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On the Extrinsic Geometry of Conformally Embedded Hypersurfaces

Abstract

The relationship between the boundary of a manifold and its interior is important for studying

many problems in science, as it allows us to predict the behavior of certain problems that can

be modeled by partial di�erential equations. We study bulk-boundary relationships for conformal

manifolds. A key tool for analyzing conformal manifolds is tractor calculus. By comparing the

conformal structure in the interior with that of the boundary, we provide a complete hypersurface

tractor calculus and develop a conformally-invariant characterization of the extrinsic curvature of the

embedded hypersurface. These tools provide a characterization of families of conformal manifolds

with boundaries that are of particular interest to physicists: so-called Poincarè�Einstein manifolds

and Willmore manifolds. Furthermore, we produce a series of conformally-invariant hypersurface

operators and curvatures in boundary dimension four and discuss generalizations of these objects

to arbitrary dimension.
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CHAPTER 1

Introduction

1.1. Motivation

Central to science is the ability to specify data at a given time or place and make predictions

about other times or places where that data was not speci�ed. Indeed, the scienti�c endeavor's

success relies on universal laws that relate quantities now or here to quantities then or there. Often,

such relationships are described by di�erential equations, and the input data is given in the form

of initial values or boundary values. We will refer to all such problems as boundary value problems

(BVPs). To describe such a problem generally, we treat BVPs as the speci�cation of an object (i.e.

a function, a tensor, or an operator) on the boundary of some smooth manifold. That speci�cation,

along with some prescribed relationship, is then used to predict the behavior of the same object

away from the boundary.

One such particularly interesting class of BVPs are those where the conformal in�nity of a

(pseudo-)Riemannian manifold is speci�ed (see Section 5.1 for details). When the underlying man-

ifold has a Lorentzian signature, then one can use these BVPs to study scattering of fundamental

�elds or to study the causal structure of the manifold itself. In Riemannian signatures, we can use

these BVPs to better understand systems that are invariant under local changes in unit systems:

those that have local scale symmetries. Such systems are called conformal structures and will be

our primary focus.

In the general relativity setting, the study of smooth and complete Cauchy slices as initial data

is important for understanding the causal structure of solutions to Einstein's �eld equations on a

manifold. Thus, it is natural to examine the geometric constraints on these Cauchy slices. In the

speci�c case where the cosmological constant is negative, we can view the conformal compacti�cation

of the Cauchy slice as a conformal manifold with Euclidean signature. In that case, the geometric

constraints on a smooth Cauchy slice specify a conformal BVP which has been well-studied; a
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seminal result of Andersson, Chrusciel, and Friedrich [2] characterized the allowed boundary data

sets so that the Cauchy slice is smooth and complete. This result (and others) suggest a deeper

connection between the causal structure of spacetime and conformal BVPs.

Another motivation for studying conformal BVPs is a proposed relationship between type IIB

string theory in an asymptotically AdS5 × S5 and N = 4 supersymmetric Yang�Mills on its four-

dimensional boundary�called the AdS/CFT correspondence� proposed by Maldacena [60]. In

particular, one can view this correspondence as a prescription for the relationship between bound-

ary data and the interior, e�ectively specifying a BVP where the boundary data is some matter

content and a conformal structure. Since this proposal, many explicit relationships have been found

between properties of the conformal theory on the boundary and the gravitating theory in the AdS

spacetime. One early such result by Henninson and Skenderis [55] is the relationship between the

Weyl anomaly on the boundary CFT and a particular conformally-invariant geometric quantity

found in the Laurent series expansion of the in�nite volume of the AdS bulk (see Section 6.4 for

more details).

Later, the Bekenstein�Hawking entropy [8, 54] (reproduced in another setting by Strominger

and Vafa [76]) was explicitly reproduced by Ryu and Takayanagi in 2006 [70,71] in the classical

limit of the AdS/CFT correspondence. A consequence of their result is a proposed generalization of

the Bekenstein�Hawking entropy: that the entanglement entropy of a given state on the CFT side

of the AdS/CFT correspondence is given (in natural units) by one quarter of the surface area of a

particular spacelike codimension-2 submanifold attached to the boundary and extending into the

bulk. Again, this suggests that there is a fundamental relationship between a geometric quantity

(the area of a particular codimension-2 submanifold attached to the boundary) and a quantum

quantity (the entanglement entropy of the state in the CFT). Various other �dictionary entries,�

relating geometric quantities in the bulk to observables of the boundary CFT, have since been

proposed. Notably, in 2014, Susskind [74,78,79] proposed a correspondence between the quantum

complexity of a system on the boundary CFT and the volume of a particular associated region in

the AdS bulk.

Thus, we study the geometric properties of BVPs on conformal manifolds in a general setting.
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1.2. Organization

The next section provides a brief overview of some important aspects of Riemannian di�erential

geometry and lays out the notation that will be used throughout this dissertation.

Chapter 2 begins by contrasting conformal geometry with Riemannian geometry. From there,

a conformally-invariant tractor calculus on conformal manifolds is built, much like how one builds

the tensor calculus on Riemannian manifolds. For those who are familiar with the standard tractor

construction, we recommend skipping all but Section 2.5, where somewhat arcane (but useful)

tractor operator results are provided.

In Chapter 3, we provide a comparison between the standard treatment of hypersurfaces in Rie-

mannian geometry and its analog in conformal geometry. Using well-known results in the conformal

setting, we provide new tractor relationships that mimic classical results for Riemannian geometries.

At the end of the chapter, we provide an explicit description of geometric holography, the notion

that we can learn about the boundary of a system by studying solutions to a prescribed di�erential

equation in the holographic bulk.

In Chapter 4, we conclude our exposition of new tools developed for conformal hypersurface

calculus by introducing conformal fundamental forms�conformally-invariant tensors that charac-

terize extrinsic curvatures of an embedding. These are generalizations of the well-known second

fundamental form and provide a basis for understanding extrinsic conformal hypersurface geometry.

Due to complications in constructing conformally-invariant tensors on a conformal manifold, we

provide two distinct constructions for these tensors: one which does not generate the entire family

of conformal fundamental forms but is applicable in all dimensions and another which does generate

the entire family but only applies when the bulk dimension is even.

In Chapter 5, we give a �rst application of these conformal hypersurface geometry tools. In

particular, given a conformally-compact manifold, we prove that there is a one-to-one correspon-

dence between conformal fundamental forms vanishing on its conformal in�nity and the manifold

being asymptotically Einstein. This result suggests that these conformal fundamental forms are

obstructions to such a manifold being Einstein. In this chapter we also investigate a generalization

of the celebrated Willmore invariant and �nd that it can be almost entirely characterized in terms

of the conformal fundamental forms.
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Chapter 6 contains a series of lengthy computations where we explicitly use the conformal

hypersurface geometry described in Chapters 3 and 4 to compute certain conformal hypersurface

invariants of particular interest, including the Weyl anomaly for a four-dimensional CFT as well as

the Willmore energy and corresponding invariant for a hypersurface embedded in a �ve-manifold.

We conclude with proposed future work in Chapter 7, including investigations of higher codi-

mension conformally-embedded submanifolds, global phenomena using the calculus developed, and

new families of conformal manifolds. Appendix A gives an introduction to the software used to

generate many of the results in this dissertation, FORM [83].

1.3. Riemannian geometry and notations

The geometry of smooth manifolds with well-de�ned notions of both distance and angle takes

place on Riemannian manifolds. Throughout, we will restrict our considerations to manifolds of

dimension 3 or greater. A Riemannian manifold can be described by a pair (Md, g) consisting

of a d-dimensional di�erentiable manifold Md and a rank-2 positive-de�nite (and thus invertible)

symmetric tensor �eld g known as the metric tensor. Given a point x ∈ M , the metric tensor

assigns to each tangent space TxM an inner product, so that for u, v ∈ TxM , we can write ⟨u, v⟩gx :=

gx(u, v). Then, the magnitude of the vector u can be de�ned in the usual way via |u|gx :=
√
gx(u, u),

and the angle θ between vectors u and v is given by

cos θ = gx(u,v)
|u|gx |v|gx

.

Importantly, it is the existence of the inner product that allows for an invariant notion of length

and angle to be de�ned. In pseudo-Riemannian settings (like Lorentzian manifolds, which of are

particular physics interest), the requirement that the metric tensor be positive-de�nite is relaxed�

although it must still be invertible. Much of what will be said in this dissertation can be generalized

to pseudo-Riemannian manifolds, but we restrict our discussion to those with positive-de�nite metric

tensors.

Because the metric tensor is non-degenerate, it also has a well-de�ned inverse g−1, which sim-

ilarly assigns to each point x ∈ M an inner product on the cotangent bundle T ∗
xM . Thus, lengths

of and angles between covectors can just as well be de�ned in similar ways to those given above.
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In a coordinate patch of M with coordinates (x1, . . . , xd), we can write a vector u ∈ TxM as

u = ua ∂
∂xa and a covector α ∈ T ∗

xM as α = αadx
a, where indices take values between 1 and d

and repeated indices are implicitly summed over via the Einstein summation convention. Because g

de�nes an inner product on pairs of vectors in TxM , we can write g = gabdx
adxb. Further, because

dxa( ∂
∂xb ) = δab where δab is the Kronecker delta, we can thus write

gx(u, v) = gabu
avb

and

cos θ = gabu
avb√

gcdgefucudvevf
,

where we have dropped the subscript x when it is clear from context. In this notation, we can write

|u|2g = gabu
aub.

Observe from the above computations that vectors can be represented by symbols with �upper�

indices like ua and similarly covectors can be represented by symbols with �lower� indices like αa.

In a similar fashion, the metric tensor g can be represented by gab and its inverse g−1 can be

represented by gab. For the tangent and cotangent bundle of M (and their tensor products), we

will explicitly use letters from the �rst part of the Latin alphabet for abstract indices. In general,

more complex tensor structures can be represented by combinations of upper and lower indices, i.e.

one might represent a type (m,n) tensor T by T a1···am
b1···bn . This notation, where tensor structures

are represented by their index structure, is often called Penrose's abstract index notation [65] and

will be used throughout this dissertation. Note that in this notation, these indices do not take on

numerical values, nor do the symbols with indices represent sets of scalar �elds�this is merely a

tool for representing tensor operations. Moreover, no choice of coordinates is made. Alternatively,

sometimes we will place (co)vectors in the place of the abstract indices to represent the appropriate

contraction so that, for example, for vectors u, v ∈ TM one might write guv = gabu
avb.

To denote tensor symmetries, we will use round brackets for the symmetric part of a given tensor

structure so that, for example, va(bc)d := 1
2(vabcd+ vacbd), and square brackets for the antisymmetric

part, i.e. va[bc]d := 1
2(vabcd − vacbd). The trace of a rank-2 tensor is de�ned to be the contraction

of its indices via the metric or its inverse, so that tr(vab) := va
a. When we are only interested in

the trace-free part of some symmetric part of a tensor, we will follow the round brackets with a ◦
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so that v(ab)◦ := v(ab) − 1
dgabv

c
c. Alternatively, when the tensor is fully symmetric and trace-free,

we will sometimes place a ◦ over the tensor so that v(ab)◦ ≡ v̊(ab). Symmetric and antisymmetric

tensor products of vector bundles will be represented by ⊙ and ∧, respectively, and the trace-free

symmetric tensor products of vector bundles will be represented by ⊙◦. For example, at a point

x ∈ M , we have that gx ∈ ⊙2T ∗
xM . We will often refer to an arbitrary but �xed tensor product

of (co)tangent bundles by T ϕM , where in general we will use lower-case Greek letters. Thus, if

t ∈ T ϕM , we will say that t has tensor type ϕ. Furthermore, given a tensor vabc···e, we will use

the shorthand E(v) to denote vabc···et where t is an unspeci�ed tensor or tensor-valued operator

and a, b, c, . . . , e are any open indices. While the above discussion was given in the context of the

tangent and cotangent bundles of M , the same language will be used (with di�erent index names)

for di�erent vector bundles. In particular, when referring to arbitrary but �xed tensor products of a

generic vector bundle (that is not the tangent or cotangent bundles) then we will use capital Greek

letters for the same.

The metric and its inverse allow us to prescribe a natural isomorphism between TxM and

T ∗
xM , and thus we can use g and g−1 to �raise� and �lower� indices so that ua = gabu

b. Thus, for

u, v ∈ TxM we can write gabu
avb ≡ uav

a ≡ uava. Mimicking the standard meaning of the Euclidean

dot product, we will often write such an inner product as u·v and similarly for covectors. Abusing

this notation, we use the same binary operation to represent the action of covectors on vectors,

so that for α ∈ T ∗
xM and u ∈ TxM , we have that α ·u ≡ αau

a. Furthermore, when the index

contraction is clear, we will also use this notation, so that s·t ≡ sabc···t
abc···.

One of the key properties of a Riemannian manifold (M, g) is that there exists a (unique)

canonical a�ne connection ∇, known as the Levi-Civita connection, on (Md, g) that preserves g

and is torsion-free. An a�ne connection ∇ is a bilinear map

Γ(TM)× Γ(TM) ∋ (u, v) 7→ ∇uv ∈ Γ(TM) ,

where Γ(VM) is the section space of any bundle VM over M . In this notation, if u ∈ Γ(TM), then

u is a vector �eld on M . Given any u, v, w ∈ Γ(TM), an a�ne connection ∇ preserves the metric

g when

∇u(g(v, w)) = g(∇uv, w) + g(v,∇uw) .
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Observe that the connection ∇ can be extended to act on sections of the tensor product of the

tangent bundle (and its dual) in a natural way. Thus, we can write the above metric-preserving

property as, for any u ∈ Γ(TM), we have that ∇ug = 0. Furthermore, if such an a�ne connection

is torsion-free, then

[u, v] = ∇uv −∇vu ,

where [·, ·] is the Lie bracket of vector �elds (de�ned as the commutator of vector �elds viewed as

derivations).

We conclude this section by providing de�nitions of a useful set of Riemannian invariants, which

are objects which do not change under generic di�erentiable coordinate transformations. Because a

Riemannian manifold can be characterized entirely without reference to a choice of coordinates, those

scalars and tensors that are independent of the choice of coordinates can be viewed as properties of

(Md, g). These objects are useful to characterize a given Riemannian manifold.

The most fundamental invariant of a Riemannian manifold is the Riemann curvature, de�ned

by

R(u, v)w := (∇u∇v −∇v∇u)w −∇[u,v]w ,

where u, v, w ∈ Γ(TM). This invariant measures the failure of the vector w to be unchanged when

parallel transported along an in�nitesimal parallelogram spaned by the vectors u, v. In the abstract

index notation above, we can write

uavbRab
c
dw

d = ua∇av
b∇bw

c − va∇au
b∇bw

c − (ua(∇av
b)− va(∇au

b))∇bw
c .

In this formula (and all formulas in this dissertation) we will assume that di�erential operators act

on everything to their right unless they are enclosed by brackets. When acting on a generic tensor

t ∈ Γ(T ϕM), observe that the commutator of two covariant derivatives act as a derivation on each

factor in the tensor bundle, so that

[∇a,∇b]T
c1c2···

d1d2··· = Rab
c1

eT
ec2···

d1d2··· +Rab
c2

eT
c1e···

d1d2··· + · · ·

+Rabd1
eT c1c2···

ed2··· +Rabd2
eT c1c2···

d1e··· + · · · .

7



We simplify this action on arbitrary tensor types with the notation in which we write the above

display as

[∇a,∇b]T = Rab
♯T .

This notation will be generalized to the action of any endomorphism on any vector bundle over M .

Sometimes, we will use dots · to indicate which indices of an antisymmetric tensor will be treated

as the endomorphism indices, i.e. we might write

(uab[·v·]cd)
♯(we) = uab

evfcdw
f ,

and then extend as above to higher-rank tensors.

The Riemann curvature (often denoted by Rabcd) has the following symmetry properties:

Rabcd +Rbacd = 0

Rabcd −Rcdab = 0

Rabcd +Rcabd +Rbcad = 0 .

The Riemann curvature also satis�es a Bianchi identity, given by ∇[aRbc]de = 0. The trace of the

Riemann curvature is called the Ricci tensor, which is given by Ricab := Rca
c
b and is symmetric.

Finally, the trace of the Ricci tensor is called the Ricci scalar and is given by Sc := Rica
a.

A particularly useful trace-correction of the Ricci tensor is known as the Schouten tensor and

is given, in dimensions d ≥ 3, by

P :=
1

d− 2

(
Ric − Sc

2(d− 1)
g

)
.

The trace of the Schouten tensor is denoted by J := Pa
a. The Ricci tensor can be expressed in

terms of the Schouten tensor and its trace via

Ric = (d− 2)P + gJ .

8



The Riemann curvature can be decomposed into its trace-free part, the Weyl tensor W , and a

combination of the metric and Schouten tensors:

Rabcd =Wabcd + gacPbd − gbcPad − gadPbc + gbdPac .

Observe that the Weyl tensor has all of the symmetries of the Riemann curvature but has the

additional property that a trace over any pair of its indices vanishes. A surprising feature of the

Weyl tensor is that it vanishes in dimension d = 3.

The Cotton tensor (sometimes called the Cotton-York tensor) is the covariant curl of the

Schouten tensor, so that

Cabc := 2∇[aPb]c .

In dimensions d > 3, the Cotton tensor can also be written in terms of the divergence of the Weyl

tensor, which follows as a result of the Bianchi identity described above. In particular,

(d− 3)Cabc = ∇dWdcab .

From these expressions for the Cotton tensor it is clear that it is antisymmetric in its �rst two

indices and is trace-free under contraciton of any of its pair of indices. Further, by the symmetry

properties of the Weyl tensor, it satis�es

Cabc + Ccab + Cbca = 0 .

The �nal named invariant that we will need for this dissertation is the Bach tensor, which is

formed by the action of a particular second order di�erential operator on the Weyl tensor. Speci�-

cally, for d ≥ 4, we de�ne the symmetric trace-free tensor

Bab := ( 1
d−3∇

c∇d + P cd)Wdbca .

Using the above identities, we can also write

Bab = ∆Pab −∇c∇aPcb + P cdWdbca = ∇cCcab + P cdWdbca .

9



A straightforward computation using the de�nition of the tensors described above yields the follow-

ing useful identity for the divergence of the Bach tensor:

∇bBab = (d− 4)P bcCabc .

Indeed, this identity establishes that in four dimensions, the divergence of the Bach tensor vanishes.

The unifying idea behind the above de�nitions is that we can proliferate di�eomorphism invari-

ant tensors (or scalars) by applying covariant derivatives to tensors (or scalars) that are di�eomor-

phism invariant. This is because the Levi-Civita connection is a di�eomorphism invariant operator,

so it maps di�eomorphism invariants to di�eomorphism invariants.

10



CHAPTER 2

Conformal Geometry

Roughly speaking, conformal geometry is the geometry of smooth manifolds with a well-de�ned

notion of angle but no invariant notion of length. Such manifolds are called conformal manifolds.

Indeed, a conformal manifold can be viewed as an equivalence class of Riemannian manifolds where

two Riemannian manifolds (M, g) and (M̃, g̃) are equivalent when M = M̃ and the angles between

any two vectors u, v ∈ Γ(TM) are equal. From the above description of Riemannian manifolds, we

observe that this holds so long as there exists a positive function Ω ∈ C∞
+ M such that g̃ = Ω2g.

Note that this does not necessarily imply that the lengths of such vectors are preserved: indeed,

|u|2g̃ = Ω2|u|g. Thus, we consider an equivalence class of metrics on a manifoldM such that [g̃] = [g]

when there exists some Ω ∈ C∞
+ M such that g̃ = Ω2g. We call such an equivalence class the

conformal class of metrics and denote it by c := [g]. Then, we can describe a conformal manifold

by a pair (Md, c), similar to the description of a Riemannian manifold.

Like in the Riemannian case, a useful class of objects belonging to a conformal manifold are

those that depend only on the structure (M, c). However, these are, in general, much harder to

generate because there is not a canonical Levi-Civita connection (or corresponding curvature) on

(M, c) because the Levi-Civita connection for one representative metric in general will not preserve

another metric representative. Nonetheless, objects in a given Riemannian manifold do obey speci�c

transformation laws when g 7→ Ω2g, and hence one might expect that a subset of Riemannian

invariants might transform in a �covariant� way even under rescaling of the metric. Speci�cally, we

will call Riemannian objects (scalars, tensors, or operators) conformally invariant when such an

object Og transforms according to

g 7→ g̃ := Ω2g

Og 7→ Õg̃ := ΩwOg ,

11



for any positive function Ω ∈ C∞
+ M and some real-valued weight w.

One such conformal invariant is the Weyl tensor Wabcd described in the previous section which

transforms with weight 2�this is somewhat non-obvious for d ≥ 4, but is trivially true in three

dimensions, where the Weyl tensor vanishes identically. By a similar calculation in three dimen-

sions, the Cotton tensor is conformally invariant. A distinguished family of conformal manifolds

are those manifolds whose conformal classes c contain a metric g that has a vanishing Riemann

curvature. Because this is a property of the conformal manifold (M, c), we say that such manifolds

are conformally �at. Given a metric g̃ ∈ c, one can show [30] that (M, c) is conformally �at if and

only if W g̃ = 0 and C g̃ = 0. In three dimensions, this condition reduces to the vanishing of the

Cotton tensor for any choice of representative. In dimensions d ≥ 4, we need only that the Weyl

tensor vanishes for any choice of representative.

2.1. Conformal Densities

That we can discuss the Weyl tensor of a conformal manifold (M, c) without reference to a choice

of metric representative suggests that, rather than Riemannian invariants themselves, instead we

ought be interested in classes of Riemannian invariants. Such classes are called conformal densities

(or simply �densities� for brevity) and are one of the core objects in discussion of conformal geometry.

Naively, a conformal density of weight w is a double equivalence class φ = [g; f ] = [Ω2g; Ωwf ]

where f ∈ C∞M . We denote the bundle of weight w densities by EM [w] and its section space by

Γ(EM [w]). It is also useful to consider tensor-valued densities: a tensor-valued (of tensor type ϕ)

weight w density θ = [g; t] belongs to the section space of the product bundle T ϕM ⊗ EM [w] =:

T ϕM [w]; this notation is generically used to refer to tensor bundle-valued densities. A fundamental

example of such a density is the conformal metric: γ ∈ Γ(⊙2T ∗M [2]). Going forward, rather than

describing a conformal manifold by the pair (M, c), we often (and equivalently) use the pair (M,γ)

instead. Of special interest are scalar densities of weight 1; these are referred to as scales. In

particular, a nowhere vanishing scale τ ∈ Γ(EM [1]) is called a true scale and canonically determines

a metric representative from the conformal class gτ ∈ c by trivializing the conformal metric via

gτ := γ/τ2 .
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Thus, there is an isomorphism between the conformal manifold-scale triple (M,γ, τ) and the Rie-

mannian manifold (M,γ/τ2). We call such an isomorphism a choice of scale.

More geometrically, one can understand the density bundle EM [w] as follows. First, observe

that we can view a conformal manifold (M, c) as a ray subbundle π : Q →M where Q ⊂ ⊙2T ∗M .

The natural R+ action (denoted by ρ and parametrized by t) on an element (x, gx) ∈ Q is given by

ρt(x, gx) = (x, t2gx) so that Q →M is a principal R+ bundle. Then, for some w ∈ R, there exists a

representation of R+ given by ρw : R+ → End(R) (viewing R as a vector space) where

R ∋ z 7→ ρw(t)(z) := t−wz ∈ R .

So, for t ∈ R+, there exists a right R+ action on Q× R according to

((x, gx), z)·t = ((x, t2gx), ρw(t
−1)(z)) = ((x, t2gx), t

wz) .

Quotienting out by this R+ action, we have equivalence classes

[(x, gx); z] = [(x, t2gx); t
wz] ∈ EM [w] .

With the projection map πw : EM [w] → M given by πw([(x, gx); z]) = π((x, gx)) = x, then

πw : EM [w] → M is a line bundle with structure group R+ as desired. Then, smooth sections of

this bundle are the double equivalence classes [g; f ] = [Ω2g; Ωwf ] for f ∈ C∞M . Tensor-valued

density bundles are then formed in the usual way. For more detail, see [15].

For later use, note that the conformal structure (M, c) also determines log-density bundles [40],

FM [w]. Similar to the discussion above, we can consider the log representations of R+ to construct

equivalence classes [g; ℓ] = [Ω2g; ℓ + w log Ω] ∈ Γ(FM [w]). In particular, for a strictly positive

density τ = [g; t] ∈ Γ(EM [w]), we have that log τ = [g; log t] ∈ Γ(FM [w]).

While there does not exist a uniquely determined Levi-Civita connection on (M, c), we can de�ne

a density-coupled Levi-Civita connection in a uniform way. Speci�cally, given a �xed τ ∈ Γ(EM [1]),

there exists a unique Levi-Civita connection for gτ ∈ c, so we can de�ne ∇τ := τw ◦ ∇gτ ◦ τ−w on

weight w densities, where ∇gτ is the usual Levi-Civita connection on (M, gτ ). For brevity, we will

often drop the gτ superscript. Additionally, the density-coupled Levi-Civita connection can also be

13



de�ned to act on log densities, so that for λ ∈ Γ(FM [w]), we write in a choice of scale τ ,

∇λ := d(λ− w log τ) ∈ Γ(T ∗M) .

Observe that the combination λ− w log τ is an element of C∞M .

While this de�nition of a density-coupled Levi-Civita connection is conformally invariant, it

depends on a choice of scale τ and hence picks out a special metric representative gτ ∈ c. To truly

capture the conformal geometry of (M, c), our analysis should be agnostic toward any particular

metric representative in c.

2.2. The Tractor Bundle

In order to systematically construct conformal invariants as we would di�eomorphism invariants

in Riemannian geometry, we must look further than tensor products of the tangent and cotangent

bundles overM . Instead, we consider a rank d+2 vector bundle TM known as the standard tractor

bundle determined by the conformal structure (Md, γ). This vector bundle can be canonically

constructed in one of several ways: via the Cartan conformal connection [17], via Thomas' associated

bundle [6,81], or via the ambient construction [15]. A brief summary of the ambient construction

is given in Section 2.4. Note that all of these constructions yield the same structure, TM . This

vector bundle comes equipped with several canonical objects: a tractor metric h, a null vector �eld

called the canonical tractor X, and a tractor connection ∇T .

First, note that given a metric representative of the conformal structure g ∈ c, there exists an

isomorphism between the tractor bundle and a triple of density bundles:

TM
g∼= EM [1]⊕ TM [−1]⊕ EM [−1] .(2.1)

We call such an isomorphism a choice of splitting. So, given a section of the standard tractor bundle

T ∈ Γ(TM), we can apply the isomorphism to write

TA g
= (τ+, τa, τ−) ,

where
g
= will be used to indicate that an equality holds in a choice of splitting speci�ed by g.

Sometimes we will use a column vector notation for the same decomposition. To represent tensors
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of this bundle, we will use capital Latin letters for our abstract indices. Further, because for each

representative g ∈ c there exists such a choice of splitting, the relationship between two choices of

splitting is implied by the relationships

TA g
=(τ+, τa, τ−) ,

TA Ω2g
= (τ+, τa +Υaτ+, τ− −Υ·τ − 1

2 |Υ|2gτ+) ,(2.2)

where Υ = d(log Ω). Often we will use the language of �slots� to refer to speci�c entries in a tractor

viewed as a vector or matrix. In particular, in the above display, the entry containing τ+ might

be referred to as the �top slot� (as motivated by a column vector notation). For the square of the

tractor bundle (a choice of splitting of which is given in Equation (2.1)), we will refer to the entry

corresponding to the term TM [−1] ⊗ TM [−1] in this decomposition as the �middle slot.� Such

language will be used sparingly.

Just as (co)tangent tensor bundles can be given weights (by taking the product with a density

bundle) so too can tractor bundles: for this we will write TM [w] := TM ⊗ EM [w] and also call

these bundles tractor bundles. Just as for Riemannian tensors, arbitrary but �xed tensor products

of tractor bundles will be speci�ed with capital Greek letters, so that if T ∈ Γ(T ΦM [w]), the tractor

T is of tensor type Φ.

From Equation (2.2), we can observe a key feature: the �rst non-zero entry in a tractor de�nes

a density independent of the choice of splitting and hence is conformally-invariant. In any given

tractor, this �rst non-zero slot is referred to as the projecting part of the tractor; the map q∗ extracts

this term and is called the extraction map. Additionally, observe that the section X
g
= (0, 0, 1) ∈

Γ(TM [1]) is also canonically de�ned independently of the choice of splitting: this is the canonical

tractor mentioned above.

The conformal structure also canonically determines a natural symmetric, non-degenerate (but

non-positive) inner product between tractors that is independent of the choice of splitting, given by

h(U, V )
g
= u+v− + γabu

avb + u−v+ ,
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for two tractors U, V ∈ Γ(TM) speci�ed in a choice of splitting in the obvious way. Associated to

this inner product is a canonical isomorphism between the tractor bundle and its dual

T ∗M
g∼= EM [1]⊕ T ∗M [1]⊕ EM [−1] .

This inner product de�nes the tractor metric hAB ∈ Γ(⊙2T ∗M), given, in a choice of splitting, by

hAB
g
=


0 0 1

0 γab 0

1 0 0

 ,

with its inverse denoted by hAB.

Given the above structure, one can show that the tractor bundle, while not irreducible itself,

has a composition series given by

TM = EM [1] + TM [−1] + EM [−1] .

Indeed, note that multiplication by the canonical tractor X maps sections of EM [−1] to the tractor

bundle. Furthermore, action by h(X, ·) maps sections of T to sections of EM [1].

Finally, there exists a canonically determined tractor connection acting on tractor bundles

∇T : Γ(TM) → Γ(T ∗M ⊗ TM)

given in a choice of splitting by

(2.3) ∇T
a T

B g
=


∇aτ

+ − τa

∇aτ
b + δbaτ

− + (P g)baτ
+

∇aτ
− − P g

abτ
b

 ,

where ∇ is the density-coupled Levi-Civita connection and P g is the Schouten tensor associated

with the splitting metric g. This connection extends as usual to arbitrary tensor products of the

tractor bundle as well as products of the standard tractor bundle with density bundles. Just as for

the density-coupled Levi-Civita connection, we will usually drop the superscript T in ∇T when the

connection is clear from context.
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With these canonical structures de�ned, we can usefully de�ne injecting operators (or injectors)

that, roughly speaking, play the roles of basis tractors for the tractor bundle. In particular, observe

that for ϕ ∈ Γ(EM [w]), we have that ϕX
g
= (0, 0, ϕ) ∈ Γ(EM [w + 1]). Further, given a choice

of splitting speci�ed by the metric representative g ∈ c (and hence its corresponding scale τ ∈

Γ(EM [1])) and a vector-valued density µa ∈ Γ(TM [w]), we can write

µaτ∇T
a (τ

−1XB)
g
= (0, µb, 0) ∈ Γ(TM [w + 1]) .

In fact, we can de�ne the injector

ZB
a := τ∇T

a (τ
−1XB)

g
= (0, δba, 0) ∈ Γ(T ∗M ⊗ TM [1]) .

This one-form valued tractor acts as a set of d basis tractors for the tractor bundle, but unlike X

it depends on a choice of splitting given by g. Finally, given X and Z and a choice of splitting

speci�ed by g ∈ c and its corresponding scale τ ∈ Γ(EM [1]), we can uniquely de�ne the weight −1

tractor Y A by the decomposition

hAB g
= XAY B + γabZA

a Z
B
b +XBY A .

Hence, we can write Y A g
= (1, 0, 0) ∈ Γ(EM [−1]), where Y A also depends on the choice of splitting.

That is, there exists a unique pair of injecting operators Z and Y for each choice of metric g ∈ c.

So, for a tractor T ∈ Γ(TM [w]), in a choice of splitting speci�ed by g ∈ c, we have

TA g
= Y Aτ+ + ZA

a τ
a +XAτ− .

Often we drop the implied dependence of injectors on a choice of splitting and the corresponding

scale. The action of the tractor connection on the injectors is then given by

∇g
aX

A g
= ZA

b ,

∇g
bZ

A
a

g
= −P g

abX
A − γabY

A ,

∇g
bY

A g
= (P g)abZ

A
a .

Note that this is just a rewriting of Equation (2.3).
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For notational purposes, we will occasionally write contractions of the injectors with tractors.

For example, given a tractor TABC..., we will write Za
AT

ABC... = T aBC.... Similarly, we write

XAT
ABC... = T+BC... and YAT

ABC... = T−BC.... This notation mirrors the notion of the �slots� of

a given tractor.

2.3. The Thomas-D Operator

Observe that the action of the tractor connection on a tractor is not unique but depends on

a choice of scale (used to determine the density-coupled connection). However, there exists an

invariant second order di�erential operator containing the tractor connection that is independent of

this choice: the Thomas-D operator [80] mapping

D : Γ(T ΦM [w]) → Γ(TM ⊗ T ΦM [w − 1]) .

Given a tractor T ∈ Γ(T ΦM [w]), we write, in a choice of splitting,

(2.4) DAT
g
= (d+ 2w − 2)wY AT + (d+ 2w − 2)γabZA

a ∇bT −XA(∆T + wJgT ) ∈ Γ(TM ⊗ T ΦM [w − 1]) ,

where ∆ := γab∇T
a ∇T

b is the tractor-coupled rough Laplacian and Jg is the trace of the Schouten

tensor associated to the splitting metric g. We can also de�ne such an operator on weight w log

densities, so that

D : Γ(FM [w]) → Γ(TM [−1]) .

In particular, acting on λ ∈ Γ(FM [w]), we have that

DAλ
g
= (d− 2)wY A + (d− 2)γabZA

a ∇bλ−XA(∆λ+ wJg) .

Even though this operator is expressed in a choice of splitting, one can show that it does not

depend on the underlying choice of scale. Thus, this operator can be used to proliferate conformal

invariants, much like how the Levi-Civita connection is used to proliferate di�eomorphism invariants.

Importantly, the Thomas-D operator is not a derivation because it is a second-order di�erential

operator; however, it does have the properties

DA ◦DA = 0 = DAhBC .
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A useful modi�cation of the DA operator is the �hatted� Thomas-D operator, D̂. For any tractor

T ∈ Γ(T ΦM [w]) where w ̸= 1− d
2 , this is de�ned by

D̂ATΦ := (d+ 2w − 2)−1DATΦ .

As a consequence of this de�nition, observe that

D̂AXB = hAB and D̂AhBC = 0 .

Further, the operator D̂ acting on a product of tractors satis�es a relationship known as the Leibniz

failure [45,57].

Proposition 2.3.1 (Leibniz failure). Let Ti ∈ Γ(T ΦiM [wi]) for i = 1, 2, hi := d + 2wi, and

h12 := d+ 2w1 + 2w2 such that hi ̸= 2 ̸= h12. Then,

D̂A(T1T2)− (D̂AT1)T2 − T1(D̂
AT2) = − 2

h12
XA(D̂BT1)(D̂BT2) .

Because we have de�ned the Thomas-D operator on log densities, it is also useful to have a

result similar to Proposition 2.3.1 for log densities. This requires some preliminary work.

First, we de�ne the weight operator w on sections of tractor bundles and on sections of log

density bundles. In particular, for T ∈ Γ(T ΦM [w]) and λ ∈ Γ(FM [w]), we have that

wT = wT and wλ = w .

Acting on tractors, it is evident that the weight operator is a derivation, but a tensor product of

log-density bundles is not also a log-density bundle, so the notion of a derivation on a product of

log-densities is tricky to de�ne and unneeded here.

We can extend the weight operator w (and the tractor connection ∇) to act on tensor products

of a log-density bundle with tractor bundles as a derivation. For λT ∈ Γ(T ΦM [w] ⊗ FM [w′]), we

write

w(λT ) := λwT + Twλ = wλT + w′T ∈ Γ(T ΦM [w] ⊕ T ΦM [w]⊗FM [w′]) ,
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and similarly for the tractor connection:

∇(λT ) := λ∇T + T∇λ ∈ Γ(T ∗M ⊗ T ΦM [w] ⊕ T ∗M ⊗ T ΦM [w]⊗FM [w′]) ,

Thus, we can de�ne the Thomas-D operator on the tensor product of some tractor bundle with a

log-density bundle via

DA :
g
= Y A(d+ 2w − 2)w + γabZA

a ∇b(d+ 2w − 2)−XA(∆ + Jgw) .

Written in terms of the weight operator w, we can reexpress the hatted Thomas-D operator as

D̂A = D ◦ 1
d+2w−2 = 1

d+2w ◦D ,

where, acting on λ ∈ Γ(FM [w′]), we have that (for k ̸= d),

1

d+ 2w − k
λ :=

λ

d− k
− 2w′

(d− k)2
∈ Γ(FM [w′]⊕ EM [0]) .

Similarly, we have, for T ∈ Γ(T ΦM [w]) and d+ 2w − k ̸= 0, we have that

1

d+ 2w − k
(λT ) := T

1

d+ 2w + 2w − k
λ ∈ Γ(T ΦM [w] ⊕ T ΦM [w]⊗FM [w′]) .

A consequence of the de�nition of D̂ implies that

XAD̂A = w .(2.5)

In much of the above discussion, sections of Whitney sum bundles of the form Γ(VM ⊕ V ′M)

appeared, and these are particularly challenging to work with. However, unlike either the operator

D or 1
αw+β alone, their composition lies in a weighted tractor bundle when acting on a log-density.

This is captured in the following lemma, which is easily proved by computing in a choice of scale.

Lemma 2.3.2. For any 0 ̸= β ∈ R,

(
D ◦ 1

αw + β

)
λ =

1

β
Dλ ∈ Γ(TM [−1]) .

20



In particular, this lemma allows us to directly verify that D̂ has a Leibniz failure property, even

on log-densities, as desired. The following result can also be easily proved by computing in a choice

of scale.

Lemma 2.3.3 (Log Leibniz failure). Let λ be any log density and let w ̸= 1− d
2 . Then,

D̂ ◦ λ− λ ◦ D̂ : Γ(T ΦM [w]) → Γ(TM ⊗ T ΦM [w − 1]) ,

and moreover

D̂ ◦ λ− λ ◦ D̂ = (D̂λ)− 2
d+2wX (D̂λ) · D̂ .

While in principle, this is enough to use the tractor calculus, there exists one more canonical

tractor that roughly plays the role of curvature for the Thomas-D operator: the W -tractor. The

projecting part of the W tractor is the Weyl curvature, and hence we use the same symbol for both

this tensor and theW tractor. In dimensions d ≥ 5 and acting on a weight w tractor T ∈ Γ(T ΦM [w])

with w ̸= 1− d
2 , 2−

d
2 , the commutator of (hatted) Thomas-D operators obeys [9,39]

(2.6) [D̂A, D̂B]T =WAB
♯TE + 4

d+2w−4X[AWB]C
♯D̂CTE .

The tractor content of the W tractor is given in the following lemma:

Lemma 2.3.4. Let d ≥ 5. The W tractor has the symmetries of the Weyl curvature, so that

W [ABC]D =WABCD +WABDC =WABCD −WCDAB = 0 = hACW
ABCD .

Further, X ·W = 0. Finally, in any scale g ∈ c, the W -tractor is given by

ZA
a Z

B
b Z

C
c Z

D
d WABCD =W g

abcd ,

ZA
a Z

B
b Z

C
c Y

DWABCD = Cg
abc ,

ZA
a Y

BZC
b Y

DWABCD =
Bg

ab

d− 4
.

All other components are either zero or determined by the symmetry of the W -tractor.
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Proof. This lemma follows by direct computation from Equation 2.6 and the curvature iden-

tities at the end of Section 1.3. □

Remark 2.3.5. A consequence of Lemma 2.3.4 is that, away from d = 6, the W -tractor is

D-free, i.e.

D̂AW
ABCD = 0 .

Further, this tractor contains our �rst example of a residue of a dimensionful pole yielding a con-

formally invariant tensor. Indeed, the tractor (d − 4)W is well-de�ned in four dimensions and has

the Bach tensor as its projecting part in four dimensions, which implies that the Bach tensor is a

conformally-invariant tensor when d = 4. Further, observe that in three dimensions, the Weyl ten-

sor vanishes, so the projecting part of the W tractor becomes the Cotton tensor�which is another

proof of the conformal invariance of the Cotton tensor in three dimensions. ■

2.4. The Ambient Construction and Consequences

As mentioned in the previous section, one of the ways to produce the tractor bundle is via

the ambient construction. In this section we provide a brief summary of that construction and

some useful results that generalize those found in [37] for later use. For more details and other

expositions, see [15,25,26,34,40].

As in Section 2.1, we begin by viewing a conformal manifold (Md, c) as a ray subbundle π :

Q → M where Q ⊂ ⊙2T ∗M , with the natural R+ action denoted by ρ and parametrized by t.

Observe that this subbundle carries with it a tautological symmetric 2-tensor de�ned at a point

(x, gx) ∈ Q by g0 := π∗g which obeys ρ∗t (g0) = t2g0. This is the conformal metric c. The associated

ambient manifold to the conformal manifold (represented by Q here) is then de�ned to be a (d+2)-

dimensional manifold M̃ with signature (d+ 1, 1) in which Q is embedded as a null hypersurface.

Importantly, M̃ must have an R+ action extended naturally from the R+ action on Q. Locally near

Q ⊂ M̃ , we can write M̃ = Q × (−1, 1), so because we are only interested in local behavior, we

will assume that M̃ = Q × (−1, 1). We denote by X the in�nitesimal generator of the R+ action

on M̃ and we denote by Q the de�ning function for Q.

The metric h on M̃ is de�ned such that h pulls back to g0 on Q and has the same homogeneity

property it, i.e. ρ∗th = t2h. Further, we construct (M̃ ,h) such that the associated Ricci curvature
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Ric vanishes to the maximal possible order in the de�ning function Q. In particular, when d is

odd, a result of Fe�erman and Graham [25] shows that (M̃ ,h) can be constructed so that Ric

vanishes to arbitrary order; when d is even, (M̃ ,h) can only be constructed asymptotically so that

Ric vanishes to order d
2 − 2. Indeed, this implies that in the even-dimensional case, we can at most

uniquely determine h to order O(Qd/2). Note that this �xes R (the ambient Riemann curvature)

andRic uniquely to order O(Qd/2−2) in the even-dimensional case and to arbitrary order in the odd-

dimensional case. Then, associated to metric h is the unique Levi-Civita connection ∇, constructed

in the usual way.

Now, the standard tractor bundle can be de�ned as TM ≡ TM̃ |Q/ ∼T . Speci�cally, we say

that for U, V ∈ TM̃ , we have that U ∼T V when π(U) = π(V ) ∈ M and U is ∇-parallel to V .

Then, we can say that certain operators and tensors acting and living on M̃ |Q �descend� to tractors

and tractor-valued operators on M . Such operators are precisely those operators whose actions on

tensors on Q do not depend on the extension of those tensors o� of Q. For a homogeneous weight w

tensor �eld T of type Φ on M̃ |Q, we will denote the section space by Γ(T ΦM̃ (w))|Q, using similar

notation as that used for tractors. In particular, the ambient operator given by

DA := ∇A(d+ 2∇X − 2)−XA∆

descends to the Thomas-D operator when restricted to Q and

∆|Q : Γ(T ΦM̃ (1− d/2))|Q → Γ(T ΦM̃ (−1− d/2))|Q

descends to the Yamabe operator □ in the same way, de�ned according to DA = −XA□ when acting

on tractors with weight 1− d/2. The fundamental vector �eld X descends to X, h descends to the

tractor metric h, and R descends to the W -tractor.

A key result using this ambient construction of the tractor bundle is the following straight

forward generalization of [37, Proposition 4.1] (which in turn is a rewriting of [48, Proposition

2.3]). Note that the result directly generalizes with no changes.

Proposition 2.4.1 (Generalization of Proposition 4.1 of [37]). For d even and k an integer

satisfying 1 ≤ k ≤ d/2 or for d odd and k ∈ Z≥1, let T ∈ Γ(T ΦM̃ (k− d/2))|Q have a homogeneous
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extension T̃ to M̃ . Then ∆kT̃ |Q depends only on T and the conformal structure on M but not on

the choice of extension T̃ nor on any choices in the ambient metric. Thus the operator

∆k : Γ(T ΦM̃ (k − d/2))|Q → Γ(T ΦM̃ (−k − d/2))|Q

is conformally invariant and descends to a natural conformally invariant di�erential operator on

tractors

PΦ
2k : Γ(T ΦM [k − d/2]) → Γ(T ΦM [−k − d/2]) .

The operators PΦ
2k are known as GJMS operators, named after Graham, Jenne, Mason, and

Sparling, who demonstrated their existence using this construction. This result completes the

injection that we require to relate ambient calculus to the tractor calculus.

Another useful result is [37, Lemma 4.4], recorded here for later use:

Lemma 2.4.2 (Lemma 4.4 of [37]). Suppose d is odd or t + u ≤ d/2 − 3 for d even. Then on

Q there is an expression for ∇t∆uR as a partial contraction polynomial in D, R, X, h, and h−1.

This expression is rational in d and each term is of degree at least 1 in R.

For later purposes, we will only be interested in the even-dimensional case, so we provide a

generalization of another result from [37] in that dimension parity. The proof follows their proof

closely.

