i) a parse tree (pt)

that hierarchically organizes the scene entities [ZM07], and (ii) the proximal relations E among

entities represented by undirected edges; see an example in Fig. 2.3a.
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2.2.1 Representation

Scene Parse Tree pt “ pV, Sq has been used to represent the hierarchical decompositional rela-

tions (i.e., the edge set S) among entities (i.e., the node set V ) in various task domains, including

2D images and 3D scenes [ZM07, ZZ11, ZZ13, QZH18, JQZ18, HQZ18, HQX18, CHY19], videos

and activities [ZZZ15, ZJZ16, QJH20, JCH20], robot manipulations [EGX17, LZS18, EGL19,

LZZ19, ZZZ20], and theory of mind [YLF20]. In this work, we adapt pt to represent supporting

relations among entities instead of their decomposition. A pt is dynamically built and maintained

during the reconstruction based on the identified supporting relations among segmented scene en-

tities; for instance in Fig. 2.3a, the table1 is the parent node of the microwave. Supporting

relation is quintessential in scene understanding as it reflects the omnipresent physical plausibil-

ity; i.e., if the table were moved, the microwave would move together with it. This perspective

of physical common sense goes beyond occupancy information (i.e., the geometric location of an

object); in effect, it further provides actionable information and the potential outcome of actions

for robot interactions and task executions in the scene.

Scene Entity Nodes V “ tvsu Y V L Y V R Y V A include: (i) the scene node vs, serving as

the root of pt, (ii) layout node set V L, including floor, ceiling, and the walls that bound the 3D

scene, (iii) rigid object set V R, wherein each object has no articulated part (e.g., a table), and (iv)

articulated object set V A, wherein each object has articulated parts to be interacted for robot tasks

(e.g., fridge, microwave). Each non-root node vi “ xoi, ci,Mi, Bippi, qi, siq,Πiy encodes a unique

instance label oi, a semantic label ci, a full geometry model Mi (e.g., a triangle mesh or a CAD

model), a 3D bounding box Bi (parameterized by its center position pi, orientation qi, and size si,

all in R3), and a set of surface planes Πi “ tπ
k
i , k “ 1 ¨ ¨ ¨ |Πi|u, where a plane πk

i is represented

by a homogeneous vector rnk
i
T
, dki s

T P R4 in the projective space [HZ03] with unit plane normal

vector nk
i , where any point v P R3 on the plane satisfies a constraint: nk

i
T
¨ v ` dki “ 0; see

Fig. 2.3c for an illustration. Compared to other geometric primitives like generalized cylinders,

planes are advantageous in that they can be extracted robustly from corrupted object meshes and

are effective features in downstream computations.
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Supporting Relations S is the set of directed edges in pt from parent nodes to their child

nodes. Each edge sp,c P S imposes physical common sense between the parent node vp and the

child node vc. These constraints are necessary to ensure that vp supports vc in a physically plausible

fashion:

(1) Geometrical plausibility. The parent node vp should have a plane πs
p “ rn

s
p
T , dsps

T that is

horizontal and is in contact with the bottom surface of the child vc:

Dπs
p P Πp,n

s
p
T
¨ g ď ath,

s.t. Dpvc,πs
pq “ pgc ´ p´d

s
p ` s

g
c{2q “ 0,

(2.1)

where g is a unit vector in the gravity direction, ath “ ´0.9 is a tolerance coefficient (ath “ ´1

for a perfect horizontal plane), and pgc and sgc denote the position and size of the vc’s 3D bounding

box along the gravity direction, respectively.

(2) Sufficient contact area for stable support. Formally,

Apvp, vcq “ Apvp X vcq{Apvcq ě bth, (2.2)

where Apvcq is the bottom surface of the vc’s 3D bounding box, and Apvp X vcq is the area of the

overlapping rectangle containing the mesh vertices of vp near πs
p within vc’s 3D bounding box. We

set threshold bth “ 0.5 for a stable support.

Proximal Relations E introduce links among entities in the pt. It imposes additional con-

straints by modeling spatial relations between two non-supporting but physically nearby objects

v1 and v2: Their meshes should not penetrate with each other, i.e., VolpM1 X M2q “ 0. Note

that we only assign a proximal relation between two objects with overlapping 3D bounding boxes,

i.e., when VolpB1 X B2q ą 0, instead of between every pair of objects to reduce computation

cost. The non-penetration constraints will be applied when selecting physically plausible scene

configurations, as detailed in Section 2.4.4.
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2.2.2 Constructing Contact Graphs

For each scene entity x extracted from the volumetric panoptic map (see details on obtaining

panoptic map in Section 2.3.4), we initialize a scene entity node vx of cg by: (i) acquiring its

ox, cx,Mx from the panoptic map, (ii) estimating a gravity-aligned, minimal 3D bounding box

Bxppx, qx, sxq based on Mx using the method in [MB02], (iii) detecting a set of surface planes Πx

on Mx by iteratively applying RANSAC [TJR13] and removing plane inliers. We further classify

each initialized scene entity node vx as a layout node, a rigid object node, or an articulated object

node based on its semantic class cx.

Given a set of scene entity nodes initialized on-the-fly, we apply a bottom-up process to build

up the structure of cg by estimating supporting relations among the entities. Specifically, for each

node vc, we find a parent node vp with a supporting plane πs
p that best satisfies the constraints

described in Eqs. (2.1) and (2.2). We consider all nodes tviu whose bottom planes are spatially

below the 3D bounding box of vc as vp candidates, and acquire their gravity-opposed surface

planes tπk
i u as potential supporting planes. Then the most likely supporting relation is determined

by maximizing the following score function:

Spvc, vi,π
k
i q “

␣

1´min
“

1, }Dpvc,πk
i q}

‰(

ˆApvi, vcq, (2.3)

where the first term indicates the alignment between the vc’s bottom surface and the supporting

plane, and the second term reflects an effective supporting area, both normalized to r0, 1s. We

may also uncover an invisible supporting plane (e.g., a fully occluded tabletop). When vc is well-

overlapped with vi but vi has no valid supporting plane, the bottom plane of vc with be registered

as a new supporting plane of vi. This advantage is however hard to guarantee at all time due to

the complexity of real-world scenarios. Finally, we construct cg and assign the attributes for each

supporting edge based on the estimated supporting relations.

We further refine the 3D bounding box Bi of each scene entity node vi such that Eq. (2.1)

is strictly satisfied and the cg is feasible. This step also compensates for the error of extracting

geometric features directly from incomplete reconstructed mesh. Fig. 2.3d illustrates an example
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of the refinement process. The reconstructed scene only produces a partial mesh of the chair; its

legs are captured incompletely. Consequently, its 3D bounding box (in dashed line) only encloses

the detected portion of the chair, which is floating in the air. By determining the supporting relation

between the floor and the chair, our system automatically extends the bounding box (in solid line) to

the supporting plane on the floor, thus reconstructed a physically plausible scene. In experiments,

we also quantitatively evaluate this refinement process; see the result in Table 2.4. As the last step

of cg construction, we determine the proximal relations by comparing pairwise 3D bounding boxes

of scene entities.

2.2.3 Interpreting a Contact Graph

As shown in Fig. 2.3a and described above, a cg hierarchically organizes segmented scene entities

with corresponding semantics, meshes, and extracted geometric features. To convey richer ac-

tionable information, we convert the cg to a functionally equivalent cg1 by maintaining the overall

graph structure and replacing each object mesh with a CAD model while preserving its semantic

class, instance label, relative dimension, and surface planes; see Fig. 2.3b.

The functionally equivalent cg1 with CAD models naturally encodes the full (detected) geom-

etry state of the scene. It can be interpreted as a kinematic tree, where nodes represent links, and

edges represent joints connecting two links with assumed joint type, range, and joint value. De-

pending on the semantic class, individual objects may be replaced by articulated CAD models.

For instance, the CAD model for the microwave in Fig. 2.3b consists of two parts, the body and

the door, connected by a revolute joint. The cg1 (the kinematic tree) is an ideal representation to

support robot planning; its joint specifications reflect the possible ways a robot can change envi-

ronment states and naturally define the task goal for a robot to achieve. Although the knowledge

of the object structure is injected when designing the CAD model and is not likely to match with

the real one strictly, it nevertheless provides an approximation for most of the possible actions an

agent can take and what the actions like, sufficient for the agent’s long-term planning.
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2.3 Robust Panoptic Mapping

Robust and accurate mapping of scene entities and segmenting them from clustered environments

are essential for constructing a cg and serving our downstream tasks. We develop a robust 3D

panoptic mapping module to generate object and layout segments in the form of meshes from

RGB-D streams; see the pipeline in Fig. 2.2A. Based on the architecture of Voxblox++ [GFN19],

our mapping module incorporates crucial modifications to improve the robustness of mapping

against noisy and inconsistent segmentation at each frame.

Voxblox++ [GFN19] builds a volumetric object-centric semantic map by (i) generating per-

frame segments in point cloud form by combining RGB-based instance segmentation and depth-

based geometric segmentation, and (ii) associating the segments across different frames and in-

tegrating them into a Truncated Signed Distance Field (TSDF)-based object-level global map.

Each per-frame segment is obtained by assigning a semantic label and an instance label pro-

duced by instance segmentation to a geometric segment produced by geometric segmentation.

Assuming that segments computed using geometry cues are consistent across different frames,

Voxblox++ [GFN19] associates those per-frame segments from different views with global map

segments by their 3D overlapping ratio and integrates them into the global map, while recording

the history of predicted semantic and instance labels for each global map segment.

However, we observe two major limitations of the Voxblox++ [GFN19]. First, the generated

per-frame segments may not preserve all predicted instances and some segments of far-away back-

ground may be labeled as foreground objects, negatively affecting the mapping performance. We

design two extra steps to handle this limitation, as detailed in Section 2.3.1. Second, Voxblox++

separately tracks semantic and instance labels in data association and map integration processes,

making it less coherent when identifying instance and recognizing semantics for the same global

map segment. Our solution is to jointly account for semantic and instance labels throughout the

procedure to build a more consistent global map. We describe our implementation of this strategy

in data association (Section 2.3.2), map integration and regularization (Section 2.3.3), and scene
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entity extraction (Section 2.3.4).

2.3.1 Per-frame Segmentation and Fusion

Following Voxblox++ [GFN19], we perform RGB-based panoptic segmentation and depth-based

geometric segmentation for each frame and then combine the two sets of segments. Given a

RGB-D image as the input, we use an off-the-shelf panoptic segmentation tool provided by De-

tectron2 [WKM19] to produce panoptic segments in RGB domain. A convexity-based depth seg-

mentation approach [FNF18] can segment the corresponding depth image following geometric

boundaries. We denote each predicted 2D panoptic segment as Mi with semantic label ci and

instance label oi (whereas each stuff class has only one instance label), and each 3D geometric

segment (in point cloud) as Gj . Then the goal is to fuse the segmentation from two sources to

generate per-frame point cloud segments tpPk, ck, okqu, which preserve the predicted geometric

and semantic information.

Voxblox++ [GFN19] generates tpPk, ck, okqu by assigning semantic and instance labels to geo-

metric segments tGju greedily based on the 2D overlap between the 2D projection of each Gj and

tMiu on the image coordinate. In practice, this strategy leads to two drawbacks. The first one is

that predicted instances will be ignored if they are not recognized geometrically in depth images.

Fig. 2.2A shows an example, the missing keyboard marked by a green circle in depth segmentation

would be discarded by Voxblox++. We instead split a geometric segment Gj to extract the point

cloud corresponding to a panoptic segment Mi if the 2D projection of Gj fully contains Mi when

aligned. Then we assign semantic and instance labels for all Gj as well as the extracted point

cloud segments as [GFN19] does to get tpPk, ck, okqu. Secondly, an inaccurately segmented object

in RGB image may consist of far-away geometric segments in depth, e.g., the floor marked by a

red circle is regarded as part of the chair in the panoptic segmentation in Fig. 2.2A. Our modifi-

cation addresses this issue by adding an extra step of Euclidean clustering. We compute pairwise

Euclidean distances among all geometric segments that belong to the same object instance, and

applying Euclidean clustering to obtain clusters of segments. Then we retrieve the largest clus-
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ter defined as having the largest total number of points in its segments, and keep the segments

within as part of the instance. The rest of segments are regarded as outliers and assigned to the

background.

The above implementation relies on some defined heuristics that could limit the generalizability

of our panoptic segmentation approach; one direction to overcome this limitation is to introduce

data-driven methods, which is beyond the scope of the work. Nevertheless, the two proposed steps

are useful practice that significantly improves the per-frame segmentation. As an example shown

in Fig. 2.2a, our method (i) correctly segments the keyboard and divides the two monitors when

they are geometrically under-segmented, (ii) obtains geometrically refined panoptic segmentation

of the table, chair, and floor, and (iii) excludes the far-away ground from the segmentation of the

chair.

2.3.2 Data Association

We associate each per-frame point cloud segment to a global 3D segment (or global segment for

short) in the global map, while associating its panoptic prediction with a global panoptic entity.

Note that the global segments and panoptic entities are maintained and updated throughout the en-

tire mapping process. Following Voxblox++ [GFN19], we first draw the correspondence between

per-frame segments and global segments greedily based on their 3D overlaps given the camera

trajectory. We denote that each global segment is indexed with a unique segment label l P L.

For each per-frame segment pPk, ck, okq associated with a global segment li, we aim to find its

associated global instance label pm by looking at the past panoptic predictions of segment li. We

introduce a triple-wise count Φpl, c, pq over a segment label l, a semantic label c, and an instance

label p in the global map to jointly track the semantic and instance predictions. This is inspired by

the observation that the prediction of instances and their semantic labels are inter-dependent in typ-

ical object detection and segmentation algorithms [RHG16, HGD17]. Specifically, pm is assigned

with the instance label p that maximizes the count Φpli, ck, pq ą 0. When
ř

pΦpli, ck, pq “ 0, we
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assign a new global instance label pm “ pnew. We further prevent assigning multiple labels with

the segments that have the same instance labels.

2.3.3 Map Integration and Regularization

We integrate per-frame segments into the 3D volumetric panoptic map by (i) integrating the seg-

ments into a TSDF volume [OTF17] with each TSDF voxel labeled with a global segment label

l, and (ii) recording the associated panoptic entities. For any per-frame segment associated with

pli, ck, pmq, we increase the triple-wise count:

Φpli, ck, pq “ Φpli, ck, pq ` 1. (2.4)

We also introduce a two-stage process to regulate the map by merging global segment labels

and instance labels. Specifically, we first merge global segment labels pairwise if they share voxels

over a certain ratio [GFN19]. Next, we merge two global instance labels p1, p2 P P with the

same semantic class c P C if the duration of association with common segment labels exceeds a

threshold:
ÿ

lPLX

rΦpl, c, p1q ` Φpl, c, p2qs ě mth ¨
ÿ

lPL

rΦpl, c, p1q ` Φpl, c, p2qs , (2.5)

where LX “ tl P L|Φpl, c, p1q ą 0,Φpl, c, p2q ą 0u. This step merges incorrectly split instances,

which can be introduced by the overcautious filtering step when generating per-frame point cloud

segments. We note that this map regularization process can be regarded as a delayed data associa-

tion that corrects potentially wrong association of global segments and instances. It helps improve

the consistency and scalability of the global map; i.e., it reduces the map size.

2.3.4 Panoptic Entities Extraction

After the above mapping process, we extract the panoptic entities (i.e., objects and layouts) from

the global map as triangle meshes. For each global segment l, its semantic class ĉl and global
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Figure 2.4: Examples of articulated CAD models in the database.

instance label p̂l are determined following a greedy strategy:

ĉl “ argmax
cPC

ÿ

pPP

Φpl, c, pq,

p̂l “ argmax
pPP

Φpl, ĉl, pq.

(2.6)

For each global instance label p P P, we group all global segments in the map with labels in the set

Lp “ tl P L|p̂l “ pu and extract the corresponding TSDF volume, from which a mesh is created.

In a nutshell, our system outputs a set of scene entities in the form of triangle meshes with their

instance labels and semantic labels.

2.4 Scene Reconstruction with CAD Replacement

Due to occlusion or limited camera angle, the reconstructed scene and the segment meshes are

oftentimes incomplete and non-interactive before recovering them as full 3D models; Fig. 2.5a and

Fig. 2.6a show some examples of incomplete meshes. We introduce a multi-stage framework to

replace a segmented object mesh with a CAD model through (i) an object-level CAD matching,

(ii) pose alignment of the CAD model, and (iii) a scene-level, global physical violation check; see
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Fig. 2.2B for an illustration of the framework.

2.4.1 CAD Pre-processing

We collect a CAD database consisting of both rigid and articulated CAD models, organized by

semantic classes. The rigid CAD models are obtained from ShapeNetSem [CFG15], whereas ar-

ticulated ones are first assembled and then properly transformed into one model. Each CAD model

is transformed to have its origin and axes aligned with its canonical pose. Fig. 2.2B shows some

instances of CAD models in the database, and Fig. 2.4 highlights some articulated CAD examples

with coordinate frames on the articulated parts. All the objects can be uniformly scaled while

persevering transformation and kinematic information for the subsequent matching and alignment.

Similar to a segmented scene entity x, a CAD model y is parameterized by oy, cy, My, while we

further extract its Byppy, qy, syq, and Πy.

2.4.2 Ranking-based CAD Matching

Take the chair in Fig. 2.2b as an example: Given a segmented object entity x, the algorithm re-

trieves all CAD models in the same semantic category (i.e., chair) from the CAD database to best

fit x’s geometric information. Since the exact orientation of x is unknown at this step yet, we uni-

formly discretize the orientation space into 24 possible orientations. For each rotated CAD model

y that aligned to one of the 24 orientations, the algorithm computes a Matching Error (ME):

Dpx, yq “ ω1 ¨ dspx, yq ` ω2 ¨ dπpx, yq ` ω3 ¨ dbpyq, (2.7)

where ω1 “ ω2 “ 1.0 and ω3 “ 0.2 are the weights of three terms, set empirically. We detail these

terms below.

(1) ds computes the difference of relative 3D bounding boxes sizes between the segmented

mesh and the CAD model:

dspx, yq “

∥∥∥∥ sx
}sx}2

´
sy
}sy}2

∥∥∥∥ . (2.8)
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(2) dπ penalizes the misalignment between their surface planes in terms of plane normal and

relative distance:

dπpx, yq “min
fΠ

ÿ

πiPΠx

„
∥∥∥∥dpTxTπiq

}sx}2
´
dpfΠpπiqq

}sy}2

∥∥∥∥
`1´ npπiq

T
¨ npfΠpπiqq

‰

,

(2.9)

where Tx denotes the homogeneous transformation matrix from the map frame on the ground to

the frame of the bounding box Bx, dp¨q the offset of a plane, np¨q the normal vector of a plane,

and fΠ : Πx Ñ Πy a bijection function denoting the assignment of feature planes between x

and y. Note that fΠ is also constrained to preserve supporting planes as defined in Eq. (2.1). As

computing dπ involves solving an optimal assignment problem, we adopt a variant of the Hungarian

algorithm [JV87] to identify the best fΠ between the set of surfaces extracted from a segmented

object mesh and that from a candidate CAD model. Then we can calculate the misalignment error

term dπpx, yq that candidate CAD introduces.

(3) dbpyq is a bias term that adjusts the overall matching error for less preferable CAD candi-

dates:

dbpyq “ 1` gT ¨ zpyq, (2.10)

where zpyq denotes the up-direction of the CAD model in the oriented CAD frame, and g is a unit

vector along the gravity direction. Generally, we prefer CAD candidates that are upright instead of

leaning aside.

Fig. 2.5b illustrates the matching process. Empirically, we observe that the discarded CAD

candidates of “chair” and “table” due to large Matching Error (ME) are indeed more visually

distinct from the segmented object meshes. Moreover, the “fridge” model with a wrong orientation

leads to a much larger ME and is thus discarded. These results demonstrate that our ranking-based

matching process can select visually more similar CAD models with a roughly correct orientation.

Our system maintains the top 10 orientated CAD candidates with the lowest ME for more accurate

alignment in the next stage.
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Figure 2.5: Examples of matching and aligning CAD candidates to (a) input object meshes. (b)

After selecting the CAD candidates with smallest MEs, (c) a CAD alignment process selects the

best CAD model with a proper transformation based on Alignment Error (AE).

2.4.3 Optimization-based CAD Alignment

The overarching goal of this step to find an accurate transformation (instead of 24 discretized

orientations in the previous step) that aligns a given CAD candidate y to the original object entity

x, achieved by estimating a homogeneous transformation matrix between x and y:

T “

»

–

αR p

0T 1

fi

fl , s.t. min
T

J px, T ˝ yq, (2.11)

where ˝ denotes the transformation of a CAD candidate y, J is an alignment error function, α

is a scaling factor, R “ Rotpz, θq is a rotation matrix that only considers the yaw angle under

the gravity-aligned assumption, and p is a translation. This translation is subject to the following

constraint: pg “ ´ds ` α ¨ sgy{2, as the aligned CAD candidate is supported by a supporting plane

πs “ rns
¨
T , ds¨ s.
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The objective function J can be written in a least squares form and minimized by the Leven-

berg – Marquardt [Mor78] method:

J “ eTb Σbeb ` eTpΣpep, (2.12)

where eb is the 3D bounding box error, ep the plane alignment error, and Σb,Σp the error covariance

matrices of the error terms. Specifically: (i) eb aligns the height of the two 3D bounding boxes

while constraining the ground-aligned rectangle of the transformed By inside that of Bx:

eb “ rApT ˝ yq ´ ApxX T ˝ yq, α ¨ sgy ´ sgxs
T , (2.13)

and (ii) ep aligns all the matched feature planes as:

ep “ r∆π1, ...,∆π|Πx|s
T ,

∆πi “ r´dpπiq ` dpT
´T
¨ fΠpπiqq,

1´ npπiq
T
¨ npT´T

¨ fΠpπiqqs,

(2.14)

where some of the notations are detailed in Section 2.2.

To evaluate how well an aligned CAD candidate fits the object mesh, we compute an AE

defined as the root mean square distance between the object mesh vertices and the closest points

on aligned CAD candidate; Fig. 2.5c shows both qualitative and quantitative results. The CAD

candidate with the smallest AE will be selected, whereas others are potential substitutions if the

selected CADs violate physical constraints, detailed next.

2.4.4 Global Physical Violation Check

Given a shortlist of matched and aligned CAD candidates, we propose a global physical violation

check to finalize the CAD replacement and generate a physically plausible cg1. We first vali-

date supporting relations and object-layout proximal relations for CAD candidates of each object.

Specifically, for an object node vp and its segmented object entity x, we discard an aligned CAD

candidate y if it fails to satisfy Eq. (2.2) with any supporting child vc of vp. We also discard aligned

CAD candidates that violate the proximal constraints with layout entities.
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Figure 2.6: An example of global physical violation check that prunes invalid configurations such

as (c) collision and (d) unstable support, and produces (b) a physically plausible configuration.

After early discard of invalid CAD candidates, we check the inter-object proximal constraints

and jointly select CAD candidates for each object entity. We address this by formulating a con-

straint satisfaction problem; starting with a CAD candidate with the minimum AE for each seg-

mented object, we adopt the min-conflict algorithm [MJP92] to obtain a global solution of CAD

replacement. Finally, as the CAD alignment step cannot guarantee the precise alignment of sup-

porting planes, we adjust the position of CAD models so that Eq. (2.1) is strictly satisfied for each

supporting relation. Then we obtain a finalized cg1 with CAD models.

Fig. 2.6 illustrates a typical example, where specific configurations of CAD replacements lead

to unstable support or colliding geometry. Then the abovementioned global physical violation

check prunes invalid configurations and outputs a physically plausible one.
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Figure 2.7: Convert a contact graph cg1 to a kinematic tree. (a) Given the 3D panoptic segmen-

tation produced by our mapping module, (b) a contact graph is built and converted to (d) Unified

Robot Description Format (URDF) with CAD models, which can be seamlessly (c) imported to

and visualized in ROS Rviz; (e) the corresponding ROS TF describes the world states to robots.

2.4.5 Kinematic Tree Conversion

The finalized cg1 can be readily converted into a kinematic tree to support various robot planning

tasks. In this work, we develop an interface to generate a kinematic tree in the form of Unified

Robot Description Format (URDF), which is commonly used in the robotics community.

A kinematic tree contains rigid bodies (links) as nodes, and joints connecting two bodies as
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edges. Each node in the kinematic tree can be created from either a scene root node, a layout node,

a rigid object node, or a rigid part of an articulated object node in cg1. We preserve the joints within

articulated CAD models in the kinematic tree, but alter the supporting edges in cg1 to either fixed

joints (no translation or rotation allowed) or floating joints (allow 3D translation and 3D rotation

unless is constrained by collision) based on the semantics of the scene entity pairs. For example, a

cup is connected to a table using a floating joint as a robot can freely manipulate it, and a table is

linked to the floor via a fixed joint as it cannot be moved.

We show a detailed example of the kinematic tree conversion process in Fig. 2.7. Based on

the 3D panoptic segmentation and the contact graph, our interface generates a kinematic tree in

URDF, which can be further visualized as ROS TF and rendered in ROS Rviz. In this example,

the fridge is connected to the floor via a fixed joint, and the bottle to the fridge via a floating joint.

A revolute joint connects the fridge body and the fridge door as specified by the CAD model.

2.5 Experiments and Results

2.5.1 Dataset and Implementation

We evaluate our system primarily on the SceneNN dataset [HPN16]; it contains RGB-D sequences

of various room-size indoor scenes and ground-truth scene meshes annotated with instance-level

segmentation. We pick 20 test sequences/scenes that contain diverse object categories to quan-

titative evaluate the robust panoptic mapping module and demonstrate the interactive scene re-

construction. For baselines that require training on 3D segmentation data, we roughly follow the

train/test split in [HTY18] while using the test set we pick.

In our work, we choose the baseline panoptic segmentation model in Detectron2 [WKM19],

pre-trained on the COCO panoptic class [LMB14] for segmentation on RGB. We use [FNF18] as

the baseline geometric segmentation method for depth images. Of note, our system is designed

in a modularized manner so that it is flexible enough to incorporate more powerful models when
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available. For instance, the segmentation module is designed as a server-side service that will be

requested by a client in the perception system when a new image frame arrives and produce a list

of segmented masks with labels in the response. Any segmentation methods being wrapped as a

service following this protocol could be connected to our system.

