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Abstract 

UCRL-16623 

It is shown ho-v1 one can calculate velocity and concentration profiles 

near a rotating disk taking into account variable transport properties, 

none-zero interfacial velocity.1 and finite Schmidt number. It is found 

that the surface is uniformly accessible for mass transfer and that the 

limitin~ currentj in particular} and heat and mass transfer rates; in 

generalj are proportional to the square root of the rotation speedj other 

conditions being the same, Specific results are given for deposition of 

copper from aqueous Cuso4 solutions 7 where it is found that the correction 

to Levich's classical equation due to variable properties is considerably 

__ gr~at_er_than that due to either a non-zero interfacial velocity or a finite 

Schmidt number alone, Concentration overpotentials are defined and calcu-

lated for copper deposition, 



Mathematical Formulation 

A rotating disk provides a. uniformly accessible surfaceo This means 

that if a heterogeneous reaction is carried out at the surface, the mas.s 

transfer rate is uniform to all parts of the surface. This is important 

if one wants to study the heterogeneous re~.ction uncomplicated by mass 

transfer effectso 

The rotating disk was shown1 to be uriiforml.y accessible for mass trans-

fer with constant fluid properties, but it seems reasonable to Stippqse 

that this characteristic is not peculiar to the constant property caseo 

Let us use cylindrical coordinates where z iS the normal distance 
\ 

from the surface of the disko Assume stead;y, laminar flow of a Newtonian 

fluid w.here the viscos1ty J.l depends on composition.9 and let the gravita-

tional acceleration be perpendicular to the disko We shall further assume, 

a:nd verify later,? that the normal velocity component and the composition 

depend only on zJ so that the surface is uniformly .accessibleo It follows 

from this assumption that the viscosity_. density;> diffusion coefficient, 

and other transport properties depend only on Zo 

. ~ , 2 
The trans.formation of von Karman suggests that we express the velocity 

components and the pressure as follows~ 

where 

r is the radial position coordinate;> p is the fluid density..? n is the 

rotation speed of the disk (radians/ sec):~ g is the z-component of the 
z 

(l) 

(2) 

gravitational acceJ.eration, llw voo» and P00 are the viscosity, kinematic 

2 



viscosity7 and density in the bul.k of the solution far from the disk. 

Equations (1) define dimensionl~&s·functions F7 .G, H~ and P and show 

how the velocity components and the pressure depend on r and n as well as 

the dimensionless normal coordinate ~0 

In order to obtain differential equations for F, GJ H7 arid P it is 

necessary to substitute equations (1) into the equations of motion and 

continuity of the fluid: 

d.Y + ''\7 P dt py• vy (3) 

dP . n 
~ + v•vp 
O'C -

(4) 

The viscous stress for a Newtonian fluid is 

(5) 

T 
where (V'.:y) · denotes the transpose of the velocity gra.dient and I denotes ' 

the unit tensor. 

We make explicit reference to the text of Bird, Stewart, and Lightfoo-j;:.3 

because these equations are displayed there in cylindrical coordinates 

in a form appropriate to a fl~id with varying density and viscosity. 

With the assumptions already stated 7 the components of the Viscous 

stress are found to be (ref .. 37 p. 89) 

'f rB :::: 07 1:' · Bz 

where primes denote differentiation with respect to ~. 

The continuity equation (4) becomes (ref. 37 p.83, eq. (B)) 

d In p 
2F + H' = - H de - . 