Proposition 2.4.3 (Generalization of Proposition 4.5 of [37]). Let k < d/2 with d even. For

any tractor T ∈ Γ(T ΦM [k − d/2]),

XA1 · · ·XAk−1
PΦ
2kT = (−1)k−1□DA1 · · ·DAk−1

T +ΨA1···Ak−1

CDCT ,

where Ψ is some tractor opperator operator

ΨA1···Ak−1

C : Γ(T Φ
C M [k − 1− d/2]) → Γ(T Φ

A1···Ak−1
M [−1− d/2]) ,

that can be written as a partial contraction polynomial in DA, WABCD, XA, hAB, and h
AB, with

each term being of order at least 1 in WABCD.
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Proof. The proof of this result follows the discussion (beginning on page 36) in [37]. The strat-

egy will be to �nd a relationship between ambient operators and then descend to their corresponding

tractor counterparts.

Given the ambient construction described above for an even dimensional base manifold Md,

we �x an integer 0 < k < d/2 and a homogeneous ambient tensor T , �xed along Q, of weight

k − d/2 with an arbitrary extension, also labeled by T . Then, we consider the ambient expression

∆DA1 · · ·DAk−1
T . Our goal will be to rearrange terms so that we have

∆DA1 · · ·DAk−1
T = (−1)k−1XA1 · · ·XAk−1

∆kT + curvature terms.

Observe that ∇X acting on a tensor with homogeneity w returns wT , so we can write

(2.7) ∆DA1 · · ·DAk−1
T = ∆(2∇Ak−1

−XAk−1
∆) · · · (2(k − 1)∇A1 −XA1∆)T .

Our �rst step is to expand this display and then commute all of the Xs to the left of any ∇s and

∆s using the identities [∇A,XB] = hAB and [∆,XA] = 2∇A. Our next step will be to commute

all ∆s to the right of any ∇s; doing so requires the following operator identity:

∆∇A1 · · ·∇Aℓ
=∇A1 · · ·∇Aℓ

∆

+ 2RC
A1

♯∇C∇A2 · · ·∇Aℓ

+ 2∇A1R
C
A2

♯∇C∇A3 · · ·∇Aℓ

+ · · ·

+ 2∇A1 · · ·∇Aℓ−1
RC

Aℓ

♯∇C +O(Qd/2−ℓ−1) .

(2.8)

Note that this identity holds to order O(Qd/2−ℓ−1) because R is only determined uniquely to order

O(Qd/2−2). Going forward, we will use the simplifying notation of [37], which omits the details of

contractions and coe�cients in exchange for symbolic brevity. For example, applying the Leibniz

rule, we can write the result in Equation (2.8) as

∆∇ℓ = ∇ℓ∆+
∑

(∇pR)∇q ,
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where each term on the right-hand side of the above equation has q ≥ 1 and p + q = ℓ. Observe

from simple counting that any term of the form ∆∇ℓ appearing in Equation (2.7) has ℓ < k, so

because k < d/2, we have that using Equation (2.8) is valid in all cases here. In order to further

simplify our results, we need another identity, which applies for any expression E:

(2.9) ∆(∇t∆uR)E = (∆∇t∆uR)E + (∇t∆uR)∆E + (∇t+1∆uR)∇E .

A result from [37, Proposition 4.3] shows that for a conformally �at structure, when T ∈

Γ(T ΦM̃ (k − d/2)), we have that

∆DAk−1
· · ·DA1T = (−1)k−1XA1 · · ·XAk−1

∆kT .

Therefore, except the term (−1)k−1XA1 · · ·XAk−1
∆k, all of the terms remaining after commuting

Xs to the left except must contain at least one curvature R (because R vanishes for conformally

�at structures). Thus, we can write

(2.10) ∆DA1 · · ·DAk−1
T = (−1)k−1Xk−1∆kT +

∑
hsXx(∇p1∆r1R) · · · (∇pn∆rnR)∇q∆rT ,

where n ≥ 1 for each term on the right-hand side.

We now apply some counting arguments to check that our expression is uniquely determined.

With the exception of the application of Equation (2.9), all of the identities we have considered

cannot increase the sum of the number of ∇s, ∆s, and Rs on the right-hand side of Equation (2.10),

represented by n + q + r. On the other hand, Equation (2.9) increases q + r by at most one at

the cost of one ∆ acting from the left. However, we had at most k such symbols initially, so we

observe that n + q + r ≤ k and hence k − q − r ≥ 1. Thus, because k < d/2, we have that

q + r < d/2 − 1. Because both ∇ and ∆ are determined modulo terms of order O(Qd/2−1) and

because [∆, Q] = 2(d+2∇X +2), we have that the operator ∇q∆r is uniquely determined modulo

terms of order O(Qd/2−q−r). Thus, ∇q∆r as an operator on T is uniquely determined along Q.

Further, observe that because there is always at least one ∇ on the right in Equation (2.8), we

have that q ≥ 1, and so at most q−1 ∇s on T can come from Equation (2.9) or from the application

of the typical Leibniz rule. Thus, pi + ri ≤ q − 1, because the Leibniz rule and Equation (2.9) are

the only way to get more derivatives on R. But because k − q − r ≥ 1 and r ≥ 0, we have that
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pi + ri + 2 ≤ k and hence pi + ri < d/2 − 2. But by a similar argument as above, ∇pi∆riR is

determined uniquely up to order O(Qd/2−2−pi−ri) and so we have that all of the terms containing

curvature are uniquely determined.

A straightforward extension of [48, Proposition 2.2] to general tensor structures implies that,

given some homogeneous tensor T of weight k−d/2 along Q, T |Q uniquely (to order O(Qk)) deter-

mines a canonical extension T̃ by requiring that ∆T̃ = O(Qk−1). Thus, to make our calculations

easier, we choose T := T̃ that is harmonic in this sense. With this prescription in place, we have

that ∇q∆rT = O(Qk−r−q) and thus vanishes along Q. So we will drop all terms in Equation (2.10)

with r > 0.

A useful identity that holds regardless of tensor type is [37, Equation 42]; acting on T ∈

Γ(T ΦM̃ (k − d/2)), we have that

(2.11) 2(k − ℓ− 1)∇ℓ+1T = D∇ℓT̃ +X
∑

(∇pR)∇qT +X∇ℓ∆T ,

where q ≥ 1 and p + q = ℓ. Note that this identity follows from Equation (2.8). But because

∆T = O(Qk−1), we can drop the last term on the right-hand side when using this identity. Because

pi + ri + 2 ≤ k and k < d/2, we have that pi + ri ≤ d/2 − 3, so we can safely apply Lemma 2.4.2

and Equation (2.11) to substitute all occurrences of ∇ and ∆ in Equation (2.10) with D, X, and

R. Therefore, we can write

(−1)k−1Xk−1∆kT̃ = ∆DA1 · · ·DAk−1
T̃ +Ψ(T̃ ) ,

where Ψ is an operator that is polynomial in h,X,D,R and rational in d. Note that Ψ must end

in D because q ≥ 1 everywhere. Then note that each of these operators on the right-hand side

descend to their tractor counterparts. From Proposition 2.4.1, the left-hand side descends to the

desired tractor operator PΦ
2k which completes the proof.

For a more detailed exposition of the scalar case, see [37, Section 4]. □

A series of results that will be useful later follow from the above proposition. These results are

tractor generalizations of results from [38]. We �rst rewrite the operator Ψ in Proposition 2.4.3 in

the following proposition:
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Proposition 2.4.4 (Generalization of Proposition 5.10 of [38]). Let k < d/2 and d even. For

any tractor T ∈ Γ(T ΦM [k − d/2]), there exists a conformally invariant operator

PΦ,k
A1···Ak−1

: Γ(T ΦM [k − d/2]) → Γ(T Φ
A1···Ak−1

M [−1− d/2])

such that

(−1)k−1XA1 · · ·XAk−1
PΦ
2kT = □DA1 · · ·DAk−1

T + PΦ,k
A1···Ak−1

T ,

where PΦ,k
A1···Ak−1

has a tractor formula, is at least order 1 in W , and has weight −k − 1.

Proof. By identifying PΦ,k
A1···Ak−1

with (−1)k−1ΨA1···Ak−1
CDC , the proposition follows. □

Proposition 2.4.4 directly implies the following proposition:

Proposition 2.4.5 (Generalization of Proposition 5.14 of [38]). There exists a family of oper-

ators

PΦ
A1···Ak

: Γ(T ΦM [w]) → Γ(T Φ
A1···Ak

M [w − k])

de�ned by

PΦ
A1···Ak

T = DA1 · · ·DAk
T −XA1P

Φ,k
A2···Ak

T

for all T ∈ Γ(T ΦM [w]). Then, we have that when w = k − d/2,

PΦ
A1···Ak

T = (−1)kXA1 · · ·XAk
PΦ
2kT .

Proof. Observe that there exists a tractor formula for PΦ,k
A1···Ak−1

in terms of h, X, D, and

W , so combining that tractor formula with DA1 · · ·DAk
allows us to construct a well-de�ned op-

erator PΦ
A1···Ak

as in the proposition statement. Then, observe that acting on tractors of weight

1 − d/2, DA = −XA□, so the remainder of the proposition follows from Proposition 2.4.3 and

Proposition 2.4.4. □

These generalizations will be key in Section 4.1.

2.5. Insertion and Construction of Conformal Invariants

Given a tractor expression, one can extract a conformally-invariant Riemannian expression by

computing the tractor expression in a choice of scale and applying the extraction operator q∗ if
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necessary. However, the problem of constructing new conformal invariants given a conformally-

invariant Riemannian expression, i.e. a density-valued tensor (or scalar), is more challenging. To

do so, we introduce the insertion operator q, which is a right-inverse of the extraction map q∗.

The insertion operator is a canonical map that inserts a tensor t ∈ Γ(T ϕM [w]) into a tractor

T ∈ Γ(T ΦM [w′]) where ϕ and Φ have the same tensor structures such that the projecting part of

the tractor T is given by t. While this operator is de�ned for (almost) all tensor-valued densities,

we provide the explicit map for three such operators.

Lemma 2.5.1. Let g ∈ c.

(i) Given va ∈ Γ(T ∗M [w + 1]) where w ̸= 1− d, then

q(va) =: V A ∈ Γ(TM [w])

g
=


0

va

− ∇·v
d+w−1

 ,

and

DAV
A = XAV

A = 0 .

(ii) Given tab ∈ Γ(⊙2
◦T

∗M [w + 2]) where w ̸= −d, 1− d, then

q(tab) =: TAB ∈ Γ(⊙2
◦TM [w])

g
=


0 0 0

0 tab −∇·ta
d+w

0 −∇·tb
d+w

∇·∇·t+(d+w)Pabt
ab

(d+w)(d+w−1)

 ,

and

DAT
AB = 0 = XAT

AB .

(iii) Given tabcd ∈ Γ(⊗4T ∗M [w+4]), where w ̸= 1−d, 2−d, such that t has the algebraic symmetries

of the Riemann tensor and is trace-free, then

q(tabcd) =: TABCD ∈ Γ(⊗4TM [w])
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where

T abcd g
= tabcd

T abc− g
= − ∇dt

dabc

d+ w − 1

T a−b− g
=

∇a∇ct
abcd + (d+ w − 1)Pact

abcd

(d+ w − 1)(d+ w − 2)
.

Further, T also has the algebraic symmetries of the Riemann tensor and

DAT
ABCD = XAT

ABCD = 0 = hACT
ABCD .

Proof. The proofs of the above three results can either be given in a much more general setting

(see [33]), or by explicit computation whose intricacy increases in concordance with tensor rank.

We give the lowest rank case, and the rest follow by similar arguments.

The �bottom slot� V − of q(va) := V A g
= (0, va, v−) can be computed by writing out the con-

straint DAV
A g
= 0 for some g ∈ c:

0 = (d+ 2w − 2)(wv− +∇·v + Jv+ + dv−)− (∆ + (w − 1)J)v+ + 2∇·v + dv−

= (d+ 2w)(∇·v + (d+ w − 1)v−) ,

where the second equality comes from the requirement that XAV
A = 0. When w ̸= −d

2 , this yields

the quoted result. If w = −d
2 , we need to verify that the result for V A given for a choice of g ∈ c

de�nes a section of Γ(TM [w]). This is easily established by transforming the quoted result to a

conformally related metric. □

Remark 2.5.2. Observe that the W tractor can be constructed by the insertion of the Weyl

tensor into a tractor with the same symmetries:

WABCD = q(Wabcd) .

■
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While the insertion operator is a right-inverse of the extraction map so that q∗ ◦ q = Id, it is not

a left-inverse. Instead, we can compute the di�erence between the identity operator and q ◦ q∗; we

do so on a particularly useful tractor bundle, the result of which is given in the following lemma.

Lemma 2.5.3. Let the tractor T ∈ Γ(⊙2
◦TM [w]), where w ̸= 1− d

2 ,−
d
2 ,−d, 1− d, obey

XAT
AB = 0 and q∗(T ) ∈ Γ(⊙2

◦TM [w − 2]) .

Then

(q ◦ q∗)(T ) = T̃ ,

where

T̃AB := TAB − 2
(d+w)(d+2w)X(AD

CTB)C + 1
(d+w)(d+w−1)(d+2w)XAXBD

CD̂DTCD .

Proof. We will establish that there is a unique T̃ that satis�es

D̂AT̃AB = XAT̃AB = 0 = hABT̃AB ,

and obeys q∗(T̃ ) = q∗(T ) whenever q∗(T ) ∈ Γ(⊙2
◦TM [w − 2]). This ensures that (q ◦ q∗)(T ) = T̃ .

For that, we use the operator version of Proposition 2.3.1, valid acting on tractors of weight w ̸=

1− d/2,−d/2:

(2.12) D̂A ◦XB = XBD̂A + hAB − 2
d+2wX

AD̂B .

We �rst verify that X · T̃ = 0. Because X2 = 0 = XATAB, we simply need to check

that XAD̂BTAB vanishes. Applying Equation (2.12) we have that

XAD̂BTAB =
(
D̂BXA − hAB + 2

d+2wX
BD̂A

)
TAB

= 2
d+2wX

BD̂ATAB ,

where we have used that hABTAB = 0 = XATAB. Because T is symmetric, we are left with the

identity

d+2w−2
d+2w XAD̂BTAB = 0 .
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Thus, thanks to the weight assumptions, it follows that XAD̂BTAB = 0, and hence XAT̃AB = 0.

Similarly, we have that hABT̃AB = 0.

Finally, we check that D̂AT̃AB = 0. We do this in stages. First, we evaluate D̂A(XAD̂
CTBC):

D̂A(XAD̂
CTBC) =

[
(w − 1) + d+ 2− 2(w−1)

d+2(w−1)

]
D̂CTBC

= (d+w−1)(d+2w)
d+2w−2 D̂CTBC .

Next, we evaluate the term D̂A(XBD̂
CTAC):

D̂A(XBD̂
CTAC) = XBD̂

AD̂CTAC + D̂CTBC − 2
d+2(w−1)X

AD̂BD̂
CTAC

= XBD̂
AD̂CTAC + D̂CTBC

− 2
d+2(w−1)

[
D̂B(X

AD̂CTAC)− hABD̂
CTAC + 2

d+2(w−1)XBD̂
AD̂CTAC

]
= (d+2w)(d+2w−4)

(d+2w−2)2
XBD̂

AD̂CTAC + d+2w
d+2w−2D̂

CTBC .

Last, we evaluate the term D̂A(XAXBD̂
CD̂DTCD):

D̂A(XAXBD̂
CD̂DTCD) =

(d+w−1)(d+2w)
d+2w−2 XBD̂

CD̂DTCD .

Combining these terms, we �nd that D̂AT̃AB = 0, thus completing the proof. □

Remark 2.5.4. Note that if a weight w ̸= 1− d
2 ,−

d
2 tractor T̃AB··· obeys

XAT̃
AB··· = 0 = D̂AT̃

AB··· ,

then it follows directly from Equation (2.12) that

XAD̂
C T̃AB··· = −T̃CB··· .

■

While the insertion operator allows us to apply conformally-invariant tractor operators (such

as contraction with W or application of D̂) to Riemannian tensor-valued densities, more conformal

invariants can be extracted by manipulating the projecting part of a tractor. Given a tractor

T ∈ Γ(T ΦM [w]), this can be achieved by applying speci�c tractor-valued di�erential operators to
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T so that the original projecting part of T vanishes. We name such operators removal operators,

denoted by r; two examples of such removal operators are given in the following lemma.

Lemma 2.5.5. Let V A ∈ Γ(TM [w]) and T ∈ Γ(⊙2
◦TM [w]). Then if w ̸= −1,−1− d

2 ,

rA(V ) := V A − 1

w + 1
D̂A

(
XBV

B
)

obeys

XA r
A(V ) = 0 ,

while if w ̸= 0,−1,−d
2 ,−1− d

2 ,−2− d
2 ,

rAB(T ) := T (AB)◦ − 2
w D̂

(A
(
XCT

|C|B)◦)+ 1
w(w+1)D̂

(AD̂B)◦(XCXDT
CD

)
− 8

wd(d+2w+2)X
(AD̂B)◦(D̂C(XDT

CD)
)
,

obeys

XA r
AB(T ) = 0 = hAB r

AB(T ) .

Proof. The proof is an elementary application of the identity

XAD̂
AT = wT ,

valid for any weight w ̸= 1− d
2 tractor T , the fact that X and D are null, and Equation (2.12). □

Acting on a trace-free rank-2 tractor, the operator r adds tractor-valued terms to a trace-free

rank-2 symmetric tractor T so that the projecting part is the middle slot rather than the top slot.

It can then be composed with the extraction operator to extract a conformally invariant rank-2

symmetric trace-free tensor. That is, for a generic T ∈ Γ(⊙2
◦TM [w]), we have that

(q∗ ◦ r)(TAB) ∈ Γ(⊙2
◦TM [w − 2]) ∼= Γ(⊙2

◦T
∗M [w + 2]) ,

where the isomorphism is obtained in the usual way with the conformal metric γ.
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CHAPTER 3

Conformal Hypersurface Geometry

Growing out of work on the AdS/CFT conjecture, including studies in entanglement entropy [56,

71] and quantum complexity [1,13], there has been increased interest in conformal hypersurface

geometry. In the mathematics literature, conformal hypersurface geometry has shown to be use-

ful for analyzing properties of formal eigenfunctions of the Laplace equation on hyperbolic mani-

folds [11,21,40,50]. In this chapter, we provide an overview of Riemannian hypersurface geometry,

a summary of known results in conformal hypersurface geometry, and new results in the development

of the hypersurface tractor calculus.

3.1. Riemannian Hypersurface Calculus

Let (Md, g) be a d-dimensional Riemannian manifold with a hypersurface Σ smoothly embedded

inM ; we will denote this by Σ ↪→ (M, g). In this regard, we treat Σ as a codimension 1 submanifold

of M and use the same coordinates and indices for Σ as for M , and we will assume that Σ is closed,

orientable, and that its embedding in M is separating so that M = M+ ⊔ Σ ⊔M−. Because Σ is

codimension 1, it is particularly easy to describe the embedding via a de�ning function. A de�ning

function for Σ is a function s ∈ C∞M such that, for every p ∈M , ds|p ̸= 0 and s(p) = 0 if and only

if p ∈ Σ. We can therefore study Riemannian geometry by studying the triple (M, g, s). Observe,

however, that s is not uniquely determined by the hypersurface Σ because for any positive function

f ∈ C∞
+ M , the function fs is also de�ning for Σ.

To resolve this ambiguity, we can demand that s solves a canonical problem on M . In general,

one can always solve [86] the problem where |ds|g = 1 in a neighborhood of Σ to arbitrarily high

order in s; another proof of this result was given in [45] via induction. Thus, given Σ ↪→ (M, g)

we can always uniquely determine a triple (M, g, s) such that |ds|g = 1, and we label each such

triple with a subscript u, i.e. (M, g, s)u. We now provide a summary of well-known results for the

geometry of (M, g, s). Note that these results are simpli�ed when (M, g, s) = (M, g, s)u.
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Given such a triple (M, g, s), we de�ne the conormal n := ds|Σ ∈ Γ(T ∗M)|Σ. When |ds|g ̸= 1, we

de�ne the unit conormal by n̂ := (n/|n|g)|Σ ∈ Γ(T ∗M)|Σ. Using this covector, we can decompose

the ambient tangent bundle into a hypersurface tangent bundle and the normal bundle via the

hypersurface projector (also sometimes called the �rst fundamental form)

ḡ : Γ(TM)|Σ → Γ(TΣ) ,

speci�ed by

ḡba := δba − n̂an̂
b .

As mentioned above, this isomorphism allows us to use the same abstract index notation to represent

tensors on the tangent and normal bundles on Σ as on the tangent bundle on M . Using this

projector, we can compute the metric on Σ induced by g. For notational simplicity, we denote this

induced metric with the same symbol as the projector, so that

ḡab := ḡa
′

a ḡ
b′
b ga′b′ = gab − n̂an̂b ∈ Γ(⊙2T ∗Σ) .

We will use the notation ⊤ to represent tensors that have been projected to the hypersurface, so that

for v ∈ Γ(TM)|Σ, we might write (v⊤)a := va − n̂an̂bv
b = ḡab v

b. Often, we will extend the operator

⊤ to act on tensors (or operators) in M via restriction to Σ, so that for v ∈ Γ(TM), we use v⊤ to

denote (v|Σ)⊤. Sometimes, the symbol ⊤ will be used to represent an operator, so that ⊤(v) = v⊤.

Using that notation, it can be useful to project to the trace-free part of the hypersurface tensor

bundle, and we represent this operation with ⊤̊. Thus, we might write ⊤̊(tab) = t⊤ab −
1

d−1 ḡab(t
⊤)cc.

Further, as �rst exempli�ed by the induced metric ḡ, when a scalar, tensor, or operator is intrinsic

to the hypersurface, we will decorate that object with an overbar. Finally, we will use the symbol

�
Σ
=� to refer to equalities that only hold (or make sense) along Σ.

Given the induced metric, there exists a canonical induced Levi-Civita connection on Σ denoted

by ∇̄. A fundamental result attributable to Gauÿ is the relationship between the induced Levi-Civita

connection and the projected Levi-Civita connection. Acting on a hypersurface vector v̄ ∈ Γ(TΣ),

we have that

(3.1) ∇̄av̄
b = ∇⊤

a v
b
∣∣
Σ
+ n̂bIIacv̄

c ,
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where vb is any extension of v̄ to M and IIab is the second fundamental form, de�ned by IIab :=

(∇n̂e)⊤ab ∈ Γ(⊙2T ∗Σ) where n̂ea is any extension of the unit conormal. The trace of the second

fundamental form yields the mean curvature given by H := 1
d−1 II

a
a and, and its trace-free part is

I̊Iab = IIab −Hḡab .

Of note is that the operator ∇⊤ is called tangential because ∇⊤ ◦s Σ
= 0. Speci�cally, we say that an

operator O is tangential when the action of O on a section of a vector bundle overM evaluated along

the boundary depends only on the restriction of that section to the boundary. We say that such an

operator acts tangentially along Σ when there exists a smooth operator O′ such that O ◦ s = s ◦O′.

Such operators are particularly important in the study of embedded hypersurface geometry.

A consequence of this relationship is the Gauÿ equation, relating the intrinsic Riemann curvature

of ∇̄ to the projected Riemann curvature of ∇:

R⊤
abcd = R̄abcd − IIacIIbd + IIadIIbc .(3.2)

Similarly, we can decompose the various projections of the bulk Weyl curvature and Schouten tensors

in terms of hypersurface tensors. For d ≥ 3,

2∇̄[a I̊Ib]c − 2
d−2 ḡc[a∇̄· I̊Ib] =W⊤

abcn̂ ,(3.3)

I̊I2ab − 1
2(d−2) I̊I

2ḡab + (d− 3)
(
P̄ab −H I̊Iab − 1

2 ḡabH
2
)
=Wn̂abn̂ + (d− 3)P⊤

ab ,(3.4)

∇̄· I̊Ia − (d− 2)∇̄aH =P⊤
an̂ ,(3.5)

J̄ − d−1
2 H2 + I̊I2

2(d−2) = J − Pn̂n̂ ,(3.6)

where in general we write T⊤
n̂ab··· ≡ (Tn̂ab···)

⊤ and we will often write ∇̄· I̊Ia ≡ ∇̄b I̊Iab. Equations (3.3)

and (3.5) are usually referred to as the Codazzi�Mainardi equations, Equation (3.4) is usually known

as the Fialkow�Gauÿ equation, and Equation (3.6) is usually known as Gauÿ' Theorema Egregium.

3.2. Hypersurface Density Calculus

We now consider the geometry of conformally embedded hypersurfaces. Analogous to the above

section, we let (Md, γ) be a d-dimensional (with d ≥ 3) conformal manifold with a hypersurface Σ
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smoothly embedded in M so that Σ ↪→ (M,γ), where Σ is closed, orientable, and the embedding

of Σ in M is separating, as above. Rather than using a de�ning function, we instead describe

Σ ↪→ (M,γ) with a de�ning density. A de�ning density is a scale σ ∈ Γ(EM [1]) such that for

each g ∈ c, we have that s is de�ning, where s is determined by σ = [g; s]. Then, a conformally

embedded hypersurface Σ ↪→ (M,γ) can be speci�ed by the triple (M,γ, σ). Note that many of the

names and symbols in what follow overload the names and symbols in the Riemannian setting, but

their meaning should be clear from context.

Given such a triple, we can begin to characterize the conformal invariants by studying σ. First,

observe that for a de�ning function σ for Σ, we have that in the scale speci�ed by [Ω2g; Ωs], the

exterior derivative of σ along Σ satis�es d(Ωs)
Σ
= Ωds. Because each choice of scale induces a

Riemannian metric on Σ, the conformal structure c onM induces a conformal structure c̄ on Σ and

hence we can consider density bundles over Σ. In particular, we observe that dσ|Σ is a covector-

valued density, and so we de�ne the conormal by n := dσ|Σ = [g; ds] ∈ Γ(T ∗M [1])|Σ. While the

conormal is often useful, because n has weight 1, we cannot demand that it has some canonical

length like in the Riemannian case. Instead, only the unit conormal n̂ := n/|n|γ ∈ Γ(T ∗M [0])|Σ

is canonically determined along Σ. But then the induced metric is a representative of the induced

conformal metric so that γ̄ab := γab − n̂an̂b ∈ Γ(⊙2T ∗M [2]).

Given g ∈ c, the corresponding second fundamental form is not conformally invariant because its

trace (d−1)Hg (whereHg is the mean curvature of Σ ↪→ (M, g)) cannot be viewed as a representative

of a density. Indeed, under the transformation g 7→ Ω2g, we have thatHg 7→ HΩ2g = Ω−1(Hg+n̂·Υ).

However, the trace-free part of the second fundamental form is conformally invariant; that is,

I̊Iab := [g; I̊Iab] ∈ Γ(⊙2
◦T

∗Σ[1]). As is done here, we will typically use the same symbol for a

density as its representative. Observe that the tensor-valued density I̊I can also be de�ned in the

same way as the Riemannian second fundamental form via a tangential density-coupled Levi-Civita

connection ∇⊤ so that the density-valued de�nition holds: I̊I = ∇⊤n̂e. Note that tangentiality

extends to operators acting on densities: speci�cally, an operator O acting on weight w densities

can be said to act tangentially when there exists a smooth operator O′ acting on weight w − 1

densities such that O ◦ σ = σ ◦ O′.
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The Weyl curvature, the unit conormal, and the second fundamental form are critical compo-

nents of conformal hypersurface geometry. Indeed, from Equation (3.3) we see that the the covariant

trace-free curl of the second fundamental form is conformally invariant. This is because the tensor

W⊤
abcn̂ is constructed solely from conformally invariant tensors. Thus, we �nd that there exists a

conformally-invariant operator, known as the Codazzi operator [45] denoted by Cod that acts on

weight 1 trace-free rank two symmetric tensors via

K̊ab
Cod7→ 2∇̄[aK̊b]c − 2

d−2 ḡc[a∇̄·K̊b] .

Furthermore, we can rearrange Equation (3.4) to obtain the Fialkow-Gauÿ equation:

I̊I2ab − 1
2(d−2) I̊I

2ḡab −Wn̂abn̂ = (d− 3)
(
P⊤
ab − P̄ab +H I̊Iab +

1
2 ḡabH

2
)
,(3.7)

which shows that the right-hand of the above display is conformally invariant. De�ning this tensor

as (d− 3)Fab, where F is the Fialkow tensor, we have that

F :=
[
g;P⊤ − P̄ +H I̊I + 1

2 ḡH
2
]
∈ Γ(⊙2T ∗Σ[0]) .(3.8)

Often it is more useful to consider the trace-free part of this tensor so a simple computation yields

F a
a =

K

2(d− 2)
,

where K := I̊I2 ∈ Γ(EΣ[−2]) is known as the ridigity density. Then, we have that

F̊ ab :=
[
g; 1

d−3

(
I̊I2(ab)◦ −Wn̂abn̂

)]
∈ Γ(⊙2

◦T
∗Σ[0]) .

3.3. Hypersurface Tractor Calculus

Because Σ has an induced conformal structure c̄ from (Md, c), all of the tractor constructions

in the Chapter 2 also exist for the hypersurface Σ (so long as d ≥ 4). Thus, just as the relationship

between ∇⊤ and ∇̄ (and hence Equations 3.3-3.6) enabled the construction of new extrinsic confor-

mal invariants, it is useful to �nd relationships between the tractor analogs. The key idea behind

what follows is that the Thomas-D operator �lls the role of the covariant derivative in the tractor
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setting, so we proceed as in the above discussion. In this section, we consider the triple (M,γ, σ)

which speci�es the hypersurface embedding of interest.

Rather than beginning with the de�ning density as above, we begin with the tractor equivalent

of the conormal. (We will backtrack later to �ll in this initial gap.) Observe that [6, 23], in a

representative g ∈ c, we can pair the unit normal (which transforms as a weight −1 density) with

the mean curvature Hg to form the triple

NA :
g
= (0, n̂a,−Hg) .

A short calculation shows that this triple transforms as a standard tractor of the boundary of M ,

so NA ∈ Γ(TM)|Σ. Observe that, like the unit conormal, we have that h(N,N) = 1, so we can

de�ne a projection operator on bulk tractors along the hypersurface to a space isomorphic to the

sum of the boundary tractor bundle. Speci�cally, we write

IAB := δAB −NANB .

Remark 3.3.1. The above language suggests that we must be more careful when discussing the

isomorphism between the boundary tractor bundle T Σ and the bulk tractor bundle orthogonal to

N denoted by TM||. Indeed, the isomorphism is given by [34]

TM|| ∋


σ

µb

ρ

 7→


σ

µb −Hn̂bσ

ρ+ 1
2H

2σ

 ∈ T Σ

From this isomorphism, we can write the hypersurface injectors X̄, Z̄, and Ȳ in terms of the bulk

injectors X, Z, and Y according to [73]

X̄
Σ
= X ,

Z̄A
a

Σ
= ḡbaZ

A
b ,

Ȳ A Σ
= Y A + n̂aZA

a H − 1
2H

2XA .
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Because the projecting isomorphism is the identity on the canonical tractor, we usually drop the bar

on X̄ and use the same symbol for X both on Σ andM . For many of our calculations, we can avoid

a choice of splitting and instead just rely on the existence of the isomorphism TM |Σ ∼= T Σ⊕NΣ

where NΣ = span(NA) is the orthogonal complement of T Σ as a submanifold of TM . Thus, when

writing tractor expressions we can use the same indices to denote hypersurface tractors as bulk

tractors. Often, the notation
Σ
= will imply this isomorphism. ■

Just as for the induced conformal metric on Σ, we can use the projection operator to write the

induced tractor metric:

h̄AB := hAB −NANB ∈ Γ(⊙2T ∗Σ) .

Going forward, we will sometimes write IAB ≡ h̄AB. We will also use the same ⊤ notation for tractors

to indicate tractors that are orthogonal to N and the same overbar notation will be used to denote

tractors that belong to the hypersurface Σ.

The relationship between the induced and projected Levi-Civita connections in the Riemannian

setting suggests that there exists a similar relationship between the induced tractor-coupled Levi-

Civita connection on Σ to the projected tractor-coupled Levi-Civita. Just as Equation (3.1) requires

the second fundamental form, the tractor-coupled analog requires a tractor second fundamental form.

We de�ne this tractor by insertion into the hypersurface tractor bundle:

LAB := q̄( I̊Iab)
g
=


0 0 0

0 I̊Iab − 1
d−2∇̄· I̊Ia

0 − 1
d−2∇̄· I̊Ib ∇̄·∇̄· I̊I+(d−2)P̄ab I̊Iab

(d−2)(d−3)

 ∈ Γ(⊙2
◦T Σ[−1]) .

Observe from Equation (2.3) that the tractor-coupled Levi-Civita connection also depends on

the Schouten tensor. The relationship between the Schouten tensor induced on Σ and the projected

Schouten tensor is described by the Fialkow tensor, see Equation (3.8). Thus, it is reasonable to

infer that the Fialkow tensor (and its trace) will play a role in this relationship. So for uniformity, we

also de�ne the Fialkow tractor by insertion of the (trace-free) Fialkow tensor into a tractor bundle
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(when d ≥ 4):

FAB := q̄(F̊ ab)
g
=


0 0 0

0 F̊ ab − 1
d−3∇̄·F̊ a

0 − 1
d−3∇̄·F̊ b ∇̄·∇̄·F̊+(d−3)P̄abF̊ ab

(d−3)(d−4)

 ∈ Γ(⊙2
◦T Σ[−2]) .

These two tractors, together with the rigidity density K, come together to form a useful rank-3

tractor that plays the role of n̂⊗ I̊I in the Riemannian case:

ΓABC := 2N[CLB]A + 2X[CFB]A + K
(d−1)(d−2)X[C h̄B]A ∈ Γ(⊗3(T ∗ ⊕N ∗)Σ[−1]) .

Note that the bundle to which this tractor belongs implicitly uses the isomorphism TM |Σ ∼= T Σ⊕

NΣ.

With these de�nitions in place, we can describe a relationship between the induced tractor-

coupled Levi-Civita on Σ and its projected counterpart. This result was �rst hinted at in [52]

and expanded upon in [73,85]. A more concise formulation was given in [44]; we provide a more

compact result using Γ that is equivalent to their work for later use.

Proposition 3.3.2 (Fialkow-Gauÿ formula). Let V̄ A ∈ Γ(T Σ) be any standard hypersurface

tractor. Then, for d ≥ 4,

∇aV̄
B Σ
= ∇⊤

a V
B|Σ − Γa

B
C V̄ |Σ ,(3.9)

where the isomorphism TM |Σ ∼= T Σ ⊕ NΣ is used to equate tractors in distinct bundles and V ∈

Γ(TM) is any extension of V̄ o� Σ.

Using the above relationship, we can relate the tangential Thomas-D operator to the induced

Thomas-D operator along Σ. To that end, we �rst de�ne the tangential analog of the Thomas-D

operator [9,36]:

Proposition 3.3.3. Let w + d
2 ̸= 1, 32 , 2 and let N e be any extension of the normal tractor.

Then, the operator

D̂T : Γ(T ΦM [w]) → Γ(TM ⊗ T ΦM [w − 1]) ,
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given by

D̂T
A := D̂AN

e
AN

e ·D̂ +
XA

d+ 2w − 3

(
N e

BN
e
CD̂

BD̂C +
wKe

d− 2

)
,

is tangential and is called the tangential Thomas-D operator. Here, Ke is any extension of the

rigidity density. Moreoever, for any operator OA acting on tractors of weight 1−d
2 that obeys OA ◦

XA = 0, the operator

OA ◦ (D̂A −N e
AN

e ·D̂) =: OA ◦ D̃A

is also tangential.

The proof of this proposition is given in [44] but can be veri�ed by direct computation. We can

then obtain the following result.

Theorem 3.3.4. Let w + d
2 ̸= 1, 32 , 2. Acting on weight w tractors, the bulk tangential and

hypersurface Thomas-D operators obey

D̂T
A

Σ
= ˆ̄DA + ΓA

♯ − XA
d+2w−3

{
2ΓB

♯ ◦ ˆ̄DB + ΓB♯ ◦ ΓB
♯ + 1

(d−1)(d−2)

[(
ˆ̄DK

)
∧X

]♯
− (3d−1)wK

2(d−1)(d−2)

}
,(3.10)

where the isomorphism TM ∼= T Σ⊕NΣ is implicitly used.

Proof. We �rst prove the special case of Theorem 3.3.4 where the operators act on a tractor

vector V ∈ Γ(T Σ[w]). We rely heavily on [44, Lemma 4.9], which states that

(
D̂T

A

)
Σ
=


w

∇⊤
a

−∆⊤+wJ̄
d̄+2w−2

+ wK
2(d̄−1)(d̄+2w−2)

 ,(3.11)

where the subscript Σ indicates that the domain of the denoted operator is restricted to products

of TM |Σ and its image is mapped via the isomorphism to the bundle T Σ⊕NΣ.

To prove the theorem, we check Equation (3.10) slot by slot by contracting with the three

possible injectors. First note that w = w̄ and XAΓ
A
BC = 0. Thus, the theorem holds upon

contraction with XA.
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Next, we check that Equation (3.10) holds upon contraction with Z̄A
a . Note that, according to

Equation (3.11), Z̄A
a D̂

T
A =

(
∇⊤

a

)
Σ
. Because XAZ̄

A
a = 0, we have that

(
∇⊤

a

)
Σ
V B = ∇̄aV

B + Γa
B
C V̄

C ,

which is the Fialkow-Gauss equation given in Equation (3.9). Thus, the equation holds upon

contraction with Z̄A
a .

Finally, we check that the identity holds upon contraction with Ȳ A. From Equation. (3.11), we

have that

Ȳ A
[
D̂T

A − ˆ̄DA

]
=

(
− ∆⊤ + wJ̄

d̄+ 2w − 2
+

wK

2(d̄− 1)(d̄+ 2w − 2)

)
+

1

d̄+ 2w − 2

(
∆̄ + wJ̄

)
=− 1

d̄+ 2w − 2

(
∆⊤ − ∆̄− wK

2(d̄− 1)

)
.

We now explicitly compute the tractor Laplacian di�erence ∆⊤ − ∆̄.

From the de�nition of the tractor Laplacian and de�ning ΓABC
⊥ := ΓABC − 2N [CLB]A ∈

Γ(T 3Σ[−1]), we have

∆⊤V B = ∇⊤
a

(
∇̄aV B + ΓaBCVC

)
= ∇⊤

a

(
∇̄aV B + ΓaBC

⊥ VC + 2N [CLB]aVC

)
= ∆̄V B + ΓaB

C∇̄aV
C + ∇̄a(Γ

aBC
⊥ VC) + Γa

B
EΓ

aEC
⊥ VC +∇⊤

a

(
2N [CLB]aVC

)
= ∆̄V B + ΓaB

C∇̄aV
C +

(
∇̄aΓ

aBC
⊥

)
VC +

(
ΓaBC − 2N [CLB]a

)
∇̄aVC

+ Γa
B
EΓ

aECVC − 2Γa
B
EN

[CLE]aVC + 2
(
∇⊤

a (N
[CLB]a)

)
VC + 2N [CLB]a∇⊤

a VC

= ∆̄V B + 2ΓaB
C∇̄aV

C +
(
∇̄aΓ

aBC
⊥

)
VC

+ Γa
B
EΓ

aECVC − 2Γa
B
EN

[CLE]aVC + 2
(
∇⊤

a (N
[CLB]a)

)
VC + 2N [CLB]aΓaC

EVE .

Writing Γ = Γ⊥ + 2NL allowed us to use the Fialkow�Gauÿ equation (3.9) for the above simpli�-

cations.
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We now break up this calculation into smaller parts.

∇̄aΓ
aBC
⊥ = ∇̄a

(
Z̄a
AΓ

ABC
⊥

)
= Z̄a

A∇̄aΓ
ABC
⊥ + ΓABC

⊥
(
J̄X̄A − d̄ȲA

)
= Z̄a

A∇̄aΓ
ABC
⊥ − d̄Γ−BC

⊥ .

Here, the second equality comes from the fact that ∇̄aZ̄
b
A = −P̄ b

aX̄A − ḡbaȲA and the last equality

holds because XAΓ
ABC = 0. Similarly,

∇⊤
aN

[CLB]a =
(
∇⊤

aN
[C
)
LB]a +N [C

[
∇̄a

(
LB]AZ̄a

A

)
+ Γa

B]
EL

Ea
]

=
(
∇⊤

aN
[C
)
LB]a +N [C

[(
∇̄aL

B]A
)
Z̄a
A − d̄LB]− + Γa

B]
EL

Ea
]

In order to simplify the above two displays, we need results that follow from Equation (2.3):

Z̄a
A∇̄aL

AC = 2L−C ,

Z̄a
A∇̄aF

AC = 3F−C ,

∇⊤
aN

B = LB
a .

Using the above identities, we can write

∇̄aΓ
aBC
⊥ = 2

(
∇̄aX

[C
)
FB]a + 6X [CFB]− +

1

d̄(d̄− 1)
(∇aK)X [C h̄B]a − d̄Γ−BC

⊥

= 4X [CFB]− +
1

d̄(d̄− 1)

(
X [C ˆ̄DB]K + 2KX [C h̄B]−

)
− d̄Γ−BC

⊥

= (2− d̄)Γ−BC
⊥ +

1

d̄(d̄− 1)
X [C ˆ̄DB]K ,

and

2∇⊤
aN

[CLB]a = 2(2− d)N [CLB]− +NCΓABELAE −NBΓACELAE .
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We can now use these formulæ to write

∆⊤V̄ B = ∆̄V B + 2ΓaBC∇̄aVC + (2− d̄)Γ−BC
⊥ VC +

VC
d̄(d̄− 1)

X [C ˆ̄DB]K + Γa
B
EΓ

aECVC

− 2Γa
B
EN

[CLE]aVC + 2N [CLB]aΓaC
EVE

+
(
2(2− d)N [CLB]− +NCΓABELAE −NBΓACELAE

)
VC

= ∆̄V̄ B + 2ΓaBC∇̄aVC + (2− d̄)Γ−BCVC +
VC

d̄(d̄− 1)
X [C ˆ̄DB]K + Γa

B
EΓ

aECVC

− 2Γa
B
EN

[CLE]aVC + 2N [CLB]aΓaC
EVE +

(
NCΓABELAE −NBΓACELAE

)
VC

= ∆̄V B + 2ΓaBC∇̄aVC + (2− d̄)Γ−BCVC +
VC

d̄(d̄− 1)
X [C ˆ̄DB]K + Γa

B
EΓ

aECVC

= ∆̄V B + 2ΓABC ˆ̄DAVC − (d̄+ 2w − 2)Γ−BCVC +
VC

d̄(d̄− 1)
X [C ˆ̄DB]K + ΓA

B
EΓ

AECVC

= ∆̄V B + 2ΓA
A
C ˆ̄DCV

B − (d̄+ 1)wK

d̄(d̄− 1)
V B + 2ΓABC ˆ̄DAVC − (d̄+ 2w − 2)Γ−BCVC

+
VC

d̄(d̄− 1)
X [C ˆ̄DB]K + ΓA

B
EΓ

AECVC

= ∆̄V B + 2ΓA♯ ◦ ˆ̄DAV
B − (d̄+ 2w − 2)Γ−BCVC +

VC
d̄(d̄− 1)

X [C ˆ̄DB]K

+ ΓA♯ ◦ ΓA
♯V B − (d̄+ 1)wK

d̄(d̄− 1)
V B .

In the display above, the second equality comes from the de�nition of Γ⊥. The third equality is a

result of the last four terms canceling, and the fourth equality comes from the fact thatXAΓ
ABC = 0.

The last inequality follows from ΓA
A
EΓ

EBCVC = 0.

But,

(
D̂T

A − ˆ̄DA

)
V B = Z̄A

a ΓA
B
CV

C − XA

d̄+ 2w − 2

(
∆⊤ − ∆̄− wK

2(d̄− 1)

)
V B,

so the proof of the special case for a tractor vector is completed by combining terms involving wK.

The proof of the full theorem follows by the same calculations but accounting for the possible action

by derivation on tensor products of the tractor bundle. □

45



Remark 3.3.5. A useful consequence of Theorem 3.3.4 is that, for a scalar density µ ∈ Γ(EM [w])

where w ̸= 3−d
2 , the following identity holds:

D̂T
Aµ

Σ
= ˆ̄DAµ+ wK

2(d−2)(d+2w−3)XAµ .

■

As observed in Equation (2.6), the commutator of two Thomas-D operators produces the W

tractor. The commutator of two hypersurface Thomas-D operators produces the induced W̄ tractor

on Σ. One can thus infer that there is a relationship between W and W̄ . Indeed, a consequence of

Theorem 3.3.4 is the following corollary.

