
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The Fine-Grained Complexity of Problems Expressible by First-Order Logic and Its Extensions

Permalink
https://escholarship.org/uc/item/0c89b76b

Author
Gao, Jiawei

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0c89b76b
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

The Fine-Grained Complexity of Problems Expressible by First-Order Logic and Its
Extensions

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Jiawei Gao

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Sam Buss
Professor Jiawang Nie
Professor Ramamohan Paturi
Professor Victor Vianu

2019

Copyright

Jiawei Gao, 2019

All rights reserved.

The dissertation of Jiawei Gao is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2019

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Fine-Grained Complexity of Model Checking Problems 1
1.2 Overview of the Dissertation . 6
1.3 Definitions of Model Checking Problems and Classes 8
1.4 First-Order Property Problems . 8

1.4.1 Types of First-Order Property Problems with Different Com-
plexity Measures . 12

1.4.2 Types of Problems Definable by Extensions of First-Order Logic 13
1.5 Fine-Grained Complexity Preliminaries 16

1.5.1 Fine-Grained Reductions . 16
1.5.2 Conjectures . 19
1.5.3 Basic Reduction Techniques 22

Chapter 2 Consequences Under the Nondeterministic Strong Exponential Time Hypothesis 25
2.1 Introducing NSETH . 25

2.1.1 Reasons that NSETH Is Hard to Refute 27
2.1.2 Hardness of Reducibility under NSETH 28

2.2 Characterizing the Quantifier Structure of SETH-Hard FO Property
Problems . 30

2.3 Acknowledgments . 34

Chapter 3 The Completeness of Orthogonal Vectors 35
3.1 Chapter Overview . 35

3.1.1 Motivation . 35
3.1.2 Main Results . 38
3.1.3 Organization of this Chapter 39

3.2 Outline of the Proof . 39
3.3 The Building Blocks . 41

3.3.1 Complementing Sparse Relations 41

iv

3.3.2 Sparse and co-Sparse Relations 44
3.4 Completeness of k-OV in MC(∃k∀) 47

3.4.1 How to Complement a Sparse Relation: Basic Problems, and
Reductions Between Them . 47

3.4.2 Randomized Universe-Shrinking Self-Reduction of BP[`] where
` 6= 1k . 50

3.4.3 Deterministic Universe-Shrinking Self-Reduction of BP[1k] . . 53
3.4.4 Hybrid Problem . 53
3.4.5 Reduction to Basic Problems 55
3.4.6 Turing reduction from general MC(∃k∀) problems to the Hybrid

Problem . 56
3.5 Derandomization . 63

3.5.1 Proof of Lemma 3.5.1 . 63
3.5.2 Proof of Lemma 3.5.2 . 64
3.5.3 Hybrid Problem . 65
3.5.4 Extending to More Quantifiers 67

3.6 Extending to Hypergraphs . 68
3.7 Hardness of k-OV for MC(∀∃k−1∀) 70
3.8 Improved Algorithms . 72
3.9 Baseline and Improved Algorithms . 73

3.9.1 Baseline Algorithm for First-Order Properties 73
3.9.2 Algorithms for Easy Cases . 76

3.10 Open Problems . 80
3.11 Acknowledgments . 81

Chapter 4 The Model Checking for Extensions of First-Order Logic 82
4.1 Chapter Overview . 82
4.2 Organization of this Chapter . 88
4.3 FO Formulas of Quantifier Rank k . 89
4.4 Conditional Hardness under the SETH of Constant Depth Circuits . . . 95

4.4.1 Hardness of Variable Complexity 3 Formulas 95
4.4.2 Hardness of 2 Variable Formulas with Transitive Closure 98

4.5 FO with Unary Function Symbols . 100
4.6 FO with Comparison on Ordered Structures 102
4.7 FO with Transitive Closure on Symmetric Input Relations 107
4.8 Open problems . 109
4.9 Baseline Algorithms . 110
4.10 Baseline Algorithm for Variable Complexity k 111

4.10.1 Variable Complexity 2 . 111
4.10.2 3 and More Variables . 113
4.10.3 Case Analysis on FO with Three Variables 113

4.11 Acknowledgments . 116

v

Chapter 5 Reachability on Tree-Like DAGs, and Applications to Dynamic Programming
Problems . 117
5.1 Chapter Overview . 117

5.1.1 Extending One-Dimensional Dynamic Programming to Graphs 117
5.1.2 Introducing Reachability to First-Order Model Checking 120
5.1.3 Main Results . 122
5.1.4 Organization of this Chapter 125

5.2 From Sequential Problems to Parallel Problems 125
5.2.1 The Recursive Algorithm . 125
5.2.2 A Special Case that Can Be Exhaustively Searched 128
5.2.3 Subroutine: Reachability Across a Cut 130
5.2.4 CUTPATHP for Bounded-Treewidth DAGs 132

5.3 Application to Least Weight Subpath 135
5.4 From Listing Problems to Decision Problems 139
5.5 From Parallel Problems to Sequential Problems 140
5.6 Open problems . 141
5.7 Reachability Oracle . 141
5.8 Acknowledgments . 143

Bibliography . 144

Appendix A Examples of Problems . 150
A.1 Model Checking Problems . 150
A.2 Problems about Reachability . 151

vi

LIST OF FIGURES

Figure 3.1: A diagram of reductions. We simplify this picture, and make the reductions to
Edit Distance, LCS, etc. more meaningful. 36

Figure 3.2: The universe-shrinking process. S1 = {a,b} and S2 = {a,b,c}. After the
mapping h, the new sets are h(S1) = {a′,b′,c′,d′} and h(S2) = {a′,b′,c′,d′,e′}. 52

Figure 3.3: An example of a solution to a Hybrid Problem instance, when k = 2. 54
Figure 3.4: The formula is satisfied iff there exists (Sv1,Sv2, . . . ,Svk) so that there does not

exist such an element u in any of the sub-universes. 59

Figure 4.1: The expressive power and complexity of problems and classes of problems. . . 89

vii

LIST OF TABLES

Table 3.1: Atomic Problems . 77

Table 4.1: Best algorithms and conjectured hardness of different classes of logic. 88

viii

ACKNOWLEDGEMENTS

First of all I would like to thank my advisor Prof. Russell Impagliazzo for his invaluable

help all these years. I would also like to thank Prof. Ramamohan Paturi for his help on all our

projects. I would also like to acknowledge our co-authors Antonina Kolokolova, Ryan Williams,

Marco Carmosino, Ivan Mihajlin, Stefan Schneider. I am glad that I took Prof. Victor Vianu’s

database theory class, which raised my interest in first-order logic and model checking. I would also

like to thank theory group students Anant Dhayal, Sasank Mouli, Jessica Sorrell and Jiapeng Zhang

for helpful discussions about different problems. I am also thankful to my husband Jian Yang who

gave me lots of support through this program. Finally I would like to thank coffee and diet coke.

Chapter 2 contains material from “Nondeterministic Extensions of the Strong Exponential

Time Hypothesis and Consequences for Non-Reducibility”, by Marco L Carmosino, Jiawei Gao,

Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider, which appeared in

the proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science

(ITCS 2016). The author of this dissertation was a principal author of this publication. The material

in this chapter is copyright c©2016 by Association for Computing Machinery. We would like to

thank Amir Abboud, Karl Bringmann, Bart Jansen, Sebastian Krinninger, Virginia Vassilevska

Williams, Ryan Williams and the anonymous reviewers for many helpful comments on an earlier

draft.

Chapter 3 contains material from “Completeness for First-Order Properties on Sparse Struc-

tures with Algorithmic Applications”, by Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova,

and Ryan Williams, which appeared in the proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2017). The author of this dissertation was a principal

author of this publication. The material in this chapter is copyright c©2017 by Association for

Computing Machinery and Society for Industrial and Applied Mathematics. We would thank

Virginia Vassilevska Williams for her inspiring ideas. We would like to thank Marco Carmosino,

Anant Dhayal, Ivan Mihajlin and Victor Vianu for proofreading and suggestions on this paper. We

ix

also thank Valentine Kabanets, Ramamohan Paturi, Ramyaa Ramyaa and Stefan Schneider for

many useful discussions. Finally, we really appreciate the suggestions from the reviewers about the

writing and expression.

Chapter 4 contains material from “The Fine-Grained Complexity of Strengthenings of

First-Order Logic”, by Jiawei Gao and Russell Impagliazzo, which is currently in submission. The

author of this dissertation was a principal author of this work. The authors sincerely thank Marco

Carmosino and Antonina Kolokolova for comments on improving this paper.

Chapter 5 contains material from “On the Fine-grained Complexity of Least Weight Sub-

sequence in Multitrees and Bounded Treewidth DAGs”, by Jiawei Gao, to appear in International

Symposium on Parameterized and Exact Computation (IPEC 2019). The author of this dissertation

was a principal author of this publication. The author would like to thank Russell Impagliazzo

for his guidance and advice on this paper, and thank Marco Carmosino, Anant Dhayal and Jessica

Sorrell for helpful comments.

x

VITA

2013 B. E. in Software Engineering, Fudan University, Shanghai, China

2019 Ph. D. in Computer Science, University of California, San Diego

xi

ABSTRACT OF THE DISSERTATION

The Fine-Grained Complexity of Problems Expressible by First-Order Logic and Its
Extensions

by

Jiawei Gao

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Russell Impagliazzo, Chair

This dissertation studies the fine-grained complexity of model checking problems for fixed

logical formulas on sparse input structures.

The Orthogonal Vectors problem is an important and well-studied problem in fine-grained

complexity: its hardness is implied by the Strong Exponential Time Hypothesis, and its hardness

implies the hardness of many other interesting problems. We show that the Orthogonal Vectors

problem is complete in the class of first-order model checking on sparse structures, under fine-

grained reductions. In other words, the hardness of Orthogonal Vectors and the hardness of

first-order model checking imply each other. This also gives us an improved algorithm for first-order

model checking problems.

xii

Among all first-order logic formulas in prenex normal form, we have reasons to believe that

quantifier structures ∃ . . .∃∀ and ∀ . . .∀∃ may be the hardest in computational complexity: If the

Nondeterministic version of the Strong Exponential Time Hypothesis is true, formulas of these

forms are the only hard ones under the Strong Exponential Time Hypothesis.

We can add extensions to first-order logic to strengthen its expressive power. This work also

studies the fine-grained complexity of first-order formulas with comparison on structures with total

order, first-order formulas with transitive closure operations, first-order formulas of fixed quantifier

rank, and first-order formulas of fixed variable complexity.

We also introduce a technique that can be used to reduce from sequential problems on graphs

to parallel problems on sets, which can be applied to extending the Least Weight Subsequence

problems from linear structures to some special classes of graphs.

xiii

Chapter 1

Introduction

1.1 Fine-Grained Complexity of Model Checking Problems

This dissertation presents results about the fine-grained complexity and algorithms about

problems in polynomial time, that are describable by first-order logic or extensions of first-order

logic. Fine-grained complexity is a relatively new sub-area within theoretical computer science

that not only qualitatively classifies problems as “easy” or “hard”, but (to the extent possible)

pin-points their exact complexities. It aims to make complexity theory more relevant to algorithm

design (and vice versa) by giving reductions that better preserve the times required for solving

problems, and connecting algorithmic progress with complexity theory. While some of the key

ideas can be traced back to parameterized algorithms and complexity ([FJ56, DF92]), studies of

the exact complexity of NP-complete problems ([SHI90, IPZ98, JS99, IP99]), and algorithmic

consequences of circuit lower bounds ([AW85, Yao82, LMN93, NW94, BFNW93, IKW02, KI04]),

the full power of this approach has emerged only recently. This approach has given us new circuit

lower bounds ([Wil13, Wil14b]), surprising algorithmic improvements using circuit lower bound

techniques ([AWY15, Wil05, CW16, CIKK16]), and many new insights into the relative difficulty

of substantially improving known algorithms for a variety of problems both within and beyond

polynomial time.

1

There are now a wide variety of standard algorithmic problems where no significant

improvements in algorithmic running time can be made without refuting one of a few conjec-

tures about well-studied problems, such as the k-SUM problem [GO95], All Pairs Shortest Paths

[WW10, AGW14, LWW18], SAT, or Orthogonal Vectors [AWW14, BI15, BCH16, Bri14, ABW15,

BI15, BK15, AHWW16, MPS16, KPS17, AR18, ABDN18, BRS+18]. As the field has grown,

many fundamental relationships between problems have been discovered, making the graph of

known results a somewhat tangled web of reductions.

Traditionally, complexity theory has been used to distinguish very hard problems, such as

NP-complete problems, from relatively easy problems, such as those in P. However, over the past

few decades, there has been progress in understanding the exact complexities of problems, both for

very hard problems and those within P, under plausible assumptions.

Unfortunately, as our understanding of the relationship between the exact complexities of

problems grows, so does the complexity of the web of known reductions and the number of distinct

conjectures these results are based on. Ideally, we would like to show that many of these conjectures

are in fact equivalent, or that all follow from some basic unifying hypothesis, thereby improving our

understanding and simplifying the state of knowledge. For example, it would be nice to show that

the 3-SUM conjecture or the APSP conjecture follows from SETH. A result like that would reduce

the number of conjectures we rely on to explain the complexity of problems.

At the same time, many problems seem to be hard, but their hardness is not explained by

any of the three most popular conjectures in fine-grained complexity, SETH, the 3-SUM conjecture

and the APSP conjecture. Among these questions is if HITTINGSET can be solved in subquadratic

time or if MAXFLOW has a linear time algorithm. For neither of these problems can we answer the

question positively with an algorithm nor negatively with a conditional lower bound.

In traditional complexity, classes of problems are related to each other, and individual

problems understood by identifying classes for which they are complete. In contrast, most of

the results in fine-grained complexity were obtained on a problem-by-problem basis. One reason

for this is that results in fine-grained complexity cut across traditional classes, with NP-complete

2

problems reducing to problems within P or even smaller classes. This raises the questions: is it

possible to give a fine-grained complexity of classes of problems? Is the notion of completeness

useful in fine-grained complexity?

We study the class of problems where each problem asks whether the input structure satisfies

a fixed first-order formula. This class is natural both in terms of computational complexity, where

it is the uniform version of AC0, and in database theory, because these are the queries expressible

in basic SQL [AHV95]. First-order logic can also express many polynomial time computable

problems: ORTHOGONALVECTORS, k-ORTHOGONALVECTORS, k-CLIQUE, k-INDEPENDENTSET,

k-DOMINATINGSET, etc. Not only were the likely complexities of the hardest problems (as a

function of number of quantifiers) given, but in the second paper, a natural complete problem was

identified, the orthogonal vectors problem (discussed below in more detail). The conclusion was

that there were substantial improvements possible in the worst-case complexity of model checking

for first-order properties if and only if the known Orthogonal Vectors algorithms can be substantially

improved. Using a recent sub-polynomial improvement in OV algorithms by [AWY15], they

obtained a similar improvement in model checking every first-order property.

In CNF-SAT problem, given a Boolean formula F in CNF form (conjunction of disjunctions

of (possibly negated) variables), the goal is to determine whether there is an assignment of Boolean

values to variables of F which makes F true. In k-CNF-SAT, every clause (disjunction) can have at

most k literals. We refer to the following conjecture about complexity of solving CNF-SAT:

Strong Exponential Time Hypothesis (SETH)1: For every ε > 0, there exists a k ≥ 2 so

that k-CNF-SAT cannot be solved in time O(2n(1−ε)).

The problem of deciding whether a structure satisfies a logical formula is called the model

checking problem. It is well-studied in finite model theory. In relational databases, first-order

model checking plays an important role, as first-order queries capture the expressibility of relational

algebra. In contrast to the combined complexity, where the database and query are both given

1Some define SETH over randomized algorithms instead of deterministic ones

3

as input, the data complexity measures the running time when the query is fixed. The combined

complexity of first-order queries is PSPACE-complete, but the data complexity is in LOGSPACE

[Var82]. Moreover, these problems are also major topics in parameterized complexity theory. In

[FG06], Flum and Grohe organize parameterized first-order model-checking problems (many of

which are graph problems) into hierarchical classes based on their quantifier structures. Here, we

study model checking from the fine-grained complexity perspective.

This dissertation talks about model checking problem where the logical formula (i.e., the

query) is fixed by the problem. We use the term “first-order property” to refer to these problems.

First-order properties are also extensively studied in complexity, logic (especially finite

model theory and theory of databases) and combinatorics. For example, the first zero-one law for

random graphs was proved for first-order properties on finite models ([Fag76]), and Ajtai’s lower

bound for AC0 [Ajt83] (proved independently by Furst, Saxe, and Sipser ([FSS84])) was motivated

and stated as a result about inexpressibility in first-order logic.

There are many problems within P that are known to be SETH-hard, but few of them

are first order property problems. And of the ones that are, they tend to have similar logical

forms. For instance, k-DOMINATINGSET [BCH16] is definable by a ∀k∃ quantified formula; the

GRAPHDIAMETER-2 problem and the BIPARTITEGRAPHDOMINATEDVERTEX problem [BCH16]

are definable by ∀∀∃ quantified formulas. Here we study the relations between SETH-hardness and

the logical structures of model checking problems. A result by Ryan Williams [Wil14a] explored

the first-order graph properties on dense graphs, while here we look into sparse graphs whose input

is a list of edges.

We define first-order properties on hypergraphs. The input is a many-sorted universe that

we view as sets of vertices, together with a number of unary relations (node colors), and binary

relations, viewed as different categories or colors of edges. The binary relations are not symmetric

in general. We specify the problem to be solved by a first order sentence. Let ϕ be a first order

4

sentence in prenex normal form, with k quantifiers:

ϕ = Q1x1 ∈ X1,Q2x2 ∈ X2, . . .Qkxk ∈ Xkψ (1.1)

or shortened as

ϕ = Q1x1Q2x2 . . .Qkxkψ (1.2)

where ϕ is a quantifier-free formula whose atoms are unary or binary predicates on x1, . . . ,xk.

An instance of the model checking problem of a formula ϕ with k ≥ 3 quantifiers specifies

sets X1, . . .Xk, where variable xi is an element of set Xi, as well as all the unary and binary relations

that occur in ϕ. We assume without loss of generality that the sets Xi are disjoint and that the domain

of any predicate is restricted to one pair (Xi,X j). We can always duplicate elements and adjust the

corresponding relations accordingly. We also assume equality is one of the relations, so we can

tell when xi = x j. To reformulate the problem as a graph problem, we view the sets X1, . . . ,Xk as

the sets of nodes in a k-partite graph, and the binary predicates as (colored) edges, i.e. for some

predicate P, if P(xi,x j) is true then there is an edge between the nodes xi and x j. We refer to the

k-partite graph with edges defined by predicate P as GP, and the colored union of graphs defined on

all predicates as G.

We assume that the input is given as follows: For each unary relation, we are given a Boolean

vector indexed by the vertices saying whether the relation holds, and for each binary predicate, the

list representation of the corresponding directed graph. We want to decide if ϕ is true for the input

model.

Examples of this problem include k-CLIQUE, which is defined by

ϕ = ∃x1 . . .∃xk
∧

i, j∈{1,...,k},i 6= j

E(xi,x j) (1.3)

5

k-DOMINATINGSET, defined by

ϕ = ∃x1 . . .∃xk∀xk+1 (E(x1,xk+1)∨·· ·∨E(xk,xk+1)) (1.4)

and GRAPHRADIUS2, defined by

ϕ = ∃x1∀x2∃x3 (E(x1,x3)∧E(x3,x2)) (1.5)

We let n = maxi |Xi| be the maximum size of the node parts, and m be the number of edges

in the union of the graphs. The size is n+m, but for convenience, we will assume m > n and use m

as the input size.

1.2 Overview of the Dissertation

Section 1.3 gives the definitions of problems and classes used in this dissertation. Section

1.5 introduces the basic concepts and techniques of fine-grained complexity.

In Chapter 2, we introduce a new technique that provides reasons to believe that some

problems may be strictly harder than some other problems. We show that under the Nondeterministic

Strong Exponential Hypothesis, the hardest first-order property problems all have similar quantifier

structures: either ∃ . . .∃∀, or ∀ . . .∀∃.

In Chapter 3, we prove that the well-studied Orthogonal Vectors problem is complete in

the class of first-order property problems. In other words, improved algorithms for OV will imply

better algorithms for all first-order property problems. This result shows that Orthogonal Vectors is

a relatively hard problem. Even if the Strong Exponential Time Hypothesis is false, OV may remain

hard if there exists a hard first-order property.

We give algorithms for every first-order property problem that improves this upper bound to

mk/2Θ(
√

logn), i.e., an improvement by a factor more than any poly-log, but less than the polynomial

required to refute SETH. Moreover, we show that further improvement is equivalent to improving

6

algorithms for sparse instances of the well-studied Orthogonal Vectors problem. Surprisingly, both

results are obtained by showing completeness of the Sparse Orthogonal Vectors problem for the

class of first-order properties under fine-grained reductions. To obtain improved algorithms, we

apply the fast Orthogonal Vectors algorithm of [AWY15, CW16].

While fine-grained reductions (reductions that closely preserve the conjectured complexities

of problems) have been used to relate the hardness of disparate specific problems both within P and

beyond, this is the first such completeness result for a standard complexity class.