(6) 

(7) 
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Substitution of the viscous stress given by equa,t.ions (6) into the equation 

of motion (3) (ref. 3~ p. 85~ eq. (A)~(B),and (C)) yiel,ds 

2FG + HG' "" Poo E_ (~G '); • 
p d~ \J..l.oo , 

~oo HH' + P' • = ~ ~~ [~oo (H' =F) J 

The boundary conditions include 

F .~,. 0" G ·- 1 at ~ 0 

F ·- 0 = 0 at ~ 00 

+ 21J. F' j.loo 

(8) 

(9) 

} (10) 

·In addition, the normal velocity component is related to the rate of inter-

facial mass transfer. When the viscosity a.nd density are constant; equa­

ti<;ms (8) and (9) reduce to those of von Karman
2

.9 and these have been solv~d 
- 4 

numerically by Cochran when the ·in-terfacial velocity is zero, that is, 

H =:: 0 at ~ = 0. 
I 

'For an electrolytic solution of a single salt in a single solvent~ the 

. 13 14 
concentration distribution is governed by the equab.on ' 

<:m M i·'Vt s . .,_ + 
P ~t .· + pv•'Vro + ~ . -- 'V· '(pD'Vro ) , 

a~ ~ s z v F s 
+ + 

(11) 

where cps is the mass fraction of the salt in the solution, Ms is the mole­

cular weight of the salt, .!. i.s the current density_. D is the diffusion 

coeff-icient of the salt, t+ is the cation transference number with respect 

to the mass-,ayerage velocity, z+ is the. charge number of the cation, v+ 

is the number of cations per molecule of salt, and F is Faraday's constant. 

The transference number t+ is related to the transference number t~ with 

respect to the solvent velocity by the relation 

4 



..... 

t = ro + (1~ ) t+
0 

, + - s . 

where ro is the mass fraction of the ~nion in the solution. 

which is measured and reported in the literature. 

It is t 0 

+ 

(12) 

Equation (11) reduces to the equation describing diffusion in a qinary 

mixture of non-electrolytes if the current. density is zero or if the 

transference number is cpnst~nt. If we take the current density to be 

constant and to lie ~n the z-direction, then we can write equation (11) as 

an ordinary differential equation~ 

·where 

For boundary conditions we take 

ID = c.o at ~ = 0; s 0 
(J) = epoo at ~ = 00 • s-

(13) 

.(14) 

(15) 

It is still ne.cessary to show how the mass transfer r&te, the cu:rren,t 

density, the concen~ration gradient, and the normal component of the 

velocity are related ~t the disk surface. Formetal deposition or disso ... 

lution the ·normal fluxes of solvent and of the artiori are zero at the 

interface. Hence the mass-average velocity is simply rela~ed to the mass 

flux of the cation, which iS in turn related to the current density. 

M,__i . 
·r Z 

pv = n+z = ----z-· F . at z = 0. 
z + 

The mass flux _of the c~tion is 

v M M+t. + + + n. n = -~ PDva:> + ------ i + ~- v • 
=t- M s z F - -+-'--

s + 
(16) 

The concentration gradient at the disk can then be obtained from 
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equation (16): 

v M am 
(t -CJ.) ) 

+ + s 
0 pv = - pD dz at z = z - + M 

(17) 
s 

or, in dimensionless form, 

M dro 
I 

p s 
H = __ 1_ pD . s at ~ 0 

= P00 v+M+ ill+ -t _ j..l00 "d'r := . (18) 

The mathemat.ical problem 'for the determination of' the concentration and 

velocity distributions is defined by the differential equations (7), (8), (9), 

and (13) and the b.oundary conditions (10), (15), and (18). The assumptions 

underlying this mathematical formulation are the same as in the classical 

work of von Karman
2 

and of Levich1 in that edge effects are neglected and the 

flow i.s assumed to be 13teady and laminar. The assumptions of constant 

properties and zero interfacial velocity are removed in the present work, 

and the solutions for F, G, H, P; and ru constitute an exact solution of the 
s 

hydrodynamic and mass·-transfer equations. 

If the pressure. dependence of the fluid properties ~s ignored, there 

is no need t.o solve equation (9) for the pressure. This approximation will 

be made in the present work. 