2.5.2 Robust Panoptic Mapping

We evaluate our robust panoptic mapping module on three aspects: (i) 3D panoptic mapping qual-

ity, (ii) 3D object instance segmentation, and (iii) oriented 3D bounding box estimation. The first

aspect focuses on how well the system reconstructs the scene and segments the objects and layouts

within, whereas the latter two emphasize individual objects. Such a protocol design provides a

holistic evaluation of the fundamental component of the proposed system: The accuracy of object

segmentation and bounding box estimation are crucial for the overall quality of scene reconstruc-

tion when matching and aligning CAD models. An ablation study (noted as “w/o joint fusion”)

is also conducted, where we disable our modifications of jointly processing semantic and instance

labels in data fusion, i.e. the procedure described in Sections 2.3.2 and 2.3.3. This study will not

only better demonstrate how much the introduced modifications influence the overall mapping per-

formance, but also verify the effectiveness of the per-frame segmentation and fusion technique by

comparing the ablated results with those from baselines.

For each sequence used in the experiment, our mapping module processes incoming RGB-D

frames with ground-truth camera poses provided by the dataset. We consider 10 semantic classes

including 2 stuff classes (wall and floor) and 8 most common thing classes (bed, table, chair,

monitor, sofa, bag, cabinet, and fridge) for evaluation.
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3D Panoptic Mapping This experiment evaluates the overall segmentation performance for

panoptic mapping, following the criteria defined in [KHG19] and [NSI19]:

PQ “

ř

pp,gqPTP IoUpp, gq

|TP |
loooooooooomoooooooooon

SQ

ˆ
|TP |

|TP |` 1
2
|FP |` 1

2
|FN |

loooooooooooooomoooooooooooooon

RQ

, (2.15)

where the Segmentation Quality (SQ) is the averaged Intersection over Union (IoU) of predicted

and ground-truth panoptic masks on all matched predictions in the same class, and the Recognition

Quality (RQ) is the F1 score [MFM04] of object recognition for the aforementioned 10 semantic

classes. Panoptic Quality (PQ) is simply the product of SQ and RQ, which better reflects the

overall segmentation results.

We compare our panoptic mapping module with the Voxblox++ [GFN19]. Table 2.1 (white

columns) shows their corresponding PQ, RQ, and SQ of 7 individual SceneNN sequences, av-

eraged on 10 classes. Table 2.2 further tabulates per-class panoptic segmentation results of all

20 sequences. Of note, we compute PQ, RQ, and SQ in category-level for each semantic class

(Table 2.2), and average the PQ, RQ, and SQ of all classes to obtain those values in scene-level

(Table 2.1).

Overall, our panoptic mapping module significantly outperforms the baseline as indicated by

higher PQ for individual sequences and most of the semantic classes. Without applying joint

fusion, our system still performs better than the baseline Voxblox++, showing the efficacy of our

per-frame segmentation. But it is not as good as our full module, which further demonstrates that

our proposed strategies positively contribute to objects and layouts recognition (higher RQ value

indicates higher accuracy) and segmenting them well (higher SQ value). The extra performance

gain our modifications bring is very crucial for the subsequent processes.

3D Instance Segmentation We also evaluate the performance of 3D instance segmentation on

8 thing classes using the mAP@0.5 metric, i.e., the Maximum a Posteriori (MAP) computed us-

ing an Intersection over Union (IoU) with a threshold of 0.5. The evaluation is two-fold. First,

we report the class-averaged results in the progressive mapping manner on 7 individual sequences
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Table 2.1: Quantitative class-averaged results of 3D panoptic segmentation and 3D instance

segmentation on individual sequences in the SceneNN dataset [HPN16]. Note that ProgressFu-

sion [PHN19] accounts for more classes than the other two methods. All values are in percentage.

Ours Voxblox++ [GFN19] ProgressFusion [PHN19]

Panoptic Instance Panoptic Instance Instance

ID PQ SQ RQ mAP PQ SQ RQ mAP mAP

011 45.5 60.4 50.0 58.3 34.3 64.3 40.0 80.8 52.1

030 50.4 55.6 64.5 58.3 23.4 34.7 26 33.5 56.8

061 43.0 52.0 46.3 33.6 25.7 53.1 32.2 38.6 59.1

078 54.7 54.7 62.5 50.0 26.3 52.5 31.7 43.9 34.9

086 27.3 39.6 34.6 40.8 19.4 32.9 25.2 37.6 35.0

096 12.5 21.4 14.6 23.0 7.3 11.9 8.3 14.6 26.5

223 49.5 60.2 63.3 60.0 21.7 40.2 26.7 34.1 40.9

Table 2.2: Per-class 3D panoptic segmentation results in the SceneNN dataset. All values are

in percentage.

all stuff thing wall floor bed table chair monitor sofa bag cabinet fridge

Voxblox++ [GFN19]

PQ 24.5 10.9 27.9 4.0 17.8 18.0 14.4 35.5 48.5 46.0 24.0 7.2 29.5

SQ 77.6 73.7 78.6 69.3 78.0 72.0 71.3 77.0 81.4 82.8 84.0 86.0 73.9

RQ 31.2 14.3 35.4 5.7 22.9 25.0 20.3 46.0 59.6 55.6 28.6 8.3 40.0

Ours (w/o joint fusion)

PQ 27.8 12.6 31.6 5.6 19.5 8.7 26.7 31.7 48.8 45.7 16.1 21.9 53.4

SQ 77.5 71.8 78.9 64 79.6 65.9 73.8 76 89 82.2 72.6 78.5 93.4

RQ 34.2 16.6 38.6 8.7 24.5 13.3 36.1 41.8 54.9 55.6 22.2 27.9 57.1

Ours

PQ 35.4 44.2 33.2 25.2 63.1 11.5 27.4 40.1 65.7 34.3 17.4 20.1 48.7

SQ 80.5 79.3 80.9 73.5 85.0 77.6 76.1 79.1 88.8 80.0 78.3 81.7 85.2

RQ 43.1 54.3 40.3 34.3 74.3 14.8 36.0 50.6 73.9 42.9 22.2 24.6 57.2
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Table 2.3: Per-class 3D instance segmentation results on the SceneNN dataset. The numbers

in bold and numbers in underscore indicate the best and the second best results, respectively. All

values are in percentage.

Input Format bed table chair monitor sofa bag cabinet fridge

MT-PNet [PNH19] Full point cloud 0.0 12.5 42.8 26.5 0.0 0.0 0.0 0.0

MLS-CRF [PNH19] Full point cloud 0.0 27.3 50.9 38.6 0.0 0.0 0.0 0.0

OccuSeg [HZX20] Full point cloud 66.7 50.0 91.3 76.9 50.0 - 5.7 -

Voxblox++ [GFN19] RGB-D stream 39.4 22.3 55.6 63.6 72.4 56.4 8.5 51.6

Ours (w/o joint fusion) RGB-D stream 17.4 40.7 51.3 48.1 82.8 53.2 35.4 94.5

Ours RGB-D stream 27.5 46.6 65.3 69.4 64.3 53.2 43.9 94.5

Table 2.4: Per-class oriented 3D bounding box estimation results (mAP@0.5) on the SceneNN

dataset [HPN16]. All values are in percentage.

all bed table chair monitor sofa bag cabinet fridge

MT-PNet [PNH19] 10.4 25.8 12.8 19.3 25.0 0.0 0.0 0.0 0.0

MLS-CRF [PNH19] 5.7 0.0 12.6 33.0 0.0 0.0 0.0 0.0 0.0

Voxblox++ [GFN19] 24.1 39.4 19.5 31.8 37.0 47.9 0.0 4.0 13.4

Ours (w/o joint fusion) 28.5 17.4 21.4 36.6 29.4 55.8 53.2 14.1 0

Ours 45.3 27.5 54.9 44.6 42.5 53.7 53.2 29.8 56.4

Ours (refined) 47.2 22.9 68.2 49.2 38.7 59.1 53.2 29.8 56.4

compared with Voxblox++ [GFN19] and ProgressFusion [PHN19], another online semantic map-

ping framework; see the grey columns in Table 2.1. Our approach performs better than Voxblox++

on almost all the sequences. Note that ProgressFusion accounts for all NYUDv2 [SHK12] classes

available in the dataset, and we evaluate the performance only on the 8 thing classes for our method

and Voxblox++. While it’s possible to re-train our panoptic segmentation module to incorporate
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more classes, we believe the current experiment is sufficient to demonstrate the advantage of our

panoptic mapping module without defeating its purpose of leveraging pre-trained perception mod-

els.

Second, in Table 2.3, we study the per-class mAP@0.5 of our approach compared with the

baseline Voxblox++ [GFN19] and two learning-based works [PNH19, HZX20] that directly seg-

ment 3D instances from the full point cloud of scenes instead of continual RGB-D data stream. As

the input formats are different, the results are not directly comparable. They nevertheless provide a

better sense about how well our approach performs. We re-train [PNH19] and report the results of

its two variants on our test set, and adopt the results reported in [HZX20]. Overall, our method per-

forms significantly better than Voxblox++ in most classes, and our variant without joint fusion can

still slightly outperform Voxblox++. OccuSeg appears to perform the best for object classes that

are less likely to be severely occluded in the dataset, while our approach poses a unique advantage

of handling partially-visibly objects such as cabinets and fridges usually attached to a wall.

Oriented 3D Bounding Box Estimation We further evaluate the accuracy of oriented (gravity-

aligned) 3D bounding boxes of object instances, which serve as essential geometric cues for phys-

ical reasoning and CAD replacement. Similarly, the mAP@0.5 metric is adopted to evaluate the

oriented 3D bounding box estimation on the 8 thing classes. Table 2.4 tabulates results using the

baseline method [GFN19], two variants described in [PNH19], our approach, and our approach

with supporting-based refinement (detailed in Section 2.2.2). Note that since there is no native

support for evaluating oriented 3D bounding boxes in [PNH19], we re-train the models on the Sce-

neNN dataset for this experiment. The results indicates that our approach predicts their oriented

3D bounding boxes accurately for most object classes compared with the baselines. The refine-

ment process further improves the performance by completing the partially-observed object boxes.

Looking at the two variants in [PNH19], while MLS-CRF introduces an extra post-processing step

using a Conditional Random Field (CRF) on top of the MT-PNet, its 3D bounding box estima-

tion accuracy drops as extra points from the background are merged into the foreground objects
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Table 2.5: Graph Editing Distance (GED) of four scenes between annotated cggt and inferred

contact graph from our panoptic mapping results cgours (Fig. 2.9b) and from ground-truth

maps cgmap (Fig. 2.9a). Note that editing a wrong support will need two operations, removing an

edge and adding an edge, resulting a graph distance of 2.

Scene
Total nodes Total distance Wrong support Missing detection Wrong detection

cggt v.s. cgours cgmap cgours cgmap cgours cgmap cgours cgmap

225 20 12 4 1 2 5 0 5 0

231 29 9 4 0 2 2 0 7 0

249 11 7 0 3 0 1 0 0 0

322 17 5 2 1 1 2 0 1 0

in CRF regularization. An interesting disparity between [PNH19]’s instance segmentation results

(Table 2.3) and its bounding box estimation (Table 2.4) appears—having a zero-score in one place

and turning to positive in another. This is because a subtle change in segmenting instances may

lead to a large error in estimated bounding boxes.

In summary, the above three quantitative evaluations demonstrate that our robust panoptic map-

ping module well suited for (i) recognizing and segmenting scene entities progressively during

mapping and (ii) estimating objects’ 3D oriented bounding boxes in complex and clustered real

indoor environments. The former capability is essential for selecting a proper CAD model to re-

place a segmented object, and the latter determines the size and scale of that CAD. The ablation

study highlights the performance gain introduced by our data fusion procedure, demonstrating the

success of jointly dealing with semantic and instance predictions during mapping.

2.5.3 Inferred Contact Graph

Having extracted object and layout meshes from the volumetric panoptic map, a contact graph cg

can be built based on inferred supporting relations before using it to bridge the actual scene to a
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Figure 2.8: Comparison between ground-truth and inferred contact graph. (a) The annotated

cggt v.s. the cgours inferred from our panoptic mapping results for scene 322. (b)(c)(d) highlight a

missing detection (cabinet 266 is not detected), a wrong detection (cabinet 405 is detected as oven

399), and a wrong support (cabinet 32 is supported by wall), respectively.

virtual one. It is worthwhile to evaluate the structure of an inferred cg as it collectively reveals the

performance of object recognition, supporting relation estimation, and overall results. To conduct

this evaluation, we annotate the contact graphs of four scenes in the SceneNN dataset [HPN16]

based on their ground-truth segmentation shown in Fig. 2.9a. Then, a Graph Editing Distance

(GED) [ZS89] metric is applied to evaluate the distance between an annotated contact graph and

an inferred graph from a segmented map. Specifically, GED measures the dissimilarity of two

graph by how many graph editing operations (we consider five operations, i.e., insertion, removal

of a node or an edge, and substitution of a node ID) are needed to convert one graph to the other.

The results are reported in Table 2.5, where we compare the GED between (grey columns)

the annotated contact graph cggt and that inferred from our mapping results cgours, and between

(white columns) cggt and that inferred from ground-truth segmentation map cgmap. The Total nodes

column indicates the size of cggt, i.e. the number of scene entities a scene has. The Total distance

column shows the total editing operations required to covert cgours or cgmap to cggt, indicating the

overall quality of the inferred cg. A qualitative illustration between two graphs is also shown in

Fig. 2.8a. Moreover, the GED can be broken down to three types of errors appeared in an inferred
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graph: (i) Wrong support (or wrong edge): a supporting relation is not assigned correctly, i.e. the

parent node of an entity should be another; (ii) Missing detection (or missed node): an entity is not

detected or segmented and thus not included in the graph; (iii) Wrong detection (or extra node):

an entity that is not supposed to appear in the graph, and the reasons for having extra nodes could

be having a wrong semantic label, one entity is segmented as multiple ones, or both. Fig. 2.8bcd

depict some examples of error in scene 322.

In Table 2.5, we observe that our system mainly suffers from the clustered scene 225 and

scene 231 with lots of small objects, indicated by the high costs of Missing and Wrong detection.

On the other hand, the relatively low cost caused by Wrong support indicates that our criteria of

determining supporting relations is effective.

2.5.4 Interactive Scene Reconstruction

Fig. 2.9 showcases the qualitative results for reconstructing functionally equivalent and interac-

tive scenes. Given a volumetric panoptic map (Fig. 2.9b) and a constructed contact graph, our

system reconstructs a high-quality, functionally equivalent, interactive scene by replacing incom-

plete meshes with CAD models and perform physical reasoning on the contact graph, as shown in

Fig. 2.9c. Nevertheless, we find that our system performs poorly or fails under two circumstances:

(i) The incomplete object mesh has misguided or no feature planes, resulting in the misalignment

of the CAD model; (ii) The object is not supported by its bottom face (e.g., cabinets on the wall),

resulting in the incorrectly reconstructed scene due to the wrong estimate of the supporting rela-

tions. Section 2.6 provides a more in-depth discussion of the system limitations.

By converting the scene contact graph into a kinematic tree in URDF, we are able to seam-

lessly import the reconstructed functionally equivalent and interactive scene into various existing

simulators. Practically, we also specify physical proprieties (such as link mass, collision geometry,

joint friction) in URDF to facilitate more sophisticated simulations. We demonstrate the usage of

our reconstructed interactive scenes with several examples: (i) Fig. 2.9d shows the reconstructed
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(a) Ground-truth segmentation for scene 225, 231, 249, and 322 [HPN16]

(b) Segmentation results produced by the proposed panoptic mapping

(c) Scene reconstruction with functional and actionable CAD objects

(d) Robot interaction with functionally equivalent reconstructed scenes

(e) VR interaction with functionally equivalent reconstructed scenes

Figure 2.9: Qualitative results of four reconstructed scenes with actionable CAD models. Both

robots and human users can virtually enter the reconstructed interactive scenes for Task and Motion

Planning (TAMP) and VR applications.
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Approach the fridge Open the fridge Pick up the object Close the fridge Open the microwave

Figure 2.10: Robot executing a mobile manipulation task with multiple steps: microwaving an

item (indicated by the red ball) by first retrieving it from the fridge.

scenes in the ROS environment, which subsequently connects the reconstructed scenes and robot

Task and Motion Planning (TAMP). Detailed planning schemes and implementations could be

found in the authors’ parallel work [JZW21b, JZJ21]. (ii) Fig. 2.9e demonstrates that the recon-

structed scenes can be loaded into the VR environment [XLZ19] for interactions with both virtual

agents and human users, which opens a new avenue for future studies. (iii) Fig. 2.10 presents

keyframes of a robot executing a long-horizon mobile manipulation task that involves interactions

with articulated objects.

2.5.5 Reconstruction of Physical Scenes

To further evaluate our system under a real-world setting, we conduct experiments to reconstruct

physical scenes using a handheld Kinect v2 sensor. We obtain accurate camera poses with a state-

of-the-art feature-based SLAM system [MT17] based on RGB-D streams. The resulting 3D volu-

metric panoptic map, reconstructed functionally equivalent and interactive scene, and an example

of robot interaction are shown in Figs. 2.11a to 2.11c, respectively. This result reveals a huge

potential of applying the proposed system to facilitate robot task execution in the physical world.

We further analyze scene reconstruction results using three typical cases that highlight the

advantages and failure conditions. In case 1 (Fig. 2.11d), the table is occluded by the chair and thus

is identified as two instances floating in the air. These two tables are determined as floor-supported,

and their 3D bounding boxes are further refined on the basis of the supporting relations. The system

eventually outputs two separate tables in the reconstructed interactive scene, where their poses

aligned with the oriented 3D bounding boxes of the partial meshes. Case 2 (Fig. 2.11e) shows
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(a) Volumetric panoptic map (b) Reconstructed scene (c) Robot interaction

(d) Case 1 (e) Case 2 (f) Case 3

Figure 2.11: Reconstructing a physical scene with a handheld RGB-D sensor. (a) The panoptic

segmentation and the overall mapping. (b) The reconstructed scene with CAD models replacing the

segmented objects, which supports (c) a robot to simulate its Task and Motion Planning (TAMP).

(d–f) Qualitative results of segmentation and reconstruction. Our system recognizes most of the

objects and properly replaces them with CAD models that are similar to those objects in the phys-

ical scene; see Case 2 and 3. A common problem is due to occlusion, which causes inaccurate

detection, e.g., one desk is recognized as two as it is occluded by the chair; see case 1 and 3.
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an example of a better reconstructed workspace. Given the incompletely segmented table and

chair point cloud, our system can correctly estimate the supporting relations and their orientations,

replace each mesh with a similar CAD model, and finally produce a functionally equivalent and

physically plausible workspace, although the dimension of the table is not ideal as part of the point

cloud behind the chair is not detected and segmented correctly. Case 3 (Fig. 2.11f) provides a

more challenging example. The fridge and microwave are segmented and replaced by articulated

CAD models, whereas the chair is not successfully detected and is removed from the reconstructed

scene. Similar to case 1, the table is identified and replaced with two instances. To avoid mesh

penetration, the proximal constraints incorporated by the cg helps the CAD replacement process

to select a rounded table on the left side, but it is not a satisfactory replacement due to the large

discrepancy in shapes.

2.6 Discussions

2.6.1 Scene Functionality

Most computer vision tasks focus on devising new methodologies and representations that are

beneficial within the scope of computer vision. However, this work seeks to address a new task

of building a representational system with the emphasis of facilitating robot activities. The core

of the system is to represent the scene functionality, one of the key common senses governing

our understanding of a scene [ZGF20]. This goal is achieved by associating high-level cues from

object semantics (e.g., whether they can be moved, opened, or can support other interactions) and

low-level cues (i.e., replacing the object meshes with CAD models, whose underlying kinematic

indicate how exactly they interact). Additional object attributes, affordance, or task-dependent

information can be annotated to CAD models to depict the scenes more comprehensively. A sub-

sequent, interesting open question is how to quantify the divergence between the actual scene and

the reconstructed one with CAD replacements.
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2.6.2 Scene Representation

The contact graph cg produced by the proposed system is a holistic, but approximate scene rep-

resentation. By itself is indeed insufficient for robot task executions where more precious local

scene representations are needed. Although the cg does not seem directly beneficial, its impor-

tance is two-fold when considering a robot designed to operate over a long period of time. Firstly,

the representation maintains a global belief of the scene, helps a robot to anticipate the effects of

(sequence of) actions, and incorporates the actual action effects back to the cg. This is essential for

the robot to forward search for a task plan over a long horizon [Kae20]. Secondly, given the variety

of tasks a robot may anticipate, our cg can serve as a carrier for those necessary local represen-

tations that can be annotated, trained beforehand or build online with proper perception modules.

Otherwise, different task-driven representation are standalone, lacking proper organizations.

2.6.3 Task and Motion Planning (TAMP)

Existing TAMP frameworks are oftentimes too brittle to handle a large variety of the environ-

ment for interactions. [KL11] and [SFR14] propose new TAMP frameworks, making planning

long-horizon manipulation tasks possible. Still, the framework focuses on pick-and-place tasks

with carefully defined environmental constraints, making it difficult for complex indoor manipu-

lation tasks. [GPL20] devise a framework for a complex problem, which requires interaction with

articulated objects. Similarly, this work is still limited to carefully designed environments with

limited variety in the setup. A key factor to this problem is the lack of simulation environments

that support various interactive actions (e.g., door opening, object picking) and semantic relations

among objects. Crucially, it could be time-consuming to generate these environments manually. In

comparison, our framework can automatically generate interactive environments from real sensory

data of challenging physical world in the wild and demonstrate a certain capability to support more

complex TAMP study in the future.
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2.6.4 Embodied AI

Embodied AI researches focus on learning a policy, mostly in simulations, that can ultimately be

applied to real-world applications. Therefore, a significant amount of work is to develop simulation

platforms to support learning. Our perspective echoes the motivation of task-oriented vision—

designing a proper vision system that better suits a given task [IH92]. Specifically, our work allows

the agent to acquire a policy specific to the given environment for the given task by capturing and

representing the actionable information in the environment from the agent’s view. Thus, our work

goes beyond panoptic segmentation and 3D reconstruction.

2.6.5 Supporting Relations

Inferred supporting relations define the structure of contact graph. While this work mainly con-

cerns about stable support, i.e. those satisfying Eq. (2.3), there are several other supporting con-

figurations, such as an object is hanging on wall and supporting from behind, is supported by two

adjacent tables, is placed on floor and tilted against another object etc. These types of supports

are not explicitly modeled and may not be well handled. Our system can nevertheless reveal their

supporting relations in part. For instances, the blue bottle in Fig. 2.1c is regarded as supported by

the wall because no valid supporting parent is identified but it is very close to the wall. Whereas

in Fig. 2.8d, the upper cabinet that is supported by the wall (and possible the ceiling as well) is

wrongly considered as supported by the lower cabinet. In other cases where an object is supported

by multiple entities simultaneously, only one entity would be identify as a supporting parent based

on overlapping area defined in Eq. (2.2). For a tilted object on floor, only the floor would be iden-

tified as the supporting object. Hanging objects that are supported from above, are not handled

in the present work either. Apparently, our strategy cannot fully address the above less common

supporting relations reliably at all time, but more specific spatial relations can be modeled and

incorporated into the contact graph representation as well to extend the system’s capability.

44



2.6.6 Other Limitations

The system’s performance heavily relies on 3D panoptic segmentation of scene entities and the

CAD replacement of object meshes. Currently, our robust panoptic mapping module utilizes open-

sourced software to generate panoptic segmentation on RGB frames. While its development is

beyond this work’s scope, new models and methods are emerging in the fast-paced community, and

our system is designed to easily incorporate newer methods to improve the mapping performance

further and support subsequent processes by reducing error propagated in each stage.

Our CAD replacement algorithm matches and aligns CAD models to incomplete meshes based

on simple geometric features, i.e., 3D bounding boxes and surface planes, which are potentially

fragile when the meshes are noisy and incomplete. In the future, we may integrate deep learning-

based methods [ADN19, PTL18] for more robust and accurate CAD replacement.

The articulated CAD models are unlikely to match the structure of real objects exactly. One

potential solution is to detect and segment object parts and estimate the kinematics to assemble

fine-grained CAD models. The PartNet dataset [MZC19] provides an initial direction to start with.

There are various actionable information and many other information an object should afford

for a robot to sufficiently interact with it depending on different task specifications, while this work

only studies a few, e.g. inferred supporting relations and annotated kinematics information. One

central question remains unanswered is how to balance manual efforts and algorithmic efforts so

that an intelligent robot can better excel in ever-changing environment.

2.7 Conclusion

This chapter presents a contact graph representation to bridge raw perception and robot TAMP, as

well as a new task of reconstructing functionally equivalent and interactive scenes to simulate robot

autonomy. We develop a perception system to demonstrates this new perspective. Contrasting to

the classic view of scene reconstruction that focuses on the geo-information, our system captures
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semantics and associated actionable information in scene entities by (i) a novel panoptic mapping

module that reconstructs individuals objects and layouts, (ii) a geometric and physical reasoning

module to replace the incomplete objects meshes with part-based interactive CAD models, and (iii)

a contact graph representation that facilitates physically plausible scene reconstruction, and reflects

action opportunities and action outcomes in terms of kinematic information. In experiments, we

quantitatively demonstrate that our system can produce high-quality panoptic segmentation, and

qualitatively showcase various reconstructed scenes with functional CAD model replacements that

support fine-grained interactions in ROS and VR environments.
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Part II

Planning: Closed-loop Planning with

Language Models and Environment

Feedback
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CHAPTER 3

Closed-Loop Mobile Manipulation with Vision Language Model

Autonomous robot navigation and manipulation in open environments require reasoning and re-

planning with closed-loop feedback. In this chapter, we present COME-robot, the first closed-loop

framework utilizing the GPT-4V vision-language foundation model for open-ended reasoning and

adaptive planning in real-world scenarios. We meticulously construct a library of action primi-

tives for robot exploration, navigation, and manipulation, serving as callable execution modules

for GPT-4V in task planning. On top of these modules, GPT-4V serves as the brain that can ac-

complish multimodal reasoning, generate action policy with code, verify the task progress, and

provide feedback for replanning. Such design enables COME-robot to (i) actively perceive the

environments, (ii) perform situated reasoning, and (iii) recover from failures. The materials in this

chapter have been published as a preprint [ZZH24].