Chapter 4 studies extensions of the class of first-order model checking problems, and studies

this class with more lenient parameterizations. We consider classes obtained by allowing function

symbols; first-order on ordered structures; adding various notions of transitive closure operations;

and stratifications of first-order properties by quantifier depth and variable complexity, rather than

number of quantifiers. For some of these classes, OV is still a complete problem, in that significant

improvement for the entire class is equivalent to significant improvement for OV algorithms. For

these classes, we can also use the improved OV algorithm of [AWY15, CW16] to get moderate

improvements on algorithms for the entire class. For other classes, we show that model checking

becomes harder than for first-order, under well-studied conjectures such as SETH. For these classes,

we show hardness follows from weaker assumptions than SETH.

Surprisingly, whether an extension increases the complexity of model checking seems

independent of whether it increases the expressive power of the logic. For example, adding function

symbols does not change which problems are expressible by first-order, but does increase the

time for model checking under SETH. On the other hand, adding an ordering does not change the

fine-grained complexity of model checking, although it increases the logic’s expressive power.

Chapter 5 introduces a new technique that generalizes previously known subquadratic time

reductions from linear structures to graphs. Least Weight Subsequence (LWS) is a class of highly

sequential optimization problems with form F(j) = mini< j[F(i)+ci, j] [HL87]. They can be solved

in quadratic time using dynamic programming, but it is not known whether these problems can be

solved faster than n2−o(1) time. Surprisingly, each such problem is subquadratic time reducible to a

7

highly parallel, non-dynamic programming problem [KPS17]. In other words, if a “static” problem

is faster than quadratic time, so is an LWS problem. For many instances of LWS, the sequential

versions are equivalent to their static versions by subquadratic time reductions. The previous result

applies to LWS on linear structures, and this chapter extends this result to LWS on paths in sparse

graphs, the Least Weight Subpath (LWSP) problems. When the graph is a multitree (i.e. a DAG

where any pair of vertices can have at most one path) or when the graph is a DAG whose underlying

undirected graph has constant treewidth, we show that LWS on this graph is still subquadratically

reducible to their corresponding static problems. For many instances, the graph versions are still

equivalent to their static versions.

Moreover, this chapter shows that on these graphs, if we can decide a first-order property

∃x∃yP(x,y) in subquadratic time, where P is a quickly checkable property, then we can also in

subquadratic time decide whether there are pairs x,y in the transitive closure of a DAG of the above

types that satisfy P(x,y), which is a considerably more expressive class of problems.

Appendix A lists some example problems in the classes of problems studied in this disserta-

tion.

1.3 Definitions of Model Checking Problems and Classes

1.4 First-Order Property Problems

Next we will give the definitions and notations regarding the model checking problems.

Let ϕ be a fixed formula and let G be an input structure, the model checking problem for

ϕ is to decide whether G satisfies ϕ. When ϕ is a first-order formula, we also call it a first-order

property problem.

ϕ is a fixed formula without free variables (i.e. all variables are quantified by either ∃ or ∀).

We use MCϕ to denote the model checking problem for formula ϕ. In this dissertation we usually

use letter ϕ for formulas containing quantifiers, and use letter ψ for quantifier-free subformulas.

8

Letter Q is used to represent a quantifier, either ∃ or ∀.

The input structure has multiple variable domains and multiple relations. It can be considered

as a hypergraph (represented by adjacency list): the elements of the structure correspond to vertices,

and the relation tuples of the structure correspond to edges.

The domain of a variable is a fixed set of vertices so that a variable in ϕ can be assigned to

any one of the vertices. The total number of vertices is n.

A relation is a fixed set of edges (or hyperedges) so that a binary (or t-ary) predicate in ϕ

can correspond to one of the edges. The total number of edges is m. We only consider the case that

m≥ n.

Because the number of edges is important in describing problem size, in the rest of this

dissertation we define the degree of a vertex v to stand for the total number of edges the vertex is in.

let ϕ be a fixed first-order sentence containing free predicates of arbitrary constant arity

(and no other free variables). For example, the k-Orthogonal Vectors (k-OV) problem can be

expressed by a (k+ 1)-quantifier formula ϕ = (∃v1 ∈ A1) . . .(∃vk ∈ Ak)(∀i)
[∨k

j=1¬(v j[i] = 1)
]
.

The model-checking problem for ϕ, denoted by MCϕ, is deciding whether ϕ is true on a given input

structure interpreting predicates in ϕ (e.g., given k sets of vectors, decide k-OV). We sometimes

refer to structures as “hypergraphs” (“graphs” when all relations are unary or binary), and relations

as edges or hyperedges. We use n to denote size of the universe of the structure and m the total

number of tuples in all its relations (size of the structure). Many graph properties such as k-clique

have natural first-order representations, and set problems such as Hitting Set are representable in

first-order logic using a relation R(u,S)≡ (u ∈ S).

We propose the following conjecture on the hardness of model checking of first-order

properties.

First-order property conjecture (FOPC): There is an integer k ≥ 2, so that there is a

(k+1)-quantifier first-order property that cannot be decided in O(mk−ε) time, for any ε > 0.

Assumptions

The complexity is measured in the word RAM model with O(logn) bit words. The notation

9

Õ notation is generally used for time complexity hiding sub-polynomial time factors. But in this

dissertation we usually consider savings factors in running time that grow faster than polylogarithmic,

so we still use the big-O notation but let it hide polylogarithmic factors.

In this dissertation, without loss of generality we make the following assumptions.

• Assume m= n1+o(1), because otherwise the O(mnk−2) time baseline algorithm (Lemma 4.9.1)

is better than the conjectured time mk−o(1).

• Assume that different variables are in different domains. (For instance, the universe of x is

X , the universe of y is Y , etc.) In other words, a structure for a k-quantifier formula can be

considered as a k-partite graph. However, in the case where transitive closure operations can

be taken on a relation, we will assume both variables of the relation are in the same universe.

• We assume that for any tuple of elements, the value of a predicate on this tuple can be queried

in constant time. Also, assume that the neighbors of any element v can be enumerated in time

linear to the degree of v.

Let R1, . . . ,Rr be predicates of constant arities a1, . . . ,ar (a vocabulary). A finite structure

over the vocabulary R1, . . . ,Rr consists of a universe U of size n together with r lists, one for every

Ri, of mi tuples of elements from U on which Ri holds. Let m = ∑
r
i=1 mi; viewing the structure as a

database, m is the total number of records in all tables (relations).

We loosely use the term hypergraph to denote an arbitrary structure; in this case, we refer to

its universe as a set of vertices V = {v1, . . . ,vn} and call tuples (v1, . . . ,vai) such that Ri(v1, . . . ,vai)

holds hyperedges (labeled Ri). A set of all Ri-labeled hyperedges in a given hypergraph is denoted

by ERi or just Ei; the structure is denoted by G = (V,E1, . . . ,Er). Similarly, we use the term graph

for structures with only unary and binary relations (edges); here, we mean edge-labeled vertex-

labeled directed graphs with possible self-loops, as we allow multiple binary and unary relations

and relations do not have to be symmetric. This allows us to use graph terminology such as a degree

(the number of (hyper)edges containing a given vertex) or a neighbourhood of a vertex.

Let ϕ be a first-order sentence (i.e. formula without free first-order variables) containing

predicates R1, . . . ,Rr. Let k be the number of quantifiers in ϕ. Without changing k, we can write ϕ

10

in prenex form. The model-checking problem for a first-order property ϕ, MCϕ, is: given a structure

(hypergraph) G, determine whether ϕ holds on G (denoted by G |= ϕ). We use notation FOPk for the

class of model checking for k-quantifier first-order formulas in prenex form, and MC(Q1 . . .Qk) for

the model checking for first-order prenex formulas with quantifier prefix Q1 . . .Qk, with a shortcut

Qc
i denoting c consecutive occurrences of Q (e.g. MC(∃k∀)).

We assume that (hyper)graphs are given as a list of m (hyper)edges, with each hyperedge

encoded by listing its elements. In the Word RAM model with O(logn) bit words, the size of an

encoding of a hypergraph is O(n+m) words, and an algorithm can access a hyperedge in constant

time. With additional O(m) time preprocessing, we can compute degrees and lists of incident edges

for each vertex, and store them in a hash table for a constant-time look-up; edges incident to a vertex

can then be listed in time proportional to its degree. We also assume that m≥ n, with every vertex

incident to some edge, because the interesting instances are in this case. Moreover, we assume the

(hyper)graph is k-partite where k is the number of variables in ϕ, so that each variable is selected

from a distinct vertex set. From any (hyper)graph, the construction of this k-partite graph needs a

linear time, linear space blowup preprocessing which creates at most k duplicates of the vertices

and k2 duplicates of the edges. Finally, we treat domains of quantifiers as disjoint sets forming a

partition of the universe; any structure can be converted into this form with constant increase of

the universe size. We also view predicates on different variable sets (e.g., R(x1,x2) vs. R(x2,x4)

vs. R(x4,x4)) as different predicates, and partition corresponding edge sets appropriately.

The focus of this dissertation is on sparse structures, that is, the case when m≤ O(n1+γ) for

some γ such that 0≤ γ < 1. In particular, all Ei are sparse relations; we use the term co-sparse to

refer to complements of sparse relations. We will usually measure complexity as a function of m.

From the following baseline algorithm which will be proved in Section 3.9.1, the sparse assumption

is without loss of generality.

Claim 1.4.1 (Baseline algorithm). For k ≥ 1, FOPk+1 is solvable in time O(nk−1m).

11

1.4.1 Types of First-Order Property Problems with Different Complexity

Measures

k-Quantifier Problems: Here ϕ has form Q1x1 . . .Qkxkψ(x1, . . . ,xk). Without loss of gener-

ality, we assume ϕ is in prenex normal form. For example, the sparse OV problem can be represented

by

ϕOV = ∃x∃y∀z(¬One(x,z)∨¬One(y,z)),

where x,y are vectors and z is a coordinate of the vectors. One(x,z) is true iff a vector x has a one

on its z-th coordinate. The sparse k-OV problem is equivalent to

ϕk−OV = ∃x1 . . .∃xk∀z
∨k

i=1(¬One(xk,z)).

We use the notation FOPk for the class of MCϕ where ϕ is a first-order formula with k

quantifiers. This is the class of problems studied in Chapter 3.

Quantifier Rank k Problems: The quantifier rank of a formula is the maximum depth

of nesting of its quantifiers. When we can reuse the same variable name in different scopes, for

example,

ϕ = ∃x(∃y(∃zψ1∧∀zψ2)∧∀y(∃zψ3∨∀zψ4))

has only three variable names x,y,z, but they represent different variables in different scopes of

the formula. The above formula is of quantifier rank 3. The property that graph vertices s, t has a

path of length ` can be represented by a formula with `−1 existential quantifiers, but using the

technique of Savitch’s Theorem, the quantifier rank can be only log`.

We use the notation FOPqr=k for the class of MCϕ where ϕ is a FO formula with quantifier

rank k. FOPqr=k contains FOPk. It can be solved in time O(mnk−2) for any k ≥ 2 (Lemma 4.9.1).

This dissertation shows that, even though a formula with quantifier rank k may have more

than k variables when converted to prenex normal form, but the following theorem shows that even

if it seems more powerful, it is reducible to quantifier number k problems.

12

This theorem will be proved in Appendix 4.3.

Variable Complexity k Problems: If we do not bound the quantifier rank of ϕ, it will have

even more expressive power, for example, a formula of form

ϕ = ∃x∃y(R(x,y)∧∃x(R(y,x)∧∃y∃x(R(x,y)∧ . . .)))

can represent a path of any constant length using only 2 variables.

A formula with k different variable names is referred to as of variable complexity k. A

formula is of variable complexity k iff it can be computed by a straightline program, each line has

at most k distinct variables (even if written in prenex form). That is, it’s equivalent to the result

of a sequence of first-order queries of form Ri = {(x1, . . . ,xa) | ϕi(x1, . . . ,xa)} where each Ri is an

intermediate relation of arity a (0 ≤ a ≤ k), and each ϕi is a first-order formula with at most k

variables, including x1, . . . ,xa, which appear as free variables in ϕi.

When the variable complexity is 3, if in each line of the corresponding straightline program

ϕ, there is at most one occurrence of an intermediate binary relation computed in a previous line,

then ϕ can be solved in O(mn) time for sparse graphs, which will be shown in Appendix 4.10. In

this case we call this variable complexity 3 problem weakly succinct. Appendix 4.10 gives another

example which is in matrix multiplication time but not known to have O(mn) algorithms.

We use the notation FOPvc=k for the class of MCϕ where ϕ is a FO formula with variable

complexity k. The class of weakly succinct problems in FOPvc=k contains FOPqr=k (Each line of

the straightline program creates a new intermediate relation on x,y by an intermediate relation on

x,y and some original relations on some z. We will not elaborate the details here).

The following theorem shows that the SETH of constant depth circuit implies the quadratic-

time hardness of FOPvc=3.

1.4.2 Types of Problems Definable by Extensions of First-Order Logic

k-Quantifier with Function Symbols: In first-order formulas, sometimes we allow a list of

functions symbols f1, . . . , fc. Here we only consider unary function symbols, because the description

13

of higher arity functions takes n2 space in the input. To simulate higher arities, we could increase the

universe to a Cartesian power and then have unary functions on this product space. Each function

symbol fi maps an element to another element. Predicates can be taken on function symbols,

e.g. P(f1(x), f2(y)).

For example, the problem “checking if a graph coloring satisfies the condition that no pairs

of vertices of distance 2 have the same coloring” can be written as ∀x∀y(∃z(E(x,z)∧E(z,y))→

Diff (c(x),c(y))), where function c(x) maps vertex x to a color c, and predicate Diff means two

colors are different.

We use the notation FOPFk for the class of MCϕ where ϕ is a k-quantifier FO formula with

function symbols.

While we can simulate any function by a relation coding the graph of the function, R f (x,y)

⇐⇒ f (x) = y, to express, for example that f (x1) = f (x2) we would need to write ∃y,R f (x1,y)∧

R f (x2,y). So the number of quantifiers in the translated forumlas would increase, possibly up

to the number of function symbols appearing in the original. However, there is still a trivial

O(nk) algorithm for model checking a k-quantifier formula with functions. So, assuming the OV

Conjecture, the complexity grows by at most a linear amount over that for first-order without

functions.

We show that this increase is necessary. Compared to the linear time baseline algorithm for

the model checking of 2 quantifier formulas, when we introduce function symbols, a 2 quantifier

formula may require quadratic time to solve.

First-Order on Ordered Structures: If all the elements in the domain of some variable

have a total order so that for any two elements a,b it may be a > b, a < b or a = b, then the

comparison relation on two elements is a dense relation. But unlike general dense relations, it can

be represented succinctly in the input by O(n) space.

An example is that we have a log of communications in a network with events where

a processor receives or sends messages, and we want to verify that every message sent is later

14

received. This can be expressed by ∀e∃e′((e < e′)∧ SameSender(e,e′)∧ SameReceiver(e,e′)∧

SameMessage(e,e′)), where e and e′ are two log entries.

We use the notation FOPk(≤) for the class of MCϕ where ϕ is a k-quantifier FO formula

with comparison predicates. FOPk(≤) contains FOPk. It can be solved in time O(mnk−2) for any

k ≥ 2 (Lemma 4.9.1).

We will consider the case where elements are given a total pre-ordering, and there are three

predicates expressing that an element is greater than, less than, or equivalent to another element

in the ordering. The comparison relation is an implicit dense relation but can be represented in

O(n) space in the input, by giving a table indexed by element, giving the element’s rank within

the ordering, with equivalent elements given the same rank. (If we were not given this table, we

could use any sorting algorithm to construct it in O(n logn) time.) Using this table, we can list the

elements by this ordering in time O(n), and given any two elements, we can compare them in time

O(1). The following theorem shows that adding comparison to first-order logic does not increase

the fine-grained complexity because it is equivalent to first-order properties without comparison.

First-order with Transitive Closure: The transitive closure of a sparse relation may be

a dense relation. The comparison relation is a special case, which is the transitive closure of the

successor relation. We use TCR to denote the transitive closure of relation R.

OV can be expressed by a 2-quantifier formula with transitive closure operation: we connect

each vector u to each coordinate i iff One(u, i), and connect each coordinate i to each vector v iff

One(v, i). Then u is reachable to v iff u is not orthogonal to v.

We use the notation FOPk(TC) for the class of MCϕ where ϕ is a k-quantifier FO formula

allowing transitive closure operations. FOPk(TC) contains FOPk(≤).

For the problems of FOPk(TC) where the transitive closure operations are only allowed on

symmetric input relations, we use the notation FOPk(TCsym) to donate the class of these problems.

Consider the model checking of a first-order formula with transitive closures, where the

transitive closure operation can only be taken on symmetric input relations. In this case TCR(x,y)

15

is true iff x and y are in the same connected component by edges of undirected edge set R. Thus

the formula can have binary predicates about whether two variables are in the same connected

component or not. Note that there can be more than one symmetric relations that the transitive

closure operation can be taken on. We we use the notation FOPk(TCsym) to donate the class of

these problems.

1.5 Fine-Grained Complexity Preliminaries

1.5.1 Fine-Grained Reductions

To establish the relationship between complexities of different problems, we use the notion

of fine-grained reductions as defined in [WW10]. Fine-grained reductions are defined with the

motivation to control the exact complexity of the reducibility. For this purpose, we consider

languages together with their presumed or conjectured complexities. These reductions establish

conditional hardness results of the form “If one problem has substantially faster algorithms, so

does another problem”. We will also use exact complexity reductions (see definition 1.5.2), which

strengthen the above claim to “if one problem has algorithms improved by a factor s(m), then

another problem can be improved by a factor sc(m)” for some constant c. (Note that some fine-

grained reductions already have this property.) The underlying computational model is the Word

RAM with O(logn) bit words.

Thus, if L2 has an algorithm substantially faster than T2, L1 can be solved substantially faster

than T1. 2

Below we give the formal definition of Fine-Grained Turing Reduction.

2In almost all fine-grained reductions, T1 ≥ T2, that is, we usually reduce from harder problems to easier problems,
which may seem counter-intuitive. A harder problem L1 can be reduced to a easier problem L2 with T1 > T2 in two
ways: by making multiple calls to an algorithm solving L2 and/or by blowing up the size of the L2 instance (e.g., the
reduction from CNF-SAT to OV [Wil05]). All reductions from higher complexity to lower complexity problems in this
dissertation belong to the first type.

Actually, it is harder to fine-grained reduce from a problem with lower time complexity to a problem with higher
time complexity (e.g., prove that (MC(k),mk−1)≤FGR (MC(k+1),mk)), because this direction often needs creating
instances with size much smaller than the original instance size.

16

We use the pair (L,T) to denote a language together with its time complexity T . Intuitively,

if (L1,T1) fine-grained reduces to (L2,T2), then any constant savings in the exponent of the time

complexity of L2 implies some constant savings in the exponent of the time complexity of L1.

Definition 1.5.1 (Fine-Grained Reductions (≤FGR)). Let L1 and L2 be languages, and let T1 and

T2 be time bounds. We say that (L1,T1) fine-grained reduces to (L2,T2) (denoted (L1,T1) ≤FGR

(L2,T2)) if for all ε > 0, there is a δ > 0 and a deterministic Turing reduction M L2 from L1 to L2

satisfying the following conditions.

(a) The time complexity of the Turing reduction without counting the oracle calls is bounded by

T 1−δ

1 .

TIME[M]≤ T 1−δ

1 (1.6)

(b) Let Q̃(M ,x) denote the set of queries made by M to the oracle on an input x of length n. The

query lengths obey the following time bound.

∑
q∈Q̃(M ,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

If a fine-grained reduction exists from (L1,T1) to (L2,T2), algorithmic savings for L2 can

be transferred to L1. The definition gives us exactly what is needed to establish savings for L1 by

simulating the machine M L2 using the faster algorithm for L2. The role of each parameter in the

definition of fine-grained reducibility makes this clear.

T1: The presumed time to decide L1, usually given by a trivial algorithm.

T2: The presumed time to decide L2.

ε: Any savings (assumed or real) on computing L2.

δ: The savings (as a function of ε) that can be obtained over T1 when deciding L1 by reducing to L2.

17

It is easy to verify that fine-grained reductions, just like polynomial time reductions, can be

composed.

Lemma 1.5.1 (Fine-grained reductions are closed under composition). Let (A,TA) ≤FGR (B,TB)

and (B,TB)≤FGR (C,TC). It then follows (A,TA)≤FGR (C,TC).

To simplify transferring algorithmic results, we define a stricter variant of fine-grained

reductions, which we call exact reductions. These reductions satisfy a stronger reducibility notion.

Definition 1.5.2. (Exact complexity reduction (≤EC))

Let L1 and L2 be languages and let T1, T2 denote time bounds. Then (L1,T1)≤EC (L2,T2) if there

exists an algorithm AL1 for L1 running in time T1(n) on inputs of length n, making calls to oracle of

L2 with query lengths n1, . . . ,nq, where q is the number of calls and ∑
q
i=1 T2(ni)≤ T1(n).

That is, if L2 is solvable in time T2(n), then AL1 solves L1 in time T1(n).

The same fine-grained reductions also transfer nondeterministic and co-nondeterministic

savings. In particular, the existence of both a fast nondeterministic and co-nondeterministic

algorithm for L2 implies that there are also fast nondeterministic and co-nondeterministic algorithms

for L1.