Corollary 3.3.6 (Gauÿ-Thomas Equation). Let d > 5. Then the bulk and hypersurface W -

tractors are related by

W⊤
ABCD

∣∣
Σ
= W̄ABCD − 2LA[CLD]B − 2hA[CFD]B + 2hB[CFD]A − 2

(d−1)(d−2)hA[ChD]BK

+ 2X[ATB]CD + 2X[CTD]AB − 2XAX[CVD]B + 2XBX[CVD]A

+ 1
3(d−1)(d−2)XAX[C

ˆ̄DD]
ˆ̄DBK − 1

3(d−1)(d−2)XBX[C
ˆ̄DD]

ˆ̄DAK,

(3.12)

where

TABC := 2 ˆ̄D[CFB]A + 1
(d−1)(d−2)hA[B

ˆ̄DC]K ∈ Γ(T Σ⊗ ∧2T Σ[−3]) ,

and VAB ∈ Γ(⊙2T Σ[−4]) is a symmetric tractor built from curvatures such that XAVAB = XBV

for some V ∈ Γ(EM [−4]).

Proof of Corollary 3.3.6. Recall that the Gauÿ equation is a corollary of the Gauÿ for-

mula, in the sense that it is obtained by applying the latter to [∇⊤
a ,∇⊤

b ]vc where vc is an extension

of a hypersurface tangent vector. Similarly, the present proof could be completed by applying the

Gauÿ�Thomas formula to [D̂T
A, D̂

T
B]VC . But, because D̂ is not a derivation, that computation is

rather involved. Instead, we approach the proof via equality of all possible contractions (in some

scale g ∈ c) by hypersurface injectors (XA, Z̄A
a , Ȳ

A) on both sides of the lemma's result. Note that

it is unnecessary to check contractions with more than one Ȳ�this only probes VAB. Also, without
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loss of generality, we may choose g to be a scale in which the mean curvature Hg of the embedding

Σ ↪→ (M, g) vanishes.

We begin by contracting with a single X. For that, we �rst use Proposition 2.3.1 and the

Fialkow tractor identities ˆ̄DAFAB = 0 = XAFAB, 0 = FA
A as well as the ansatz XAVAB = XBV ,

to obtain

XATABC = 1
(d−1)(d−2)X[B

ˆ̄DC]K ,

XCTABC =− FAB − K
(d−1)(d−2) h̄AB − 1

2(d−1)(d−2)XA
ˆ̄DBK ,

XAX[BVC]A = 0 .

Now XAW⊤
ABCD = 0, so we need to show contraction of the right-hand side of Equation (3.12)

with XA vanishes. Clearly XAW̄ABCD = 0 and the contraction of X with the second term also

vanishes because XALAB = 0. Using XAFAB = 0 along with the identities of the above display,

the remaining terms are

−2X[CFD]B + 2
(d−1)(d−2)X[Dh̄C]BK

+2X[CFD]B − 2
(d−1)(d−2)X[Dh̄C]BK − 1

(d−1)(d−2)XBX[C
ˆ̄DD]K

+ 1
(d−1)(d−2)XBX[C

ˆ̄DD]K = 0 .

Because the W -tractor has Weyl curvatures symmetries this establishes consistency of the identity

when any index is contracted with a canonical tractor.

Next, note that Z̄A
a Z̄

B
b Z̄

C
c Z̄

D
d W

⊤
ABCD =W⊤

abcd and that the trace-free Gauÿ equation says

W⊤
abcd = W̄abcd − 2 I̊Ia[c I̊Id]b − 2ḡa[cF̊ d]b + 2ḡb[cF̊ d]a − 2

(d−1)(d−2) ḡa[cḡd]bK.

It is easy to check, using XAZ̄
A
a = 0, that this is the right hand side of Equation (3.12) when

contracted with this combination of injectors.

The last case to check is contraction of Equation (3.12) by Z̄A
a Z̄

B
b Z̄

C
c Ȳ

D. By directly applying

the de�nitions of LAB, FAB, W̄ABCD, and the hatted hypersurface Thomas-D operator, after some
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computation, we �nd for the right-hand side

Z̄A
a Z̄

B
b Z̄

C
c Ȳ

D
[
W̄ABCD − 2LA[CLD]B − 2hA[CFD]B + 2hB[CFD]A − 2

(d−1)(d−2)hA[ChD]BK

+ 2X[ATB]CD + 2X[CTD]AB

]
= C̄abc +

2
d−2 I̊Ic[a∇̄· I̊Ib] + 2∇̄[aF̊ b]c − 1

(d−1)(d−2) ḡc[a∇̄b]K.

We must then contract the left-hand side with the same injector product. Because we use a scale

where Hg = 0,

Z̄A
a Z̄

B
b Z̄

C
c Ȳ

DW⊤
ABCD = C⊤

abc

∣∣
Σ
.

Showing that this contraction yields equality in Equation (3.12) is now equivalent to showing that,

when Hg = 0, the projected Cotton tensor is related to the hypersurface Cotton tensor by

C⊤
abc

∣∣
Σ
= C̄abc + 2∇̄[aF̊ b]c +

2
d−2 I̊Ic[a∇̄· I̊Ib] − 1

(d−1)(d−2) ḡc[a∇̄b]K.

For that, �rst observe that the projected covariant derivative of (any extension of) the induced

metric form obeys

∇⊤
a ḡ

e
bc

∣∣
Σ
= −IIabn̂c − IIacn̂b

Hg=0
= − I̊Iabn̂c − I̊Iacn̂b.

Applying this identity, Equation (3.8), and the traced Codazzi�Mainardi equation, the projected

Cotton tensor can be written in terms of the hypersurface Cotton tensor:

C⊤
abc

∣∣
Σ
= (∇aPbc)

⊤ − (a↔ b)

= ∇⊤
a P

⊤
bc + I̊IabP

⊤
n̂c + I̊IacP

⊤
n̂b + n̂b I̊I

d
aP

⊤
dc + n̂c I̊I

d
aP

⊤
bd − (a↔ b)

= ∇⊤
a P

⊤
bc + n̂b I̊I

d
aP

⊤
dc + n̂c I̊I

d
aP

⊤
bd − (a↔ b) + 2

d−2 I̊Ic[a∇̄· I̊Ib]

= ∇̄aP
⊤
bc − (a↔ b) + 2

d−2 I̊Ic[a∇̄· I̊Ib]

= ∇̄aP̄bc + ∇̄aF̊ bc +
ḡbc

2(d−1)(d−2)∇̄aK − (a↔ b) + 2
d−2 I̊Ic[a∇̄· I̊Ib]

= C̄abc + 2∇̄[aF̊ b]c +
2

d−2 I̊Ic[a∇̄· I̊Ib] − 1
(d−1)(d−2) ḡc[a∇̄b]K.

Here Xab − (a ↔ b) denotes Xab −Xba = 2X[ab] and refers to everything in the expression to the

left of it. The second line above relies on the previous display, while the third relies on the trace
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of the Codazzi�Mainardi equation. The penultimate line uses the Fialkow�Gauÿ equation. This

completes the proof.

□

Remark 3.3.7. The corollary does not contain an explicit formula for the tractor VAB for

reasons of brevity only. It measures the di�erence between hypersurface and bulk Bach tensors.

While explicit knowledge of the tensor content of VAB is unnecessary for the computations that

follow, it is nonetheless interesting. A computer-aided computation gives

VAB = q̄(Uab) +
1

(d−1)(d−4)(d−5) h̄ABU,

where, for d ̸= 5, 7,

Γ(EΣ[−4]) ∋ U = d−3
d−1K

2 + 2I̊Iad I̊IbcW abcd − 2(d− 3) I̊I·F̊ · I̊I + (d− 3)(d− 5)F̊ 2

+ 1
d−7

(
D̄ALBC

) ( ˆ̄DALBC
)
− LBCNANDδRWABCD ,

(3.13)

where δR = N ·D̂ = ∇n̂ −Hw, and

Γ(⊙2T ∗
◦Σ[−2]) ∋ Uab =

1
d−5Bab − 1

d−4B
⊤
(ab)◦ +

2
d−7E(F̊ )ab

+ 1
6(d−1)(d−2)∇̄(a∇̄b)◦K − 1

(d−2)(d−3) I̊Iab∇̄·∇̄· I̊I + 1
(d−2)2

∇̄· I̊I(a∇̄· I̊Ib)◦

+ 2HC⊤
n̂(ab) +H2Wn̂abn̂ − 1

3(d−1)(d−2)KP (ab)◦ − 1
d−3 I̊IabI̊I ·P .

Here the operator E ∈ End
(
Γ(⊙2

◦T
∗Σ)) is de�ned by

E(X̊)ab := ∆̄X̊ab − ∇̄(a∇·X̊b)◦ − (d− 3)P̄c(aX̊
c
b)◦ − 2J̄X̊ab .

When d̄ = 6, the operator E de�nes a conformally invariant map Γ(⊙2
◦T

∗Σ) → Γ(⊙2
◦T

∗Σ[−2]). ■

A further corollary of the Gauÿ�Thomas equation in Theorem 3.3.4 characterizes the Fialkow

tractor in terms of the W -tractor and tractor second fundamental form and generalizes Equa-

tion (3.7).
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Corollary 3.3.8. Let 7 ̸= d > 5. Then the Fialkow tractor obeys

(d− 3)FAB =
(
LC
ALCB − 1

d−1KhAB −WNABN

)
− 1

d−1X(A
ˆ̄DB)K − 1

(d−4)(d−5)XAXBU ,

where U ∈ Γ(EΣ[−4]) is the density built from curvatures given in Equation (3.13).

Proof. The proof amounts to tracing Equation (3.12) with the hypersurface tractor metric.

Note that U is given in the previous remark. □

Observe that the above corollary mirrors the Riemannian relationship between the Fialkow

tensor, the square of the second fundamental form, and the Weyl tensor. Further paralleling the

Riemannian case, one might expect that the tractor second fundamental form arises as the action

of a connection-like tractor operator on the normal tractor. This expectation is captured by the

following lemma.

Lemma 3.3.9. Let d ≥ 4 and N e be any extension of the normal tractor. Then the tractor second

fundamental form obeys

LAB = D̂T
(AN

e
B)

∣∣
Σ
− 1

d−3

(
X(ANB)K +XAXBM

)
,

with M = LABF
AB = FAB(D̂AN

e
B)

∣∣
Σ
.

While this result can be proved directly, a holographic approach to the proof is more instructive;

thus we wait to provide the proof until we have discussed holography.

3.4. Geometric Holography

A particularly useful way to study both Riemannian and conformal hypersurface invariants is

via the notion of preinvariants. The notion of a preinvariant was described in [9,45] and is recorded

here for our use.

Definition 3.4.1. For hypersurfaces, a Riemannian preinvariant is a di�eomorphism-invariant

(possibly tensor-valued) function P which assigns to each Riemannian d-manifold (M, g) and hy-

persurface de�ning function s for Σ pair the function P (s; g) such that:

(1) P (s; g)|Σ is independent of the choice of de�ning function s for Σ;
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(2) P (s; g) is given by a universal polynomial expression such that, in a local coordinate system

(xa) on (M, g), P (s; g) can be expressed as a polynomial in g, its inverse, the de�ning

function s, their partial derivatives, the inverse of the length of the conormal |ds|−1
g , the

inverse of the metric determinant, and the volume form on M .

■

Observe that action via the Levi-Civita connection can also appear in preinvariants, if only

because this action can be expressed in terms of partial derivatives and derivatives of the metric.

The simplest example of a preinvariant is the preinvariant for the unit conormal: (|ds|−1
g ∂s)|Σ = n̂.

Another example of a useful preinvariant is Pab, the preinvariant for the second fundamental form:

Pab :=
(
∇a − |ds|−1

g (∇as)∇|ds|−1
g grad s

) ∇bs

|ds|g
.

It is straightforward to check that this reduces to the standard de�nition of the second fundamental

form when restricted to Σ, so that Pab|Σ = IIab.

The notion of a preinvariant allows us to de�ne the transverse order of a Riemannian (or

conformal) preinvariant P (s; g). Given such a preinvariant, we can represent it in a choice of

coordinates (s, yi) in a neighborhood of Σ such that vector �elds ∂/∂yi are tangent to Σ. To each

coordinate representation we associate the non-negative integer that is the highest order of ∂/∂s

derivatives of g upon restriction to Σ. Then, the transverse order of the preinvariant P (s; g) is the

minimum such integer, minimizing over all coordinate representations of P (s; g). A consequence of

this de�nition is that, because to each preinvariant there is an associated hypersurface invariant,

there is a unique transverse order associated to each hypersurface invariant. As simple examples,

the transverse order of the unit conormal is 0, the transverse order of the second fundamental form

is 1, and the transverse order of the Fialkow tensor is 2.

Another useful notion is the transverse order of an operator. In particular, we say that an

operator O has transverse order k ∈ Z≥0 when there exists v in the domain of O such that O(skv)|Σ ̸=

0, but O(sk+1v′)|Σ = 0 for all v′ in the domain of O. Given an operator O with transverse order

k and a hypersurface invariant with transverse order ℓ and an associated preinvariant P (s; g), the

transverse order of the hypersurface invariant O(P (s; g))|Σ is less than or equal to k + ℓ. Indeed,

51



O(P (s; g))|Σ in general depends on more than the underlying hypersurface invariant de�ned by

P (s; g).

With this notion of preinvariants given, we have the tools to discuss geometric holography.

Among other things, geometric holography is a method of studying geometric embedding data

of a hypersurface by studying particular extensions of hypersurface quantities into a bulk space.

Speci�cally, if Σ ↪→ (M,S) is a hypersurface embedding where (M,S) is a smooth manifold with

some structure S, we can study hypersurface invariants of Σ by �nding and studying corresponding

canonical preinvariants (i.e. �nding canonical extensions) that are determined by and preserve

the structure S. We call such canonical preinvariants holographic formulæ for their hypersurface

invariants. In some cases, these holographic formulæ can only be determined up to some order in a

de�ning function�nonetheless, they can still be useful.

Viewing the hypersurface invariants as more fundamental, we can view preinvariants instead as

extensions of the hypersurface invariant. Typically, canonical extensions are found by demanding

that an object solves a particular natural partial di�erential equation. In Section 3.1, we demanded

that |ds|g = 1 in a neighborhood of Σ. Indeed, this is a partial di�erential equation on the de�ning

function s which can be used to canonically choose a triple (M, g, s)u. With such a canonical choice

made, we can study the hypersurface by studying the speci�c function s and the preinvariants

associated to it rather than an entire family of equivalently valid de�ning functions. While this

was not strictly necessary for the discussion that followed, it indeed can be useful for simplifying

challenging calculations. This type of simpli�cation is the power of holography: it allows for the

dramatic simpli�cation of otherwise enormous computations.

We are primarily interested in the case where S is a conformal structure c on M . As in the

Riemannian case, we are interested in a canonical partial di�erential equation on σ that, given some

hypersurface embedding Σ ↪→ (M,γ), will �x the triple (M,γ, σ). Indeed, as suggested above, for

any positive function f ∈ C∞M , the triple (M,γ, fσ) speci�es the same hypersurface embedding

Σ ↪→ (M,γ), so we seek out a partial di�erential equation to �x f . To that end, we specify the

singular Yamabe problem [88]:

Problem 3.4.2. Given a conformal hypersurface embedding (M,γ, σ), �nd a positive func-

tion f ∈ C∞M such that the singular metric go associated with the triple (M,γ, fσ) has a constant
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scalar curvature:

Scg
o
= −d(d− 1) .

An analogous problem was solved by Loewner and Nirenberg on round structures [59]. Recall

that for the hypersurfaces we are interested in, Σ is separating so that M = M− ⊔ Σ ⊔M+. A

one-sided global solution to this problem always exists [2,5,62] but in general relies on global data

ofM+; however, a solution f that depends only on local data of the embedding can always be found

such that go = γ/(fσ)2 asymptotically solves the singular Yamabe problem [2,34]:

Scg
o
= −d(d− 1) +O(sd) ,

where s here is any de�ning function for Σ ↪→ M . In this dissertation, we will use the notation

O(sm) (or, for densities, equivalently O(σm)) to indicate that the remaining terms in an expression

can be written as smf where f is some function (or density) that is regular in the limit where s (or

σ) approaches zero. Indeed, note that for σ a de�ning density for Σ ↪→ (M,γ), the above display is

thus equivalent to

Scg
o
= −d(d− 1) +O(σd) .(3.14)

because for two representative s, s̃ of σ, we have that, for some Ω ∈ C∞
+ M relating s and s̃,

s̃df = (Ωs)df = sd(Ωdf) .

Thus, Equation (3.14) can be viewed as a conformally-invariant equation.

Given a hypersurface embedding speci�ed by (M,γ, σ) that has f = 1 as the solution to the

above asymptotic singular Yamabe problem, we will say that (M,γ, σ) ∈ ASY and we will often

denote such embeddings by a subscript Y, i.e. we will write (M,γ, σ)Y . Given a triple (M,γ, σ′),

we can simply de�ne σ := fσ′, where f solves the singular Yamabe problem for (M,γ, σ′), so that

(M,γ, fσ′) = (M,γ, σ)Y .

A priori the above canonical problem is very di�erent from the canonical PDE imposed by re-

quiring that the extension of the conormal has unit length. However, we can reframe the singular
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Yamabe problem as a similar unit-length type problem using the framing of tractors [34,40]. Sup-

pose that (M,γ, σ) speci�es the hypersurface embedding Σ ↪→ (M,γ). Then, we de�ne the scale

tractor by

IAσ := D̂Aσ ∈ Γ(TM [0]) .

In a choice of splitting given by g ∈ c, we can write

IAσ = (σ,∇aσ, ρ) ,

where ρ := −1
d(∆σ + Jgσ). Observe that, using the tractor metric, we have that

I2σ = (∇σ)2 + 2σρ .

In a choice of scale σ = [g; s], we have that

I2σ = |ds|2g − 2
d(∆s+ Js) .

Because this equality holds everywhere in M , and in particular is valid in M+, we choose the scale

(valid only away from Σ) given by σ = [go; 1]. In that case, we have that I2σ = −2
dJ

go . However,

Jgo = 1
2(d−1)Sc

go , so we have that

I2σ = − Scg
o

d(d− 1)
.

From this equation we conclude that if a hypersurface speci�ed by (M,γ, σ) exactly solves the

singular Yamabe problem, then we must have that I2σ = 1. We call such a de�ning densities σ that

solve this equation a unit de�ning density. Similarly, given a conformal hypersurface embedding

speci�ed by (M,γ, σ)Y , we must have that

I2σ = 1 + σdB ,

for some density B ∈ Γ(EM [−d]) that extends smoothly to the boundary. Note that the density

B|Σ ∈ Γ(EΣ[−d]), called the obstruction density because it obstructs solving the singular Yamabe

problem smoothly [2,45], is a local invariant and plays a special role in conformal geometry. It will

be the subject of further discussion in Chapters 5 and 6. For holographic purposes, then, we will

demand that I2σ = 1+O(σd) going forward so that the hypersurface is speci�ed by (M,γ, σ)Y . This
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uniquely determines the de�ning density σ to order σd+1. In the literature, such a σ that solves

the asymptotic singular Yamabe problem is sometimes called a asymptotic unit de�ning density.

When it is clear that we are discussing asymptotic unit de�ning densities, we will typically drop

the subscript σ decorating I�because given a conformal hypersurface embedding (M,γ, σ)Y , this

tractor is (asymptotically) uniquely determined.

Given the above discussion, the relationship between the de�ning density σ and the normal

tractor becomes clear. A result of [34] showed that so long as I2σ = 1+O(σ2), we have that IAσ
Σ
= NA.

(Note that this implies that in a choice of scale σ = [g; s] we have that ρ
Σ
= −Hg.) But given

(M,γ, σ)Y , this is always satis�ed for d ≥ 4, which is our regime of interest�so the hypersurface

tractor calculus developed in Section 3.3 can directly parallel the Riemannian developments in

Section 3.1. Thus, we use the scale tractor as a holographic formula for the normal tractor, and

furthermore refer to any formula using this canonical extension as a holographic formula.

The operator I ·D (and its hatted counterpart, I ·D̂, which is often called the Laplace�Robin

operator) play an important role in holography, in part because this operator satis�es an sl(2)

algebra. This fact is recorded in the following lemma from Gover and Waldron:

Proposition 3.4.3 ( [40]). Suppose σ ∈ Γ(EM [1]) obeys I2σ ̸= 0, and denote by h : Γ(T ΦM [w]) →

Γ(T ΦM [w]) the operator de�ned by h = d+2w. Then, viewing x := σ : Γ(T ΦM [w]) → Γ(T ΦM [w+

1]) as a multiplicative operator and y := − 1
I2
I ·D : Γ(T ΦM [w]) → Γ(T ΦM [w − 1]) as a di�erential

operator, commutators of the operators (x, h, y) satisfy the sl(2) de�ning relations,

[h, x] = 2x , [x, y] = h , [h, y] = −2y .

Remark 3.4.4. Because we will often assume that σ is an asymptotic unit de�ning density, we

may neglect the 1
I2

coe�cient when using the above-displayed relations because it equals unity to

su�ciently high order for the situations discussed. ■

We now �nally have the tools to prove Lemma 3.3.9 via holography. The method requires a

holographic formula for the tangential Thomas-D operator; this is captured in the following lemma.
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Lemma 3.4.5. Let w+ d
2 ̸= 1, 32 , d and let (M,γ, σ)Y specify a conformal hypersurface embedding.

Then, acting on tractors of weight w, we have that

D̂T
A

Σ
= D̂A − IAI ·D̂ + 1

d+2w−3XAI ·D̂2 .(3.15)

Proof. For this proof we will assume that σ is asymptotic unit de�ning. Observe from the

Leibniz failure (Lemma 2.3.1) that, for ϕ, ψ tractors of weight w1, w2 ̸= 1− d
2 respectively,

I ·D̂(ϕψ)
Σ
= ϕ(I ·D̂ϕ) + (I ·D̂ϕ)ψ .

Indeed, along Σ, the operator I ·D̂ is a derivation. Thus, we can write the operator equation

(I ·D̂)2
Σ
= (I ·D̂IB)D̂B + IAIBD̂AD̂B .(3.16)

Now observe that

I ·D̂IB = IAD̂
AD̂Bσ

= IAD̂
BD̂Aσ

= IAD̂
BIA

= 1
2D̂

B(I2)− 1
d−2X

B(D̂CIA)(D̂CIC)

= 1
2D̂

B(1 + σdB)− 1
d−2X

B(D̂CIA)(D̂CIC)

Σ
= − 1

d−2X
B(D̂CIA)(D̂CIA) .

(3.17)

Above, the second equality holds because [D̂A, D̂B] on scalars vanishes, the fourth equality holds via

the Leibniz failure, and the �fth equality holds because σ is asymptotic unit de�ning. By substituting

Equation (3.16) into Equation (3.15), the proof then amounts to showing that (D̂CIA)(D̂CIA) is

an extension of the rigidity density. To do so, observe from [9, Lemma 3.15] that q∗(∇I) Σ
= I̊I, and

thus q∗(D̂I)
Σ
= I̊I. That is, we can write

D̂AIB
Σ
=


0 0 0

0 I̊Iab ∗

0 ∗ ∗

 .
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Hence it is clear that (D̂CIA)(D̂CIA)
Σ
= K, and thus is an extension of K. □

The above proof included the �rst use of the tractor

PAB := D̂AIB ∈ Γ(⊙2
◦T ∗M [−1]) .

This tractor will play a major role going forward in our analyses of conformal hypersurface invariants.

Indeed, we de�ne a holographic formula for the rigidity density K by

Ke := PABP
AB .

Observe that this tractor is symmetric because [D̂A, D̂B] vanishes on scalars, is trace-free because

D̂A ◦ D̂A = 0, and is �top-slot free,� i.e. XAPAB = 0, as a consequence of Equation (2.5) and

that wI = 0. Another useful property of the tractor P is that D̂APAB = 0. This directly implies

that (q ◦ q∗)(PAB) = PAB, so knowing the projecting part of PAB is su�cient to determine the

entire tractor. Because q∗(PAB)
Σ
= I̊I, we de�ne the canonical extension of the trace-free second

fundamental form by

I̊Ie := q∗(PAB) = [g;∇(anb)◦ + sP̊ g
ab] ∈ Γ(⊙2

◦T
∗M [1]) ,(3.18)

so that I̊Ie|Σ = I̊I. By inserting the above tensor-valued density into a tractor, we �nd that

q( I̊Ie) = PAB. Hence, we can write that

PAB
Σ
=


0 0 0

0 I̊Ieab −∇·̊IIea
d−1

0 −∇·̊IIeb
d−1

∇·∇·̊IIe+(d−1)P·̊IIe
(d−1)(d−2)

 .(3.19)

A useful consequence of this extension of I̊I and the tractor PAB is the following lemma.

Lemma 3.4.6. Let (M,γ, σ)Y represent a conformally embedded hypersurface and let ℓ ∈ Z≤d−2

be non-negative. If I̊Ie = O(σℓ), then na I̊Ieab = O(σℓ+1) and ∇· I̊Ie = O(σℓ).
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Proof. First observe that, when I̊Ie = O(σℓ), an extension of the tangential divergence of I̊Ie

satis�es ∇⊤a
e I̊Ieab := (gac − nanc)∇c I̊I

e
ab = O(σℓ). This follows because

[∇n,∇⊤
e a] = 2ρna∇n + ltots0 ,

where ρ := −1
d(∆s + Js). Note that by ltotsk we mean any (possibly di�erential) operator with

transverse order less than or equal to k. That is, we can write

(3.20) ∇· I̊Ie − n·∇n I̊I
e = ∇⊤

e · I̊Ie = O(σℓ) .

Further, from Equation (3.17), we have that

q∗(2IBPAB) = dσd−1naB + σd∇aB .

From Equation (3.19), we also have that q∗(I ·P ) = − σ
d−1∇· I̊Ie + n· I̊Ie. Therefore,

(3.21) σ∇· I̊Ie − (d− 1)n· I̊Ieb = O(σd−1) .

Now choose an integer 0 ≤ k ≤ d− 2 and observe that [∇m
n , na] = ltotsm−1 for any positive integer

m. Combining Equations (3.20) and (3.21) and taking k transverse derivatives, we �nd that

(3.22) ∇k
nn· I̊Ie

Σ
= k

d−1−k∇
k−1
n ∇⊤

e · I̊Ie + ltotsk−1(n· I̊Ie) + ltotsk−2(∇⊤
e · I̊Ie) ,

where for m < 0, ltotsm is the zero operator. Observe that for any 0 ≤ k ≤ ℓ, the right hand

side vanishes to order O(σℓ−k+1). Thus, if I̊Ie = O(σℓ), we have that ∇k
nn · I̊Ie

Σ
= 0 and hence

n· I̊Ie = O(σℓ+1). The remainder of the lemma follows from Equation (3.20). □

Remark 3.4.7. Because [∇n,∇⊤
e a] = 2ρna∇n + ltots0, it follows from Lemma 3.4.6 that

∇k−1
n ∇⊤

e · I̊Ie Σ
= ∇⊤ ·∇k−1

n I̊Ie + ltotsk−2( I̊I
e)(3.23)

for k ≤ d− 2. ■

A corollary about the tractor content of PAB follows directly from the above lemma and Equa-

tion (3.19).
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Corollary 3.4.8. Let (M,γ, σ)Y specify a conformally embedded hypersurface, let ℓ ∈ Z≤d−2

be non-negative, and let I̊Ie = O(σℓ). Then,

PAB = O(σℓ) +XAXBO(σℓ−1) .

As another application of the tractor PAB, we can prove Lemma 3.3.9 using Equation (3.15)

and the tractor PAB.

Proof of Lemma 3.3.9. Let (M,γ, σ)Y specify a conformally embedded hypersurface Σ ↪→

(M,γ). Because σ is asymptotic unit de�ning and d ≥ 4, we have that I2 = 1 +O(σ4). As noted

above in the proof of Lemma 3.4.5, we have that I ·D̂IA = KeXA
d−2 + O(σ2). Next, we choose the

holographic extension I of N so that, using Equation (3.17), we have that

D̂T
(AIB)

Σ
= D̂AIB − I(AI ·D̂IB) +

1
d−3X(AI ·D̂

(
1

d−2XB)Ke

)
Σ
= PAB − 1

d−2I(AXB)K + 1
(d−2)(d−3)

(
I(AXB)Ke +XAXBI ·D̂Ke

)
Σ
= PAB − d−4

(d−2)(d−3)I(AXB)K + 1
(d−2)(d−3)XAXBI ·D̂Ke ,

(3.24)

where the second equality holds because I ·D̂ is a derivation along Σ. A result of [44] showed that

the holographic formula for LAB is given by

PAB
Σ
= LAB + 2

d−2I(AXB)K|Σ + 3d−8
(d−2)(d−3)XAXBM ,(3.25)

where M = FABPAB|Σ as in the lemma statement. Combining Equation (3.24) with the above

display, proving the lemma amounts to showing that I · D̂K Σ
= −2(d − 3)M . This identity can

be checked explicitly. By the Leibniz failure, we have that I · D̂Ke
Σ
= 2PABI · D̂PAB. Because

IA
g
= (σ, na, ρ), we have that in a choice of scale σ = [g; s], I ·D̂ Σ

= ∇n −Hgw. Then, we have that

I ·D̂Ke
Σ
= 2PAB(∇n +H)PAB .
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Using Equation (3.19) and (2.3), we have that

∇nPAB =


0 0 0

0 ∇n I̊I
e
ab −

2
d−1n(a∇· I̊Ieb) ∗

0 ∗ ∗

 .

Hence, we have that

I ·D̂Ke
Σ
= 2HK + 2I̊Iab(∇n I̊I

e
ab − 2

d−1na∇· I̊Ieb)|Σ .

Performing an explicit Riemannian computation, we �nd precisely that I ·D̂Ke
Σ
= −2(d− 3) I̊I·F̊ =

−2(d− 3)LABF
AB. This completes the proof. □
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CHAPTER 4

Conformal Fundamental Forms

A particularly useful application of hypersurface di�erential geometry is in the Arnowitt�Deser�

Misner (ADM) formalism [4], which is one of the fundamental tools of numerical relativity. The core

idea of that formalism is to take a spacelike hypersurface in 3+1 dimensional spacetime and evolve

that hypersurface forward in time using Einstein's equations to foliate all of spacetime, thereby

obtaining a solution by construction with some given initial data. Given such an initial data slice,

evolving towards a full solution requires two pieces of data because Einstein's equations are second

order PDEs. Indeed, the ADM formalism requires both the induced metric on and the second

fundamental form of the initial Cauchy slice.

In the same vein, if the problem we are interested in is conformally invariant (such as the Bach-

�at problem in four dimensions), a conformally-invariant set of initial data would be required to

evolve to solutions. Furthermore, in the example given of the Bach-�at problem, the PDE of interest

is a fourth-order PDE rather than second order, so we need more than just two pieces of initial data.

Indeed, to solve such problems, one might look toward producing a family of conformally-invariant

extrinsic curvatures that generalize the second fundamental form. In this section, we examine such

a family.

Using holography, one way we can further probe conformal hypersurface invariants of the embed-

ding Σ ↪→ (M,γ) is by directly studying the canonically-determined unit de�ning density. Indeed,

because the unit de�ning density σ for the embedding is determined uniquely (to su�ciently high

order) by solving the singular Yamabe problem, we can extract conformal hypersurface invariants

by studying a family of conformally-invariant jet coe�cients of σ. These jet coe�cients encode ex-

trinsic embedding data so we study those tensors. Note that by construction, these jet coe�cients

are tensor-valued densities on tensor products of the cotangent bundle of M along Σ.
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In Section 3.2, we introduced the �rst two conformally-invariant jet coe�cients of σ. The �rst

such coe�cient is the conormal ∇σ|Σ ∈ Γ(T ∗M [1])|Σ. The second such jet is the trace-free second

fundamental form, given by I̊Iab := ∇(a∇b)◦σ|Σ ∈ Γ(⊙2
◦T

∗Σ[1]). Unfortunately, additional gradients

of this tensor do not fall into the cotangent bundle along Σ. There is thus a fork in our path: we

can consider longitudinal jet coe�cients of σ by considering hypersurface gradients of I̊I or we can

consider transverse jet coe�cients by considering normal derivatives of an extension of I̊I. Because

conformally-invariant operators on a conformal manifold (Σ, γ̄) are well-studied [7,16,48], we do not

investigate those jet coe�cients in depth here. Furthermore, we are particularly interested in �nding

higher-order analogs of the second fundamental form. Thus, we probe transverse jet coe�cients of

σ. To better navigate our path forward, we analogize with the Riemannian case.

Consider a surface Σ embedded in a �at (R3, δab) speci�ed by a de�ning function s. In this case,

the square of the second fundamental form is sometimes termed the third fundamental form. We

are interesting in examining how the third fundamental form is related to the jet coe�cients of the

de�ning function s. In this case, the conormal is given by the gradient of s, so that n := ∇s, and

the second fundamental form is simply the Hessian of s, i.e. II = ∇∇s. The third fundamental

form then obeys

IIIab := −(∇n∇a∇bs)|Σ = II2ab .

We then proceed to de�ne higher (Riemannian) fundamental forms by taking successive normal

derivatives, so that

k + 2 := (−1)k

k! ∇k
n∇a∇bs|Σ = IIk+1

ab ,

where m denotes the (Riemannian) mth fundamental form.

While the fundamental forms described above naively do not encode any more information of

the embedding than the second fundamental form, we see that for hypersurfaces embedded in a

generally curved manifold Σ ↪→ (M, g), these tensors contain additional embedding information

that is not captured by the second fundamental form. For example, if s is unit de�ning, then

IIIab
Σ
= II2ab −Rnabn .
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A hint of the path forward is given by this formula: recall that the Fialkow tensor is given by

F̊ ab =
1

d−3

(
I̊I2(ab)◦ −Wn̂abn̂

)
.

The similarity between F̊ and the formula for III above suggests that the Fialkow tensor is (pro-

portional to) the next conformally-invariant transverse jet coe�cient of σ beyond I̊I�a conformal

third fundamental form. Furthermore, observe that the second fundamental form and the Fialkow

tensor have transverse order and weight pairs (1, 1) and (2, 0), respectively. Also note that under

constant rescalings of the metric, derivatives with respect to the de�ning density ∂σ have weight

−1. This suggests that the transverse jet coe�cients of σ probe, in a natural, conformally-invariant

way, derivatives of the conformal metric with respect to the de�ning density. Here, natural tensors

are those that are di�eomorphism invariant and are built from the metric, its derivatives, and the

conormal. We are thus led to the following de�nition.

Definition 4.0.1. Let m ∈ Z≥2. An mth conformal fundamental form is any natural section

of ⊙2
◦T

∗Σ[3−m] with transverse order m− 1. ■

Often when discussing such tensor-valued densities, we drop the adjective conformal. Using this

de�nition, we have that the Fialkow tensor is indeed a third conformal fundmental form. Of interest

is that the de�nition above does not uniquely �x fundamental forms. Indeed, both the tensors

F̊ and F̊ + α I̊I2(ab)◦

are third fundamental forms. However, their leading transverse derivative structure is (essentially)

unique. This fact is made explicit in the following lemma.

Lemma 4.0.2. Suppose 2 ≤ n ≤ d − 1. Then if the conformal embedding Σ ↪→ (M, c) is such

that at least one ℓth conformal fundamental form vanishes for every 2 ≤ ℓ < n, then up to an overall

non-zero coe�cient, there is a unique nth conformal fundamental form.

Proof. The proof is based on an inductive argument where we show that the leading normal

derivative terms of the metric are unique. Thus we begin by considering the leading transverse order

term in the preinvariant expression for an nth fundamental form. As before, using coordinates {s, yi}

in a collar neighborhood I ×Σ ⊂M , we can express any natural preinvariant in terms of a de�ning
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function s, partial derivatives ∂s and ∂i = ∂/∂yi, the metric components gab, the components of

its inverse gab. Because fundamental forms are conformally invariant, it is useful to view part of

the preinvariant alphabet�the metric g and the de�ning function s�as representatives of weighted

densities: the metric is a weight 2 representative of the conformal class of metrics c and the de�ning

function is a representative of a de�ning density σ = [g; s] with weight 1. We next determine the

leading transverse order term in the preinvariant expression for an nth fundamental form using

De�nition 4.0.1.

From the de�nition of transverse order, we must be able to choose coordinates such that the

leading derivative term in the preinvariant for the nth fundamental form is of the form

O(ab)
cd ∂n−1

s gcd|Σ ,

where, as an operator, O(ab)
cd has transverse order 0. Moreover the above is annihilated by the

normal vector and the hypersurface trace. Note that the weight of an nth fundamental form is 3−n

and its transverse order is n− 1. By considering only conformal transformations by a constant we

may still analyze expressions such as that displayed above in terms of weights. Because the weight

of the operator ∂s is −1, the weight of the above display is 3−n+wO where the operator O(ab)
cd has

weight wO. Hence we must have that wO = 0. By an elementary weight argument, ones sees that

this operator is algebraic and therefore made only from the metric, its inverse, and a preinvariant

for the conormal. Together with elementary O(d) and O(d− 1) representation theory, this implies

that (along Σ) this operator must be a non-zero multiple of the trace-free hypersurface projector,

and hence proportional to

⊤̊e

(
∂n−1
s gab

)∣∣
Σ
,

where ⊤̊e is any preinvariant expression for the operator ⊤̊.

Now suppose that L(n) and L(n)′ are two nth fundamental forms with the same coe�cient for

the above-displayed term and the conformal embedding Σ ↪→ (M, c) is such that an ℓth fundamental

form vanishes for every ℓ < n. We then seek to show that L(n) − L(n)′ Σ
= 0. Clearly, because L(n)

and L(n)′ have the same leading term, their di�erence must have transverse order at most n − 2.

Put another way,

L
(n)
ab − L

(n)
ab

′ = P(ab)
cd∂n−2

s gcd
∣∣
Σ
+ ltotsn−3(gab) ,
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where P(ab)
cd is a preinvariant operator with weight −1 and transverse operator order 0. But

then ∂n−2
s gab|Σ can be rewritten as an (n − 1)th fundamental form plus lower-order terms. Thus,

the induction only requires that we check that the second fundamental form is unique up to an

overall non-zero coe�cient, which is again easily veri�ed by an elementary weight and representation

theoretic argument. □

A consequence of this lemma is that the leading derivative structure of a conformal fundamental

form is unique up to multiplication by a nonzero constant. By this uniqueness property, there is a

priori no preferred method for constructing these fundamental forms. Arguing by analogy with the

Riemannian case suggests that one way to form these tensors is by computing conformally-invariant

transverse derivatives of an extension of the second fundamental form. In the following section, we

provide several methods to construct such tensors.

4.1. Conformally-Invariant Transverse Derivative Operators

In general, the derivative operator ∇n is not conformally invariant except when evaluated along

Σ and acting on weight 0 functions. However, we are interested in the development of conformally-

invariant operators with transverse order k that can act on sections of ⊙2
◦T

∗M [1] (because that

is the section space in which an extension of I̊I resides). While in general this is no easy task,

holography makes our work easier. In this section, we provide two distinct methods of constructing

such operators: one is iterative and one is non-holographic.

4.1.1. Iterative Construction. An important transverse derivative operator in conformal hy-

persurface geometry is the tractor Robin operator δR, �rst mentioned here in the proof Lemma 3.3.9,

de�ned as the map

Γ(T ΦM [w]) ∋ T
g7→ (∇n̂ −Hgw)T |Σ ∈ Γ(T ΦM [w − 1])|Σ .

When w ̸= 1− d
2 , this operator can be written in a more compact form, i.e. δRT = NAD̂AT |Σ.

Remark 4.1.1. When restricted to densities, the tractor Robin operator is the conformally-

invariant Robin combination of Neumann and Dirichlet operators �rst constructed by Cherrier [22].

■
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Because we wish to develop transverse derivative operators not on tractors or scalars but on

rank-2 trace-free symmetric (Riemannian) tensors, the Robin operator as described above is not

appropriate. However, given such a tensor, we can canonically construct a tractor on which δR can

operate via the insertion operator, and we can then extract a hypersurface tensor with the same

tensor structure by composing the hypersurface extraction map, the hypersurface removal operator,

and the trace-free projection operator. This leads us to the following lemma.

Lemma 4.1.2. Let Σ ↪→ (M, c) be a conformal hypesurface embedding and let t ∈ Γ(⊙2
◦T

∗M [w]),

with w ̸= 3. Then, given g ∈ c,

δ(1) tab
g
= ⊤̊

[
(∇n̂ − (w − 2)H) tab +

2
w−3∇̄(at

⊤
n̂b)◦

]
.

Proof. We proceed by working in a generic dimension d and with generic weight w rank-

2 trace-free symmetric tensors t ∈ Γ(⊙2
◦T

∗M [w]). For generic weights and dimensions, we may

compute the composition of maps q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δR ◦ q. We must compute q̄∗ ◦ r̄ ◦ ⊤̊, so we �rst

apply this operator to a general rank-2 tractor T ∈ Γ(⊙2
◦TM [w]). Note that ⊤̊ maps T 7→ ˚̄T

where ˚̄T := (IA
′

A IB
′

B − 1
d+1IABI

A′B′
)TA′B′ |Σ. Because r̄ achieves X · r̄

(˚̄T ) = 0, we have that

(q̄∗ ◦ r̄ ◦ ⊤̊)(T )ab = Z̄AaZ̄Bbr̄(
˚̄T )AB for an arbitrary tractor T . Thus, for generic dimensions and

weights, we have that

(q̄∗ ◦ r̄ ◦ ⊤̊)(T )ab = Z̄AaZ̄Bb
˚̄TAB

− 2
w Z̄B(a∇̄b)(XC

˚̄TCB) + 2
w(d+1) γ̄ab

ˆ̄DC(XD
˚̄TCD)

+ 1
w(w+1) Z̄Bb∇̄a

ˆ̄DB(XCXD
˚̄TCD)

+ 8γ̄ab
(d−1)(d+1)(d+2w+1)

ˆ̄DC(XD
˚̄TCD) .

We now compute each of the terms above. First, using Equation (2.3), we obtain

Z̄Bb∇̄a(XC
˚̄TCB) = ∇̄a

˚̄T+
b + γ̄ab

˚̄T+− + P̄ab
˚̄T++ ,

Z̄Bb∇̄a
ˆ̄DB(XCXD

˚̄TCD) =
[
∇̄a∇̄b − γ̄ab

d+2w+1(∆̄ + (w + 2)J̄) + (w + 2)P̄ab

]˚̄T++ .
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Next (see for example the Appendix B of [72]), we have

ˆ̄DC(XD
˚̄TCD) = 1

d+2w−1

(
−[∆̄−(d+w−1)J̄ ]˚̄T+++(d+2w+1)∇̄a

˚̄T+a+(d+w−1)(d+2w+1)˚̄T+−) .
Finally, because ˚̄TAB is hypersurface tractor trace-free, we have that 0 = ˚̄T a

a + 2˚̄T+−. Thus,

Z̄AaZ̄Bb
˚̄TAB + 2γ̄ab

d−1T
+− = ˚̄Tab − 1

d−1 γ̄ab
˚̄T c
c =: ˚̄T(ab)◦ .

Substituting these identities into the above display for (q̄∗ ◦ r̄ ◦ ⊤̊)(T ) gives

(q̄∗ ◦ r̄ ◦ ⊤̊)(T )ab =
1

w(w+1)∇̄(a∇̄b)◦
˚̄T++ − 2

w ∇̄(a
˚̄T+
b)◦ −

1
w+1 P̄(ab)◦

˚̄T++ + ˚̄T(ab)◦ .

Proving the lemma now amounts to computing the components of ˚̄T when T = δR ◦ q(t). Note that

by construction,

˚̄T++ Σ
= T++ ,

˚̄T+
b

Σ
= γ̄cbT

+
c ,

˚̄T(ab)◦
Σ
= γ̄caγ̄

d
bTcd +

1
d−1 γ̄ab(2T

+− + Tn̂n̂) .

Thus, we can simplify our calculations by only computing the components of T appearing on the

right hand side above.

We can use Equation (2.12) and the de�nition of δR to show that

XAT
AB = XAδRq(t)

AB = δRXAq(t)
AB −NAq(t)

AB

= −NAq(t)
AB ,

where the second equality holds because X ·q(tab) = 0 by de�nition. Thus, using Lemma 2.5.1, we

have

T++ = 0 , T+
a = −tn̂a , T+− =

n̂·∇·t
d+ w − 2

.

Using again Lemma 2.5.1 as well as Equation (2.3) and the fact that q(t) has weight w− 2, we have

that

Tab = ∇n̂tab − (w − 2)Htab −
2n̂(a∇·tb)
d+ w − 2

,
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so that in a choice of scale σ = [g; s],

˚̄T(ab)◦
Σ
= ⊤[∇n̂tab − (w − 2)Htab] +

1
d−1 ḡab(n̂

an̂b∇n̂tab − (w − 2)Htn̂n̂)

Σ
= ⊤̊[∇n̂tab − (w − 2)Htab] .

Combining the above and noting that T has weight w − 3, we have

q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δR ◦ q(t) = ⊤̊
[
∇n̂tab − (w − 2)Htab +

2
w−3∇̄(at

⊤
n̂b)◦

]
.