Numerical Solution Method 

The problem consists of a group of coupled, non-linear differential 

equation:s with boundary conditions at zero and infinity. Equations (7) 

and (8) were linearized about a trial solution producing a series of coupled, 

linear differential equations in which the concentration· distribution is 

assumed to b.e kJ?.own. In fihi te .difference form the-se- give coupled, tri-

diagonal.matriceswhich can be solved readily on a high-spe~d, digital 

computer. With a known velcl!ty distribution, equation (13) can be solved 

6 
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for the concentration. The non-linear problem can then be solved by iteration. 

A total of one thousand mesh points was used •. 

It probably would have been more efficient in the numerical solution 

to linearize s~multaneously equations (7), (8), and (13), but the method 

used can be applied directly for calculating the velocity profiles in a 

multicomponent solution if the concentration distributions are known. 

Results 

a) Dependence on the Rotation Speed 

The mathematical f~:r.inulation, and iri particular equation (14), 

makes it clear. that the current density is proportional to the squar~ root 

of the rotation speed n, since i and 0 appear only in the parameter I and 
. z 

nowhere else in the dimensionless formulation of the problem. The para.-

meter I is/ then determined in the course of solving this problem. and can 

itself depend on m and ID00 and how the nuid properties vary- with concen­o 

tration. 

This dependence of i on 0 is exact for any Schmidt number and for z 

any variation of the fiuid properties with concentration, and it should also 

apply to multicomponent systems. Hence the many eXperimental verifications 

of the linear dependence of'the limiting current density upon the square 

root of the rotation .speed confirm the applicability of the present analysis 

but would not serve to Justify any approximations for large Schmidt numbers 

or for constant physical properties. 

b) Effect of a Non-zero Interfacial Velocity-

Actual mass-transfer rates may deviate from the classical :tesult 

of Levich1 because the Schmidt number is not infinite, becaus~ the inter­

facial velocity is not zero, or because the fltiid properties vary with 



coricent:ta.tion .. Cclr'rections for finite Schmidt numbers have been discussed by 

Gregory and Riddiford5 and by Newman:
6• Sparrow and Gregg7 give results for 

the analogous heat-transfer problem corresponding to Schmidt numbers of 

0. 01~ 0.17 1 7 107 and lOO.o wherea'S the Schmdit number is closer to 1000 for 

mass tansfer in liquids. For electrolytic solutions the Schmidt-number 

correction to Levich' s formula amounts to about 3 percent. 

Olander
8 

has obtained numerical solutions for the effect of the inter-

facial velocity for non-electrolytic solutions of constant properties. These 

results are applicable. to electrolytic solutions if one accounts for the 

contribution Ci.f' migration to the mass tra.nsfer. For deposition of a metal 

cation.? figure 1 shows the correction factor for lliqiss-tranSfer rates 

plotted against the 11flux ratio" 

vM ro-m + + 0 00 

R = toM 1-ro 
. 0. 

- s 

(19) 

(20) 

The limit .in the d.enominator of equation (19) means the limit of low rates 

of mass transfer where the interfacial velocity is negligible. Curves are 

shown for Sc = oo and for Sc = 1. The curve for Sc == oo is the same as 

that for two""'dimensional 7 boundary-·layer flows (see Acrivos9,P· 341 ) and 

is given by 

• ,/ 00 3 
e ~ r(i</31'1 e·x exp (xRejr(4/3)) dx. (21) 

/ 

The calculated paints for Sc :: 1000 and for Sc == 100 deviate from this 

curve for Sc = oo by less than 0<>3 and 1 percent)> respectively. It is 

int.eresting that the curves for Sc = 1000 and for Sc = 100 do not lie 

between the curves for Sc == 1 and for Sc = 00• 

8 
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The constant~·property case is of interest if we want to assess the relative 

importance of n~m-·constant properties and of a non.-zero interfacial velocity :J..n 

leading to deviations from the results of dilute-solution theoryo Ingases 

the properties are quite .constant~ but the interfacial velocity can be signifi-

canto In liquids 7 on the other hand 7 the solutions may be fairly dilute because 

of the solubility limit 7 but the diffusion coefficient can be a strong function 

of position. (Compare Spalding
10 

o) 