Lemma 1.5.2 (Fine-grained reductions transfer savings for (N∩ coN)TIME). Let (L1,T1) ≤FGR

(L2,T2), and L2 ∈ (N∩ coN)TIME[T2(n)1−ε] for some ε > 0. Then there exists a δ > 0 such that

L1 ∈ (N∩ coN)TIME[T1(n)1−δ]

Proof. Both the nondeterministic algorithm for L1 and ¬L1 follow the same outline. We simulate the

deterministic Turing reduction M L2 . For the oracle calls, we nondeterministically guess for instances

q ∈ Q̃(M ,x) if q ∈ L2 or not and simulate either the nondeterministic machine for L2 or ¬L2. We

can therefore simulate each oracle call q in NTIME[T2(|q|)1−ε] for some ε > 0. By the properties

of the fine-grained reduction we have TIME[M]≤ T 1−δ

1 and ∑q∈Q̃(M ,x)(T2(|q|))1−ε ≤ (T1(n))1−δ,

18

and hence L1 ∈ NTIME[T1(n)1−δ]. Similarly we have L1 ∈ coNTIME[T1(n)1−δ] as we can negate

the output of the fine-grained reduction M L2 .

We define nondeterministic fine-grained reductions as follows.

Definition 1.5.3 (Nondeterministic Fine-Grained Reductions). Let L1 and L2 be languages, and

let T1 and T2 be time bounds. We say that (L1,T1) nondeterministically fine-grained reduces to

(L2,T2) if for all ε > 0, there is a δ > 0 and two nondeterministic Turing reductions M L2
1 and M L2

2

satisfying the following conditions.

(a) For all x ∈ L1, then there is a y with |y| ≤ T 1−δ

1 such that M1(x,y) accepts.

(b) For all x 6∈ L1, then there is a y with |y| ≤ T 1−δ

1 such that M2(x,y) accepts.

(c) The time complexity of both Turing reduction without counting the oracle calls is bounded by

T 1−δ

1 , that is, for c ∈ {1,2}

TIME[Mc]≤ T 1−δ

1 (1.7)

(d) Let Q̃(M ,x) denote the set of queries made by M to the oracle on an input x of length n. The

query lengths obey the following time bound for c ∈ {1,2}.

∑
q∈Q̃(Mc,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

To prove Lemma 1.5.2 under nondeterministic reductions we can nondeterministically guess

y and simulate M1 and M2 similar to the deterministic case to get nondeterministic Turing machines

for L1 and 6= L1.

1.5.2 Conjectures

The Orthogonal Vectors (OV) problem is a well-studied problem in the field of fine-grained

complexity. Its hardness is implied by the hardness of CNF-SAT, and implies the hardness of many

19

problems (A list of hardness results under OV conjecture is compiled in [Wil18]). It is defined as

follows: Given a set A of n Boolean vectors of dimension d, and must decide if there are u,v ∈ A

such that u and v are orthogonal, i.e., u[i] ·v[i] = 0 for all indices i ∈ {1, . . . ,d}. Another (equivalent)

version is to decide with two sets A and B of Boolean vectors whether there are u ∈ A and v ∈ B so

that u and v are orthogonal. A naı̈ve algorithm for OV runs in time O(n2d), and the best known

algorithm runs in n2−Ω(1/ log(d/ logn)) [AWY15, CW16].

In this dissertation we introduce a version of OV we call the Sparse Orthogonal Vectors

(Sparse OV) problem, where the input is a list of m vector-index pairs (v, i) for each v[i] = 1

(corresponding to the adjacency list representation of graphs) and complexity is measured in terms

of m; we usually consider m=O(n1+γ) for some 0≤ γ< 1. The popular hardness conjectures on OV

restrict the dimension d to be between ω(logn) (low dimension) and no(1) (moderate dimension);

however in Sparse OV we do not restrict d.

We thus identify three versions of Orthogonal Vector Conjecture, based on the size of the

dimension d. In all three conjectures the complexity is measured in the word RAM model with

O(logn) bit words.

Low-dimension OVC (LDOVC): For all ε > 0, there is no O(n2−ε) time algorithm for OV with

dimension d = ω(logn).

Moderate-dimension OVC (MDOVC): For all ε > 0, there is no O(n2−εpoly(d)) time algorithm

that solves OV with dimension d.

Sparse OVC (SOVC): For all ε > 0, there is no O(m2−ε) time algorithm for Sparse OV where m

is the total Hamming weight of input vectors.

OV can be extended to the k-OV problem for any integer k ≥ 2: given k sets A1, . . . ,Ak of

Boolean vectors, determine if there are k different vectors v1 ∈ A1, . . . ,vk ∈ Ak so that for all indices

i, ∏
k
j=1 v j[i] = 0 (that is, their inner product is 0). We naturally define a sparse version of k-OV

similar to Sparse OV, where all ones in the vectors are given in a list.

Strong Exponential Time Hypothesis(SETH) for CNF-SAT For all ε > 0, there exists a k so

20

that k-CNF-SAT cannot be solved in time O(2n(1−ε)). [IPZ98]

Strong Exponential Time Hypothesis(SETH) for circuit class C For all ε > 0, the satisfiability

of C cannot be solved in time O(2n(1−ε)). [AHWW16] For each depth d, the SETH for depth-

d circuit forms a hierarchy of hardness. It is analogous to the W-hierarchy in parameterized

complexity theory [DF95].

Nondeterministic Strong Exponential Time Hypotheses For all ε > 0, there exists a k so that

k-SAT is not in coNTIME[2n(1−ε)]. [CGI+16]

Low-dimension OVC (LDOVC): For all ε > 0, there is no O(n2−ε) time algorithm for OV with

dimension d = ω(logn).

Moderate-dimension OVC (MDOVC): For all ε > 0, there is no O(n2−εpoly(d)) time algorithm

that solves OV with dimension d. [GIKW17]

Sparse OVC (SOVC): For all ε > 0, there is no O(m2−ε) time algorithm for Sparse OV where m

is the total Hamming weight of input vectors. [GIKW17]

First-order property conjecture (FOPC): There is an integer k ≥ 2, so that there is a (k +

1)-quantifier first-order property that cannot be decided in O(mk−ε) time, for any ε > 0.

[GIKW17]

Hitting Set Conjecture ∀ε > 0 there is no O(n2−ε) time algorithm for the Hitting Set problem

with set sizes bounded by d = ω(logn). It implies LDOVC; subquadratic approximation

algorithms for Diameter-2 and Radius-2 would respectively refute the LDOVC and the Hitting

Set Conjecture. [AWW16]

It is known that SETH implies LDOVC[Wil05]. Because MDOVC is a weakening of

LDOVC, it follows from the latter.3 Like LDOVC, MDOVC also implies the hardness of problems

3Although dimension d is not restricted, we call it “moderate dimension” because such an algorithm only improves
on the naive algorithm if d = nO(ε).

21

including Edit Distance, LCS, etc. Here we further show that MDOVC and SOVC are equivalent

(see Lemma 3.1.1).

The SETH of CNF-SAT implies LDOVC [Wil05], and LDOVC implies MDOVC because

low-dimension OV is a special case of moderate-dimension OV. MDOVC, SOVC and FOPC are

equivalent [GI19] (Will be shown in Chapter 3). The SETH of depth d circuits, where d is a constant

greater than 2, is weaker than the SETH of CNF-SAT.

1.5.3 Basic Reduction Techniques

Quantifier-Eliminating Self reduction

A useful reduction is that (FOPk+1,n ·T (m,n))≤EC (FOPk,T (m,n)), where T (m,n) is the

running time on m edges and n vertices. This is because we can exhaustively search the outermost

quantified variable, and use the value as a constant in the rest of the formula, thus reducing it to n

instances of the model checking for k-quantifier formulas. The same technique can also be applied

in the reductions for formulas with comparisons, and formulas of quantifier rank k.

Split and List

The “Split and List” technique was used in the reduction from CNF-SAT to Orthogonal

Vectors.

Let ϕ be a CNF with n variables and m clauses. We partition the variables into two sets,

each of size n/2. For each set, there are 2n/2 possible assignments to the n/2 variables. Create two

sets A,B, each containing 2n/2 boolean vectors of length m. Each boolean vector corresponds to

an assignment to n/2 variables. If an assignment does not satisfy the i-th clause, we let the i-th

bit of the corresponding variable be 1, otherwise be 0. Thus, there exist assignment α for the first

half of the variables and β for the second half of the variables that together satisfying ϕ iff for all

clauses, either α satisfies it or β satisfies it, iff either the vector vα ∈ A or vβ ∈ B has a zero on all

coordinates, iff vα and vβ are a pair of orthogonal vectors.

When m = cn, if Orthogonal Vectors of dimension d = cn is in time O(n2−ε), then CNF-SAT

22

is in time O(2n/22−ε
) = O(2n(1−ε/2)).

This technique will be used in reducing the satisfiability of constant depth circuits to model

checking for formulas of variable complexity 3, in Chapter 2.

High-Degree Low-Degree Trick

The High-Degree Low Degree Trick is a commonly used trick. For example, it was used in

proving Triangle Detection in sparse graphs is in time O(m3/2).

We split the set of vertices into two parts: those with degree greater than
√

m, and those

with degree less than
√

m.

For the vertices of degree greater than
√

m, there can be at most O(
√

(m)) of them, for

otherwise the total number of edges would exceed m. So in O(
√

m) time we can enumerate the

high degree vertices, and then using O(m) time to enumerating the opposite edge, we can find any

triangle containing a large degree vertex.

For the small degree vertices, we use O(m) time to enumerate all edges containing such a

vertice, and then use O(
√

m) time to enumerate all the neighbors of the current vertex to find the

third point of the triangle, if there is one.

This technique will be used in the algorithm for ∃∃∃ and ∀∃∃ problems in Chapter 1, and

the reduction algorithm for quantifier-rank 3 problems in Chapter 2.

Grouping reduction

The grouping-reduction technique is another useful reduction technique, which was intro-

duced in [AWY15], that reduces the Batch OV problem to OV, and in [AWW16], that reduces

Hitting Set to OV. In [GIKW17] it is used on the model checking on sparse structures. The reduction

can be generalized to get the following statement: Assume the model checking for ϕ = ∃x1 . . .∃xk

P(x1, . . . ,xk) can be decided in time O(mk/s(m)) for some savings factor s, where P is a property

on x1, . . . ,xk that can be decided in time linear to the total degree of x1, . . . ,xk. Then we can list all

x such that ∃x2 . . .∃xkP(x1, . . . ,xk) can be decided in time O(mk/s(poly(m))).

The idea is as follows: Pick a threshold size g, which is usually a polynomial of m. For

23

elements of weight greater than g, we enumerate all of them, and for each of them we run a O(mk−1)

algorithm to decide if P holds on x by doing exhaustive search on all other variables. So the total

time is O(m/g) ·O(mk−1) = O(mk/g).

Next, partition each of the domain of x1, . . . ,xk into groups so that a group has total weight

at most g, and there are O(m/g) groups for each of x1, . . . ,xk. Every time we take a k-tuple of

groups, and query ϕ on this smaller instance. As long as the query returns true, we can find a

satisfying x1 in O(logg) queries. On finding a satisfying x1, we mark this x1 and remove this x1

from its group. Continue this process until either all x1 are marked or no combination of groups

satisfies ϕ. There are at most O(m logg+(m/g)k) calls to the oracle of ϕ. The running time is

O(m logg ·m · (m/g)k ·gk/s(g)) = O(logg ·mk/s(g)).

Thus the final running time is O(mk/g+ logg ·mk/s(g)). The logarithmic factor can be

omitted if function s grows much faster than polylog functions.

24

Chapter 2

Consequences Under the Nondeterministic

Strong Exponential Time Hypothesis

2.1 Introducing NSETH

The Strong Exponential Time Hypothesis conjectures that k-CNF-SAT cannot be solved

efficiently by a deterministic algorithm, which can be considered as a fine-grained version of

P 6= NP. If k-CNF-SAT is not only hard to solve using deterministic algorithms, but also by

co-nondeterministic algorithms, then we get a fine-grained version of P 6= NP. This chapter

introduces this new hardness conjecture, which we call the Nondeterministic Strong Exponential

Time Hypothesis (NSETH). If NSETH is true, the hardness of problems under different popular

conjectures is unlikely to be unified.

If any problem in NP∩ coNP can be shown to be NP-complete, then NP= coNP. Hence,

assuming NP 6= coNP, placing a problem L in NP∩ coNP means that L cannot be NP-complete

(or coNP-complete) and there is no polynomial time reduction from an NP-complete problem like

3-SAT to L. Similarly, by considering the nondeterministic and co-nondeterministic complexities of

problems on a more fine-grained level, we deduce non-reducibility results based on NSETH.

We define NSETH formally as follows.

25

Definition 2.1.1 (Nondeterministic Strong Exponential Time Hypothesis (NSETH)). For every

ε > 0, there exists a k so that k-SAT is not in coNTIME[2n(1−ε)].

Equivalently, the k-TAUT problem, the tautology problem on k-DNF formulas, is not in

NTIME[2n(1−ε)] for sufficiently large k.

We feel that NSETH is plausible for many of the same reasons as SETH. We can think

of NSETH as a statement about proof systems. Just as many algorithmic techniques have been

developed for k-SAT, all of which approach exhaustive search for large k, many proof systems

have been considered for k-TAUT, and none have been shown to have significantly less than 2n

complexity for large k. In fact, the tree-like ([PI00]) and regular resolution ([BI13]) proof systems

have been proved to require such sizes. Moreover, we observe that results of [JMV15] that obtain

circuit lower bounds assuming SETH is false yield the same bounds assuming that NSETH is false.

So disproving NSETH would be both a breakthrough in proof complexity and in circuit complexity.

We also consider the natural nondeterministic variant of ETH.

Definition 2.1.2 (Nondeterministic Exponential Time Hypothesis (ETH)). The 3-SAT problem on

n variables requires is not in coNTIME[2εn] for some ε > 0.

In [CGI+16], we show non-reducibility results for the following problems and time bounds.

• HITTINGSET for sets of total size m and time T (m) = m1+γ is not SETH-hard for any γ > 0,

and no problem that is SETH-hard fine-grained reduces to HITTINGSET for any such time

complexity.

• 3-SUM for T (n) = n1.5+γ is not SETH-hard for any γ > 0.

• MAXFLOW, minimum cost MAXFLOW, and maximum cardinality matching on a graph with

m edges and T (m) = m1+γ are not SETH-hard.

• APSP on a graph with n vertices and T (n) = n
3+ω

2 +γ is not SETH-hard.

All the results above are assuming NSETH and under deterministic reductions.

26

2.1.1 Reasons that NSETH Is Hard to Refute

SETH is an interesting hypothesis because both ¬SETH and SETH have interesting con-

sequences that seem difficult to prove unconditionally. In this chapter, we show that the same

proofs that show “¬SETH implies circuit lower bounds” can be applied to ¬NSETH as well. This

is evidence that NSETH will be hard to refute.

Algorithms for CKT-SAT or CKT-TAUT imply circuit lower bounds (see [Wil13] and

[Wil14b]). For some restricted circuit classes C , we can reduce satisfiability or tautology of

C -circuits to k-SAT or k-TAUT by decomposing C circuits into a “big OR” of CNF formulas. Thus,

both ¬SETH and ¬NSETH imply faster C -circuit analysis algorithms (tautology or satisfiability)

for these classes, which imply lower bounds.

The proofs of [JMV15] optimize the reduction of arbitrary nondeterministic time languages

to 3-SAT to obtain new “failure of a hardness hypothesis about k-SAT implies circuit lower bounds”

results for a variety of circuit classes. The followin is implicit in their work:

Theorem 1. We have the following implications from failure of a k-TAUT hardness hypothesis to

circuit lower bounds for restricted classes:

1. If the nondeterministic exponential time hypothesis (NETH) is false; i.e., for every ε > 0,

3-TAUT is in time 2εn, then ∃ f ∈ ENP such that f does not have linear-size circuits.

2. If the nondeterministic strong exponential time hypothesis (NSETH) is false; i.e., there is a

δ < 1 such that for every k, k-TAUT is in time 2δn, then ∃ f ∈ ENP such that f does not have

linear-size series-parallel circuits.

3. If there is α > 0 such that nα-TAUT is in time 2n−ω(n/ log logn), then ∃ f ∈ ENP such that f does

not have linear-size log-depth circuits.

The theorem is proved in the full version of [CGI+16]. Since (by item 2 above) refuting

NSETH would give nontrivial circuit lower bounds, it is unlikely to be easy to refute.

27

2.1.2 Hardness of Reducibility under NSETH

How could we show that one language is not reducible to another language? There is an

ever-growing web of problems, hypotheses, and reductions that reflect the fine-grained complexity

approach to explaining hardness. Could this structure collapse into a radically simpler graph, with

just a few equivalence classes? If we assume NSETH, probably not as much as one might hope.

We can broadly categorize computational problems into two sets. In the first category, the

deterministic time complexity is higher than both the nondeterministic and co-nondeterministic time

complexity. In the second category, at least one of nondeterminism or co-nondeterminism does not

help in solving the problem more efficiently. Lemma 1.5.2 shows that savings in (N∩ coN)TIME are

preserved under deterministic fine-grained reductions. As a result, we can rule out tight reductions

from a problem that is hard using nondeterminism or co-nondeterminism to a problem that is easy

in (N∩ coN)TIME.

If NSETH holds, then k-SAT is in the category of problems that do not benefit fron co-

nondeterminism. So, any problem that is SETH-hard under deterministic reductions also falls into

this category.

In this chapter we explore problems that do benefit from (N∩ coN)TIME, i.e. we give

nondeterministic algorithms that are faster than their presumed deterministic time complexities.

This rules out deterministic fine-grained reductions from CNFSAT to these problems with their

presumed time complexities. As a consequence, it is not possible to show that these problems are

SETH-hard using a deterministic reduction.

As an immediate consequence of Lemma 1.5.2 we get a way to show non-reducibility

assuming NSETH.

Corollary 2.1.1. Assuming NSETH, for any problem L and time bound T , if

L ∈ (N∩ coN)TIME[T (n)1−δ]

for some δ > 0, then L is not SETH-hard under deterministic reductions at time T .

28

While Lemma 1.5.2 and Corollary 2.1.1 are formulated with respect to deterministic fine-

grained reductions, we can extend the result to nondeterministic and zero-error reductions. On the

other hand, the results do not extend to randomized reductions.

Theorem 2 (NSETH implies no reduction from CNFSAT). If NSETH and C ∈ (N∩ coN)TIME[T]

for some problem C and time T , then (CNFSAT,2n) 6≤FGR (C,T 1+γ) for any γ > 0.

Proof. Assume NSETH and (CNFSAT,2n)≤FGR (C,T 1+γ), and C∈ (N∩ coN)TIME[T]. By Lemma

1.5.2, preservation of (N∩ coN)TIME savings under fine-grained reductions, there exists δ > 0 such

that CNFSAT ∈ (N∩ coN)TIME[2n(1−δ)]. This contradicts NSETH, therefore it cannot be the case

(under NSETH) that (SAT,2n)≤FGR (C,T).

Corollary 2.1.2 (NSETH implies no reductions from SETH-hard problems). If NSETH holds and

C ∈ (N∩ coN)TIME[T1], then for any problem B that is SETH-hard under deterministic reductions

with time T2, and γ > 0, we have

(B,T2) 6≤FGR (C,T 1+γ

1)

Proof. Assume NSETH, and that (B,T2) is SETH-hard. Therefore, we know

(CNFSAT,2n)≤FGR (B,T2) (2.1)

Now assume (B,T2)≤FGR (C,T 1+γ

1). Then by Lemma 1.5.1, composition of fine-grained reductions,

we have that (CNFSAT,2n)≤FGR (C,T1). But by Lemma 2 above, this is impossible under NSETH.

We have the following theorem:

Theorem 3. Under NSETH, there is no deterministic or zero-error fine-grained reduction from

SAT or any SETH-hard problem to the following problems with the following time complexities for

any γ > 0.

29

• MAXFLOW, min-cost MAXFLOW, and maximum matching with T (m) = m1+γ

• HITTINGSET with T (m) = m1+γ

• 3-SUM with T (n) = n1.5+γ

• All-pairs shortest path with T (n) = n
3+ω

2 +γ

The theorem is proved in the full version of [CGI+16].

2.2 Characterizing the Quantifier Structure of SETH-Hard FO

Property Problems

This section studies the hardness of first-order model checking problems with the same

number of quantifiers but different quantifier structures. If NSETH holds, all such formulas that are

SETH hard are of a specific logical form. This is made precise as follows:

Theorem 4. Let k ≥ 3. If NSETH is true, then there is a problem in FOPk that is O(mk−1) SETH-

hard, and all such formulas have the quantifier structure ∀k−1∃ or ∃k−1∀.

The rest of this section proves the above theorem for the case where there are only unary

and binary predicates (i.e., the input structure is a graph, instead of a hypergraph, so the problem is

also called a first-order graph property problem). In this section, we will always assume formulas

have k-quantifiers, instead of (k+1) quantifiers.

There are graph properties with ∀k−1∃ and ∃k−1∀ quantifier structure that are SETH-hard

for time O(mk−1).

The (k−1)-ORTHOGONALVECTORS problem is equivalent to the graph problem

∃x1 . . .∃xk−1∀xk (P(x1,xk)∧·· ·∧P(xk−1,xk)) (2.2)

The negation of k-ORTHOGONALVECTORS is also SETH-hard and has a ∀k∃ quantifier structure.

30

On the other hand if a problem is of any form other than ∀k−1∃ or its negation, we will

show it has both smaller nondeterministic and co-nondeterministic complexity. We will assume

without loss of generality that the outermost quantifiers is universal. We can handle the other case by

simply negating the problem. A problem that does not have the quantifier structure ∀k−1∃ structure

either has no existential quantifiers, or at least two existential quantifiers, or exactly one existential

quantifier which is not in the innermost position.