This completes the proof. □

In principle, one could extend this technique to the operator (I ·D̂)k, but in doing so it becomes

much harder to explicitly compute such operators. Instead, we will de�ne an operator that we can

iterate to produce such higher derivative operators. Indeed, by constructing a similar composition

of operators with the tractor operator I ·D, we can compute powers of

IDσ = q∗ ◦ r ◦ I ·D ◦ q(4.1)

on generic weights to construct the desired operators. Observe that such an operator can be well-

de�ned even if σ is not a de�ning density, let alone an asymptotic unit de�ning density. The following

results regarding the operator IDσ hold in this most general case. We now need a technical lemma.

Lemma 4.1.3. Let θ = [g; t] ∈ Γ(⊗rT ∗M [w]) and σ = [g; s] ∈ Γ(EM [1]). Then

∇σθ := [g; s∇t− (w − r)ds⊗ t+ (ds⊛ g)♯t] ∈ Γ(⊗r+1T ∗M [w + 1]) ,

where for a general covector ω, we denote (ω ⊛ g)♯atb := ωbta − gbaω
ctc (when r = 1) and extends,

in the standard Leibniz way, to higher rank r tensors.

Proof. First note that, using the notation provided in the lemma, the Levi-Civita connection

acting on θ := [g, t] ∈ Γ(⊗rT ∗M [w]) obeys

∇Ω2gtΩ
2g = ∇Ω2g

(
Ωwtg

)
= Ωw

(
∇gtg + (w − r)Υ⊗ tg − (Υ⊛ g)♯tg

)
.
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Here Υ := d logΩ. Further, denoting n := ds, nΩ
2g = d(Ωs) = Ω(ng+sΥ). Therefore, nΩ

2g⊗tΩ2g =

Ωw+1(ng+sΥ)⊗tg and (nΩ
2g⊛Ω2g)♯ = Ω([ng+sΥ]⊛g)♯. Combining these conformal transformations

with the above display completes the proof. □

Note that if σ is an asymptotic unit de�ning density for a hypersurface Σ, then, along Σ, the

operator ∇σ is just a particular tensor multiplication by the unit conormal n̂.

The operator IDσ of Equation (4.1) is not de�ned for several weights, so we instead make the

following de�nition.

Definition 4.1.4. Let σ ∈ Γ(EM [1]) be any weight one density, let Iσ = D̂σ, and let τab ∈

Γ(⊙2
◦T

∗M [w]) where w ̸= 3, 2− d. Also let M̂ :=M \ Z(σ). Then we de�ne the map

IDσ : Γ(⊙2
◦T

∗M̂ [w]) → Γ(⊙2
◦T

∗M̂ [w − 1])

by the following formula:

σ IDστab := −γcd
(
∇σ

c∇σ
dτab +

2d
(w−3)(d+w−2) ∇

σ
(a∇

σ
|cτd|b)◦ −

4
d [∇

σ
(a,∇

σ
|c]τd|b)◦

)
− 4

dσ
2W c

ab
dτcd +

[(
w − 2 + d−1

2

)2
−
(
d−1
2

)2
+ 2

]
I2σ τab .

■

Note that the de�nition for IDσ given above is manifestly conformally invariant and of the

appropriate weight�all of the terms that make up the operator are manifestly conformally invariant,

as per their de�nitions and Lemma 4.1.3. The combination of terms making up IDσ is distinguished

because they in fact allow the operator IDσ to be de�ned along Z(σ). This result is described in

the following lemma.

Lemma 4.1.5. Let σ ∈ Γ(EM [1]) be any weight one density and τab ∈ Γ(⊙2
◦T

∗M [w]) with

w ̸= 3, 2− d. Let g ∈ c for which σ = [g; s], τab = [g; tab], and IDστab = [g; IDstab]. Then

IDstab=(d+2w−6)
(
[∇n+ (w−2)ρ] tab − 2(w−2)

(w−3)(d+w−2)n(a∇·tb)◦ + 2
w−3

[
nc∇(at

c
b)◦+(∇n)(a ·tb)◦

])
− s

(
∆tab + (w − 2)Jtab +

2d
(w−3)(d+w−2)∇(a∇·tb)◦ − 4P(a ·tb)◦

)
,
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where n := ds and ρ = −1
d(∆s+ Js), and IDσ is a well-de�ned map

IDσ : Γ(⊙2
◦T

∗M [w]) → Γ(⊙2
◦T

∗M [w − 1]) .

Proof. The proof amounts to a computation of IDστab in a choice of scale away from Z(σ),

applying Lemma 4.1.3 twice, and the identity I2σ
g
= n2 + 2sρ. The resulting tensor is proportional

to s and hence the apparent singularity of IDσ along Z(σ) in De�nition 4.1.4 is removable. □

For weights at which the composition of maps q∗◦r◦I·D̂◦q : Γ(⊙2
◦T

∗M [w]) → Γ(⊙2
◦T

∗M [w−1])

is de�ned, a tedious but straightforward computation shows that IDσ = q∗ ◦ r ◦ I ·D ◦ q. Thus,

we have constructed a means by which to compute the action of a conformally-invariant transverse

derivative on symmetric trace-free rank-2 tensors in a way that can be iterated, but is well-de�ned

on more weights than the composition operator just mentioned.

Furthermore, we can relate the operator IDσ to δ(1) quite easily by �rst de�ning the operator

ID̂σ := 1
d+2w−6 IDσ acting on tensors with weight w ̸= 3 − d

2 . As above, when the composition

operator is well-de�ned, we have that ID̂σ = q∗ ◦r◦I·D̂◦q. Furthermore, because δ(1) is constructed

from a partially hypersurface composition operator containing I · D̂, we can �nd a relationship

between δ(1) and ID̂σ. Indeed, given a de�ning density σ subject to I2σ
Σ
= 1, when w ̸= 3, 3− d

2 , we

have that

δ(1) = ⊤̊ ◦ ID̂σ − 2
w−3 I̊I(n̂ · )

2 .

With these operators IDσ and δ(1), one might naively suggest that a transverse derivative oper-

ator of any order could be constructed by writing δ(1) ◦ IDk
σ for any k ∈ Z≥0. However, as suggested

by the work of Gover and Peterson [38], certain values of k yield operators with transverse order

lower than k + 1. Indeed, we can prove this result explicitly�but �rst we provide a de�nition of

this iterated operator.

Definition 4.1.6. Let (M,γ, σ) ∈ ASY specify a conformal hypersurface embedding. Then,

de�ne δ
(0)
d,w := ⊤̊ : Γ(⊙2

◦T
∗M [w]) → Γ(⊙2

◦T
∗Σ[w]), and acting on weight w ̸= 3 tensors, de�ne

δ
(1)
d,w := δ(1). For k ∈ Z≥2 and w /∈ {2− d, . . . , k − d} ∪ {3, . . . , k + 2}, let

δ
(k)
d,w := δ(1) ◦ IDk−1

σ : Γ(⊙2
◦T

∗M [w]) → Γ(⊙2
◦T

∗Σ[w − k]) .
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Acting on sections of ⊙2
◦T

∗M [w] for w ̸= 3, the transverse order of δ
(1)
d,w is 1. When w ̸∈ Z,

the operator δ
(k)
d,w is always de�ned. Moreover, when 2w is not an integer the operators δ

(k)
d,w for

k ≥ 2 have transverse order k (see Equation (4.2) below). However, when k ∈ Z≥2 and 2w ∈ Z,

the operator δ
(k)
d,w may not be de�ned or it could fail to have transverse order k. In particular,

for w an integer and k ≥ 2, the operators δ
(k)
d,w are only de�ned in the three regions where w obeys

w < 2− d, k− d < w < 3, or k+2 < w (the second of these could be empty). The following lemma

characterizes the transverse order of δ
(k)
d,w in these cases.

Lemma 4.1.7. Fix d ≥ 3 and k ≥ 2, and let w ∈ Z be such that

w < 2− d , k − d < w < 3 , or k + 2 < w .

Then, the transverse order of δ
(k)
d,w is strictly less than k if and only if

7− d

2
≤ w < 3 and

d+ 2w − 3

2
≤ k ≤ d+ 2w − 5 .

Proof. To evaluate the transverse order of δ
(k)
d,w, we compute the coe�cient of ∇k

n. For that

we �rst examine the leading derivative structure of the operator IDσ. From Lemma 4.1.5, acting

on a weight w tensor tab ∈ Γ(⊙2
◦T

∗M [w]) the only terms with non-zero transverse order are ∇ntab,

n(a∇ · tb)◦, nc∇(at
c
b)◦, s∆tab, and s∇(a∇ · tb)◦ (here σ = [g; s] and we work in the scale g). In a

choice of coordinates (s, y1, . . . , yn−1) with {∂yi} tangential to Σ, we can write

∇a = na∂s + ltots0 ,

where n = ∇s and ltotsk denotes an operator that can be expressed in these coordinates with

leading derivative term ∂ℓs where ℓ ≤ k. Observe that ltotsℓ ◦ ltotsk = ltotsℓ+k. Thus, we have that

nc∇(at
c
b)◦ = ncn(a∂st

c
b)◦ + ltots0(t) and s∇(a∇ · tb)◦ = sn(a∂s∇ · tb)◦ + ltots1(t) .

Because σ is an asymptotic unit de�ning density, we have that ∇n ◦ n Σ
= n(∇n + H) and so the

operator δ(1) composed with the conormal n has transverse order zero. Therefore, only the terms ∇n

and s∆ in IDσ can contribute to the leading transverse derivatives in the operator δ
(k)
d,w.
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From the above, and again consulting Lemma 4.1.5, we conclude that

δ
(k)
d,w = ⊤̊ ◦ ∇n ◦

k−2∏
i=0

[(d+ 2w − 2i− 6)∇n − s∆] + ltotsk−1 .

Because ∆ = ∇2
n + ltots1, we have that

δ
(2)
d,w

Σ
= ⊤̊ ◦ (d+ 2w − 7)∇2

n + ltots1 .

We now proceed inductively to �nd the general coe�cient of the leading transverse derivative term.

Suppose that for k ≥ 3,

δ
(k−1)
d,w = ⊤̊ ◦

[
k−2∏
i=1

(d+ 2w − k − i− 3)

]
∇k−1

n + ltotsk−2 .

Then, because

δ
(k)
d,w = δ

(k−1)
d,w−1 ◦ IDσ ,

we have that

δ
(k)
d,w = ⊤̊ ◦

[
k−2∏
i=1

(d+ 2w − k − i− 5)

]
∇k−1

n ◦ [(d+ 2w − 6)∇n − s∆] + ltotsk−1 .

Hence, as required, we �nd

(4.2) δ
(k)
d,w = ⊤̊ ◦

[
k−1∏
i=1

(d+ 2w − k − i− 4)

]
∇k

n + ltotsk−1 .

To �nd when δ
(k)
d,w has transverse order strictly less than k, we study when the leading coe�cient

in the above display vanishes. That is, we wish to �nd k and w that obey

d+ 2w − 2k − 3 ≤ 0 ≤ d+ 2w − k − 5 .(4.3)

Because k ≥ 2, we �nd that the right inequality implies that w ≥ 7−d
2 . Further, the inequality above

can be rewritten in terms of k to obtain d+2w−3
2 ≤ k ≤ d+ 2w− 5. Equation (4.3) has no solutions

for w in the range w < 2 − d since that would require d < −3. Therefore, when w < 2 − d, the

transverse order of δ
(k)
d,w is k. The left inequality of (4.3) rules out w > k + 2 so the only remaining
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case is k − d < w < 3, which, in combination with Equation (4.3), gives the ranges of k and w

quoted in the Lemma. □

Observe that, acting on integer weight tensors, these operators δ
(k)
d,w fail to have the expected

transverse order in certain cases in all dimension parities. The next provided construction has

the interesting property that it has the expected transverse order in certain cases in a particular

dimensional parity. We now proceed to that construction.

4.1.2. Non-Holographic Construction. For this construction, we rely on the generalizations

of results from [38] and [37] found in Section 2.4.

While the operators δ
(k)
d,w constructed above typically have a dimensionful coe�cient on the

leading derivative term that vanishes for particular weights and dimensions, it is not necessarily the

case that operators with the expected transverse order in those cases do not exist. Indeed, if every

term in the formula for said operator had the same dimensionful coe�cient, one could instead de�ne

an operator with the expected transverse order by dividing out by that particular coe�cient. Work

of Gover and Peterson [38] showed that this phenomenon occurs in a particular subset of similarly

constructed operators on scalar-valued densities. In this section, we summarize a nearly identical

construction for the action of such operators on tractors, most of which is contained in that work.

First, we record a result directly from [38, Proposition 5.8]:

Lemma 4.1.8 (Proposition 5.8 of [38]). Let k ∈ Z+ be given. Then, there exists a family of

conformally invariant operators δk : Γ(T Φ[w]) → Γ(T Φ[w − k])|Σ de�ned by

δk := NA2 · · ·NAkδRDA2 · · ·DAk
,

with transverse order k so long as

w ̸∈
{
2k−1−d

2 , 2k−2−d
2 , . . . , k+1−d

2

}
.

Here δR : Γ(T ΦM [w]) → Γ(T ΦM [w − 1])|Σ and is de�ned by δR := ∇n̂ − wH.

We now provide an analog of [38, Theorem 5.16] in even dimensions.
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Theorem 4.1.9. Let J, k ∈ Z+ such that 0 < J , 0 < k < d/2 and let d be even. Then, there

exists a family of conformally invariant di�erential operators

δΦJ,k : Γ(T ΦM [w]) → Γ(T ΦM [w − k − J ])|Σ

determined as follows. For k ≤ J ,

δΦJ,k = NA1 · · ·NAkδJP
Φ
A1···Ak

.

For k > J , then δJ,k is determined by the equation

(d+ 2w − 2k)δΦJ,k = NA1 · · ·NAkδJP
Φ
A1···Ak

.

When w = k − d/2, δΦJ,k has transverse order J + k.

Proof. We follow the proof of [38, Theorem 5.16]. That proof relies on several results that

require generalization to arbitrary tractor tensor structures; speci�cally, it directly requires [38,

Lemma 5.7, Proposition 5.14, and Lemma 5.15]. Of these results, [38, Lemmas 5.7 and 5.15]

already apply to arbitrary tractors, whereas [38, Proposition 5.14] only applies to scalars and

directly relies on [38, Proposition 5.10], which also only applies to scalars. [38, Proposition 5.10],

in turn, relies on [37, Proposition 4.5], which is a result on scalars. Thus, the proof this theorem

e�ectively amounts to generalizing [37, Proposition 4.5] to arbitrary tensor structures and then

following this result through the aforementioned steps. The generalization of [38, Proposition 4.5]

is given in Proposition 2.4.3, and the generalizations of [38, Propositions 5.10, 5.14] are given in

Propositions 2.4.4 and 2.4.5, respectively. See Section 2.4 for these results. □

Such an operator δΦJ,k is de�ned on any particular tractor bundle T ΦM [w], so we will drop the

superscript Φ when the tensor structure is clear from context. Given such operators, we can compose

them with the insertion, projection, removal, and extraction operators as before to produce operators

on tensors of the appropriate type. Then, such operators can be proven to have the correct transverse

order, even in cases when the iteratively-constructed operators do not.

As an example, suppose (M6, γ, σ)Y represents a conformal hypersurface embedding. We com-

pare the operators δ
(3)
6,1 and (q̄∗◦ r̄◦⊤̊◦δ1,2◦q) on weight 1 symmetric trace-free rank-2 tensor-valued
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densities. From Lemma 4.1.7, we see that δ
(3)
6,1 has transverse order strictly less than 3, whereas we

will expect (and later prove) that (q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δ1,2 ◦ q) has transverse order 3, as per Theorem 4.1.9.

Because we are most interested in constructing such operators that act on this weight (because any

extension of I̊I is weight 1), we will �nd that when d is even, this second construction can be more

useful.

4.2. Conformal Fundamental Forms�General Dimensions

We now proceed to explicitly construct fundamental forms in a way that is agnostic toward the

dimension parity. Because the iterative construction is more straightforward, we implement that

construction to explicitly compute several of the fundamental forms, as well as providing formulæ

for computing them in general.

As mentioned earlier, the method we will use to compute these fundamental forms is by ap-

plication of transverse derivative operators to an extension of I̊I. Observe from Equation (3.18)

that we already have a prescribed holographic formula for I̊I, so we will use this as our canonical

extension. Furthermore, when necessary we will use the tractor PAB as the tractor equivalent of

this canonical extension, as PAB = q( I̊Ieab). Because these holographic formulæ rely on a confor-

mal hypersurface embedding speci�ed by (M,γ, σ)Y , we will assume the conformal hypersurface

embedding asymptotically solves the singular Yamabe problem going forward.

We now de�ne a formula for a particular subset of fundamental forms. This set is distinguished

because the contained fundamental forms are always de�ned.

Definition 4.2.1. Let d ≥ 3 and let 2 ≤ n < d+3
2 . An nth fundamental form n̊ is de�ned by

n̊ := δ
(n−2)
d,1 I̊Ie .

■

The following proposition con�rms that the above de�nition is valid.

Proposition 4.2.2. The nth fundamental form de�ned in De�nition 4.2.1 is a fundamental

form.
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Proof. From Equation (3.18), in a choice of scale σ = [g; s], we have I̊Ieab = ∇(anb)◦ + sP̊ab.

Therefore, we have that ∇k
n I̊I

e
ab

Σ
= ∇k

n∇(anb)◦ + k∇k−1
n P̊ab for any positive integer k. There exists a

scale g for which s is a unit de�ning function for Σ (see, for example [49]); thus in what follows, we

can assume that |ds|2 = 1, so that ∇nna = 0. Therefore, we can write that

∇n∇anb = Rnabn − (∇an
c)(∇cnb)

=Wnabn − Pab + 2n(aPb)n − gabPnn + ltots1(gab) .

Applying the above display to ∇k
n I̊I

e
ab, we have

∇k
n I̊I

e
ab

Σ
= ∇k−1

n Wnabn + (k − 1)∇k−1
n P̊ab + 2n(a∇k−1

n Pnb)◦ + ltotsk−1( I̊I
e
ab) .

Then a straightforward computation in a choice of coordinates (s, y1, . . . , yd−1) with {∂yi} tangential

to Σ shows that

⊤̊ ◦ ∇k
n I̊I

e
ab

Σ
= d−k−2

2(d−2) ⊤̊(∂k+1
s gab) + ltotsk(gab).(4.4)

Using Lemma 4.1.7, if n ∈ Z satis�es 2 ≤ n < d+3
2 , then

δ
(n−2)
d,1 = α ⊤̊ ◦ ∇n−2

n + ltotsn−3,

for some non-zero coe�cient α. Thus, in a choice of scale and coordinates used above, we have

n̊ab = α ⊤̊ ◦ ∇n−2
n I̊Ieab + ltotsn−3( I̊I

e
ab) = α d−n

2(d−2)⊤̊(∂n−1
s gab) + ltotsn−2(gab).

and so n̊ has transverse order n − 1. Further, by construction, n̊ is a conformal tensor density of

weight 3− n. The proposition follows. □

Remark 4.2.3. The above proof method�writing some tensor as partial derivatives with respect

to s of the metric�will be utilized heavily in later results. ■

Remark 4.2.4. In dimensions d = 3, 4, an nth fundamental form is de�ned for all 2 ≤ n ≤ d−1.

When d ≥ 4, the operator δ
(1)
d,1 can be used to compute

I̊IIab := δ
(1)
d,1 I̊I

e
ab = − I̊I2(ab)◦ +Wn̂abn̂ .
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For d ≥ 6, applying the operator δ
(2)
d,1 gives

I̊Vab :=δ
(2)
d,1 I̊I

e
ab = −(d− 4)(d− 5)C⊤

n̂(ab) − (d− 4)(d− 5)HWn̂abn̂ − (d− 4)∇̄cW⊤
c(ab)n̂

+ 2Wcn̂n̂(a I̊I
c
b)◦ + (d2 − 7d+ 18)F̊ (a · I̊Ib)◦ + (d− 6)W̄ c

ab
d I̊Icd

+ d3−10d2+25d−10
(d−1)(d−2) K I̊Iab .

(4.5)

The above computation was performed using the symbolic manipulation program FORM [83].

Documentation of our FORM code can be found in Appendix A. Also note that, in dimensions d > 3,

the third fundamental form I̊II recovers the trace-free Fialkow tensor:

(4.6) I̊II = −(d− 3)F̊ .

■

A useful consequence of the uniqueness result in Lemma 4.0.2 and the proof of Proposition 4.2.2

is that if the �rst m − 1 fundamental forms vanish, we must have that the canonical extension of

the second fundamental form must vanish to a certain order. This fact is captured in the following

lemma which will be used extensively.

Lemma 4.2.5. Let (Md, γ, σ)Y with d ≥ 3 specify a conformal hypersurface embedding such that

I̊I = . . . = m̊ = 0

for some integer 2 ≤ m < d+3
2 . Then, I̊Ie = O(σm−1).

Proof. For this proof, we will work in a scale σ = [g; s] where |ds|g = 1 and where (s, y1, . . . , yd−1)

are the typical choice of coordinates. Our strategy for this proof will be to show that if all such

fundamental forms vanish up to the mth fundamental form, then we will have that ⊤̊ ◦ ∇ℓ
n I̊I

e Σ
= 0

for every integer 0 ≤ ℓ ≤ m−2. Then we will use Lemma 3.4.6 to show that this implies that ∇ℓ
n I̊I

e

vanishes along Σ for the same ℓ.

The general de�nition of an nth fundamental form suggests that it is a conformally invariant

tensor that can be written in the form

n̊ab = α⊤̊∂n−1(gab) + ltotsn−2(gab) ,

77



for some nonzero coe�cient α. If n ≤ d− 1, from the uniqueness result of Lemma 4.0.2, we can see

from the existence result of Lemma 4.2.2 and the explicit formula in Equation (4.4) that this tensor

can thus be expressed in the form

n̊ab = β⊤̊ ◦ ∇n−2
n I̊Ie + ltotsn−3( I̊I

e) ,

where β is some nonzero coe�cient. Thus, for any integer 2 ≤ m ≤ d+3
2 , we have that if I̊I = . . . =

m̊ = 0, then ⊤̊ ◦ ∇ℓ
n I̊I

e Σ
= 0 for every integer 0 ≤ ℓ ≤ m− 2.

We now proceed by induction on ℓ ≤ m to show that∇ℓ
n I̊I

e Σ
= 0 for all ℓ ≤ m−2. Becausem ≥ 2,

we have that I̊I = 0 so clearly ∇0
n I̊I

e Σ
= 0. Now, suppose that ∇ℓ−1

n I̊Ie
Σ
= 0 for all 1 ≤ ℓ ≤ m − 2.

Thus, we have that I̊Ie = O(σm−2). We then compute directly:

∇ℓ
n I̊I

e
ab

Σ
=(ḡca + nan

c)(ḡdb + nbn
d)∇ℓ

n I̊I
e
cd

Σ
=⊤̊ ◦ ∇ℓ

n I̊I
e
ab +

ḡab
d− 1

ḡcd∇ℓ
n I̊I

e
cd + 2n(a(n·∇ℓ

n I̊I
e
b))

⊤ + nanb n·(∇ℓ
n I̊I

e)·n

Σ
=⊤̊ ◦ ∇ℓ

n I̊I
e
ab + 2n(a(n·∇ℓ

n I̊I
e
b))

⊤ + (nanb − ḡab
d−1)n·(∇

ℓ
n I̊I

e)·n ,

where the third line holds because gab I̊Ieab = 0. Because I̊Ie = O(σm−2) and m − 2 ≤ d − 2,

Lemma 3.4.6 implies that n· I̊Ie = O(σm−1) and hence, for any integer 1 ≤ ℓ ≤ m− 2, we have that

n·∇ℓ
n I̊I

e Σ
= 0. Thus, the above expression is zero along Σ, completing the induction. Therefore, for

2 ≤ m < d+3
2 , we have that I̊I = . . . = m̊ = 0 implies that I̊Ie = O(σm−1). □

We now de�ne a family of conformal hypersurface embeddings that are useful in de�ning higher

fundamental forms.

Definition 4.2.6. We say that a conformal hypersurface embedding Σ ↪→ (Md, c) is hyperum-

bilic if, for each and every n ∈ {2, . . . , ⌈d+1
2 ⌉}, an nth fundamental form vanishes. ■

Remark 4.2.7. Recall that an embedding is called umbilic when I̊I = 0. The name hyperumbilic

was chosen to evoke a stricter condition than mere umbilicity. Furthermore, in De�nition 4.2.6, the

article �an� was used speci�cally to suggest that there is no canonical set of fundamental forms

that must vanish for such a hypersurface embedding to be hyperumbilic. Because of the uniqueness
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result of Lemma 4.0.2, the inde�nite article is su�cient. Going forward, we can assume that

hyperumbilicity implies vanishing of the above fundamental forms and vice versa. ■

We can now de�ne a set of higher fundamental forms that are only invariant so long as the

embedding is hyperumbilic. Such tensors can only conditionally be called fundamental forms. Thus,

we call a transverse order n − 1 hypersurface invariant a conditional fundamental form if and

only if it is an nth conformal fundamental form on embeddings for which some lower transverse

order fundamental form vanishes. We now provide one possible construction of such conditional

fundamental forms.

Definition 4.2.8. Let d ≥ 5 and let (M,γ, σ)Y specify a conformal hypersurface embedding.

Further, let τ ∈ Γ(EM [1]) be any true scale. Then, for d+3
2 ≤ n ≤ d− 1, de�ne the nth conditional

fundamental form by

n̊ := q̄∗ ◦ r̄ ◦ ⊤̊ ◦
(
I ·Dn−2(P log τ)− log τI ·Dn−2P

)
∈ Γ(⊙2

◦T
∗Σ[3− n]) .

■

Remark 4.2.9. It follows that the expression I ·Dn−2P log τ − log τ I ·Dn−2P in the above

de�nition is a tractor by repeated application of Lemma 2.3.3. ■

We must now verify that the conditional fundamental forms de�ned above are indeed fundamental

forms so long as the embedding is hyperumbilic.

Proposition 4.2.10. Let Σ ↪→ (Md, c) with d ≥ 5 be a hyperumbilic conformal embedding

and let k := ⌈d+1
2 ⌉. Then, for all k + 1 ≤ n ≤ d − 1, the nth conditional fundamental form is a

fundamental form.

Proof. We begin by showing that the transverse order of the nth canonical conditional funda-

mental form is n − 1. Recycling the computation in the proof of Lemma 4.1.7, but promoting the

weight w to an operator (as necessary to act on log densities), we �nd that

I ·Dn−2 Σ
= ∇n−2

n ◦

[
n−2∏
i=1

(d+ 2w − n− i+ 2)

]
+ ltotsn−3 ,
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and in turn

I ·Dn−2 ◦ PAB
Σ
= ∇n−2

n ◦ PAB ◦

[
n−2∏
i=1

(d+ 2w − n− i)

]
+ ltotsn−3(PAB) .

Because k + 1 ≤ n ≤ d − 1, we have that d − n − (n − 2) = d − 2n + 2 ≤ 0 and d − n − 1 ≥ 0.

Therefore the product above has w as one of its factors, so we have that

n−2∏
i=1

(d+ 2w − n− i) = αw +O(w2) ,

for some α ̸= 0. So, remembering that ⊤̊ includes restriction to Σ and w log τ = 1 while w2 log τ = 0,

we can write

⊤̊ ◦ I ·Dn−2(PAB log τ) = α⊤̊(∇n−2
n PAB) + ltotsn−3(PAB log τ) .

Further, again using w(1) = 0, we have that log τ I ·Dn−2PAB = log τ ltotsd−3(PAB).

We now need to verify that (q̄∗ ◦ r̄ ◦ ⊤̊)(∇n−2
n PAB) has transverse order n − 1. To check this,

suppose that I̊Ie = O(σn−2). Then, because n− 2 ≤ d− 2, from Lemma 3.4.6 and Equation (3.23),

we have that ∇· I̊Ie = O(σn−2). However, observe heuristically from Equation (2.3) that the action

of the tractor connection on a lower slot either moves the slot �up� or applies a derivative. Indeed,

for I̊Ie = O(σn−2), one can verify by direct computation and Lemma 3.4.6 that the projecting part

of ∇n−2
n PAB is indeed ∇n−2

n I̊Ie. Therefore, for arbitrary I̊Ie, all of the terms correcting (q̄∗ ◦ r̄ ◦

⊤̊)(∇n−2
n PAB) must be of lower transverse order than ∇n−2

n I̊Ie, i.e.

(q̄∗ ◦ r̄ ◦ ⊤̊)(∇n−2
n PAB) = α⊤̊(∇n−2

n I̊Ieab) + ltotsn−3( I̊I
e) ,

for some non-zero α. From Equation (4.4), we have that (in the typical choice of coordinates and

scale)

⊤̊(∇n−2
n I̊Ie) = d−n

2(d−2)⊤̊(∂n−1
s gab) + ltotsn−2(gab) ,

and hence has transverse order n− 1 for n ≤ d− 1.

Finally we need to show that the nth conditional fundamental form is independent of τ . Suppose

that Σ is embedded hyperumbilically and let ℓ := n − k − 1. Note that 0 ≤ ℓ ≤ d − k − 2.

Because (M,γ, σ)Y is hyperumbilic, we have that I̊I = . . . = k̊ = 0, so Lemma 4.2.5 implies that
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I̊Ie = O(σk−1). Then, from Lemma 3.4.8, we have that

n̊ := (q̄∗ ◦ r̄ ◦ ⊤̊)(Πn) ,

where

Πn := I ·Dℓ+(k−1)
(
[σk−1QAB + σk−2XAXBU ] log τ

)
− log τ I ·Dℓ+(k−1)

(
σk−1QAB + σk−2XAXBU

)
,

for some Q ∈ Γ(⊙2
◦T ∗M [−k]) ∩ ker ιX and U ∈ Γ(EM [−k + 1]). We will show that this tractor is

independent of τ .

Employing a quadratic Casimir of the sl(2) algebra,

4yx+ 2h+ h2 = 4xy − 2h+ h2
Σ
= h(h− 2) ,

we �nd the enveloping algebra recursion relation

yℓ+m+1xm+1 Σ
= −yℓ+mxm(ℓ+m+ 1)(h+m− ℓ) ,

which can be solved to yield (for any non-negative integer m)

yℓ+mxm
Σ
= (−1)myℓ

m∏
i=1

(ℓ+ i)(h− ℓ+ i− 1) .(4.7)

Note that when m = 0 in the above display, our convention is to de�ne the product to be 1. In the

sl(2) notations of Proposition 3.4.3 we now have

Πn = −(−1)n log τ
[
yℓ+(k−1)xk−1QAB + yℓ+1+(k−2)xk−2(XAXBU)

]
+(−1)n

[
yℓ+(k−1)xk−1(QAB log τ) + yℓ+1+(k−2)xk−2(XAXBU log τ)

]
.

We de�ne the polynomials Fℓ,w,i(u) := (ℓ + i)(u + 2w − ℓ + i − 1) which obey Fℓ+1,w+1,i(u) =

Fℓ,w,i+1(u). Then, using Equation (4.7) and the fact that Q and X2 U have weights −k and 1− k,
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respectively, we have that:

yℓ+(k−1)xk−1 ◦QAB
Σ
= (−1)k−1yℓ ◦QAB ◦

k−1∏
i=1

Fℓ,−k,i(h) ,

yℓ+1+(k−2)xk−2 ◦XAXBU
Σ
= (−1)k−2yℓ+1 ◦XAXBU ◦

k−2∏
i=1

Fℓ+1,1−k,i(h)

Σ
= (−1)k−2yℓ+1 ◦XAXBU ◦

k−1∏
i=2

Fℓ,−k,i(h) .

De�ning the polynomial

fj(u) :=
k−1∏
i=j

(ℓ+ i)(u− 2k − ℓ+ i− 1) =
k−1∏
i=j

Fℓ,−k,i(u) ,

and remembering that h(1) = d, we may rewrite Πn:

Πn
Σ
=−(−1)n+k−1 log τ

{
f1(d)y

ℓQAB − f2(d)y
ℓ+1(XAXBU)

}
+(−1)n+k−1

{
yℓ
[
QABf1(h)(log τ)

]
− yℓ+1

[
XAXBUf2(h)(log τ)

]}
.

(4.8)

Note that f1(u) = Fℓ,−k,1(u)f2(u). Now, for any polynomial f for which d is a root, the operator

f(h) = f(d+ 2w) obeys

f(h) = 2f ′(d)w +O(w2) ,

and so

f(h) log τ = 2f ′(d) .

Thus, if f2(d) = 0 then f1(d) = 0 and moreover f1(h) log τ and f2(h) log τ are independent of τ and

hence Πn would be independent of τ .

To establish τ independence, we study which values of n force f2(d) = 0. By examining the

product formula for f2, demanding that f2(d) = 0 is equivalent to the inequality

d− 2k − ℓ+ 1 ≤ 0 ≤ d− k − ℓ− 2 .

Rearranging this inequality and using that ℓ := n− k − 1, this suggests that

d− k + 2 ≤ n ≤ d− 1 .
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Now suppose that d is even. In that case, d = 2k−2, so that the above inequality reads k ≤ n ≤ d−1.

Thus we have that for k + 1 ≤ n ≤ d − 1 and d is even, we have that Πn is independent of τ .

Now consider the case where d is odd. In that case, d = 2k − 1, so the above inequality reads

k + 1 ≤ n ≤ d − 1, so again for k + 1 ≤ n ≤ d − 1 we have τ independence. Thus we have that

for all n satisfying k + 1 ≤ n ≤ d− 1, the nth conditional fundamental form n̊ is independent of τ .

This completes the proof. □

Example 4.2.11. We can use Proposition 4.2.10 to compute I̊V in d = 5 for hyperumbilic

embeddings (so I̊I = I̊II = 0) and �nd

I̊Vab
Σhyp
= 2C⊤

n̂(ab) .

This computation relies on the expression for I ·D2 in terms of the tractor connection and weight

operators, which can be found in [44]. ■

With this construction given, we can now de�ne another generalization of umbilicity.

Definition 4.2.12. We say that a conformal hypersurface embedding Σ ↪→ (Md, γ) ism-umbilic

if the embedding has that, for each n ∈ {2, . . . ,m}, an n (possibly conditional) fundamental form

vanishes. ■

Remark 4.2.13. Given the above de�nition, a hyperumbilic conformal hypersurface embedding

is ⌈d+1
2 ⌉-umbilic. Furthermore, observe that if m > d+1

2 , the conditional fundamental forms become

fundamental forms which can invariantly vanish. ■

Now that the conditional fundamental forms have been de�ned, we can slightly generalize

Lemma 4.2.5.

Lemma 4.2.14. Let (Md, γ, σ)Y with d ≥ 3 specify an m-umbilic conformal hypersurface em-

bedding for some integer 2 ≤ m ≤ d − 2. Then, I̊Ie = O(σm−1). When m = d − 1, we have that

I̊Ie = O(σd−1).

Proof. First, observe that if m ≥ d+3
2 , these fundamental forms are still sensibly de�ned

because the hypersurface embedding is hyperumbilic. Then, proving this result is nearly identical

to that for Lemma 4.2.5. When m = d − 1, we can easily show that I̊Ie = O(σd−2) as in the case
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for m < d − 1. Thus, we can write that I̊Ie = σd−2T for some tensor-valued density T . However

from Equation (4.4), we have that ∇d−2
n I̊Ie

Σ
= ltotsd−3( I̊I

e), and thus we have that ∇d−2
n I̊Ie

Σ
=

ltotsd−3(σ
d−2T )

Σ
= 0. Therefore, we have that I̊Ie = O(σd−1), proving the generalization. □

4.3. Conformal Fundamental Forms�Even Dimensions

As mentioned at the end of Subsection 4.1.2, there are cases where the iterative operator con-

struction fails to produce operators of the appropriate transverse order but the non-holographic

construction can still produce such operators. Indeed, we �nd that the family of operators δJ,k can

produce fundamental forms in the even-dimensional case where the iterative approach could not.

Thus we de�ne another set of fundamental forms, de�ned using the non-holographic construction.

Definition 4.3.1. Let d be even and m be an integer satisfying 3 ≤ m ≤ d − 1. Then the

fundamental form m̊
′
is de�ned by

m̊
′
ab :=


(
q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δm−2 ◦ q

)
( I̊Ie) m ≤ d+2

2

(
q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δm− d+2

2 , d−2
2
◦ q

)
( I̊Ie) m > d+2

2 .

■

We need to check that this de�nition is correct, given that an mth fundamental form is de�ned

to be a symmetric trace-free rank-2 tensor with weight 3−m and transverse order m− 1.

Proposition 4.3.2. Let d be even. Then for each m ∈ Z≥2 with m ≤ d− 1, we have that m̊
′
is

a conformal fundamental form.

Proof. First we must check that m̊
′
is well-de�ned. Note that the operator r̄ is only ill-de�ned

when w ∈ {0,−1,−d−1
2 ,−1 − d−1

2 ,−2 − d−1
2 }. Because d−1

2 is not an integer and the weights of

δk(PAB) and δJ,k(PAB) are integers (because the weight of PAB is −1), it is clear that application

of r̄ is permitted in De�nition 4.3.1.

We next check that m̊
′
has weight 3−m as required. Observe that, because Im r̄ ⊂ ker ιX , for

generic T ∈ Γ(⊙2
◦T Σ[w]), we have that (q̄∗ ◦ r̄)(TAB) ∈ Γ(⊙2

◦T
∗Σ[w + 2]). So, by construction, m̊

has weight 3−m.

84



Finally, we must verify that m̊
′
has transverse order m−1. Because the weight of PAB is −1, for

m ≤ d+2
2 , we can easily check (for even d) that δm−2 has transverse order m−2 as per Lemma 4.1.8.

Similarly, we can verify from Theorem 4.1.9 that the transverse order of δm− d+2
2 , d−2

2
is m−2. Finally,

to verify that q̄∗ ◦ r̄ ◦ ⊤̊ does not change the transverse order, we can apply the same argument

found in the proof of Proposition 4.2.10. This completes the proof. □

The existence of these fundamental forms in even dimensions in particularly useful for describing

conformal hypersurface invariants in more detail than otherwise possible in odd dimensions. An

example of such a computation is carried out in Section 5.2. Furthermore, that there exists a dif-

ference in constructability of fundamental forms on even- and odd-dimensional conformal manifolds

suggests a deeper relationship that is yet not fully understood.

4.4. Fundamental Forms Beyond Transverse Order d− 1

Observe that beyond the d− 1th fundamental form, some of the transverse derivative operators

have the desired transverse order again. Indeed, for k ≥ d − 2, the operator δk described in

Lemma 4.1.8 has transverse order k when acting on tractors with weight −1. Furthermore, when

d is even and J + k ≥ d − 2, we have that if k = d−2
2 , then the operator δJ,k also has transverse

order d − 2. However, even though such operators exist, a consequence of Equation (4.4) suggests

that a dth fundamental form may still not exist. One might note that this is a consequence of

the method (di�erentiating an extension of I̊I) that was chosen, so perhaps it may be possible to

construct fundamental forms by acting on another conformally-invariant tensor.

One such alternative construction uses a conformally-invariant extension of I̊II given by

I̊IIeab :=Wnabn + 2σCn(ab) − σ2

d−4Bab .

Again, acting on q(I̊IIe) ∈ Γ(⊙2
◦T ∗M [−2]), we see that δd−3 again has transverse order d− 3. But,

in a choice of scale |ds|2 = 1 and a choice of coordinates (s, y1, . . . , yd−1), we have that

⊤̊ ◦ ∇m
n I̊IIeab =

(d−m−3)(d−m−4)
2(d−2)(d−4) ∂m+2

s (gab) + ltotsm+1(gab) ,(4.9)

so that for d ≥ 6,

∇d−3
n I̊IIeab = ltotsd−2(gab) .
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However, in d = 4, the fourth fundamental form I̊V is constructible using Equation (4.9) because

the leading derivative has a removable singularity at d = 4, and thus we can de�ne

I̊V := (q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δR ◦ q)(I̊IIe) .

This suggests that there may be no way to produce a dth fundamental form except when d = 4. At

present we have no evidence for or against the existence of dth fundamental forms and leave this as

an open question.

Nonetheless, we can de�ne mth fundamental forms with m ≥ d+ 1:

Definition 4.4.1. Let (Md, γ, σ)Y specify a conformally embedded hypersurface with d ≥ 4.

Then, for every n ≥ d+ 1, de�ne an nth fundamental form by

n̊ := (q̄∗ ◦ r̄ ◦ ⊤̊ ◦ δn−2 ◦ q)( I̊Ie) .

■

Verifying that the tensors de�ned above are indeed fundamental forms requires more machinery

than developed so far. Thus, we hold o� on proving that result until Section 5.2.

Example 4.4.2. As an example, consider a �fth fundamental form in d = 4 dimensions,

V̊ := B⊤
(ab)◦ .

Clearly V̊ is conformally invariant because the Bach tensor is conformally invariant in four dimen-

sions. A simple calculation shows that V̊ has leading derivative term α⊤̊∂4s (gab) in the typical

coordinate system with α ̸= 0. While this is clearly not proof, it is evidence for the hypothesis

that ˚d + 1 can always be written as a trace-free hypersurface projection of the Fe�erman-Graham

obstruction tensor. ■

4.5. Tractor Fundamental Forms

Just as the tractor second fundamental form and the Fialkow tractor were de�ned in Section 3.3,

we can insert other fundamental forms into tractors to �nd manifestly conformally invariant relation-

ships between more hypersurface tractors. To that end, in this section we provide various identities

86



relating tractor fundamental forms and bulk tractors. These identities will be useful later when uti-

lizing holographic methods to compute more complicated conformal hypersurface invariants, such

as those implemented in Chapter 6.

A canonical tractor nth fundamental form is given by q̄(̊n) in dimensions d > n + 1. The

tractor second fundamental form de�ned in Section 3.3 is given by L := q̄( I̊I) for d > 3, and its

holographic formula was given in Equation (3.25). A holographic formula for the canonical tractor

third fundamental form, valid when 7 ̸= d > 5, is

(4.10) q̄(I̊II) = Ṗ t
AB − 2

(d−3)(d−5)X(AD̄ ·Ṗ t
B) +

1
(d−3)(d−4)(d−5)XAXBD̄ · ˆ̄D ·Ṗ t .

Here ṖAB := I·D̂PAB and Ṗ t
AB := r̄◦⊤̊(ṖAB); the above result is a direct application of Lemma 2.5.3

and the de�nition of I̊II in De�nition 4.2.1. Just as the Fialkow tensor is related to the canonical

third fundamental form by a factor −(d − 3), see Equation (4.6), the Fialkow tractor and the

canonical tractor third fundamental form obey

q̄(I̊II)AB = −(d− 3)FAB .

The above relationship between F and q̄(I̊II) and Equation (4.10) yield a corollary to Corollary 3.3.8

that gives an analog of the Fialkow�Gauÿ equation (3.7):

Corollary 4.5.1 (Fialkow�Gauÿ�Thomas Equation). Let 7 ̸= d > 5 and σ be an asymptotic

unit conformal de�ning density for Σ ↪→ (M,γ). Then,

(
LC
ALCB − 1

d−1Kh̄AB −WNABN

)
− 1

d−1X(A
ˆ̄DB)K − 1

(d−4)(d−5)XAXBU

= −Ṗ t
AB + 2

(d−3)(d−5)X(AD̄ ·Ṗ t
B) −

1
(d−3)(d−4)(d−5)XAXBD̄ · ˆ̄D ·Ṗ t = (d− 3)FAB ,

where U ∈ Γ(EΣ[−4]) is the density given in Equation (3.13).

For later use, in dimensions d ≥ 6, we de�ne J := q̄(I̊V) ∈ Γ(⊙2
◦T Σ[−3]).

As mentioned in Section 3.4, the canonical extension of K is given by Ke := PABP
AB = (I̊Ie)2.

When computing extrinsic hypersurface embedding curvatures, there are many situations in which

normal derivatives of Ke are needed. Note that often, we will use K and Ke interchangeably when

it is clear that we are not referring strictly to an identity that holds along Σ.
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Definition 4.5.2. We de�ne the transverse derivatives of Ke according to the following:

K̇ := δRK
e , K̈ := δRI ·D̂Ke , d ̸= 6 ,

...
K := δRI ·D̂2Ke , d ̸= 6, 8 , · · · ,

where K̇ ∈ Γ(EΣ[−3]), K̈ ∈ Γ(EΣ[−4],
...
K ∈ Γ(EΣ[−5]), etc.

■

In particular, because PABP
AB = (I̊Ie)2, there are (rather useful) formulæ for K̇, K̈, and

...
K in terms

of fundamental forms and hypersurface derivatives thereof. For this we introduce the following

notational device.

Definition 4.5.3. Let

Π(2) := ⊤̊ ◦ q( I̊Ie) ∈ Γ(⊙2
◦T Σ[−1]) ,

and, for 3 ≤ m < d such that m ̸∈ {d+1
2 , d+3

2 , d+5
2 }, let

Π(m) := (r̄ ◦ ⊤̊ ◦ δR ◦ q) ◦ IDm−3
σ ( I̊Ie) ∈ Γ(⊙2

◦T Σ[1−m]) .

When 3 ≤ m < d we de�ne

Π̃(m) := q̄(m̊) .

