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Abstract

It is shown how one can calculate velocity and concentration profiles
near a rotating disk taking into account variable transport p?operties,
non-zero interfacialvvelociﬁy, and finite Schmidt number. It is found
that the surface is uniformly accessible  for mass transfer and that the
limiting current, in particular; and héat and mass transfer ratéé, in.
general, are proportional to the équare root of the rotation speed,'other
conditions being the same. Specific results are given for deposition of
copper from aqueous CuSOu solutioné, where>it is found that the correction
to Levich'e classiecsal equaﬁion due to variable properties is considerably
,,_grgarargthan that due to either a noh—zéro interfacial veloéity or a finite

Schmidt number alone. Concentration overpotentials are defined and calcu-

lated for copper depositiona



Mathematical Formulation
A rotating disk provideg a uniformly accessible gurface. This means
that if a heterogeneous reaction is carried out at the surface, the mass

transfer rate is. uniform to all parts of the surface:. Thig ie important

. if one wants to study the heterogeneous reacﬁidn uncomplieated bY‘maSé

transfer effects.
The rotating disk was shownl*to be uniformly accessibleffor-mass trans-

fer with constant fluid properties, but it seems.reasonable‘to‘éuppqsé

‘that this characteristic is not peculiar +to the constant property case.

cLet us use cylindfical coBrdinates where z is the normal‘distagce
from the surface of the‘disko Assume stéady, laminar flow of a Newtoniah
fluid where the viscosity M depends on composition, and let the grevita-
tional acceleration be perpendicular to the diskc‘ We shall further assume,
and verify later, that the normal velocity'comPOnent and the composgition
depend only on z, so that the surface is uniformly accessible. It follows

from this assumption that the viscosity, density, diffusion coefficient,

..and other transport properties depend only on z.

; y 2. 42 . P
The transformation of von Karman suggests that we express the velocity

components and the pressure as follows:

[+¢]

v, = F(E), Vg = G(E), v, = J;E_ H(E);
| : _Z (1)
b= uP(E) +a, [ o a,

Yo
where ’ £ - z-J§7;::y (2)

r.is the'radial position_coardinate, 8 ig the fluid density, Q is the

rotation speed of the disk (radians/sec)s.gz is the z-component of the

gravitational acceleration, M Voo -and 0 are the wviscosity, kinematic



Viscosiﬁy,.and dengity in the bulk of the éolutibn far from tﬁe éiskn
Equations (1) define dimenSionléss»functions F, .G, .H, and P and show
how the velocity compon¢nts-and the preSsure‘depend on r-and Q,as well as
the dimensionless normal codrdinate €.

| In order to cobtain différential‘eqﬁations for Fy; G, H, and P it is
nécessary to substitute equatioﬁs (l) into the equations of motion and

continuity of the fluid:

P %% + p_vovx = - Vp - V":‘E + pﬁ ° (3)
%% + y°Vp = - pVey, ()

The viscous stress for a Newtonian fluid is

2

T = = u[VX + (VX)T] + 3 LllV°_\_f 5 (5)

where (VX)T_denotes the transpose of the velocity gradient and I denotes
the unit tensor.

Wé-make explicit .reference to the text of Bird, Stewart, and‘Lightfoo@3

because these equations are displayed there in cylindrical coordinates
in a form appropriste to a fluid with varying density and viscosity.

With the assumptions already stated, the components of the viscous

stress are found to be (ref. 3, p. 89)