Lemma 2.2.1. If ϕ has more than one existential quantifier, then it can be solved in nondeter-

ministic time O(mk−2). If ϕ has more than one universal quantifier, then it can be solved in

co-nondeterministic time O(mk−2)

Proof. We concentrate on the case with more than one existential quantifier. The other case is

symmetric.

These problems can be solved by guessing the existentially quantified variables, and doing

exhaustive search on universally quantified variables. Because there are at most k− 2 universal

quantifiers, the algorithm runs in nondeterministic time O(mk−2). Note that we operate on the

sparse representation of the predicates. We assume that we are given the list of pairs that satisfy any

predicate in a sorted order that allows us to do this exhaustive search without overhead.

Symmetrically, if ϕ has more than one universal quantifier, then it can be solved in co-

nondeterministic time O(mk−2). In particular, since k ≥ 3, the model checking problem is always

easy either nondeterministically or co-nondeterministically.

Lemma 2.2.2. If ϕ has exactly one existential quantifier which is not on the innermost position,

then it can be solved in (N∩ coN)TIME[O(mk−2)]. Symmetrically, if ϕ has exactly one universal

quantifier which is not on the innermost position, then it can be solved in (N∩ coN)TIME[O(mk−2)].

Proof. We only show the case with one existentially quantified variable. Since k ≥ 3, the problem

is in coNTIME[O(mk−2)] by Lemma 2.2.1. We will show that it is also in NTIME[O(mk−2)].

Let the existentially quantified variable be x j.

31

We give all predicates a canonical order, and let the universes for x1, . . . ,xk be X1, . . . ,Xk

respectively. For a tuple of vertices (vi1 ∈ Xi1 , . . . ,vi` ∈ Xi`), we define its color χ(vi1 , . . . ,vi`) to be

the concatenation of truth values of all predicates on any subset of the tuple of variables (xi1, . . . ,xi`).

We also define For the color where all predicates are false, we call it the “background color”.

Our nondeterministic algorithm will count the number of vk ∈ Xk with color χ(v1 . . .vk) = c

for all tuples (v1 ∈ X1, . . . ,vk−1 ∈ Xk−1) and all color c in time O(mk−2). The main idea of the

algorithm is to nondeterministically guess x j and count the valid values of xk, so that it saves the

exhaustive search time on x j and xk.

1. For each combination of vertices (v1 ∈ X1, . . . ,v j−1 ∈ X j−1), we nondeterministically bundle

a fixed v j vertex to it. This takes time O(m j−1), which is at most O(mk−2) because j < k. In

the rest of this algorithm, given any (v1, . . . ,v j−1) values we can find their corresponding v j

value in constant time.

2. The algorithm runs a (k−2)-layer nested loop. On each layer we enumerate all (xi,xk) edges1

where xi is a variable other than x j or xk. Then inside all the loops, for each xk in the (k−2)

current (xi,xk) edges, we record the color χ(x1 . . .xk−1), where the value of x j come from the

current tuple (x1, . . . ,x j−1).

Inside the (k−2)-layer loop, we enumerate all possible colors on variables (x1, . . . ,xk) that

agrees with the color on the current tuple (x1, . . . ,xk−1). The total number of predicates is

constant, therefore this loop only contributes a constant factor to the running time.

Then inside the loops we can count the number of xk’s of for the current (x1, . . . ,xk−1) and

the current color.

This whole process takes time O(mk−2).

3. The previous step did not count the xk vertices that only appear in (x j,xk) edges, i.e. whose

χ(x1 . . .xk) is all-false on all non-(x j,xk) predicate positions, but not all-false on some (xk,x j)

1When dealing with hypergraphs where edges can have arity higher than 2, we enumerate all edges whose
corresponding variable list contains variables xi,xk

32

predicate positions. We will count these xk’s in this step.

We use c jk to denote the “partial color” corresponding to a truth value combination of all unary

and binary predicates on variables x j, xk and on (x j,xk). For each x j and each possible ci j

value, we can enumerate all the (x j,xk) edges to count the number of xk where χ(x j,xk) = c jk

for any not all-false c jk. Also, the previous step has shown that we can count the number of

xk where χ(x1 . . .xk) is not all-false on some non-(x j,xk) predicates, and also equals ci j on its

(x j,xk) predicates. By subtraction we can get the number of xk where χ(x1 . . .xk) is all-zero

on non-(x j,xk) predicate positions, and equals ci j on its (x j,xk) predicate positions. Similarly

as the previous step, this process runs in time O(mk−2).

4. Now we have counted the xk’s for all non-background colors for all (x1, . . . ,xk−1). The

number of xk’s where χ(x1 . . .xk) is background color can be computed by |Xk| subtracting

the numbers of all non-background xk’s.

5. Finally, for all (x1, . . . ,xk−1), we sum the number of xk’s of all colors that satisfy ϕ. If it

always equals |Xk|, then the algorithm accepts.

The last case, where either all quantifiers are existential or all quantifiers are universal is easy

deterministically and therefore also not a candidate for SETH-hardness, independent of NSETH.

Lemma 2.2.3. If all quantifiers are existential, or all quantifiers are universal, then the problem

can be solved in deterministic time O(mk−1.5).

Proof. This lemma is implied by Lemma 3.9.2.

Thus, only ∀k−1∃ formulas require O(mk−1) nondeterministic time, and by looking at the

complements, only ∃k−1∀ formulas require O(mk−1) co-nondeterministic time. Thus, assuming

NSETH, only these two types of first-order properties might be SETH-hard for the maximum

difficulty of a k-quantifier formula.

33

2.3 Acknowledgments

Chapter 2 contains material from “Nondeterministic Extensions of the Strong Exponential

Time Hypothesis and Consequences for Non-Reducibility”, by Marco L Carmosino, Jiawei Gao,

Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider, which appeared in

the proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science

(ITCS 2016). The author of this dissertation was a principal author of this publication. The material

in this chapter is copyright c©2016 by Association for Computing Machinery. We would like to

thank Amir Abboud, Karl Bringmann, Bart Jansen, Sebastian Krinninger, Virginia Vassilevska

Williams, Ryan Williams and the anonymous reviewers for many helpful comments on an earlier

draft.

34

Chapter 3

The Completeness of Orthogonal Vectors

3.1 Chapter Overview

3.1.1 Motivation

In this chapter, we give the first results in fine-grained complexity that apply to an entire

complexity class, namely the class of first-order definable properties (the uniform version of AC0.)

It is not difficult to see that checking whether a property expressible by a first-order formula

with k+1 quantifiers holds on a given structure with m tuples can be done in O(mk) time. If the

Strong Exponential Time Hypothesis (SETH) is true, there are such properties that require mk−o(1)

time to decide. The k-Orthogonal Vectors problem is an example that requires mk−o(1) time under

SETH.

For k = 1 (i.e. there are only two quantified variables), this O(mk) upper bound is linear

time and so cannot be improved. For any such problem with k ≥ 2, we give an algorithm that

solves it in mk/2Θ(
√

logm) time, which improves the standard algorithm by a factor more than any

poly-log, but less than the polynomial improvement needed to refute SETH. Moreover, we show that

any further improvement is equivalent to a similar algorithmic improvement for the well-studied

Orthogonal Vectors problem. Surprisingly, both results are obtained by showing that (a version

35

SAT OV

High dimension
2-Set Cover

Sparse OV

High dimension
Sperner Family

Other first-order
properties

Fréchet Distance.
SAT

Low

OV

High dimension

2-Set Cover

Sparse OV

Sperner Family

Other first-order
properties

Moderate
dimension

OV

High dimension High dimension

dimension
Low

dimension

fi
rs

t-
o
rd

er
p
ro

pe
rt

y
p
ro

bl
em

s

High dimension

[BCH16]
problems1

some

[BCH16]
problems2

other

Before: After:
LCS, Edit Distance,

fi
rs

t-
o
rd

er
p
ro

pe
rt

y
p
ro

bl
em

s

Dynamic Time Warping,
Stable Matching,

some [BCH16] problems

1 includes 3-Dominating Set and Bipartite Subset 2-Dominating Set.
2 includes Graph Dominated Vertex, Maximum Simple Family of Sets, and Subset Graph.

Fréchet Distance.
LCS, Edit Distance,

Dynamic Time Warping,
Stable Matching,

Figure 3.1: A diagram of reductions. We simplify this picture, and make the reductions to Edit
Distance, LCS, etc. more meaningful.

of) the Orthogonal Vectors problem is complete under fine-grained reductions for the class of all

first-order properties. This is the first completeness result for a previously studied complexity class

under fine-grained reducibility. By applying the algorithm for the Orthogonal Vectors problem of

[AWY15], which uses techniques from circuit lower bounds, and later derandomized by [CW16],

we obtain algorithmic results.

In addition to introducing new algorithms and giving completeness results, our results

clarify and simplify our understanding of “complexity within P”. For many of the known SETH-

hard problems of interest such as Edit Distance [BI15], Longest Common Subsequence [AWW14,

ABW15, BK15], Dynamic Time Warping [ABW15, BK15], Fréchet Distance [Bri14], Succinct

Stable Matching [MPS16], etc., the reduction from SAT passes through the Orthogonal Vectors

problem. Thus, if any of these SETH-hard problems had substantially improved algorithms, all first-

order properties would have similarly improved algorithms. Thus FOPC, the hypothesis that some

first-order property does not have a substantially faster algorithm, is a useful intermediary between

SETH and many of its consequences. FOPC is both equivalent to conjectures concerning many of

the previously studied problems ([BCH16]), and potentially more plausible to SETH-skeptics since

it concerns an entire complexity class, while having most of the consequences of SETH. This is

36

summarized in Figure 3.1.

While we concentrate on the general picture of complexity classes, even special cases of

our results for specific problems are of interest. There were no similarly improved algorithms for

Orthogonal Vectors with small total Hamming weight (Sparse OV) or related problems such as

Sperner Family and 2-Set Cover (in the sparse high-dimensional case), and it was not previously

known that the sparse versions of these problems were equivalent.

In addition to having a natural and useful complete problem, the class of first-order properties

is important in itself. This class includes many problems studied in the fine-grained complexity

literature such as Hitting Set, Orthogonal Vectors, Sperner Family, Diameter 2, Radius 2, k-

Independent Set, k-Dominating Set and so on.

Algorithms for model-checking first-order properties are inherent in databases (the core of

the relational database language SQL is equivalent to first-order properties). Roughly speaking,

first-order properties are essentially the uniform version of AC0 in the complexity literature [BIS90].

Since fine-grained complexity is concerned with exact time complexities (distinguishing

e.g. n1.9 time from n2 time), the problem representation is significant. For graph problems, there are

two standard representations: adjacency lists (which are good for sparse graphs), in which running

time is analyzed with respect to the number of edges m, and adjacency matrices (good for dense

graphs), in which the runtime is a function of the number of vertices, n. For several reasons, we use

the sparse adjacency list (list of tuples) representation. First, many of the problems considered such

as Orthogonal Vectors are hard already on sparse instances. Secondly, the complexity of first-order

problems in the dense model is somewhat unclear, at least for numbers of quantifiers between 3 and

7 ([Wil14a]). Third, the sparse model is more relevant for first-order model checking, as databases

are represented as lists of records.

37

3.1.2 Main Results

Completeness. First, we show that conjectures for OV defined on dense (moderate-dimension) and

sparse models are equivalent under fine-grained reductions, which means MDOVC is true iff SOVC

is true (see Lemma 3.5.2). This also holds for k-OV.

Lemma 3.1.1. For any integer k ≥ 2, there exist δ,ε > 0 and a O(nk−ε) time algorithm solving

k-OV with dimension d = nδ, if and only if there is an ε′ > 0 and a O(mk−ε′) time algorithm for

Sparse k-OV, where m is the total Hamming weight of all input vectors.

Our main result establishes an equivalence of MDOVC and FOPC, showing the completeness

of Sparse OV and hardness of (dense) OV for the class of first-order property problems.

Theorem 5. MDOVC, SOVC and FOPC are equivalent.

This chapter also proves a hardness and completeness result for k-OV, connecting one

combinatorial problem to a large and natural class of logical problems. The following theorem

states that Sparse k-OV is complete for MC(∃k∀) (and its negation form MC(∀k∃)), and hard for

MC(∀∃k−1∀) (and its negation form MC(∃∀k−1∃)) under fine-grained reductions.

Theorem 6. If Sparse k-OV with total Hamming weight m can be solved in time O(mk−ε) for some

ε > 0, then all problems in MC(∃k∀), MC(∀k∃), MC(∀∃k−1∀) and MC(∃∀k−1∃) are solvable in

time O(mk−ε′) for some ε′ > 0.

MC(∃k∀) and MC(∀k∃) are interesting sub-classes of FOPk+1: if Nondeterministic SETH is

true, then all SETH-hard problems in FOPk+1 are contained in MC(∃k∀) or MC(∀k∃) ([CGI+16]).

We will also show that the 2-Set Cover problem and the Sperner Family problem, both

in MC(∃∃∀), are equivalent to Sparse OV under fine-grained reductions, and thus complete for

first-order properties under fine-grained reductions.

Algorithmic results. Combining our reductions with the surprisingly fast algorithm for Orthogonal

Vectors by [AWY15] and [CW16], we obtain improved algorithms for every problem representable

as a (k+1)-quantifier first-order property.

38

Theorem 7. There is an algorithm solving FOPk+1 in time mk/2Θ(
√

logm).

Let us consider the above results in context with prior work on the fine-grained complexity

of first-order properties. In [Wil14a], Ryan Williams studied the fine-grained complexity of dense

instances of first-order graph properties. He gave an nk+o(1)-time algorithm for FOPk+1 on graphs

when k is a sufficiently large constant, and showed that FOPk+1 requires at least nk−o(1) time

under SETH. His algorithms only apply to graphs (they look difficult to generalize to even ternary

relations), and it seems difficult to point to a specific simple complete problem in this setting. To

compare, our results show that the sparse case of FOPk+1 (for all c-ary relations, for all constants

c) is captured by very simple problems (e.g. sparse Orthogonal Vectors), which also leads to an

algorithmic improvement for all c-ary relations.

3.1.3 Organization of this Chapter

We present a general outline of the proofs in Section 3.2, and a high-level explanation of

key techniques in Section 3.3. The full proof starts with the reduction from MC(∃k∀) to k-OV

(Section 3.4), with randomized universe-shrinking self-reduction described in Section 3.4.1, which

is then derandomized in Section 3.5. Section 3.7 presents the reduction from MC(∀∃k−1∀) to k-OV,

and Section 3.8 discusses the mk/2Θ(
√

logm) time algorithm for Sparse OV and, therefore, FOPk+1.

We conclude with open problems in Section 3.10. .

3.2 Outline of the Proof

The main technical part of this chapter is in the proof of Theorem 6 showing hardness of

k-OV for model-checking of ∃k∀ formulas under fine-grained reductions. The idea is to represent

∃k∀ formulas using combinations of basic “k-OV like” problems, each of which is either easy

(solvable substantially faster than mk time for sparse instances) or can be fine-grained reduced

to k-OV. The latter is achieved using a universe-shrinking self-reduction, which converts a given

39

instance of a basic problem to a denser instance on a smaller universe, thus reducing Sparse k-OV to

k-OV with dimension nδ and proving Lemma 3.1.1. Converting an MC(∃k∀) to the “hybrid problem”

combining all 2k basic problems is done for graphs (all relations have arity at most 2), however we

show that this is the hardest case. Additionally, MC(∀∃k−1∀) is reduced to MC(∃k∀).

In Theorem 5 and Theorem 7, we consider the class of all k + 1-quantifier first-order

properties FOPk+1, and reduce it to 2-OV, proceeding to use a faster algorithm for 2-OV to speed

up model checking. The first step is to brute-force over first k−2 quantified variables, reducing

to three-quantifier case at the cost O(nk−2). The quantifier prefix ∃∃∀, with 2-OV and other basic

problems (to be defined in Section 3.4.1), is the hardest (∃3, ∀∃∃ and their complements are easy,

and the rest reduce to ∃∃∀). Appealing to lemmas in the proof of Theorem 6 with k = 2 completes

the proof of Theorem 5, and applying the OV algorithm in [AWY15, CW16] gives Theorem 7.

The following outlines the reduction from any arbitrary problem in FOPk+1 to OV for any

integer k ≥ 2, thus proving that FOPC implies SOVC. For the other direction of this eqiuvalence,

SOVC implies FOPC because Sparse OV is in MC(3). The equivalence between SOVC and

MDOVC is proven in Lemma 3.1.1, which in turn follows from Lemma 3.4.2, Lemma 3.5.2, and

corollary 3.4.1.

1. With brute-force over tuples of first k−2 variables, we reduce from the (k+1)-quantifier

problem MCϕ down to a 3-quantifier problem MCϕ′ . Thus, improving the O(m2) algorithm

for MCϕ′ implies improving the O(mk) algorithm for MCϕ.

2. If MCϕ′ belongs to one of MC(∃∃∃), MC(∀∀∀), MC(∀∃∃), MC(∃∀∀), we solve it directly in

time O(m3/2), using ideas similar to triangle detection algorithms. If ϕ′ has the quantifier

structure ∀∃∀ (or its negated form ∃∀∃), we reduce MCϕ′ to MCϕ′′ where ϕ′′ has quantifier

structure ∃∃∀, using Lemma 3.7.1. Otherwise, ϕ′ is already in ∃∃∀ or equivalent form.

3. We reduce a general model checking problem for ϕ′′ of the quantifier structure ∃∃∀ to a graph

property problem of the same quantifier structure.

4. Using Lemma 3.4.5, we reduce formulas of form ∃∃∀ to a “hybrid” problem, which by

Lemma 3.4.4 can be reduced to a combination of Sparse OV, Set Containment and 2-Set

40

Cover (which we call Basic Problems).

5. We use a “universe-shrinking” technique (Lemmas 3.4.2, 3.5.1, and 3.5.2) on each of the

Basic Problems, to transform a sparse instance into an equivalent one of small dimension.

6. After applying this to the Hybrid Problem, we can complement edge relations as needed to

transform all Basic Problems into OV (Lemmas 3.4.3 and 3.5.3).

7. By applying the [AWY15, CW16] algorithm to the instance of low-dimension OV, we get an

improved algorithm.

Moreover, Lemmas 3.7.1, 3.4.5, 3.4.4 and 3.4.1 also work for any constant k ≥ 2. So for a

problem in MC(∃k∀) or MC(∀∃k−1∀), we can reduce it to k-OV as follows:

1. If the problem belongs to MC(∀∃k−1∀), reduce it to MC(∃k∀) using Lemma 3.7.1.

2. Eliminate hyperedges, then reduce the MC(∃k∀) to the Hybrid problem using Lemma 3.4.5.

3. Reduce from the Hybrid Problem to a combination of 2k Basic Problems, using Lemma 3.4.4.

4. Reduce all Basic Problems to k-OV, using Lemma 3.4.1.

This completes the proof of Theorem 6.

3.3 The Building Blocks

Before the formal presentation of the reduction algorithms, this section gives an intuitive

and high-level view of the techniques used to reduce a first-order property problem to OV, in the

proofs of Theorems 5, 6 and 7. Because of Lemma 3.1.1, in the remainder of this paper, unless

specified, we will use “OV” and “k-OV” to refer to sparse versions of these problems.

3.3.1 Complementing Sparse Relations

Consider the problems k-Empty Intersection, k-Set Cover and Set Containment problems,

defined as follows:

41

k-Empty Intersection (k-EI): (∃S1 ∈ S1) . . .(∃Sk ∈ Sk)(∀u ∈U)
[∨k

i=1¬(u ∈ Si)
]
.

k-Set Cover: (∃S1 ∈ S1) . . .(∃Sk ∈ Sk)(∀u ∈U)
[∨k

i=1(u ∈ Si)
]
.

Set Containment: (∃S1 ∈ S1)(∃S2 ∈ S2) (∀u ∈U) [(¬(u ∈ S1))∨ (u ∈ S2)].

OV is also 2-EI or Set Disjointess: k-EI is equivalent to k-OV, where vectors are represented

by sets containing their 1s. Set Containment is equivalent to the Sperner Family, and k-Set Cover to

k-Dominating Set under linear-time reductions.

These problems have very similar structure: given set families S1 . . .Sk containing sets

over elements of the universe U , each of them asks whether there is a tuple of sets, one in each

family, such that a formula is satisfied for every element u of the universe. Moreover, the formulas

themselves are disjunctions of u ∈ Si or u 6∈ Si, with one predicate for each i. The only difference is

the polarity of the ∈ relation (whether or not it is negated). We will refer to these types of problems

as the Basic Problems; they will be our main building blocks.

For k = 2, this gives us four basic problems: Set Disjointness, 2-Set Cover and two versions

of Set Containment (direct and reversed). In each of them, the input consists of two set families

S1,S2 of sizes n1, n2, respectively, and the universe U of size nu. The goal is to decide if there

exist sets S1 ∈ S1 and S2 ∈ S2 such that for every u ∈U , the corresponding formula ψ` holds. Here,

` ∈ {00,01,10,11} codes the sequence of polarities of occurrences of ∈. This naturally generalizes

to arbitrary k, with a Basic Problem for each ` ∈ {0,1}k; see Section 3.4.1 for formal definitions.