■

Remark 4.5.4. The values {d+1
2 , d+3

2 , d+5
2 } are treated on a separate footing in De�nition 4.5.3

for reasons of de�nedness of the operator r̄; see Lemma 2.5.5. Also, in dimensions d such that m ̸∈

{d+1
2 , d+3

2 , d+5
2 }, by construction we have that Π̃(m) = Π(m)+E(X), since Π̃(m) = (q̄ ◦ q̄∗)(Π(m)) and

Lemma 2.5.3 says q̄ ◦ q̄∗ = Id+E(X). So, when m ∈ {d+1
2 , d+3

2 , d+5
2 }, if T ∈ Γ(⊙2TM [w]) ∩ ker ιX ,

we may de�ne ΠAB
(m)TAB := Π̃AB

(m)TAB. ■

By construction, the rank two, trace-free hypersurface tractors Π(m) produce the corresponding

fundamental form m̊ upon acting by the extraction map q̄∗. In general, if q̄∗(TAB) = tab and

q̄∗(UAB) = uab, we have that tabu
ab = TABU

AB. For this reason, the tractors Π(m) can be used

to compute holographic formulæ for scalars built from contractions of fundamental forms. These

formulæ are simpler than those for their constituent fundamental forms and are therefore particularly
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useful for computations of scalar densities, such as integrands for Willmore-like energies (see for

example [44,68] and Section 6.4). We now give two such results.

Lemma 4.5.5. Let d > 4, then the square of the third fundamental form has a holographic

formula given by

I̊II2 = ṖABṖ
AB

∣∣
Σ
− 3d−2

(d−1)(d−2)2
K2 .

Proof. It follows from De�nition 4.5.3 that I̊II2 = Π(3)ABΠ
AB
(3) . Because the only appearance

of Π(3) in this proof is when it is squared, any instances where Π̃(3) would be required can be

replaced with Π(3). So, the proof amounts to relating Ṗ to Π(3). As previously noted, q( I̊Ie) = P ,

so ΠAB
(3) = r̄ ◦ ⊤̊(Ṗ ). In order to relate Π(3) to Ṗ |Σ explicitly, following Lemma 2.5.5 specialized to

hypersurface tractors, we need to rewrite XAṖ
AB:

XAṖ
AB = I ·D̂XAP

AB − IAP
AB + 2σ

d−2D̂AP
AB

=− IAD̂BI
A

=−
(
1
2D̂BI

2 + XB
d−2(D̂I)

2
)

=− KeXB

d− 2
+O(σd−2) ,

(4.11)

where the �rst and third lines are results of the Leibniz failure (Proposition 2.3.1), the second line

results from the properties of P , and the last line uses the de�nition of Ke. Further, observe that

via the Leibniz failure, we have

I ·ṖB = 1
d−2

(
K̇XB +KIB

)
− 2σ

d−4

(
1

d−2D̂
BK − PACD̂CP

B
A

)
+O(σd−3)

Σ
= 1

d−2(K̇X
B +KNB) .

(4.12)

Using the above identities, the de�nition of r̄ and ⊤̊, as well as the standard operator identity

for ˆ̄D ◦X, a tedious calculation along Σ yields

Π(3)AB
Σ
= ṖAB − d

(d−1)(d−2)X(A
ˆ̄DB)K − 2

d−2K̇I(AXB) − 1
d−2KIAIB − 1

(d−1)(d−2)KIAB .

Squaring this identity gives the quoted result. □
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Lemma 4.5.6. Let d > 6, then the product of the second and fourth fundamental forms has a

holographic formula given by

I̊I· I̊V Σ
= (d− 4)

(
PABP̈

AB + 4
(d−2)2

K2
)
.

Proof. First, because d > 5, we see that I̊V is a canonical fundamental form (so not condi-

tional). As in the previous lemma, we note that I̊I · I̊V = Π(2)ABΠ
AB
(4) . Moreover, Equation (3.17)

implies that NAPAB
Σ
= 1

d−2KXB so

Π(2) = P |Σ − 2K
d−2N ⊙X .

Thus we are tasked with computing PABΠ
AB
(4) along Σ. Remembering that X ·P = 0, it is su�cient

to compute ΠAB
(4) modulo terms proportional to X. Using De�nition 4.5.3, we compute Π(4) in steps.

Recall, from Equation (4.1), that

Π(4) = (d− 4) (r̄ ◦ ⊤̊ ◦ δR ◦ q ◦ q∗ ◦ r ◦ I ·D̂ ◦ q)( I̊Ie) .

We outline this calculation proceeding from right to left in this sequence of operators.

First, as shown previously, q( I̊Ie) = P , so I ·D̂q( I̊Ie) = Ṗ . Therefore, using Lemma 2.5.5, we

next compute r(Ṗ ):

r(Ṗ )AB = ṖAB − d+2
4d(d−2)X(AD̂B)K − 2

d(d−2)hABK +O(σd−2) +O(σd−4)X(ATB) ,

for some tractor TB. Here we used Equation (4.11) and the oft-used operator identity for D̂ ◦ X

given in Equation (2.12).

Next, we need to compute (q ◦ q∗ ◦ r)(Ṗ ). Before we continue, we consider the operators that come

next: We are only interested in the Z̄AZ̄B component of the tractor Π(4), so we can ignore terms

proportional to X in (⊤̊ ◦ δR ◦ q ◦ q∗ ◦ r)(Ṗ ) when doing this computation. Further, we can ignore

terms proportional to IA when computing (δR ◦ q ◦ q∗ ◦ r)(Ṗ ) because these terms are projected

out by ⊤̊. The various projections, therefore, amount to ignoring terms proportional to X or I

when computing (q ◦ q∗ ◦ r)(Ṗ ), because δR ◦ I Σ
= E(X) + E(I) and δR ◦X Σ

= E(X) + E(I). From
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Lemma 2.5.3, (q ◦ q∗ ◦ r)(Ṗ )− r(Ṗ ) = E(X), so

(q ◦ q∗ ◦ r)(Ṗ ) = Ṗ − 2
d(d−2)Kh + E(X) + E(I) +O(σd−2) .

Next, note that (δR ◦ q ◦ q∗ ◦ r)(Ṗ ) = P̈ − 2
d(d−2)K̇h + E(X) + E(I) +O(σd−3), and we can apply

the operator ⊤̊ to obtain

(⊤̊ ◦ δR ◦ q ◦ q∗ ◦ r)(Ṗ ) = ⊤̊(P̈ ) + E(X) .

Next, it is useful to note that ⊤̊(P̈AB)
Σ
= IA

′
A IB

′
B P̈A′B′ + IABU for some U ∈ Γ(EΣ[−3]), and also

that IABP
AB Σ

= 0. Thus, �nishing the calculation amounts to computing

PAB r̄(IA
′

A IB
′

B P̈A′B′ + IABU) .(4.13)

For this, we need the identity

XAP̈AB
Σ
= − 2

d−2

(
K̇XB +KNB

)
,

which is derived from the Leibniz failure, Equation (2.12), and Equation (4.12). Because we are

contracting on P , any terms proportional to X or the tractor �rst fundamental form produced by

r̄ in Equation (??)display-before-last can be discarded. Hence, again consulting Lemma 2.5.5, we

�nd that

Π(2)ABΠ
AB
(4)

Σ
=(d− 4)PABI

A
A′IBB′P̈A′B′

Σ
=(d− 4)

(
PAB − 2

d−2KN(AXB)

)
P̈AB

Σ
=(d− 4)

(
PABP̈

AB + 4
(d−2)2

K2
)
,

where the �rst equality is a result of the identity IABP
AB Σ

= 0, the second equality is an application

of Equation (4.11) to yield an identity for I ·P , and the last equality is a consequence of the display

above expressing X · P̈ . □

One more technical lemma is necessary in order to produce formulæ for K̇ and K̈ in terms of

the canonical fundamental forms.
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Lemma 4.5.7. Let d > 5. Then,

(D̂P )2
Σ
=( ˆ̄DL)2 + I̊II2 + 2

(d−4)(d−5) I̊I · I̊V − 4(d−7)
(d−3)(d−5) I̊I · I̊II · I̊I +

2(d−7)
d−5 I̊I4

− 2(3d3−34d2+100d−73)
(d−1)(d−2)2(d−5)

K2 .

Proof. The proof is a tedious but straightforward application of Equation (3.25), Lemmas 3.3.4,

4.5.5, 4.5.6 and standard reorderings of tractor operators based on the Leibniz failure (Proposi-

tion 2.3.1). □

Employing these lemmas, we have formulæ for K̇ and K̈. These formulæ will be useful for later

applications of these fundamental forms.

Proposition 4.5.8. Let d > 4. Then,

K̇ = 2I̊I · I̊II .(4.14)

If d > 6,

K̈
Σ
= − 2

d−6(
ˆ̄DL)2 + 2(d−7)

d−6 I̊II2 + 2(d−7)
(d−5)(d−6) I̊I · I̊V + 8(d−7)

(d−3)(d−5)(d−6) I̊I· I̊II · I̊I

− 4(d−7)
(d−5)(d−6) I̊I

4 + 10d3−110d2+296d−172
(d−1)(d−2)2(d−5)(d−6)

K2 .(4.15)

Moreover, if d = 5 then

K̈
Σ
= −4 I̊I·∆̄ I̊I + 20

3 I̊I·∇̄∇̄· I̊I + 8
9

(
∇̄· I̊I

)2
+ ∆̄K

− 4 I̊I·C⊤
n + 20 I̊I2 ·P̄ + 2J̄K − 4H I̊I3 − 4H I̊I· I̊II(4.16)

+ 4I̊II · I̊II − 2 I̊I2 · I̊II + 31
18K

2 + 8 I̊Iad I̊IbcW̄abcd .

Proof. We �rst prove that K̇ = 2I̊I · I̊II (note that a proof was already given in [44]). To do

so, consider the product I̊I · I̊II. By inserting these fundamental forms into tractors, we �nd that

I̊I · I̊II = L · q̄(I̊II). From Equation (4.10) and the fact that X ·L = 0, we have that I̊I · I̊II = L ·Ṗ t.

Further, L
Σ
= P + E(X) + E(N) and X · Ṗ t = 0 = N · Ṗ t, so I̊I · I̊II Σ

= P · Ṗ t. By de�nition, Ṗ t =

r̄(IA
′

A IB
′

B ṖA′B′+IABU) for some U ∈ Γ(EΣ[−2]). Thus, because X·Ṗ = E(X) (see Equation (4.11)),
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using Equation (2.5.5) we have that P · Ṗ t Σ
= P · Ṗ and in turn I̊I · I̊II Σ

= P · Ṗ . But from

Proposition 2.3.1, we have that K̇
Σ
= 2P · Ṗ , so the �rst claim of the lemma follows.

To prove the second claim, for which d > 6, we �rst apply Proposition 2.3.1 twice to PABP
AB

and �nd that

K̈
Σ
= 2Ṗ 2 + 2P · P̈ − 2

d−6(D̂P )
2 .

Applying Lemmas 4.5.5, 4.5.6, and 4.5.7, we obtain the second claim.

Finally, we turn to the third claim with d = 5. Because Lemmas 4.5.6 and 4.5.7 do not hold

when d = 5, we need to use a di�erent method. Also if Σ ↪→ (M5, c) is a generic conformally

embedded hypersurface, the tensor I̊V is only a conditional fundamental form, so in particular it

cannot appear in an otherwise conformally-invariant expression for K̈. Thus, to compute K̈ in this

case, we resort to a Riemannian computation, and use that when d = 5 (see [44]),

I ·D̂2Ke
Σ
=

[
∆⊤ − 2J̄ + 1

3K + 2∇2
n + 4

(
2H∇n − Pnn − 1

3K + 5
2H

2
)]
(∇n+ sP + gρ)2 .

The expression for ∇2
nρ along Σ may also be found in [44]. The remaining terms were handled

by using the computer algebra system FORM [83]; this computation is documented in detail in

Appendix A.3. □

93



CHAPTER 5

Asymptotically Poincaré�Einstein and Willmore Structures

5.1. Asymptotic Poincaré�Einstein Structures

The notion of geometric holography introduced in Section 3.4 was described simply as a tool

for calculating. However, one can also view these relationships as equivalences in physical theories:

the holographic principle was �rst introduced by 't Hooft [75] and developed by Susskind [77]

(building o� of work from Thorn [82]). The most well-known example of the holographic principle

was �rst proposed by Maldacena [60] in the AdS/CFT correspondence: viewed one way, this is

a correspondence that identi�es a conformal manifold (Σd−1, c̄) with the conformal in�nity of an

asymptotically hyperbolic manifold (Md, go). To be precise, we say that a manifold (M\∂M, go) is

conformally compact when g = s2go is a non-degenerate metric on M\∂M that extends smoothly

to ∂M for some de�ning function s for ∂M�then, ∂M is the the conformal in�nity of M\∂M .

Observe that for any conformally compact manifold and any function Ω ∈ C∞
+ M , both s2go and

(Ωs)2go extend smoothly to Σ and thus induce metrics ḡ and Ω2ḡ, respectively, on Σ. Indeed, a

conformally compact manifold induces a conformal class of metrics c̄ on its boundary Σ. Then, the

AdS/CFT correspondence suggests that there is a correspondence between a conformal �eld theory

living on (Σ, c̄) and a gravitating theory living on (M\∂M, go). In this sense, the holographic

principle is a prescription of a bulk-boundary correspondence: that we can learn about conformal

�eld theories by studying bulk gravitating theories and vice versa.

Perhaps the �rst application of this type of holography in the mathematics literature was by

Fe�erman and Graham [25, 26]. In their work, they sought to study conformal invariants of a

manifold (Σd−1, c̄) by constructing a conformally-compact manifold (M\∂M, go) whose conformal

in�nity Σ = ∂M has induced conformal class c̄ and whose associated singular metric go is Poincaré�

Einstein. A conformally compact manifold (M\∂M, go) is said to be Poincaré�Einstein (or is said

to satisfy the Poincaré�Einstein condition) when the Ricci curvature of the singular metric is pure
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trace, i.e. for some negative constant k, the singular metric sastis�es

Ricg
o
= kgo on M\∂M .

Fe�erman and Graham showed that, given such a conformal manifold (Σd−1, c̄), there is an essen-

tially unique (depending on dimension parity) Poincaré�Einstein manifold with Σ as its conformal

in�nity. Speci�cally, when d is even, such a manifold can be formally constructed to arbitrar-

ily high order; when d is odd, such a manifold can be constructed to asymptotically satisfy the

Poincaré�Einstein condition, so that for some de�ning function s for Σ, we have that

Ricg
o
= kgo +O(sd−2) on M\∂M .

Then, by studying Riemannian invariants of (M\∂M, go) that extend smoothly to the boundary

∂M , we can generate conformal invariants of (Σd−1, c̄).

This method to study the intrinsic conformal structure of (Σd−1, c̄) can also be used to study the

extrinsic data of a conformal hypersurface embedding speci�ed by (Md, γ, σ). To see this, observe

that the extrinsic embedding data of Σ ↪→ (M, c) can be (locally) captured by c̄ and its jets.

Given this data, we can uniquely (up to a certain order) determine a conformally compact manifold

(M\∂M, go) by demanding that this conformally compact manifold solves the asymptotic singular

Yamabe problem. Then, extrinsic invariants of the conformal hypersurface embedding (M,γ, σ)

can be generated by studying Riemannian invariants of (M\∂M, go) that extend smoothly to its

conformal in�nity Σ = ∂M .

The above discussion implies a bijection between conformally compact manifolds (M\∂M, go)

and one-sided conformal hypersurface embeddings speci�ed by (M,γ, σ), where M = Σ ⊔M+ and

Σ = ∂M , given by (M,γ, σ) ↔ (M+, γ/σ2). Thus, we denote by PE the family of triples (M,γ, σ)

that correspond to conformally compact manifolds satisfying the Poincaré�Einstein condition. Fur-

ther, we denote by APEk the family of triples (M,γ, σ) that correspond to conformally compact

manifolds satisfying the asymptotic Poincaré�Einstein condition to order k, so that

Ricg
o
= kgo +O(sk) on M\∂M .(5.1)

In this notation, we have that PE ⊂ APEk for every positive k.
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A key observation relating Poincaré�Einstein structures to the tractor calculus made by Gover [34]

is that if (M,γ, σ) ∈ PE, then there exists a standard tractor I ̸= 0 parallel with respect to the

tractor connection. That is, given a hypersurface embedding speci�ed by (M,γ, σ), then ∇Iσ = 0

if and only if (M,γ, σ) ∈ PE. But a consequence of this relationship is that I̊Ie = 0 if and only

if (M,γ, σ) ∈ PE. Observe now that P̊ go = 0 if and only if (M,γ, σ) ∈ PE, and so we must have

that I̊Ie = 0 if and only if P̊ go = 0. Furthermore, note that on M+ in the scale σ = [go; 1], we have

that I̊Ie = P̊ go . This suggests that there exists some ℓ such that σℓP̊ go = I̊Ie. Because P̊ go is a

conformal invariant of the data (M,γ, σ), by weight we see that ℓ = 1. That is, we have that

σP̊ go = I̊Ie .(5.2)

That I̊Ie extends smoothly to the boundary further implies that σP̊ go also extends smoothly to the

boundary.

Equation (5.2) directly implies that there is a strong relationship between asymptotically Poincaré�

Einstein structures and the conformal fundamental forms. Indeed, we we have the following result.

Theorem 5.1.1. Let (M,γ, σ) specify a conformally embedded hypersurface and let k ∈ Z+ such

that 2 ≤ k ≤ d− 1. Then, (M,γ, σ) is k-umbilic if and only if (M,γ, σ) ∈ APEk−2.

Proof. The proof is a straightforward application of several results developed so far. First,

suppose that (M,γ, σ) is k-umbilic with 2 ≤ k ≤ d − 1 an integer. Without loss of generality, we

can assume that (M,γ, σ) ∈ ASY (the k-umbilicity condition depends only on the embedding and

not on the choice of de�ning density σ). By de�nition, we have that I̊I = · · · = k̊ = 0. Then, direct

application of Lemma 4.2.14 shows that I̊Ie = O(σk−1). From Equation (5.2), we thus have that

P̊ go = O(σk−2).

The reverse direction is nearly identical: because (M,γ, σ) ∈ APEk−2, we have that I̊Ie =

O(σk−1). But m̊ = ⊤̊∇m−2
n I̊Ie+ltotsm−3( I̊I

e), so we have that I̊I = · · · = k̊ = 0 and hence (M,γ, σ)

is k-umbilic. This completes the proof. □

This result suggests that we can draw connections between APEk embeddings and other families

of embeddings by passing through the language of the fundamental forms (or the extension I̊Ie).

An example of this phenomenon is the family of Willmore hypersurface embeddings.
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5.2. The Willmore Invariant

A particularly well-studied equation describing a surface S embedded in �at R3 is known as the

Willmore [87] equation:

B3 := ∆̄H + 2H(H2 − k) = 0 ,

where k is the Gauss curvature of S, H is its mean curvature, ∆̄ is the Laplacian on S, and the

curvature quantity B3 is known as the Willmore invariant. In particular, one can view the equation

B = 0 as the energy minimizing equation (found by functional di�erentiation) for a surface S with

energy given by the Willmore energy,

E =

�
S
(H2 − k) ,

�rst described in Willmore's celebrated conjecture, recently proven by Marques and Neves [61].

The Willmore energy and invariant can be extended to generally curved ambient manifolds,

whereby we observe two critical facts: the Willmore energy and invariant are global and local

conformal invariants, respectively, of the embedded surface, and the Willmore invariant is linear in

its leading term. Their conformal invariance and linearity are likely major driving factors in the

frequent appearance of this pair in both the mathematics and physics literature. Early examples

of this include Polyakov [67], who found the Willmore energy when studying strings (subsequently

calling it the �rigid string action�) and Graham and Witten [69], who found the Willmore energy

when studying anomalies in the AdS/CFT correspondence. Recently, there has been increased

interest in higher-dimensional analogs of the Willmore energy and invariant [3,45,53,68,85], in

part to better understand the invariants of hypersurfaces embedded in conformal manifolds.

To capture the notion of the Willmore energy and functional described above, we provide the

following de�nition of a higher Willmore energy.

Definition 5.2.1. Let the dimension d of M be odd. Then any functional of conformal em-

beddings given by

E
[
Σ ↪→ (M, c)

]
=

�
Σ
dVol(ḡ) E(g,Σ) ,

where g ∈ c and ḡ ∈ c̄ is the corresponding induced metric, is called a higher Willmore energy if

(i) the energy functional E only depends on the conformal embedding Σ ↪→ (M, c), and
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(ii) the functional gradient of E with respect to variations of the embedding Σ ↪→M is a local con-

formal invariant and has leading linear term (in any scale with non-vanishing mean curvature)

proportional to ∆̄
d−1
2 Hg.

■

This de�nition precisely captures the desired properties when the dimension of the bulk manifold

is odd: that the energy is a global conformal invariant, that the functional gradient of the energy

is a local conformal invariant, and the leading derivative term of the functional gradient is linear

in the mean curvature. Furthermore, this de�nition can be extended to even dimensional bulk

manifolds, so long as we relax the linearity condition. Such Willmore energies have also been

studied; see [31,45,58].

A result of [41] shows that the obstruction density B|Σ in three dimensions reproduces the

standard Willmore invariant. This motivates the following de�nition of the generalized Willmore

invariant:

Definition 5.2.2. Let (M,γ, σ)Y specify a conformal hypersurface embedding into a d-dimensional

conformal manifold (M, c) such that

I2 = 1 + σdB .

Then the canonical generalized Willmore invariant Bd is de�ned by

Bd := B|Σ ∈ Γ(EΣ[−d]) .

In general, we de�ne a generalized Willmore invariant as any linear combination of Bd and scalar-

valued extrinsic curvatures that are sections of EΣ[−d]. ■

Often, we will refer to the canonical generalized Willmore invariant as the generalized Willmore

invariant. That the obstruction density is a compatible generalized Willmore invariant for a higher

Willmore energy was �rst shown in [47]. In particular, the canonical generalized Willmore invariant

is associated to a particular global conformal invariant (the integrated extrinsic Q-curvature), which

will be discussed in detail in Section 6.4. A straightforward way to see how De�nition 5.2.2 is

compatible with De�nition 5.2.1 is via a key result from Gover and Waldron in [45].
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Theorem 5.2.3 (Theorem 5.1 of [45]). Given a conformal hypersurface embedding speci�ed by

(M,γ, σ)Y , up to a non-zero constant multiple, the obstruction density B|Σ takes the form

∆̄
d−1
2 H + lower order terms

for d odd and is fully non-linear for d even.

Thus, we have that the canonical generalized Willmore invariant indeed has the correct leading

derivative structure to be associated to a higher Willmore energy. Another straightforward compat-

ibility check can be made by observing that the functional variation of any higher Willmore energy

must be a linear combination of Bd and other independent conformally-invariant terms.

Corollary 5.2.4. Let (M,γσ)Y be a conformal hypersurface embedding and let E,E′ be two

distinct higher Willmore energies of this embedding with generalized Willmore invariants B,B′.

Furthermore, suppose without loss of generality that E and E′ are normalized so that the leading

derivative structure of B and B′ are both equal to ∆̄
d−1
2 Hg in some scale with non-vanishing mean

curvature. Then, we can write

B = αBd + I and B′ = αBd + I ′ ,

where α is some non-zero coe�cient and I, I ′ are sections of EΣ[−d] that are not generalized Will-

more invariants.

Proof. First, observe that in a choice of scale g with non-vanishing mean curvature, a conse-

quence of Theorem 5.2.3 is that there exists a non-zero coe�cient β such that

Bd
g
= β∆̄

d−1
2 Hg + lower order terms,

so we must be able to write

B = 1
βBd + lower order terms,

and similarly with B′. However, because B,B′,Bd are all conformally invariant, the lower order

terms must be themselves conformally invariant. Furthermore, because they cannot contain terms
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that are themselves of the form ∆̄
d−1
2 , such invariants are not generalized Willmore invariants. This

completes the proof. □

The above corollary implies that for any choice of higher Willmore energy, its associated gen-

eralized Willmore invariant has the form αBd plus lower order invariant terms for some nonzero

α.

While B4 was explicitly computed in [31] and B5 is explicitly computed in Chapter 6, only some

features of Bd are known for arbitrary d. In this section we seek to make statements about the

generalized Willmore invariant in arbitrary dimensions.

We call hypersurface embeddings that have a vanishing Willmore invariant Bd Willmore and

use the notation (Md, γ, σ) ∈ W to denote such a hypersurface embedding. A result of [34] shows

that PE ⊂ W. Because PE ⊂ APEk, it is of interest to investigate the inclusion properties of APEk

in W. Indeed, we can sharply characterize this inclusion in the following theorem.

Theorem 5.2.5. For conformal hypersurface embeddings speci�ed by (Md, γ, σ) with d ≥ 4, we

have that APEd−3 ⊂ W but ⊂ APEd−4 ̸⊂ W.

Proof. To prove this theorem we �rst show for some conformal hypersurface embedding spec-

i�ed by (Md, γ, σ) ∈ APEd−3, we have that (M
d, γ, σ) ∈ W. From the de�nition of APEk, we have

that P̊ go = O(σd−3). Further, from Equation (5.2) we have that I̊Ie = P̊ go . So it su�ces to check

that Bd = 0 when I̊Ie = O(σd−2).

First, observe that I2 = 1 + σdB, so in particular IB∇nIB = d
2σ

d−1B + O(σd). Using Equa-

tion (2.3) in a choice of scale σ = [g; s], we have that

d

2
sd−1B +O(sd)

g
= nanb I̊Ieab − 1

d−1sn
a∇b I̊Ieab .
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Taking d− 1 normal derivatives and evaluating along Σ, we have that

d!

2
B

Σ
=∇d−1

n nanb I̊Ieab −∇d−2
n na∇b I̊Ieab

Σ
=∇d−1

n nanb I̊Ieab −∇d−2
n na∇⊤b

e I̊Ieab −∇d−2
n nanb∇n I̊I

e

Σ
=∇d−2

n

[
2n(a(∇nn

b)) I̊Ieab − na∇⊤b
e I̊Ieab

]
Σ
=∇d−2

n

[
n(a I̊Ieab∇b)(1− 2sρ+ sdB)−∇⊤b

e na I̊Ieab + (∇⊤b
e na) I̊Ieab

]
Σ
=∇d−2

n

[
Ke − n·( I̊Ie)2 ·n− ρn· I̊Ie ·n−∇⊤

e ·n· I̊Ie + s I̊Ieab

(
nancP b

c − 2na(∇bρ)− P ab
)]

.

From Lemma 3.4.6, we have that if I̊Ie = O(σd−2), then n· I̊Ie g
= O(sd−1) and ∇⊤

e ·n· I̊Ie = O(sd−1),

and thus B
Σ
= 0.

To complete the proof, we must show that there exists some (Md, γ, σ) ∈ APEd−4 but (M
d, γ, σ) ̸∈

W. In particular, we consider hypersurface embedding with I̊Ie = O(σd−3) but I̊Ie ̸= O(σd−2). Ob-

serve from Equation (3.22) and Remark 3.4.7 that

∇d−2
n n· I̊Ie Σ

= (d− 2)∇⊤
e ·∇d−3

n I̊Ie + ltotsd−4( I̊I
e) .

Hence because I̊Ie = O(σd−3), we have that

∇d−2
n ∇⊤

e ·n· I̊Ie Σ
= (d− 2)∇⊤ ·∇⊤ ·∇d−3

n I̊Ie ,

and hence
d!

2
B

Σ
= −(d− 2)

(
∇⊤a∇⊤b + P ab

)
∇d−3

n I̊Ieab .

Using the Fialkow�Gauÿ Equation (3.7) and noting that the Fialkow tensor vanishes when d ≥ 5

because I̊Ie = O(σd−3), it then follows that

d!

2
B

Σ
= −(d− 2)

(
∇̄a∇̄b + P̄ ab

)
(⊤̊∇d−3

n I̊Ieab) .

We now construct an explicit example to show that a hypersurface embedding with I̊Ie = O(σd−3)

exists that has Bd ̸= 0. To do so, let U ⊂M be a neighborhood of Σ and work in a choice of scale

σ = [g; s] such that in a set of local coordinates (s, y, x2, . . . , xd−1), we have that on U the metric
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representative takes the form

g = ds2 + 2sd−3f(y)ds⊙ dy + dy2 + dxidxi ,

for i = 1, . . . , d−2. In this choice of scale, the hypersurface is �at and a tedious but straightforward

calculation shows that I̊Ie = O(sd−3) but I̊Ie ̸= O(sd−2), and further that Bd ∝ ∂3yf(y) ̸= 0.

In the d = 4 case, we can also check using the same example. Using the same embedding

described above, we have that I̊Ie = O(s) but I̊Ie ̸= O(s2). Furthermore, using the result for B4

in [31], we can directly compute the Willmore invariant and �nd that

B4 =
1
18

[
(∂yf)

2 + ∂3yf
]
.

And hence is nonzero for some function f(y). This completes the proof. □

Remark 5.2.6. When the singular Yamabe obstruction density vanishes, a result of Gover

and Waldron [45, Remark 4.14] states that in general the singular Yamabe problem can be solved

to arbitrarily high order. While the σ that solves the asymptotic singular Yamabe problem is

asymptotically unique, to solve the (one-sided) Yamabe problem requires global information (such

as the topology of the interior of the ambient manifold M). Thus, even though the obstruction

density may vanish, the asymptotic unit de�ning density σ does not necessarily solve the singular

Yamabe problem globally. However, again as a result of [45], we do have that I2 is smooth to

arbitrarily high order when the obstruction density vanishes. ■

The proof of Theorem 5.2.5 suggests that, if one can �nd fundamental forms that correspond to

each normal derivative of I̊Ie, one could reframe the obstruction density (and hence the Willmore

invariant) in terms of these fundamental forms. In particular, when d is even, we can construct

fundamental forms up to ˚d− 1, which we can use to express the Willmore invariant (in addition to

one more non-invariant tensor). Hence we have the following corollary.

Corollary 5.2.7. Let (Md, γ, σ)Y specify a conformally embedded hypersurface with d ≥ 4

even. Then, the Willmore invariant Bd has transverse order d − 1 and can be expressed in such a

way that each term contains at least one element of the set { I̊I, . . . , ˚d− 1, ⊤̊∇d−3
n P} with a non-zero

coe�cient and Bd can be written to explicitly depend polynomially on each element of the set.
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Proof. We �rst check that Corollary 5.2.7 holds for d = 4. From an explicit formula in [31],

we see that B4 contains exactly one term that contains C⊤
n̂ab, which has transverse order 3. Further

we note that B4 can be written in a way such that each term contains at least one of I̊I, I̊II, C⊤
n̂ab.

However note that C⊤
n̂ab = ⊤̊∇nPab + ltots0(Pab), so the corollary holds.

Now suppose that d ≥ 5. We check that the transverse order of Bd is d− 1 �rst. From the proof

of Theorem 5.2.5, the terms with leading normal derivatives on I̊Ie are ∇d−2
n (Ke− s I̊Ie·P ). Observe

that ∇d−2
n K = I̊I ·∇d−2

n I̊Ie + ltotsd−3( I̊I
e). However, from Equation (4.4) we see that the leading

transverse order term of this expression vanishes. So we need only consider ∇d−2
n (s I̊Ie ·P ). A direct

calculation shows that this expression has transverse order d− 1. But because this is the only term

in Bd with that transverse order, we have that Bd has transverse order d− 1.

From the proof of Theorem 5.2.5, it is clear that each term can be expressed in terms of some

operator acting on I̊Ie and hence from Proposition 4.3.2 and Lemma 3.4.6 can be expressed in terms

of a canonical fundamental form�with the exception of terms with transverse order d − 1. In

particular, for any integer ℓ satisfying 0 ≤ ℓ ≤ d− 3, we have that

(5.3) ∇ℓ
n I̊I

e Σ
= ˚ℓ+ 2 + ltotsℓ−1( I̊I

e) .

As noted above, the term with transverse order d − 1 only arises in the product I̊I ·∇d−3
n P , and

hence we can characterize that term by ⊤̊∇d−3
n P . Thus, we have that each summand in Bd contains

at least one element of the set { I̊I, . . . , ˚d− 1, ⊤̊∇d−3
n P}.

It now remains to show that Bd can be written in such a way that it explicitly depends on each

element of the set { I̊I, . . . , ˚d− 1, ⊤̊∇d−3
n P} with a non-zero coe�cient. A key observation is that

only the terms in Bd of the form ∇d−2
n (Ke− s I̊Ie·P ) can contain terms that are a product of exactly

two elements from this set. One way to see this is that n·∇n I̊I
e can be written in terms of ∇⊤

e · I̊Ie,

and that derivative cannot be eliminated by any manipulations. So we now consider an expansion

of this di�erence:

∇d−2
n (Ke − s I̊Ie ·P ) Σ

=
d−2∑
k=0

(
d−2
k

)
(∇k

n I̊I
e)·(∇d−k−2

n I̊Ie)

− (d− 2)
d−3∑
k=0

(
d−3
k

)
(∇k

n I̊I
e)·(∇d−k−3

n P ) +more,

(5.4)
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where more contains no terms quadratic in elements of the set {∇m
n I̊Ie,∇ℓ

nP}m,ℓ for 0 ≤ m ≤ d− 2

and 0 ≤ ℓ ≤ d − 3. Before we proceed, note that the term of the form P ·∇d−3
n I̊Ie in the display

above can be paired with ∇⊤ ·∇⊤ ·∇d−3
n I̊Ie (resulting from manipulating the term ∇d−2

n ∇⊤
e ·n · I̊Ie)

to form a conformal invariant. In particular, observe that the operator L de�ned in [31] by

Γ(⊙2
◦T

∗Σ[−d+ 4]) ∋ Tab 7→ (∇̄a∇̄b + P̄ ab)Tab ∈ Γ(EΣ[−d])(5.5)

is conformally invariant on weight 4 − d densities, which is precisely the weight of ˚d− 1. But the

leading term of ∇d−3
n I̊Ie is indeed ˚d− 1 as per Equation (5.3), so the leading term of

(∇⊤a∇⊤b + P ab)∇d−3
n I̊Ieab

is precisely L( ˚d− 1). Thus, Bd contains a term of the form L( ˚d− 1) which absorbs the term of the

form P ·∇d−3
n I̊Ie. Thus, from Equation (5.4), we are only interested in the terms

d−2∑
k=0

(
d−2
k

)
(∇k

n I̊I
e)·(∇d−k−2

n I̊Ie)− (d− 2)
d−4∑
k=0

(
d−3
k

)
(∇k

n I̊I
e)·(∇d−k−3

n P ).(5.6)

We now work in the scale where |ds|g = 1 and choose a set of coordinates (s, y1, . . . , yd−1), so

that

∇m
n I̊Ie = d−m−2

2(d−2) ∂
m+1
s gab + ltotsm−2(g)ab

∇m
n Pab = − 1

2(d−2)∂
m+2
s gab + ltotsm+1(g)ab .

Applying the above to Display (5.6) and keeping only terms quadratic in ∂ms g, we have

1
4(∂sg)·(∂

d−1
s g) + (d−1)(d−3)

4(d−2) (∂2sg)·(∂d−2
s g) + 1

4

d−4∑
k=2

(
d−3
k

)
(∂k+1

s g)·(∂d−k−1
s g) .

The de�nition of a fundamental form is a conformally-invariant rank-2 tensor of the appropriate

weight and transverse order. Because B is conformally invariant, a consequence of Equation (5.3)

is that we must be able to express the above display in terms of quadratic products of fundamental

forms of the form ˚k + 2· ˚d− k plus subleading terms�with the exception of the term with transverse

order d − 1. But because none of the coe�cients vanish for d ≥ 4 in the above display, the

corresponding coe�cients for ˚k + 2· ˚d− k must also not vanish for each product for 1 ≤ k ≤ d− 3.
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For the same reason as the terms quadratic in fundamental forms, the one remaining term, of the

form 1
4(∂sg) ·(∂

d−1
s g) can be written in the form I̊I ·∇d−3

n P plus subleading terms with a non-zero

coe�cient. Thus, Bd can be written so that it explicitly depends on every element of the set

{ I̊I, . . . , ˚d− 1, ⊤̊∇d−3
n P} with a non-zero coe�cient. This completes the proof. □

Remark 5.2.8. Much of the argument in the proof of Corollary 5.2.7 follows when d ≥ 5

is odd. In that case, for n ≥ d+3
2 , the fundamental forms are only conformally-invariant when

(M,γ, σ) is hyperumbilic. Nonetheless, the higher transverse derivative terms ∇k
n I̊I

e still appear in

Bd, so a similar statement as the above corollary would hold in terms of what may be called pre-

fundamental forms�tensors that are not conformally-invariant but become conformally-invariant

when the hypersurface embedding is hyperumbilic. ■

With Theorem 5.2.5, we can now prove a generalization of Lemmas 3.4.6.

Lemma 5.2.9. Let (M,γ, σ)Y represent a conformally embedded hypersurface and let ℓ ∈ Z̸=d−1

be non-negative. If I̊Ie = O(σℓ), then na I̊Ieab = O(σℓ+1) and ∇· I̊Ie = O(σℓ).

Proof. First observe that for ℓ ≤ d − 2, this is simply Lemma 3.4.6. Then, for ℓ ≥ d, from

Theorem 5.2.5, we have that B
Σ
= 0. In particular, because the obstruction density vanishes, we

know that B is a smooth function of the asymptotic unit de�ning density σ and hence we can

write B = B|Σ + σB′|Σ + . . .. But an examination of the proof of Theorem 5.2.5 suggests that for

I̊Ie = O(σℓ) with ℓ ≥ d, we have that

B
Σ
= 0 ,∇nB

Σ
= 0 , . . . ,∇ℓ−d+1

n B
Σ
= 0 .

But then the proof of this lemma is just a straightforward generalization of the proof of Lemma 3.4.6.

In that case, we were restricted by the fact that the obstruction did not vanish: here, the obstruction

vanishes to exactly the order necessary. Indeed, in this case, the righthand side of Equation (3.21)

is O(σℓ+1). Following the remainder of that proof implies that n · I̊Ie = O(σℓ+1) and that ∇· I̊Ie =

O(σℓ). □

As promised in Section 4.4, we can now prove that De�nition 4.4.1 is sensible.
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Proposition 5.2.10. Let (M,γ, σ)Y specify an asymptotically singular Yamabe conformal hy-

persurface embedding and let n ≥ d + 1. Then, for all n̊ as de�ned in De�nition 4.4.1, n̊ is a

fundamental form.

Proof. By construction, the tensor n̊ has weight 3− n and is symmetric and trace-free. Thus,

we need only check that the transverse order of the nth fundamental form is indeed n − 1. From

Lemma 4.1.8, we see that the transverse order of δk is k so long as

w ̸= {2k−1−d
2 , 2k−2−d

2 , · · · , k+1−d
2 } .

In particular, we are interested in the action of this operator on PAB because q( I̊Ie) = PAB, so

we need only verify that δn−2 has transverse order n − 2 when w = −1. Examining the above

display with w = −1, we have that the transverse order of δk is strictly less than k so long as

−d−1
2 ≤ k ≤ d− 3. However, we are only interested in k ≥ n− 2 ≥ d− 1. Thus, we �nd that indeed

δn−2 acting on weight −1 tractors has transverse order n− 2, and hence we can write

n̊ = (q̄∗ ◦ r̄ ◦ ⊤̊)(α∇n−2
n PAB) + ltotsn−3(PAB) ,

for some nonzero coe�cient α.

Next, we need to verify that the remaining operators required to produce n̊ do not decrease the

transverse order of the tensor. Using identical arguments to those found in the proof of Proposi-

tion 4.2.10, as well as the generalization of Lemma 3.4.6 given in Lemma 5.2.9, we have that

n̊ = β⊤̊(∇n−2
n I̊Ie) + ltotsn−3( I̊I

e) ,

for some nonzero coe�cient β. Thus, from Equation (4.4), we have that

⊤̊(∇n−2
n I̊Ie) = d−n

2(d−2)⊤̊(∂n−1
s gab) ,

and hence has transverse order n− 1 for n ≥ d+ 1. □

106



CHAPTER 6

Extrinsic Conformal Hypersurface Invariants in Five Dimensions

As an application of the conformal hypersurface calculus and the conformal fundamental forms

developed above, we provide a case study of the extrinsic conformal geometry of a hypersurface

embedded in a conformal 5-manifold.

6.1. The Extrinsic Paneitz Operator

The key object underlying our computations in this chapter is the extrinsically-coupled Paneitz

operator�a speci�c case of an extrinsically-coupled GJMS operator. First discovered independently

by Paneitz [64] and independently by Fradkin and Tseytlin [28,29], the Paneitz operator is a fourth

order conformally-invariant di�erential operator with a leading derivative term given by the square

of the Laplacian. In particular, on a conformal manifold (Mn, c) with n ≥ 3, the Paneitz operator

P̂4 : Γ
(
EM

[
4−n
2

])
→ Γ(

(
EM

[−4−n
2

])
is given in a choice of scale τ = [g; t] by

P̂4 := ∆2 +∇a ◦ (4P ab − (n− 2)Jgab) ◦ ∇b +
n−4
2 Qn(g) ,(6.1)

where

Qn(g) := −∆J − 2P 2 + n
2J

2 .(6.2)

The above scalar curvature, introduced in [12] and in four dimensions known as Branson's Q-

curvature Q4(g) := Q4(g), is of particular importance because its integral is a global conformal

invariant. Explicitly, if τ = [g; t] = [g̃; t̃] are two choices of scale and dvol(g) is the volume form for

(M4, g), then �
M
Q4(g) dvol(g) =

�
M
Q4(g̃) dvol(g̃) .
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Furthermore, there is an explicit relationship between the Paneitz operator and Branson's Q-

curvature in four dimensions. If g̃ = e2ωg for some ω ∈ C∞M , then

e4ωQ4(g̃) = Q4(g) + P̂4ω .

This scalar curvature was originally introduced to better understand functional determinants in four

dimensions similar to those of Polyakov [66]. Later work continued to make use of this curvature

(and its higher dimensional analogs) in studying problems such as geometric scattering [21,51]. For

more information, see the reviews found at [18,19,20].

As discussed throughout this dissertation, it is generally hard to construct conformal invari-

ants from whole cloth. As such, it pays to have a method to produce invariants such as the

Paneitz operator. The holographic method of Fe�erman and Graham [25,26] summarized in Sec-

tion 5.1 suggests that we can �nd such an invariant operator by �rst constructing the asymptotically

Poincaré�Einstein manifold (M\∂M, go) ∈ APEd−2 attached to the conformal manifold (Σ, c̄) and

then �nding di�eomorphism-invariant tangential operators on the Poincaré�Einstein manifold that

extend smoothly to the boundary. Indeed, one can verify that given any smooth extension φe of

φ ∈ C∞Σ∞ to C∞M5, we have that

P̂4φ = 1
9 [(∆

o + 3) ◦ (∆o + 4) ◦ (∆o + 3) ◦∆o] (φe)|Σ ,(6.3)

Our next step is to construct a holographic formula for this operator. First observe that because

(M\∂M, go) is conformally compact, there is a corresponding conformally embedded hypersurface

speci�ed by (M,γ, σ) such that go := γ/σ2 on M\∂M . A consequence of the Poincaré�Einstein

condition is that (M,γ, ασ) ∈ ASY for some constant α > 0. Without loss of generality, we will

consider cases where α = 1. On M+ := M\∂M , we can then compute in the scale σ = [go; 1] so

that

IA
go
= (1, 0,−1

dJ
go) .

Then, in that same scale, we have that

I ·D̂ go
=

(
−(∆o + Jgow)− 1

dJ
go(d+ 2w − 2)w

)
◦
(

1
d+2w−2

)
.

108



Because the embedding is asymptotically singular Yamabe, we have that Scg
o
= −d(d− 1)+O(σd)

and hence Jgo = −d/2 +O(σd). Recall that this expression is conformally invariant, meaning that

for any de�ning function s for Σ, there exists a smooth Bs such that Jgo = −d/2 + sdBs. Thus,

simplifying the above formula for I ·D̂, we have that

I ·D̂ go
=

(
−∆o + (1− 2

ds
dBs)(d+ w − 1)w

)
◦
(

1
d+2w−2

)
.

However, note that because I ·Dk has transverse order at most k along Σ, we can therefore write

I ·D̂k go
= (−1)k

[
(∆o − (d+ w − 1)w) ◦

(
1

d+2w−2

)]k ∣∣∣
Σ

so long as k ≤ d− 1. In particular, when k = 4 and d ≥ 5, acting on tractors of weight 5−d
2 , along

Σ we have that

I ·D̂4 go
= 1

9

[(
∆o + (d−3)(d+1)

4

)
◦
(
∆o + (d−1)2

4

)
◦
(
∆o + (d−3)(d+1)

4

)
◦
(
∆o + (d−3)(d−5)

4

)] ∣∣∣
Σ
.

But when d = 5 this precisely reproduces the operator in Equation (6.3).

Furthermore, we can now verify that this operator is indeed tangential on weight-5−d
2 densities

via the sl(2) algebra of Proposition 3.4.3. To do so, �rst note that if I ·D4 is tangential on such

tractors, then so is I·D̂4, so we verify this claim for the simpler operator I·D4. Furthermore, because

I2 = 1+O(σd) and d ≥ 5, we can treat I2 = 1 identically for the purposes of handling the operator

I ·D4. To show tangentiality, it is su�cient to show that (I ·D4 ◦ σ)(T ) = (σ ◦ O)(T ) where O is

some operator on tractors and T ∈ Γ
(
T ΦM

[
3−d
2

])
. (Note that σT ∈ Γ

(
T ΦM

[
5−d
2

])
as desired.)