3.1 Introduction

Developing autonomous robots capable of navigating and manipulating objects in unknown, real-

world environments remains a long-standing challenge [NO00, PJT02, GCB23, LOP24]. To ef-

fectively operate in long-horizon tasks, robotic systems must meet several critical requirements:

(i) the ability to actively gather multi-modal environment feedback using on-board sensors, (ii) the

capability to robustly execute primitive actions such as exploration, navigation, and object manip-

ulation, and (iii) the capacity for reasoning to interpret feedback from both environment perception

and action execution, and adjust action plans accordingly. Such a closed-loop system plays a vital

role in enabling robots to address issues of partial observability and recover from perception and
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execution failures inherent in complex, unstructured real-world environments. In the literature,

traditional closed-loop replanning frameworks [GPL20, CFK22] typically depend on predefined

symbolic logic for reasoning and replanning. These frameworks rely on specialized perception

models to process raw observations (e.g., images or point clouds) into a form suitable for symbolic

reasoning. Consequently, they encounter difficulties when confronted with open-ended, real-world

scenarios that demand adaptation to unforeseen circumstances.

Recent advances in large foundation models offer promising avenues for augmenting robot

intelligence [FTT23]. Large language models (LLMs) have demonstrated remarkable abilities

to elucidate failures, propose corrections, and devise new plans based on textual environmen-

tal feedback [HXX23, YZY22, LBS23]. Moreover, they can generate computer programs (i.e.,

code) with modularized perception and execution API function calls to interface robots’ task ex-

ecution [LHX23, SBM23]. Vision-language models (VLMs) further extend these capabilities by

enabling open-vocabulary (i.e., free-form instructions or descriptions of scenes and objects) under-

standing of raw visual observations from robot sensors [RKH21, DLL22]. Previous works have

successfully applied LLMs and VLMs in robot manipulation tasks within tabletop settings, guided

by free-form natural language instructions [HLZ23, SZY24]. However, the applicability of this

approach to more complex mobile manipulation setups, which entail exploration and navigation

beyond fixed-base manipulation, remains largely unexplored.

In this work, we address Open-Vocabulary Mobile Manipulation (OVMM) [YRY23], which

features multi-step mobile manipulation guided by free-form natural language instructions in open

environments with only on-board sensing capabilities. Existing OVMM systems, such as OK-

robot [LOP24], rely on open-loop integration of cutting-edge perception and robotic modules,

which often struggle to adapt to unexpected scenarios or execution failures. To address this lim-

itation, we propose COME-robot (Closed-loop Open-vocabulary MobilE Manipulation), the first

closed-loop framework that integrates GPT-4V [Ope23b], a state-of-the-art VLM, with a library of

robust robotic primitive actions for real-robot OVMM. The closed-loop capability of COME-robot

hinges on two pivotal designs: (i) Actions as APIs, where we implement the primitive actions of
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Put fruits in the plate.

Vision

Language

Model

GPT-4V

Reason:
I will grasp the banana and confirm 

the success using visual observation.

Code:
if robot.grasp(banana):
robot.report_observation()

else:
print(‘Grasp failed.’)

Reason: 
The image does not show the 

banana in the gripper, I will try to 

grasp it again.

Code:
if robot.grasp(banana):...

Robot Execution

Feedback:
  object map

  image

 execution result wrist camera

Figure 3.1: A brief overview of COME-robot’s workflow. Given a task instruction, COME-robot

employs GPT-4V for reasoning and generates a code-based plan. Through feedback obtained from

the robot’s execution and interaction with the environment, it iteratively updates the subsequent

plan or recovers from failures, ultimately accomplishing the given task.

the robot as Python API functions, yielding multi-modal feedback such as observed images and

reconstructed object maps upon execution. (ii) GPT-4V as brain, where we exploit the advanced

multi-modal reasoning capabilities of GPT-4V to interpret language instructions, environment ob-

servations, and execution feedback, to generate Python code to command the robot by invoking

action API functions. The overall workflow of COME-robot is shown in Fig. 3.1. Taking a lan-

guage task specification from a human user, COME-robot operates by (i) querying GPT-4V for

reasoning and code generation that reflects the robots’ plan, (ii) executing the code on the real

robot to obtain feedback, which is provided to GPT-4V in the next query. This iterative process

continues until the goal is achieved or the program is manually terminated due to severe failures.

50



Reason: 
I need to perform a global 

exploration to identify the table.

Code:
global_object_map = 
robot.explore_global())

Reason: 
I find two tables. I will navigate to 

the first table to start a local search for 

cups and plate. 

Code:
  robot.navigate_to(table_0) 
  table_object_map = 
    robot.explore_local()

Reason: 
The table contains two cups. I will 

observe both cups to confirm which 

is suitable. 

Code:
  robot.report_observation(cup_0)
  robot.report_observation(cup_1)

Reason: 
The image shows that cup_0 

is not empty and cup_1 is 

empty and suitable for the task.

Code:
  robot.grasp(cup_1) 
  robot.report_observation('stay')

Reason: 
The image shows the cup is not in the 

robot's gripper. I will attempt to grasp 

cup_1 again.

Code:
  robot.grasp(cup_1) 
  robot.report_observation('stay')

Reason: This image shows the 

cup is in the robot's gripper. I will 

place the cup into the plate.

Code:
  robot.place(plate_0)
  robot.report_observation('stay')

Vision

Language

Model
GPT-4V

Situated Commonsense Reasoning

Recover From Failure

Active Perception 

Global object map Local object map

Empty cup_1 Try grasping

Grasp failed

Place succeeded

I am thirsty. Put a cup into the 

plate, I will pour water into it.

Full cup_0

Grasp succeeded

Figure 3.2: The unique properties of COME-robot: Active Perception, Situated Commonsense

Reasoning, and Recover from Failure. Actions to be executed as reasoned by GPT-4V are high-

lighted in blue, identified failures are highlighted in red, and outcomes verified after observation

or recovery are highlighted in green.

We conduct comprehensive real-robot experiments in a real-world bedroom to evaluate the ef-

fectiveness of COME-robot. We design a suite of 8 challenging OVMM tasks, with half of which

entail manipulation around a table, while the other half further poses the challenge of navigating in

the environment. We show with quantitative results that COME-robot significantly outperforms a

powerful LLM-based baseline robot system [LHX23] in all tasks. We further conduct detailed case

studies for experiments encountering various types of failures to provide a holistic view of COME-

robot’s ability to recover from failures. Our observations highlight that the closed-loop mechanism

enables unique properties of COME-robot, as also shown in Fig. 3.2 to (i) actively perceive the en-

vironment with GPT-4V calling the perception APIs; (ii) perform situated commonsense reason-

ing, where GPT-4V interprets ambiguous instructions by grounding them in observed situations

using its extensive commonsense knowledge; and (iii) recover from failures, where GPT-4V uti-

lizes environment and execution feedback to detect, reason and rectify execution errors, ensuring
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robust robot manipulation performance.

In summary, the contribution of this work is three-fold:

1. We present COME-robot, the first closed-loop OVMM framework that leverages GPT-4V

for open-ended reasoning and replanning in real-world environments.

2. We devise an comprehensive library of action primitives for robot exploration, navigation,

and manipulation, all implemented as Python API functions to provide multi-modal feedback

for closed-loop OVMM.

3. We conduct comprehensive experiments on a real robot, showcasing state-of-the-art quanti-

tative results alongside illustrative qualitative examples. In addition, we offer extensive dis-

cussions on emergent robot behaviors, such as failure recovery, exhibited by COME-robot.

3.2 Related Work

Mobile manipulation has long posed challenges in robotics research [Kha99], requiring the in-

tegration of both mobile base navigation and robot arm manipulation. Such an integration in-

troduces new complexities. First, navigating in an extended workspace demands a sophisticated

understanding of large-scale scenes for task execution, achieved through active, task-driven explo-

ration and mapping from partial observations. Previous work has explored frontier-based [Yam97]

and data-driven [ZMK17, CGK23] methods for scene exploration and object navigation. Efforts

have also been made to build hierarchical scene representations [RGA20, GKM23, HZJ21, HZJ22]

(e.g., 3D scene graphs) for multi-resolution scene understanding. Second, many mobile manipu-

lation tasks inherently involve planning long sequences of navigation and manipulation actions.

This problem is addressed through hierarchical planning methods like task and motion plan-

ning [WMR10, JZW21a] or hierarchical reinforcement learning [GCS22, YCT23]. In this work,

we address these challenges by developing a library of robust primitive actions for exploration,

navigation, and pick-and-place, all following state-of-the-art practices.
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Online replanning with closed-loop feedback is essential for long-term autonomous robot

operation in the real world [KHD18]. Traditional robot replanning methods have focused on real-

time collision-free motion planning in dynamic and uncertain environments [KL05, BPM11].In

the context of long-horizon task and motion planning (TAMP), replanning has also been studied

to recover from failure and handle partial observation [GPL20, CFK22]. However, these methods

rely on hand-crafted modules and are less applicable to complex real-world settings. Recently,

pre-trained foundation models [FTT23] have significantly enhanced robots’ abilities to understand

raw observations (e.g., texts and images) and perform high-level reasoning and planning. Large

Language Models (LLMs) have been particularly useful for reasoning and replanning based on

textualized environment feedback [HXX23, YZY22, WCC23, WXJ23, DZA23, LBS23]. Vision

Language Models (VLMs) [DLL22] further integrate visual understanding into the reasoning and

planning loop [GWZ23, HLZ23, SZY24]. Specifically, VILA [HLZ23] and REPLAN [SZY24]

leverage GPT-4V [Ope23b] to perform robot reasoning and closed-loop replanning directly on raw

visual observations. In line with these works, we utilize GPT-4V for closed-loop reasoning and

planning in mobile manipulation tasks that involve exploration, navigation, and manipulation.

Capabilities beyond reasoning and planning are enabled by LLMs and VLMs for robot

agents. LLMs can generate computer programs to obtain observations and execute tasks by query-

ing perception and action APIs [LHX23, SBM23, WXJ23]. Code-as-Policies [LHX23] presents

a signature approach that commands a robot with LLM-generated Python code. On the other

hand, VLMs endow robots with open-vocabulary visual understanding, allowing them to interpret

and respond to free-form human language instructions. HomeRobot [YRY23] introduces the first

benchmark for OVMM, where a mobile manipulator performs pick-and-place tasks with open-

vocabulary language instructions. OK-Robot [LOP24] proposes a baseline system integrating

state-of-the-art VLMs and robotic modules for the OVMM benchmark. In this work, we present

COME-robot, which addresses OVMM tasks in a closed-loop manner by leveraging GPT-4V to

iteratively generate code that invokes a library of primitive action APIs.
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3.3 Method

In this section, we introduce COME-robot that tackles the challenging OVMM task. The OVMM

takes an open-vocabulary language instruction from a human user as input, which specifies a mo-

bile manipulation task, e.g., “place all fruits on the plate”. The robot is tasked to execute a se-

quence of exploration, navigation, and manipulation actions to achieve the task goal, given no

prior knowledge of the environment. The COME-robot features implementing robot primitive ac-

tions as Python APIs, and using GPT-4V as the brain to perform reasoning and generate code to

command the robot. We elaborate on our design of the action APIs in Section 3.3.1, describe our

prompt engineering to utilize GPT-4V for reasoning and replanning in Section 3.3.2, and present

the implementation details of API functions in Section 3.3.3.

3.3.1 Primitive Actions as APIs

We identify a library of primitive actions necessary for COME-robot to solve the OVMM task in

the closed loop. We categorize them into two types of APIs and detail our design choice in the

following. The full list of API functions can be found in Table 3.1.

Perception APIs Given the unknown and uncertain environment, COME-robot requires low-

level primitives to explore the environment and draw visual observations for closed-loop operation.

Specifically, robot navigation necessitates constructing a global object map of large furnitures (e.g.,

tables and beds). On the other hand, a local object map with finer granularity (e.g., small objects

on a tabletop) is required for manipulation. We design perception APIs explore global and

explore local for constructing the global and local object map, respectively. Collectively, the

global and local object maps exhibit a two-level contact graph. To provide GPT-4V with visual

feedback, we introduce an additional API report observation that captures a 2D image

using the robot’s wrist camera. This API function is vital for checking the progress and outcome

of action execution and enabling open-ended scene understanding using GPT-4V.
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Function Input Return Type Description

explore local N/A ObjectMap Explores the local area in front and identifies objects. Return an object

map containing the objects.

explore global N/A ObjectMap The robot moves around and constructs a global, room-level map of the

environment for navigation planning. Return an object map.

report observation SceneObject | string 2D Image Takes a photograph and returns it. If given a SceneObject instance,

the photo is captured from a close-up position targeting the specified

object. If given a string, ‘‘rest’’ leads the robot to capture the im-

age from its resting pose, and ‘‘stay’’ leads it to take the picture at

its current state.

navigate SceneObject Boolean Moves the robot to a specified object and facing towards it. Return

success/failure.

grasp SceneObject Boolean Executes an attempt to grasp the specified object. Return success/fail-

ure.

place SceneObject | location Boolean Places a grasped object at a specified location, or near an object. Return

success/failure.

Table 3.1: Primitive action APIs for COME-robot’s interaction with the environment. All

returned values serve as feedback.

Execution APIs OVMM tasks require COME-robot to navigate and manipulate with respect

to target locations or specific objects in the environment. For navigation, we define an API

navigate that drives the robot to approach an object that appears in the global object map.

In terms of manipulation, we design a grasp API that commands the robot to grasp an object

based on observed object point cloud, and a place API that allows the robot to place the object

in hand on a receptacle or at a certain location.

3.3.2 Closed-loop Reasoning and Replanning with GPT-4V

Central to COME-robot’s ability lies closed-loop reasoning and replanning with GPT-4V. Our in-

tention is to have GT4-V to interpret feedback from primitive action APIs, and devise strategies

and decisions with commonsense reasoning. To unleash the power of GPT-4V in reasoning, mak-

ing high-level plans, and generating codes, we design the system prompt that incorporates the

following aspects to elicit desired behaviors in real-robot planning:
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‚ Role: A high-level description of the robot’s role.

‚ Feedback Handling: Feedback handling guidelines for user queries and outputs of primitive

action APIs.

‚ Robot Setup: Details about the robot’s hardware capabilities, such as its arm, mobile base,

and sensor suite.

‚ APIs: Detailed documentation of primitive action APIs.

‚ Response Guidelines: Instructions on Chain-of-Thought [WWS22] reasoning and JSON for-

mat specifications.

‚ Tips: Useful tips for producing robust robot behaviors.

We provide a system prompt snapshot in Fig. 3.3. The system prompt and user query are fed

into GPT-4V, which generates Python code executed by the robot. Feedback from API execution

is then relayed back to GPT-4V, informing its future reasoning and planning processes.

3.3.3 Implementation Details

Real-robot Setup We use a mobile manipulator that comprises four major components: (i) A

four-wheeled differential drive mobile base equipped with an RGB-D camera, a Lidar and an IMU

unit; (ii) A 7-DoF Kinova Gen3 robot arm with a Robotiq parallel gripper and a RGB-D camera

on its wrist; (iii) An onboard PC that directly interfaces the sensors and controls the robot, and

communicates with a desktop server to send sensor observations and receive commands; and (iii)

A remote desktop server that runs GPT-4V and other heavy perception modules. We use the

ROS [QCG09] framework for communication between the robot and computers.

Global Exploration and Navigation We use the RTAB-Map [LM19] package to fuse IMU

odometry, Lidar data, and RGB-D streams for localization. For the explore global API,

we follow [CGK23] to incrementally build a 2D obstacle map from RGB-D streams and adopt a

frontier-based strategy to propose the next target location to visit. Then we employ a Fast March-

ing Method (FMM)-based path planner [Set96] to navigate the mobile base to the target location.
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Task : You operate as a brain for a robot that is specialized in planning 

within a novel scene. You will first receive a request from a user, then you 

use available APIs of the robot to perceive the environment, plan actions, 

execute actions and get feedback. You will change your plans if 

necessary.

Feedback handling:

Each step, the Python code generated by you will be executed on the 

robot, with the outputs returned back to you, including those from print 

and raised exceptions.

Robot setup:

The robot has a movable base and… [details about robot hardware setup]

Documentation:

class Robot, a robot that can move around and interact with the 

environment. Methods:

• explore_global(self, )->ObjectMap:… [details]

• [more methods]

class ObjectMap, an object map that contains some objects. Methods:

• __getitem__(self, key:str)->SceneObject:… [details and an 

example]

• [SceneObject documentation]

Response guidelines: You should always think step by step, first give 

some high-level thoughts and reason what to do next, then generate the 

concrete Python code. You should always response in JSON format, with 

a “reason" field and a "code" field. [more details about JSON format and 

an example]

Tips:

• You can use the robot's vision system to verify the grasping and 

placing results.

• Only navigate when necessary. If already positioned suitably, 

navigation is not needed.

• Perform tasks in a step-by-step manner, verifying each step before 

continuing to the next.

• [some more tips…]

Figure 3.3: A snapshot of COME-robot’s system prompt.

As the robot explores the environment, we use Grounded SAM [RLZ24] to detect and segment

objects on RGB images, and obtain per-frame object point clouds by cropping depth images with

object masks. The per-frame results are then fused into a global object map following Concept-

Graphs [GKM23], which maintains the category, instance id and point cloud of objects. Note that

we only keep large furniture objects in the global object map. For the navigate API for object

navigation, we first calculate a target pose that faces the target object and within a short distance,

and then navigate the robot to the target pose leveraging the same path planner as in exploration.

Local Exploration and Manipulation For the explore local API that explores a local re-

gion for manipulation, RGB-D images are captured from the robot arm’s wrist camera to construct
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a local object map. Specifically, we select three camera poses based on manual-defined heuristics

to ensure comprehensive coverage of objects in observations within the robot arm’s workspace.

Then we construct the local object map similar to explore global.

For API grasp, we retrieve the target object’s point cloud from the local object map and

generate 6-DoF grasp poses using Contact-GraspNet [SMT21]. After filtering to retain up to 20

high-confidence candidates, ideally favoring top-down grasps, we use the RRT [LaV98]-based

motion planner from MoveIt [CSC14] to calculate a collision-free trajectory for the robot arm to

reach these poses, treating other object point clouds as obstacles. The grasping process repeats

for all candidate poses until a complete grasp action (i.e., move to the grasp pose and close the

gripper) is planned and executed, starting with the highest-confidence candidate. If no reachable

grasp pose is found, the API call returns “False”.

For the place API, we similarly plan collision-free trajectories to position the gripper 15cm

above the target, then execute the trajectory and release the gripper to place the object. The API

function returns “False” if no feasible trajectory exists.

3.4 Experiments

This section provides details on experiment task settings and the implementation details of base-

line methods. We demonstrate the effectiveness of our system through thorough comparisons with

baseline methods and highlight the significance of our design by systematically analyzing execu-

tion trials of COME-robot on these tasks.

3.4.1 Experimental Setup

Baseline We consider a recent method, Code as Policies (CaP) [LHX23] as our baseline. CaP

leverages LLM to generate code to command robots in complex tasks. As the original CaP method

assumes a fully observable tabletop environment, we augment CaP with our designed exploration
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1. Explore global

Global object map

2. Navigate to table_0
3. Explore local

Table_0 object map

4. Navigate to table_1
5. Explore local

Table_1 object map

6. Navigate to table_0
7. Grasp cup_0

Grasp succeeded

8. Navigate to table_1
9. Place cup_0

Place succeeded

Put the cups on the same table.

Figure 3.4: A step-by-step visualization of COME-robot’s task execution in GATHER CUPS.

With the query ”Put the cups on the same table.” The robot builds a global object map and locates

two tables. It then navigates to table 0, explores locally and identifies one cup on the table.

It continues to inspect table 1 and identifies two cups. With situated commonsense reasoning,

COME-robot decides to move the cup from table 0 to table 1 as it is more efficient. It

thus navigates back to table 0, grasps the cup, and verifies the success of grasp with the wrist

camera. Finally, it navigates back to table 1 to place the cup down. With the placement once

again verified, the task is considered complete.

and navigation API functions to build a strong baseline for comparison, referred as CaP*.

Task Design We meticulously design 8 challenging tasks with various horizons in a real-world

room to evaluate COME-robot’s capability for OVMM. The room contains diverse furniture, in-

cluding several tables, a bed, a sofa, and various objects. We mainly consider two experimental

settings, the tabletop (4 tasks) and the mobile manipulation (4 tasks). We design tasks that aim to

verify different capabilities of the COME-robot framework. Specifically, the tabletop tasks are:

A1 PLACE FRUIT: The table is initialized with several fruits, a plate, and other items. The task

is to put fruits onto the plate with clear instructions to test the robots’ basic execution and

instruction-following ability.

A2 FRUIT AMONG CUPS: The table is initialized with a fruit, several cups, and other items. The
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Table 3.2: Quantitative results on tabletop manipulation.

Tabletop Task
CaP* COME-robot

SR SSR SR SSR RR

PLACE FRUIT 5 / 10 30 / 40 7 / 10 34 / 40 4 / 7

FRUIT AMONG CUPS 6 / 10 13 / 20 8 / 10 18 / 20 1 / 3

PREPARE CUP 4 / 10 12 / 20 8 / 10 17 / 20 7 / 10

TIDY TABLE 4 / 10 43 / 58 7 / 10 54 / 60 5 / 9

Total 19 / 40 98 / 138 30/40 123 / 140 17 / 29

Table 3.3: Quantitative results on mobile manipulation.

Mobile Task
CaP* COME-robot

SR SSR SR SSR RR

MOVE TOY 2 / 5 13 / 20 3 / 5 17 / 20 2 / 4

TRANSFER ALL TOYS 1 / 5 24 / 42 2 / 5 30 / 42 1 / 4

MOVE CUP AND TOY 1 / 5 17 / 30 4 / 5 27 / 30 4 / 5

GATHER CUPS 2 / 5 22 / 33 4 / 5 27 / 30 7 / 10

Total 6 / 20 76 / 125 13/20 101 / 122 14 / 23

task is to place a fruit in the middle of all cups with instructions like “Put the fruit in the

middle of the cups”. This tests robots’ understanding of spatial concepts in instructions.

A3 PREPARE CUP: The table is initialized with an empty cup, a used cup, a plate, and other

items. The task is to pick up the clean, unused cup and put it onto the plate. We provide

indirect instructions like “Put a cup onto the plate, I will pour water into it.”, requiring

commonsense reasoning for identifying the targeting object.

A4 TIDY TABLE: The table is cluttered with storage boxes and objects (e.g., fruits, toys, etc.).

The task is to place these objects into their corresponding storage boxes. We provide no

direct instructions to robots, using instructions like ”Can you help me tidy up the table?”, to

further test robots’ concept understanding and reasoning capability with free-form instruc-
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tions.

For mobile manipulation, we consider the following tasks:

B1 MOVE TOY: The task is to move the toy from the table to the bed with clear instructions.

This task tests the basic mobile manipulation capabilities of robots.

B2 TRANSFER ALL TOYS: The task is to move scattered toys from different tables to the sofa,

with instructions like “Place all toys on tables to the sofa.”. This targets robots’ object search

capability in the environment.

B3 MOVE CUP AND TOY: The task is to find a cup with specific visual attributes, place it on a

plate, and move a toy to the bed, following instructions like “Put the blue cup on the plate

and doll to the bed”. This evaluates robots’ ability in sequential tasks and visual reasoning.

B4 GATHER CUPS: The task is to get all water cups from multiple tables and place them on a

single table without specifying which table, i.e., using instructions like ”Put cups onto the

same table.”. This assesses robots’ ability to make efficient plans when selecting the target

table.

Experiment Setting For tabletop tasks, we conduct 10 experiment trials for each task. We ad-

just the scene configuration between trials by introducing variations of objects’ types, their ar-

rangements, and quantities on the table. For mobile manipulation tasks, we conduct 5 trials for

each task. Similarly, we rearrange the location of objects and furniture in the room as variations

between trials.

Metrics We report the success rate (SR) of goal completion and the step-wise success rate (SSR)

of action execution for all models. Each execution API call is considered one step (i.e., excluding

perception APIs like report observation), and we count the number of successful ones over

all calls for SSR. Different planned paths and methods may require varying numbers of steps for the

same task, especially considering COME-robot’s replanning mechanism. Additionally, to unveil

COME-robot’s ability to recover from failure, we report the recovery rate (RR) of COME-robot by
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tallying all replanned executions and the successful ones within these executions.

3.4.2 Experimental Results and Analyses

As shown in Table 3.2 and Table 3.3, COME-robot achieves consistent and significant improve-

ments in goal completion for both the tabletop and the mobile manipulation setting. Specifically,

COME-robot achieves an overall success rate of 75% (30/40) on the tabletop setting, outperform-

ing the CaP* baseline (47.5%, 19/40) by 27.5%. Similarly, under the mobile manipulation setting,

COME-robot achieves a success rate of 65%, significantly outperforming baseline (30%, 6/20) by

35%.

Additionally, the ability of COME-robot to recover from failures significantly enhances its

stepwise success rate by identifying the failure step and replanning, demonstrating a higher perfor-

mance of 123{140 compared to CaP*’s 98{138 and 101{122 compared to 76{125. This improve-

ment also contributes to the higher overall success rate. These quantitative results validate that

COME-robot, equipped with the ability to replan using closed-loop feedback, effectively identifies

and corrects errors encountered during task execution. This capability facilitates task execution

and goal achievements in challenging real-world tasks.

3.4.3 Failure Recovery

As shown in Table 3.2 and Table 3.3, we demonstrate the effectiveness of failure recovery from

both the number of recovering steps and also the high recovery rate. In this section, we provide

analysis to systematically categorize COME-robot’s failure cases and highlight how COME-robot

recovers from such failures utilizing the VLM feedback.

Perceptual Failures Perception failures are primarily caused by errors in detection during explo-

ration. COME-robot can use report observation function for close inspection and utilize

visual feedback for solving the missed or wrong detection problem. For missed detections, COME-
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Reason:

The image does not show the doll, which means that the 

doll have not been grasped despite the robot's indication of a 

successful action. I need to grasp the doll again.

Code:
success_grasp_again = 
robot.grasp(object_map['doll_0’])
robot.report_observation('stay')

Reason:

The image shows the doll in the robot's gripper.