That is, Set Disjointness, 2-Set Cover and Set Containment can be stated as follows. Decide

if ∃S1 ∈ S1∃S2 ∈ S2∀u ∈Uψ` holds, where ψ` is:

Set Disjointness: There is no common element in S1 and S2: ψ` = ψ00 = ¬(u ∈ S1)∨¬(u ∈ S2).

2-Set Cover: Union of S1 and S2 covers all of U : ψ` = ψ11 = (u ∈ S1)∨ (u ∈ S2).

Set Containment: For S1 ⊆ S2, ψ` = ψ01 = ¬(u ∈ S1)∨ (u ∈ S2). Similarly, in reversed Set

Containment with S2 ⊆ S1, ψ` = ψ10 = (u ∈ S1)∨¬(u ∈ S2).

All these problems are first-order properties: we can use unary relations to partition the

42

vertex set into (S1, . . . ,Sk,U), and consider the relation “∈” as a binary relation. We will use the

context of hypergraphs to describe the input structure. We let n (corresponding to the number of

vertices in the input graph) be the sum of n1, . . . ,nk and nu, and let the input size m (corresponding

to the number of edges in the input graph) be the sum of all sets’ sizes in all set families. Borassi

et al. [BCH16] showed that when k = 2, these Basic Problems require time m2−o(1) under SETH,

and that if the size of universe U is poly-logarithmic in the input size, then the three problems are

equivalent under subquadratic-time reductions. The main idea of the reductions between these

problems is to complement all sets in S1, or S2, or both. It is easy to see that S1 ∩ S2 = /0 ⇐⇒

S1
{∪S2

{ =U ⇐⇒ S1 ⊆ S2
{ ⇐⇒ S2 ⊆ S1

{. Therefore, if we could complement the sets, we can

easily prove the equivalences between the three Basic Problems. However we cannot do this when

nu is large.

For a sparse binary relation such as (u ∈ S1), we say that its complement, such as (u /∈ S1),

is co-sparse. Suppose we want to enumerate all tuples (S1,u) s.t. u ∈ S1; for that, we can go through

all relations (aka edges) between U and S1, which takes time linear in m. On the contrary, if we want

to enumerate all pairs (S1,u) s.t. u /∈ S1, we cannot do this in linear time, because we cannot touch

the pairs by touching edges between them. Moreover, when nu is as large as Ω(n), the number of

such pairs can reach Θ(m2). When k = 2, a fine-grained reduction between O(m2)-time problems

allows neither quadratic time reductions, nor quadratic size problem instances.

Because of the above argument, it is hard to directly reduce between the Basic Problems,

so instead we reduce each problem to a highly-asymmetric instance of the same problem, where

sparse relations are easily complemented to relations that are also sparse. Observe that when the

size of universe U is small enough, complementing all sets can be done in time O(m · |U |), which

can be substantially faster than O(m2). The new instance created also has size O(m · |U |), so that

it is only slightly larger than m. So by carefully choosing the size of U , we can construct truly

subquadratic time reduction algorithms that preserve the improved factor in running time. Using

this technique which we call universe-shrinking self-reduction, we can show that OV, 2-Set Cover

and Set Containment are equivalent under fine-grained reductions.

43

The self-reduction employs the “high-degree low-degree” trick, which has been also used in

other sparse graph algorithms [AYZ95]. First, consider sets of large cardinality: there cannot be too

many of them, because the structure is sparse. Thus we can do exhaustive search over these sets

to check if any of them is in a solution. For sets of small cardinality, we hash the universe U to a

smaller universe, where complementing the sets does not take too much time and space. From this

reduction, the claim follows:

Claim 3.3.1. If any one of OV, 2-Set Cover and Set Containment has truly subquadratic time

algorithms, then the other two are also solvable in subquadratic time. Thus these problems are all

hard for FOP3.

Claim 3.3.1 is itself an interesting result: in [BCH16], conditional lower bounds for many

problems stem from the above three problems, forming a tree of reductions. By our equivalence,

the root of the tree can be replaced by the quadratic-time hardness conjecture on any of the three

problems, simplifying the reduction tree. Claim 3.3.1 also shows that an improved algorithm for

any of these three problems implies improved algorithms for the other two.

Claim 3.3.1 is proven by derandomizing Lemma 3.4.1 for k = 2; see Section 3.5 for details.

In Section 3.4 we give randomized reductions for an arbitrary k.

3.3.2 Sparse and co-Sparse Relations

Having shown how to reduce any two Basic Problems with the same k to each other, we

will now reduce generic first-order properties to the Basic Problems. The detailed processes are

complicated, so here we start with a high-level idea in reductions and algorithm design throughout

this chapter.

Our algorithms often need to iterate over all tuples or pairs (xi,x j) satisfying some conditions,

to list such tuples, or to count the number of them, performing first-order query processing. A

set of such tuples (pairs) (xi,x j) can be considered a result of a first-order query defined by an

intermediate formula ϕ′ on the (hyper)graph G (or some intermediate structures). Our reduction

44

algorithms often generate such queries, evaluate them, and combine the results (e.g. by counting) to

compute the solutions.

There are three possible outcomes of such queries: the result can be a sparse set of tuples,

a co-sparse set, or neither. If the result of the query is a sparse relation such as [R1(x1,x2)∧

¬R2(x1,x2)], we can iterate over the tuples (say, first enumerate all pairs satisfying R1(x1,x2), then

check for which of them R2(x1,x2) is false). Then, we can do further operations on the sparse set of

(x1,x2) tuples resulting from the query. When the result of the query is a co-sparse set such as for

[¬R1(x1,x2)∧¬R2(x1,x2)], we cannot directly iterate over pairs satisfying the query. Instead, we

work on its complement (which is sparse, instead of co-sparse), but then do some further processing

to filter out those pairs from future use (say, find all pairs (x1,x2) so that at least one of R1(x1,x2)

or R2(x1,x2) is true, then exclude those pairs from future use). Sometimes, the result of a query is

neither sparse nor co-sparse, but we will show it is always a combination of sparse and co-sparse

relations. Thus we need to distinguish them and deal with the sparse and co-sparse parts separately.

We exemplify this process by considering the query [¬R1(x1,x2)∨¬R2(x1,x2)]. For a pair

(x1,x2), to make the formula true, predicates R1,R2 can be assigned values from {(True,False),

(False,True), (False,False)}. In the first two cases, the sets of pairs (x1,x2) satisfying [R1(x1,x2)∧

¬R2(x1,x2)] and [¬R1(x1,x2)∧R2(x1,x2)] are sparse, while in the last case, the set of pairs satisfying

[¬R1(x1,x2)∧¬R2(x1,x2)] is co-sparse. So if we want to work on the tuples satisfying this query,

we list tuples satisfying the first two cases directly by enumerating edges, and enumerate the tuples

not satisfying the third case (i.e., the tuples where either R1(x1,x2) or R2(x1,x2) is true), in order to

exclude them from future use.

In general, a query can be written as a DNF, where the result of each term is a conjunction of

predicates and negated predicates, and therefore either sparse or co-sparse. Then we can deal with

the sparse and co-sparse cases separately. We will use this technique for constructing the Hybrid

Problem in Section 3.4.4.

Now, we would like to reduce MCϕ to OV for an arbitrary ϕ = (∃x)(∃y)(∀z)ψ(x,y,z). First,

suppose that all predicates R1 . . .Rr in ψ are at most binary, and all binary predicates involve z. One

45

attempt is to create a set Sx for each element x and a set Sy for each element y. Then, we create

elements in universe U by creating 2r elements u(z,0r), . . . ,u(z,1r) for each z, where r is the number

of different predicates in ψ, and the length-r strings in the subscripts correspond to the 2r truth

assignments of all these predicates. We construct the sets so that Sx (or Sy) contains element u(z,a)

iff the assignment a falsifies ψ and the relations between x (or y) and z agree with a. In this way,

sets Sx and Sy both contain some element u(z,a) in U iff there is some z such that x,y,z do not satisfy

ψ. Then, if there exists such pair of disjoint sets Sx and Sy, the corresponding x and y satisfy that for

all z, ψ is true.

However, we cannot touch all z’s for each x or y for creating this instance in substantially

less than n2 time. So, we divide the relations of this Set Disjointness instance into sparse and

co-sparse ones. For that, we introduce a Hybrid Problem which is a combination of Basic Problems.

Depending on the four combinations of sparsity or co-sparsity on the relations between variables x,z

and y,z, we reduce MCϕ not only to OV, but to a combination of OV, Set Containment, reversed Set

Containment (i.e. finding S2 ⊆ S1 instead of S1 ⊆ S2), and 2-Set Cover. (Namely, the sub-problem

Set Disjointness deals with the case where the relations between x and z and between y and z are

both sparse; the sub-problems Set Containment, reversed Set Containment and 2-Set Cover deals

with the cases where these relations are sparse and co-sparse, co-sparse and sparse, co-sparse and

co-sparse respectively.) We decide if there is a pair of sets being the solutions of all sub-problems.

Finally, because these Basic Problems can be reduced to each other, we can use the algorithm for

OV to solve the instance of the Hybrid Problem, and then to solve MCϕ.

This approach takes care of binary predicates involving z; to handle relations among existen-

tially quantified variables, additional tools are needed. Thus, the Hybrid Problem definition also

involves a relation R(x,y) and a ”sparsity type” designation, specifying whether R codes a sparse

relation between x and y, or its sparse complement. However, this additional information can be

modeled by adding new elements to the universe and strategically placing them in the corresponding

sets, thus reducing the more complex case to a combination of four Basic Problems.

See Lemma 3.4.5 for the proof that covers more complicated cases.

46

3.4 Completeness of k-OV in MC(∃k∀)

This section will prove the completeness of k-OV in MC(∃k∀) problems. Here we only

consider the input structures that are graphs, i.e. where all relations are either unary or binary; see

Section 3.6 for the reduction from hypergraphs to graphs. First, we introduce a class of Basic

Problems, and prove that these problems are equivalent to k-OV under exact complexity reductions.

Then, we show that any problem in MC(∃k∀) can be reduced to a combination of Basic Problems

(aka. the Hybrid Problem).

3.4.1 How to Complement a Sparse Relation: Basic Problems, and Reduc-

tions Between Them

In this section we define the Basic Problems for k ≥ 2, generalizing k-OV, k-Set Cover and

Set Containment problems, and prove that these problems are fine-grained reducible to each other

under randomized reductions. In Section 3.5 we will give deterministic reductions for k = 2.

Let k≥ 2. We introduce 2k Basic Problems labeled by k-bit binary strings from 0k to 1k. The

input of these problems is the same as that of k-EI defined in Appendix A: k set families S1 . . .Sk of

size n1, . . . ,nk on a universe U of size nu. We define 2k quantifier-free formulas ψ0k , . . . ,ψ1k such

that

ψ` =
(∨

i,`[i]=0(¬(u ∈ Si))
)
∨
(∨

i,`[i]=1(u ∈ Si)
)
.

Here, i ∈ {1, . . . ,k} and `[i], the i-th bit of label `, specifies whether u is in each Si or not in the i-th

term of ψ`.

For each `, let ϕ` = (∃S1 ∈ S1) . . .(∃Sk ∈ Sk)(∀u ∈U)ψ`. For simplicity, we will omit the

domains of the variables in these formulas. We call MCϕ0k , . . . ,MCϕ1k the Basic Problems. We

refer to the Basic Problem MCϕ` as BP[`]. These problems are special cases of first-order model

checking on graphs, where sets and elements correspond to vertices, and membership relations

correspond to edges. Note that BP[0k] is k-EI, and BP[1k] is k-Set Cover. When k = 2, BP[01] and

47

BP[10] are Set Containment problems, and BP[00] is the Set Disjointness problem. For a k-tuple

(S1 ∈ S1, . . . ,Sk ∈ Sk) satisfying (∀u)ψ`, we call it a solution of the corresponding Basic Problem

BP[`].

We present a randomized1 fine-grained mapping reduction between any two Basic Problems,

thus proving the following lemma, which generalizes Claim 3.3.1 to k > 2.

Lemma 3.4.1. Let s(m) be a non-decreasing function such that 2Ω(
√

logm) ≤ s(m) < m1/5. For

any `1, `2 ∈ {0,1}k, there is a randomized exact complexity reduction (BP[`1],mk/(s(m))1/6)≤EC

(BP[`2],mk/s(m)).

For problems BP[`1] and BP[`2] where `1 and `2 only differ in the i-th bit, if we are allowed

to complement all sets in Si, we can easily reduce between them. Similarly, if `1 and `2 differ

in more than one bit, we can complement all the sets in corresponding set families. However,

complementing the sets in Si takes time O(ninu), which might be as large as Θ(m2). To solve this,

we self-reduce BP[`1] on the universe U to the same problem on a smaller universe U ′, and then

complement sets on U ′. For any given δ, if the size of U ′ is n′u = O(mδ), then complementing all

sets in Si only takes time and space m ·O(mδ) = O(m1+δ).

Lemma 3.4.2. (Randomized universe-shrinking self-reductions of Basic Problems)

Let label ` be any binary string in {0,1}k. For any s(m) = 2Ω(
√

logm), given a BP[`] instance I of

size m and universe U of size nu, we can either solve it in time O(mk/s(m)), or use time O(mk/s(m))

to create a BP[`] instance I′ of size O(m · s(m)5) on universe U ′ whose size is n′u = O(s(m)5), so

that I ∈ BP[`] iff I′ ∈ BP[`] with error probability bounded by O(1/s(m)).

Note that the self-reduction of k-OV actually reduces the Sparse k-OV to a moderate-

dimension version of k-OV, implying Lemma 3.1.1. The other direction (moderate-dimension k-OV

to Sparse k-OV) is easy since if the dimension d = nδ, then m is at most d ·n = n1+δ, as required.

Corollary 3.4.1. (Reverse direction of Lemma 3.1.1)

Suppose that for any k≥ 2 there exists δ,ε > 0 and a (randomized) O(nk−ε) algorithm solving k-OV
1The deterministic reduction will be presented in Section 3.5.

48

with dimension d = nδ. Then there is an ε′ > 0 and a (randomized) O(mk−ε′) time algorithm solving

Sparse k-OV.

Proof. The algorithm converts an instance of Sparse k-OV to an instance of k-OV of dimension

nδ using universe-shrinking self-reduction (Lemma 3.4.2) and then applies assumed O(nk−ε) time

algorithm to the reduced instance. More specifically, let m = O(n1+γ), where n is the number of

vectors. Choosing s(m) = O(mδ/5(1+γ)) for some δ > 0 creates an instance of OV with dimension

n′u = O(s(m)5) = O(nδ), and size m′ = O(n1+δ+γ); number of vectors n remains unchanged. Now,

the reduction takes time O(mk/(s(m))5) = O(mk−δ/(1+γ)), and running the O(nk−ε) time algorithm

on the reduced instance takes O(nk−ε)≤O(mk−ε/(1+γ)) time. Setting ε′=min{δ/(1+γ),ε/(1+γ)}

completes the proof.

We will present the randomized self-reductions for problems BP[`] s.t. ` 6= 1k in Section

3.4.2. For BP[1k], we will prove that it is either easy to solve or easy to complement in Section 3.4.3.

After shrinking the universe, we complement the sets to reduce between two Basic Problems

BP[`1] and BP[`2] according to the following lemma.

Lemma 3.4.3. (Reduction between different Basic Problems)

For two different labels `1, `2 ∈ {0,1}k, given set families S1, . . . ,Sk, let S ′1, . . . ,S ′k be defined such

that

S ′i =


{

Si
{ | Si ∈ Si

}
, if `1[i] 6= `2[i]

Si, otherwise
,

then, (∃S1 ∈ S1) . . .(∃Sk ∈ Sk)(∀u)ψ`1 iff (∃S′1 ∈ S ′1) . . .(∃S′k ∈ S ′k)(∀u)ψ`2 .

The proof of correctness is straightforward.

Proof of Lemma 3.4.1. Pick s′(m) = s(m)1/(6k). Using Lemma 3.4.2, we shrink the universe to size

n′u = s′(m)5. So the time complexity in this step is bounded by O(m · s′(m)5), which is significantly

less than mk/s(m) even if k = 2.

49

Let new instance size be m′. So m′ = m · s′(m)5. Given that the constructed instance can

be decided in time m′k/s(m′), we get m′k/s(m′)< (m(s(m)1/(6k))5)k/s(m)< mk/s(m)1/6. Thus, by

the two-step fine-grained mapping reductions given by Lemma 3.4.2 and Lemma 3.4.3, we have

an exact complexity reduction between any two Basic Problems, completing the proof for Lemma

3.4.1.

3.4.2 Randomized Universe-Shrinking Self-Reduction of BP[`] where ` 6= 1k

This section proves part of Lemma 3.4.2, by giving a randomized universe-shrinking self-

reduction of BP[`] where ` 6= 1k. The main idea is to divide the sets into large and small ones.

For large sets, there are not too many of them in the sparse structure, so we can work on them

directly. For small sets, we use a Bloom Filter mapping each element in U to some elements in U ′

at random, and then for each set on universe U , we compute the corresponding set on universe U ′.

Next we can decide the same problem on these newly computed sets, instead of sets on U . ([CIP02]

used a similar technique in reducing from Orthogonal Range Search to the Subset Query problem.)

Because the sets are small, it is unlikely that some elements in two different sets on U are mapped

to the same element on U ′, bounding the error probability.

• Step 1: Large sets. Let d = s(m). For sets of size at least d, we directly check if they are

in any solutions. There are at most O(m/d) = O(m/s(m)) of such large sets. In the outer

loop, we enumerate all large sets in S1, . . . ,Sk. If their sizes are pre-computed, we can do

the enumeration in O(m/s(m)). Assume the current large set is Si ∈ Si. Because variables

quantified by ∃ are interchangeable, we can interchange the order of variables, and let Si be

the outermost quantified variable S1. On each such Si (or S1 after interchanging), we create

a new formula ψS1 on variables S2, . . . ,Sk,u from formula ψ, by replacing u ∈ S1 (u /∈ S1)

by a unary relation on u. Then, we decide if the graph induced by S2, . . . ,Sk and U satisfies

(∃S2) . . .(∃Sk)(∀u)ψS1 , using the baseline algorithm, which takes time O(mk−1) for each such

large set S1. Thus the overall running time is O(m/s(m)) ·O(mk−1) = O(mk/s(m)). If no

50

solution is found in this step, proceed to Step 2.

• Step 2: Small sets. Now we can exclude all the sets of size at least d. For sets of size smaller

than d, we do the self-reduction to universe U ′ of size n′u = s(m)5. Let t = s(m), and let

h : U →U ′t be a function that independently maps each element u ∈U to t elements in U ′ at

random. On set S⊆U , we overload the notation h by defining h(S) =
⋃

u∈S h(u). For all set

families Si, we compute new sets h(Si) for all Si ∈ Si. Then, we decide whether the new sets

satisfy the following sentence, which is another BP[`] problem:

(∃S1) . . .(∃Sk)(∀u)
∨

i,`[i]=0¬(u ∈ h(Si))∨
∨

i,`[i]=1(u ∈ h(Si))

The size of the new instance is O(nt) = O(m ·s(m)), and the running time of the self-reduction

is also O(nt) = O(m · s(m)). So it is a fine-grained mapping reduction for any k ≥ 2.

Figure 3.2 illustrates an example of the universe-shrinking self-reduction for BP[01], where

we look for S1,S2 so that S1 ⊆ S2. If they exist, then after the self-reduction, it is always true that

h(S1) ⊆ h(S2). Still, it might happen that some S1 6⊆ S2 but h(S1) ⊆ h(S2). In this case, a false

positive occurs. In BP[00], a false negative may occur when there are two disjoint sets, but some

elements in S1∩S2 are mapped to the same element in U ′. Next we will analyze the error probability

of this reduction.

Analysis. Because variables quantified by ∃ are interchangeable, w.l.o.g. for ` containing i

(i≥ 1) zeros and k− i ones, assume BP[`] is defined by

(∃S1) . . .(∃Sk)(∀u)
[(∨i

j=1(u /∈ S j)
)
∨
(∨k

j=i+1(u ∈ S j)
)]

,

equivalently, (∃S1) . . .(∃Sk)
[(⋂i

j=1 S j

)
⊆
(⋃k

j=i+1 S j

)]
.

Let sets A =
⋂i

j=1 S j and B =
⋃k

j=i+1 S j. Then the problem is to decide whether there exists

(S1, . . . ,Sk) so that A⊆ B. After the self-reduction, let A′ =
⋂i

j=1 h(S j) and B′ =
⋃k

j=i+1 h(S j), and

decide if there exists (S1, . . . ,Sk) such that A′ ⊆ B′.

51

S1 S2

U

U ′

h

h(S1) h(S2)

a b c

a′ b′ c′ d′ e′

Figure 3.2: The universe-shrinking process. S1 = {a,b} and S2 = {a,b,c}. After the mapping
h, the new sets are h(S1) = {a′,b′,c′,d′} and h(S2) = {a′,b′,c′,d′,e′}.

• False positive. A false positive occurs when ∀(S1, . . . ,Sk),A * B, but ∃(S1, . . . ,Sk),A′ ⊆

B′. For a fixed tuple (S1, . . . ,Sk) such that A * B, an error occurs when h(u) ⊆ B′ for

all u ∈ A− B. The size of B′ is at most kdt. So the error probability Pr[h(u) ⊆ B′] ≤

(kdt/n′u)
t = (ks(m) · s(m)/s(m)5)t < s(m)−t . The size of A−B is bounded by kd, so the

probability Pr[∃u ∈ A−B,h(u) ⊆ B′] ≤ kd · s(m)−t . There are O(mk) tuples of (S1, . . . ,Sk),

so the total error probability is at most O(mk) · kd · s(m)−t = O(mk · s(m)/s(m)s(m)), which is

exponentially small.