Phrased in the language of the sl(2) algebra, we thus wish to show that [yk, x] = 0 as an operator

acting on sections of T ∈ Γ
(
T ΦM

[
3−d
2

])
. But a standard result of the algebra states that

[yk, x] = yk−1k(h− k + 1) .

Evaluating on a tractor T ∈ Γ
(
T ΦM

[
3−d
2

])
the operator (h− k+1) = 0 when k = 4, which shows

that indeed I ·D̂4 is tangential on any tractor T e ∈ Γ
(
T ΦM

[
5−d
2

])
. Thus, we have that

P̂4T = (I ·D̂4T e)|Σ
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is independent of the choice of extension T e for T .

Given the above holographic formula for the operator P̂4, this suggests that one can construct

an extrinsically-coupled Paneitz operator via the same operator I · D̂4 but simply loosening the

restriction that (M,γ, σ) ∈ APEd−2. Rather, we can consider triples (M,γ, σ) ∈ ASY so that the

jets of c̄ are not �xed by the holographic condition and therefore carry extrinsic embedding data.

Observe that in the above construction, we did not require the Poincaré�Einstein condition, but

rather only the asymptotic singular Yamabe condition. Therefore, acting on any extension T e of a

weight-5−d
2 tractor T , we de�ne the extrinsically-coupled Paneitz operator by

P̂Σ↪→Md

4 T := (I ·D̂4T e)|Σ .

Generalizing the above calculation leads to a holographic formula for all extrinsically-coupled

GJMS operators. We record this result below.

Theorem 6.1.1 (Theorem 7.1 of [45]). Let (Md, γ, σ)Y specify a conformal hypersurface em-

bedding and let k be an integer satisfying 1 ≤ k ≤ d − 1. Then, the kth order extrinsically-coupled

GJMS operator

PΣ↪→Md

k : Γ
(
T ΦM

[
k−d+1

2

]) ∣∣
Σ
→

(
T ΦM

[−k−d+1
2

]) ∣∣
Σ

de�ned by its action on any extension T e of a tractor T ∈ Γ
(
T Φ

[
k−d+1

2

]) ∣∣
Σ
by

PΣ↪→Md

k T = (I ·DkT e)|Σ

is a tangential operator. When k is even, a kth order normalized extrinsically-coupled GJMS operator

can also be de�ned by its action on T e via

P̂Σ↪→Md

k T = (I ·D̂kT e)|Σ

which has leading term (∆⊤)k/2 as well as being tangential.
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Remark 6.1.2. Of note is that in the critical dimension d even, the normalized extrinsically-

coupled GJMS operator P̂Σ↪→Md

d−1 annihilates constants. Thus, for a conformal hypersurface embed-

ding speci�ed by (Md′ , γ, σ), acting on densities φ ∈ Γ(EΣ[d−d′

2 ])|Σ, we have that

PΣ↪→Md′

d−1 φ = (Ōa ◦ ∇̄a)(φ)− d−d′

2 QΣ↪→Md′

d−1 (g)φ ,(6.4)

where Ōa is some hypersurface operator and QΣ↪→Md′

d−1 (g) is a scalar curvature quantity that depends

both on the order d− 1 of the operator P̂Σ↪→Md′

d−1 and the dimension d′ of the conformal manifold. A

similar statement can be made in general about P̂Σ↪→Md

d−1 . ■

The extrinsically-coupled Paneitz operator underlies numerous extrinsic conformal hypersur-

face invariants. For computational purposes, it is both instructive and useful to reexpress the

extrinsically-coupled Paneitz operator in terms of explicitly tangential tractor operators.

6.2. Useful Tractor Identities

In this section we detail the identities required to produce an explicit tangential formula for the

extrinsically-coupled Paneitz operator. Our methods rely heavily on the tractor calculus developed

in Chapters 2, 3, and 4. We detail identities involving any weight one density σ and its interactions

with the Thomas-D operator and the canonical tractor X. These all follow from straightforward

applications of the Leibniz failure. We have employed the symbolic algebra system FORM [83] to

handle more intricate cases. First we need some simplifying notations.

Definition 6.2.1. Let σ ∈ Γ(EM [1]). Then, in dimensions d where the right hand sides below

are de�ned, we de�ne the following quantities:

IσA := D̂Aσ ∈ Γ(TM [0]) ,

P σ
AB := D̂AI

σ
B ∈ Γ(⊙2

◦TM [−1]) ,

Ṗ σ
AB := Iσ ·D̂ P σ

AB ∈ Γ(⊙2
◦TM [−2]) ,

P̈ σ
AB := Iσ ·D̂2 P σ

AB ∈ Γ(⊙2
◦TM [−3]) ,

Kσ
e := P σ

ABP
σAB ∈ Γ(EM [−2]) ,

K̇σ
e := Iσ ·D̂ P σ

ABP
σAB ∈ Γ(EM [−3]) ,

K̈σ
e := (Iσ ·D̂)2 P σ

ABP
σAB ∈ Γ(EM [−4]) ,

...
K

σ
e := (Iσ ·D̂)3 P σ

ABP
σAB ∈ Γ(EM [−5]) .

■
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We are particularly interested in the case that (M,γ, σ) ∈ ASY. In that case we shall often

drop the superscript σ. Note that the density Kσ
e and the tractor P σ

AB de�ned above agree with

the de�nitions for the same given in Section 3.4.

6.2.1. Commutators. The simplest identities we require are commutators involving the ob-

jects in De�nition 6.2.1 and the Thomas-D operator.

Lemma 6.2.2. Let σ be any weight w = 1 density. Acting on tractors of weight w such that D̂

as it appears below is well-de�ned, the following operator identities hold:

[
D̂A, σ

]
= IA − 2

hXAI ·D̂ ,[
D̂A, XB

]
= hAB − 2

hXAD̂B ,[
D̂A, IB

]
= PAB − 2

h−2XAPCBD̂
C ,

where h := d+ 2w.

Proof. The results follow from a direct application of Proposition 2.3.1 and De�nition 6.2.1.

□

Lemma 6.2.3. Let (M,γ, σ) ∈ ASY. Then, acting on tractors with weight w =: 1
2(h − d) such

that D̂ as it appears below is well-de�ned, the following operator identities hold:

[
I ·D̂,XA

]
= IA − 2σ

h D̂A ,(6.5) [
I ·D̂, D̂A

]
= −PABD̂

B − IB
[
D̂A, D̂B

]
+ 2

h−4 XAP
BCD̂BD̂C ,(6.6)

(I ·D̂)k ◦ σ = h−2k
h σ(I ·D̂)k + k(h−k+1)

h (I ·D̂)k−1 +O(σd−k+1) ,(6.7) [
I ·D̂, IA

]
= 1

d−2 XAK − 2σ
h−2PABD̂

B +O(σd−2) ,(6.8) [
I ·D̂, PAB

]
= ṖAB − 2σ

h−4

(
D̂EPAB

)
D̂E .(6.9)

Proof. As in Lemma 6.2.2, this result follows from Proposition 2.3.1 and De�nition 6.2.1. The

third identity requires a simple induction argument. The third and fourth identities also require that
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I2 = 1 + O(σd). Also, Equation (6.8) uses that D̂AIB = D̂BIA. Note that Equations (6.5), (6.6)

and (6.9) in fact hold for any weight one density σ. □

The W -tractor also frequently appears in tractor computations, so it is useful to have one more

commutator result.

Lemma 6.2.4. Let (M,γ, σ) ∈ ASY and let TΦAB ∈ Γ(T ΦM ⊗ ∧2TM [w′]). Then, acting on a

tractor of weight w such that D̂ as it appears below is well-de�ned, the following operator identities

hold:

[
D̂A, T

Φ♯
]
= (D̂AT

Φ♯)− TΦ
A
BD̂B − 2

h+2w′−2XA(D̂CT
Φ♯) ◦ D̂C + 2

h+2w′−2XA(D̂CT
ΦC

D)D̂
D ,[

I ·D̂, TΦ♯
]
= (I ·D̂TΦ♯)− 2σ

h+2w′−2(D̂CT
Φ♯) ◦ D̂C + 2σ

h+2w′−2(D̂CT
ΦC

D)D̂
D ,

where h := d+ 2w.

Proof. This operator identity is an elementary application of Lemma 2.3.1 while accounting

for the action of TΦ♯. □

6.2.2. Operator identities along Σ. Here we provide a list of useful operator identities

valid along Σ. These identities were proved using De�nition 6.2.1, Lemmas 6.2.2 and 6.2.3, and the

computer algebra system FORM. The next lemma shows how to convert various operators involving

Thomas-D operators to combinations of their tangential parts and Laplace�Robin operators.

Lemma 6.2.5. Acting on tractors of weight w =: 1
2(h − d), and such that D̂ and D̂T as they

appear below are well-de�ned, the following operator identities hold:

PAB ◦ D̂A ◦ D̂B
Σ
= PABD̂T

AD̂
T
B + h−4

d−2KI ·D̂ ,(6.10)

PAB ◦ D̂A ◦ PC
B ◦ D̂C

Σ
= PA

C P
CBD̂T

AD̂
T
B + PAB(D̂

APBC)D̂T
C ,(6.11)

PA
C P

CB ◦ D̂A ◦ D̂B
Σ
= − 1

h−3KI ·D̂
2 + P 3I ·D̂ + PA

C P
CBD̂T

AD̂
T
B ,(6.12)

(D̂AK) ◦ D̂A
Σ
= 2

h−3KI ·D̂
2 + K̇I ·D̂ + (D̂AK)D̂T

A ,(6.13)
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IA(D̂
CPAB) ◦ D̂C ◦ D̂B

Σ
= 2h−d−6

(d−2)(h−3)KI ·D̂
2 + (d−6)(h−d−2)

2(d−2)(d−4) K̇I ·D̂

− h−6
d−4P

3I ·D̂ − PA
C P

CBD̂T
AD̂

T
B

+ h−d−2
d−4 PAB(D̂

APBC)D̂T
C + (d−6)(h−d−2)

2(d−2)(d−4) (D̂AK)D̂T
A ,

(6.14)

IAP̈
AB ◦ D̂B

Σ
= 2

(d−2)(h−3)KI ·D̂
2 + 2(d−5)

(d−2)(d−4)K̇I ·D̂ − 2
d−4P

3I ·D̂

+ 2
d−4PAB(D̂

APBC)D̂T
C − 2

(d−2)(d−4)(D̂
AK)D̂T

A

+ h−d
(d−2)2

K2 + h−d
2(d−2)K̈ ,

(6.15)

(D̂AṖ
AB) ◦ D̂B

Σ
= d−2

(d−6)(h−3)KI ·D̂
2 + d−4

2(d−6)K̇I ·D̂

− 2
d−6P

3I ·D̂ + (D̂AṖ
AB)D̂T

B ,

(6.16)

D̂A ◦ ṖAB ◦ D̂B
Σ
= (d+2)h−8d

(d−2)(h−3)(h−8)KI ·D̂
2 + (d2−4d−4)h−8d2+44d−24

2(d−2)(d−4)(h−8) K̇I ·D̂

− 2(h−6)
(d−4)(h−8)P

3I ·D̂ + h−6
h−8 Ṗ

ABD̂AD̂B

+ (d−6)(h−d−2)
(d−2)(d−4)(h−8)(D̂

AK)D̂T
A + (d−6)(h−6)

(d−4)(h−8)(D̂AṖ
AB)D̂T

B .

(6.17)

Proof. These identities result from a series of symbolic algebra calculations using FORM. The

programs performing these calculations are described in Appendix A.4. □

In addition to De�nition 6.2.1 and Lemmas 6.2.2 and 6.2.3, to establish the following lemma for

operators involving the Laplace�Robin operator, we also need to use Lemma 6.2.5.

Lemma 6.2.6. Acting on tractors of weight w =: 1
2(h − d), and such that D̂ and D̂T as they

appear below are well-de�ned, the following operator identities hold:

XA ◦ I ·D̂ ◦XA
Σ
= 0 ,(6.18)

XA ◦ I ·D̂2 ◦XA
Σ
= −h−d

h ,(6.19)

XA ◦ I ·D̂3 ◦XA
Σ
= −3(h−d−2)

h I ·D̂ ,(6.20)
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XA ◦ I ·D̂4 ◦XA
Σ
= −6(h−d−4)

h I ·D̂2 − 2h3−(2d+20)h2+(16d+56)h−48d
(d−2)h(h−2)(h−4) K ,(6.21)

XA ◦ I ·D̂ ◦ IA
Σ
= 0 ,(6.22)

XA ◦ I ·D̂2 ◦ IA
Σ
= 0 ,(6.23)

XA ◦ I ·D̂3 ◦ IA
Σ
= h2−(d+4)h+8d−8

(d−2)(h−2)(h−4)K ,(6.24)

XA ◦ I ·D̂4 ◦ IA
Σ
= 4(h−5)(h2−(d+8)h+10d+4)

(d−2)(h−2)(h−4)(h−6) K I ·D̂ − 12
(h−2)(h−4)P

ABD̂T
AD̂

T
B

+ 3h2−(3d+12)h+30d−36
(d−2)(h−2)(h−4) K̇ ,

(6.25)

IA ◦ I ·D̂ ◦XA
Σ
= 1 ,(6.26)

IA ◦ I ·D̂2 ◦XA
Σ
= 2(h−1)

h I ·D̂ ,(6.27)

IA ◦ I ·D̂3 ◦XA
Σ
= 3(h−2)

h I ·D̂2 + 2h2−(d+8)h+6d
h(d−2)(h−2) K ,(6.28)

IA ◦ I ·D̂4 ◦XA
Σ
= 4(h−3)

h I ·D̂3 − 4(h−3)(−2h2+(d+16)h−8d−24)
(d−2)h(h−2)(h−4) KI ·D̂

− 12
h(h−2)P

ABD̂T
AD̂

T
B + 3h3−(d+28)h2+(14d+68)h−48d

(d−2)h(h−2)(h−4) K̇ ,

(6.29)

XA ◦ I ·D̂ ◦ D̂A
Σ
= h−d−2

2 I ·D̂ ,(6.30)

XA ◦ I ·D̂2 ◦ D̂A
Σ
= h−d−4

2 I ·D̂2 + h−d
2(d−2)K ,(6.31)

XA ◦ I ·D̂3 ◦ D̂A
Σ
= h−d−6

2 I ·D̂3 − 2(2h−d−10)
(h−4)(h−6)P

ABD̂T
AD̂

T
B

+ 3h2−(3d+28)h+22d+52
2(d−2)(h−6) KI ·D̂ + h−d

d−2 K̇ + 2
h−4I

AD̂B[D̂A, D̂B] ,
(6.32)
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XA ◦ I ·D̂4 ◦ D̂A
Σ
= h−d−8

2 I ·D̂4

+ 3h5−(3d+83)h4+(71d+908)h3−(608d+4932)h2+(6d2+2244d+13224)h−48d2−3024d−13536
(d−2)(h−3)(h−4)(h−6)(h−8) KI ·D̂2

+ h−d
2(d−2)2

K2 + 3(h−d)
2(d−2) K̈

+ 4h3−(4d+61)h2+(58d+246)h−210d−108
(d−2)(h−6)(h−8) K̇I ·D̂

+ 6
h−4I

AD̂BI ·D̂[D̂A, D̂B] +
2

h−6I
AD̂B[D̂A, D̂B]I ·D̂

− 4(h−7)
(h−4)(h−6)I

A[D̂A, D̂B]IC [D̂
B, D̂C ]

+ 2(10h2−(3d+130)h+24d+408)
(h−4)(h−6)(h−8) PABICD̂A[D̂B, D̂C ]

+ 2(5h2−(3d+74)h+24d+264)
(h−4)(h−6)(h−8)

[
P 3I ·D̂ + PABIC [D̂A, D̂C ]

(
D̂T

B + IBI ·D̂
) ]

− 4(4h2−(2d+53)h+14d+172
(h−4)(h−6)(h−8) PABD̂T

AD̂
T
BI ·D̂

+ 2(13h2−(6d+184)h+48d+624)
(h−4)(h−6)(h−8) PA

C P
CBD̂T

AD̂
T
B

+ 2((8d−30)h2−(3d2+98d−420)h+24d2+264d−1392)
(d−4)(h−4)(h−6)(h−8) PAB

(
D̂AP

C
B

)
D̂T

C

− 3(h−d)
(d−2)(h−6)

(
D̂AK

)
D̂T

A

− 6(2h−d−12)
(h−4)(h−6) Ṗ

ABD̂AD̂B

− 2(d−6)
(d−4)(h−8)

(
D̂AṖ

AB
)
D̂T

B ,

(6.33)

D̂A ◦ I ·D̂2 ◦XA Σ
= (h+d)(h+2)

2h I ·D̂2 + h3+(d−6)h2−2dh+8d
2(d−2)h(h−4) K ,(6.34)
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D̂A ◦ I ·D̂2 ◦ D̂A Σ
= − h−6

2(h−8)K̇I ·D̂

+ 2h3−32h2+(d+160)h−8d−236
(h−3)(h−6)(h−8) KI ·D̂2

+ IAD̂B
(
I ·D̂[D̂A, D̂B] + [D̂A, D̂B]I ·D̂

)
− d−2

h−6P
ABICD̂A[D̂B, D̂C ]

− h2+(d−14)h−8d+52
(h−6)(h−8)

(
P 3I ·D̂ + PABIC [D̂A, D̂C ]D̂B

)
+ 2(d−2)(h−7)

(h−6)(h−8) P
ABD̂T

AD̂
T
BI ·D̂

− h2+(2d−14)h−16d+56
(h−6)(h−8) PA

C P
CBD̂T

AD̂
T
B

+ 2h2−(d2−4d+24)h+8d2−36d+88
(d−4)(h−6)(h−8) PAB

(
D̂AP

C
B

)
D̂T

C

+ d−2
h−6 Ṗ

ABD̂AD̂B

− (d−6)(h−6)
(d−4)(h−8)

(
D̂AṖ

AB
)
D̂T

B .

(6.35)

Proof. This lemma was proved sequentially using FORM�generally, the more complex iden-

tities rely on the less complex ones. □

With these identities in hand, we are now ready to tackle the central result of this section: an

explicitly tangential formula for the extrinsically-coupled Paneitz-operator.

6.3. An Explicit Tangential Tractor Formula for PΣ↪→Md

4

Observe that the Paneitz operator P4 intrinsic to a conformal n-manifold (Σ, cΣ), acting on

weight 2− n
2 ̸= 0 densities, can be expressed as

P4 =
8

n−4 D̂
A ◦ P2 ◦ D̂A ,

where P2 is the Yamabe operator (also known as the conformal Laplacian) on weight 1− n
2 tractors

de�ned by DAT = −XAP2T for T ∈ Γ(TM [1 − n
2 ]); see for example [32,37]. Therefore, to write

the holographic formula of Theorem 6.1.1 for P̂Σ↪→Md

4 explicitly in terms of hypersurface data, our

strategy is to convert the operator (I ·D̂)4 to the form

P̂Σ↪→Md

4
Σ
= 8

d−5 D̂
T A ◦ PΣ↪→M

2 ◦ D̂T
A + lower derivative terms.
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Here the extrinsically-coupled Yamabe operator P̂Σ↪→Md

2 is de�ned on tractors of weight 3−d
2 by the

tangential operator I · D̂2 (again see Theorem 6.1.1). In the case that the operator P̂Σ↪→Md

4 acts

on sections of T ΦΣ
[
5−d
2

]
, Theorem 3.3.4 can be used to convert tangential Thomas-D operators to

hypersurface ones. The result of this computation is given below.

Theorem 6.3.1. Let σ be a unit conformal de�ning density for Σ ↪→ (M, c),where M has

dimension d ≥ 8. Then, acting on sections of Γ(T ΦM [5−d
2 ])|Σ,

P̂Σ↪→Md

4
Σ
= 8

d−5 D̂
TA ◦ P̂Σ↪→Md

2 ◦ D̂T
A

+
(
4(2d−11)

d−5 LACLB
C + 4(d−3)(d−6)

d−5 FAB − 8
d−5W

AB ♯
)
◦ D̂T

A ◦ D̂T
B

+
(
4(2d−11)

d−5 LBC(
ˆ̄DBLCA)− 2(d2−8d+17)

(d−1)(d−2)(d−5)(
ˆ̄DAK) + 4(3d−16)

d−5 NBLCDW
BCDA

− 4(3d−16)
d−5 NBL

A
CW

BC♯ + 4(d−4)
d−5 NBN

C(D̂CW
BA

· ·)
♯
)
◦ D̂T

A

+ 2d4−21d3+95d2−200d+152
(d−1)(d−2)2(d−4)2

K2 + d−2
(d−4)2

L ·J − 2(d−2)
(d−4)2

L4 + 2(2d3−27d2+118d−172)
(d−4)2

L·F ·L

+ (3d−16)(d−3)2

d−4 F 2 − 2(d−5)(d−6)
(d−4)2

LACLBDW̄ABCD + (d−5)(d−8)
(d−4)(d−7)(

ˆ̄DALBC)(
ˆ̄DALBC)

+ 4WN
B♯ ◦WNB

♯ − 4NBLAC

(
D̂AWBC

· ·

)♯
.

The above result can in fact be pro�tably used in dimensions d = 5, 6, 7 by a dimensional contin-

uation argument. Because (I ·D̂)4 is well-de�ned in all these dimensions, so too, by construction,

must be the operator appearing in the theorem. The d = 5 case is clearly the most complicated of

these continuations, and will be performed in the cases when P̂Σ↪→Md

4 acts on scalars and the normal

tractor; see Corollary 6.4.3 and Theorem 6.5.2. Dimensions d = 6, 7 are discussed below.

First consider d = 6. While there are no explicit poles here, since the tractor

D̂AW
g
= −2YAW + Za

A∇aW − 1
d−6XA(∆W − 2JgW ) ,

it naively has a pole at d = 6. However, note that in the theorem above, the tractor D̂AW only

appears when contracted with NA or LAB. In both cases, the pole can be eliminated by �rst working

in an arbitrary dimension, there noting that NAXA = 0 = LABXA, and then continuing down to

six dimensions.
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Now consider the case where d = 7, which has one explicit pole with residue ( ˆ̄DL)2, and an

implicit one:

ˆ̄DAK
g
= −2ȲAK + Z̄a

A∇̄aK − 1
d−7XA(∆̄K − 2J̄ ḡK) .

However, note that in d = 7,

( ˆ̄DL)2
g
= 1

2

(
∆̄− 2J̄ ḡ

)
K = 1

2□̄YK ,

and acting on sections of Γ(EM [5−d
2 ])|Σ,

( ˆ̄DAK)D̂T
A

g
= d−5

2(d−7)(∆̄− 2J̄ ḡ)K + regular ,

where �regular� stands for terms that are regular in dimension d = 7. Therefore, away from d = 7

− 2(d2−8d+17)
(d−1)(d−2)(d−5)(

ˆ̄DAK)D̂T
A + (d−5)(d−8)

(d−4)(d−7)(
ˆ̄DL)2 = d3−7d2+8d+8

2(d−1)(d−2)(d−4)(∆̄− 2J̄)K + regular .

Thus, the operator P̂Σ↪→Md

4 can indeed be continued to seven dimensions.

Our next task is to prove the central Theorem 6.3.1. Note that the algorithm presented below

can be used to decompose quite general tractor operators into tangential and higher transverse order

pieces, the latter captured by powers of the I ·D̂ operator.

Proof of Theorem 6.3.1. As dictated by Theorem 6.1.1, we begin with the holographic

formula I · D̂4, remembering that we will eventually restrict to the hypersurface Σ. Also, we are

ultimately interested in this operator acting on tractors of weight 5−d
2 . However, to begin with

we will take the weight to be arbitrary, equal to (h − d)/2, and such that denominators of the

form h − k for certain k are avoided. Later we will employ a weight and dimension continuation

argument. Note that all appearances of the operator D̂ in what follows are in fact well-de�ned

even when h = 5. When problematic poles in the parameter h appear, we will draw the reader's

attention to how these are handled.

Our strategy is to perform a series of manipulations converting the operator I ·D̂4 to the opera-

tor D̂T
A ◦ I ·D̂2 ◦ D̂T A plus other terms of transverse order lower than four. The �rst step is to note

that I ·D̂ = D̂A ◦ IA (this follows by contracting the last identity in Lemma 6.2.2 with the tractor
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metric and the fact that PA
A = 0 = XAP

AB). Thus

I ·D̂4 = D̂A ◦ IAI ·D̂2 ◦ IBD̂B .

We would like to trade the explicit appearances of scale tractors IA and IB in the above display

for an extension of the tractor �rst fundamental form IAB
ext := hAB − IAIB. For that we must �rst

bring IA and IB together using Equation (6.8), which gives

I ·D̂4 = D̂A ◦ I ·D̂ ◦ IAIB ◦ I ·D̂ ◦ D̂B +R1

= −D̂A ◦ I ·D̂ ◦ IAB
ext ◦ I ·D̂ ◦ D̂B +R2 .(6.36)

Here R1 := D̂A ◦ [IA, I ·D̂] ◦ I ·D̂ ◦ IBD̂B + D̂A ◦ I ·D̂ ◦ IA ◦ [I ·D̂, IB] ◦ D̂B has transverse order no

more than three�see Equation (6.8). The second remainder term R2 := R1 + D̂A ◦ I ·D̂2 ◦ D̂A also

has transverse order no more than three which can be veri�ed using the identity D̂AD̂
A = 0 and

Proposition 2.6, which shows that the commutator of a pair of Thomas-D operators has transverse

order one. Later, to simplifyR2, we will apply Equation (6.35). We will also handle lower transverse

order remainder terms later.

We employ the identity

IAD
ext = IAB

ext hBCI
CD
ext +O(σd) ,

to produce a pair of extensions of the tractor �rst fundamental form. (Also observe from Equa-

tion (3.15) that IABD̂
B is very nearly D̂T

A.) We then use Equation (6.8) and Lemma 6.2.2 to rewrite

Equation (6.36) as

I ·D̂4 = −IAB
ext D̂B ◦ I ·D̂2 ◦ IextACD̂

C +R3 .

Similar arguments to above show that the latest remainder R3 still has transverse order at most

three. Using Proposition 3.3.3, note that D̂T
A = IextABD̂

B + 1
d+2w−3 XAI ·D̂2. Note that we encounter

no poles applying this identity to the above display when h = 5. This maneuver produces

(6.37) I ·D̂4 = −D̂T
A ◦ I ·D̂2 ◦ D̂T A + 1

h−3D̂
T
A ◦ I ·D̂2 ◦XAI ·D̂2

+ 1
h−9XAI ·D̂4 ◦ D̂T A − 1

(h−3)(h−9)XAI ·D̂4 ◦XAI ·D̂2 +R3 .
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Applying identities from Lemma 6.2.6, for the second, third, and fourth terms on the right hand

side above, we �nd

X̂AI ·D̂4 ◦DT
A = h(h−7)(h−d−8)

2(h−3)(h−4) I ·D̂4 + · · · ,

D̂T
A ◦ I ·D̂2 ◦XAI ·D̂2 = (h−5)(h−6)(h+d−10)

2(h−4)(h−9) I ·D̂4 + · · · ,

XAI ·D̂4 ◦XAI ·D̂2 = −6(h−d−8)
h−4 I ·D̂4 + · · · ,

where · · · represents lower transverse order terms. Then, after collecting all the terms in Equa-

tion (6.37) containing I ·D̂4 on the left hand side, we have

(2h−9)(h+d−10)
(h−3)(h−4)(h−9) I ·D̂

4 = −D̂T
A ◦ I ·D̂2 ◦ D̂T A +R4 .

When h = 5, the coe�cient on the left hand side is −d−5
8 . Moreover, at that value of h the

operator I ·D̂2 in the �rst term on the right hand side acts on tractors of weight 1− d−1
2 , in which

case it is tangential and equals P̂Σ↪→Md

2 . Therefore we have established that

P̂Σ↪→Md

4
Σ
= 8

d−5

(
D̂TA

Σ ◦ P̂Σ↪→Md

2 ◦ D̂T
ΣA −R

)
.

It remains to compute the operator R by evaluating R4 along Σ in the limit h→ 5.

We must therefore now discuss the poles in R4. The issue is that we cannot use Equation (3.3.3)

to convert the operator D̂ to D̂T when acting on tractors of weight 1 − d−1
2 . However, since we

know that the limit h→ 5 of the operator I ·D̂4 is well-de�ned, we may employ Equation (3.3.3) at

general weights and apply a limiting procedure at the end of our calculations.

Returning to R, we �rst apply Equation (6.35) to simplify the term D̂AI · D̂2D̂A in R4. To

compute R4, we employ an algorithm whose starting point R4 is an operator of transverse order no

more than three, that acts on an arbitrary weight tractors, and is evaluated along Σ. Moreover, R4

is expressed as a sum of �words� (each of which has transverse order no more than three) composed

of operator-valued �letters� in the alphabet given by the scale σ, the scale tractor I, the canonical

tractor X, the Thomas-D operator, the W tractor, the Thomas-D operator acting on any of the

other letters (possibly multiple times), and rational functions of h. Note that the tractor identities

derived so far can be used to simplify these words, e.g.,XA◦(D̂AIB) = 0. Our algorithm manipulates
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such words and letters. We also introduce the distinguished letter

ŷ := −I ·D̂ .

The aim of the algorithm is to iteratively convert any word of transverse order ℓ into the form

Op ◦ ŷℓ ◦ f(h) + · · · ,

where the terms · · · have transverse order lower than ℓ and f(h) is some rational function of the

operator h. Here Op is some tangential operator that may involve an additional letter D̂T. Let us

�rst sketch the main ideas of the algorithm:

Step 0 of the algorithm takes any word containing rational functions of h and rewrites those

words by shifting these operators to the right end of the word. Then, it applies a simpli�cation-type

procedure. While in principle, this simpli�cation is not necessary for the algorithm to achieve the

goal desired, it signi�cantly reduces computational complexity in the implementation documented

in Appendix A.4. This step will be repeated after each of the following steps.

Step 1 takes any word ending in f1(h) and rewrites it in the order

UΘ1
1 · · · ◦ TΦ1♯

1 · · · ◦ D̂T
A1

· · · ◦ D̂B1 · · · ◦ ŷℓ ◦ f2(h) ,

for {UΘi
i } some set of multiplicative letters (acting by tensor multiplication by a tractor), {TΦj♯

j }

some set of tractor-valued tractor-endomorphism letters, and f2(h) some possibly new rational

function of the letter h.

Step 2 prepares to combine pairs of letters IA and D̂A into −ŷ by commuting the correspond-

ing Is to the right of the multiplicative letters, the tractor-valued tractor endomorphisms, and the

tangential Thomas-D operators. That is, words containing IA and D̂A are manipulated to take the

form

UΘ1
1 · · · ◦ TΦ1♯

1 · · · ◦ D̂T
A1

· · · ◦ IBk ◦ D̂B1 · · · D̂Bk
· · · ◦ ŷℓ ◦ f(h) .

Step 3 applies the tractor lemmas above to push every IBk past Thomas-D operators with

di�erent indices until it is left-adjacent to its corresponding D̂Bk
, and then combines these terms to

form −ŷ.
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Step 4 reapplies Step 1 (so that this newly formed ŷ letter is commuted to the right), leaving

us with words of the form

UΘ1
1 · · · ◦ TΦ1♯

1 · · · ◦ D̂T
A1

· · · ◦ D̂B1 · · · ◦ ŷℓ ◦ f(h) ,

where no letter UΘi
i is a letter IBi with corresponding letter D̂Bi .

Step 5 rewrites D̂B1 (which by the previous step has no corresponding IB1) in terms of the

tangential Thomas-D operator, D̂T
B1
.

Step 6 repeats the previous �ve steps so long as any letters D̂ remain. The output of the

algorithm is a linear combination of words of the form

UΘ1
1 · · · ◦ TΦ1♯

1 · · · ◦ D̂T
A1

· · · ◦ I ·D̂ℓ ◦ f(h) .

We now present the algorithm in full detail.

Step 0:

Step 0a: For every letter pair of an operator f(h) and some tractor-valued operator T :

Γ(T ΦM [w]) → Γ(T ΘM [w′]) with �operator weight� w′−w, replace f(h)◦TΘ
Φ by TΘ

Φ ◦

f(h+ 2(w′ − w)).

Step 0b: For any word beginning with multiplicative letters, combine those letters

to reduce complexity using the de�nitions found in 6.2.1, the Leibniz failure 2.3.1,

and Lemmas 6.2.2 and 6.2.3. For example, one may write XA(D̂
BD̂CIA) = −PBC

or IAP
AB = − 1

d−2KX
B.

Step 1: Repeat the following sub-steps until a full iteration leaves the expression unchanged

(i.e., �repeat until termination�):

Step 1a: Rewrite all two-letter pairs IA ◦ D̂A as −ŷ.

Step 1b: Rewrite every instance of the letter combination [D̂A, D̂B] following Equa-

tion (2.6).

Step 1c: Repeat until termination: For every letter of the form TΦ♯ and every multi-

plicative letter UΘ ∈ Γ(T ΘM [w]), rewrite pairs TΦ♯ ◦ UΘ as

(TΦ♯UΘ) + UΘ ◦ TΦ♯ .
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Step 1d: Repeat until termination: For some operators Op1, Op2, and Op3, apply

Proposition 2.3.1 and Lemmas 6.2.3 and 6.2.4 to write all words of the form Op1 ◦ ŷ ◦

Op2 ◦ ŷℓ as

Op1 ◦ Op2 ◦ ŷℓ+1 + Op3 ◦ ŷℓ .

By construction Op3 has fewer ŷ's (including pairs I
A◦D̂A) in it than the operator Op1◦

Op2. Then apply Step 0.

Step 1e: Repeat until termination: For any operators Op1, Op2 (where Op2 does not

contain the letter D̂), and Op3, apply Proposition 2.3.1 and Lemmas 6.2.2 and 6.2.4

to write all words of the form Op1 ◦ D̂A1 ◦ Op2 ◦ D̂A2 · · · D̂Ak ◦ ŷℓ as

Op1 ◦ Op2 ◦ D̂A1 · · · D̂Ak ◦ ŷℓ + Op3 ◦ D̂A2 · · · D̂Ak ◦ ŷℓ .

By construction Op3 has no more operators D̂ in it than the operator Op1. Then

apply Step 0.

Step 1f: Repeat until termination: Use Proposition 2.3.1 and Lemmas 6.2.2 and 6.2.3

to faithfully replace every combination of letters D̂T ◦I to the left of every appearance

of D̂ or ŷ with

I ◦ D̂T + OpT1 .

By construction the operator OpT1 is tangential. Similarly, for every combination of

letters D̂T ◦X, replace it with

X ◦ D̂T + OpT2 .

Again the operator OpT2 must be tangential. Apply similar identities to letters of the

form D̂T ◦ UΦ where UΦ is a multiplicative letter. Then apply Step 0.

Step 2: Repeat until every word containing at least one pair IA ◦Op◦ D̂A is written as Op′ ◦

IAk ◦ D̂A1 · · · D̂Ak
, where Op and Op′ are some combination of letters:

Step 2a: For some operators Op1 and Op2, and for every multiplicative letter UΘ ∈

Γ(T ΘM [w]), rewrite every word of the form Op1 ◦ IA ◦ UΦ ◦ Op2 as

Op1 ◦ UΦ ◦ IA ◦ Op2 .
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Step 2b: For some operators Op1, Op2, and Op3, and for each tractor-valued tractor-

endomorphism letter TΦ♯, rewrite every word of the form Op1◦IA◦TΦ♯◦Op2◦D̂A◦Op3
as

Op1 ◦ TΦ♯ ◦ IA ◦ Op2 ◦ D̂A ◦ Op3 − Op1 ◦ TΦA
BI

B ◦ Op2 ◦ D̂A ◦ Op3 .

Step 2c: For some operators Op1, Op2, and Op3, apply Lemmas 6.2.2 and 6.2.3 as well

as the de�nition of D̂T in De�nition 6.2.1 to rewrite every word of the form Op1 ◦ IA ◦

D̂T ◦ Op2 ◦ D̂A ◦ Op3 as

Op1 ◦ D̂T ◦ IA ◦ Op2 ◦ D̂A ◦ Op3 + Op′A ◦ Op2 ◦ D̂A ◦ Op3 ,

for some Op′A that does not contain the letter IA. This step is designed to only move

Is to the right when they can be contracted on to D̂'s. Apply Step 0.

Step 3: Repeat until each word has one fewer (or zero) pair(s) of letters IAi and D̂Ai . For

some operators Op1 and Op2, apply Proposition 2.3.1 and Lemma 6.2.2 to rewrite every

word of the form Op1 ◦ IAi ◦ D̂A1 · · · D̂Ai · · · D̂Ak ◦ ŷℓ as

−Op1 ◦ D̂A1 · · · ŷ · · · D̂Ak ◦ ŷℓ + Op2 ◦ ŷℓ ,

where Op2 is some operator that does not contain IAi . Apply Step 0.

Step 4: Reapply Step 1.

Step 5: In any given word, by virtue of Proposition 3.3.3, rewrite the left-most letter D̂A

as D̂T
A − IA ◦ ŷ −XA ◦ ŷ2 ◦ 1

h−3 .

Step 6: If any word contains the letter D̂, repeat Steps 0 through 5.

The remainder of the calculation amounts to rewriting combinations of non-derivative letters

UΘ1
1 · · · ◦ TΦ1♯

1 · · ·

in terms of hypersurface tractors via holographic formulæ. This process is generally tedious and relies

on dozens of identities arising from the Leibniz failure (both on the hypersurface and in the ambient

space), Lemma 6.2.2 (and its direct application to the hypersurface operator ˆ̄D), Lemma 6.2.3, and
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the Gauss-Thomas formula (3.3.4). Some of these identities can be found in Section 4.5. Finally,

we can take the limit h→ 5 to resolve R. This entire procedure was implemented using FORM in

the �le

FORM-Proofs/General-tensor/Paneitz-tensor-algorithm.frm.

That the proposed algorithm here terminates requires no proof, since we explicitly veri�ed that six

iterations su�ces. The result obtained from this computation is below:

− 8
d−5R =

(
4(2d−11)

d−5 LACLB
C + 4(d−3)(d−6)

d−5 FAB − 8
d−5W

AB ♯
)
◦ D̂T

A ◦ D̂T
B

+
(
4(2d−11)

d−5 LBC(
ˆ̄DBLCA)− 2(d2−8d+17)

(d−1)(d−2)(d−5)(
ˆ̄DAK) + 4(3d−16)

d−5 NBLCDW
BCDA

− 4(3d−16)
d−5 NBL

A
CW

BC♯ + 4(d−4)
d−5 NBN

C(D̂CW
BA

· ·)
♯
)
◦ D̂T

A

+ 2d4−21d3+95d2−200d+152
(d−1)(d−2)2(d−4)2

K2 + d−2
(d−4)2

L ·J − 2(d−2)
(d−4)2

L4 + 2(2d3−27d2+118d−172)
(d−4)2

L·F ·L

+ (3d−16)(d−3)2

d−4 F 2 − 2(d−5)(d−6)
(d−4)2

LACLBDW̄ABCD + (d−5)(d−8)
(d−4)(d−7)(

ˆ̄DALBC)(
ˆ̄DALBC)

+ 4WN
B♯ ◦WNB

♯ − 4NBLAC

(
D̂AWBC

· ·

)♯
.

The above expression for R contains operators of the type WA ◦ D̂T
A ◦ D̂T

B which, strictly, are not

de�ned on the weight we are interested in. However, because WA ◦XA = 0, as discussed earlier, we

have used use the notation D̂T for the left-most Thomas-D operator. This completes the proof. □

With this formula in hand, we can compute several conformally-invariant Riemannian quantities

by translating this formula into a Riemannian formula in di�erent settings. We begin with an

extrinsic analog of Branson's Q-curvature.

6.4. The Extrinsic Q-Curvature

As an analog to Branson's Q-curvature described above, there also exists an extrinsic Q-

curvature QΣ↪→M5

4 which also is an integrated invariant and, when restricted to the Poincareé�

Einstein setting, reproduces Branson's Q-curvature. This curvature was initially de�ned by Gover

and Waldron [40] as

QΣ↪→M5

4 (gτ ) := PΣ↪→M5

4 log 1
τ |Σ ,
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where τ = [gτ ; 1]. Their result [40, Theorem 4.7] shows that this extrinsic Q-curvature has the

correct analogous conformal variation:

QΣ↪→M5

4 (e2ωg) = e−4ω
[
QΣ↪→M5

4 (g) + P̂Σ↪→M5

4 ω̄
]
Σ
,

where ω ∈ C∞M and ω̄ = ω|Σ.

Indeed, one can de�ne a generalized extrinsic Q-curvature associated to each normalized extrinsically-

coupled GJMS operator. A slight modi�cation (for the purposes of coe�cient �xing) of that gener-

alization is the following:

QΣ↪→Md

d−1 (gτ ) := P̂Σ↪→Md

d−1 log 1
τ |Σ .

As above, this modi�cation has the desired conformal variation property that

QΣ↪→Md

d−1 (e2ωg) = e−(d−1)ω
[
QΣ↪→Md

d−1 (g) + P̂Σ↪→Md

d−1 ω̄
]
Σ
,

where ω is as above. Furthermore, this result reduces to the results for Q6 and Q8 in the Poincaré�

Einstein setting computed by [37] and matches the description of the generalized Q-curvature

described in [27]. As in Remark 6.1.2, the above statements can be generalized to the d even

dimensional case.

A useful consequence of this de�nition of the generalized extrinsic Q-curvature is that it agrees

with the scalar curvature term that appears in the expression for the extrinsically-coupled Paneitz

operator acting on scalars given by QΣ↪→Md′

d−1 . To see this, we need a technical lemma.

Lemma 6.4.1. Let τ be a true scale. Then the log density log τ obeys

log τ = 2 lim
ε→0

τ ε/2 − 1

ε
and D̂ log τ = 2 lim

ε→0

D̂τ ε/2

ε
.

Proof. The �rst identity follows from the easily veri�ed limit

log x = 2 lim
ε→0

xε/2 − 1

ε

valid for any 0 < x ∈ R. The second identity follows a direct computation in a choice of scale g ∈

c. □

A consequence of the above is the desired result:
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Proposition 6.4.2. Let (Md, γ, σ) ∈ ASY specify a conformal hypersurface embedding with d

odd and let τ be a true-scale. Then,

QΣ↪→Md

d−1 (gτ ) = QΣ↪→Md

d−1 (gτ ) .

Proof. From Lemma 6.4.1 we have that

I ·D̂ log τ = 2 lim
ε→0

I ·D̂τ ε/2

ε
.

A similar argument to that employed in the proof of that lemma also establishes that

I ·D̂d−1 log 1
τ = 2 lim

ε→0

I ·D̂d−1τ−ε/2

ε
.

Thus it follows that

QΣ↪→Md

d−1 (gτ )
gτ
= lim

ε→0

2

ε
I ·D̂d−1τ−ε/2

∣∣
Σ
.(6.38)

To extract QΣ↪→Md

d−1 (gτ ) from Equation (6.4), note that the basis of invariants present in the

expression for P̂Σ↪→Md′

d−1 τ
d−d′

2 are stable as the dimension d′ varies [38] and their coe�cients are

rational functions of d′ and d, so we can treat Equation (6.4) as a universal formula for P̂Σ↪→Md′

d−1 τ
d−d′

2

with d′ an arbitrary parameter. This �dimensional continuation�-type argument is standard, see for

example [37]. Then, working in a choice of scale τ = [gτ ; 1], we have that

I ·D̂d−1τ
d−d′

2
gτ
= −d−d′

2 QΣ↪→Md′

d−1 (gτ ) ,

and thus

QΣ↪→Md

d−1 (gτ )
gτ
= lim

d′→d

(
2

d′ − d
I ·D̂d−1τ

d−d′
2

)
.