Code: …

Case 2: grasp failed         Task: “Transfer All Toys”

Reason:

Now, I will locate and grasp the doll on the table. And confirm 

that the doll is securely grasped by using the wrist camera.

Code:
success_grasp = robot.grasp(object_map['doll_0’])
robot.report_observation('stay')

Reason:

The image provided shows a plush toy next to a can, 

so cup_0 is not suitable for the task. I'll need to observe the 

next cup, cup_1.

Code:

robot.report_observation(object_map['cup_1'])

Reason:

cup_1 appears to be a suitable cup for the task as it has a 

form that can hold water.

Code:

grasp_success = robot.grasp(object_map['cup_1'])

Reason:

I see there are multiple cups available. I need to assess 

which cup is most suitable for being placed onto the plate. I‘ll 

start by observing cup_0.

Code:
robot.report_observation(object_map['cup_0'])

Case 3: wrong detection    Task: “Prepare Cup”

Reason:

There are two cups on table_0. I need to 

verify whether these are all the cups that 

needed to be put on the same table.

Code:
updated_object_map = 
robot.explore_local()

ObjectMap with 

objects=['apple_0', 

'bottle_0', 'bottle_1', 

'cup_0', 'cup_1', 'cup_2', 

'floor_0', 'toy_0', 'wall_0']

Reason:

The updated object map of table_0 shows 

three cups, which means all cups are now 

on the same table as requested. 

Code:
print(“All cups on the same table”)
robot.stop()

Case 1: visual feedback error

Task: “Gather Cups”

Reason:

I need to confirm the placement of all cups on 

the table together.

Code:
robot.report_observation('rest') 

Figure 3.5: Three examples of recovery from failures. Case 1 illustrates recovery from a visual

feedback error with the VLM by updating the object map. Case 2 demonstrates recovering from

a failed grasp attempt by trying again. Case 3 describes a scenario of false positive detection, and

recover through visual feedback.

robot directs perception modules to rebuild the local object scene graph and re-detect the missing

object, achieving a 100% recover rate as shown in Table 3.4. For wrong detections, COME-robot

utilizes GPT-4V to conduct a verification step for detected objects. For example, in case 3 of

Fig. 3.5, when the explore local function detects multiple candidate cups, COME-robot ver-

ifies each cup with image observations and finds that cup 0 is actually a doll that is wrongly

detected as cup and not related to the task. Though this verification process can help mitigate the

problem, it is still error-prone to incorrect predictions, leaving 6 falsely detected objects after ver-

ification, with three of which lead to task failure as shown in Table 3.4. Other errors stem from
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mistakes in visual analysis, which are due to blurred images or issues inherent to the VLM. For

example, in case 1 of Fig. 3.5, when GPT-4V attempts to confirm the success of the placement,

it only sees two cups because the image does not completely capture the cups, leading to a mis-

judgment. However, COME-robot corrects this error by conducting another local exploration and

discovering that there are actually three cups on the table.

Execution Failures COME-robot’s GPT-4V-based planning method may sometimes generate

incorrect plans or invalid API calls, such as attempting to place an object without prior grasp-

ing or calling the navigation function with an object name instead of an object. For these errors,

COME-robot verifies the generated plan and code, and triggers exceptions during execution, pro-

viding explicit feedback indicating the missing step or wrong function call for GPT-4V to rectify

the plan. For actual execution, the primary source of failed execution is caused by unsuccessful

grasps. Grasping failures are primarily due to the impractical position the robot navigates to that

significantly constrains its space for manipulation (e.g. corner of the table, or close to the wall).

COME-robot can use the same feedback mechanism to identify and rectify execution missteps,

such as failed grasps or placements, by executing corrective actions based on visual confirmations,

thereby enhancing task success rates despite initial setbacks. The case 2 of Fig. 3.5 shows an

example of recovering from grasp failure.

3.4.4 Discussions

Is commonsense reasoning using LLMs enough for mobile manipulation with open-ended

instructions? LLMs possess robust commonsense reasoning capabilities that allow robots to

perform various generalized tasks based on high-level and abstract human instructions (e.g., in

the TIDY TABLE (A4) task). However, we argue that completing these tasks requires both the

commonsense knowledge provided by LLMs and the ability to interactively explore and update

scene information. Taking the PREPARE CUP (A3) task as an example, when multiple cups are

detected, the robot must identify the most suitable one for the task. Crafting a plan solely based on
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Table 3.4: Statistics of COME-robot’s failure and recovery. We use “DF.” to denote failures

that lead to direct failure of the task, “R-RR.” to denote the recovery rate of the re-planning steps.

Failure Type Reason DF. R-RR. Total

Perception

false positive 3 5/5 5/8

missed detection 1 1/1 1/2

visual feedback error 2 1/1 1/3

Execution

API call error 3 5/5 5/8

grasp failed 1 17/23 17/24

place failed 3 3/3 3/6

navigation failed 1 0/0 0/1

Total 14 31/38 31/52

the instruction becomes challenging without understanding the status of all cups.

Why is replanning with closed-loop feedback important in robot manipulation tasks? Com-

pared to tabletop tasks, mobile manipulation involves longer sequences, requiring the robot to first

explore the room and then shuttle between furniture to complete cross-furniture manipulation tasks.

As shown in Table 3.3, mobile manipulation tasks require a significantly higher average execution

step. Meanwhile, the long execution sequence unveils the effectiveness of replanning in COME-

robot compared to CaP* as long sequences increase the likelihood of execution failure (e.g., in

MOVE CUP AND TOY (B2) and TIDY TABLE (A4) tasks). Replanning with closed-loop feedback

enables COME-robot to detect failures and attempt to recover from them, thereby increasing the

success rate of actions and reducing the likelihood of task failure due to intermediate setbacks.

65



3.5 Conclusion

In this chapter, we present COME-robot, a novel closed-loop framework that integrates the vision-

language model GPT-4V with a library of robust robotic primitives to enable open-vocabulary

mobile manipulation in real-world environments. Through extensive real-robot experimental anal-

yses, we showcase COME-robot’s superior ability to interpret open-ended instructions, actively

acquire and reason over multi-modal feedback, and adaptively recover from perception and ex-

ecution failures. Leveraging GPT-4V’s powerful reasoning capabilities, COME-robot achieves

unprecedented flexibility and intelligence in handling challenging OVMM tasks. Our framework

represents a significant step towards developing autonomous robots capable of operating effec-

tively in complex, unstructured real-world settings. We believe the insights gained from this work

will inspire future research on integrating foundation models with robotic systems to advance robot

intelligence and autonomy.
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CHAPTER 4

Task and Motion Planning with Large Language Model and

Motion Failure Reasoning

Conventional TAMP approaches rely on manually designed planning domains and interfaces that

connect symbolic task planning with continuous motion generation. These domain-specific and

labor-intensive modules are limited in addressing emerging tasks in real-world settings. This chap-

ter presents LLM3, a novel LLM-based TAMP framework featuring a domain-independent inter-

face. Specifically, we leverage the internal world knowledge and powerful reasoning and planning

capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous ac-

tion parameters for motion planning. Crucially, LLM3 incorporates motion planning feedback

through prompting, allowing the LLM to iteratively refine its proposals by reasoning about motion

failure. The materials in this chapter have been published in [WHJ24].

4.1 Introduction

Sequential manipulation planning is an essential capability for robots to autonomously perform

diverse tasks in complex environments. Executable motions must be effectively generated for

robots to achieve long-term task objectives, requiring efficient planning algorithms for responsive

operation and reasoning capabilities to anticipate environmental changes. Task and Motion Plan-

ning (TAMP) formulates a methodology that hierarchically decomposes planning into two stages:

the high-level symbolic task planning stage reasons over long-horizon abstract action sequences,

and the low-level continuous motion planning stage computes feasible trajectories subject to ge-
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Figure 4.1: The proposed LLM3 framework. (a) Traditional TAMP frameworks rely on manu-

ally designed, domain-specific modules for interfacing between task and motion planners. (b) In

contrast, we leverage a pre-trained LLM to iteratively propose refined plans and action parameters,

by reasoning on motion planning failures.

ometric constraints. In recent years, TAMP has enabled significant advances [DKC16, TAS18,

GCH21, JZW21b, JNZ22, SLJ23]. However, a persistent challenge remains to properly interface

between the task planner and the motion planner to efficiently solve TAMP, i.e., generating action

sequences that satisfy both symbolic task goals and continuous motion constraints.

Traditional TAMP approaches often rely on manually designed modules to interface between

symbolic and continuous domains, as depicted in Fig. 4.1(a). These modules serve two key roles.

First, they act as action parameter samplers that generate real-valued parameters for symbolic

actions. These parameters provide numerical goals to the motion planner. Selecting appropriate

action parameters, e.g., in the object rearrangement task, a suitable 2D target location px, yq for

action Place(object), is crucial for the motion feasibility of actions and the efficiency of

TAMP. While previous works propose to learn heuristic parameter samplers from data [CHG16,

WGK18], they are tailored to specific domains and lack generalizability. Second, these modules
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implement mechanisms to incorporate motion failure into the task planner to generate improved

action plans, e.g., by updating the symbolic state [SFR14]. However, they usually require domain-

specific design by human experts. In summary, these modules are domain-specific and require

substantial manual effort to design, which hinders generalizability to novel environments.

Recent Large Language Models (LLMs) [ZZL23] pre-trained on web-scale text data have

demonstrated emergent capabilities in reasoning [KGR22] and planning [HAP22] when provided

with in-context prompts [BMR20, DLD22]. Pre-trained LLMs can perform task planning [HAP22,

ABB22, HXX23], generate continuous parameters [MXF23], and reason on environment feed-

back [YZY22, HXX23]. Our intuition is that pre-trained LLMs could provide a general and

domain-independent approach to interfacing between symbolic and continuous domains for TAMP,

eliminating the need to design domain-specific modules manually.

In this work, we present LLM3 (Large Language Model-based Task and Motion Planning

with Motion Failure Reasoning), an LLM-powered TAMP framework that reasons over motion

planning feedback for effective planningFig. 4.1(b). Specifically, LLM3 employs a pre-trained

LLM to (i) propose symbolic action sequences towards the task goal, (ii) generate continuous

action parameters that lead to feasible motion, and (iii) reason over motion planning feedback to

iteratively refine the proposed symbolic actions and parameters. This framework offers several

key advantages over traditional TAMP approaches. First, it does not require manually designed

symbolic domain files for task planning, instead leveraging the knowledge encoded in the LLM to

propose symbolic actions. Second, it uses the LLM as a domain-independent informed parameter

sampler to generate continuous action parameters, which benefits from the implicit heuristics of the

LLM [MXF23]. Third, its reasoning over motion planning feedback is independent of the specific

choice of planner. Crucially, we categorize and organize the possible motion planning feedback to

feature two major motion failure modes, i.e., collision and unreachability. Such motion planning

feedback allows LLM3 to refine the generated action sequences and parameters in a more targeted

way, and find a feasible TAMP solution with fewer planning iterations and motion planning queries.

We evaluate LLM3 in a simulated tabletop box-packing task, which poses challenges in rea-
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soning about potential failure modes, collisions, and unreachable areas, throughout the sequential

manipulation planning problem. Quantitative results demonstrate the effectiveness of LLM3, with

ablation studies verifying: (i) reasoning over motion feedback significantly improves success rates

and planning efficiency, and (ii) the LLM-based parameter sampler is substantially more sample

efficient than a random sampler. Furthermore, we conduct real-robot experiments to show that

LLM3 can be applied to real-world problems.

In summary, our contributions are threefold:

1. We introduce LLM3, the first TAMP framework that holistically employs a pre-trained LLM

as a domain-independent task planner, informed action parameter sampler, and motion fail-

ure reasoner.

2. We categorize and organize the feedback from the motion planner, which enables LLM3 to

efficiently identify and resolve planner-independent motion failures through targeted refine-

ment of actions and parameters.

3. We conduct comprehensive experiments in both the simulation and the real world to demon-

strate the effectiveness of LLM3 in solving TAMP problems.

4.2 Related Work

Task and Motion Planning Conventional TAMP approaches employ a high-level task plan-

ner to generate symbolic action sequences and a low-level motion planner to generate motion

trajectories. The task planner requires pre-designed symbolic planning domains represented in

formatted representations, such as PDDL. Significant efforts have been made to develop man-

ually engineered modules that interface the task planner and motion planner, such as incorpo-

rating motion-level constraints into task planning [GLK20, JZW21b], making approximations at

the motion level [HN11, Tou15], and designing specialized communication modules [SFR14].

However, manually defining task planning domains and interface modules to fully capture real-
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world complexity is impractical. Furthermore, as the action space grows, searching for geo-

metrically feasible symbolic action sequences becomes computationally challenging without ef-

fective heuristics [GLK20]. Recent work has explored data-driven heuristics to improve TAMP

efficiency [CHG16, WDS19, NMB21, YGL23], but these domain-specific heuristics lack gener-

alizability across domains. In this work, we employ a pre-trained LLM as both the task planner

and the interface between task and motion. We expect that semantic knowledge in the LLM can

provide domain-independent heuristics for TAMP.

Robot Planning with LLMs Recent Large Language Models (LLMs) [ZZL23] encode vast

world knowledge and exhibit the emergent capability for planning [HAP22, LPP22] through few-

shot or zero-shot in-context learning [BMR20, DLD22, DLD22]. Pre-trained LLMs have been ap-

plied for task planning of robots or embodied agents [ABB22, HXX23, LHX23, SBM23, WCC23,

WXJ23, YZY22, HZZ24]. Notably, Inner Monologue [HXX23] takes in textualized environment

feedback and generate actions to execute, while ReAct [YZY22] further advanced this closed-

loop approach by integrating reasoning and acting. Voyager [WXJ23] and DEPS [WCC23] focus

on developing open-ended embodied agents that iteratively replan based on execution failure in

PC games. Furthermore, LLMs have been applied to solve TAMP problems [DZP23, CAZ23].

Specifically, LLM-GROP [DZP23] employs a pre-trained LLM to instantiate symbolic goals and

continuous object placements for semantic object rearrangement, which are then fed into a clas-

sical TAMP planner. AutoTAMP [CAZ23] leverages an LLM to translate natural language task

specifications into a formal language processable by off-the-shelf TAMP algorithms. Our usage of

LLMs in TAMP is inspired by many of the above works; however, the major difference is that we

leverage the LLM as the core component of our TAMP framework.
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Figure 4.2: System diagram of the proposed LLM3 framework. (a) We show an example of

utilizing a pre-trained LLM for reasoning and generating action sequences. (b) The feasibility of

the proposed action sequence is verified by rollout with a motion planner and transition function T .

The motion planning feedback is saved into a trace and provided to the LLM in the next iteration.

4.3 Preliminaries and Problem Setting

4.3.1 Task and Motion Planning

A TAMP problem is a tuple ă O,S,A, T , s0, g ą, where:

‚ O is the set of objects in the environment.

‚ S is the state space factorized with respect to objects O, where a state s P S comprises the

state of all objects, e.g., their 3D positions and dimensions.

‚ A is the set of primitive actions with low-level execution handled by a motion planner. A

primitive action a P A is parameterized by object variables ō and continuous parameters

θ, which can be instantiated with specific objects o “ po1, ..., omq and parameter values to
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produce a ground action a, e.g., Placepblock, r0.1, 0.2sq. The parameters θ provide the

goal for the motion planner; we say a is feasible when the motion planner has a solution,

i.e., a collision-free trajectory τ . We denote a feasible action by apτq.

‚ T is the state transition function that outputs the next state st`1 after executing an action

atpτtq at a state st, i.e., st`1 “ T pst, atpτtqq. We assume that T pst, atpτtqqq can be evaluated

with a black-box simulator.

‚ s0 is the initial state that follows s0 P S.

‚ g is the goal function g : S Ñ t0, 1u that checks whether the task goal is achieved at state s.

The objective of TAMP is to derive a sequence of feasible actions pa0pτ0q, a1pτ2q, ..., aT pτT qq, such

that gpsT`1q “ 1 and st`1 “ T pst, atpτtqqq, where t “ 0, 1, ..., T .

A common strategy to solve the TAMP problem is known as “search-then-sample” [SFR14,

DKC16, GCH21], which alternates between generating symbolic action sequences through back-

tracking search and sampling the continuous action parameters until a feasible plan is found to

reach the goal. However, a naive search-then-sample task and motion planner is usually inefficient,

as verifying the action feasibility requires invoking the computationally expensive motion planning

process. To mitigate this complexity, researchers have crafted symbolic domains [SFR14, SCK23]

to prune infeasible symbolic action sequences, or learned heuristic samplers to sample action pa-

rameters [WGK18, FGE23] that lead to feasible plans. Here, we leverage pre-trained LLMs as

both a task planner and a heuristic sampler to generate symbolic action sequences and action pa-

rameters.

4.3.2 Planning as Sequence Prediction

Recently, planning problems have been formulated as sequence prediction to avoid the computa-

tionally expensive search process [DHT20, JLU23]. In particular, pre-trained LLMs are employed

to generate discrete actions [HAP22, LPP22] and continuous parameters [LHX23] in an auto-
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regressive manner when provided in-context prompts [DLD22]. Formally, with textualized initial

state s0, goal g and additional context c, we have:

a0:T “ argmax pLMpa0:T |s0, g, cq

“ argmax pLMpa0|, s0, g, cq
T
ź

t“1

pLMpat|a0:t´1, s0, g, cq,
(4.1)

where pLM is the generative probability of a pre-trained language model. Following this scheme,

we use pre-trained LLMs to propose sequences of symbolic actions and continuous action parame-

ters based on the initial state, goal, and trace of motion planning feedback. As the proposed action

sequences may be infeasible at the motion level, we validate the feasibility of proposed action se-

quences with a motion planner, the state transition function T and the goal g. We iterate these two

steps until a feasible plan is found.

4.4 Method

We introduce LLM3, a TAMP framework that leverages a pre-trained LLM to reason on motion

failure and generate iteratively refined symbolic actions and continuous action parameters. The

system diagram of LLM3 is shown in Fig. 4.2. Below, we elaborate on the overall framework,

reasoning and planning with the pre-trained LLM, and the designed motion planning feedback.

4.4.1 The LLM3 Framework

As shown in Algorithm Algorithm 1 and Figure 4.2, the LLM3 framework iterates between: (i)

reasoning on previous motion failure and generating an action sequence (i.e., symbolic actions and

continuous parameters) with a pre-trained LLM, and (ii) verifying the feasibility of the action se-

quence with a motion planner. At each planning iteration, the LLM takes the current state s and the

trace of motion planning feedback trace, and outputs the reasoning for the previous motion failure

reason and an action sequence llm plan to solve the TAMP problem (see Section 4.4.2). The mo-

tion planner then attempts to find a collision-free motion trajectory for each action a P llm plan
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Algorithm 1: LLM3 for TAMP
Input : pre-trained LLM with prompt template LLM , state transition function T with motion

planner MP , goal function g, initial state s0

Output: success indicator success, a sequence of feasible actions plan

1 plan Ð rs, success Ð False, feedback Ð rs, trace Ð rs, s Ð s0, iter Ð 0

// main planning loop

2 while not success and iter ă Nmax do

// reason and plan with LLM

3 reason, llm plan Ð LLMps0, traceq, iter Ð iter ` 1

// rollout llm plan from s with motion planner

4 foreach a P llm plan do

// call motion planner to verify feasibility of a

5 τ,mp feedback Ð MP ps; aq

6 feedback.appendppa,mp feedbackqq

// terminate rollout if action a is infeasible

7 if τ is None then

8 break

// update state s and add a to plan

9 s Ð T ps, apτqq, plan.appendpapτqq

// check whether s satisfies goal

10 success, task feedback Ð gpsq

// when the plan is feasible but doesn’t reach goal

11 if not success then

// record task feedback, add aggregated feedback to trace, and clear aggregated feedback

12 feedback.appendptask feedbackq

13 trace.appendpfeedbackq, trace Ð tracer´k :s, feedback Ð rs

14 return success, plan
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sequentially. We synthesize motion planning feedback (see Section 4.4.3) for each motion planner

query and aggregated the feedback for all actions in llm plan. The planning iteration ends with

failure when an action has no feasible motion or the action sequence fails to reach the goal. The

aggregated feedback is then added to a trace trace, which is maintained throughout the life cycle

of the framework with a maximum size k. In the next planning iteration, the trace is fed into the

LLM to generate motion failure reasoning and another action sequence that improves on the pre-

vious one. This process repeats until a generated action sequence reaches the goal with no motion

failure or the maximum number of attempts is exceeded. Overall, the LLM3 framework can be

regarded as a search-then-sample TAMP planner that generates action sequences with incremen-

tally improved quality, guided by the intrinsic heuristics of the pre-trained LLM and the previous

motion failure. By design, we expect LLM3 to exhibit superior efficiency compared to unguided

planners that sample action parameters randomly.

4.4.2 Reasoning and Planning with pre-trained LLM

Following previous attempts in utilizing LLMs for reasoning and planning [KGR22, HAP22,

HXX23, YZY22], we prompt a pre-trained LLM to generate motion failure reasoning and action

sequences in text format. Since we want to limit the domain-specific prior provided to the LLM,

we use zero-shot prompting [KGR22] without providing any planning examples. We adopt Chain-

of-Thought (CoT) prompting [WWS22, YZY22] to have the LLM generate the reasoning and

action sequence in an autoregressive manner. The prompt fed into LLM comprises the following

contents: (i) a system message that provides the global context to the pre-trained LLM and acti-

vates its planning capability, (ii) a task description specifying the environment, goal, and available

primitive actions, (iii) the textualized initial environment state, (iv) the trace of motion planning

feedback, and (v) the output format. Note that most prompt content will remain unchanged for

different planning iterations of the same TAMP problem. Only the motion planning feedback trace

in (iv) will be updated as new failed action sequences are added. Fig. 4.2(a) illustrated an example

of reasoning and planning with LLM.
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We implement two strategies for the pre-trained LLM to generate a new action sequence that

improves on the previous one: (i) backtrack, where we expect the LLM to backtrack to a previous

action that has feasible motion, and continual to generate actions that complete the plan, and (ii)

from scratch, where we expect the LLM to directly generate a new action sequence that attempts to

avoid the motion failure happened to its previous output. We achieve this by designing the system

message and output format description in the prompt. We show the prompt template for the two

variants in Fig. 4.3, where the content specific to each variant is highlighted.

4.4.3 Synthesizing Motion Planning Feedback

We realize a ground action a by calculating a collision-free trajectory τ with a sampling-based

motion planner, e.g. Bi-directional Rapidly-exploring Random Trees (BiRRT) [LaV06]. The input

to the motion planner includes the initial environment state (includes the robot state), and a goal

pose of the robot end effector specified by the continuous action parameters of a. The motion

planner samples and searches for a collision-free joint space trajectory for the robot to reach the

goal end-effector pose.

By default, the motion planner reports a binary signal that indicates whether there is a feasible

trajectory. It does not give more abstract-level feedback, which explains why motion planning

fails. As a result, the TAMP planners can acquire useful feedback from motion planning failures

to improve high-level planning. To this end, we additionally synthesize semantically meaning-

ful motion-level feedback so that LLM3 can improve on previous failures more effectively. We

observe that typical motion planning failures can be categorized into two types, i.e., collisions

and unreachability. Therefore, we synthesize categorized motion planning feedback following the

templates below (Fig. 4.4):

(A) The goal configuration is in collision with object.

(B) The goal configuration has no feasible inverse kinematics (IK) solution.
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System message: You are an AI robot that generates a plan of actions to reach the goal... You are expected

to correct the plan incrementally (on top of the last plan) to avoid motion failure. This may involve sample

new parameters for the failed action or reverse one or more succeeded actions for backtracking... You are

expected to generate a plan from scratch.

Task description: A robot arm is tasked to pack boxes into a basket on a table. The robot sits at (0, 0), and

faces the positive x-axis, while the positive z-axis points up. The robot is equipped with primitive actions,

each taking a list of objects and continuous parameters as input:

‚ pickprobjs, tuq: pick up obj, with no parameters.

‚ placeprobjs, t“x“ : r0.0, 1.0s, “y“ : r´1.0, 1.0s,

“theta“ : r´3.14, 3.14suq: place obj at location px, yq with the planar rotation theta, where x

ranges p0.0, 1.0q, y ranges p´1.0, 1.0q, and theta ranges p´3.14, 3.14q.

Initial state: {init state}

motion planning feedback trace: {trace}

Output format: Please generate output step-by-step, which includes your reasoning for the failure of last

plan as well as the generated plan... Answer the questions: (i) what is the cause of the failure of last plan?

(ii) can altering action parameters for the failed action solve the problem... (iii) do we need to reverse

one or more succeeded actions executed before the failed action... (ii) what is your strategy to generate a

new plan from scratch to accomplish the task goal? Please organize the output following the JSON format

below: { “Reasoning”: “My reasoning for the failure of last plan is ...”, “Full Plan”: [“pick([’red box’],

{})”, “place([’red box’], {’x’: 0.51, ’y’: 0.02, ’theta’: 0.00})”, ...] }

Figure 4.3: Prompt templates used by LLM3. We show alternative contents specific for the

backtrack variant in orange and from scratch variant in blue.

(C) The goal configuration is collision-free and reachable.

In practice, we integrate the motion planner with an additional IK solver and collision checker to

obtain these feedback, finding this design to be practically effective.
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4.5 Simulations and Experiments

In simulations, we initially perform an ablation study on our LLM3 framework in two settings of

the tabletop box-packing task, quantitatively evaluating its effectiveness based on i) the planning

success rate (%SR), ii) the number of LLM calls (#LM), iii) and the number of motion planner

calls (#MP). Additionally, we demonstrate the role of LLM as an informed action parameter sam-

pler by comparing it to a baseline utilizing random sampling strategies. Finally, we validate the

proposed LLM3 framework through experimentation on a perception-integrated physical robotic

manipulator, confirming its validity in real-world scenarios.