_ .1 - -2 .00
Trr - Tee - 2 TZZ = 3 }JQ\F"'H )9
. (6)
/2 3/ :
A o FLI'Q:S/Q ‘at - UI@E{_ 1
T =0 T =g, g, =-t—— T,
.Jyw | v,
where primes dénote differentiation with respect to €.
,The continuity equation (4) becomes (ref. 3, p.83, eq. (B))
2F + H' = - H gme, (1)

d



Substitution of the viscous stréss,given'by equations (6) into the equation

of motion (3) (r_efo_-3,.-p° 85, eq. (A),(B),aﬁd (C)) yields

i

, P o :
2o 2 . Pxg Au .> |
- + L S, i ! PRI
- B = o

d e
(8)
& : 1
S da 7Zuc .
2FG + HG' = — =% —*—)fo
E pdf \p,
[SREp— '-'x: b g [U 1 } 21 oy
— HH' + P =<2 = [ (H=F)| +—F" .
P 3 d€ K, ('-F) | Hoo (9)
The boundary conditions include
F=0,G=1 at&=0,
‘ (10)
F=G=0 at € = >,

_'In addition, the normal velocity component is related to the rate of inter-
 facial.mass transfer. When the viscosity'and dehsity'afe constant, equa-
tions (8) and (9):reducé't6 those of von Kéfméng, and these have been soivgd
'numerically by Cochrza,nlL when fhe‘interfacial ?elocity“is éero, that is,

;.H =0 at € =VO.‘ '

‘For an electrolytic solution of a single salt in a single solvent, the

! , : 1h
concentration distribution is governed by the equationls’
o M iVt
PSe t QX€VHE + —i—;—ﬁf‘z V°(ptﬁug) s ' (11)

o+
where ag is‘the mage fraction of the salt'in‘the:SOluﬁion, Ms‘is the mole-
cular weight of the saltg i is the current density, D is the diffusion
coefficient of‘£he galt, t, is the catidp tranSferencevnumber with respect
+

to,the mass-average velocity, z, is the charge number of the cation, Vv

+
is the number of cations per molecule of salt, and F is Faraday's constant.
The transference number t+ is related to the transference number ti with

respect to the solvent velocity by the relation



t, = at'+.(;4ms) ﬁ: ’ | (12)
where ®_ 1s the mass fraction of the anion in the solution. It is ti
which is measured'and reported in the literature.

Equation,(ll) reduces to the equatidg describing diffusion in & binary
ﬁixture of non-electrolytes if the current denéity is zero or if the
transference number is constant. If we take thebcurrent density to be
constaht and to liekinifhé;i-directiOn, then we‘can write equatioh (ll) as
an ordinary differential-equatioQ: ‘ |

‘o s ) .Dm; -
" where - , M i

i. _
I = 8 2 '.(l'h)

< V Z+V+F VQH-OODOO c

For boundary'coﬁditiOns’wé take
o =w st £=0; o -wo,atf=x. (15)

It is still necessary to chow how the mass transfer rate, the current
density, the concéntration gradient; énd the nbrmal‘cqmponent‘of the
velocity are related at the disk surfaéeu For metal deposition or‘disso~
lution the normal fluxes of solvent and of the anion are zero at the
interface. Hence the.ﬁass—éveragevvelocity is.simﬁly related to the mass -
flux of the cations; which is in turn related to the current dengity.

‘ M i
= = tz t z =0
v, =0, ZF &

The mass flux of the cation is

v M Mt
£ . +U+ )
S T PDVES, 2, F £ L (16)

The concentration gradient at the disk can then be obtained from



equation (16)2 . :

v M dw

\ L +. -+ 8 - ' .
v, {t_-ah) " H oD 3~ at z =0 (17)
or, in dimensionless form,
M . ded
o 8 g _ 1l pD s .
I =" — H = = at € = 0. (18)
P VM, o, -t _H,, d€

The mathematical problem for the determination'of the concentration and
velocity distributions is defined by the differential equations (7), (8), (9),
and (13) and the boundary‘conditions (10), (15), and (18). The assumptions
underlying this-mathematical.farmulation are the same as‘in thg classical
work of Vbn.Kérhéng and of Leyichl'in\that edge effects are neglected and the
flow is assumed ﬁo be steady and laminar. The assumptions of constant
propertiés and. zero interfacial wvelocity are removed in the present work,
and the.SOlutions for ¥, G, H, P, and &, constifute an exact solution of the
hydrodynamic and mass~tranéfer equations.