For metal deposition at the .limiting current from a 0. 5 ~ solution of cop·­

per sulfate in water;> R :o -0.0469 which corresponds to a correction factor of 

e = 1. 027. In this case the correction is in the opposite direction from the 

Schmidt·-number correctiono 

c) Deposition of Copper 

Mass~transfer rates calculated for the deposition of copper from aqueous 

cupric sulfate solutions at 25°C are shown in figure 2 in the form of the 

limiting current density divided by the square root· of the rotation speed 

plotted against the bulk concentration of Cuso
4

. The curve labeled 11e.xact 11 is 

calculated as outlined earlier so as to account for property variations.o non~ 

zero interfacial velocity)' and non-infinite Schmidt numbero For comparison7 the 

equation of Levich
1 

has been evaluated with the bulk values of the physical prop­

erties. Figure 2 also shows the results when the Levich equation is corrected 5 ~ 6 

for the fact that the Schmidt number is not infinite. The fourth curve shows the 

results when the Levich equation is corrected for the effect of a non~zero inter-

facial velocity according to figure lo In this case· all properties were evalua­

ted at the bulk concentrations except the transference number in R (equation (20) ); 

which was evaluatedat the surface concentration since it arises from the boun-

dary condition (18)o 

Figure 2 .shows that corrections for finite Schmidt number and non~zero inter·"' 

facial velocity are small compared to the effect of property variations. The 

constant-property solutions would 7 of course, give better agreement with the 

exact analysis if appropr.iat.e average values o;f the physical pro:pertie.s were 

used. Figure 3 shows "integral 11 diffusion coefficients appropriate for 
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the rotating disk plotted against the square root of the mass fraction of 

l 

Cuso4, The.se were calculated from the equation of Levich ..... in the form 

D. . ln [ 

- i 
li.m 

1-t 3/2 
. + J 

O.b2048 

1-t 3/2 
+ ) Q,b204B J 

(22) 

where the limiting current was calculated according to the rigorous analysis, 

' 11 
Also shown are the differential diffusion coefficients of Eversole · and of 

12 
Emanuel and Olander , which were used in the rotating disk calculations.:> 

and the integral diffusion coefficients appropriate to a diaphragm cell. and 

defined as 

D. :::: 
ln ~ 1-.··llioo D dill • 

(1). : 
00 0 

(23) 

Figure 3 shows that the integral diffusion coefficient appropriate to a 

rotating disk is not the same as that appropriate to a diaphragm celL 

Since no way has been developed for resolving the rotating disk data into 

the differential diffusion coefficient data 7 the rotating disk is not very 

useful for measuring the c.oncentration dependence of the diffusion coeffi-

dent in a binary electrolyte o 

Other useful by--products of the mass-transfer calculations are the 

surface concentration and the concentration overpotential. Figure 4 shows 

how the surface concentration.varies from the bulk value at zero current 

to zero .at .the limiting current for several values of bulk concentrationo 

The straight, diagonalline corresponds to the results for constant prop~r-

ties, 

d) .Conqentration Overpotential 

We define here the concentration overpotential for this ;particular, 

copper system in terms of two copper reference electrodes,:~ one in the bulk 
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solution and one l.ocated very near the disk sur.:fa.ce,,. Let b..~. be the potent ia.l 
1 

of the reference electrode near the disk minus the potential of tbe reference 

electrode in the bulk, arid let ~ohn be the potential' difference which would 

exist if there were the same current distribution but no concentration varia-

tions in the diffusion .layer. Then we define the concentration overpotential 

as 

TJ =dP -MJ 0 

.· c i ohm 

The· concentration overpotential thus defined is the potential: of a concentra-

tion cell plus an obmic contribution due to the change of resistivity in .the 

diffusion layer, 

The potential iJ? of a movable 7 copper reference electrode varies with 

position according to the equation13 

(24) 