4.5.1 Simulation Setup

We developed a PyBullet-based simulation environment for our box-packing tasks, as illustrated

in Fig. 4.5a. In Setting 1, three different sets of objects are given with increasing total sizes, while

the basket size remains unchanged. This task requires LLM3 to oversee potential collisions among

objects and the robot throughout the action sequence. LLM must reason why collisions occur and

�����������

���������

��������

�
�

�

Figure 4.4: Three types of possible motion planning outcomes. A: the object placement is in

collision with an existing object. B: the object placement is beyond the robot’s reach. C: the object

placement is feasible.
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Figure 4.5: The box-packing task setup in a simulated environment. (a) The task requires the

robot to place one of (b) three sets of objects fully into the basket. (c) In setting 1, the total object

size increases but the basket sizes remain the same. All baskets are within reach. (d) In setting 2,

the basket size increases, but some portions of baskets are longer within the robot’s reach.

adjust previous actions to ensure feasible task and motion plans. Setting 2 involves placing the Set

3 objects in baskets of increasing sizes. Here, the robot cannot access the entire basket region but

encounters a collision likelihood similar to the most crowded condition in Setting 1. In this setting,

the task becomes more complex as it challenges LLM to reason about the robot’s workspace and

adjust the plan accordingly. Throughout the simulations, we utilize GPT-4 Turbo [Ope23a] as the

LLM planner and BiRRT [LaV06] as the motion planner, with 10 attempts for each setting.

4.5.2 Ablation Study

The conducted ablation study compares the proposed LLM3 with baseline methods:

1. LLM3 Backtrack: The proposed LLM3 framework backtrack variant. See Fig. 4.3

2. Backtrack: The LLM proposes plans with backtracking but without motion planning feed-
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Table 4.1: Ablation study

Method

Setting 1 Setting 2

Easy Medium Hard Small Medium Large

%SR #LM #MP %SR #LM #MP %SR #LM #MP %SR #LM #MP %SR #LM #MP %SR #LM #MP

LLM3 Backtrack 100 1.6 11.8 100 4.4 28.4 60 11.4 39.8 60 11.4 39.8 80 9.5 50 50 13.5 44.8

Backtrack 100 1.8 12.6 90 6.3 32 40 15.1 55.3 40 15.1 55.3 30 14.6 16 30 15.8 48

LLM3 Scratch 100 1.7 13.2 100 7 46.1 70 8.8 30.9 70 8.8 30.9 70 11.5 50.2 60 10.6 32

Scratch 100 2.4 17.6 60 12.3 45.3 50 13.7 42.8 50 13.7 42.8 30 16.2 45.7 40 13.2 24

back (line 7).

3. LLM3 Scratch: The proposed LLM3 framework from scratch variant. It replans the entire

action sequence, incorporating motion planning feedback if any action fails. See Fig. 4.3

4. Scratch: The LLM plans the action sequence once and executes the plan.

Three evaluation criteria are considered: The number of LLM calls (#LM) counts how many

times the LLM API is called during planning. A lower #LM indicates that the planner can produce

a feasible task plan more efficiently. In each attempt, #LM has a maximum cap of 20; attempts

with over 20 #LMs will be counted as a failure. The total success rate is recorded as %SR. Ad-

ditionally, the number of motion planner calls, #MP, is another critical criterion as in traditional

TAMP approaches, where massive and time-consuming motion planner calls are the main cause

for their inefficiency. The study results are summarized in Table 4.1.

In both settings, integrating motion planning feedback results in a decrease in #LM and #MP,

along with an increase in %SR for both backtrack and scratch strategies. This indicates that the

LLM can reason about failures from motion planning feedback, and importantly, propose adjusted

task plans and action parameters that are more likely to produce feasible motions. Surprisingly,

no clear evidence suggests that utilizing backtracking is superior to replanning from scratch. We

have observed distinct behaviors among different strategies employed by LLM3. Specifically, when

using backtracking, LLM sometimes consistently adjusts the action parameter of the specific action

that directly led to failure, without adjusting previous actions. In contrast, the LLM3 employing a
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planning from scratch strategy simply re-samples all actions and parameters, occasionally resulting

in a slightly lower #LM.

4.5.3 Action Parameter Selection

This study examines whether an LLM can function as an informed action parameter sampler,

using the Medium setup from Setting 1 in the previous section. In this study, the action sequence

is predetermined and consists of a total of 8 steps, where the robot sequentially performs pick and

place actions to relocate all four blocks into the basket. However, the specific placement location is

not provided, requiring the action parameters to be sampled to ensure the feasibility at the motion

level. We implement three methods, each runs 50 attempts, for comparison:

1. Random Samples: A random sampler is implemented to independently and uniformly sam-

ple all the block placement locations within the basket region.

2. LLM: The LLM is provided with the task setting and the symbolic action sequence, prompt-

ing it to select the action parameters to make the action sequence feasible.

3. LLM + Feedback: Building upon 2), the LLM is additionally provided with motion plan-

ning feedback if the previous attempt fails.

The results summarized in Table 4.2 demonstrate the efficacy of using LLM as an informed

action parameter sampler in the context of box-packing tasks. Specifically, while random sampling

Table 4.2: Comparison of different sampling strategies

Method #Iteration #MP

Random 109.6 663.1

LLM 10.8 70.2

LLM + Feedback 7.9 53.2
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Figure 4.6: The real-world experiment on a physical robot. The figure to the left shows the

box-packing task setup. Actions 1 to 8 are proposed by LLM3 and successfully carried out by

the physical manipulator.

requires an average of 109.6 iterations and 663.1 #MP to achieve feasible action sequences, the

LLM substantially reduces them to an average of 10.8 iterations and 70.2 #MP. When incorporating

motion planning feedback alongside the LLM, the sampling requirement decreases even further

to an average of 7.9 iterations and 53.2 #MP. These findings underscore the ability of LLMs to

efficiently select action parameters that align with task constraints, resulting in a notable reduction

in the number of motion planning calls needed to generate feasible action sequences. Moreover, the

additional benefit gained from integrating motion planning feedback highlights the importance of

incorporating real-time feedback mechanisms to further refine and optimize the sampling process.

Overall, these results highlight the potential of LLMs as a valuable tool to improve the efficiency

and effectiveness of robotic manipulation tasks, particularly in scenarios where efficient action

parameter selection is crucial for improving planning performance.

4.5.4 Experiment Setup

To validate the effectiveness of our proposed method in a real-world setting, we conducted an ex-

periment using a Franka Research 3 manipulator. The goal was to demonstrate the robot’s ability

to perceive and manipulate objects in an environment with uncertainties in both perception and

execution. The robot observed a single point cloud from a third-person view RGB-D camera, cap-
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turing the workspace containing various objects such as blocks and a plate. To identify and locate

individual objects, we employed Grounded Segment Anything [RLZ24] for object segmentation,

initially segmenting objects in the 2D RGB image and then projecting the results onto the corre-

sponding 3D point cloud. This approach yielded per-object point clouds, essential for planning

and executing manipulation tasks.

Fig. 4.6 presents a qualitative evaluation of our method, where the robot was tasked with plac-

ing all the blocks on the plate. The results demonstrate that our method enabled the robot to

successfully identify and manipulate objects despite uncertainties and challenges in the cluttered

environment. The successful execution of this experiment validates the practicality and robustness

of our approach, showcasing its potential for various real-world applications such as object sorting,

assembly tasks, and household assistance.

4.6 Conclusion

This chapter presents LLM3, a new TAMP framework powered by the pre-trained LLM. LLM3

leverages the rich knowledge encoded in and the powerful reasoning capability processed by LLMs

to (i) propose action sequences without requiring a prior planning domain, (ii) generate continu-

ous action parameters for the robot motion planner, and more importantly, (iii) refine task and/or

motion plans in response to motion planning failures. Following validation through various sim-

ulations and experiments, we demonstrated that LLM3 effectively produces and refines task and

motion plans for box-packing problems, exhibiting promising potential in addressing previously

unspecified tasks. Our study also reveals that although the pre-trained LLM can generate action

parameters more efficiently than random samplers, it still requires multiple feedback iterations

and motion planner calls. Looking ahead, the incorporation of in-context learning or fine-tuning

techniques holds promise for further enhancing its efficiency, representing a crucial step towards

empowering robots to tackle emerging tasks in real-world scenarios.
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Part III

Learning: Object and Relation Symbol

Learning for Generalizable Planning
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CHAPTER 5

Learning Relational Predicates for Generalizable Task Planning

While planning with language model knowledge is promising, it requires manually defining object

relations in state descriptions and struggles in long-horizon tasks. In this chapter, we present

InterPreT, an LLM-powered framework for robots to learn symbolic predicates (i.e., relational

symbols) from language feedback of human non-experts during embodied interaction. The learned

predicates facilitate the learning of symbolic operators, i.e., the symbolic world models that capture

action preconditions and effects. By compiling the learned predicates and operators into a PDDL

domain on-the-fly, InterPreT allows effective long-horizon planning toward arbitrary in-domain

goals using a PDDL planner. In both simulated and real-world robot manipulation domains, we

demonstrate that by uncovering predicates and operators in simple tasks, InterPreT generalizes

strongly to novel tasks with significantly higher complexity. The materials in this chapter have

been published in [HZZ24].

5.1 Introduction

Effective long-horizon planning is a long-standing challenge in robotics [ZTB21, XMH19]. Imag-

ine a household robot that prepares a meal in your kitchen. It must be capable of generating

faithful multi-step action plans to manipulate novel objects and achieve diverse task goals. Re-

cently, Large Language Models (LLMs) have shown the ability to decompose a high-level task

goal into semantically meaningful sub-tasks leveraging the vast amount of world knowledge they

encode [LPP22, HAP22]. They exhibit the emergent property of acquiring planning capabilities

from a few in-context examples [DLD22, HAP22]. Researchers have successfully applied LLM-
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based planners in real-world robotic tasks [ABB22, HXX23, SBM23, LHX23], where they can

easily incorporate various forms of feedback and produce plans in novel situations. Nevertheless,

LLM-based planners still struggle to generalize strongly to long-horizon tasks, and they offer no

performance guarantees [LJZ23, VOS22, SHS22].

In contrast, classical planners [LaV06, Rus10] provide complementary strengths in generat-

ing long-horizon plans with formal guarantees. At the heart of these planners are predicates,

which are binary-valued functions that map environment states to high-level symbolic represen-

tations, e.g., a function that transforms the workspace observation into semantic relations such as

on table(apple). With these symbolic predicates, we can subsequently model state transi-

tions with symbolic operators [FN71], describing the preconditions and effects of the robot’s ac-

tions on the symbolic states. The predicates and operators together form a PDDL domain [FL03],

allowing a planning algorithm to generate plans for arbitrary in-domain tasks [Hel06]. Despite the

wide adoptions of planning algorithms in robotics [KL11, Tou15, GLK20], these methods usually

require substantial manual effort and domain expertise to meticulously design the predicates and

operators, hindering their applicability to real-world problems.

To combine the best of both worlds, there has been a growing interest in integrating learn-

ing methods with planning algorithms. Notable efforts have been made to learn symbolic repre-

sentations from interaction data using unsupervised learning methods [KKL18b, JRK21, LSA19,

SCK23, ASP22]. However, without explicit guidance, they struggle to uncover predicates that cap-

ture task-relevant semantic relations to facilitate planning. Meanwhile, cognitive studies [Man92,

GHM10] have shown that human infants are remarkably efficient in acquiring new predicate-like

relational concepts, such as spatial relations for stacking blocks, from the language feedback of

caregivers during physical play. Inspired by these, we envision an interactive learning scheme that

enables a robot to rapidly learn useful abstractions for planning from online human feedback.

We hypothesize that for robots to achieve human proficiency in learning predicates for plan-

ning, they must possess an ability similar to infants to learn from the rich human language feedback

in an interactive manner. Recent work has incorporated human language feedback into learning
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Figure 5.1: InterPreT learns predicates as Python functions and operators in PDDL from

human language feedback during embodied interaction. The learned predicates and operators

can be leveraged by a PDDL planner for planning unseen tasks with more objects and novel goals.

reward functions [MLW23] and motion policies [LCZ23]. The crux of these methods is to harness

the capabilities of pretrained LLMs [ZZL23], in particular GPT-4 [Ope23a], in understanding nat-

ural language input, performing reasoning [KGR22, YZY22], and generating text-based responses

(computer programs [CTJ21], etc.). Following this line of work, we present InterPreT (Interative

Predicate Learning for Task Planning), the first framework for robots to learn planning-oriented

predicates from interactive language feedback, as depicted in Fig. 5.1. InterPreT formalizes pred-

icate learning as generating Python functions with GPT-4, which are iteratively refined based on

human language feedback. These predicates (as Python functions) can access raw environment

states with Python perception APIs and freely compose logic structures and arithmetical com-

putations (e.g., with NumPy) to form complex semantics. With the learned predicates, we can

easily learn symbolic operators from the robot’s interaction data using a cluster-and-search algo-

rithm [SCT21]. The learned predicates and operators are compiled into the PDDL format on the fly

to be used by a planner. LLMs’ capabilities of open-world text processing and symbolic planners’

performance guarantees together empower our approach to generalize strongly to arbitrary tasks in
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the target domains.

Specifically, we consider language feedback for learning two types of planning-oriented pred-

icates, i.e., goal predicates and action precondition predicates [KKL18b]. These predicates play

an essential role in indicating task progress and determining action feasibility, respectively. We

design a concise and natural communication protocol to incorporate this feedback:

‚ Feedback for learning goal predicates: At the beginning of each task, the human user

specifies the goal, e.g., “put plate on table mat”. Then, it signals when the robot achieves the

goal and it explains any unsatisfied conditions if the robot mistakenly declares success.

‚ Feedback for learning precondition predicates: The human user verifies the feasibility of

the action the robot proposes to execute next. They explain any violated preconditions if the

action is infeasible, e.g., “you can’t pick up the plate because it is too large for the gripper to

grasp”, or otherwise confirm that the action is feasible, e.g., “you can go ahead and pick up

red block”.

This protocol allows InterPreT to verify and refine the learned predicates from time to time, en-

abling predicate learning with closed-loop feedback.

In the experiments, we evaluate InterPreT’s effectiveness in a suite of simulated and real-world

robot manipulation domains. These domains are designed such that their dynamics can be modeled

using specific predicates and operators, which the robot must uncover. We first have InterPreT learn

predicates and operators by having the robot interact with a series of simple training tasks while

receiving natural language feedback from human users. We then test the learned predicates and

operators on harder tasks involving more objects and novel goals. We show with qualitative and

quantitative results that: (i) InterPreT learns valid predicates and operators that capture essential

regularities governing each domain. (ii) The learned predicates and operators allow the robot to

solve challenging unseen tasks requiring combinatorial generalization, with a 73% success rate in

simulation, outperforming all baselines by a large margin. (iii) InterPreT can effectively handle
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real-world uncertainty and complexities, operating with considerable performance in real-world

robot manipulation tasks.

5.2 Related Work

5.2.1 Learning Symbolic Representations for Planning

Learning symbolic abstractions of complex domains for effective planning is a long-standing pur-

suit in the planning community [PZK07, JLT13, UP15, KKL18b, ASP22, SCK23, ZHJ23, RJO23].

Previous methods have focused on discovering propositional [KKL18b] or predicate state sym-

bols [JRK21] from embodied experience. These symbols are usually acquired by composing

predefined features [PZK07, LSA19, CST22, SCK23], or learning statistical [JLT13] or neural

network [ASP22] models with clustering [UP15, KKL18b, JRK21] or representation learning

techniques [UAR21, Asa19, ASP22]. Such learning often relies on unsupervised objectives like

minimizing state reconstruction error [UAR21, Asa19, ASP22], prediction error [JLT13, UAR21,

ASP22], bisimulation distance [CST22] or planning time [SCK23]. However, these approaches

struggle to capture high-level semantic relations [Asa19, ASP22] and often require manual feature

engineering [LSA19, CST22, SCK23].

Supervised learning has also been explored to ground semantic predicates to continuous ob-

servations, e.g., images or continuous states [XZC17, MGK19]. While large-scale annotated

datasets [KZG17] are available to learn general-purpose predicate grounding models, fine-tuning

with task-specific data is still needed for learned predicates to serve reasoning and planning in spe-

cific domains [ZDA23, KHC23, GWZ23]. To reduce annotation needs, prior works have employed

active learning [BPY22, LS23] or novel labeling techniques [MB22, MLT22], but a minimum of

500-1000 labels [BPY22, LS23] are still required per predicate.

Our work builds on this line of research in learning symbolic abstractions from interaction data

and weak supervision. We mitigate limitations of unsupervised methods by learning from natural
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language feedback. Meanwhile, we are able to learn semantic predicates as Python functions from

a few data samples, leveraging the code generation capability and world knowledge of GPT-4.

5.2.2 Large Language Models-enabled Planning and Learning

Large Language Models [ZZL23] have shown remarkable abilities in encoding vast semantic

knowledge and demonstrate emergent capabilities in learning, reasoning, and planning with few-

shot or even zero-shot prompting [BMR20, KGR22, HAP22]. Pretrained LLMs have been applied

as planners in text-based environments with natural language instructions and feedback [YZY22,

HAP22, LPP22, SCB23, WCL23]. For grounded planning in realistic robotic domains, a common

approach is to utilize out-of-the-box perception models to convert raw observations into textual

descriptions for LLMs to consume [SWW23, WWX23, HXX23, DKD23, WHJ24, ZZH24], or

provide perception and action APIs for LLMs to generate executable programs [LHX23, SBM23].

However, these perception models struggle to capture complex task-relevant information like se-

mantic object relations without task-specific tuning [ZDA23, GWZ23]. Leveraging GPT-4’s power,

our work effectively acquires meaningful task-relevant predicates to facilitate grounded planning.

Pretrained LLMs are also leveraged to enhance robot agent intelligence by generating formatted

outputs (e.g., code, formal language) and refining them based on language feedback via iterative

prompting. They have been used as interfaces between natural language and robotics modalities

like formal planning languages [XYZ23, LJZ23] (e.g., PDDL [FL03]), reward functions [MLW23,

YGF23] and trajectories [LCZ23]. Specifically, Voyager [WXJ23] uses GPT-4 to construct an

automatic curriculum and a skill library to build lifelong learning agents, while Eureka [MLW23]

and OLAF [LCZ23] leverage GPT-4 for learning from language feedback effectively by prompting.

Inspired by these works, we learn predicates from language feedback by generating and iteratively

refining Python functions with GPT-4.
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Figure 5.2: The system architecture of InterPreT. (a) We design three GPT-4-enabled modules

that operate sequentially to identify planning-oriented predicates and generate predicate functions

based on language feedback. (b) An example predicate function learned. (c) With the learned pred-

icates, we learn PDDL operators with a cluster-then-search algorithm. (d) The learned predicates

and operators enable effective task planning, as we translate language goals into symbolic goals.

5.3 Preliminaries and Problem Setup

We consider robot task planning in a continuous state space O with language goal specifications

G. Without losing generality, we assume the states are factorized with respect to a set of objects E,

where such information can be obtained using mainstream perception models like object detectors.

The robot is equipped with a library of primitive actions A, where each a P A is parameterized

by object variables and can be grounded to certain objects to produce an executable action a, e.g.,

Pick(cup). Then, a task planning problem is to find a sequence of actions a1:T to reach a final

state og that satisfies a language goal g P G from an initial state o0 P O.
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Following the classical planning formulation [Rus10, FN71], we aim to learn predicates Ψ

to abstract the state space O into a symbolic one S for effective and generalizable planning. A

predicate ψ :“ă dψ, fψ ąP Ψ defines a function fψ that captures a symbolic relation among a list

of object variables, with its semantic meaning described as dψ. The function fψ : OˆEk Ñ t0, 1u

takes a continuous state o P O and a list of k objects pe1, e2, ..., ekq P Ek and outputs a binary value

indicating whether the relation holds or not. For example, a predicate on(a,b) can be applied to

check whether cup is physically on plate, producing a positive literal on(cup, plate) or

a negative literal ␣on(cup, plate). Then the symbolic state s of a continuous state o can be

obtained by collecting all positive literals at state o given predicate set Ψ and object set E, denoted

s “ Parsepo; Ψ, Eq.

With the object-factorized symbolic state space S, we model the preconditions and effects of

primitive actions with symbolic operators Ω. Each symbolic operator ω P Ω corresponding to a

primitive action a is characterized by a precondition set CON (literals must hold before executing

a), and adding and deleting effect set EFF` and EFF´ (literals added and removed from symbolic

state s after executing a). These symbolic operators are lifted by design, enabling the evaluation

of preconditions and effects for any executable version a obtained by applying the primitive action

a to any objects. With the learned predicates Ψ, we further learn the symbolic operators Ω of all

primitive actions A to achieve generalizable task planning. The learned predicates and operators

can be compiled into a PDDL domain. By converting a language goal g P G into a symbolic goal

sg [LJZ23, XYZ23], such a PDDL domain can enable effective planning using an off-the-shelf

classical planner [Hel06].

5.4 Method

In this section, we present the InterPreT framework that learns predicates and operators from lan-

guage feedback for planning. The overall architecture is depicted in Fig. 5.2. There are five essen-

tial modules that operate together to empower InterPreT: (i) Reasoner, which analyzes language
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feedback to identify new predicates and extract task-relevant information (e.g., predicate labels,

action preconditions), (ii) Coder, which generates Python functions to ground the new predicates,

(iii) Corrector, which iteratively refines existing predicate functions to align their predictions to

the extracted predicate labels, (iv) Operator Learner, which learns operators from interaction data

based on the learned predicates, and (v) Goal Translator, which translates language goal specifi-

cations into symbolic goals to enable planning. Below, we elaborate on the core GPT-4-powered

modules-Reasoner, Coder and Corrector-that enable predicate learning, and briefly introduce the

rest, which are mainly adapted from existing works.

Given language feedback lt at time step t, our objective is to learn new predicates and refine

existing predicates Ψt´1, producing an updated set of predicates Ψt. For simplicity of notation,

we denote the textual descriptions of predicates as tdψu and the corresponding predicate functions

as tfψu for any predicate set Ψ. We decompose the predicate learning process at time step t into

three sequential sub-steps (see Fig. 5.2(a)): (i) Reasoner identifies new predicates with descriptions

tdψnewu and extracts current state literals that provide predicate labels tyu, (ii) Coder generates new

predicate functions tfψnewu, and (iii) Corrector refines existing predicate functions to fix execution

errors and match their predictions to tyu. Formally, we summarize this process in Eq. (5.1):

Reasoner : tdψnewu, tyu “ fReasonplt, tdψt´1uq,

tdψtu “ tdψnewu Y tdψt´1u

Coder : tfψnewu “ fCodeptdψnewu,Ψt´1q,

tfψ̂t
u “ tfψnewu Y tfψt´1u,

Corrector : tfψtu “ fCorrectpot, tyu, tfψ̂t
uq,

Ψt “ tă dψt , fψt ąu,

(5.1)

where fReason, fCode, fCorrect are parameterized by GPT-4 with varying prompt templates, and the

initial predicate set is empty, i.e., Ψ0 “ H. Note that we omit some of the output terms irrelevant

to predicate learning for clarity.
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5.4.1 Reasoner

The Reasoner module is designed to identify essential predicates and extract task-relevant infor-

mation from goal-related or precondition-related language feedback; see the top left corner of

Fig. 5.2(a) for examples of these feedback types. We tailor Reasoner to each language feedback

type using different prompt templates, as detailed below. We highlight the language feedback in

blue, and the GPT-4 output in orange. We employ CoT prompting [WWS22] for Reasoner to pro-

vide the complete reasoning trace and in-context learning [KGR22] to enable Reasoner to learn

from a single example. These techniques are applied to all LLM promptings to facilitate robust

response generation.

5.4.1.1 Goal-related feedback

‚ (Specify task goal) Given a natural language goal, Reasoner identifies new goal predicates

and converts the language goal into symbolic form using existing and new predicates:

Context: ...{example} {objects} {existing predicates}...

Goal: Stack red block on coaster.

Reasoning: The goal can be captured by a symbolic literal obj on obj(red block, coaster). As pred-

icate obj on obj(a, b) is unknown, we need to learn it.

Predicates to learn: {“obj on obj(a, b)”: “check whether object a is on object b”}

Symbolic goal: {“obj on obj(red block, coaster)”: true}

The identified predicates to learn tdnewu are feed into Coder for predicate function genera-

tion, and the converted symbolic goal sg is recorded for robot planning and exploration.

‚ (Explain unsatisfied goal) Given explanations for unsatisfied goal literals, Reasoner ex-

tracts the current symbolic literals from language feedback, which provide predicate labels

tyu. These predicate labels are crucial for Corrector to correct the generated goal predicates.
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Context: ...{example} {objects} {existing predicates}...

Human explanation: You haven’t reached the goal because red block is not on coaster.

Current symbolic state: {“obj on obj(red block, coaster)”: false}

‚ (Signal goal achieved) When receiving goal-achieved signals, we use the extracted symbolic

goal as the current literals, which provide positive labels tyu to supervise goal predicates.

5.4.1.2 Precondition-related feedback

‚ (Explain infeasible action) Given an explanation of an infeasible action, Reasoner identifies

new precondition predicates to learn tdnewu, reasons about the current symbolic state tyu,

and summarizes the reflected action preconditions CONnew, as shown in the example below.

The summarized action preconditions only take arguments that exist in those of the action,

e.g., for action pick up(a), we only summarize the preconditions that take no argument or

object a as an argument. We aggregate CONnew into the precondition set CONa of the cor-

responding action a, which is maintained for operator learning (described in Section 5.4.4).

Additionally, tdnewu is fed into Coder to generate precondition predicate functions, and the

predicate labels tyu are provided to Corrector for correction.
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Context: ...{example} {objects} {existing predicates}...

Infeasible action: pick up(coaster)

Human explanation: You can’t pick up coaster it is too large to be grasped.

Reasoning: ... The precondition of pick up(coaster) is that it is small enough to be grasped by the

gripper... We learn predicate obj graspable(a) to check whether object a can be grasped by the grip-

per...

Predicates to learn: {“obj graspable(a)”: “check whether object a is small enough to be grasped

by the gripper...”}

New action preconditions: {“action”: ”pick up(a)”, “new preconditions”: {“obj graspable(a)”:

true}}

Current symbolic state: {“obj graspable(coaster)”: false}

‚ (Signal feasible action) When an action is signaled as feasible, we confirm that all precon-

ditions in CONa are satisfied. The labels y for these precondition predicates are obtained

and provided to Corrector to correct precondition predicate functions.