If the pressure dependence of the fluid properties is ignored, there
is no need to solve equation (9) for the pressure. This approximation will

be made in the present work.

Numerical Solution Method
The'problem consists of a group of coupled, noﬁ—linear differential
equations with boundary conditions at zero and ‘infinity. Equatiéns (7)
and (8) were linearized about a trial solution producing a series of coupled,
linear differentialbequations'iﬁ which the concentration distribution is
agsumed to be known. In finite difference form these- give coupled, tri-
' diagonal matrices which can be solved readily on a high-speed, digital

computer. With a known veleity distribution, equation (13) can be solved



7
for the concentration. The non-linear problem can then be golved by iteration.
A total of one thousand mesh points was used..

It probaebly would have been more efficient in the numericel solution
to linearize simultaneously equations (T), (8), and (13), but the method

used can be applied directly for calculating the velocity profiles in a

multicomponent solution if the concentration distributions are known.

Results
a) Dependence on the Rotation Speed
The mathematical formulation, and in particular eqﬁatiqn (14),
makes it clear that thé current density ie pf0port16nal to the square root
of the.rqtatibn speed §}, since i, and  appear only in the parametér I and
nowhere else in thé dimensionless formulation of the problem. The pars- |
meter I i¢ then determined in the course of solving this ﬁroblemiahd can
itself depend on @, and ®_ and how the fluid.propertiee vary with concen-
tration. |
" This dependence of 1 on { is exact for any Schmidt number and for
any variation of the fluid properties with concentration, end it should aleo
apply to multicomponent systems. Hence the»many exPeriﬁental‘ve?ifiéations .
of the linear dependence of the limiting current densitj upon the square
root of the rotation speed confirm the applicability of the preseﬁt anﬁlyaie
but would not serve {6 Justify any approximations fof large Schmidt numbers
or for constant physical prﬁpe}tiéea | '
b) Effect of a Non-zero In£erf;é1a1 Velocity
Actual maés-transfer rates may deviate from the classical result.
of Levichl because the Schmidt number is not'infiniﬁe, because the inter-

facial velocity is not zefo, or because the fluid properties Qary with



: coﬂcentﬁati@n,(krrections for finite Schmidt numbers have been discussed by
Gregdry‘and Riddiford5 and by Newman6a Sparroﬁ'and Gregg7-give results for
the analbgous heat-tranSTer-problem corregponding to Schmidt numberé of
0.01, 0.1, 1, lO,.én& 100, whereas the Schmdit number is closer to 1000 for
mass tansfer in liquids. For electrolytic solutions the Schmidt-number
correction_to Levich’s‘formula'amounté'to about 3 percent.

Olander8.has obtained numerical solutions for the effect of the inter-
facial velocity for'nonaelectrolytic solutions of constant properties. These
results are applicable. to electrolytic solutiong if one accounts for the
contribution OiAmigfation to the mass transfer. For deposition of a metal

cation, figure 1 shows the correction, factor for nass-trangfer rates

1w o/ lim [%:f% o |
B, t~//H(-o')-» ol -, * t*f} o

plotted sgainst the "flux ratio"

V+M# a%;{qn :
R - (20)
t™™ 0.

-8
The limit in the denominator of'equation'(l9) mesne the limit 6f low rates
of mass transfer where the interfacial veloeity is negligible. Curves are
gshown for S¢ = ® and for Sc = 1. The curvé for S¢ = ® is the same as

99P°3hl)

that for two-dimensional, boundary-layer flows (eee Acrivos and

‘is given by

x

3 .
fJ[ e™ exp (xRO/T(L/3))} dx. (21)
Yo o

y -

The .calculated points for Sc = 1000 and for Sc = 100 deviate from this
curve for Sc = © by less than 0.3 and 1 percent, respectively. It is
interesting that the curves for Se = 1000 and for Sc = 100 do not lie

between the curves for Sc = 1 and for Sc = %,
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Figure 1. The effect of an interfacial velocity on.
mass transfer rates. ' C