• False negative. A false negative occurs when ∃(S1, . . . ,Sk),A ⊆ B, but ∀(S1, . . . ,Sk),A′ *

B′. Fix any tuple (S1, ...,Sk) that satisfies A ⊆ B in the original instance, and consider the

distribution on the corresponding h(S1), ..,h(Sk). By definition, B′ =
⋃

u∈B h(u), and so

contains
⋃

u∈A h(u). So if A′ ⊆⋃
u∈A h(u), we will have A′ ⊆ B′, and there will not be a false

negative. If not, then there is some u′ ∈ A′ =
⋂i

j=1 h(S j), such that u′ /∈⋃
u∈A h(u). Then for

each j ∈ {1, . . . , i}, in each S j there is a u j ∈ S j with u′ ∈ h(u j), but not all u j are identical.

(Otherwise the u j ∈ A, so u′ ∈ h(u j)⊆
⋃

u∈A h(u), contradicting u′ /∈⋃
u∈A h(u)). In particular,

this means that for some j1, j2, there are u j1 ∈ S j1,u j2 ∈ S j2 , such that h(u j1)∩h(u j2) 6= /0. So

the error probability is bounded by k2 ·Pr[∃(u1 ∈ S j1,u2 ∈ S j2),h(u1)∩h(u2) 6= /0]. Because

|S j1 | and |S j2 | are at most d, by Birthday Paradox, the probability is at most O(k2d2t2/n′u) =

52

O(s(m)−1). This is the upper bound of the error probability for the fixed (S1, . . . ,Sk) tuple.

Then, the probability of the event “∀(S1, . . . ,Sk),A′ * B′” is even smaller.

3.4.3 Deterministic Universe-Shrinking Self-Reduction of BP[1k]

This section proves the remaining part of Lemma 3.4.2, by showing BP[1k] is either easy to

solve or easy to complement. BP[1k] is the k-Set Cover problem, which decides whether there exist

k sets covering the universe U . It is special in the Basic Problems: when nu is small, the sets are

easy to complement; when nu is large, the problem is easy to solve.

• Case 1: Large universe. If nu > s(m), then in a solution of this problem, at least one

set has size at least nu/k. There are at most m/(k/nu) = O(m/s(m)) such large sets, thus

they can be listed in time O(m/s(m)), after pre-computation on the sizes of all sets. Our

algorithm exhaustively searches all such large sets. And then, similarly to “Step 1” in

Section 3.4.2, for each of the large sets, we run the baseline algorithm to find the remaining

k− 1 sets in the k-set cover, which takes time O(mk−1). So the overall running time is

O(m/s(m)) ·O(mk−1) = O(mk/s(m)).

• Case 2: Small universe. If nu ≤ s(m), then we do not need a universe-shrinking self-

reduction, because the universe is already small enough.

3.4.4 Hybrid Problem

Next we reduce general MC(∃k∀) problems to an intermediate problem called the Hybrid

Problem, which is a combination of 2k Basic Problems. Then by reducing from the Hybrid Problem

to Basic Problems, we can set up a connection between MC(∃k∀) and OV.

Let k ≥ 2. The input to the Hybrid Problem is:

1. Set families S1 . . .Sk defined on universe U , where U is partitioned into 2k disjoint sub-

universes: U =
⋃

`∈{0,1}k U`.

53

U00 U01 U10 U11

S1 S2

R[S1, S2] = true
type[1, 2] = 1

S1 ∩ S2 = ∅ S1 ⊆ S2 S1 ⊇ S2 S1 ∪ S2 = U11

Figure 3.3: An example of a solution to a Hybrid Problem instance, when k = 2.

2. A binary relation R defined on pairs of sets from any two distinct set families. R is a symmetric

relation (R(Si,S j) iff R(S j,Si)).

3. type is binary string of length
(k

2

)
, indexed by two integers [i, j], s.t. i, j ∈ {1, . . . ,k} and i < j.

The goal of the problem is to decide if there exist S1 ∈ S1, . . . ,Sk ∈ Sk such that both of the

following constraints are true:

(A) For each ` ∈ {0,1}k, (S1, . . .Sk) is a solution of BP[`] defined on sub-universe U`.

(B) For all pairs of indices i, j ∈ {1, . . . ,k}, i < j, we have that R(Si,S j) = true iff type[i, j] = 1.

We let n be the sum of |S1|, . . . , |Sk| and U , and let m be the number of tuples in all unary and

binary relations. The Hybrid Problem is a first-order property on graphs with additional constraints.

As usual, we assume all relations in the Hybrid Problem are sparse (m≤ n1+o(1)).

Figure 3.3 shows a solution to a Hybrid Problem instance when k = 2. In sub-universes

U00,U01,U10,U11, sets S1 and S2 are solutions of BP[00](Set Disjointness), BP[01](Set Contain-

ment), BP[10](Set Containment in the reversed direction) and BP[11](2-Set Cover), respectively.

Furthermore, type[1,2] = 1 specifies that the predicate R on (S1,S2) must be true.

Intuition behind the Hybrid Problem. In the Hybrid Problem, the set families S1, . . . ,Sk

encode the conditions on relations involving xk+1, while the binary relation R and the types encode

54

the conditions on relations not involving xk+1. We mentioned in Section 3.3 that any first-order

query containing two variables can be written in a “normal form”, which is a combination of sparse

and co-sparse relations. The Hybrid Problem is designed for separating sparse relations from

co-sparse ones, for all pairs of variables in formula ϕ.

The relation between the pair of variables (xi,xk+1) where 1≤ i≤ k can be either sparse or

co-sparse. Because there are k such variables xi, there are 2k cases for a combination ((x1,xk+1), . . . ,

(xk,xk+1)). These cases correspond to the 2k Basic Problems. In each Basic Problem, we deal with

one of the 2k cases.

For a relation between the pair of variables (xi,x j) where 1≤ i < j ≤ k, it also can be either

sparse or co-sparse. We use type[i, j] to distinguish the two cases: when it is set to 1, we expect a

sparse relation for (xi,x j), otherwise a co-sparse relation.

3.4.5 Reduction to Basic Problems

Lemma 3.4.4. Let s(m) be a non-decreasing function such that 2Ω(
√

logm) ≤ s(m) < m1/5. Then,

(Hybrid Problem,mk/(s(m))1/6)≤EC (k-OV,mk/(s(m))).

Given an instance of the Hybrid Problem, we can do the following modification in time

O(m). For each pair of indices i, j where 1≤ i < j ≤ k, we construct auxiliary elements depending

on the value of type[i, j].

• Case 1: If type[i, j] = 0, then if a pair Si ∈ Si, S j ∈ S j occurs in a solution to the Hybrid

Problem, then there should be no edge R(Si,S j). Let ` be the length-k binary string where the i-th

and j-th bits are zeros and all other bits are ones. For each edge R(Si,S j) on Si ∈ Si and S j ∈ S j,

we add an extra element uSiS j in U` and let uSiS j ∈ Si, uSiS j ∈ S j. Thus, S′i ∈ Si and S′j ∈ S j can

both appear in the solution only when for all uSiS j , (uSiS j /∈ S′i)∨ (uSiS j /∈ S′j), and this holds iff

R(S′i,S
′
j) = false.

• Case 2: If type[i, j] = 1, then in a solution to the Hybrid Problem, Si and S j should have

an edge R(Si,S j) between them. Let ` be the length-k binary string where the j-th bit is zero and all

55

other bits are ones. For each S j ∈ S j, we add an extra element uS j in U` and let uS j ∈ S j. For each

edge R(Si,S j), we let uS j ∈ Si. Thus, S′i ∈ Si and S′j ∈ S j can both appear in the solution only when

for all uS j , (uS j /∈ S′j)∨ (uS j ∈ S′i), and it holds iff R(S′i,S
′
j) = true.

After the above construction, we can drop the constraint (B) of the Hybrid Problem. We will

ignore the relation R and type in the Hybrid Problem. The problem now is to decide whether there

exists tuple (S1, . . . ,Sk) being a solution to all 2k Basic Problems. Then we can use the reductions

in Lemma 3.4.1 to reduce all these Basic Problems to BP[0k], and then combine the 2k instances

to a large BP[0k] instance. Because the reductions do not change the solutions S1, . . . ,Sk, there

exists a solution to the large BP[0k] instance iff there exists a solution simultaneously to all the

Basic Problem instances. Let U`
′ be the sub-universe of the BP[0k] instance reduced from the BP[`]

sub-problem. (S1, . . . ,Sk) is a solution to all Basic Problems iff their intersection is empty on every

sub-universe U ′`, iff their intersection is empty on universe
⋃

`∈{0,1}k U ′`, i.e., it is a solution of a

BP[0k] instance.

Multiplying the error probability in the reductions between Basic Problems by 2k, which is

a constant number, and then taking a union bound, we get similar bounds of error probability for

the Hybrid Problem.

3.4.6 Turing reduction from general MC(∃k∀) problems to the Hybrid Prob-

lem

The following lemma provides the last piece of the proof that sparse k-OV is complete for

MC(∃k∀) under fine-grained Turing reductions. The result follows by combining this lemma with

Lemma 3.4.4.

Lemma 3.4.5. For any integer k ≥ 2, any problem in MC(∃k∀) is linear-time Turing reducible to

the Hybrid Problem, namely, (MC(∃k∀),T (m))≤EC (Hybrid Problem,T (O(m))).

Consider the problem MCϕ where ϕ = (∃x1) . . .(∃xk)(∀xk+1)ψ(x1, . . . ,xk+1). An input

graph G can be preprocessed in linear time to ensure that it is a (k+1)-partite graph on vertices

56

V = (V1, . . . ,Vk+1), for example by creating k+1 copies of original vertex set.

W.l.o.g, we assume that for each occurrence of binary predicate Rt(xi,x j), i≤ j. Let Pk+1

be the set of unary and binary predicates in ψ that involve variable xk+1, and let Pk+1 denote

the set of the other predicates not including xk+1. A partial interpretation α for Pk+1 is a binary

string of length |Pk+1|, that encodes the truth values assigned to all predicates in Pk+1. For each i

s.t. 1≤ i≤ |Pk+1|, if the i-th predicate in Pk+1 is assigned to true, then we set the i-th bit of α to one,

otherwise we set it to zero. For a tuple (v1, . . . ,vk), we say it implies α (denoted by (v1, . . . ,vk) |= α)

iff when (x1← v1, . . . ,xk← vk), the evaluations of all predicates in Pk+1 are the same as the values

specified by α.

For each α ∈ {0,1}Pk+1 , we create a distinct Hybrid Problem instance Hα. If any of the

Hybrid Problems accepts, we accept. Let ψ|α(x1, . . . ,xk+1) be ψ after replacing all occurrences of

predicates in Pk+1 by their corresponding truth values specified by α. The following steps show

how to create Hα from α and ψ|α(x1, . . . ,xk+1).

Step 1: Construction of sets.

We introduce colors, which are partial interpretations defined on some specific subsets of the

predicates concerning variable xk+1. We call them “colors” because they can be considered as a

kind of labels on (vi,vk+1) pairs. For each i ∈ {1, . . . ,k}, we give all the unary predicated defined

on xi and binary predicates defined on (xi,xk+1) (including those on (xk+1,xi)) a canonical order.

We use Pi to denote the set of these predicates for each i. Let a color be a partial interpretation for

Pi, which is a binary string of length |Pi|, encoding the truth values assigned to all predicates in Pi.

For each j s.t. 1≤ j ≤ |Pi|, if the j-th predicate in Pi is assigned to true, then we set the j-th bit of

the color to one, otherwise we set it to zero. For a color ci ∈ {0,1}|Pi|, we say (vi,vk+1) |= ci iff

when xi← vi and xk+1← vk+1, the values of all predicates in Pi are the same as the corresponding

bits of ci. We refer to the colors where all bits are zeros as the background colors. These colors are

special because they correspond to interpretations where all predicates in Pi are false, i.e., we cannot

directly go through all pairs (vi,vk+1) where (vi,vk+1) |= 0|Pi|, since this is a co-sparse relation. So

57

we need to deal with these pairs separately.

For a vertex combination (v1, . . . ,vk+1) where (vi,vk+1) |= ci on all 1≤ i≤ k, the k-color-

tuple (c1, . . . ,ck) forms a color combination, which corresponds to truth values assigned to all the

predicates in Pk+1.

For each vi ∈Vi where 1≤ i≤ k, we create set Svi in the set family Si. For each vk+1 ∈Vk+1,

and each color combination (c1, . . . ,ck) s.t. ci ∈ {0,1}|Pi| and the values of all predicates specified

by (c1, . . . ,ck) make ψ|α evaluate to false (in which case we say (c1, . . . ,ck) does not satisfy ψ|α),

we create an element u(vk+1,c1,...,ck) in U . We call a string C ∈ {0,1}k an encoding of a color

combination (c1, . . . ,ck) when on all indices i ∈ {1, . . . ,k}, C[i] = 1 iff ci = 0|Pi|. We put each

element u(vk+1,c1,...,ck) in the sub-universe UC iff C is an encoding of (c1, . . . ,ck).

Next we will construct the sets. For each vi ∈Vi, let Svi be

Svi = {u(vk+1,c1,...,ck) | (c1, . . . ,ck) does not satisfy ψ|α, and

((ci 6= 0|Pi|,(vi,vk+1) |= ci), or (ci = 0|Pi|,(vi,vk+1) 6|= ci = 0|Pi|))}.

To construct such sets, for each edge on (xi,xk+1) (and (xk+1,xi)), we do the following. Assume the

current vertex pair is (vi,vk+1).

1. First, let set Svi contain all elements u(vk+1,c1,...,ck) in U where ci is a fixed color such that

(vi,vk+1) |= ci, and the other colors c j can be any string in {0,1}|Pj|.

2. Next, let set Svi contain all elements u(vk+1,c1,...,ck) in U where ci = 0|Pi| (here (vi,vk+1) 6|= ci =

0|Pi| because there is some edge connecting vi and vk+1, meaning at least one bit in ci is 1),

and the other colors c j can be any string in {0,1}|Pj|.

In other words, in the sub-universe labeled by 0k, which is made up of elements u(vk+1,c1,...,ck)

such that none of the ci equals 0|Pi|, and that (c1, . . . ,ck) does not satisfy ψ|α, a set Svi contains an

element u(vk+1,c1,...,ck) iff (vi,vk+1) |= ci. On the other hand, in any sub-universe labeled by C where

the i-th bit of C is 1, i.e. those are made up of elements u(vk+1,c1,...,ck) such that ci = 0|Pi| and that

(c1, . . . ,ck) does not satisfy ψ|α, a set Svi contains an element u(vk+1,c1,...,ck) iff (vi,vk+1) 6|= ci = 0|Pi|.

58

u(vk+1,c1,...,ck)

Sv1 Sv2 Svk

U0k

u(vk+1,0|P1|,c2,0|P3|,c4,...,ck)

U1010k−3

Sv1 Sv2 Svk.Sv3 Sv4 Sv3 Sv4

Figure 3.4: The formula is satisfied iff there exists (Sv1 ,Sv2 , . . . ,Svk) so that there does not exist
such an element u in any of the sub-universes.

Analysis. Now we show the above construction achieves constraint (A) in the definition of

the Hybrid Problem.

• Assume that (v1, . . . ,vk) does not satisfy (∀vk+1)ψ|α(x1, . . . ,xk+1), i.e., there exists some

vk+1 ∈ Vk+1 such that ψ|α(v1, . . . ,vk+1) is false. Then consider the specific color combination

(c1, . . . ,ck) where on each i, (vi,vk+1) |= ci. So (c1, . . . ,ck) does not satisfy ψ|α(x1, . . . ,xk+1). Thus

there exists an element u(vk+1,c1,...,ck) in U .

If none of the colors in combination (c1, . . . ,ck) is the background color, then the encoding

of (c1, . . . ,ck) is the string 0k. Thus, the element u(vk+1,c1,...,ck) is in sub-universe U0k . By our

construction, u(vk+1,c1,...,ck) is contained in all of Sv1, . . . ,Svk , as shown on the left side of Figure 3.4.

(In the figure, the formula is satisfied iff there exists (Sv1,Sv2, . . . ,Svk) so that there does not exist

such an element u in any of the sub-universes: the left figure illustrates the case where none of

c1, . . . ,ck is a background color. The right is the case where only c1 and c3 are background colors.

The dashed lines stand for non-existing edges.) This is because when we went through all the edges,

at the edge between (vi,vk+1), we put u(vk+1,c1,...,ck) in Svi , since none of the colors is background.

Thus (∃u ∈ U0k)
[∧k

i=1(u ∈ Svi)
]
, so it is not the case that (∀u ∈ U0k)

[∨k
i=1¬(u ∈ Svi)

]
, which

means Sv1 , . . . ,Svk is not a solution of BP[0k] on sub-universe U0k .

If some of the colors ci in the color combination (c1, . . . ,ck) equal the background color

0|Pi|, then in the encoding C of (c1, . . . ,ck), C[i] = 1. Thus, the element u(vk+1,c1,...,ck) is in the

sub-universe UC. By our construction, u(vk+1,c1,...,ck) is contained in sets Svi for all indices i where ci

is not the background color 0|Pi|, and is not contained in sets Sv j for all indices j where c j is the

59

background color 0|Pj|. The latter case is because for each index j where c j is the background color,

there is no edge connecting the pair of vertices (v j,vk+1). So we did not put u(vk+1,c1,...,ck) in Sv j .

(The right side of Figure 3.4 demonstrates the example where c1 and c3 are the background

colors while other colors are not.)

Thus

(∃u ∈UC)
[∧

i∈{1,...,k},C[i]=0(u ∈ Svi)∧
∧

i∈{1,...,k},C[i]=1(¬(u ∈ Svi))
]
,

so it is not the case that

(∀u ∈UC)
[∨

i∈{1,...,k},C[i]=0(¬(u ∈ Svi))∨
∨

i∈{1,...,k},C[i]=1(u ∈ Svi)
]
,

which means Sv1, . . . ,Svk is not a solution of BP[C] on sub-universe UC.

• On the other hand, assume that (v1, . . . ,vk) satisfies (∀vk+1)ψ|α(v1, . . . ,vk+1). We claim

that for all ` ∈ {0,1}k, (Sv1, . . . ,Svk) is a solution to Basic Problem BP[`].

Consider the sub-universe UC for each C ∈ {0,1}k. If C = 0k, i.e., the sub-universe is U0k

corresponding to BP[0k], then none of the elements u(vk+1,c1,...,ck) in U0k contains any background

color among its c1, . . . ,ck. For the sake of contradiction, suppose there exists an element u(vk+1,c1,...,ck)

that is contained in all sets Sv1, . . . ,Svk . So by our construction of sets, for each i ∈ {1, . . . ,k},

(vi,vk+1) |= ci. Recall that the color combination (c1, . . . ,ck) in any element u(vk+1,c1,...,ck) does not

satisfy ψ|α. Then this means the vertex vk+1 does not satisfy ψ|α(v1, . . . ,vk,vk+1), which leads to a

contradiction.

Thus on (Sv1, . . . ,Svk), it is not the case that (∃u ∈ U0k)
[∧k

i=1(u ∈ Svi)
]
, implying that

(Sv1, . . . ,Svk) satisfies (∀u ∈U0k)
[∨k

i=1¬(u ∈ Svi)
]
. So it is a solution of the Basic Problem BP[0k]

on sub-universe U0k .

If C 6= 0k, for the sake of contradiction, suppose there exists an element u(vk+1,c1,...,ck)

such that among Sv1, . . . ,Svk , it is contained in set Svi iff C[i] = 0. Then by our construction of

sets, this means for all i such that C[i] = 0, (vi,vk+1) |= ci; while for all i such that C[i] 6= 0,

(vi,vk+1) |= 0|Pi| = ci. Combining the two statements, for all i, (vi,vk+1) |= ci. Recall again that the

60

color combination (c1, . . . ,ck) in any element u(vk+1,c1,...,ck) does not satisfy ψ|α. This implies the

vertex vk+1 does not satisfy ψ|α(v1, . . . ,vk+1), which leads to a contradiction.

Thus on (Sv1, . . . ,Svk), it is not the case that

(∃u ∈UC)
[∧

i∈{1,...,k},C[i]=0(u ∈ Svi)∧
∧

i∈{1,...,k},C[i]=1(¬(u ∈ Svi))
]
,

implying (Sv1, . . . ,Svk) satisfies

(∀u ∈UC)
[∨

i∈{1,...,k},C[i]=0(¬(u ∈ Svi))∨
∨

i∈{1,...,k},C[i]=1(u ∈ Svi)
]
.

So it is a solution of the Basic Problem BP[C] on sub-universe UC.

In summary, there exists a tuple (v1, . . . ,vk) such that (∀vk+1)ψ|α(v1, . . . ,vk,vk+1) holds

true, iff there exist sets (Sv1 , . . . ,Svk) such that for all ` ∈ {0,1}k, (Sv1, . . . ,Svk) is a solution of

Basic Problem BP[`] on sub-universe U`. Thus our reduction satisfies constraint (A) of the Hybrid

Problem.

Step 2: Construction of R and type.

Next, we consider the predicates in Pk+1, which are predicates unrelated to variable xk+1. We create

edges for predicate R according to the current partial interpretation α.