5.4.2 Coder

Once Reasoner identifies a set of new predicates with text descriptions tdnewu, the next step is

to construct the corresponding predicate functions tfnewu to truly learn them. Inspired by recent

successes in using pretrained LLMs to generate computer programs for robotic tasks [LHX23,

SBM23, WXJ23, MLW23], we design Coder to generate these predicate functions as Python code

based solely on tdnewu, leveraging the power of GPT-4. We assume the availability of a library of

perception API functions that provide access to continuous states, such as the bounding boxes and

categories of detected objects. The predicate functions can then be constructed by composing these

API functions with classical logic structures and arithmetical computations (e.g., using NumPy),

exploiting the flexibility of Python programming. Representing predicates as Python functions

offers several advantages: (i) They are semantically rich and interpretable compared to neural
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networks [ASP22, UAR21], and have better representation power and more versatile syntax than

logical programs [SCK23, CST22]. (ii) They enable one-shot generation purely from the text

description without labeled data, leveraging the extensive commonsense priors in GPT-4.

To facilitate the construction of predicate functions, we provide Coder with the following prim-

itives: (i) perception API functions for accessing environment states, (ii) the NumPy library for

arithmetic computations, and (iii) if-else and loop statements for controlling the logic structure.

We also allow Coder to create additional utility functions that can be reused to define different

predicate functions. This divide-and-conquer strategy helps mitigate the complexity of building

predicate functions from scratch. In practice, we prompt GPT-4 with a code snippet demonstrating

the usage of primitives by a few examples of utility functions and one example predicate function.

Detailed comments are included in these examples to enable CoT prompting. Due to space limi-

tations, we show a partial prompt with an example utility function get object x range below,

and an example predicate function in Fig. 5.2(b).
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import numpy as np

from perception_api import get_object_center_3d, get_object_size_3d...

# <utility>

def get_object_x_range(a) -> np.ndarray:

"""

Get the range of object a along x axis

:param a: string, name of detected object

"""

center = get_object_center_3d(a)

extent = get_object_size_3d(a)

return np.array([center[0] - extent[0] / 2, center[0] + extent[0] / 2])

# <end-of-utility>

......

5.4.3 Corrector

The predicate functions generated by Coder are pruned to two types of errors: (i) execution errors

due to invalid operations or syntax errors in the function, and (ii) alignment errors that arise

when GPT-4’s understanding of predicates misaligns with that of the human user. Inspired by

[WXJ23, MLW23], we introduce Corrector, which adopts an iterative prompting mechanism to

correct the functions and rectify these errors.

When an execution error occurs while calling a predicate function, Corrector takes the exe-

cution trace from the code interpreter and the erroneous code as input. It then performs zero-shot

reasoning on the error and generates the corrected code as output. This process is repeated until the

error is resolved or the maximum number of iterations is reached. Similarly, to address alignment

errors, Corrector is provided with the predicate labels tyu and the current predicate functions.

It then iteratively refines the functions to align their outputs with the given labels. An example

prompt illustrating this process is shown below:
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Context: ...{instructions} <code> {observation}...

Alignment error: obj on obj(red block, blue block) should be true, but your prediction is false.

Reasoning: This is because we assume object a should be within object b along the x-axis when we define

the predicate function obj on obj(a, b), which is wrong; in fact, the relation is established when object a is

overlapped with b, so we need to correct the function accordingly.

Corrected code: <corrected code>

5.4.4 Other Components

Given the learned predicates, we implement a variant of the cluster-then-search algorithm [SCT21]

to learn operators. This algorithm effectively learns symbolic operators that best capture the action

effects and preserve a minimal set of necessary preconditions from a small number of successful

and failed interactions. We also incorporate the action preconditions summarized by Reasoner

into the learned operators. To ensure learning from language feedback with no delays, we run the

operator learning algorithm at each interaction step, maintaining an operator set compatible with

the up-to-date predicates and interaction experience.

During the training phase, InterPreT learns predicates and operators as the robot interacts with

the environment to perform a series of training tasks (detailed in Section 5.5.1.3). We employ a

strategy where the robot plans with a classical planner [Hel06] based on the learned predicates

and operators 50% of the time, and randomly takes a symbolically feasible action according to

the recorded action preconditions otherwise. Empirically, this approach enables a balance between

exploration and exploitation.

At test time, we introduce an LLM-based goal translator to convert language goals into sym-

bolic form, following previous works [XYZ23, LJZ23]. We refer the reader to the original papers

for a detailed explanation of how the method works. In practice, we find that the GPT-4-based goal

translator performs robustly when provided with a few examples.
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5.5 Experiments
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Figure 5.3: Simulated and real-world domains used in the experiments. We show example

training tasks of all five domains in (a) and demonstrate the design of the 4 test sets in the real-

world SetTable domain in (b). In More objects and Combined, an unseen object “spoon”

introduces additional generalization challenges.

We conduct experiments to answer the following questions: (i) Can InterPreT learn meaning-

ful task-relevant predicates and operators from language feedback? (ii) How well do the learned

predicates and operators (i.e., PDDL domains) generalize to tasks that involve more objects and

novel goals? (iii) Can InterPreT handle perception and execution uncertainties in the real world?

5.5.1 Experimental Setup

We quantitatively and qualitatively evaluate InterPreT on a suite of robot manipulation domains in

a simulated 2D kitchen environment [WGK18] and a real-world environment. The domain design,

baseline methods, and evaluation protocol are described below.
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5.5.1.1 Domain design

We design three simulated domains based on the Kitchen2D environment [WGK18] and two real-

world domains that represent the counterpart of the simulation. Each domain is associated with a

set of simple and complex tasks, and designed with a ground-truth PDDL domain file specifying

the essential symbolic constraints and regularities. The five domains are each demonstrated with

an example simple task in Fig. 5.3(a).

‚ StoreObjects (Sim and Real): This domain involves storing objects on a large receptacle by

picking, placing, and stacking actions. It features predicates and corresponding constraints

similar to those in the BlockWorld domain [GN91], such as on(a,b), and on table(a).

‚ SetTable (Sim and Real): This domain involves rearranging objects to set up a breakfast

table. Compared to StoreObjects, it additionally introduces a push action to move large

objects (e.g., plates) that cannot be grasped. It features precondition predicates such as

is graspable(a) and is flat(a).

‚ CookMeal (Sim only): This domain involves putting ingredients into a pot and filling the

pot/cups with water. It requires understanding action semantics, featuring predicates such as

is container(a), in(a,b) and has water(a). It also imposes constraints such as

the only way to fill a large container (e.g., a pot) with water is by using a cup.

5.5.1.2 Baselines

As there are no prior methods that learn predicates from human language feedback for plan-

ning, we compare InterPreT with state-of-the-art LLM-based planners. (i) Inner Monologue

(IM)[HXX23] generates action plans based on textualized environment states using an LLM. (ii)

Code-as-Policies (CaP)[LHX23] employs an LLM to generate policy code that invokes percep-

tion and action APIs. We also implement variants of IM that incorporate predicates and operators

learned with InterPreT. For a fair comparison, all baselines access the environment state through
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perception APIs and learn from in-context examples.

‚ IM + Object [HXX23]: A naive IM variant that utilizes the textualized output of perception

APIs, e.g., detected objects with positions and categories, as the environment state.

‚ IM + Object + Scene [HXX23]: An IM variant that uses environment states augmented by

scene descriptions, obtained using predicates learned by InterPreT.

‚ IM + Object + Scene + Precond [HXX23]: An IM variant that uses the operators learned

with InterPreT to check the precondition of actions proposed by IM. Infeasible actions are

prompted back to the LLM for replanning.

‚ CaP [LHX23]: A strong CaP baseline that performs precondition checks using “assertion”

or if-else statements (akin to ProgPrompt[SBM23]) and hierarchically composes policies for

long-horizon planning. We have it generate predicate functions for precondition checks.

5.5.1.3 Evaluation protocol

We adopt a train-then-test evaluation workflow for all domains. For each domain, the robot first

learns from a series of 10 simple training tasks accompanied by language feedback. For testing,

we design four sets of tasks (10 tasks per set) that pose different levels of challenge to the general-

izability of the methods. We present example tasks in different test sets of the real-world SetTable

domain in Fig. 5.3(b).

‚ Canonical: Simple tasks with objects and goals seen in training but with different initial

configurations.

‚ More objects: Simple tasks with seen goals but involve additional unseen objects.

‚ Novel goals: Complex tasks with seen objects but novel goals that compose goals seen

in training tasks.
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‚ Combined: Complex tasks with unseen objects and goals, combining the last two setups.

We evaluate the performance of all methods using the success rate on the 10 tasks of each test set.

In simulation, we conduct systematic evaluations by running the whole training-testing pipeline 3

times with varied seeds. We directly terminate the episode upon action failure for all methods.

Domain Goal Predicates Precondition Predicates

StoreObjects
obj on obj(a, b),

obj on table(a)

obj graspable(a),

obj clear(a),

gripper empty()

SetTable
obj on obj(a, b),

obj on table(a)

obj graspable(a),

obj clear(a),

gripper empty(),

obj is plate(a),

obj thin enough(a)

CookMeal

obj inside obj(a, b),

obj on table(a),

obj filled with water(a)

obj graspable(a),

obj clear(a),

gripper empty(),

obj is plate(a),

obj thin enough(a),

obj large enough(a),

obj is food(a),

obj is container(a)

Table 5.1: Learned goal and precondition predicates in simulated domains. We report the

union of the three runs. While we learn both the positive predicate and its negated counterpart, we

only show the positive ones here for clarity. We adjust some of the predicate names to unify them

across domains and runs for better readability.
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obj_in_gripper

obj_on_obj

obj_graspable

obj_clear

pick_from_table

pick_from_obj

place_on_table

obj_on_table

gripper_empty

place_first_on_second
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Figure 5.4: Visualization of one training run in simulated StoreObjects domain. The total

number of learned predicates increases by 2 for each labeled predicate as we also learn its negation.

We provide the predicate function of obj in gripper as an in-context example at Step 0. We

empirically label the learned operators with semantic names based on their interpreted meanings.

5.5.2 Experimental results

5.5.2.1 Qualitative analysis

We answer Question (i) by qualitatively analyzing the predicates and operators learned by Inter-

PreT in the simulated domains. Table 5.1 shows InterPreT can effectively learn language-grounded

and semantically meaningful goal and precondition predicates in all three domains. We report the

union of learned predicates over three runs; we observe that the learned predicates are generally

consistent across the runs. Specifically, InterPreT successfully learns goal predicates that acquire

the desired task outcomes, such as “fruit can on shelf” and “plate on table” in StoreObjects and

SetTable domains and “sausage in pot” and “cup is filled” in CookMeal domain. The learned pre-

condition predicates acutely capture the essential task constraints, such as “fruit can can only be

picked up when there is nothing on its top”, and “water can only be poured into a container”. These
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Domain Test Set IM + Object [HXX23] IM + Object IM + Object CaP [LHX23] InterPreT (Ours)

+ Scene [HXX23] + Scene + Precond [HXX23]

StoreObjects Canonical 0.60˘ 0.00 0.90˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 0.93˘ 0.12

More objects 0.30˘ 0.00 0.83˘ 0.06 1.00 ˘ 0.00 0.83˘ 0.15 0.90˘ 0.17

Novel goals 0.00˘ 0.00 0.87˘ 0.15 0.97˘ 0.06 0.53˘ 0.21 1.00 ˘ 0.00

Combined 0.00˘ 0.00 0.77˘ 0.06 0.87˘ 0.15 0.03˘ 0.06 1.00 ˘ 0.00

SetTable Canonical 0.80˘ 0.10 0.80˘ 0.10 1.00 ˘ 0.00 0.87˘ 0.06 1.00 ˘ 0.00

More objects 0.73˘ 0.06 0.83˘ 0.12 1.00 ˘ 0.00 0.73˘ 0.15 1.00 ˘ 0.00

Novel goals 0.00˘ 0.00 0.10˘ 0.10 0.53˘ 0.33 0.77 ˘ 0.25 0.53˘ 0.41

Combined 0.00˘ 0.00 0.03˘ 0.05 0.20˘ 0.16 0.33˘ 0.15 0.37 ˘ 0.45

CookMeal Canonical 0.90˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 0.97˘ 0.06 0.97˘ 0.06

More objects 1.00˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 0.93˘ 0.06 1.00 ˘ 0.00

Novel goals 0.97˘ 0.06 0.93˘ 0.06 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00

Combined 0.00˘ 0.00 0.23˘ 0.15 0.97 ˘ 0.06 0.77˘ 0.12 0.83˘ 0.12

Average success rate over Combined 0.00 0.34 0.68 0.38 0.73

Table 5.2: Systematic evaluations of the methods on all test sets in simulated domains. We

highlight our method in deep gray and baselines that benefit from our learned predicates and/or

operators in light grey. InterPreT achieves a 73% success rate in the most challenging Combined

test set, outperforming all baselines by a large margin.

well-learned predicates necessarily build the foundations for learning good operators.

We conduct a case study on one training run in the StoreObjects domain. Fig. 5.4 visualizes the

process of learning new predicates and operators (represented as red and blue lines, respectively)

while provided with intermittent language feedback (indicated by light green bars). Note that

the less important feedback for predicate learning, i.e., signaling task success or feasible action,

is omitted from the figure for clarity. We observe that InterPreT is able to explore effectively

and acquire all predicates in 20 steps of interaction. Based on the predicates learned, InterPreT

sequentially learns four operators that exhibit clear semantic meaning. Notably, it recovers two

operators pick from table and place on table for the same primitive action place up

that is executed in different contexts. As the robot blindly explores the domain with inadequate

knowledge and continuously proposes infeasible actions, dense language feedback is provided to
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explain precondition violations in Steps 8-20. Once InterPreT captures all action preconditions,

the robot can freely navigate the environment without human intervention. Fig. 5.4 shows that

all predicates and operators are properly initialized at Step 20 and are corrected and refined in

subsequent interactions.

5.5.2.2 Evaluating planning and generalization

We systematically evaluate the planning performance of all methods on the four test sets for each

simulated domain. Table 5.2 presents the full results, demonstrating the strong generalizability

of InterPreT when planning with a classical planner [Hel06]. Note that several baselines utilize

predicates and operators learned with InterPreT; their results are shown in light gray, while In-

terPreT’s results are in dark gray. InterPreT achieves success rates over 90% on most test sets.

On the challenging Combined test set, which requires strong compositional generalizability,

it attains an average success rate of 73%, substantially outperforming IM variants (IM + Object,

IM + Object + Scene, and IM + Object + Scene + Precond) by 73%, 39%, and 5%, respectively, and

the CaP baseline by 35%.

We find the predicates and operators learned with InterPreT enable significantly improved

generalization in planning, by providing meaningful relational abstractions and explicit transition

modeling. The naive IM variant (IM + Object) struggles to generalize with only textualized state

descriptions, solving 0% of Combined tasks. However, augmenting states with predicates learned

by InterPreT (IM + Object + Scene) boosts the success rate on Combined tasks from 0% to 34%.

Further ensuring action validity using learned operators (IM + Object + Scene + Precond) rivals In-

terPreT at 68% average success. This hybrid approach benefits from combining world knowledge

in the LLM with validity guarantees from operators. However, we observe that it sometimes fails

to reach the goal within the maximum number of steps due to frequent replanning. In contrast,

InterPreT perform explicit PDDL planning with learned predicates and operators, and thus can

generate optimal long-sequence plans with guarantee.
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From scratch Bootstrapped

Canonical 1.00 ˘ 0.00 1.00 ˘ 0.00

More objects 1.00 ˘ 0.00 1.00 ˘ 0.00

Novel goals 0.53 ˘ 0.41 1.00 ˘ 0.00

Combined 0.37 ˘ 0.45 1.00 ˘ 0.00

Table 5.3: Bootstrapping predicate learning from previously learned predicates. Reusing

predicates learned in StoreObjects leads to near-perfect predicate learning in SetTable. The trans-

fer of predicates is natural as all predicate functions utilize the same Perception API functions.

We demonstrate the importance of learning from language feedback by comparing InterPreT

with CaP, a baseline that generates predicate functions for precondition checks and composes poli-

cies for long-horizon planning, but without leveraging language feedback. Although CaP can gen-

erate policy code with correct logic based on in-context examples, it occasionally fails to generate

accurate predicate functions due to the lack of language supervision. This limitation becomes ev-

ident in CaP’s poor performance on Combined tasks in the StoreObjects and SetTable domains,

which require precise predicate understanding for successful long-horizon planning. The supe-

rior performance of InterPreT in these challenging scenarios highlights the significant benefits of

incorporating natural language supervision compared to CaP.

Furthermore, we explore the transferability of learned predicates to new domains. We investi-

gate the unsatisfactory performance of InterPreT in the SetTable domain, and find that simultane-

ously learning predicates related to pick-and-place and push actions poses a significant challenge.

To address this issue, we bootstrap the learning process with predicates acquired from simpler

domains. Table 5.3 demonstrates that initializing InterPreT with predicates learned in the Store-

Objects domain leads to near-perfect learning in the SetTable domain, achieving 100% success

across all test sets. This finding highlights the potential for reusing previously learned predicates

to enhance learning efficiency and planning performance in complex domains.
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Figure 5.5: Real-robot evaluations in real-world StoreObjects and SetTable domains. We

train InterPreT once on 10 tasks and test on 5 tasks per test set. Note that the predicate learning in

SetTable is bootstrapped from predicates learned in StoreObjects.

5.5.2.3 Real-robot results

We evaluate InterPreT in the real-world StoreObjects and SetTable domains, compared to the

vanilla IM + Object baseline [HXX23]. We train InterPreT on 10 training tasks while a human

user provides language feedback with a keyboard. We then test all methods on 5 test tasks per test

set, with the success rates shown in Fig. 5.5. In the SetTable domain, we directly bootstrap the

learning with predicates learned from StoreObjects, as the simulated results have already demon-

strated the difficulty of learning from scratch in SetTable. The results indicate that InterPreT can

effectively capture symbolic constraints and regularities in real-world settings where perception

and execution uncertainties present. In contrast, the baseline struggles to generalize to novel task

goals, highlighting the importance of the learned predicates and operators. We observe a severe

performance drop for InterPreT in the StoreObjects domain under the Combined and Novel

goals settings. We find that this is attributed to the increased occurrence of primitive action

execution failures as the task horizon extends. Despite this, InterPreT still outperforms the base-

line by a significant margin, achieving success rates of 60% and 20% in the Novel goals and

Combined settings, respectively.
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5.5.3 Additional Analysis and Discussions

Stage
Run time / Iteration

Median Min Max

Training
Learn predicates 2.94 s 1.05 s 23.32 s

Learn operators 32 ms 1 ms 97 ms

Testing
Translate goal 1.60 s 0.91 s 5.53 s

Plan with PDDL 99 ms 75 ms 130 ms

Table 5.4: Run time breakdown of InterPreT at different training and testing stages. We show

the median, minimum, and maximum values as the statistics are not normally distributed.

Domain #LLM Calls #Transitions #Feedback

StoreObjects 22{31{23 54{75{90 17{26{18

SetTable 38{38{62 41{39{67 31{30{55

CookMeal 32{29{46 62{34{48 23{22{38

Table 5.5: Number of LLM calls (#LLM Calls), state transitions collected (#Transitions), and

language feedback provided (#Feedback) across three runs in each domain.

5.5.3.1 Runtime Analysis

To gain insights into the computational efficiency of InterPreT, we measure its runtime in the sim-

ulated domains and provide a breakdown by stage in Table 5.4. Due to the variability in runtime

across different iterations, we report the median, minimum, and maximum values for a comprehen-

sive overview. The results reveal that the GPT-4-powered predicate learning and goal translation

stages constitute the primary computational bottleneck. This is expected as calling the GPT-4 API

involves a relatively long waiting time, which is also significantly influenced by the quality of the
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Internet connection. However, we anticipate that response time will cease to be a limiting factor

for LLMs in the near future, given the rapid advancements in the field.

We also present other relevant statistics in Table 5.5, including the number of LLM calls,

successful state transitions collected, and the amount of human feedback provided across three

training runs for each domain. While these values exhibit considerable variation due to the inherent

randomness in exploration and LLM outputs, InterPreT demonstrates the ability to recover a PDDL

domain from a relatively small number of language feedback and interaction data. This highlights

the sample efficiency of our approach, which is crucial for practical applications where extensive

human feedback and interaction may be costly or time-consuming to obtain.

Run1 Run2 Run3

Goal Predicates
obj on obj(a, b),

obj on table(a)

obj on obj(a, b),

obj on table(a)

obj on obj(a, b),

obj on table(a)

Precondition Predicates

obj small enough(a),

obj clear(a),

gripper empty()

obj size ok for gripper(a),

no obj on top(a),

hand empty()

obj small enough for gripper(a),

obj free of objects(a),

gripper empty()

Table 5.6: Learned predicates across three training runs with varied language feedback for

the simulated StoreObjects domain.

Run1 Run2 Run3

Canonical 1.00 1.00 1.00

More objects 1.00 1.00 1.00

Novel goals 1.00 1.00 1.00

Combined 1.00 1.00 1.00

Table 5.7: Evaluating InterPreT trained with varied language feedback for the simulated

StoreObjects domain. We report the results of all three training runs.
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5.5.3.2 Robustness to varied language feedback

Natural language feedback from non-expert human users can be varied, with the same predicate be-

ing referred to in different ways. We evaluate the robustness of InterPreT to such varied feedback

in the simulated StoreObjects domain by synthesizing diverse feedback templates. Using Chat-

GPT [Ope], we generate 3 alternatives for each possible feedback, which are randomly sampled

during each training step. We conduct three training runs with this varied feedback and perform

both qualitative and quantitative evaluations.

Table 5.6 presents the predicates learned across the three runs, demonstrating that InterPreT

robustly captures the essential goal and precondition predicates. As the goal specifications are

generally consistent, InterPreT learns goal predicates with the same names in all runs. Despite the

varied explanations of precondition violations, InterPreT learns precondition predicates with dif-

ferent names but consistent semantics. Table 5.7 shows that the predicates and operators learned

from the varied feedback yield robust planning in all test sets. These results demonstrate Inter-

PreT’s robustness to diverse language feedback, highlighting its ability to capture the underlying

semantics despite variations in the feedback provided.

5.6 Conclusion

We present InterPreT, an interactive framework that enables robots to learn symbolic predicates

and operators from language feedback during embodied interaction. InterPreT learns predicates

as Python functions leveraging the capabilities of LLMs like GPT-4. It allows iterative correction

of these learned predicate functions based on human feedback to capture the core knowledge for

planning. The predicates and operators learned by InterPreT can be compiled on the fly as a PDDL

domain, which enables effective task planning with a formal guarantee with a PDDL planner. Our

results demonstrate that InterPreT can effectively acquire meaningful planning-oriented predicates,

which allows learning operators to generalize to novel test tasks. In simulated domains, it achieves

a 73% success rate on the most challenging test set that requires generalizability to more objects
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and novel task goals. We also show InterPreT can be applied in real-robot tasks. These findings

validate our hypothesis that human-like planning proficiency requires interactive learning from

rich language input, akin to infant development.

Limitations While showing promise, InterPreT has several limitations that we would like to ac-

knowledge. First, the generalizable planning capability of InterPreT is realized by the learned

symbolic operators. This introduces the assumption that the underlying domain can be well mod-

eled at a symbolic level. This is generally not exact, as the physical world is inherently continuous.

A promising future direction is to extend InterPreT into the setup of TAMP [GCH21], which con-

siders both symbolic understanding and continuous interactions. Also, the operators learned by

InterPreT are deterministic, which falls short of capturing the uncertainty in state transitions. This

issue can be mitigated by learning operators with probabilistic effects [KKL18b, ASP22].

113



CHAPTER 6

Learning Object Symbols for Generalizable Object Cutting

In previous chapters, we majorly studied manipulation tasks in which an object can be treated

as a whole and abstracted with its semantic category. However, this assumption does not hold

for tasks that involve object fragmentation. In this chapter, we present a novel approach that

learns object symbols and a stochastic grammar-based world model for object cutting. We devise

a probabilistic framework to learn this grammar from human demonstrations. Then we formulate

planning for object cutting as posterior inference, which can be efficiently solved via Monte Carlo

Tree Search (MCTS). We show with simulations and real-robot experiments that our approach can

generalize to novel setups thanks to the compositionality of the grammar model. The materials in

this chapter have been published in [ZHJ23].

6.1 Introduction

Representing object states and understanding how they change with actions are fundamental for

robots to manipulate the physical world. In the literature, the primary focus is restricted to rigid

objects whose states can only be altered spatially, represented with reconstructed 3D geome-

try [HZJ21, HZJ22, AXW21], estimated 6D poses [DXM20, WB21], semantic keypoints [VRS21,

MGF22], or extracted appearance features [DAD18, VCC20]. Recently, articulated object under-

standing in terms of kinematics estimation [JHZ22, JLC21] and part-level object modeling [MZC19,

WWZ21, ZZW23], and deformable object understanding empowered by physics-based simula-

tion [HLS19, LHL22] further expand a robot’s manipulation capabilities towards handling drastic

appearance and geometry changes of objects. However, a rigid, articulated, or deformable object
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can be treated as a single whole object or a fixed collection of rigid parts when manipulated by a

robot; modeling objects with topology changes, i.e., object fragmentation in a cutting task, is still

largely unexplored.

The challenges of modeling object fragmentation are twofold: (i) An object or its fragments

exhibit considerable variation in terms of their configurations (i.e., the layout, fragment number,

pose, and shape of each fragment) during fragmentation. (ii) An object fragmentation process

intrinsically involves one-to-many transitions (i.e., an object breaking into multiple fragments),

and there are many ways an object might be potentially fragmented. As a result, it is nontriv-

ial to find a proper state representation, hindering the direct employment of methods such as

neural networks [HLF19, VCC20], probabilistic graphical models [LZZ19, EGL19], symbolic

logic [KL11, JZW21b], etc., to model such complex causal transitions during fragmentation. To

overcome these challenges, a desired state representation should be reconfigurable and extendable

to account for the drastic variations in object fragmentation while being abstract enough to reduce

the number of possible transitions for efficient planning.