Substituting d + ε for d′ in the universal formula, we obtain Equation (6.38), as required by the

proposition. □

As a consequence, obtaining a Riemannian expression for QΣ↪→M5

4 can be done by �nding a

Riemannian formula for the action of the extrinsically-coupled Paneitz operator on a scalar-valued

density τ ∈ Γ(EM [5−d
2 ]). However, given the formula for P̂Σ↪→Md

4 in Theorem 6.3.1, this is explicitly

computable.
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Corollary 6.4.3. Let d ≥ 5. Acting on conformal densities of weight 5−d
2 along Σ, the

extrinsically-coupled Paneitz operator is given by

P̂Σ↪→Md

4 = ∆̄2+∇̄a◦
(
4P̄ab−(d−3)J̄ ḡab+8I̊I2ab+

d2−4d−1
2(d−1)(d−2)Kḡab+4(d−2)F̊ ab

)
◦∇̄b− 5−d

2 QΣ↪→Md

4 (g) ,

where

QΣ↪→Md

4 (g) := −∆̄J̄ − 2P̄ 2 + d−1
2 J̄2

+ 2(d−2)
d−4 (∇̄·∇̄·F̊ ) + 3d2−9d+4

2(d−1)(d−2)(d−4)(∆̄K) + 2
d−1 I̊I·(∆̄ I̊I) + 4

d−4∇̄
a( I̊Ia ·∇̄· I̊I)

− 2(d−2)
d−4 I̊I·C⊤

n̂ − 6(d−2)
(d−1)(d−4) I̊I

ab∇̄cW⊤
cabn̂

− 2(d−2)(d−5)
d−4 F̊ ·P̄ − 4(d−6)

d−4 I̊I·P̄ · I̊I− d3+2d2−27d+44
2(d−1)(d−2)(d−4) J̄K

+ 2(d−2)(d−3)
d−4 H I̊I·F̊ − 2(d−2)

d−4 H I̊I3

+ 2(d+2)
(d−1)(d−4) I̊I

ad I̊IbcW̄abcd +
2(d−2)2

d−4 F̊ 2 + 2(d−2)
d−4 I̊I·F̊ · I̊I + 17d3−86d2+133d−52

8(d−1)(d−2)2(d−4)
K2 .

(6.39)

Proof of Corollary 6.4.3. The proof mainly amounts to an application of Theorem 6.3.1.

Because the operator acts on scalar densities, we may use Theorem 3.3.4 to convert operators D̂T

to ˆ̄D plus lower order terms. The proof then splits into two separate computations. The �rst

expresses ˆ̄DA ◦ P̂Σ↪→Md

2 ◦ ˆ̄DA in terms of Riemannian operators, while the second similarly handles

the subleading terms. The entire computation is carried out in FORM (see Appendix A.4): the

�rst computation can be found in the �le

FORM-Proofs/Paneitz-scalar/DbID2Db-scalar.frm

and the second in

FORM-Proofs/Paneitz-scalar/Paneitz-scalar-Riemannian.frm.

The �nal step uses Equation (4.5) to rewrite I̊Vab in terms of C⊤
n̂(ab) in order that the result can be

continued to d = 5. Well-de�nedness of the �nal result in d = 5 can be established by inspection. □

Comparing with Equation (6.1), we see that the �rst three terms match the �rst three terms

of the operators intrinsic counterpart, and furthermore the �rst three terms in the multiplicative

operator QΣ↪→Md

4 match those of Equation (6.2). One consequence of this formula for P̂Σ↪→Md

4 on a
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scalar-valued density is that we obtain a Riemannian formula for the extrinsically-coupled Paneitz

operator on a function in �ve dimensions:

P̂Σ↪→M5

4 f̄ = ∆̄2f̄ + ∇̄a ◦
(
4P̄ab − 2J̄ ḡab + 8I̊I2ab + 12F̊ ab +

1
6Kḡab

)
◦ ∇̄bf̄ .(6.40)

Second, we obtain a formula for the extrinsic Q-curvature, recorded in the following theorem.

Theorem 6.4.4. Let Σ ↪→ (M, c) be a conformally embedded hypersurface. Then, given g ∈ c

the extrinsic Q-curvature is

QΣ↪→M5

4 (g) = Q4 +Wm+ U +Qe ,

where

QΣ
4 = −∆̄J̄ − 2P̄ 2 + 2J̄2 ,

Wm := 1
2 I̊I·∆̄ I̊I + 4

3∇̄
a
(
I̊Ia ·∇̄· I̊I

)
+ 3

2∆̄K

− 6 I̊I·C⊤
n + 4I̊I·P̄ · I̊I− 7

2 J̄K − 6H I̊I3 + 12H I̊I·F̊ ,

U := 18F̊ ·F̊ + 6I̊I·F̊ · I̊I + 49
24K

2 − 9
2 I̊I

ab∇̄cW⊤
cabn̂ + 7

2 I̊I
ad I̊IbcW̄abcd ,

Qe := 8
3∇̄

a
(
I̊Ia ·∇̄· I̊I

)
+ 6∇̄·∇̄·F̊ − 1

12∆̄K ,

and Wm and U are conformally invariant weight −4 conformal densities.

Proof. Following Lemma 6.4.2, we may set d = 5 in the expression for QΣ↪→Md

4 (g) in Equa-

tion (6.39) to obtain the quoted result for QΣ↪→M5

4 (g).

It only remains to establish that the quantities Wm and U are conformal invariants. To do so,

we �rst consider the weight −4 hypersurface density LAB□̄Y L
AB where the hypersurface Yamabe

operator is de�ned acting on weight −1 four-manifold tractors T via

−D̄AT = XA□̄Y T ,
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and LAB is the tractor second fundamental form. It is not di�cult to compute (see [72]) that

□̄Y L
AB ḡ

=


0 0 ⋆

0 ∆̄ I̊Iab − 4
3 ∇̄

(a∇̄· I̊Ib)◦ − 4P̄ (a · I̊Ib)◦ − J̄ I̊Iab + ⋆ ḡab ⋆

⋆ ⋆ ⋆

 .

Here ⋆ denotes terms that do not contribute to the (manifestly invariant) density LAB□̄Y L
AB.

Applying the Codazzi�Mainardi Equation (3.3), we �nd

(6.41) LAB□̄Y L
AB = I̊Iab∇̄cW⊤

cabn̂ + I̊Iad I̊IbcW̄abcd .

Thus, because I̊Iad I̊IbcW̄abcd is conformally invariant, so too is I̊Iab∇̄cW⊤
cabn̂. Thus we have that U

is composed solely of manifestly invariant scalars.

To handle Wm, we �rst de�ne

W0 :=Wm+ 24F̊ 2 + 6I̊I·F̊ I̊I + 31
12K

2 + 11
2 I̊Iad I̊IbcW̄abcd − 13

2 I̊Iab∇̄cW⊤
cabn̂ .

Comparing W0 with K̈ in Equation (4.16) reveals that W0 =
3
2K̈, which is manifestly invariant and

thus Wm is also invariant. □

Remark 6.4.5. Equation (6.41) in the proof of Theorem 6.4.4 also establishes that ∇̄cW⊤
c(ab)n̂

is invariant in d = 5 dimensions; alternatively this is the application to W⊤
c(ab)n̂ of a well-known

invariant �rst order operator on conformal 4-manifolds. ■

One important application of this result is to renormalized volumes and Weyl anomalies. For

a conformally compact manifold (M\∂M, go), the volume
�
M\∂M dvol(go) is formally in�nite�

however, as is typical in quantum theory, often physical observables can be extracted by renor-

malizing otherwise in�nite quantities. The renormalized volume of such a manifold has played an

important role in the AdS/CFT correspondence and has attracted signi�cant attention. However,

such a renormalized volume is not always de�nable in a conformally-invariant way: instead, one

can only de�ne such a volume up to a conformally-invariant anomaly. Early work by Henningson

and Skenderis [55] showed that this conformally-invariant anomaly is precisely the Weyl anomaly

of the boundary CFT. A result of [24] showed that the integral of Branson's Q-curvature is indeed
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this anomaly when the bulk dimension is �ve. Furthermore, they showed that the integral of the

generalized Q-curvature generates this anomaly in general dimensions.

By generalizing the Q-curvature to its extrinsic counterpart, Gover and Waldron in [42] pro-

vided a formula for computing the Weyl anomaly for quantum �eld theories on the boundary of a

gravitating theory that is not necessarily Poincaré�Einstein. They showed that, given a conformally

embedded hypersurface Σ ↪→ (M, c) with M = Σ ⊔M+ and a choice of metric ḡ ∈ c̄, there is a

unique renormalized volume Volren(M
+, go, ḡ) associated to each representative ḡ ∈ c̄. Indeed, this

dependence on ḡ can be seen explicitly to depend on
�
ΣQ

Σ↪→Md

d−1 in a result proven in [43]. For

λ ∈ R+, the di�erence in the renormalized volulmes associated to ḡ and λ2ḡ obeys

Volren(M
+, go, λ2ḡ)−Volren(M

+, go, ḡ) =
log λ

16

�
Σ
dvol(ḡ)QΣ↪→M5

4 (g) .

We furthermore can make a connection to the Willmore energy and invariants discussed in

Section 5.2. As mentioned in that section, the integrated extrinsic Q-curvature QΣ↪→M5

4 is indeed a

higher Willmore energy

ESing[Σ ↪→ (M, c)] =

�
Σ
dvol(ḡτ )Q

Σ↪→M5

4 (gτ ) .(6.42)

Furthermore, the functional variation of this Willmore energy, and hence its associated generalized

Willmore invariant, is precisely B5 as in De�nition 5.2.2. Other higher Willmore invariants have

been produced in the literature [45,53,68,85].

6.5. The Willmore Invariant in d = 5

In principle, given the formula for QΣ↪→M5

4 , we could explicitly vary ESing in Equation (6.42) and

compute the Willmore invariant. However, another key result of Gover and Waldron [45] provides

a tractor formula for computing this invariant.

Theorem 6.5.1 (Theorem 7.7 of [45]). Let (Md, γ, σ)Y specify a conformally embedded hyper-

surface. Then, the singular Yamabe obstruction in d dimensions is given by the holographic formula

B
Σ
= 2

d!(d−1)!

(
D̄A ◦ ⊤

) (
PΣ↪→Md

d−1 NA + (−1)−2
[
I ·Dd−2(XAKe)

])
.(6.43)
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Because we have a tractor formula for P̂Σ↪→Md

4 and we know the relationship between P̂Σ↪→Md

4

and PΣ↪→Md

4 , we can explicitly compute the singular Yamabe obstruction so long as we can compute
...
K , which will play an important role in the second term on the right-hand side of Equation (6.43).

Indeed, when d = 5 we can rewrite this result to obtain an explicit formula:

(6.44) B
Σ
= 1

1440(D̄A ◦ ⊤)
(
P̂Σ↪→M5

4 NA − 3I ·D̂3(XAKe)
)
.

As mentioned above, in order to compute B in �ve dimensions, we need both P̂Σ↪→M5

4 I and
...
K .

We begin with the former. As above, this result was computed using FORM and is captured in the

following result.

Proposition 6.5.2. Let d = 5. Then, given g ∈ c,

Γ
(
TM [−4]

∣∣
Σ

)
∋ P̂Σ↪→M5

4 NA g
= NAA+XAB + Z̄A

a C
a + Ȳ AD ,

where

A =− 2
3Wm− 23

6 K
2 − 11

3 I̊Iad I̊IbcW̄abcd +
13
3 I̊Iab∇̄cW⊤

cabn̂ − 4 I̊I2 ·F̊ − 16F̊ 2 ,

Ca = 8∇̄a( I̊I·F̊ ) + 10
3 I̊Ia ·∇̄K + 20

9 K∇̄· I̊Ia ,

D =− 24 I̊I·F̊ ,

and the leading hypersurface derivative term of the scalar B is −1
3∆̄∇̄·∇̄· I̊I.

Proof. This theorem is also an application of Theorem 6.3.1. Note that the normal tractor has

weight zero in all dimensions, while the operator P̂Σ↪→Md

4 acts on tractors of weight 5−d
2 . Moreover,

to use Theorem 6.3.1 in �ve dimensions we must compute in general d and then continue to d = 5.

Thus we introduce a scalar density τ of weight 5−d
2 and instead compute P̂Σ↪→Md

4 (NAτ), continue

to d = 5, and thereafter set τ to unity. Similarly to the previous proof, handling the term D̂T B ◦

P̂Σ↪→Md

2 ◦ D̂T
B(N

Aτ) term is challenging. It is computed in the FORM �le

FORM-Proofs/Paneitz-N/DtID2Dt-N.frm

The remainder of the computation is performed by the �le

FORM-Proofs/Paneitz-N/Paneitz-N-Riemannian.frm
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See Appendix A.4 for more details on this computation. Finally, we write I̊Vab in terms of C⊤
n̂(ab)

so that the result is well-de�ned in d = 5. □

Remark 6.5.3. Observe from the above proposition that the action of the extrinsically-coupled

Paneitz operator on the normal tractor is well-de�ned, despite the apparent singularities in d = 5

as per Theorem 6.3.1. ■

Next, we compute
...
K .

Lemma 6.5.4. Let d = 5 and Ke be de�ned as above. Then along Σ, the weight −5 density
...
K e

is given by the following sum of conformally invariant terms

...
K e

∣∣
Σ
=− 32Lab I̊I3(ab)◦ − 48Lab( I̊I(a ·F̊ b)◦) + 10Lab(K I̊Iab)− 48W⊤

ABCN
ˆ̄DAFBC

− 42K I̊I·F̊ − 48 I̊I·F̊ 2 − 24 I̊Ibc(5F̊ ad +Wn̂
ad

n̂)W̄abcd − 48 I̊IabW
⊤
acdn̂W

bcd⊤
n̂

+ 8I̊I·B̄ − 24(F̊ ab +Wn̂
ab

n̂)∇̄cW⊤
cabn̂ ,

where Lab is the operator de�ned by Equation (5.5) and

W⊤
ABCN

ˆ̄DAFBC = −F̊ ·C⊤
n̂ +W⊤

abcn̂∇̄aF̊ bc −H I̊I2 ·F̊ + 2HF̊ 2 .

Proof. This calculation is a signi�cant exercise in Riemannian hypersurface geometry. We use

three facts: First, acting on a weight w ̸= 1− d
2 tractor, the operator I ·D̂ is given by

I ·D̂ g
= ∇n + wρ− s

d+2w−2(∆ + wJ) .

Second, written in terms of the canonical extension of Equation (3.18) given by I̊Ieab = ZA
a Z

B
b PAB,

we have thatKe = (I̊Ie)2. Using these facts, we can recast
...
K = I·D̂3Ke as a Riemannian operator on

tensors, at which point the problem reduces to standard (albeit lengthy) hypersurface calculations,

primarily carried out in the FORM program (see Appendix A.4 for more details)

(6.45) FORM-Proofs/Riemannian-identities/Kddd.frm
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In order to obtain a manifestly invariant result, we note that the operator Lab can act on three

independent structures appearing in
...
K : namely,

I̊I3(ab)◦, 2 I̊I(a ·F̊ b)◦, K I̊Iab ∈ Γ(⊙2
◦T

∗Σ[4− d]) .

The conversion (in �ve dimensions) of the result to expressions involving the weight −1 densities

Lab I̊I3(ab)◦, 2L
ab( I̊I(a ·F̊ b)◦), and L

ab(K I̊Iab) is also carried out in the above FORM �le. The tractor

expression W⊤
ABCN

ˆ̄DAFBC can be computed with standard tractor techniques and is also included

in the above FORM computation. □

We now have the pieces to assemble the obstruction density in �ve dimensions. Applying Equa-

tion (6.44), Lemma 6.5.4, and Proposition 6.5.2 we obtain the following result.

Theorem 6.5.5. Let d = 5. Then the obstruction density is given by the sum of conformally

invariant terms

BΣ = − 1
120

[
Ob+ 16Lab I̊I3(ab)◦ + 36Lab( I̊I(a ·F̊ b)◦) +

1
6L

ab(K I̊Iab) + 54W⊤
ABCN

ˆ̄DAFBC

+ 3(4Wn̂
ab

n̂ + 3F̊ ab)∇̄cW⊤
cabn̂ − 13 I̊I·B̄ + (12Wn̂

ad
n̂ + 69F̊ ad) I̊IbcW̄abcd

+ 24I̊IabW
⊤
acdn̂W

bcd⊤
n̂ + 60I̊I·F̊ 2 + 89

2 K I̊I·F̊
]
,

where

Ob := ∆̄∇̄·∇̄· I̊I + 6 ∇̄·B⊤
n̂ + 6 I̊I·B⊤ − 6 P̄ ·C⊤

n̂

− 6 P̄ ab∇̄cW⊤
cabn̂ + 9 P̄ ·∆̄ I̊I− J̄ ∇̄·∇̄· I̊I + 6 (∇̄ I̊I)·(∇̄P̄ ) + 4 (∇̄· I̊I)·∇̄J̄ + 3 I̊I·∇̄∇̄J̄

+ 12 I̊I·∇̄∇̄·F̊ + 15 F̊ ·∆̄ I̊I + 14 (∇̄· I̊I)·(∇̄·F̊ ) + 12 (∇̄ I̊I)·(∇̄F̊ )− 18W⊤
abcn̂∇̄aF̊ bc

− 5
6 I̊I·∇̄∇̄K − 2

3(∇̄· I̊I)· I̊I·(∇̄· I̊I)− 7
4(∇̄· I̊I)·∇̄K

+ 24 I̊I·P̄ ·F̊ − 9 J̄ I̊I·P̄ − 15 J̄ I̊I·F̊ + 5
3 K I̊I·P̄

− 6(∇̄H)·
[
1
8∇̄K + 1

3 I̊I·(∇̄· I̊I)− ∇̄·F̊
]

+ 6H∇̄·∇̄·F̊ − 3
2H I̊I·∆̄ I̊I− 2H(∇̄· I̊I)2 − 3

4 H∆̄K + 12HF̊ ·P̄ + 3HKJ̄

+ 3
2H I̊Iab∇̄cW⊤

cabn̂ + 3
2HW̄abcd I̊I

ad I̊Ibc − 12H
[
I̊I·C⊤

n̂ + 1
2 Htr I̊I3 − H I̊I·F̊

]
∈ Γ(EΣ[−5]) .
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Proof. In the proof of Proposition 6.5.2 above, we showed how to calculate P̂Σ↪→M5

4 NA.

As noted in Equation (6.44), to calculate the obstruction density BΣ, we should �rst compute

P̂Σ↪→M5

4 NA − 3I ·D̂3(XAKe) and in turn compute

1
1440(D̄A ◦ ⊤)

(
P̂Σ↪→M5

4 NA − 3I ·D̂3(XAKe)
)
.

To do so, we start with I ·D̂3(XAKe), and employ a combination of the tractor and hypersurface

calculi developed above. This is carried out in the FORM program

FORM-Proofs/Paneitz-N/ID3xK.frm

Note that this computation involves
...
K and thus requires Lemma 6.5.4. Combining this result with

that for P̂Σ↪→M5

4 NA, we can directly evaluate the obstruction; this is carried out in the FORM

program

FORM-Proofs/Paneitz-N/Obstruction-d5.frm.

See Appendix A.4 for more details. □

Remark 6.5.6. Observe from Theorem 6.5.5 that when I̊I = I̊II = I̊V, we have that B5 = 0,

as predicted by Theorem 5.2.5. Furthermore, a �fth pre-fundamental form contains B⊤
(ab), which is

evidently contained in the expression for B5, as predicted by Remark 5.2.8. ■

6.6. Existence of an Extrinsically-Coupled Conformally-Invariant Laplacian Powers

A well-known result of Graham [46] showed that on a four-dimensional conformal manifold

(M4, c), there exists no conformally invariant sixth-order cubed-Laplacian di�erential operator. A

generalization of this result, produced by Gover and Hirachi in [35], showed that there exists such

nonexistence theorems for all operators of the form ∆k on (Md, c) for k > d/2. Importantly, these

are results about operators intrinsic to a conformal manifold and say nothing about the existence

(or lack thereof) for such operators when the conformal manifold (Σd−1, c̄) is embedded in a larger

conformal manifold (Md, c). Indeed, in this section we will show that such operators can indeed

exist by providing two examples. We begin by studying the lowest order case: a squared-Laplacian

operator on a conformal two-manifold.
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6.6.1. Conformally Invariant Laplacian Squares in Two Dimensions. On a manifold

(Mn, c) with n ≥ 3, the Paneitz operator of Equation (6.1) expressed in terms of the trace-free

Ricci tensor and scalar curvature is given by

P4 = ∆2 − (n−1)2−5
2n(n−1) ∇a ◦ Sc ◦ ∇a − (n+2)(n−2)(n−4)

16n(n−1)2
Sc2 − n−4

4(n−1)

(
(∆Sc) + (n−2)(n+2)

4n(n−1) Sc2
)

+ 1
n−2

(
4∇a ◦ R̊icab ◦ ∇b − n−4

n−2R̊ic
2
)
.

Trouble in dimension two is signalled by the pole at n = 2 in this formula, although the residue

vanishes because the trace-free Ricci tensor is identically zero in this dimension. In fact, given only

the intrinsic data (M2, c), there is no natural conformally invariant linear di�erential operator with

leading terms ∆2: It is not di�cult to check that there is no choice of parameters α, β, γ and δ

such that ∆2+αSc∆+ β(∇aSc)∇a+ γ(∆Sc)+ δSc2 is an invariant operator acting on weight one

densities.

One way to view the failure of the Paneitz operator in dimension two to exist is to observe that

the numerator of the n = 2 pole becomes conformally invariant (by virtue of vanishing identically)

in n = 2 dimensions. Notice, however, that away from n = 2 dimensions, R̊ic/(n − 2) transforms

under conformal changes of metric ĝ = e2ωg by a shift of ∇(a∇b)◦ω + (∇(aω)∇b)◦ω. Indeed, away

from two dimensions, this conformal transformation cancels with the conformal transformation of

other terms. However, in two dimensions, these conformal transformations go uncancelled.

To produce an invariant P4 operator in two dimensions, additional data in the form of a suitable

tensor with the transformation property ∇(a∇b)◦ω+(∇(aω)∇b)◦ω is necessary. The data of a tensor

transforming this way is called a Möbius structure and is also required to write down a tractor

connection for two-dimensional conformal manifolds [14]. A natural way to generate a Möbius

structure is by embedding the 2-manifold Σ in some ambient conformal manifold. The following

result relies on this mechanism.

Lemma 6.6.1. Let d = 3. Then the mapping

f 7→ ∆̄2f + 4∇̄a ◦ Pab ◦ ∇̄bf

+
[
2∇̄·∇̄·P − ∆̄J + 2P2 − J 2 + 2∇̄a

(
I̊Iab∇̄· I̊Ib

)
+ 2(∇̄· I̊I)2 + 1

4K
2
]
f
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with J := Pa
a where

Pab := P⊤
ab +H I̊Iab +

1
2H

2ḡab − 1
2Kḡab ,

de�nes a conformal squared Laplacian operator

Γ(EΣ[1]) → Γ(EΣ[−3]) .

Proof. The claimed conformal variation can be veri�ed by direct computation. Alternatively,

there is a simple dimensional continuation argument. Consider, a d− 1 dimensional hypersurface Σ

embedded in a conformal manifold (M, c) with d ≥ 4. The operator

(6.46) ˆ̄DA ◦ P̂Σ↪→Md

2 ◦ ˆ̄DA

maps Γ(EΣ[5−d
2 ]) → Γ(EΣ[−3+d

2 ]), where P̂Σ↪→Md

2 is de�ned in Theorem 6.1.1 and is given by

P̂Σ↪→Md

2 = ∆⊤ + 3−d
2

(
J̄ − 1

2(d−2)K
)
.

The operator (6.46) can be expressed in terms of the Levi-Civita connection in a choice of scale as

follows

ˆ̄DAPΣ↪→M
2

ˆ̄DA = 5−d
2 ∆̄2

+ ∇̄a ◦
[
− 2(d− 5)P̄ab − 4(d− 4)F̊ ab − 2 I̊I2ab −

(d−3)2(d−7)
4(d−1)(d−2)Kḡab

+ 1
2(d− 3)(d− 5)J̄ ḡab

]
◦ ∇̄b

− d−5
2

(
− d−5

2 ∆̄J̄ − (d− 5)P̄ 2 + 1
4(d− 1)(d− 5)J̄2 + (d−3)2

4(d−1)(d−2)∆̄K

− 2(d− 5)F̊ ·P̄ − (d− 5)F̊ 2 − (d−3)2(d−5)
4(d−1)(d−2)KJ̄ − d−5

4(d−1)(d−2)2
K2 + 2∇̄·∇̄F̊

+ 2
d−2∇̄

a( I̊Iab∇̄· I̊Ib)− d−5
(d−2)2

(∇̄· I̊I)2
)
.

As written, this identity cannot be dimensionally continued because neither P̄ nor F̊ are de�ned in

hypersurface dimension d− 1 = 2. Instead, observe that for all d ≥ 4,

F̊ = P⊤ − ˚̄P +H I̊I− 1
d−1 ḡ

(
J̄ − d−1

2 H2 + 1
2(d−2)K) and ˚̄P = R̊ic/(d− 3) .
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Note that R̊ic is well de�ned in all dimensions so can be dimensionally continued to hypersurface

dimension d− 1 = 2 (where it vanishes). Also J̄ is de�ned in hypersurface dimension d− 1 = 2 by

the identity J̄ = Sc/(2(d− 2)). Thus, in these terms, we have

ˆ̄DAPΣ↪→M
2

ˆ̄DA = 5−d
2 ∆̄2

+ ∇̄a ◦
[
4(4− d)P⊤

ab + 2R̊icab − 2 I̊I2ab − d2−12d+31
4(d−2) Kḡab +

(d−3)2

2(d−1) J̄ ḡab

+ 4(4− d)H I̊Iab + 2(4− d)H2ḡab

]
◦ ∇̄b

− d−5
2

(
(5− d)(P⊤)2 + (d−1)(d−5)

4 J̄2 − d−1
2 ∆̄J + 2∇̄·∇̄·P⊤

+ (d−1)(d−5)
4 H4 − (2d−3)(d−5)

2(d−2) H2K − (d−5)H2J̄ − 2(d−5)H I̊I·P⊤ + 2H∇̄·∇̄· I̊I

+ 2H∆̄H − (d−5)2

4(d−2)KJ̄ + 2I̊I·∇̄∇̄H + 4(∇̄· I̊I)·∇̄H − (d−5)
(d−2)2

(∇̄· I̊I)2

+ (d−5)
4(d−2)∆̄K + 2(∇̄H)2 + 2

d−2∇̄
a( I̊Iab∇̄· I̊Ib)

)
.

Taking the limit where d→ 3 so that R̊ic = 0 and de�ning P := P⊤+H I̊I+ 1
2H

2ḡ− 1
2Kḡ completes

the proof. □

That such an operator exists should not be surprising: indeed, the Laplacian power operators

fail to exist because in certain dimensions, there do not exist tensors that transform in the required

way. In this case, the required tensor is the Schouten tensor, but that tensor does not exist in two

dimensions. However, by embedding the conformal two-manifold in a conformal three-manifold,

one can instead use the bulk Schouten tensor and project it to the hypersurface to produce such an

invariant operator.

6.6.2. Conformally Invariant Laplacian Cubes in Four Dimensions. As proved in [46],

there is no such conformally-invariant operator of the form ∆3+more on a conformal-four manifold.

Nonetheless, as demonstrated by the previous section, it may be possible to construct such an

operator using extrinsic curvatures. Indeed, the operator

(6.47) D̂TA ◦ P̂Σ↪→Md

4 ◦ D̂T
A
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holographically de�nes a mapping

Γ
(
EΣ

[
7−d
2

])
−→ Γ

(
EΣ

[−5−d
2

])
,

with leading derivative term proportional to ∆̄3; see [44]. When d = 5 (so Σ is a four manifold) this

de�nes a sixth order Laplacian power PΣ↪→M
6 . An explicit Riemannian formula for PΣ↪→M

6 follows

as a direct corollary of Theorem 6.3.1, however this necessarily involves many terms, see for example

already the result of [37] for the intrinsic sixth order GJMS operator on conformal manifolds of

dimension �ve and higher. However, when the conformal hypersurface embedding is 4-umbilic, it

is possible to write down a relatively compact formula for this operator. This does not contradict

Graham's nonexistence result because that result relies on the fact that the Bach tensor intrinsic

to a four manifold is a conformal invariant; indeed, the intrinsic Bach tensor explicitly appears as

the residue of a 1/(d − 5) pole in the intrinsic result of [37]. However, the operator PΣ↪→M
6 above

contains data not �xed by the intrinsic conformal geometry of Σ (because the ambient Bach tensor

is not �xed by 4-umbilic embeddings) which allows for the replacement of the intrinsic Bach tensor

by the ambient Bach tensor with the same transformation property. We thus have the following

result.

Theorem 6.6.2. Let Σ ↪→ (M5, c) be 4-umbilic. Then the mapping

f 7→ ∆̄3f − 3J̄∆̄2f + 16P̄ ·∇̄∇̄∆̄f + 10(∇̄J̄)·∇̄∆̄f + 16(∇̄P̄ )·(∇̄∇̄∇̄f)

+
(
(∆̄J̄) ḡ + 20(∇̄∇̄J̄)− J̄2ḡ − 16J̄ P̄ − 24P̄ 2ḡ + 32W̄ (·, P̄ , ·) + 144P̄ 2 + 16B⊤

)
·∇̄∇̄f

+
(
8(∇̄∆̄J̄)− 14J̄(∇̄J̄) + 72(∇̄J̄)·P̄ + 32(∇̄P̄ 2)− 80C̄(·, P̄ ) + 16(∇̄·B⊤)

)
·∇̄f

+
(
(∆̄2J̄) + 3J̄3 − 24J̄ P̄ 2 − 5J̄(∆̄J̄) + 8P̄ ·W̄ (·, P̄ , ·) + 48P̄ 3 + 16P̄ ·(∇̄∇̄J̄)

+ 8(∇̄P̄ )2 − 8(∇̄P̄ )·C̄ + 2(∇̄J̄)2 − 16P̄ ·B̄ + 16P̄ ·B⊤ + 8(∇̄·∇̄·B⊤)
)
f

de�nes a conformal cubed-Laplacian operator

Γ(EΣ[1]) → Γ(EΣ[−5]) .
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Proof. Because Σ ↪→ (M5, c) is a 4-umbilic embedding, from De�nition 4.2.12, we have that

I̊Iab = F̊ ab = C⊤
n̂(ab) = 0. Consequently, from Theorem 3.3.4, we have that D̂T Σ

= ˆ̄D. Note that

another straightforward consequence is that Can̂n̂
Σ
= Bn̂a

Σ
= 0 (see [34, Proposition 4.3]), which

implies that WNABC
Σ
= 0. Thus, to prove the theorem, from Equation (6.47), it su�ces to compute

ˆ̄DA ◦ P̂Σ↪→Md

4 ◦ ˆ̄DA. According to Theorem 6.3.1, in this case we have that

P̂Σ↪→Md

4
Σ
= 8

d−5

(
ˆ̄DA ◦ PΣ↪→M

2 ◦ ˆ̄DA −WAB♯ ◦ ˆ̄DA ◦ ˆ̄DB + d−4
2 NBN

C(D̂CW
BA

· ·)
♯ ◦ ˆ̄DA

)
.

We explicitly compute the operator ˆ̄DA ◦ P̂Σ↪→Md

4 ◦ ˆ̄DA using FORM to compute in dimension d,

and then continue to d = 5. First, we compute

( ˆ̄DB ◦ P̂Σ↪→Md

2 ◦ ˆ̄DB ◦ ˆ̄DA)f

for f ∈ Γ(EΣ[7−d
2 ]) using the FORM �le

FORM-Proofs/P6/DbP2Db-Dbf.frm

To reduce computational complexity, we take the resulting expression and feed it into the following

�le which completes the calculation:

FORM-Proofs/P6/Paneitz-Dbf-Riemannian-PE.frm.

See Appendix A.4 for more details. This outputs the result displayed in the theorem. □

Following the discussion above, the appearance of the projected bulk Bach tensor B⊤ in Theo-

rem 6.6.2 parallels that of P⊤ in Lemma 6.6.1. This is part of a more general picture linked to the

conformal fundamental forms. Just as a third fundamental form, in the guise of the Fialkow tensor,

was used to construct a tensor of the form P⊤ + · · · with the same transformation properties P̄ in

dimensions d ≥ 4, the higher fundamental forms can be used for the same purpose. In particular,

in dimension d = 6, a conditional fundamental form is given by

B̊⊤ − d−4
d−5B̄ + · · ·
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and is invariant, and hence can be used to construct a tensor with the same transformation properties

as B̄ (when d ≥ 6). A dimensional continuation argument can then be used to extract the tensor

in d = 5 dimensions required in the above theorem.
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CHAPTER 7

Conclusion

This dissertation has provided a codi�cation of known conformal hypersurface results as well as

new results that complete the overall picture. Furthermore, we generalized higher order transverse

derivative operators to tensor-valued densities (such as trace-free symmetric rank-2 tensors). These

operators, together with geometric holography, allowed for the construction of a new family of

conformally-invariant tensors generalizing the trace-free second fundamental form, which were used

to characterize extrinsic data encoded by a conformal hypersurface embedding. We used these

newly-developed tools to analyze the family of asymptotically Poincarè�Einstein manifolds and

characterize the Willmore invariant in terms of the conformal fundamental forms (or their pre-

invariant analogs). Then we applied these notions to compute useful and interesting conformal

invariants for hypersurfaces embedded in conformal �ve-manifolds.

While the picture developed in this dissertation is nearly complete, there are a few missing

pieces that have yet to be resolved. First and perhaps most urgently, it would be particularly useful

to prove the existence (or non-existence) of a dth conformal fundamental form for a conformally-

embedded hypersurface (Md, γ, σ) for d ≥ 6 even. This would complete the picture of the conformal

fundamental forms in even dimensions. One particular application for a completed picture of con-

formal fundamental forms would be a description of even-dimensional conformal manifolds that

are Fe�erman-Graham �at, i.e. those with vanishing Fe�erman-Graham tensors. As an example,

observe that the Bach tensor (the Fe�erman-Graham tensor in d = 4) can be decomposed along a

hypersurface into a term containing the �fth fundamental form and terms containing the hypersur-

face divergences of third and fourth fundamental forms. In this case, the fourth fundamental form

has been shown to exist in d = 4 (as a special case), so we can characterize the Bach-�at condition in

terms of di�erential equations on conformal fundamental forms on the set of tensors { I̊I, I̊II, I̊V, V̊}.

When we consider the Fe�erman-Graham tensor in d ≥ 6, a similar construction could be made, so

long as a dth fundamental form can be shown to exist.
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An additional application of the conformal fundamental forms would be to provide further

characterizations of the generalized extrinsic Q-curvatures and the generalized Willmore invariants.

While we have proven that the generalized Willmore invariants can be characterized by a set of

conformal fundamental forms (and one non-invariant tensor), it would be useful to also characterize

the types of hypersurface operators that can appear acting on conformal fundamental forms in

manifestly-invariant expressions for the generalized Willmore invariants. Low-lying results suggest

that the Q-curvatures can be characterized in terms of the conformal fundamental forms as well as

the integrand of an integrated topological invariant of the hypersurface.

Also of interest are global phenomena on conformal manifolds. All of the hypersurface invari-

ants we described in Chapter 6 were local invariants, but using conformal geometry to study global

properties of the bulk manifold is also particularly interesting. As an example, the renormalized

volume of a hypersurface embedded in a conformally-compact manifold is a nonlocal quantity that

captures important information about the hypersurface, and yet it is typically not conformally-

invariant. Nonetheless, when the Weyl anomaly vanishes, the renormalized volume is indeed a

conformal invariant but still cannot be written in terms of local hypersurface invariants. However,

because in�nite order solutions to the singular Yamabe problem necessarily contain nonlocal infor-

mation about the bulk manifold, higher fundamental forms beyond transverse order d−1 must also

contain such nonlocal information. Hence, we may be able to describe nonlocal�or in particular

global�invariants with these higher-order fundamental forms.

Finally, and perhaps most speculatively, there has been recent interest in higher-codimension

conformal submanifold embeddings [3,63,68]. All of the machinery developed in Chapters 3 and 4

is speci�c to the hypersurface (codimension-1) context, but likely could be generalized to higher-

codimension considerations should the need arise. Indeed, the original motivation for much of the

development of the hypersurface tractor calculus and the conformal fundamental forms stemmed

from observing certain patterns in formulæ for certain conformal hypersurface invariants. Con-

sequently, one might expect that similar observations could be made for conformal submanifold

invariants with higher codimension which would lead to a similarly generalized conformal hyper-

surface calculus. The machinery already developed should generalize relatively easily, should such

tools be needed.
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APPENDIX A

FORM Documentation

A.1. Introduction to FORM

FORM is an algebraic manipulation software developed by Jos Vermaseren [83] for the compu-

tation of the higher loop Feynman diagrams needed for experiments at CERN, and is funded by

FOM, the Dutch granting agency for physics research. In Section 4.5 and Chapter 6, it was used to

symbolically manipulate large expressions involving tractor tensors, Riemannian tensors, and scalar

curvatures. Thanks to a combination of speed, a what-you-see-is-what-you-get programming phi-

losophy, and a natural implementation of Einstein summations, FORM lends itself to large tensor

and di�erential operator computations.

The general structure of our FORM programs are as follows: The FORM �le xxx.frm begins

with the line #- (which suppresses outputting the source code to the terminal) and ends with

the line .end . Thereafter follows a series of declarations of symbol and object names. Next are

declarations of one or more expressions. Mathematically, FORM expressions are elements of some

associative, unital algebra and are formed from the symbols and object names speci�ed. After

specifying an expression, a series of manipulations can be performed, most often by application

of the id operation: this replaces any instance of a speci�c product of symbols and objects with

some other combination (not necessarily a product) of symbols and objects. Once all desired

manipulations are completed, the resulting expression can be output to the command line or saved

to an external �le. The FORM �le can then be run by entering form xxx.frm into a command line

of choice (after installing the FORM binary�see the user manual [84]). Below, we provide a basic

example of the type of calculation used in the paper.
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1 #-

2 symbol d,x;

3 dimension d;

4 index A,B;

5

6 function start ,end ,h;

7

8 ntensor X,I,Dhat ,P;

9

10 local [X.P] = start*X(A)*P(A,B)*end;

11 sum A;

12

13 id P(A?,B?)*end = Dhat(A)*I(B)*end;

14 id X(A?)*Dhat(A?) = (1/2) *(h(0)-d);

15 id h(x?)*I(A?) = I(A)*h(x);

16 id h(x?)*end = end*(d+x);

17

18 print;

19 .end

The FORM output of this calculation is
1 FORM 4.2.1 (Aug 10 2020, v4.2.1-29- g557be9d) 64-bits Run: Tue May 25

10:44:03 2021

2 #-

3

4 Time = 0.00 sec Generated terms = 2

5 [X.P] Terms in output = 0

6 Bytes used = 4

7

8 [X.P] = 0;

9

10 0.00 sec out of 0.00 sec

The penultimate line that reads [X.P] = 0; is the output of the calculation. In fact, the above

is a proof of the tractor identity XAPAB = 0. A detailed explanation follows.

• Line 2 declares symbols d and x . Symbols are commuting objects that take no inputs

and are used either as free parameters or to specify generic arguments of functions. Here

the the symbol d represents the dimension of the ambient manifold while the symbol x

is a dummy variable. Line 3 indicates that if the built-in Kronecker delta d_(a,b) is ever

traced, the output is d . While the Kronecker delta never appears in this program, it is

good practice to specify the dimension.

• Line 4 speci�es a type of object called an index. An index is a special type of symbol that

can be summed according to the Einstein convention and can only appear as the argument

of either a vector object (never utilized in this document) or a tensor object. Hence, the

objects A and B are special symbols that can only appear as arguments of tensor objects.

• Line 6 de�nes the set of functions utilized in this computation. Functions can have any

number of arguments, including none. To FORM, a �function� is a generic object that
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can take any symbol as an argument�in this document, functions are used to represent

multiplicative or di�erential operators. By default, speci�ed functions do not commute

with any other functions or non-commuting tensors. For bookkeeping purposes, we have

introduced the functions start and end without arguments to demarcate the left- and

right-most ends of a given expression. In our computations, the function h is given one

argument and represents the operator h := d+ 2w [, Section 2.3]. This function evaluated

on some value x represents h(x) := d+ 2w + x.

• Line 8 declares non-commuting tensor objects. FORM is case-sensitive, so in this exam-

ple, X represents a tensor whereas x is a symbol. Here we will give the tensor X only one

argument because it represents the canonical tractor XA which is a rank 1 tensor. FORM

does not natively distinguish between upper and lower indices since there is no need to do

so if one keeps track of what type of tensor any given object represents. Contraction may

still be implied by repeated indexing. Here the tensor I will be used with only one index

to represent the scale tractor IA. The tensor Dhat will also have one index and represents

the hatted Thomas-D operator D̂A. The �nal tensor P will be used with two indices to

represent the tractor PAB := (D̂AIB). Because these are non-commuting objects, they all

can be used to represent operators, (di�erential or multiplicative).

• Line 10 de�nes the quantity we wish to compute/manipulate: here we locally de�ne the

expression [X.P] to denote the product/composition of objects start*X(A)*P(A,B)*end . In

FORM, any string of characters in square brackets [...] may be used to label any type

of object. Note that this code uses the marker end to play the role of 1 in identities such

as (D̂AIB) = (D̂A ◦ IB)(1). Here start was not really needed, but will be useful for more

intricate computations. The sequence of objects X(A)*P(A,B) in this line represents the

tractor expression XAPAB.

In any FORM program�just as for most index computations�we must avoid reusing

repeated dummy indices. This is conveniently handled in line 10 by the statement sum A;

which indicates that the index A is to be internally summed via the Einstein convention

and replaced with an internal index whose name is the next in a sequence of internal

indices. This ensures that A is free to be used again without reusing internal indices. In
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this case, the resulting expression after summation looks like start*X(N1_?)*P(N1_?,B)*end -

here, N1_? is the �rst index in the mentioned internal sequence. The next index in the

sequence is N2_? , etc.

Additionally, note that more than one expression can be active at any one time�this is

handled by multiple expression declarations. The manipulations that follow are performed

on every active expression simultaneously.

• Lines 13 through 16 perform the actual computation via id statements. These statements

are typically written as id monomial = replaced_subexpression; . When FORM encounters this

statement, it searches all active expressions in memory for any instance of monomial and

replaces it with replaced_subexpression , being careful to rename internal indices if they would

overlap with other already-present indices:

13 This line replaces all instances of the tensor object P(A?,B?)*end within active ex-

pressions with the monomial Dhat(A)*I(B)*end �that is, it applies the tractor identity

PAB = D̂AIB. Note that on the left-hand side of = , the indices A and B are both

followed by the symbol ? , which indicates that the preceding object is a wildcard of

a speci�ed type. In this case, because the preceding objects for both ? s are indices,

the operation id searches all active expressions for all instances of P(*,**) where *

and ** are any declared or internal indices. Once it �nds one of these monomials,

it replaces it with the provided replacement subexpression using the objects matched

by the wildcard. Here, because the expression does not contain P(A,B)*end but does

contain P(N1_?,B)*end , this monomial would be replaced by Dhat(N1_?)*I(B)*end . Note

that the wildcard symbol can also be applied to functions and tensors�for exam-

ple, P?(A?,B?) would match any two-index tensor object.

14 This line applies the tractor identity XAD̂
A = w = h−d

2 . To do so, FORM �nds

all instances of X(*)*Dhat(*) (where both * s represent the same index) in the active

expression and replaces them with (1/2)*(h(0)-d) .

15 This line replaces any occurence of h(*)*I(**) with I(**)*h(*) . Here, because x? is a

wildcarded symbol, * could be any polynomial in declared symbols. Also, since A? is

a wildcarded index, FORM will match ** when this is any declared or internal index.
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This identi�cation is the blueprint for an oft-needed identity because the operator

h := d+ 2w composed with a weight w object T obeys h(x) ◦ T = T ◦ h(x+ 2w). In

this case, the scale tractor has weight 0, so h(x) passes through I unchanged�however,

in the future, we will specify how h(x) interacts with other objects of non-zero weights.

16 The identi�cation h(x?)*end = end*(d+x); detects any instance of the function h(*) at

the right-most end of a given expression and replaces it with d+* for any polynomial

combinations of symbols * , being careful not to lose the placeholder end in case it is

needed later. This amounts to the identity h(x)(1) = (d+ 2w(1) + x) = d+ x.

• Line 18 tells FORM to output the current expression to the command line, and the �nal

statement .end terminates the program.

A.2. Additional FORM Tips and Tricks

Here we provide a list of additional FORM functionalities that are useful for our computations;

see [84] for a more complete description.

Symmetric, Antisymmetric. A function or tensor can be speci�ed to be symmetric or an-

tisymmetric when the object name declaration is followed by (symmetric) or (antisymmetric) . This

indicates that the arguments of the declared object are either all symmetric or all antisymmetric.

For example, declaring tensor P(symmetric) ensures that, in the context of FORM's pattern-matching

functionality, P(A,B)= P(B,A) . Similarly, declaring tensor P(antisymmetric) enforces that P(A,B)=-P(B,A) .

Symmetrize, Antisymmetrize. Even though many of the tensors we de�ne in our FORM

code have various symmetries, FORM is not particularly adept at handling speci�c symmetries of

tensors, and thus occasionally needs to be prodded to do some simpli�cation via explicit instructions.

To that end, the Symmetrize and Antisymmetrize commands can be useful. While these commands

can be implemented in many ways, we used two particular sets of arguments in our computations.

Given a declared tensor (with no declared symmetries) T , the command Symmetrize T 1,3; explicitly

symmetrizes the tensor T in its �rst and third indices everywhere that the tensor has at least three

indices. Alternatively, the command Symmetrize T:4 1,2; will only symmetrize the tensor T in the
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�rst and second indices when the tensor has exactly four indices�otherwise it does nothing. The

Antisymmetrize command has the exact same argument types.