For a pair of vertices vi ∈Vi and v j ∈Vj where 1≤ i < j ≤ k, we say (vi,v j) agrees with α

if the evaluations of all predicates on (xi,x j) (including (x j,xi)) when xi← vi,x j← v j, equals the

truth values of corresponding predicates specified by α.

• Case 1: At least one predicate on (xi,x j) in α is true. (i.e., (xi,x j) is in a sparse relation)

For all edges (vi,v j) (including (v j,vi)) where vi ∈Vi and v j ∈Vj and i < j ≤ k, if (vi,v j) agrees

with α, then we create edge R(Svi,Sv j). Finally we make type[i, j] = 1 in the Hybrid Problem Hα.

• Case 2: All predicates on (xi,x j) in α are false. (i.e., (xi,x j) is in a co-sparse relation)

For all edges (vi,v j) (including (v j,vi)) where vi ∈Vi and v j ∈Vj and i < j ≤ k, if (vi,v j) does not

agree with α, then we create edge R(Svi,Sv j). Finally we make type[i, j] = 0 in the Hybrid Problem

Hα.

61

Analysis. We prove that (vi,v j) can appear in the solution of Hα only if when it agrees with

α. If (vi,v j) does not agree with α, we should not let them be in any solution of Hα. This is done by

the relation R and the string type.

Consider the two cases. If in α some predicates on (xi,x j) are true (i.e., set of tuples that

agree with α is sparse), then in any (vi,v j) that agrees with α, there must be an edge in G connecting

vi and v j. So we can add an edge (defined by relation R) on the corresponding sets Svi,Sv j and

require there must be such an edge in the solution (i.e., type being 1).

On the other hand, if all predicates on (xi,x j) in α are false (i.e., set of tuples agreeing with

α is co-sparse), then in any (vi,v j) that agrees with α, there should not be any edge connecting vi

and v j. In this case we turn to consider the tuples (vi,v j) that do not agree with α (which is a sparse

relation, instead of co-sparse). We create edges on the corresponding sets Svi,Sv j and require there

must not be such an edge in the solution (i.e., type being 0).

Therefore, a tuple (v1, . . . ,vk) implies α iff for all i, j ∈ {1, . . . ,k}, i < j, the truth value of

relation R(Svi,Sv j) equals whether type[i, j] = 1. Thus our reduction satisfies constraint (B) of the

Hybrid Problem.

From the analyses of the two steps, we have justified that: there exists (v1, . . . ,vk) so that

(v1, . . . ,vk) |= α, and ψ|α holds for all vk+1 ∈Vk+1, iff there exists (Sv1, . . . ,Svk) being a solution to

the Hybrid Problem Hα. Thus, if for any α ∈ {0,1}Pk+1 , the Hybrid Problem Hα accepts, then there

exists a solution (v1, . . . ,vk) so that ψ(v1, . . . ,vk,vk+1) holds for all vk+1 ∈Vk+1. Otherwise there

does not exist such a solution. From the above argument, we have proved the following claim.

Claim 3.4.1. The two propositions are equivalent:

(1) MCϕ has a solution x1← v1, . . . ,xk← vk such that (∀vk+1 ∈Vk+1)ψ(v1, . . . ,vk+1) is satisfied.

(2) There exists an α ∈ {0,1}Pk+1 so that (Sv1 , . . . ,Svk) |= α, and Sv1, . . . ,Svk is a solution to the

Hybrid Problem Hα.

The running time of the whole reduction process is linear in the total number of edges in the

graph, because the number of predicates is constant. Thus Lemma 3.4.5 follows.

62

3.5 Derandomization

We derandomize the reduction in Section 3.4 for the k = 2 case, so that the whole proof

of Theorems 5 and 7 is determistic. The derandomization of the randomized universe-shrinking

self-reduction uses the technique of nearly disjoint sets similar to the construction of pseudorandom

generator by Nisan and Widgerson in [NW94].

In this section, for simplicity we use SC(x) (resp. SD(x)) to denote Set Containment, a.k.a.

the Basic Problem BP[01] (resp. Set Disjointness, a.k.a. the Basic Problem [00] or Sparse OV) on

universe of size x, and use HP for the Hybrid Problem.

Lemma 3.5.1. For any 2Ω(
√

logn) ≤ s < m1/3, there is a deterministic universe-shrinking self-

reduction for SC such that (SC(n),m2/s)≤EC (SC(O(s2 log2 n/ log2 s),m2/s3 log2 n
log2 s

)).

Lemma 3.5.2. For any 2Ω(
√

logn) ≤ s < m1/3, there is a deterministic universe-shrinking self-

reduction for SD such that (SD(n),m2/s)≤EC (SD(O(s2 logn/ logs),m2/s3 logn
logs)).

The following reduction from the Hybrid Problem to Set Disjointness implies the model

checking for any ∃∃∀ sentences on sparse structures can be reduced to moderate-dimension SD,

and then to OV.

Lemma 3.5.3. For any 2Ω(
√

logn) ≤ s < m1/3, where m is the input size to the Hybrid Problem, there

is a deterministic reduction algorithm such that

(HP,m2/s)≤EC (SD(O(s2 log2 n/ log2 s),m2/s7 log3 n
log3 s

)).

3.5.1 Proof of Lemma 3.5.1

This section presents the derandomization of the universe-shrinking self-reduction in Sec-

tions 3.4.2 for the Basic Problem BP[01] (and equivalently BP[10]), i.e. when the corresponding

Basic Problem is the Set Containment problem.

Pick `= O(logn/ logs) and prime number q = O(s logn/ logs), so that s` < q and q` > n.

By Bertrand’s postulate and that PRIMES is in P, we can find such a q in time Õ(s logn/ logs).

63

First, we use the algorithm in Section 3.4.2 to decide if there is a solution containing a set of

size at least s, which takes time O(m2/s). So next we only consider sets of size smaller than s.

We create a new universe U ′ of size q2. Let U ′ be GF(q)×GF(q). Let element u in

universe U correspond to a unique polynomial pu over GF(q) of degree `. The number of different

polynomials is q`. Since q` > n, the number of different polynomials is greater than the number of

elements of U .

Let h be a hash function so that each element in U is mapped to a set h(u) = {〈i, pu(i)〉 | i ∈

GF(q)} of size q. For set S ⊆U , define h(S) =
⋃

u∈S h(u). Finally, S ′1 = {h(S)|S ∈ S1}, and S ′2 is

constructed similarly. Then we decide the SC(q2) instance that takes S ′1 and S ′2 as input.

If S1 ⊆ S2, then h(S1)⊆ h(S2), and the call to the SC(q2) instance returns true.

If S1 6⊆ S2 for all sets, we need to show that for each element u1 ∈ S1\S2, |h(u1)∩h(S2)|< q.

Then because |h(u1)| = q, some element in h(u1) is not in h(S2), therefore h(S1) 6⊆ h(S2). To

show |h(u1)∩ h(S2)| < q, observe that for each element u2 ∈ S2, the intersection h(u1)∩ h(u2)

has size at most `, the degree of polynomial pu1 − pu2 . There are at most s elements in S2, thus

|h(u1)∩h(S2)| ≤ s` < q.

Thus, there exist S1 ⊆ S2 in the original instance iff there exist h(S1) ⊆ h(S2) in the con-

structed instance.

The time to create the new set is O(mq`), which is less than O(m2/s). And its size is

m′ ≤ mq. Thus, if we can solve it in time O(m′2/poly(s)) where s < mε for all ε > 0, we can solve

it in time O(m2q2/poly(s)) = O(m2/poly(s)).

3.5.2 Proof of Lemma 3.5.2

First, we use the algorithm in Section 3.4.2 to decide if there is a solution containing a set of

size at least s, which takes time O(m2/s). So next we only consider sets of size smaller than s.

Let `= O(logn/ logs), and let q be a prime ≥ s2`, thus q = O(s2`) = O(s2 logn
logs). So q` > n.

By Bertrand’s postulate, we can find such a q in time O(s2 logn
logs). We create a universe U ′ of size q.

64

Each element u of U , which is a string of length logn, can be viewed as the encoding of a

polynomial pu over GF(q) of degree logn
logq ≤

logn
logs = `.

Let a be an element in group GF(q). For each element u in U , we let hash function

ha(u) = pu(a). For set S ⊆U , define ha(S) =
⋃

u∈S{ha(u)}. The algorithm in the outermost loop

enumerates all elements a ∈ GF(q). For each a, we compute ha(S) for all sets S in the input. Then

we decide if there are two disjoint sets in the new instance. The algorithm makes q queries to

SD(q) instances of input size m, each taking time T (m) = m2/s3 logn
logs = m2/sq, the running time for

moderate-dimension OV. The total time is qT (m) = O(m2/s).

For each pair of different elements u and v in U , the number of elements a in GF(q) so that

pu(a) = pv(a) is at most their degree l < logn. Suppose S1 ∈ S1 and S2 ∈ S2 are a pair of disjoint

sets. ha(S1) and ha(S2) are disjoint if all pairs of their elements are mapped to different elements in

GF(q). The total number of possible collisions is at most s2 logn. Because q > s2 logn, there exists

at least one element a in GF(q) so that all pairs of elements in S1 and S2 are mapped to different

elements by ha.

If there are no disjoint sets, then for each S1 ∈ S1 and S2 ∈ S2, h(S1∩S2)⊆ h(S1)∩h(S2),

so h(S1) and h(S2) are not disjoint. Thus, for every a ∈ GF(q), the call to the SD(logn) instance

returns false.

3.5.3 Hybrid Problem

In this section we combine the above two deterministic reductions to solve the Hybrid

Problem, which yields a deterministic reduction for Theorem 5 and Theorem 7. Here we use a

similar version of the Hybrid Problem as defined in Section 3.4.4 but without the relation R and the

string type. More formally, we consider the Hybrid Problem defined as follows:

Problem HP

Input: S1,S2, each a set family of sets Si = Ai ∪Bi ∪Ci ∪Di where Ai,Bi,Ci,Di are subsets of

disjoint universes UA,UB,UC,UD respectively.

65

Output: Whether there exist Si ∈ S1 and S j ∈ S2 so that

1. Ai∩A j = /0 (Set Disjointness)

2. Bi ⊆ B j (Set Containment)

3. Ci ⊇C j (Set Containment reversed)

4. Di∪D j =UD (2-Set Cover)

The results in Section 3.4.4 can be applied to this version of Hybrid Problem, so that the

model checking for first-order sentences of form ∃∃∀ can be reduced to the Hybrid Problem. More

precisely, (MC(∃∃∀),T (O(m)))≤ (HP,T (m)).

Proof of Lemma 3.5.3.

First, we decide if there is a solution containing a set of size at least s, as described in the

previous subsections, using time O(m2/s). So next we only consider sets of size smaller than s.

If |UD| ≥ 2s, then for all pairs of i, j, Di and D j cannot cover UD, so we return false.

Otherwise for i and all j we create sets UD\Di and UD\D j. So D1 ∪D2 = UD iff (UD\Di)∩

(UD\D j) = /0. The resulting instance size is O(ms).

Then, we use Lemma 3.5.1 self-reductions for Set Containment on the B’s and C’s, so the

created sets B′i,B
′
j and Ci,C j are on universes of size O(s2 log2 n

log2 s
). For each j, we create set UB\B′j,

so Bi ⊆ B j iff B′i ⊆ B′j iff B′i∩ (UB\B′j) = /0. Similarly for each i we create UC\C′i , so Ci ⊇C j iff

C′i ⊇C′j iff (UC\C′i)∩C′j = /0. The resulting instance size is O(m · s2 log2 n
log2 s

).

Finally, we use Lemma 3.5.2 self-reductions for Set Disjointness on the original A’s. So

in each call to the oracle, the created sets A′i,A
′
j are on universes of size O(s2 logn

logs). For each i and

each j, we create sets S′i = A′i ∪B′i ∪ (UC\C′i)∪ (UD\Di) and S′j = A′j ∪ (UB\B′j)∪C′j ∪ (UD\D j).

By the argument above, S′i∩S′j = /0 iff A′i∩A′j = /0 and Bi ⊆ B j and Ci ⊇C j and Di∪D j =UD. If

Ai∩A j = /0, then in at least one call to the oracle A′i∩A′j = /0 and thus the call will return true as

long as the conditions on B,C,D’s are satisfied. If Ai∩A j 6= /0, all calls return false.

The size of the new instance is O(m · s2 log2 n
log2 s

). In the reduction we make s2 logn
logd calls to the

algorithm for Set Disjointness on small universe. Thus if SD(O(s2 log2 n
log2 s

)) has algorithms in time

66

O(m2/s7 log5 n
log5 s

), we get running time s2 logn
logd ·O((m · s2 log2 n

log2 s
)2/s7 log5 n

log5 s
) = O(m2/s). �

This gives a reduction from the general first-order model checking problems to the Hybrid

Problem.

3.5.4 Extending to More Quantifiers

The derandomization can be extended to quantifiers k+1 for integer k ≥ 2. The reduction

combines the reductions for Set Containment and Set Disjointness.

Recall from Section 3.4.1, a Basic Problem BP[`] where ` 6= 1k can be considered as deciding

(∃S1) . . .(∃Sk)(∀u)
[(∨i

j=1(u /∈ S j)
)
∨
(∨k

j=i+1(u ∈ S j)
)]

, or equivalently (∃S1) . . .(∃Sk)[(⋂i
j=1 S j

)
⊆
(⋃k

j=i+1 S j

)]
. for some i such that 0≤ i≤ k. Again, we map each element in U to

a set of elements in a small universe U ′ by some function h, and thus map each set S in U to a set

h(S) in U ′.

Let q1, q2 be the q defined in Sections 3.5.1 and 3.5.2 respectively. Here q2 is a prime

number larger than sk−i`. For each element u, for each element a ∈ GF(q2) we map it to a set of

tuples h(u) = {〈uSC,uSD〉 | uSC ∈ hSC(u),uSD ∈ hSD
a (u)}, where hSC and hSD

a are the functions h and

ha defined in Sections 3.5.1 and 3.5.2 respectively, and then we make a query for the BP[`] instance

created from the mapping h. Thus we make q2 queries in all, and accept if at least one of the queries

is accepted.

If there exist sets S1, . . . ,Sk such that
⋂i

j=1 S j ⊆
⋃k

j=i+1 S j, by generalizing the analysis in

Section 3.5.2, in at least one query, the set
⋂i

j=1 h(S j) does not contain any element not in h(
⋂i

j=1 S j).

And by generalizing the analysis in Section 3.5.1, in each query, the set
⋃k

j=i+1 h(S j) = h(
⋂i

j=1 S j)

is always contained in h(
⋃k

j=i+1 S j) which is contained in
⋃k

j=i+1 h(S j). So we get the following

reduction: (BP[`](n),mk/s)≤EC (BP[`](poly(s)),mk/poly(s)).

67

3.6 Extending to Hypergraphs

This section gives a reduction from MC(∃∃∀), i.e., the model checking for ∃∃∀ formulas on

hypergraphs, to the model checking for ∃∃∀ formulas on graphs, where there are only unary and

binary relations. We will prove the following lemma.

Lemma 3.6.1. If MC(∃k∀) on graphs is solvable in time T (m), then MC(∃k∀) on hypergraphs is

solvable in T (O(m))+O(mk−1/2).

For a three-quantifier formula (∃x)(∃y)(∀z) ψ(x,y,z) where x ∈ X ,y ∈ Y,z ∈ Z, we prove

that it can be decided in time O(m3/2 + T (O(m))), where T is the running time for the model

checking of three-quantifier formulas on graphs.

Let relation N(x,y) be the edges of the Gaifman graph, which means N(x,y) = true iff there

exists some z such that there is a hyperedge Ri(x,y,z) = true (the order of x,y,z can be interchanged).

Note that each tuple in the relations contributes to only constantly many tuples of N. So |N|= O(m),

and we can construct N in linear time.

Let ψ(x,y,z) be a quantifier-free formula. We define ψ∗(x,y,z) be ψ(x,y,z) where all

occurrences of ternary predicates are replaced by false. Thus, it contains only unary and bi-

nary predicates. Formula (∃x)(∃y)(∀z)ψ(x,y,z) is equivalent to (∃x)(∃y)(∀z)[N(x,y)∧ψ(x,y,z)]∨

(∃x)(∃y)(∀z)[¬N(x,y)∧ψ∗(x,y,z)].

We can decide (∃x)(∃y)(∀z)[¬N(x,y)∧ψ∗(x,y,z)] using the algorithm for graphs, because

all relations are binary. To decide (∃x)(∃y)(∀z)[N(x,y)∧ψ(x,y,z)], we consider three types of x’s

and y’s. Let deg(x) be the degree of x in the Gaifman graph.

• Type 1: deg(x) ≥ √m. It is similar to deciding “large sets” for Basic Problems in Section

3.4.2. In the outer loop, enumerate all such x’s. For each x, we modify the model checking

problem to an instance of FOP2, by treating x as a constant. The number of such x’s is at most

O(m/
√

m) = O(
√

m), and deciding an FOP2 problem runs in time O(m). So the total running time

is O(
√

m ·m) = O(m3/2).

68

• Type 2: deg(y)≥√m. Use the same method as above by exchanging the order of x and y. The

running time is also O(m3/2).

• Type 3: deg(x) <
√

m and deg(y) <
√

m. Enumerate all pairs of such x’s and y’s. Then in the

inner loop, we enumerate all their neighbors in Z. In this way, for each z∈ Z such that z is a neighbor

of x or y, we can categorize it by the truth value of all predicates. For all other z’s, we know all the

predicates are false. Thus we can decide if all z ∈ Z satisfy ψ. Because all these x’s and y’s are

adjacent, the time for enumerating pairs of x and y is O(m), and the time for enumerating all their

neighbors in Z is O(
√

m). So the total running time is O(
√

m ·m) = O(m3/2).

Thus, for each pair (x,y) where N(x,y) = true, we can decide the model checking for

(∀z)ψ(x,y,z) in time O(m3/2). For each pair (x,y) where N(x,y) = false, (∀z)ψ(x,y,z) is true iff

(∀z)[¬N(x,y)∧ψ∗(x,y,z)].

Similarly, for MC(∃k∀) problems where ϕ = (∃x1) . . .(∃xk)(∀xk+1)ψ(x1, . . . ,xk+1), we still

consider the cases whether there exist some hyperedge between any pair of xi,x j, where i, j ≤ k.

We define relation N(xi,x j) = true iff there exists some xk such that there is some hyperedge

containing vertices xi,x j. We also define ψ∗(x1, . . . ,xk+1) be ψ(x1, . . . ,xk+1) where all occurrences

of predicates with arities greater than two are replaced by false. So

ϕ =(∃x1) . . .(∃xk)(∀xk+1)

 ∨
i, j∈{1,...,k},i 6= j

(N(xi,x j)∧ψ(x1, . . . ,xk+1)


∨

 ∧
i, j∈{1,...,k},i6= j

¬N(xi,x j)

∧ψ
∗(x1, . . . ,xk+1)


=

∨
i, j∈{1,...,k},i 6= j

[
(∃x1) . . .(∃xk)(∀xk+1)[N(xi,x j)∧ψ(x1, . . . ,xk+1)]

]

∨ (∃x1) . . .(∃xk)(∀xk+1)

 ∧
i, j∈{1,...,k},i6= j

¬N(xi,x j)

∧ψ
∗(x1, . . . ,xk+1)


To decide (∃x1) . . .(∃xk)(∀xk+1)[N(xi,x j)∧ψ(x1, . . . ,xk+1)], we do exhaustive search on

the k− 2 variables other than xi and x j (which in essence is a quantifier-eliminating downward

69

reduction), which takes a factor of O(mk−2) in the running time. Then we process the variables xi,

x j, xk in the same way as variables x, y, z in the three-quantifier problem, that takes time O(m3/2).

The total running time is O(mk−1/2).

To decide(∃x1) . . .(∃xk)(∀xk+1)
[(∧

i, j∈{1,...,k},i 6= j¬N(xi,x j)
)
∧ψ∗(x1, . . . ,xk+1)

]
, we can

use the algorithm for MC(∃k∀) problems on graphs, because the new formula has only unary and

binary relations.

3.7 Hardness of k-OV for MC(∀∃k−1∀)

In this section we present an exact complexity reduction from any MC(∀∃k−1∀) problem to

a MC(∃k∀) problem, establishing the hardness of k-OV for these problems. This reduction gives an

extension of the reduction from Hitting Set to Orthogonal Vectors in [AWW16] to sparse structures.

Lemma 3.7.1. For k ≥ 2 and s(m) a non-decreasing function such that 2Ω(
√

logm) ≤ s(m)< m1/5,

let ϕ′ = (∃x2) . . .(∃xk)(∀xk+1)ψ(x1, . . . ,xk+1). There is an exact complexity reduction

(MC(∀x1)ϕ′,
mk

s(
√

m)
)≤EC (MC(∃x1)ϕ′,

mk

s(m)).

First, we show that in problem MC(∃x1)ϕ′ , if graph G satisfies (∃x1)ϕ
′, then we can find a

satisfying value v1 for variable x1 by binary search. We divide the set V1 into two halves, take each

half of V1 and query whether (∃x1)ϕ
′ holds true on the graph induced by this half of V1 together

with the original sets V2, . . . ,Vk+1. If any half of V1 works, then we can shrink the set of candidate

values for x1 by a half, and then recursively query again, until there is only one vertex v1 left. So it

takes O(log |V1|) calls to find a v1 in some solution. This means as long as there is a solution for

MC∃x1ϕ′ , we can find a satisfying v1 efficiently, with O(logm) queries to the decision problem.