10
The constant-property case is of iInterest if we want to assess the relative
importance of non-constant. properties and of a non~zero interfacial welocity in
leadiﬁg to deviations from the results of dilute~solution theory. In.gases
the properties are guite .constant, but the interfacial velocity can be signifi-
cant. In.liquids,ron the other hand, the solutions may be fairiy dilute because
of the solubility limit, but the diffusion coefficient can be a strong function
. of position. .(Compare Spaldingloa) |
For metai deposition .at the limiting current from a 0.5 M solution of eop-
per sulfate in water, R = -0.0469 which corresponds to a correction factor of
6 = 1.027. In this case ﬁhe correction is in the opposite direction from the
Schmidt -number correction.
c) Deposiﬁion of Copper
Mgss-=transfer rates calculated for the deposition of copper from agueous
cupric sulfate solutions at 25°C}are shown in figure 2 in -the form‘ﬂf the
.limiting current. density divided by the square root -of the rotation speed
.plotted against the bulk concentration of CuSOhg The curve lsbeled “exact” is
calculatgd as Qﬁtlined egrlier so as to account for property v:anriéﬁbions,0 non-=
zero interfacial velocity, and non-infinite Schmidt numwber. For comparison, the
equation of Levic_hl has been evaluated with the bulk values of the physical prop-
erties. Figure 2 glso shows the iesults when the Levich eqﬁation is corrected5’6
for the fact that the Schmidt number is not infinite. The fourth curve shows the
results when the Levich equatioﬁ is corrected for the effect of a non-zero inter-
facial velocity acecording to figure 1. In this caée-all properties were evalusa-
ted at the bulk concentrations except the transference number in R (equation (20)),
which was évaluated;at the surface concentration since it arises from the boun-
dary condition (18).

. .Figure 2 shows that corrections fbr finite Schmidt number and non-zero inter~-
facial velocity are small compared to the effect. of property varistions. The
constant-property solutions would,. of course, give better agreement Qith the
exact.analysis if appropriste average values of the physical properties were

used. Figure 3 shows 'integral diffusion coefficients appropriate for
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Figure 2. Limiting currents for copper deposition.
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the rotating disk plotted against the square root of the masd fraction of
. .
CuSOh, These were calculated from the equation of lLevieh™ in the form
- 14 32 11 32
D = v [ lim - - ﬁh8] oy J<=> l1m 63Tf8' ,
+in ® z+v+Fc&;/Q‘voo 0.620 _ PN D O’v204 :

(22)

where the limiting currentvwas calculétea accérding ﬁo ﬁhe-rigorous analysis.
Also shown are the differential diffusion coefficients of‘Eversolell and of
Emaﬁuel and Olanderlé, which were ﬁsed in the rotating diék calculations,

and the integral.diffusion coefficients appropriate to & diaphragm cell and
defined as |

O ‘
. . (o]
D. = ifL/T D dw . (23)
in W : : :
w0

Figure 3 shows thaf the integral diffﬁsion coefficient appropriate to a
rotating disk is not the—same.as that appropriate to a diaphragm cell.
Since no way has been.developed for resolving the rotating disk data into
tﬁé differential diffusion coefficient data, the rotating disk is not very
useful for méasuringvthe concentration deﬁendeﬁce of the diffusion coeffi-
cient in a binary electrolyte. |

'Other useful byaproducts:of'the msss-transfer calculations are the
surface concentration and the concentration overpotenmtial. Figure 4 showe
how the surface céncéntration.varies from the bulk value at zero current
‘to zero-at the limiting current for several values of bulk coﬁcentrationo
The straighty”diagoﬁal_line corresponds to the results fdr constant pfopér—
ties. | |

a) Concentration Overpotential

We define here‘thefconcentration overpotentisl for this particular,

copper system in terms of two copper reference electrodes, one in the bulk
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Figure 3. Diffusion coefficients'l for "CuSO_u in water.
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. solution and one located very near the disk surface.- Let A@i be :the potential