By subtracting the current density divided by the bulk conductivity and 

integrating7 we obtain for the concentration overpotential at the rotating 

disk as defined above 

TJ =1 00 

i (]:; = _!_) dz- RTirooo (l-t0
) d L'ft Ym dill, (25) c Z \_'ic IC F' + dill 

0 . 00 

0 

The calculated concentration overpotential is plotted against a dimensionless 

current density in .figure 5 for various bulk concentrations of Cuso4 . 

By defining the concentration overpotential in terms of two reference 

electrodes 7 there is no question that it is well defined>' and the potential 

d.ifference between the d.isk electrode and the reference electrode adjacent 

to its surfac;!e can be regarded as the 11surface overpotential 11 associated 

with the electrode .react.ion itself, In this way the 11,surf'ace overpotential 11 

depends only op the current density and the concentration at the electrode 
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surface7 as it should 7 and not upon any events occurring in the diffusion 

layer or beyond. 

By subtracting .the potential difference between the two reference elec­

trodes which would exist in therosence of concentration variations~ the 

concentration overpotential becomes independent of the position of the 

second reference electrode outside the diffusion layer. One can then cal­

culate a separate, 11ehmic overpotentialn which wi_ll depend upon the macro­

scbpic current. distribution in the cell outside the diffusion layer and· 

on the placement of the reference electrode • 

. The. concentration overpotential .thus defined can be -calculated from 

mass-transfer theory and requires a know1:edge of all the transport properties 

of the solut.ion (p.J K:; t~~ and D) but does not require any quantitative 

express.ions for the electrode kinetics. 
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Nomenclature 

- diffusion coefficient (cm
2
/sec ). 

D. - integral diffusion coeffiCient (cm
2
/sec). 

. l.n 

F 

F 

G 

H 

i 

I 

m 

M 

p 

p 

r 

R 

R 

Sc 

t 

T 

v 

z 

- .Faraday'.s constant (coulomb/equiv). 

- dimensionless radial velocity. 

- dimensionless tangential velocity. 

- gravitational acceleration (cm/sec
2

). 

- dimensionless axial velocity. 

current density (rnA./cm
2

). 

- dimensionless current density (see equation (14)). 

- molal.i t y (moles/ k:g ) • 

-molecular weight (g/mole). 

-mass flux of.cations (g/cm
2

-·sec). 

- pre.ssure (dyne/cm
2

). 

- dimensionless dynamic pressure. 

- radial coordinate (em) 0 

- flux ratio (see equation (20) ) . 

- universal gas constant (joule/mole-de!S). 

v/D, Schmidt number. 

- time (sec}. 

- cation transference number with respect to mass-average velocity. 

- cation transference number with respect to solvent velocity. 

- absolute temperature (deg K). 

- mass-average velocity (em/sec). 

- normal dista-nce from disk (em). 

- charge .number of cation. 



y 

r(4/3) 

T}c 

e 

e 

v 

p 

- mean molal activity ~oefficient. 

0.89298; the gamma function of 4/3. 

- concentration overpotential (volt). 

- angular coordinate. 

-correction factor (see equ~tion (19)). 

- conductivity (mho/em:). 

- vis.cosity (g/cm-sec). 

- kinematic viscosity (cm
2
/sec). 

- number .of cations per molecule of salt. 

- dimensionl:es-s normal distance (.see equation (2)). 

- density (g/cm:3) 

- viscous stress {dyne/ cm
2 

). 

<P - potential of reference electrode (volt). 

ID - mass fraction. 

Q - rotation -speed of disk (radians/ sec). 

subscripts 

+ - cation. 

- anion._ 

0 - electrode surface. 

00 - bulk solution•. 

s - salt. 

lim - limiting. 

19 
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