In this work, based on the stochastic grammar model, we develop a fluent notation [New36]

to represent the state of an object–or that of its fragments–during cutting and derive a fluent space

to describe the possible fragmentation (i.e., the states and their causal transitions). Being success-

ful in modeling scenes [ZM07, HQZ18, QZH18] and dynamic events [EGL19, QJH20, ZZZ15], a

stochastic grammar consists of a set of production rules that generate terminal or non-terminal vari-

ables from existing non-terminal ones, akin to the process of an object breaking into pieces—the

original object generates newly appeared fragments. Specifically, the grammar itself incorporates

all possible states an object may finally be as fragmentation repeats, and the production rules of the

grammar indicate all valid one-to-many transitions. Together, they form the fluent space of object

cutting. Furthermore, each parse tree derived from the grammar reflects a specific fragmentation

process produced by a sequence of cutting actions, whose terminal nodes correspond to fragments

in the resulting configuration and collectively define the resulting fluent.

Fig. 6.1 presents the proposed stochastic grammar that models the object fragmentation process
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<latexit sha1_base64="E0HLsyAoADZ0VMRsm5Q+j3pWAMc=">AAAB6nicdVDLSgNBEOz1GeMrKnjxMhgET8vuJiTxFuLFY4LmAckSZiezyZDZBzOzQgj5BC8eFPHq1b/wC7x58VucTRRUtKChqOqmu8uLOZPKst6MpeWV1bX1zEZ2c2t7Zze3t9+SUSIIbZKIR6LjYUk5C2lTMcVpJxYUBx6nbW98nvrtayoki8IrNYmpG+BhyHxGsNLSJe7b/VzeMs8qJadYQpZpWWXbsVPilIuFIrK1kiJfPWy8s+faS72fe+0NIpIENFSEYym7thUrd4qFYoTTWbaXSBpjMsZD2tU0xAGV7nR+6gydaGWA/EjoChWaq98npjiQchJ4ujPAaiR/e6n4l9dNlF9xpyyME0VDsljkJxypCKV/owETlCg+0QQTwfStiIywwETpdLI6hK9P0f+k5Zh2wXQaOo0aLJCBIziGU7ChDFW4gDo0gcAQbuAO7g1u3BoPxuOidcn4nDmAHzCePgAoq5Fs</latexit>

c8 ! c3c3
<latexit sha1_base64="hNqzH9d0mr8N09vszOGcPvN5we4="></latexit>

a2
<latexit sha1_base64="E6BfcF8do2bm9OTCZ4R/HIqzxms=">AAAB6nicdVDLSgNBEOz1GeMrKnjxMhgET8vuJiTxFuLFY4LmAckSZiezyZDZBzOzQgj5BC8eFPHq1b/wC7x58VucTRRUtKChqOqmu8uLOZPKst6MpeWV1bX1zEZ2c2t7Zze3t9+SUSIIbZKIR6LjYUk5C2lTMcVpJxYUBx6nbW98nvrtayoki8IrNYmpG+BhyHxGsNLSJe47/VzeMs8qJadYQpZpWWXbsVPilIuFIrK1kiJfPWy8s+faS72fe+0NIpIENFSEYym7thUrd4qFYoTTWbaXSBpjMsZD2tU0xAGV7nR+6gydaGWA/EjoChWaq98npjiQchJ4ujPAaiR/e6n4l9dNlF9xpyyME0VDsljkJxypCKV/owETlCg+0QQTwfStiIywwETpdLI6hK9P0f+k5Zh2wXQaOo0aLJCBIziGU7ChDFW4gDo0gcAQbuAO7g1u3BoPxuOidcn4nDmAHzCePgAqL5Ft</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

a3
<latexit sha1_base64="g+FmlrMWFHnnTQVq7I85oXXO6mQ=">AAAB6nicdVDLSgNBEOz1GeMrKnjxMhgET8vuJiTxFuLFY4LmAckSZiezyZDZBzOzQgj5BC8eFPHq1b/wC7x58VucTRRUtKChqOqmu8uLOZPKst6MpeWV1bX1zEZ2c2t7Zze3t9+SUSIIbZKIR6LjYUk5C2lTMcVpJxYUBx6nbW98nvrtayoki8IrNYmpG+BhyHxGsNLSJe4X+rm8ZZ5VSk6xhCzTssq2Y6fEKRcLRWRrJUW+eth4Z8+1l3o/99obRCQJaKgIx1J2bStW7hQLxQins2wvkTTGZIyHtKtpiAMq3en81Bk60coA+ZHQFSo0V79PTHEg5STwdGeA1Uj+9lLxL6+bKL/iTlkYJ4qGZLHITzhSEUr/RgMmKFF8ogkmgulbERlhgYnS6WR1CF+fov9JyzHtguk0dBo1WCADR3AMp2BDGapwAXVoAoEh3MAd3BvcuDUejMdF65LxOXMAP2A8fQArs5Fu</latexit>

c3 ! c5c5
<latexit sha1_base64="Ug4JBDLOEsAk9O+PfwOwWjudekw="></latexit>

Goal

Planning
via

inference

+ <latexit sha1_base64="So9GCHW1NoA+QjtG7yvh23cs6pk=">AAAB8XicbVC7TgJBFL2LL0RF1FKLicTEiuxioSVBC0tM5BFhQ2aHASbMzmxmZiVkw1/YWGiMrT/gd9j5JxYWDo9CwZPc5OSce3PvPUHEmTau++mkVlbX1jfSm5mt7Z3sbm5vv6ZlrAitEsmlagRYU84ErRpmOG1EiuIw4LQeDC4nfv2eKs2kuDWjiPoh7gnWZQQbK921ruRQYKXksJ3LuwV3CrRMvDnJl47ey+73V7bSzn20OpLEIRWGcKx103Mj4ydYGUY4HWdasaYRJgPco01LBQ6p9pPpxWN0YpUO6kplSxg0VX9PJDjUehQGtjPEpq8XvYn4n9eMTffCT5iIYkMFmS3qxhwZiSbvow5TlBg+sgQTxeytiPSxwsTYkDI2BG/x5WVSKxa8s0LxxqZRhhnScAjHcAoenEMJrqECVSAg4AGe4NnRzqPz4rzOWlPOfOYA/sB5+wGMlZSF</latexit>

pointcloud

c1
<latexit sha1_base64="0xdR3zViMte8/fl10NteNOe8ioY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yx+vkC27RnYIsE29OCuWj2jd/r3xUO/nPu27EkhClYYJq3fbc2PgpVYYzgePcXaIxpmxI+9i2VNIQtZ9OTx2TU6t0SS9StqQhU/X3REpDrUdhYDtDagZ60ZuI/3ntxPQu/ZTLODEo2WxRLxHERGTyN+lyhcyIkSWUKW5vJWxAFWXGppOzIXiLLy+TRqnonRdLNZtGBWbIwjGcwBl4cAFluIYq1IFBHx7gCZ4d4Tw6L87rrDXjzGcO4Q+ctx/LmZEs</latexit>

c2
<latexit sha1_base64="igEePN2139RbXxCqnUIZaI5XJDY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yp9TJF9yiOwVZJt6cFMpHtW/+XvmodvKfd92IJSFKwwTVuu25sfFTqgxnAse5u0RjTNmQ9rFtqaQhaj+dnjomp1bpkl6kbElDpurviZSGWo/CwHaG1Az0ojcR//Paield+imXcWJQstmiXiKIicjkb9LlCpkRI0soU9zeStiAKsqMTSdnQ/AWX14mjVLROy+WajaNCsyQhWM4gTPw4ALKcA1VqAODPjzAEzw7wnl0XpzXWWvGmc8cwh84bz/NHZEt</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

c4
<latexit sha1_base64="PddkXjxkTCQSd4K8Ua9cwC10Hxs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuFLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0CWRLw==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>
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Figure 6.1: Planning for object cutting with a stochastic grammar of object fragmentation.

The grammar reveals the underlying fluent space of object fragmentation and captures causal tran-

sitions in a compositional manner with production rules. An observed fragmentation process is

represented as a parse tree derived from the grammar; planning for object cutting is to infer an op-

timal parse tree that describes the desired fragmentation. Observing cutting a carrot could support

planning actions for cutting a potato into the same by sharing the production rule c3 Ñ c5c5.

of cutting a carrot into chunks and supports planning cutting actions for a novel situation of cutting

a potato into the same. We extract shape features for fragments and cluster them to obtain a much

smaller set of variables to represent fluents and to induce production rules that describe the causal

transitions between fluents. Crucially, the cluster number is determined such that the resulting

grammar seeks to reduce its complexity by having fewer types of variables while preserving the

necessary discriminability of fragments for consistency of transitions. More importantly, gram-

mar’s recursive and compositional nature allows us to model the fluent and fluent space compactly

and flexibly and achieve better generalization.

In the experiments, we collect a dataset of human cutting demonstrations in simulation, from

which we induce the grammar model and learn to generate action parameters for cutting. Dur-
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ing the test phase, we demonstrate the efficacy of the proposed grammar-based representation and

planning method on a series of object-cutting tasks, including those under novel setups. A prelim-

inary real robot experiment also shows that our method can be applied to real-world object-cutting

scenarios.

6.1.1 Related Work

Planning a sequence of actions to alter objects’ states towards a goal is a long-standing prob-

lem in robotics and artificial intelligence. Task planning [LaV06] efficiently searches for a se-

quence of discrete actions to reach the goal based on a known planning domain, usually defined in

PDDL [AHK98]. While this approach provides a general and practical solution, it is limited to a

fixed number of objects and relies on known transition models and hand-crafted state and action

abstractions [SFR14, Tou15, GLK18, JZW21b].

An alternative approach is Model-based Reinforcement Learning, which effectively learns a

transition model from interaction data, potentially with a learned state representation [CCM18,

JFZ19, HLF19]. While this method achieves impressive performance, it requires extensive explo-

ration and may not generalize well in complex scenarios.

We adopt an approach inspired by Task and Motion Planning (TAMP), accommodating a

changing number of objects, while learning a stochastic grammar model to represent an abstract

planning domain for object cutting. Notably, the production rules in the grammar model effec-

tively bridge the gap between planning discrete cutting actions and generating continuous action

parameters (see Section 6.3.3).

6.1.2 Overview

The remainder of this chapter is organized as follows. Section 6.2 formally models the object

fragmentation process in object cutting using stochastic grammar and provides insights into learn-

ing such a model from human demonstrations. Section 6.3 formulates the plan-to-cut problem
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as probabilistic inference, leveraging the learned grammar model, and presents an algorithm for

online planning. Furthermore, in Section 6.4, we demonstrate the efficacy of our method through

a series of experiments, including novel scenarios. Finally, we conclude the chapter and discuss

future research directions in Section 6.5.

6.2 Attributed Stochastic Grammar of Object Fragmentation

An object fragmentation process ro : Ωo Ñ Ωo transforms a set of object fragments Ipre P Ωo

into another set of fragments Ipost P Ωo, where I “ toiu represents the configuration of the object

fragments, 1 ď |Ipre| ď |Ipost|, and oi represents an initial whole object or a fragment by its shape

(e.g., point cloud), pose, etc. Considering the complex nature of Ωo, where each fragment could

vary in shape, we instead regard some fragments oi P I as the same type cj P C via clustering,

where S “ tcju defines an object fluent of the configuration I. As such, we obtain a simplified

fluent space Ωs “ tSu that depicts a fragmentation process rs : Ωs Ñ Ωs with better abstraction.

6.2.1 Grammar representation of object fragmentation

We adopt an attributed stochastic grammar [PNZ17] to model causal transitions in object fragmen-

tation, where terminal variables with their attributes represent the configuration of fragments, and

production rules capture the valid causal transitions that an object breaks into multiple fragments.

Formally, the attributed stochastic grammar is defined by a 5-tuple G “ xVNT , VT , vS, R,Py, where

vNT P VNT is a non-terminal variable that denotes a fragment type c P C, vT P VT is a terminal

variable that denotes a fragment type c P C with pose q P SEp3q and shape feature z as its

attributes, vS is the start symbol, P is the probability of the production rules defined over the gram-

mar, and ri P R is the production rule ri : VNT Ñ pVNT Y VT q
˚, where p¨q˚ is the Kleene star

operation, enabling a production rule to describe an arbitrary fragmentation within the domain of

VNT Y VT . A fluent S is defined by terminals of a parse tree pt generated from G, and the fluent

space is defined by Ωs “ LpGq, where LpGq represents the set of all possible fluents generated by
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pose qi
<latexit sha1_base64="vbDVkBYzwi1b81pKp+SjQXQjerY=">AAAB6nicbVC7SgNBFL3jM8ZX1FKRwSBYhd1YaBm0sUzQPCBZwuxkNhkyO7vOzAphSWlpY6GIrR+R77DzG/wJJ49CEw9cOJxzL/fe48eCa+M4X2hpeWV1bT2zkd3c2t7Zze3t13SUKMqqNBKRavhEM8ElqxpuBGvEipHQF6zu96/Hfv2BKc0jeWcGMfNC0pU84JQYK93et3k7l3cKzgR4kbgzki8djSrfj8ejcjv32epENAmZNFQQrZuuExsvJcpwKtgw20o0iwntky5rWipJyLSXTk4d4lOrdHAQKVvS4In6eyIlodaD0LedITE9Pe+Nxf+8ZmKCSy/lMk4Mk3S6KEgENhEe/407XDFqxMASQhW3t2LaI4pQY9PJ2hDc+ZcXSa1YcM8LxYpN4wqmyMAhnMAZuHABJbiBMlSBQhee4AVekUDP6A29T1uX0GzmAP4AffwARDORfA==</latexit>

MCST node
tree edge

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c4
<latexit sha1_base64="7/VF8BIhxMVSTdrnXK4JAjihCBo=">AAAB7HicbVC7SgNBFL0bXzG+ooKNzWAQrMJuFLQMsbFMwE0CcQmzk9lkyOzMMjMrhCXfYGOhiK2df+EX2Nn4LU4ehSYeuHA4517uvSdMONPGdb+c3Mrq2vpGfrOwtb2zu1fcP2hqmSpCfSK5VO0Qa8qZoL5hhtN2oiiOQ05b4fB64rfuqdJMilszSmgQ475gESPYWMkn3exi3C2W3LI7BVom3pyUqkeNb/Ze+6h3i593PUnSmApDONa647mJCTKsDCOcjgt3qaYJJkPcpx1LBY6pDrLpsWN0apUeiqSyJQyaqr8nMhxrPYpD2xljM9CL3kT8z+ukJroKMiaS1FBBZouilCMj0eRz1GOKEsNHlmCimL0VkQFWmBibT8GG4C2+vEyalbJ3Xq40bBo1mCEPx3ACZ+DBJVThBurgAwEGD/AEz45wHp0X53XWmnPmM4fwB87bD5Sjkjs=</latexit>

c4
<latexit sha1_base64="7/VF8BIhxMVSTdrnXK4JAjihCBo=">AAAB7HicbVC7SgNBFL0bXzG+ooKNzWAQrMJuFLQMsbFMwE0CcQmzk9lkyOzMMjMrhCXfYGOhiK2df+EX2Nn4LU4ehSYeuHA4517uvSdMONPGdb+c3Mrq2vpGfrOwtb2zu1fcP2hqmSpCfSK5VO0Qa8qZoL5hhtN2oiiOQ05b4fB64rfuqdJMilszSmgQ475gESPYWMkn3exi3C2W3LI7BVom3pyUqkeNb/Ze+6h3i593PUnSmApDONa647mJCTKsDCOcjgt3qaYJJkPcpx1LBY6pDrLpsWN0apUeiqSyJQyaqr8nMhxrPYpD2xljM9CL3kT8z+ukJroKMiaS1FBBZouilCMj0eRz1GOKEsNHlmCimL0VkQFWmBibT8GG4C2+vEyalbJ3Xq40bBo1mCEPx3ACZ+DBJVThBurgAwEGD/AEz45wHp0X53XWmnPmM4fwB87bD5Sjkjs=</latexit>

c1
<latexit sha1_base64="TCFWwDOHDVu+kQ+0VpRHhb9kyW8=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svcSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AZAUkjg=</latexit>

c1
<latexit sha1_base64="TCFWwDOHDVu+kQ+0VpRHhb9kyW8=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svcSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AZAUkjg=</latexit>

c1
<latexit sha1_base64="TCFWwDOHDVu+kQ+0VpRHhb9kyW8=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svcSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AZAUkjg=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c4
<latexit sha1_base64="7/VF8BIhxMVSTdrnXK4JAjihCBo=">AAAB7HicbVC7SgNBFL0bXzG+ooKNzWAQrMJuFLQMsbFMwE0CcQmzk9lkyOzMMjMrhCXfYGOhiK2df+EX2Nn4LU4ehSYeuHA4517uvSdMONPGdb+c3Mrq2vpGfrOwtb2zu1fcP2hqmSpCfSK5VO0Qa8qZoL5hhtN2oiiOQ05b4fB64rfuqdJMilszSmgQ475gESPYWMkn3exi3C2W3LI7BVom3pyUqkeNb/Ze+6h3i593PUnSmApDONa647mJCTKsDCOcjgt3qaYJJkPcpx1LBY6pDrLpsWN0apUeiqSyJQyaqr8nMhxrPYpD2xljM9CL3kT8z+ukJroKMiaS1FBBZouilCMj0eRz1GOKEsNHlmCimL0VkQFWmBibT8GG4C2+vEyalbJ3Xq40bBo1mCEPx3ACZ+DBJVThBurgAwEGD/AEz45wHp0X53XWmnPmM4fwB87bD5Sjkjs=</latexit>

c4
<latexit sha1_base64="7/VF8BIhxMVSTdrnXK4JAjihCBo=">AAAB7HicbVC7SgNBFL0bXzG+ooKNzWAQrMJuFLQMsbFMwE0CcQmzk9lkyOzMMjMrhCXfYGOhiK2df+EX2Nn4LU4ehSYeuHA4517uvSdMONPGdb+c3Mrq2vpGfrOwtb2zu1fcP2hqmSpCfSK5VO0Qa8qZoL5hhtN2oiiOQ05b4fB64rfuqdJMilszSmgQ475gESPYWMkn3exi3C2W3LI7BVom3pyUqkeNb/Ze+6h3i593PUnSmApDONa647mJCTKsDCOcjgt3qaYJJkPcpx1LBY6pDrLpsWN0apUeiqSyJQyaqr8nMhxrPYpD2xljM9CL3kT8z+ukJroKMiaS1FBBZouilCMj0eRz1GOKEsNHlmCimL0VkQFWmBibT8GG4C2+vEyalbJ3Xq40bBo1mCEPx3ACZ+DBJVThBurgAwEGD/AEz45wHp0X53XWmnPmM4fwB87bD5Sjkjs=</latexit>

c1
<latexit sha1_base64="TCFWwDOHDVu+kQ+0VpRHhb9kyW8=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svcSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AZAUkjg=</latexit>

c1
<latexit sha1_base64="TCFWwDOHDVu+kQ+0VpRHhb9kyW8=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svcSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AZAUkjg=</latexit>

c1
<latexit sha1_base64="TCFWwDOHDVu+kQ+0VpRHhb9kyW8=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svcSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AZAUkjg=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c2
<latexit sha1_base64="9uItQWxDLq3g+he0DbCWHPTlB7A=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82ssqk16x5JSdGfAqcRekVD1pfPP32ke9V/zs9mOaRkwaKojWHddJjJ8RZTgVbFLoppolhI7IgHUslSRi2s9mx07wuVX6OIyVLWnwTP09kZFI63EU2M6ImKFe9qbif14nNeG1n3GZpIZJOl8UpgKbGE8/x32uGDVibAmhittbMR0SRaix+RRsCO7yy6ukWSm7l+VKw6ZRgznycApncAEuXEEVbqEOHlDg8ABP8IwkekQv6HXemkOLmWP4A/T2A5GZkjk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

<latexit sha1_base64="YuF9MzI8DXOvVYDMzO2+Xr62Cug=">AAAB/HicbVDLSgMxFM3UV62v0bpzEyyCqzIj+NhZcKHLCvYB7VAymUwbmkmGJCOMQ/0VNy4U0aVf4Be4c+mfmGm70NYDIYdz7iUnx48ZVdpxvqzCwuLS8kpxtbS2vrG5ZW/vNJVIJCYNLJiQbR8pwignDU01I+1YEhT5jLT84UXut26JVFTwG53GxItQn9OQYqSN1LPLXV+wQKWRubIuDoRWo55dcarOGHCeuFNSOf+4+758283qPfuzGwicRIRrzJBSHdeJtZchqSlmZFTqJorECA9Rn3QM5SgiysvG4UfwwCgBDIU0h2s4Vn9vZChSeT4zGSE9ULNeLv7ndRIdnnkZ5XGiCceTh8KEQS1g3gQMqCRYs9QQhCU1WSEeIImwNn2VTAnu7JfnSfOo6p5Uj6+dSq0GJiiCPbAPDoELTkENXIE6aAAMUvAAnsCzdW89Wi/W62S0YE13yuAPrPcf65uZUw==</latexit>· · ·

<latexit sha1_base64="YuF9MzI8DXOvVYDMzO2+Xr62Cug=">AAAB/HicbVDLSgMxFM3UV62v0bpzEyyCqzIj+NhZcKHLCvYB7VAymUwbmkmGJCOMQ/0VNy4U0aVf4Be4c+mfmGm70NYDIYdz7iUnx48ZVdpxvqzCwuLS8kpxtbS2vrG5ZW/vNJVIJCYNLJiQbR8pwignDU01I+1YEhT5jLT84UXut26JVFTwG53GxItQn9OQYqSN1LPLXV+wQKWRubIuDoRWo55dcarOGHCeuFNSOf+4+758283qPfuzGwicRIRrzJBSHdeJtZchqSlmZFTqJorECA9Rn3QM5SgiysvG4UfwwCgBDIU0h2s4Vn9vZChSeT4zGSE9ULNeLv7ndRIdnnkZ5XGiCceTh8KEQS1g3gQMqCRYs9QQhCU1WSEeIImwNn2VTAnu7JfnSfOo6p5Uj6+dSq0GJiiCPbAPDoELTkENXIE6aAAMUvAAnsCzdW89Wi/W62S0YE13yuAPrPcf65uZUw==</latexit>· · ·

<latexit sha1_base64="YuF9MzI8DXOvVYDMzO2+Xr62Cug=">AAAB/HicbVDLSgMxFM3UV62v0bpzEyyCqzIj+NhZcKHLCvYB7VAymUwbmkmGJCOMQ/0VNy4U0aVf4Be4c+mfmGm70NYDIYdz7iUnx48ZVdpxvqzCwuLS8kpxtbS2vrG5ZW/vNJVIJCYNLJiQbR8pwignDU01I+1YEhT5jLT84UXut26JVFTwG53GxItQn9OQYqSN1LPLXV+wQKWRubIuDoRWo55dcarOGHCeuFNSOf+4+758283qPfuzGwicRIRrzJBSHdeJtZchqSlmZFTqJorECA9Rn3QM5SgiysvG4UfwwCgBDIU0h2s4Vn9vZChSeT4zGSE9ULNeLv7ndRIdnnkZ5XGiCceTh8KEQS1g3gQMqCRYs9QQhCU1WSEeIImwNn2VTAnu7JfnSfOo6p5Uj6+dSq0GJiiCPbAPDoELTkENXIE6aAAMUvAAnsCzdW89Wi/W62S0YE13yuAPrPcf65uZUw==</latexit>· · ·

<latexit sha1_base64="YuF9MzI8DXOvVYDMzO2+Xr62Cug=">AAAB/HicbVDLSgMxFM3UV62v0bpzEyyCqzIj+NhZcKHLCvYB7VAymUwbmkmGJCOMQ/0VNy4U0aVf4Be4c+mfmGm70NYDIYdz7iUnx48ZVdpxvqzCwuLS8kpxtbS2vrG5ZW/vNJVIJCYNLJiQbR8pwignDU01I+1YEhT5jLT84UXut26JVFTwG53GxItQn9OQYqSN1LPLXV+wQKWRubIuDoRWo55dcarOGHCeuFNSOf+4+758283qPfuzGwicRIRrzJBSHdeJtZchqSlmZFTqJorECA9Rn3QM5SgiysvG4UfwwCgBDIU0h2s4Vn9vZChSeT4zGSE9ULNeLv7ndRIdnnkZ5XGiCceTh8KEQS1g3gQMqCRYs9QQhCU1WSEeIImwNn2VTAnu7JfnSfOo6p5Uj6+dSq0GJiiCPbAPDoELTkENXIE6aAAMUvAAnsCzdW89Wi/W62S0YE13yuAPrPcf65uZUw==</latexit>· · ·

<latexit sha1_base64="Zq6xIRPVb+QCyUxz/j50ESUcBFM="></latexit>

f init = arg max
f

p(Ig
Z | ptf )

<latexit sha1_base64="oy8n78HB4AYyMMMlbZLsJIBi93c=">AAAB9HicbVDJSgNBEO1xjXGLelSkMQiewozgcgx68ZiAWSCZhJ5OT9Kkp2fsrgmEYY5+gxcPinj1nO/w5jf4E3aWgyY+KHi8V0VVPS8SXINtf1lLyyura+uZjezm1vbObm5vv6rDWFFWoaEIVd0jmgkuWQU4CFaPFCOBJ1jN69+O/dqAKc1DeQ/DiLkB6Uruc0rASG4ErcRvJVxySNN2Lm8X7AnwInFmJF88GpW/H49HpXbus9kJaRwwCVQQrRuOHYGbEAWcCpZmm7FmEaF90mUNQyUJmHaTydEpPjVKB/uhMiUBT9TfEwkJtB4GnukMCPT0vDcW//MaMfjXrnkpioFJOl3kxwJDiMcJ4A5XjIIYGkKo4uZWTHtEEQomp6wJwZl/eZFUzwvOZeGibNK4QVNk0CE6QWfIQVeoiO5QCVUQRQ/oCb2gV2tgPVtv1vu0dcmazRygP7A+fgCTTpZX</latexit>

ptf
init

<latexit sha1_base64="T5os3dYGhh5zPQWz8HtPFktkMio=">AAAB8XicbVDJSgNBEO1xjXGLelSkMQjiIcwILsegF48JmAWTSejp9CRNenqG7hohDHP0D7x4UMSrP5Dv8OY3+BN2loMmPih4vFdFVT0vElyDbX9ZC4tLyyurmbXs+sbm1nZuZ7eqw1hRVqGhCFXdI5oJLlkFOAhWjxQjgSdYzevfjPzaA1Oah/IOBhFzA9KV3OeUgJHuI2glfis5TdN2Lm8X7DHwPHGmJF88GJa/Hw+HpXbus9kJaRwwCVQQrRuOHYGbEAWcCpZmm7FmEaF90mUNQyUJmHaT8cUpPjZKB/uhMiUBj9XfEwkJtB4EnukMCPT0rDcS//MaMfhXbsJlFAOTdLLIjwWGEI/exx2uGAUxMIRQxc2tmPaIIhRMSFkTgjP78jypnhWci8J52aRxjSbIoH10hE6Qgy5REd2iEqogiiR6Qi/o1dLWs/VmvU9aF6zpzB76A+vjB8CJlK8=</latexit>
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Figure 6.2: An illustration of the inference process to obtain an optimal parse tree pt˚ through

MCTS. (a) Given fragment point clouds in the current or goal configuration, we extract a shape

feature for each fragment with a pre-trained point cloud encoder and process it with an MLP to

classify the fragment type ppc|zq (the vector shows probability in greyscale). (b) We show an

example of a Monte Carlo search tree where the state of a search node is a parse tree derived

from the grammar. The expansion of a search node is to apply production rules to its parse tree.