The Argument Field. For identifying complicated function or tensor monomials, sometimes

it is useful to be able to pattern match an arbitrary or unknown number of arguments; argument

�eld wildcards enable this. This is implemented by preceeding an argument of the appropriate type

by ? . When using an argument �eld wildcard, the symbol ? is included on both the left and

right side of = . For example, one might write id X(?A)= I(?A); , which would match X(A) , X(A,B,C) ,

and X , replacing them with I(A) , I(A,B,C) , and I , respectively (note that the argument �eld

wildcard can match the empty set). Argument �eld wildcards and standard wildcards can both

be applied but not simultaneously: X(?A,B?) is allowed but X(?A?) is not. Note that the pattern-

matching functionality of id is not compatible with argument �eld wildcards in (anti)symmetric

objects.

Another useful feature associated with argument �elds is the nargs_ association, which can count

the number of arguments that a wildcard �eld matches. Consider the line id f(?A)= nargs_(?A) . The

keyword nargs_ takes as input the argument �eld and returns an integer equaling the number of

arguments contained in that argument �eld. For example, the above line of code would match

f(a,b,c) to 3 .

PolyRatFun. Given a single commuting function f , upon declaring PolyRatFun f; , FORM

treats f(x,y) as if it were the rational function f(x, y) = x/y, where x and y are polynomials in

declared symbols. Moreover the coe�cient of every monomial is expressed this way, so that 3*X(A)

would become f(3,1)*X(A) . After this declaration, the function f is restricted to having only two ar-

guments. This allows FORM to simplify rational functions, for example f(x,y)*f(a,b) automatically

becomes f(a*x,b*y) .

When a PolyRatFun depends only on one declared symbol, say x , FORM performs a series

expansion to order n about x = 0 when the statement PolyRatFun drat(expand,x,n); is included. For

example, declaring PolyRatFun drat(expand,x,3); converts f(1,1-x) to f(1+x+x^2+x^3) .

Renumber. The renumber command attempts to relabel dummy indices in order to reduce the

number of terms. Our implementation renumber 1; indicates to FORM that it should try every
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permutation of dummy indices to try to reduce the number of terms in the output�this typically

results in a dramatic simpli�cation of the result.

Sets. A declared set is an ordered list of objects with the same type. Given a list of declared

tensors ntensor T1,T2,T3,T4 , one might write Set xyz:T1,T2,T3 . Doing so associates to the ordered

subset of tensors T1,T2,T3 the name xyz . We can then restrict wildcard matches to elements of a

set by following ? with the set name; for example, T1?xyz only matches tensors T1 , T2 , or T3 and

not T4 . This functionality can be further extended by associating two sets to one another. Given

declared tensors ntensor T1,T2,T3,T4,U1,U2,U3,U4 and the set Set abc:U1,U2,U3 , by using two wildcards

sequentially, one can specify that a tensor should be matched with elements of the �rst set and

replaced by corresponding elements of the second set. So, given an expression T1 + T2 + T3 + T4 , the

pattern-matching statement id T1?xyz?abc = T1; would result in the expression U1 + U2 + U3 + T4 .

Repeat. The keyword repeat can appear paired with endrepeat surrounding a block of code,

or directly preceeding an executable statement (like repeat id xyz = abc; ). The basic functionality is

that of a standard while-loop that executes until no active expressions change. If a repeat statement

is in danger of entering an in�nite loop, FORM will terminate the program.

If. The executable statement if (condition) (paired with endif ) encloses a block of code that

is executed conditionally. A useful condition is the occurs argument, which takes as input a list of

objects and returns 1 when at least one of its arguments is present in the expression and returns 0

otherwise. The resulting value can be compared with a numerical value to determine whether or

not the condition is met. For example if (occurs(x)=1) id y = 1; would replace the expression y*x^2

by x^2 . Another useful implementation of if is when it is paired with the match argument. In

that case, the if command returns a boolean 1 or 0 if FORM's pattern-matching machinery

would �nd a match in a term in a given expression. For example, if FORM's active expression

was f(a,b,b)+ f(a,b,c) , then the line if(match(f(a?,b?,b?))== 1)id f(a?,b?,c?)= g(a,b,c); would turn our

original expression into g(a,b,b)+ f(a,b,c) .

Once. The id statement acts simultaneously on all matched monomials. By including the

keyword once as in id once xyz = abc , FORM replaces only the �rst instance of the matched pattern

in a given monomial with the replacement subexpression. This functionality is useful to avoid
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duplicate indices when new indices are introduced in a tensor calculation. For example, given an

expression a*a*a , the line id a = b; results in the expression b*b*b , while the line id once a = b;

would result in the expression b*a*a .

Sort. The .sort command is one of a few types of module-ending statements. A module is a

block of statements. A FORM program is composed of modules, and a given module must contain

statements in a speci�c order: declarations, speci�cations, de�nitions, executable statements, and

�nally output speci�cations. In general, a module can be ended by several module-ending state-

ments, however .sort is the most common�it executes all of the lines in the module and prepares

the output for the next module. Another module-ending statement is .end ; it performs the function

of .sort but also terminates the program.

Delete. The command delete can be particularly useful for deleting stored global expressions

via the command delete storage; . When called this command removes from memory all globally-

stored expressions. By deleting the stored global expressions when we no longer need them in

a particular computation, those global expressions can be imported into many di�erent linked

computations.

Hide. The hide speci�cation statement takes all active expressions, stores them in a hidden

auxiliary �le, and removes them from the active expressions list. These expressions can be unhidden

later in the same program via the unhide statement. This is useful when one wishes to either not

display a certain expression as �nal output or leave it una�ected by later computations. The

command hide typically appears between a pair of .sort statements. The hide statement hides all

active expressions by default, but by providing a comma-separated list after hide , one can selectively

hide expressions�and similarly, one can selectively unhide expressions. An example application of

the hide command appears in the following FORM code snippet:
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1 local expr1 = X;

2 id X = Y;

3 .sort;

4 hide;

5 .sort;

6

7 local expr2 = Y + expr1;

8 id Y = Z;

9 .sort;

10 unhide;

11 .sort;

12 print;

Assuming everything was properly declared, the output of this FORM code is displayed below:

1 expr1 = Y

2 expr2 = 2*Z

Because expr1 was hidden when id Y = Z; was executed, that expression remains unchanged,

whereas any Y present in expr2 is replaced with Z .

Bracket. The bracket statement is an output control speci�cation that groups speci�ed terms

when printing output. The statement takes arguments by a comma-separated list of symbols, func-

tions, tensors, and/or sets and factors these objects out of the current expressions. This statement

can be useful for bug-detection as well as result presentation.

Preprocessor Variables. Before any of the statements are executed by FORM's compiler,

the program is read by the preprocessor and certain preprocessor instructions are executed (such

as editing the input stream to the FORM compiler). Each preprocessor instruction begins with the

character # . One such preprocessor instruction is the declaration and assignment of a preprocessor

variable by the instruction #define xyz "abc" . This instruction indicates to the preprocessor that,

every time the preprocessor encounters the character string 'xyz' after the initial declaration, it

should replace that string with the string abc . The replacement string can contain FORM symbols,

rational numbers, or any combination of these. More intricate preprocessor routines where FORM

self-generates a substantial piece of code are also possible.

Procedures. Using the procedure preprocessor instruction, one can de�ne what would be called

a subroutine in other programming languages. In general, it does not matter where procedures are

de�ned although it is often useful to de�ne a procedure directly after the initial declarations are

made. To de�ne a procedure, one begins a block of code with the instruction #procedure xyz(args):

and ends the procedure with the instruction #endprocedure . Note that the procedure created by these
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instructions is named xyz and takes arguments args . For the most part, the procedures used here

will not take arguments and so will be initialized as procedure xyz(): . The instruction #call xyz()

calls a previously de�ned procedure, inserting the executable statement block where the procedure

was called. Procedures can be called inside of other procedures. We provide an example below:

1 #-

2 function A,B,C;

3

4 #procedure square ()

5 id A = A*A;

6 id B = B*B;

7 id C = C*C;

8 #end procedure

9

10 local expr = A + B + C;

11 #call square ()

12 print;

13 .end

This code will output expr = A*A + B*B + C*C .

Headers and Procedure Files. Such procedures described above can be included in an ex-

ternal directory in the form of header and procedure �les. These are �les that do not perform any

speci�c calculations, but instead contain one or more procedures that can be used in essentially any

computation. This reduces redundancy and centralizes the more basic identities that are used in

many of these FORM computations. In order to use these �les in a given computation, two steps

are needed. First, one must include that directory when calling FORM to run; to do so, feed FORM

the -p DIRECTORY-NAME option at run-time. The second step is to include in the FORM code itself

lines that indicate which header (or procedure) �les are to be included in that speci�c program.

This is done with a line such as #include - DIRECTORY/FILENAME.h; .

A.3. K̈ FORM Computation

The following FORM program is used to compute K̈ as given in Equation (4.16) in Proposi-

tion 4.5.8. To calculate this curvature, we implement an identity for I ·D̂ found in [44] and then

perform a series of Riemannian manipulations to reexpress the curvature in terms of curvatures

intrinsic to the hypersurface and higher fundamental forms. We begin with a list of declarations.

A.3.1. Declarations. The following are the variable and object declarations for the program

used to compute K̈.
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1 #-

2 symbol d,w;

3 dimension d;

4 index a,b,c,e,f,ap,bp,cp ,fp ,A,B,C,E;

5

6 function sigma , [1/h], K, Kext , Jb , RhoNN , J, H, dnJ , r, dnr , [I.Dh],

[I.D], [ID2], dn, LapT , LapB , start ,end;

7 cfunction s, [1/d], k, jb, rhoNN , j, Hc, rC, dnrC , drat;

8

9 PolyRatFun drat;

10

11 ntensor n, del , delt , delb , Rho(symmetric), RhoT(symmetric),

RhoB(symmetric), RhoN , RhoNT , dbRhoNT , [Gb_]( symmetric), dnRho ,

Riemann , dnRn , Ric(symmetric), Weyl , Weyln , Weylnt , Wn(symmetric),

Weylb , Weylt , IInc(symmetric), IIO(symmetric), IIOe(symmetric),

dnIIOe(symmetric), dn2IIOe(symmetric), dbIIO , FNo(symmetric),

FO(symmetric), [d^n^], dbH , dr, Cotton , Ten;

12

13 ctensor nC , rho(symmetric), rhoT(symmetric), rhoB(symmetric), rhoN ,

rhoNT , Fno(symmetric), Fo(symmetric), [gb_]( symmetric), riemann ,

riemannB , ric(symmetric), weyl , weyln , weylnt , wnc(symmetric),

weylt , weylb , II(symmetric), IIo(symmetric), dbII , dbIIo , [d^n^C],

dbHc , IIIo(symmetric), drC , cotton , dbrhoNT , TenC;

14

15 Set noncommF: sigma ,r, K,Kext ,H, dnr , RhoNN ,J,Jb;

16 Set commF: s, rC,k,k, Hc ,dnrC ,rhoNN ,j,jb;

17

18 Set noncommT: n, Rho , RhoT , RhoB , RhoN , RhoNT , dbRhoNT , [Gb_], Riemann ,

Ric , Weyl , Weyln , Weylnt , Weylb , Weylt , Wn , IInc , IIO , IIOe , dbIIO ,

FNo , FO, [d^n^], dbH , dr , Cotton;

19 Set commT: nC, rho , rhoT , rhoB , rhoN , rhoNT , dbrhoNT , [gb_], riemann ,

ric , weyl , weyln , weylnt , weylb , weylt , wnc , II, IIo , IIo , dbIIo ,

Fno , Fo, [d^n^C], dbHc , drC , cotton;

20

21 Set hypT: rhoB , rhoNT , rhoT , Fno , Fo, [gb_], riemannB , weylnt , wnc ,

weylt , weylb , II , IIo , dbII , dbIIo , dbHc , IIIo , dbrhoNT;

22 Set trfr: IIo , IIIo , Fo , wnc;

23

24 #define dpp "5"

Provided below in Table A.1 are the corresponding mathematical objects for FORM's variables. Be-

sides the di�erences in the lists of declared functions and tensors, the structure above is identical

to the structure in the declarations for the previous program. The only di�erence to note is that,

because the calculation that follows is a strictly Riemannian calculation, we need not de�ne a sep-

arate symbol for dimension of the tractor metric, so we can use the Kronecker delta as the metric

of the ambient manifold. In that case, the dimension is simply declared as d .
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Symbol Object

d d

Function Mathematical Object

sigma σ

[1/h](x) 1
h+x

K K

Kext Ke

Jb J̄

RhoNN Pnn

J J

H H

dnJ ∇nJ

r ρ := −1
d(∆σ + Jσ)

dnr ∇nρ

[I.Dh] I ·D̂
[I.D] I ·D
[ID2] I ·D2

dn ∇n

LapT ∆⊤

LapB ∆̄

[1/d](x) 1
d+x

Tensor Object

n(a) na

[Gb_](a,b) gab − nanb

del(a) ∇a

delt(a) ∇⊤
a

delb(a) ∇̄a

Rho(a,b) Pab

RhoT(a,b) P⊤
ab

RhoB(a,b) P̄ab

RhoN(a) Pna

RhoNT(a) P⊤
na

dbRhoNT(a,...,b,c) ∇̄a . . . ∇̄bP
⊤
n̂c

dnRho(a,b) ∇nPab

Riemann(a,b,c,d) Rabcd

dnRn(a,b) ∇nn
cndRcabd

Ric(a,b) Ricab

Weyl(a,b,c,d) Wabcd

Weyln(a,b,c) Wabcn

Weylnt(a,b,c) W⊤
abcn

Wn(a,b) Wnabn

Weylb(a,b,c,d) W̄abcd

Weylt(a,b,c,d) W⊤
abcd

IInc(a,b) IIab

IIO(a,b) I̊Iab

IIO2(a,b) I̊Ica I̊Icb

IIOe(a,b) I̊Ieab
dnIIOe(a,b) ∇n I̊I

e
ab

dn2IIOe(a,b) ∇2
n I̊I

e
ab

dbIIO(a,...,b,cd) ∇̄a . . . ∇̄b I̊Icd

FNo(a,b) Fab

FO(a,b) F̊ ab

[d^n^](a,...,b,c) ∇a . . .∇bnc

dbH(a,...,b) ∇̄a . . . ∇̄bH

dr(a,...,b) ∇a . . .∇bρ

Cotton(a,b,c) Cabc

Table A.1. FORM symbols and their corresponding mathematical objects.
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A.3.2. Procedures. As in the previous program, we also provide a set of procedures that will

be used in this program. Three of the procedures are of the same type as in the previous program,

and indeed one of them is identical. We list these procedures here and explain any new operations.

The �rst procedure is the makeCommute() procedure, which performs the same function as the

like-named procedure above.

1 #procedure makeCommute ()

2 repeat;

3 id start*sigma?noncommF?commF = sigma*start;

4 id start*n?noncommT?commT(?A) = n(?A)*start;

5 id start*IIO?noncommT?commT(A?,B?) = IIO(A,B)*start;

6 endrepeat;

7 #endprocedure

The next procedure is called sigmaIdentities() and, as before, it performs the role of simplifying

and rewriting the expression in terms of hypersurface quantities along Σ using commuting variables.
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1 #procedure sigmaIdentities ()

2 repeat;

3 id s = 0;

4 id nC(A?)*nC(A?) = 1;

5 id nC(a?)*dbHc?hypT(?A,a?,?B) = 0;

6 id nC(a?)*IIo?hypT(a?,b?) = 0;

7 id nC(a?)*start*delt(a?) = 0;

8

9 id IIo?trfr(a?,a?) = 0;

10

11 id [gb_](a?,b?) = d_(a,b) - nC(a)*nC(b);

12 id dbHc?hypT(?A,a?,?B)*start*del(a?) = dbHc(?A,a,?B)*start*delt(a);

13 id IIo?hypT(a?,b?)*start*del(a?) = IIo(a,b)*start*delt(a);

14

15 id rho(a?,a?) = j;

16 id rhoB(a?,a?) = jb;

17 id Fno(a?,a?) = (1/2) *[1/d](-2)*k;

18 id weyl(?A,a?,?B,a?,?C) = 0;

19 id weylb(?A,a?,?B,a?,?C) = 0;

20

21 id nC(a?)*nC(b?)*riemann(a?,b?,c?,e?) = 0;

22 id nC(a?)*nC(b?)*riemann(c?,e?,a?,b?) = 0;

23

24 id [d^n^C](a?,b?) = II(a,b) + Hc*nC(a)*nC(b);

25 id II(a?,b?) = IIo(a,b) + Hc*[gb_](a,b);

26 id rC = -Hc;

27 id drC(a?) = -dbHc(a) + nC(a)*dnrC;

28

29 id dnrC = [1/d](-2)*k + rhoNN;

30

31 id IIo(a?,b?)*drC(a?,b?) = -IIo(a,b)*dbHc(a,b) + IIo(a,b)*II(a,b)*dnrC;

32

33 id nC(a?)*nC(b?)*[d^n^C](a?,b?,c?) = -drC(c) - nC(c)*dnrC;

34 id IIo(a?,b?)*IIo(a?,b?) = k;

35 id once wnc(a?,b?) = IIo(a,c)*IIo(c,b) - [1/d](-1)*k*[gb_](a,b) - (d-3)*Fo(a,b);

36 sum c;

37 id Fno(a?,b?) = Fo(a,b) + (1/2) *[1/d](-1) *[1/d](-2)*k*[gb_](a,b);

38 id Fo(a?,b?) = -[1/d](-3)*IIIo(a,b);

39 id dbIIo(?A,a?,a?) = 0;

40

41 id riemann(a?,b?,c?,e?) = weyl(a,b,c,e) + d_(a,c)*rho(b,e) - d_(b,c)*rho(a,e) -

d_(a,e)*rho(b,c) + d_(b,e)*rho(a,c);

42

43 id rho(a?,b?) = rhoT(a,b) + nC(a)*rhoNT(b) + nC(b)*rhoNT(a) + nC(a)*nC(b)*rhoNN;

44 id rhoT(a?,b?) = Fno(a,b) + rhoB(a,b) - Hc*IIo(a,b) - (1/2) *[gb_](a,b)*Hc^2;

45 id once rhoNT(b?) = [1/d](-2)*dbIIo(a,a,b) - dbHc(b);

46 sum a;

47 id j = rhoNN - ( - jb + drat('dpp '-1,1) *(1/2)*Hc^2 - (1/2)*drat(1,'dpp '-2)*k);

48

49 id once weyl(a?,b?,c?,e?) = ([gb_](a,ap)+nC(a)*nC(ap))*

([gb_](b,bp)+nC(b)*nC(bp))* ([gb_](c,cp)+nC(c)*nC(cp))*

([gb_](e,fp)+nC(e)*nC(fp))* weyl(ap,bp,cp ,fp);

50 sum ap,bp,cp ,fp;

51 id [gb_](a?,ap?)* [gb_](b?,bp?)* [gb_](c?,cp?)* [gb_](e?,fp?)*

weyl(ap?,bp?,cp?,fp?) = weylt(a,b,c,e);

52 id weylt(a?,b?,c?,e?) = weylb(a,b,c,e) - IIo(a,c)*IIo(e,b) + IIo(a,e)*IIo(c,b) -

[gb_](a,c)*Fno(e,b) + [gb_](a,e)*Fno(c,b) + [gb_](b,c)*Fno(e,a) -

[gb_](b,e)*Fno(c,a);

53

54 id nC(a?)*weyl(a?,b?,c?,e?) = weyln(e,c,b);

55 id nC(b?)*weyl(a?,b?,c?,e?) = weyln(c,e,a);

56 id nC(c?)*weyl(a?,b?,c?,e?) = -weyln(a,b,e);

57 id nC(e?)*weyl(a?,b?,c?,e?) = weyln(a,b,c);

58 id nC(a?)*weyln(a?,b?,c?) = wnc(b,c);

59 id nC(a?)*weyln(b?,a?,c?) = -wnc(b,c);

60 id nC(c?)*weyln(a?,b?,c?) = 0;

61 endrepeat;

62 #endprocedure

We use g instead of ḡ in this program.
Contraction with
hypersurface tensors
projects ∇ 7→ ∇⊤.

Symmetries of the Riemann tensor.

∇ρ = ∇⊤ρ + n∇nρ
Σ
= −∇̄H + n̂∇n̂ρ

∇nρ
Σ
= K

d−2 + Pn̂n̂, see [44, Equation (3.11)].

Apply ∇nna = −σ∇aρ − ρna, repeat loop then

implements
above formulæ for ∇aρ.

Trace-free Fialkow
equation.

Project ambient Weyl
tensor to Σ.

Trace-free Gauÿ
equation.

Uniformize contractions
of n̂ into Weyl tensor .
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The next procedure commuteThingsLeft() uses the Gauÿ formula and the Leibniz property of the

tangential Levi-Civita connection to commute hypertensor objects left of ∇⊤. While the bulk of the

procedure is nearly identical to code documented earlier. Here we use the if executable statement,

to ensure that the procedure only applies hypersurface identities to the expression when there are

no ambient connections (in the form of dn and del(a) ) present.

1 #procedure commuteThingsLeft ()

2 if (occurs(dn ,del)=0);

3 repeat;

4

5 id IInc(a?,b?) = IIO(a,b) + H*(d_(a,b) - n(a)*n(b));

6 id Rho(a?,b?) = RhoT(a,b) + n(a)*RhoNT(b) + n(b)*RhoNT(a) +

n(a)*n(b)*RhoNN;

7 repeat;

8 id once RhoNT(b?) = [1/d](-2)*dbIIO(a,a,b) - dbH(b);

9 sum a;

10 endrepeat;

11 id RhoNN = J - Jb + drat('dpp '-1,1) *(1/2)*H^2 - (1/2)*drat(1,'dpp '-2)*K;

12

13

14 id delt(a?)*H = dbH(a) + H*delt(a);

15 id delt(a?)*n(b?) = IInc(a,b) + n(b)*delt(a);

16 id once delt(a?)*dbH(b?) = dbH(a,b) - n(b)*IInc(a,e)*dbH(e) +

dbH(b)*delt(a);

17 sum e;

18 id delt(a?)*[Gb_](b?,c?) = [Gb_](b,c)*delt(a) - n(b)*IInc(a,c) -

n(c)*IInc(a,b);

19 id once delt(a?)*IIO(b?,c?) = dbIIO(a,b,c) - n(b)*IInc(a,e)*IIO(e,c) -

n(c)*IInc(a,e)*IIO(b,e) + IIO(b,c)*delt(a);

20 sum e;

21 id once delt(a?)*dbIIO(b?,c?,e?) = dbIIO(a,b,c,e) -

n(b)*IInc(a,ap)*dbIIO(ap,c,e) - n(c)*IInc(a,ap)*dbIIO(b,ap,e) -

n(e)*IInc(a,ap)*dbIIO(b,c,ap) + dbIIO(b,c,e)*delt(a);

22 sum ap;

23

24 #call makeCommute ()

25 #call sigmaIdentities ()

26 endrepeat;

27 endif;

28 #endprocedure

Returns true when neither dn nor del(a) are present.

This loop is only executed
when the above condition
is satis�ed.

Marks then end of the conditional execution block.

The �nal procedure commuteDnRight() e�ectively commutes ∇n to the right of ambient tensors

using the Leibniz property. Note that unlike the previous procedures, this procedure is applicable

even when objects are not evaluated along the hypersurface Σ; like all of the other manipulating

procedures, this procedure is repeated until no changes are made in the active expressions.
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1 #procedure commuteDnRight ()

2 repeat;

3 id dn*r = dnr + r*dn;

4 id dn*sigma = (1-2*r*sigma) + sigma*dn;

5 id dn*n(a?) = -sigma*dr(a) - r*n(a) + n(a)*dn;

6 id dn*IIOe(a?,b?) = dnIIOe(a,b) + IIOe(a,b)*dn;

7 id dn*Rho(a?,b?) = dnRho(a,b) + Rho(a,b)*dn;

8 endrepeat;

9 #endprocedure

De�ne dnr by ∇nρ.

Apply ∇nσ = n2 = 1 − 2σρ.
∇nn = 1

2∇an
2 = −σ∇ρ−ρn.

De�nitions of dnIIOe and dnRho.

A.3.3. Riemannian Computation of K̈. We begin by converting the tractor expression

K̈ := I ·D̂2Ke into a Riemannian expression.

1 local Kdd = start*[I.Dh]^2* Kext*end;

2

3 id [I.Dh] = [I.D]*[1/h](-2);

4 repeat;

5 id [1/h](x?)*[I.D] = [I.D]*[1/h](x-2);

6 id [1/h](x?)*Kext = Kext *[1/h](x-4);

7 id [1/h](x?)*end = [1/d](x)*end;

8 endrepeat;

9 id [I.D]^2 = [ID2];

10

11 id [ID2] = -(d-8)*(LapT -2*(Jb - (1/2)*K*[1/d](-2)) - (d-7)*(dn^2

+2*(2*H*dn - RhoNN - [1/d](-2)*K +5*H^2*(1/2))));

12 sum a,b;

13 #call makeCommute ()

Apply de�nition of K̈.

Reexpress I ·D̂ as I ·D ◦ 1
h−2

and evaluate weight-dependent operators.

Apply Equation 4.7 of [44]
to weight −2 scalars.

Next, we perform Riemannian computations reexpressing terms containing normal derivatives

and gradients in terms of fundamental forms and other hypersurface tensors.
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1 id once Kext = IIOe(a,b)*IIOe(a,b);

2 sum a,b;

3

4 #call commuteDnRight ()

5 id dnIIOe(a?,b?)*IIOe(a?,b?) = IIOe(a,b)*dnIIOe(a,b);

6 id dn2IIOe(a?,b?)*IIOe(a?,b?) = IIOe(a,b)*dn2IIOe(a,b);

7 id dn2IIOe(a?,b?)*end = dn*dnIIOe(a,b)*end;

8

9 repeat;

10 id once dnIIOe(a?,b?) = n(c)*n(e)*Riemann(c,a,b,e) - IIOe(a,c)*IIOe(c,b)

+ r*IIOe(a,b) - (n(a)*dr(b) + n(b)*dr(a)) + d_(a,b)*dnr + Rho(a,b) +

sigma *( dnRho(a,b) - 3*r*Rho(a,b) + IIOe(c,a)*Rho(b,c) +

IIOe(c,b)*Rho(c,a) - dr(a,b));

11 sum c,e;

12 endrepeat;

13

14 #call makeCommute ()

15 #call sigmaIdentities ()

16

17 id dn*n(a?)*n(e?)*Riemann(a?,b?,c?,e?)*end = dnRn(b,c)*end;

18

19 #call commuteDnRight ()

20 #call makeCommute ()

21 #call sigmaIdentities ()

22

23 id once dnIIOe(a?,b?) = n(c)*n(e)*Riemann(c,a,b,e) - IIOe(a,c)*IIOe(c,b)

+ r*IIOe(a,b) - (n(a)*dr(b) + n(b)*dr(a)) + d_(a,b)*dnr + Rho(a,b) +

sigma *( dnRho(a,b) - 3*r*Rho(a,b) + IIOe(c,a)*Rho(b,c) +

IIOe(c,b)*Rho(c,a) - dr(a,b));

24 sum c,e;

25 #call makeCommute ()

26 #call sigmaIdentities ()

27

28 id once start*dnRn(a?,b?)*end = start *(H*n(c)*n(e)*Riemann(c,a,b,e) +

(IIOe(c,e) + H*d_(c,e))*Riemann(e,a,b,c) + n(c)*del(b)*Ric(a,c) -

(d-2)*dnRho(a,b) - d_(a,b)*dnJ + delt(e)*n(f)*Riemann(f,b,e,a))*end;

29 sum c,e,f;

30 #call makeCommute ()

31 #call sigmaIdentities ()

32

33 id Riemann(a?,b?,c?,e?) = Weyl(a,b,c,e) + d_(a,c)*Rho(b,e) -

d_(b,c)*Rho(a,e) - d_(a,e)*Rho(b,c) + d_(b,e)*Rho(a,c);

34 id Ric(a?,b?) = (d-2)*Rho(a,b) + J*d_(a,b);

35

36 id once dnRho(a?,b?)*end = n(c)*del(c)*Rho(a,b)*end;

37 sum c;

38 id del(a?)*Rho(b?,c?) = Cotton(a,b,c) + del(b)*Rho(a,c);

39 #call makeCommute ()

40 #call sigmaIdentities ()

Reexpressing Ke in terms of its

canonical extension ( I̊Ie)2.

Commute ∇n

right then reorder.

Use [31, Equation (6.4)] for ∇nI̊I
e.

Because at most two normal
derivatives of I̊Ie appear, only

need ∇n I̊Ie accurate to
order σ.

Apply de�nition.

Push ∇n right again because

∇n ◦ (∇n I̊Ie) contains simpli�able monomials.

Pushing ∇n right in ∇n ◦ I̊Ie,
requires reapplication of the
identity above.

Apply general dimension d analog
of the identity for∇n(n

cndRcabd)
given in [31].

ConvertRiemann
to Weyl and
Schouten tensors.

Convert ∇aPbc to
Cotton tensor
Cabc :=∇aPbc−∇bPac.

At this point in the program, all ambient gradients and normal derivatives have been evaluated

in terms of objects along the hypersurface or higher fundamental forms. The �nal segment of the

program uses procedures commuteThingsLeft() and hypersurface identities to simplify the result.

161



1 id LapT*IIOe(a?,b?)*IIOe(a?,b?)*end = LapB*IIOe(a,b)*IIOe(a,b)*end;

2 id start*LapB*IIOe(a?,b?)*IIOe(a?,b?) = start*LapB*K;

3 #call commuteThingsLeft ()

4

5 id nC(a?)*start*delt(b?)*RhoT(a?,c?) = -II(a,b)*start*RhoT(a,c);

6 id nC(a?)*start*delt(b?)*Weyl(a?,ap?,bp?,cp?) =

start*delt(b)*Weyln(cp,bp,ap) - II(a,b)*start*Weyl(a,ap ,bp ,cp);

7

8 if (occurs(dn ,del)=0);

9 id Weyln(a?,b?,c?) = Weylnt(a,b,c) + n(a)*Wn(b,c) - n(b)*Wn(a,c);

10 id once Weylnt(a?,b?,c?) = dbIIO(a,b,c) - dbIIO(b,a,c) +

[1/d](-2)*( dbIIO(e,e,a)*[Gb_](b,c) - dbIIO(e,e,b)*[Gb_](a,c));

11 sum e;

12 endif;

13

14 #call commuteThingsLeft ()

15

16 id once dbIIo(c?,a?,c?,b?) = riemannB(c,a,c,e)*IIo(e,b) +

riemannB(c,a,b,e)*IIo(c,e) + dbIIo(a,c,c,b);

17 sum e;

18 id riemannB(a?,b?,c?,e?) = weylb(a,b,c,e) + [gb_](a,c)*rhoB(b,e) -

[gb_](b,c)*rhoB(a,e) - [gb_](a,e)*rhoB(b,c) + [gb_](b,e)*rhoB(a,c);

19 #call sigmaIdentities ()

20

21 id once IIo(a?,b?) = TenC(a,b);

22 id TenC(a?,b?)*dbIIo(b?,c?,c?,a?) = TenC(a,b)*dbIIo(a,c,c,b);

23 id TenC(a?,b?)*IIIo(b?,c?) = TenC(b,a)*IIIo(b,c);

24 .sort;

25 id TenC(a?,b?) = IIo(a,b);

26

27 id del(a?)*end = 0;

28 id delt(a?)*end = 0;

29 id delb(a?)*end = 0;

30 id delt(a?)*start*end = 0;

31 id dn*end = 0;

32

33 id start*end = 1;

34

35 id [1/d](x?) = drat(1,'dpp '+x);

36 id d = drat('dpp ',1);

37 Format 180;

38 print +s;

39 .end

( I̊Ie)2|Σ = K and

∆⊤K = ∆̄K.
Push ∇⊤ as far right as possible.

Commuten rightwhenever it can
be contracted with hypersurface
tensors (which yields zero).

if command ensure absence of
ambient gradients or normal
derivatives; in this case rewrite
Wabcn̂ as W⊤

abcn̂ +more and
apply the Codazzi-Mainardi
equation.

Push ∇⊤ as far right as possible.

Reorder hypersurface gradients
modulo the hypersurface
Riemann curvature, and convert
to hypersurface Weyl and
Schouten tensors.

Help FORM
simplify contractions
with symmetric tensors.

Eliminate all derivatives on far right of the expression,
i.e. ∇(1) = 0.

Remove unneeded start and end markers.

Convert coe�cients d and [1/d](x) to the
PolyRatFun drat.

The above code has been assembled into the FORM �le Kdd.frm attached to this document.

The FORM �le, when run, outputs the following result:

1 Kdd =

2 + k^2* drat (31 ,18)

3 + k*jb*drat (2,1)

4 + Hc*IIo(N1_?,N2_?)*IIo(N1_?,N3_?)*IIo(N2_?,N3_?)*drat(-4,1)

5 + Hc*IIo(N1_?,N2_?)*IIIo(N1_?,N2_?)*drat(-4,1)

6 + nC(N1_?)*IIo(N2_?,N3_?)*cotton(N1_?,N2_?,N3_?)*drat(-4,1)

7 + rhoB(N1_?,N2_?)*IIo(N1_?,N3_?)*IIo(N2_?,N3_?)*drat (20 ,1)

8 + weylb(N1_?,N2_?,N3_?,N4_?)*IIo(N1_?,N4_?)*IIo(N2_?,N3_?)*drat (8,1)

9 + IIo(N1_?,N2_?)*IIo(N1_?,N3_?)*IIIo(N2_?,N3_?)*drat(-2,1)

10 + IIo(N1_?,N2_?)*dbIIo(N1_?,N3_?,N3_?,N2_?)*drat (20 ,3)

11 + IIo(N1_?,N2_?)*dbIIo(N3_?,N3_?,N1_?,N2_?)*drat(-4,1)

12 + dbIIo(N1_?,N1_?,N2_?)*dbIIo(N3_?,N3_?,N2_?)*drat (8,9)

13 + IIIo(N1_?,N2_?)*IIIo(N1_?,N2_?)*drat (4,1)

14 + start*LapB*K*end*drat (1,1)

15 ;
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This result matches the quoted expression in Equation (4.16) for K̈ when d = 5, so the proof is

complete.

A.4. FORM Code for Proofs in Chapter 6

To prove the results in Chapter 6, we also used FORM computations. These can be found in the

ancillary �les in the arXiv entry for [10]. In particular, we prove Theorem 6.3.1, Corollary 6.4.3,

Proposition 6.5.2, Lemma 6.5.4, Theorem 6.5.5, and Theorem 6.6.2. Most of the computations

performed in the �les mentioned use the methods described above�but here, we use header and

procedure �les for centralization.

A.4.1. Declarations. In the �les Headers/symbol-index-declarations.h , Headers/function-declarations.h ,

Headers/tractor-declarations.h , and Headers/Riem-declarations.h , we declared a number of objects that

are associated to particular variables, functions, tractors, and tensors, respectively. As above, we

provide tables of these declarations and their mathematical counterparts. Much of these are dupli-

cated, but we include them anyway.

First, note that our convention is that (with few exceptions) indices that are enclosed in square

brackets [*] are to be viewed as �free� or �oating indices that are not contracted onto other indices,

and the same set of indices without the square brackets are to be viewed as dummy indices. We

use lower-case letters at the beginning of the alphabet (except �d�) to represent Riemannian indices

and upper-case letters at the beginning of the alphabet (except �D�) to represent tractor indices.

One exception is that we typically use upper-case letters for argument �elds, regardless of the type

of index that those argument �elds represent.

The symbols d and db represent the dimension of the bulk manifold and the hypersurface

respectively. The symbols x,ep,alpha,beta,invep,invalpha are dummy variables that typically represent

real numbers. In particular, ep is often used for dimensional continuation purposes as ε, invep is

its inverse ε−1, and similarly for alpha and invalpha .

Some of the scalars and functions not listed in the below table are documented in the FORM �le

itself. Table A.2 contains all of the functions and scalars declared in Headers/function-declarations.h .
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Function Mathematical Object

H H

Jb J̄

r ρ

dnr ∇nρ

dn2r ∇2
nρ

dn3r ∇3
nρ

J J

dnJ ∇nJ

dn2J ∇2
nJ

RhoNN Pnn

BachNN Bnn

sigma σ

K K

Kd K̇

Kdd K̈

Kddd
...
K

DbDbPdT ˆ̄DA ˆ̄DBṖ t
AB

f f

[tau�(5/2-d/2)] τ
5−d
2

Function Mathematical Object

h(x) h+ x

[1/h](x) 1
h+x

[I.D] I ·D
[I.Dh] I ·D̂

[Dth.IDh2.Dth] D̂T AI ·D̂2D̂T
A

dn ∇n

Lap ∆

LapT ∆⊤

LapB ∆̄

R1 R1

R2 R2

R3 R3

R4 R4

R R

Table A.2. FORM functions and their corresponding mathematical objects.

Table A.3 contains all of the tractors declared in Headers/tractor-declarations.h . Tables A.4 and A.5

contains all of the Riemannian tensors declared in Headers/Riem-declarations.h .

A.4.2. Execution. To run the computations, �rst ensure that FORM is in the path. The ver-

sion of FORM required to run these computations requires a unix-based operating system, so if one

wishes to run these computations on a Windows machine, they must use Cygwin and install FORM

there. Once FORM is installed in the path, executing (as a bash script) the computations is as simple

as calling bash FileName.sh . To clear the saved �les, one should execute the script DeleteData.sh . Each

script is named according to the result it proves, with the exception of PreliminaryComputations.sh ,

which provides lower-level identities to be used elsewhere.
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Tensor Object

D(A) DA

I(A) IA

[I](A,B) hAB − IAIB

Dhat(A) D̂A

DhTemp(A) D̂A

Dth(A) D̂T
A

DthTemp(A) D̂T
A

Dthext(A) D̂T e
A

Db(A) D̄A

Dbh(A) ˆ̄DA

P(A,B) PAB

DK(A,...,C) D̂C · · · D̂AK

DtK(A,...,C) D̂T
C · · · D̂T

AK

DKd(A,...,C) D̂C · · · D̂AK̇

DtKd(A,...,C) D̂T
C · · · D̂T

AK̇

DbKd(A,...,C) ˆ̄DC · · · ˆ̄DAK̇

DKdd(A,...,C) D̂C · · · D̂AK̈

DtP(B,C,A) D̂T
APBC

DP(C,D,A,...,B) D̂B · · · D̂APCD

Pd(A,B) ṖAB

Pdd(A,B) P̈AB

Pddd(A,B)
...
P AB

DPd(C,D,A,...,B) D̂B · · · D̂AṖCD

DPdd(C,D,A,...,B) D̂B · · · D̂AP̈CD

Pdt(A,B) ⊤̊(ṖAB)

PdT(A,B) Ṗ t
AB := (r̄ ◦ ⊤̊)(ṖAB)

DbPdT(A) ˆ̄DBṖ t
AB

[Dh, Dh](A,B) [D̂A, D̂B]

[Dbh,Dbh](A,B) [ ˆ̄DA,
ˆ̄DB]

Tensor Object

W(A,B,C,D) WABCD

Wt(A,B,C,D) W⊤
ABCD

Wb(A,B,C,D) W̄ABCD

Ln(A,B) LAB

DtLn(C,D,A,...,B) D̂T
B · · · D̂T

ALCD

DbLn(C,D,A,...,B) ˆ̄DB · · · ˆ̄DALCD

Fn(A,B) FAB

DbFn(C,D,A,...,B) ˆ̄DB · · · ˆ̄DAFCD

Jn(A,B) JAB

DbK(A,...,B) ˆ̄DB · · · ˆ̄DAK

Gamma(A,B,C) ΓABC

Wn(A,B,C) WIABC

Wd(A,B,C,D) ẆABCD

Wdd(A,B,C,D) ẄABCD

Wddd(A,B,C,D)
...
WABCD

DW(A,B,C,D,E,...,F) D̂F · · · D̂EWABCD

DWd(A,B,C,D,E,...,F) D̂F · · · D̂EẆABCD

DWdd(A,B,C,D,E,...,F) D̂F · · · D̂EẄABCD

Wnn(A,B) WIABI

[I,I.Dh](A) [IA, I ·D̂]

[I.Dh,I](A) [I ·D̂, IA]
[hashTr](A,B) (hA·hB ·)♯
[hashTrB](A,B) (h̄A·h̄B ·)♯

X(A) XA

Y(A) YA

Z(A,a) Za
A

Yb(A) ȲA

Zb(A,a) Z̄a
A

Table A.3. FORM tensors representing tractors and the corresponding tractors
(or tractor-valued operators). Note that most of these have corresponding �FORM-
commuting� counterparts. The names of these counterparts can be found in the set
commTracs.
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Tensor Object

[G_](a,b) gab

[Gb_](a,b) ḡab

n(a) na

[d�n�](a,...,b,c) ∇a · · · ∇bnc

IInc(a,b) IIab

IIO(a,b) I̊Iab

IIO2(a,b) I̊Ica I̊Icb

IIO3(a,b) I̊Ica I̊I
d
c I̊Idb

dtIIO(a,...,b,c,d) ∇⊤
a · · · ∇⊤

b I̊Icd

dbIIO(a,...,b,c,d) ∇̄a · · · ∇̄b I̊Icd

dbivIIO(a) ∇̄· I̊Ia
FNC(a,b) Fab

FO(a,b) F̊ ab

dtFO(a,...,b,c,d) ∇⊤
a · · · ∇⊤

b F̊ cd

dbFO(a,...,b,c,d) ∇̄a · · · ∇̄bF̊ cd

dbivFO(a) ∇̄·F̊
IVO(a,b) I̊Vab

dbIVO(a,...,b,c,d) ∇̄a · · · ∇̄bI̊Vcd

Riemann(a,b,c,d) Rabcd

RiemannB(a,b,c,d) R̄abcd

Weyl(a,b,c,d) Wabcd

Weyln(a,b,c) Wabcn

Weylnt(a,b,c) W⊤
abcn

Weylnn(a,b) Wnabn

Weylt(a,b,c,d) W⊤
abcd

dbivWeylnt(a,b) ∇̄cW⊤
a(bc)n̂

Weylb(a,b,c,d) W̄abcd

Ric(a,b) Ricab

Rho(a,b) Pab

RhoN(a) Pan

RhoNT(a) P⊤
an

RhoT(a,b) P⊤
ab

Tensor Object

RhoB(a,b) P̄ab

dbRhoB(a,...,b,c,d) ∇̄a · · · ∇̄bP̄cd

Cotton(a,b,c) Cabc

CottonT(a,b,c) C⊤
abc

CottonB(a,b,c) C̄abc

CottonN(a,b) Cnab

CottonNT(a,b) C⊤
nab

CottonNTS(a,b) C⊤
n(ab)

CottonNL(a,b) Cabn

CottonNLT(a,b) C⊤
abn

CottonNN(a) Cann

delK(a,...,b) ∇a · · · ∇bK

deltK(a,...,b) ∇⊤
a · · · ∇⊤

b K

delbK(a,...,b) ∇̄a · · · ∇̄bK

deltRhoNN(a,...,b) ∇⊤
a · · · ∇⊤

b Pnn

delbRhoNN(a,...,b) ∇̄a · · · ∇̄bPnn

dRho(a,...,b,c,d) ∇a · · · ∇bPcd

dnRho(a,b) ∇nPab

dn2Rho(a,b) ∇2
nPab

dn3Rho(a,b) ∇3
nPab

dnWeylnn(a,b) ∇nWnabn

dn2Weylnn(a,b) ∇2
nWnabn

dbH(a,...,b) ∇̄a · · · ∇̄bH

Bach(a,b) Bab

BachT(a,b) B⊤
ab

BachB(a,b) B̄ab

BachN(a) Ban

BachNT(a) B⊤
an

dJ(a,...,b) ∇a · · · ∇bJ

dtJ(a,...,b) ∇⊤
a · · · ∇⊤

b J

dbJ(a,...,b) ∇̄a · · · ∇̄bJ̄

dr(a,...,b) ∇a · · · ∇bρ

Table A.4. FORM tensors representing Riemmanian tensors and the corresponding
tensors (or tensor-valued operators). Note that most of these have corresponding
FORM-commuting counterparts. The names of these counterparts can be found in
the set commTens.
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Tensor Object

dCotton(a,b,c,d) ∇aCbcd

dWeyl(a,b,c,d,e) ∇aWbcde

dBach(a,b,c) ∇aBbc

[hashR](a,b) (ga·gb·)♯
[hashRB](a,b) (ḡa·ḡb·)♯
IIOe(a,b) I̊Ieab

Tensor Object

dnIIOe(a,b) ∇n I̊I
e
ab

dn2IIOe(a,b) ∇2
n I̊I

e
ab

dn3IIOe(a,b) ∇3
n I̊I

e
ab

dbf(a,...,b) ∇̄a · · · ∇̄bf

grdivIIoS(a,b) ∇̄(a∇̄· I̊Ib)
grdivIIoA(a,b) ∇̄[a∇̄· I̊Ib]

Table A.5. FORM tensors representing Riemmanian tensors and the corresponding
tensors (or tensor-valued operators). Note that most of these have corresponding
FORM-commuting counterparts. The names of these counterparts can be found in
the set commTens.
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