.of the. reference electrode near the disk minus the potential of the reference

electrode in the bulk, and let AQjMIbe the potentialidifference which would
exist if there were the same current distribution but. no .concentration varia-
tions in the diffusion .layer. Then we define the concehtration~overpotential

as

The' concentration overpotential thus defined is the potential of a concentra-

tion cell plus an ohmic contribution due to theé change of resistivity in the

diffusion layer.
The potential ® of & movable, coppeér reference electrode varies with

position according to the equation;3
Vo = - 1/k + (RI/F)(1-t) V 1w vm . o (2n)

By subtracting the current density divided by the bulk éonductiviﬁy‘and
integratihg, we obtain for the concentration overpotential at the rotating

disk as déefined above

The.calculated concentratlon overpotential is plotﬁed-against a dimensionless
current deﬂsity,in;figure 5 for various bulk concentrations of Cus0, -

By defining the cbncentfation o&erpotential in terms of two reference .
electrodes, there is no question that it is well defined, and the potential
.difference between the disk eiéctrode énd the referenge electrode adjacent
to its surface -can be regarded‘as-the "eurface overpotentia1" associated |
with'thé.electrode,reaction iteelf. In this way the “surface overpotential’

depends only on the current density and the concentration a% the electrode



° cp=0.02 M
,C(D""O-I M
 CrO0.5M
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Figure 5. Concentration overpotential.
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surface, as it should, and not upon any events occurring in the diffusion
la&er»or beyond.

By subtracting .the potential difference between the two reference elec-
trodes which would exist in theésence of cenéentration.variations§ the “
concentration overpotential beéomes independent of the position of the
second reference electrede outside the diffusion layer. One can then cal-
culate g separate:ﬁahmic.overpotential" which will depend ubon the macro-
sc0pic current. distribution in the cell outeide the diffusion—layer and’
on the placement of the reference electrodeo

The. concentration oﬁerpotentiél.thus defined can be calculated from
.méés=transfer theory.-and requires a~knowlédge-of all.%he~trénsport/properties»
of the solution Cu5 Ky t29 and D} but does not require any quantitative

expressions for the electrode kinetics.
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Nomenélature
. . .. 2
diffusion coefficient (cm /sec).

integral diffusion coefficient‘(cme—/sec)°

Faraday's constant (coulomb/equiv).

dimensionless radial velocity.

dimensionless tangential velocity.

. gravitational acceleration (cm/secz),

dimensionless axial velocity.
. 2y -
current density (mA/em™).
dimensionless current density (see equation (14)).
molality (moles/kg).

molecular weight (g/mole).

- mass flux of4catiqns~(g/cm2~sec)h

. pressure (dyne/cmg).

dimensionless dynamic pressure.
radial-coBrdinatg-(cm)m

flux ratio (see equation (20)).
universal gas cons‘ea»nt(joule/mole-deg)°
‘V/D, Schmidt number.

time (sec). |

cation transference number with respect to mass-average velocity.

- cation transference number with respect to solvent velocity.

~absolute temperature (deg K).

mass-average velocity (em/sec).

. normal distance from disk (em)-

charge number of cation.

18



- mean molal activity coefficient.

¥

F(h/3) = 0.89298, the gamna function of 4/3.

T, - concentration overpqtential‘(volt)°

6 - angular coordinate.

6 - correction factor (see equation (19)).

K - conductivity (mho/cm). '

b - viscosity (g/cmasec);

v - kinematic viscosity ,(cmg/sec)°

v, - nﬁmber.of cations per molecule of salt.

&_ - dimengionless normal distance (see equation

o - density (g/cm3)_ ‘

T -vﬁiscousvstreésl(dyne/cmg)w

o) - poﬁepﬁial of reference electroede (volt).

- mass fraction;

Q - rotation-épeed of disk (fadians/sec)°
subscripté

+ - cation.

- - anioh,(

o -veleﬁtrode surface. -

o - bulk solution.

5 - salt, /

lim - limitingn

(2)).

19
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