The yellow region HpItq is a set of search nodes whose states (i.e., parse trees) are sampled from

fragments in It according to ppc|zq. (c-d) To evaluate rollout results, we find the best assignment

that grounds each terminal node to a fragment in Ig. The dotted lines in (c) represent an optimal

assignment that maximizes the shape matching likelihood in Eq. (6.5), which is further refined to

maximize the layout grouping likelihood in Eq. (6.6), shown in solid lines in (d).

G. Intuitively, a parse tree pt derived from G represents a plausible fragmentation sequence: the

collection of terminals corresponds to the resulting fragments, and the non-terminals indicate the

intermediate fragments in the past that subsequently fragment into the final configuration due to

the sequence of applied productions (i.e., cutting actions).

6.2.2 Grammar induction from human demonstrations

We propose to learn the stochastic grammar from object-cutting sequences generated by human

demonstrations; please refer to Section 6.4.1 for details of data collection.
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Corpus generation We extract a shape feature z for an object or fragment oi P I using a pre-

trained point cloud encoder (see Section 6.3.4), and cluster all features tzu into k fragment types

tcu. Then a corpus Dk
c “

␣

cpre
i Ñ tcpost

i,j u
(

is obtained by recording the fragment type before and

after each cutting action.

A critical question is how to determine the proper number of fragment types k to reduce gram-

mar complexity while maintaining sufficient discriminability among fragments. We solve it by

balancing the data likelihood and model complexity in grammar induction; see the details below.

Grammar induction Given corpus Dk
c , we use MAP estimation to induce an optimal grammar:

G˚
“ argmax

Gk

ppDk
c | Gkq ppGkq

“ argmax
Gk

ź

pαiÑβiqPDk
c

ppαi Ñ βi | Gkq
looooooooooooooomooooooooooooooon

data likelihood

¨ eγ|Gk|
loomoon

model prior

, (6.1)

where αi Ñ βi is the i-th production in Dk
c , γ a scalar coefficient, |Gk| the model size only

depending on k, and ppαi Ñ βi | Gq the branching probability of the production αi Ñ βi defined

in P.

We adopt an iterative non-parametric clustering approach, similar to DP-means [KJ12], to

solve for G˚ in Eq. (6.1) by alternating two steps: search for a better k, and estimate the best

production rules. With a fixed k, the best production rule probability aligns with the frequency of

each alternative choice [ZM07]:

ppαÑ βiq “ #pαÑ βiq{

npαq
ÿ

j“1

#pαÑ βjq, (6.2)

where #pα Ñ βq is the number of productions following α Ñ β in the corpus, and npαq is the

number of productions whose left-side (the non-terminals) is α. For ease of planning with G˚, we

also fit a classifier on the clustered fragments to model ppc|zq, the probability of a fragment’s type

c given its shape feature z.
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6.3 Planning for Object Cutting

We aim to plan a sequence of cutting actions to achieve the goal configuration Ig from an initial

configuration of fragments It. Each cutting action involves cutting one object or fragment using

a 3D cutting plane represented as π “ rnT , dsT P R4, where }n}2 “ 1 is a unit plane normal

vector, and nT ¨ v ` d “ 0 represents the cutting plane constraint. We represent cutting planes in

the canonical frame of the fragment to cut.

The planning problem is transformed into inferring an optimal parse tree of desired fragments

given the learned grammar model that captures all possible causal transitions in object cutting. The

planning is solved online using MCTS, detailed in Section 6.3.2. Each production in the parse tree

corresponds to a cutting action, and given the inferred parse tree, we generate the cutting plane π

for each action with a sampling-based method (see Section 6.3.3).

6.3.1 The posterior probability of parse trees

We derive the posterior probability of a parse tree pt, representing a fragmentation sequence or a

plan of cutting actions, given the goal configuration Ig and the grammar G. For each fragment in

Ig, we extract shape feature z and pose q, resulting in IgZ “ tziu and IgQ “ tqiu.

The posterior probability is given by:

pppt | Ig,Gq ∝ pppt | Gq
looomooon

grammar
prior

ppIgZ | ptq
loooomoooon

shape matching
likelihood

ppIgQ | ptq
loooomoooon

layout grouping
likelihood

, (6.3)

where the first term is the prior probability of the parse tree pt given G, and the second and third

terms describe the likelihood of observing Ig given pt in terms of fragment shape and pose. The

overall posterior probability measures the alignment between pt generated by G and the goal con-

figuration Ig.
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Grammar prior The grammar prior captures possible causal transitions of object or fragment

types. It is based on the learned production rules and branching probability:

pppt | Gq “
ź

pαiÑβiqPRpt

ppαi Ñ βi | Gq, (6.4)

where Rpt is the set of productions in the parse tree pt, and ppαi Ñ βi | Gq is the conditional

probability of choosing the production αi Ñ βi given the non-terminal node αi.

Shape matching likelihood The shape matching term evaluates the alignment between pt and

the goal configuration Ig in terms of fragment geometry:

ppIgZ | ptq “
N
ź

i“1

ppzi | ciq9
N
ź

i“1

ppci | ziq ppziq, (6.5)

where ci is the fragment type of the i-th terminal node in pt, zi is the shape feature of the corre-

sponding fragment, andN is the number of fragments in IgZ . The prior ppziq is a normal distribution

fitted on the train set, and ppci|ziq is obtained from the classifier based on the shape feature zi.

Layout grouping likelihood The layout grouping term measures the alignment between pt and

Ig in terms of fragment layout:

ppIgQ | ptq “
ź

pαiÑβiqPRpt

p pβi | αi Ñ βiq

“
ź

pαiÑβiqPRpt

ź

v
βi
j Pβi

p
´

vβij | αi Ñ βi

¯

,
(6.6)

where αi Ñ βi is the i-th production in Rpt, αi is the non-terminal node being expanded, and βi

represents the produced nodes from the rule. vβij is the j-th produced node in βi, and ppvβij |αi Ñ βiq

gives the probability that production αi Ñ βi produces node vβij .

Assuming that the closer the fragments, the more likely they come from the same piece, we

define the distribution ppvβij | αi Ñ βiq by an energy function:

p
´

vβij | αi Ñ βi

¯

“
1

Z
exp

´

´distpqαi , qβij q
¯

, (6.7)
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where Z is the partition function, qβij the averaged pose of fragments in descendants under the node

vβij , qαi the averaged poses of descendants in αi, and distp¨, ¨q the distance function that measures

the distance between two poses. In practice, we calculate the Euclidean distance between the

positions of two nodes and adopt dynamic programming when computing qαi and qβij to avoid

redundant computations.

6.3.2 Inference of the optimal parse tree

Given the current configuration It, we aim to plan an optimal sequence of cutting actions that leads

to a desired configuration Ig. We formulate the planning process as inferring the optimal parse tree

via an MAP estimate:

pt˚ “ argmax
ptPHpItq

pppt | Ig,Gq

“ argmax
ptPHpItq

pppt | Gq ppIgZ | pt,Gq ppIgQ | pt,Gq,
(6.8)

where HpItq is a set of parse trees whose expansions from the start variable are sampled from

ppc|zq for each fragment in It after extracting shape feature z.

Since the computation of pt˚ in Eq. (6.8) is intractable, we approximate pt˚ via Monte Carlo

Tree Search (MCTS) as shown in Fig. 6.2b. Initially, the algorithm starts with the root node of the

search tree, which contains the start variable vS of the grammar. The expansion and simulation step

of MCTS is a process of applying feasible production rules (i.e., possible causal transitions) on the

parse tree of the search node, and the rollout results in each round are evaluated by measuring the

objective function in Eq. (6.8). During the backpropagation step, we use the objective function

value as the score to update the nodes on the path from the root to the rollout result. Finally, the

best rollout result among all rounds in MCTS will be selected as pt˚.

To evaluate the objective function, we need to align every terminal node with a unique fragment

in Ig, as described in Section 6.3.1. Hence, for the i-th round of rollout, we compute an optimal

assignment function f˚
i : VT Ñ O that grounds each terminal node vT in pti to a unique fragment

o in Ig, such that the resulting parse tree ptf
˚

i maximizes the objective in Eq. (6.8) as well. Since
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N = 1, M = 1 N = 1, M = 2 N = 2, M = 1 N = 2, M = 2 N = 3, M = 4

Figure 6.3: Examples of collected data with different levels of task complexity. N is the initial

number of objects, and M the number of fragment categories in the goal configurations. The

bottom right corner of each subfigure shows the initial configuration.

the grammar prior term is irrelevant to the assignment, we have:

f˚
“ argmax

f
ppIgQ | ptfi q ppIgZ | ptfi q, (6.9)

where ptfi denotes the parse tree whose terminal nodes are grounded to fragments in Ig by the

assignment function f .

Since directly computing f˚ is intractable (factorial to the number of fragments), we obtain an

approximate solution in two steps: (i) Compute an assignment function f init that maximizes the

shape matching likelihood ppIgZ | ptf q in Eq. (6.5); see the dotted lines in Fig. 6.2c. (ii) Refine f init

into f˚ that maximizes the layout grouping likelihood ppIgQ | ptf q in Eq. (6.6) while conserving

the optimality obtained in the previous step; see solid lines in Fig. 6.2d.

The first step formulates a linear assignment problem that can be solved in polynomial time us-

ing the Hungarian algorithm [Kuh55]. Then we adopt the simulated annealing algorithm [KGV83]

to maximize ppIgQ | ptf q, where we randomly swap the matched terminal nodes of two fragments.

As we do not want to violate the established optimality of ppIgZ | ptf q, we only swap terminal

nodes with the same fragment type.
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6.3.3 Cutting plane generation

With an inferred optimal parse tree whose productions correspond to cutting actions, we generate

cutting planes to make the actions executable. We model the cutting plane π of an action as a

Gaussian Mixture Model (Gaussian Mixture Model (GMM)) with its parameters depending on

the production rule r and the shape feature z of the fragment to cut. The GMM parameters are

regressed using a two-layer Mixture Density Network [Bis94], learned from human demonstration

data. During planning, we compute GMM parameters with a forward pass of the neural network

and sample cutting planes from the corresponding GMMs for execution. We generate cutting

planes for each production separately (i.e., cut one object or fragment at a time).

6.3.4 Implementation details

We define a consistent canonical frame for each fragment to match and distinguish between object

fragments presented in different poses. The canonical frame is defined on a shape so that its

projection along the z-axis is maximized, its projection along the x-axis is minimized, and its

volume in the first octant is the largest. In practice, we compute the canonical frame of a fragment

by principal component analysis.

We use a 17-dimensional vector z “ pzshape, zscaleq as the shape feature, where zshape P R16

encodes the normalized shape represented in its canonical frame with a point cloud encoder. The

scalar zscale P R represents the scale. We adopt a naive encoder that processes all point coordi-

nates and normals with a shared Multi-layer Perceptron (MLP) followed by an average pooling

layer; the encoder is trained on all fragments in the train set of human cutting data following

IMNet [CGG19].
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6.4 Simulations and Experiments

We developed an object-cutting simulator based on BulletPhysics [CB21] to collect human demon-

strations and test our method and baselines. Specifically, we implemented a Slice function in

BulletPhysics that slices an object with a 3D plane. All methods were trained and evaluated in

the simulator. Furthermore, we demonstrated that our proposed model, trained in the simulation

environment, can effectively handle real-world object-cutting tasks a physical robot executes.

6.4.1 Data preparation

To collect human demonstrations, we asked human subjects to cut virtual objects presented in

the simulator into one of the four fragment categories (i.e., chunks, slices, cubes, and strips) or

their combinations, using an intuitive Graphical User Interface (GUI) offered by the simulator. A

cutting action is applied as a human subject specifies a 3D cutting plane by clicking two points

on the GUI. We recorded each trail of demonstration as a sequence of fragment configurations

and cutting actions; the ground-truth 3D geometry of each fragment and its pose can be directly

retrieved from the simulator. A total of 110 object-cutting trails were collected and partitioned

according to the initial number of objects N and the number of fragment categories in the goal

configurations M ; see Fig. 6.3 for some examples. We split the collected data, using a subset

(40%) of N “ 1,M “ 1 as the train set and test on the remaining trails (i.e., the rest of partition

N “ 1,M “ 1 and partitions N ą 1,M ą 1).

6.4.2 Experimental setup

We test our method against various baselines to compute a sequence of cutting actions that reach

a goal configuration Ig from a current fragment configuration It, retrieved from test set trials.

Instead of planning and executing all actions at once, we execute one action at a time and re-

plan from the resultant configuration. This process repeats until we achieve the target number

of fragments in the goal configuration. In our approach, we randomly select one production and
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Table 6.1: Quantitative results of planning for object cutting under various task setups. We

evaluate all methods using the best-matched IoU and Human Rating (HR) on test sets with different

N,M combinations, averaged across five runs; ˘ denotes standard deviation.

Task Setup
BC QNet Ours Human

IoU HR IoU HR IoU HR IoU HR

Seen N=1, M=1 0.37˘ 0.11 2.19˘ 1.07 0.40˘ 0.16 2.14˘ 1.21 0.58˘ 0.08 4.32˘ 0.77 0.57˘ 0.03 4.48˘ 0.96

Unseen

N=1, M=2 0.35˘ 0.08 1.76˘ 0.87 0.32˘ 0.12 1.95˘ 0.87 0.49˘ 0.06 3.60˘ 1.02 0.62˘ 0.07 4.86˘ 0.35

N=2, M=1 0.44˘ 0.08 1.64˘ 0.65 0.34˘ 0.16 1.19˘ 0.39 0.56˘ 0.03 3.69˘ 0.89 0.62˘ 0.09 4.83˘ 0.37

N=2, M=2 0.42˘ 0.03 2.07˘ 0.86 0.29˘ 0.09 1.24˘ 0.43 0.52˘ 0.04 3.74˘ 0.90 0.56˘ 0.04 4.79˘ 0.56

N=2, M=3 0.38˘ 0.03 1.73˘ 0.99 0.28˘ 0.09 1.52˘ 0.92 0.52˘ 0.03 3.21˘ 0.86 0.60˘ 0.04 4.81˘ 0.55

N=3, M=4 0.38˘ 0.04 1.57˘ 0.62 0.22˘ 0.08 1.26˘ 0.49 0.52˘ 0.02 3.21˘ 0.86 0.56˘ 0.04 4.81˘ 0.55
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=3

GoalInitial Ours HumanBC QNet

Figure 6.4: Qualitative results of object cutting to achieve a desired set of fragments. Each

row shows sample results of different methods under specific task setups.

execute the corresponding cutting action when multiple productions are available from the derived

parse tree. Below, we describe the baseline methods and evaluation metrics that measure goal

achievement.

6.4.2.1 Baselines

Given the success of learning-to-plan methods in handling complex state spaces, we design two

baselines using a state embedding s, obtained by projecting shape features with an MLP followed
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by sum-pooling: (i) Behavioral Cloning (BC): It learns a goal-directed policy with a two-layer

MLP to mimic human actions in collected demonstrations. The policy predicts the cutting probabil-

ity per fragment based on its shape feature zi, current state embedding s, and goal state embedding

sg. The fragment to be cut is sampled based on the obtained probability, and cutting planes are

sampled from a learned GMM conditioned on zi and sg. (ii) Offline Deep Q Network (QNet):

This model-free reinforcement learning approach is trained on logged data. We approximate a

goal-conditioned action value function (Q function) using a two-layer MLP. During training, we

assign sparse rewards to state-action pairs that achieve the goal, where an action is to choose a

fragment to cut. Since the train set only contains positive demonstrations, we add a large margin

loss term to encourage assigning a higher value to actions seen during training [KS20]. At test

time, we select the best fragment to cut according to the Q function and sample a cutting plane

identical to BC. Furthermore, we recruit (iii) Human participants to perform cutting tasks under

the same setup, which serves as the performance upper bound.

6.4.2.2 Evaluation metrics

Due to geometric similarities between two fragment configurations despite different layouts, we

design two metrics to evaluate how well the produced fragments match the goal configuration: (i)

Mean best-matched IoU: This objective metric is the averaged IoU between the best-matched

fragment pairs (see Fig. 6.5 dotted lines) in the produced final fragments and fragments in the goal

configuration. We compute best-matched fragment pairs as a linear assignment problem using

the Hungarian algorithm [Kuh55] in polynomial time. (ii) Human Rating: We recruit human

participants to subjectively rate the fitness of the produced fragments against the goal. The rating

ranges from 1 to 5 in discrete values, with higher scores indicating a better match.

128



6.4.3 Simulated results

We present the results of our method and the baselines under different test setups in Table 6.1,

and a qualitative comparison in Fig. 6.4. Our method outperforms BC and QNet in both objec-

tive and subjective metrics across all six setups, demonstrating superior generalization capabilities

in scenarios involving more objects to cut (N ą 1) and/or a composition of fragment types in

the goal (M ą 1). While BC performs on par with QNet in relatively simple task instances

(N “ 1,M “ 1), it outperforms QNet in most generalization setups. Our method excels in learn-

ing a valid planning domain with a small amount of data and generalizing to novel task setups,

thanks to the grammar model that effectively abstracts the fluent space and represents causal tran-

sitions in a compositional manner. The qualitative results and superior human rating of our method

further demonstrate that the grammar models the fluents and causal transitions in a semantically

meaningful way, aligning well with humans’ mental abstraction of fragmenting objects.

6.4.4 Real-world robot experiment

We conduct a real robot experiment with a Kinova Gen 3 manipulator with a knife-like end-effector

to cut an object into desired fragments. The goal configuration is given as fragment point clouds,

Figure 6.5: An example of best-matched fragments for evaluation. Each dotted line connects a

pair of best-matched fragments. Since the number of fragments is unbalanced between two sets of

fragments, some fragments in the larger set remain unmatched.
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Figure 6.6: Real-world object cutting experiment. Experiment on object cutting with a Kinova

Gen 3 manipulator. The top-left figure illustrates the environment setup, and examples of the

robot cutting a carrot and a potato are shown. The sequence of actions applied and the resulting

fragments demonstrate a good alignment with the goal.

while the robot observes a single point cloud of the current configuration by fusing outputs from

two third-person-view depth cameras. The observed point cloud is segmented to produce per-

fragment point clouds using a point cloud segmentation model [QYS17] trained on the simulation

dataset. We plan and execute a sequence of cutting actions following Section 6.3. The grammar

and neural networks are fully trained on simulated data as described in Section 6.4.3.

Fig. 6.6 presents the environment setup and keyframes of the robot executing planned actions to

cut a carrot and a potato. The robot can generate meaningful cutting actions and produce fragments

well-aligned with the goal. The experimental results demonstrate our method’s ability to handle

perception uncertainties and its potential in real-world object-cutting tasks.
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6.5 Conclusion

In this work, we introduced a stochastic grammar of object fragmentation, which abstracts the state

of fragments as terminal variables and accommodates causal transitions in object fragmentation

through production rules. The proposed representation is powerful for modeling causal transitions

in object fragmentation, enabling an agent to plan actions that cut an object into desired fragments.

The planning problem is formulated as inferring an optimal parse tree of the desired configuration,

where terminal nodes are ground to the produced final fragments and the productions indicate cut-

ting actions. Our method achieved remarkable performance in planning for object-cutting tasks,

even when applied to novel test setups with significant variations compared to the training set.

Moreover, we conducted a preliminary real robot experiment utilizing a model trained in simula-

tion, demonstrating the robustness of our method in the physical world. This work introduces a new

perspective on object modeling and explores a new dimension of robot manipulation capability.

Limitations While our method effectively abstracts the state space with fluents and models a

simplified set of causal transitions, it still has some limitations. One notable limitation is the

computational complexity of the MCTS method, especially when the goal configuration involves a

large number of fragments, MCTS often requires considerable time to arrive at an optimal solution.

Integrating Reinforcement Learning techniques with tree search, similar to Alpha-Go [SHM16],

could be a potential avenue to address this issue and further improve planning efficiency. Addi-

tionally, our method only permits cutting a single object in its object-centric frame. Extending the

proposed approach to cut multiple objects simultaneously and incorporating interactions between

objects during cutting remain an open challenge for future research.

Discussion One of the key strengths of our approach is the ability to generalize to unseen sce-

narios and handle various cutting tasks with different numbers of objects and fragment categories.

The grammar model, representing fragments as terminal variables and causal transitions through

productions, allows the agent to abstract the object’s state and plan for actions accordingly. This
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enables our method to effectively infer an optimal parse tree that guides the cutting process toward

the goal configuration. Moreover, our approach is capable of learning the planning domain from

a relatively small amount of simulated data, which makes it a practical and efficient solution for

real-world object-cutting tasks on a physical robot.

Furthermore, the real-world experiment conducted with a Kinova Gen 3 manipulator show-

cased the applicability of our method in a physical setting. The robot was able to generate mean-

ingful cutting actions and produce fragments that aligned well with the desired configuration. How-

ever, limitations in the modeling of complex contact dynamics could introduce uncertainty in the

execution phase. Addressing these challenges and achieving more precise execution in real-world

scenarios will be critical for practical deployment.
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CHAPTER 7

Conclusion

This dissertation introduces a unified scene abstraction perspective for long-horizon robot plan-

ning with generalization to diverse tasks and scenarios. The core of this approach is to acquire a

perception model that abstracts raw observations into structural representations, and a world model

that allows predicting action outcomes for search-based planning. We focus on scene graph-based

representations that abstract functional objects and their relations as symbols, which span a com-

pact state space for effective planning. We present three parts of our work that tackle challenges of

different aspects.

‚ Chapter 2 focuses on the perception problem of reconstructing a 3D scene graph representa-

tion for robot TAMP. We show that the proposed perception system can robustly recover 3D

objects and their relations from observation sequences, establishing foundations for robot

planning with the scene graph representation.

‚ Chapter 3 and Chapter 4 present closed-loop planning solutions that allow robots to reason

about and recover from failures. We show that by leveraging internal knowledge of language

models and environment feedback such as scene graphs, we achieve open-ended reasoning

and planning in a large range of mobile and tabletop manipulation tasks.

‚ Chapter 5 and Chapter 6 introduce methods for learning symbolic abstractions and world

models for effective and generalizable robot planning. We show that by learning rela-

tional symbols (i.e., predicates) and object symbols and the corresponding world models,

our framework yields strong generalizability in unseen object configurations and goals.

133



Below, we summarize several key insights and promising future directions in building robots

capable of solving unseen long-horizon tasks from raw sensor observations.

Perceptual Abstraction for Task Generalization Building perceptual abstractions that gener-

alize is the backbone of task generalization. This dissertation develops perception solutions on top

of general-purpose perception models (e.g., object detection, segmentation), which possess a cer-

tain level of generalization ability. Moving forward, a promising direction is to develop pretraining

methods that learn generalizable perceptual abstractions, i.e., most likely dense embeddings, for

visual and other sensor modalities in robotic tasks.

Robustness and Generlizability of Manipulation Skills An important assumption of the pro-

posed scene abstraction framework and many robot planning frameworks is access to robust ma-

nipulation skills. However, this assumption usually does not hold for tasks beyond picking up and

placing simple objects. Learning manipulation skills as neural policies from data is a promising di-

rection to explore. While scaling up data generation in the real world is expensive, one possibility

is to generate large-scale simulation data with drastic domain randomization.
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ning in the now.” In IEEE International Conference on Robotics and Automation
(ICRA), pp. 1470–1477. IEEE, 2011.

[KR96] David C Knill and Whitman Richards. Perception as Bayesian inference. Cambridge
University Press, 1996.

[KS20] Beomjoon Kim and Luke Shimanuki. “Learning value functions with relational state
representations for guiding task-and-motion planning.” In Conference on Robot Learn-
ing (CoRL), 2020.

[Kuh55] Harold W Kuhn. “The Hungarian method for the assignment problem.” Naval Re-
search Logistics Quarterly, 2(1-2):83–97, 1955.

[KZG17] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. “Visual
genome: Connecting language and vision using crowdsourced dense image annota-
tions.” International Journal of Computer Vision (IJCV), 123:32–73, 2017.

[LaV98] Steven M LaValle. “Rapidly-exploring random trees: A new tool for path planning.”
Technical report, Computer Science Dept., Iowa State Univ., Ames, IA, 1998. Unpub-
lished.

144



[LaV06] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[LBS23] Zeyi Liu, Arpit Bahety, and Shuran Song. “REFLECT: Summarizing Robot Expe-
riences for Failure Explanation and Correction.” In Conference on Robot Learning
(CoRL), pp. 3468–3484. PMLR, 2023.

[LCZ23] Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-
An Cheng. “Interactive Robot Learning from Verbal Correction.” arXiv preprint
arXiv:2310.17555, 2023.

[LHL22] Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B. Tenenbaum, David Held, and Chuang
Gan. “DiffSkill: Skill Abstraction from Differentiable Physics for Deformable Object
Manipulations with Tools.” In International Conference on Learning Representations
(ICLR), 2022.

[LHX23] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete
Florence, and Andy Zeng. “Code as policies: Language model programs for embodied
control.” In IEEE International Conference on Robotics and Automation (ICRA), pp.
9493–9500. IEEE, 2023.

[LJZ23] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and
Peter Stone. “Llm+ p: Empowering large language models with optimal planning
proficiency.” arXiv preprint arXiv:2304.11477, 2023.

[LLK19] Xueting Li, Sifei Liu, Kihwan Kim, Xiaolong Wang, Ming-Hsuan Yang, and Jan
Kautz. “Putting humans in a scene: Learning affordance in 3d indoor environments.”
In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
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