Step 1: Large degree vertices. Let t = m(k−1)/k. We deal with vertices in V1 . . .Vk with degree

greater than t. There are at most m/t = m1/k such vertices. After pre-computing the sizes of all the

sets, these large sets can be listed in time O(m1/k).

70

• Step 1-1: Large degree vertices in V1. For each vertex v1 ∈V1 with degree at least t, we create a

formula ψv1 on variables x2, . . . ,xk+1 from formula ψ, by replacing occurrences of unary predicates

in ψ on x1 by constants, and replacing occurrences of binary predicates involving x1 by unary

predicates on the other variables. Then we check if the graph induced by V2, . . . ,Vk+1 satisfies

(∃x2) . . .(∃xk)(∀xk+1)ψv1(x2, . . . ,xk+1) by running the baseline algorithm in time O(mk−1). If the

new formula is satisfied, then we mark v1 as “good”. The total time complexity is O(m1/k) ·

O(mk−1) = O(mk−1+1/k).

• Step 1-2: Large degree vertices in V2, . . . ,Vk. Now we exhaustively search over all vertices

v1 ∈ V1 with degree less than t in the outermost loop. For each such v1, we find out all vertices

vi ∈Vi for 2≤ i≤ k, with degree at least t. Again, there are at most O(m1/k) of them.

◦ Case 1: k > 2. Because variables x2 through xk are all quantified by ∃, we interchange their order

so that the variable xi becomes the second-outermost variable x2 (and thus the current vi becomes v2).

Next, for each v1 and v2 we construct a new formula ψ(v1,v2) on variables x3, . . . ,xk+1, by regarding

x1 and x2 as fixed values v1 and v2, and then modify ψ into ψ(v1,v2) similarly to the previous step.

Again, we run the baseline algorithm to check whether the graph induced by the current V3, . . . ,Vk+1

satisfies (∃x3) . . .(∃xk+1)ψ(v1,v2)(x3, . . . ,xk+1), using time O(mk−2). If the formula is satisfied, we

mark the current v1 as “good”. The total time complexity is O(m ·m1/k) · (mk−2) = O(mk−1+1/k).

◦ Case 2: k = 2. For each vertex v2, we mark all the v1’s satisfying ∀x3ψ(v1,v2,x3) as “good”. This

can be done in O(m) using the algorithm for the base case of the baseline algorithm, by treating the

current v2 as constant. So this process runs in time O(m1/k) ·O(m) = O(m3/2).

If not all vertices in V1 with degree at least t are marked “good”, we reject. Otherwise, go to

Step 2.

Step 2: Small degree vertices. First we exclude all the large vertices from the graph. Then for the

“good” vertices found in the previous step, we also exclude them from V1.

Now all vertices have degree at most t. In each of V1, . . . ,Vk, we pack their vertices into

groups where in each group the total degree of vertices is at most t. Then the total number of groups

is bounded by O(m/t).

71

For each k-tuple of groups (G1, . . . ,Gk) where G1 ⊆V1, . . . ,Gk ⊆Vk, we query the oracle

deciding MC(∃x1)ϕ′ whether it accepts on the subgraph induced by vertices in G1, . . . ,Gk. If so, then

we find a vertex v1 in V1 so that when x1← v1, the current subgraph satisfies ϕ′. We remove this v1

from V1. Then we repeat this process to find new satisfying v1’s in V1, and remove these v1’s from

V1. When V1 is empty, or when no new solution is found after all group combinations are exhausted,

the algorithm terminates. If in the end V1 is empty, then all v1 ∈V1 are in solutions of MC∃x1ϕ′ , so

we accept. Otherwise we reject.

Each query to MC∃x1ϕ′ has size m′ = O(kt) = O(t). Because the number of different

k-tuples of groups is O(m/t)k = O((m/t)k), the number of queries made is O((m/t)k + |V1|) ·

O(logm) = O((m1/k)k+ |V1|) ·O(logm) = O(m logm) times. If MC∃x1ϕ′ on input size m′ is solvable

in time O(m′k/s(m′)), then the running time for MC∀x1ϕ′ is O(m logm) ·O(m′k/s(m′)) = O(m logm ·

(m(k−1)/k)k/s(m(k−1)/k)≤ O(mk/s(
√

m) · logm). The exponent of m is less than k. Thus this is a

fine-grained Turing reduction. Lemma 3.7.1 follows.

Note that this reduction works not only on graphs but also on structures with relations of

arity greater than two.

3.8 Improved Algorithms

In this section we present an algorithm solving Sparse OV in time m2/2Θ(
√

logm). It is

based on the papers [AWY15, CW16], which solves dense OV for vectors of dimension d in time

n2−Ω(1/ log(d/ logn)).

Consider the universe-shrinking self-reduction for Sparse OV (Set Disjointness) in Sec-

tion 3.5. We show that for s(m) = 2Θ(
√

logm), by the above theorem, this reduction gives an

algorithm in time m2/2Θ(
√

logm). We deal with large sets and small sets separately. For sets

of size at least s(m), we check if each of them is disjoint with some other set. From the argu-

ment for large sets, this is in time m2/s(m). Then, for sets of size less than s(m), we use the

universe-shrinking self-reduction to reduce this instance to a Sparse OV instance on universe of size

72

s(m)
5
6k (in which case k = 2). Using the algorithm from [AWY15, CW16], we can solve it in time

n2−Θ(1/ log(s(m)
5
6k)) ≤ m2−Θ(1/ log(s(m)) ≤ m2/2Θ(logm/ logs(m)) = m2/2Θ(

√
logm). So the total running

time is bounded by m2/2Θ(
√

logm).

By the above argument and Theorem 5, since all the Basic Problems are solvable in time

m2/2Θ(
√

logm), so is any other problem in MC(∃∃∀). The reduction from MC(∀∃∀) to MC(∃∃∀) in

Section 3.7 gives 2Θ(
√

logm) savings for MC(∀∃∀) problems. Reducing to three-quantifier case by

brute-forcing over the first k−2 variables we get Theorem 7, that states all FOPk+1 problems can

be solved in mk/2Θ(
√

logm) time.

3.9 Baseline and Improved Algorithms

In this section, we first present a baseline algorithm for MC(k + 1) that runs in time

O(nk−1m), which also implicitly gives us a quantifier-eliminating downward reduction from any

MC(k+1) problem to MC(k) problems for k≥ 2. Then, we show how to get an improved algorithm

in time mk/2Θ(
√

logm) using our reductions and the result by [AWY15, CW16]. Finally, we present

the algorithms for some specific quantifier structures in O(m3/2), so that these problems are easy

cases in first-order property problems.

3.9.1 Baseline Algorithm for First-Order Properties

This section gives an O(nk−1m) time algorithm solving FOPk+1 with any quantifier structure

for k ≥ 1, thus proving Lemma 3.9.1.

Lemma 3.9.1. (Quantifier-eliminating downward reduction for FOPk+1)

Let the running time of FOPk+1 on graphs of n vertices and m edges be Tk(n,m). We have the

73

recurrence

Tk(n,m)≤ n ·Tk−1(n,O(m))+O(m), for k ≥ 2.

T1(n,m) = O(m).

By this lemma, if all problems in FOPk have algorithms in time T (n,m), then any problem

in FOPk+1 can be solved in time n ·T (n,m).

Base Case. We prove that when k = 1, Tk(n,m) = m. For each v1 ∈ V1, the algorithm computes

#(v1) = |{v2 ∈ V2 | (v1,v2) |= ψ}|. Thus we can list the sets of v1 s.t. #(v1) > 0 (if the inner

quantifier is ∃), or those that satisfy #(v1) = |V2| (if it is ∀).

Let there be p1 different unary predicates on v1 and p2 different unary predicates on v2. We

partition the universes V1 and V2 respectively into 2p1 and 2p2 subsets, based on the truth values of

all the unary predicates of the corresponding variable. The number of different pairs of subsets is a

constant. Each time, we pick a pair consisting of one subset from V1 and one subset from V2, and

replace the unary predicates by constants. In this way, we can just consider binary predicates in the

following argument.

Let ψ̄(v1,v2) be the formula where each occurrence of each negated binary relation Ri(v1,v2)

is replaced by false. We enumerate all tuples (v1,v2) connected by at least one edge. For each tuple,

we evaluate ψ(v1,v2) and ψ̄(v1,v2). Let

#ψ(v1) = ∑v2 adjacent to v1
([ψ(v1,v2) = true]− [ψ̄(v1,v2) = true])

(in which the brackets are Iverson brackets). It can be computed by enumerating all tuples (v1,v2)

connected by at least one edge. Next, because in ψ̄ there are no occurrences of negated binary

predicates, we can compute

#ψ̄(v1) = The number of v2 s.t. ψ̄(v1,v2) holds

by first enumerating all tuples (v1,v2) connected by at least one edge and checking if ψ̄(v1,v2)

74

holds, and then considering the number of non-neighboring v2’s for each v1, if being a non-neighbor

of v1 also makes ψ̄(v1,v2) true. Finally, let #(v1) = #ψ(v1)+#ψ̄(v1).

This algorithm is correct, because whenever a pair (v1,v2) satisfies ψ(v1,v2), there are two

cases. The first is that there exists an edge between v1 and v2. In this case, when we enumerate all

edges, [ψ(v1,v2) = true] equals one and [ψ̄(v1,v2) = true] equals its contribution to #ψ̄(v1). On the

other hand, if there does not exist an edge between v1 and v2, then the contribution of (v1,v2) to

#ψ(v1) is 0 and to #ψ̄(v1) is 1.

Whenever a pair (v1,v2) does not satisfy ψ(v1,v2), there are also two cases. If there exists

an edge between v1 and v2, when we enumerate all edges, [ψ(v1,v2) = true] equals zero and

[ψ̄(v1,v2) = true] equals its contribution to #ψ̄(v1). On the other hand, if there does not exist an

edge between v1 and v2, the contributions of (v1,v2) to #ψ(v1) and to #ψ̄(v1) are both 0.

Inductive Step. For k ≥ 2, we give a quantifier-eliminating downward reduction, thus proving the

recurrence relation. Assume ϕ = (Q1x1) . . .(Qk+1xk+1)ψ(x1, . . . ,xk+1) For each v1 ∈V1, create new

formula ϕv1 = (Q2x2) . . .(Qk+1xk+1)ψ(x2, . . . ,xk+1), and in ψ we replace each occurrence of unary

predicate Ri(x1) with a constant Ri(v1), and replace each occurrence of binary predicate Ri(x1,x j)

(or Ri(x j,x1)) with unary predicate R′i(x j) whose value equals Ri(v1,x j) (or Ri(x j,v1)), etc. Our

algorithm enumerates all v1 ∈V1, and then computes if the graph induced by V2, . . . ,Vk+1 satisfies

ϕv1 . If x1 is quantified by ∃, we accept iff any of them accepts. Otherwise we accept iff all of them

accept. The construction of ϕv1 takes time O(m). The created graph has O(n) vertices and O(m)

edges. Thus the recursion follows.

This process is a quantifier-eliminating downward reduction from an FOPk+1 problem to an

FOPk problem. It makes O(m) queries, each of size O(m). Then if problems in FOPk are solvable

in time O(mk−1−ε), then problems in FOPk+1 are solvable in time m ·O(mk−1−ε) = O(mk−ε). This

quantifier-eliminating downward reduction implies that if all FOPk have T (n,m) time algorithms,

then all FOPk+1 problems have n ·T (n,m) time algorithms.

From the recursion and the base case, we have the running time O(nk−1m) by induction.

75

The quantifier-eliminating downward reduction from FOPk+1 to FOP3 in Lemma 3.9.1 also works

for hypergraphs. We exhaustively search the first k−2 quantified variables, and by replacing the

occurrences of these variables by constants in the formula, we can reduce the arities of relations.

After the reduction, we get a hypergraph of max arity at most three.

3.9.2 Algorithms for Easy Cases

In this section we show that any (k + 1)-quantifier problem with a quantifier sequence

ending with ∃∃ or ∀∀ is solvable in time O(mk−1/2). First of all, we use the quantifier-eliminating

downward reduction to reduce the problem to a FOP3 problem. Then from the next subsections

we see that these problems are solvable in O(m3/2). [Wil16] shows improved algorithms that run

in time O(m1.41) for detecting triangles and detecting induced paths of length 2, which are special

cases of MC(∃∃∃).

Lemma 3.9.2. Problems in MC(∃∃∃), MC(∀∀∀), MC(∀∃∃) and MC(∃∀∀) are solvable in O(m3/2).

In the first two subsections, we consider when the input structures are graphs. Then in the

last subsection, we consider the cases when the input structures have higher arity relations.

Problems in MC(∃∃∃) and MC(∀∀∀)

For problems in MC(∀∀∀), we decide its negation, which is a MC(∃∃∃) problem.

We define nine Atomic Problems, which are special FOP3 problems. Let the Atomic Problem

labeled by ` to be MC(∃x∈X)(∃y∈Y)(∃z∈Z)ψ`
, and referred to as ∆[`]. It is defined on a tripartite graph on

vertex sets (X ,Y,Z), whose edge sets are EXY ,EY Z,EXZ defined on (X ,Y),(Y,Z),(X ,Z) respectively.

The graph is undirected, i.e., EXY ,EY Z and EXZ are symmetric relations. For simplicity we define

an edge predicate E so that E(v1,v2) is true iff there is an edge in any of EXY ,EY Z,EXZ connecting

(v1,v2) or (v2,v1). Besides, we use degY (x) to denote the number of x’s neighbors in Y .

The ψ` for all Atomic Problems are defined in Table 3.1. For problem MCϕ where ϕ =

(∃x ∈ X)(∃y ∈ Y)(∃z ∈ Z)ψ(x,y,z), we write ψ as a DNF, and split the terms. Then we decide if

76

Table 3.1: Atomic Problems

ψ2 = E(x,y)∧E(x,z) ψ2+ = E(x,y)∧E(x,z)∧E(y,z) ψ2− = E(x,y)∧E(x,z)∧¬E(y,z)
ψ1 = E(x,y)∧¬E(x,z) ψ1+ = E(x,y)∧¬E(x,z)∧E(y,z) ψ1− = E(x,y)∧¬E(x,z)∧¬E(y,z)
ψ0 = ¬E(x,y)∧¬E(x,z) ψ0+ = ¬E(x,y)∧¬E(x,z)∧E(y,z) ψ0− = ¬E(x,y)∧¬E(x,z)∧¬E(y,z)

there is a term so that there exist x,y,z satisfying this term. On each term t, which is a conjunction

of predicates and negated predicates, we work on the induced subgraph whose vertices satisfy

all the positive unary predicates and falsify all the negated unary predicates defined on them in

t. Then we can remove all unary predicates from the conjunction, which is now a conjunction of

binary predicates or their negations. (If the conjunction is a single predicate or a single negated

predicate, then we can deal with it easily, so we don’t consider this case here.) If we define E(x,y) =∧
R is a positive binary predicate in t R(x,y)∧∧R is a negative binary predicate in t ¬R(x,y), and define E(y,z) and

E(x,z) similarly, then t becomes equivalent with some Atomic Problem, or a disjunction of Atomic

Problems (because variables y and z are interchangeable, the Atomic Problems and their disjunctions

cover all possible cases).

In our algorithm for each problem ∆[`], instead of deciding the existence of satisfying x,y,z,

we consider these problems as counting problems, where for each x we compute

#`(x) = |{(y,z) | x,y,z satisfy ψ`}|.

Problems ∆[2],∆[1],∆[0] can be computed straightforwardly.

• In ∆[2], #2(x) = degY (x)×degZ(x).

• In ∆[1], #1(x) = degY (x)× (|Z|−degZ(x)).

• In ∆[0], #0(x) = (|Y |−degY (x))× (|Z|−degZ(x)).

Next we show for labels ` ∈ {2+,1+,0+,2−,1−,0−}, problems ∆[`] can be computed in

O(m3/2).

Algorithm 1 solves ∆[2+],that is, for each x, counting the number of triangles that contain x.

The first part of the algorithm only considers small degree y. On each iteration of the outer loop, the

inner loop is run for at most
√

m times. The second part only considers large degree y. Because

77

Algorithm 1: ∆[2+]

1 for all (x,y) ∈ EXY do
// Small degree y

2 if degZ(y)≤
√

m then
3 for all z s.t. (y,z) ∈ EY Z do
4 if (x,z) ∈ EXZ then
5 #2+(x)← #2+(x)+1

6 for all y ∈ Y s.t. degZ(y)>
√

m do
// Large degree y

7 for all (x,z) ∈ EXZ do
8 if (x,y) ∈ EXY and (y,z) ∈ EY Z then
9 #2+(x)← #2+(x)+1

10 if #2+(x)> 0 for some x ∈ X then
11 Accept

12 else
13 Reject

there are at most
√

m of them, the outer loop is run for at most
√

m times. Therefore the running

time of the algorithm is O(m3/2).

Algorithm 2 solves ∆[1+], which for each x counts (x− y− z) paths where there is no edge

between x and z. The first part is similar as ∆[2+]. The second part first over-counts (x− y− z)

paths for all large degree y without restricting the edge between x and z, and then counts the number

of over-counted cases in order to exclude them from the final result. In the first block, the inner

loop is run for at most
√

m times for each edge in EXY . The second block takes time O(m). The

outer loop of the third block is run for at most
√

m times, because there are at most
√

m sets with

degree at least
√

m. So in all, the running time is O(m3/2).

For ∆[0+], we first compute #2+(x) which is the result of ∆[2+], and then compute #1+(x)

and #′1+(x), which are results of ∆[1+] on vertex sets (X ,Y,Z) and (X ,Z,Y) respectively. Finally

let #0+(x)← |EY Z|− (#2+(x)+#1+(x)+#′1+(x)).

#2−(x), #1−(x), #0−(x) can be computed by respectively taking the differences of #2(x),

#1(x), #0(x) and #2+(x), #1+(x), #0+(x).

78

Algorithm 2: ∆[1+]

1 for all (x,y) ∈ EXY do
// Small degree y

2 if degZ(y)≤
√

m then
3 for all z s.t. (y,z) ∈ EY Z do
4 if (x,z) /∈ EXZ then
5 #1+(x)← #1+(x)+1

6 for all (x,y) ∈ EXY do
// Large degree y

7 if degZ(y)≥
√

m then
// Over-counting

8 #1+(x) = #1+(x)+degZ(y)

9 for all y ∈ Y s.t. degZ(y)>
√

m do
10 for all (x,z) ∈ EXZ do
11 if (x,y) ∈ EXY and (y,z) ∈ EY Z then
12 #1+(x)← #1+(x)−1 // if we just over-counted the pair (y,z),then we

exclude the pair by subtracting one.

13 if #1+(x)> 0 for some x ∈ X then
14 Accept

15 else
16 Reject

Problems in MC(∀∃∃) and MC(∃∀∀)

For problems in MC(∃∀∀), we decide its negation, which is a MC(∀∃∃) problem.

For problem MCϕ where ϕ= (∀x∈X)(∃y∈Y)(∃z∈ Z)ψ(x,y,z), we use the same algorithm

to compute #`(x) for all x ∈ X . If the value of #`(x) is greater than zero for all x ∈ X , then we accept,

otherwise reject. Again, we write ψ as a DNF, and split the terms. By the same argument as the

previous lemma, we transform the problem to a disjunction of Atomic Problems. If for all x ∈ X , at

least in one of the Atomic Problem, #`(x) is greater than zero, then we accept, otherwise reject.

79

Structures with higher arity relations

The above algorithms can be extended to structures with relations of arity greater than two.

First, we write the quantifier-free part ψ in DNF and split each term to a separate ∃∃∃ problem (or

∀∃∃ respectively). Then for each term ψt , we decide if there exist x1,x2,x3 satisfying it. Let ψt1 be

the part of the conjunction containing all ternary predicates in ψt , and ψt2 be the rest of term ψt .

Thus ψt = ψt1∧ψt2.

If in ψt , some ternary predicate occurs positively, we can just count #(x1) on the subgraph

where ψt1 is true.

If all ternary predicates in ψt occur negatively, then we first count #(x1) satisfying formula

ψt2, and then we count #′(x1) on the subgraph where ψt1 is true. Finally, we subtract #′(x1) from

#(x1) for each x1.

If ψt has no ternary relations, we just count #(x1) using the algorithm for graphs.

3.10 Open Problems

An obvious open problem is whether a similar kind of equivalence exists for the dense case

of OV. Is it ”fine-grained equivalent” to some natural complexity class?

It would be interesting to find more reductions between and equivalences among the prob-

lems that are proven hard under some conjecture. For example, Edit Distance, Fréchet Distance, and

Longest Common Subsequence are all almost quadratically hard assuming SETH. Are there any re-

ductions between these problems? Are they all equivalent as far as having subquadratic algorithms?

All of these problems have similar dynamic programming formulations. Can we formalize a class

of problems with such dynamic programming algorithms and find complete problems for this class?

More generally, we would like taxonomies of the problems within P that would classify more of the

problems that have conjectured hardness, or have provable hardness based on conjectures about

other problems. Such a taxonomy might have to be based on the structure of the conjectured best

80

algorithms for the problems rather than on resource limitations.

3.11 Acknowledgments

Chapter 3 contains material from “Completeness for First-Order Properties on Sparse Struc-

tures with Algorithmic Applications”, by Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova,

and Ryan Williams, which appeared in the proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2017). The author of this dissertation was a principal

author of this publication. The material in this chapter is copyright c©2017 by Association for

Computing Machinery and Society for Industrial and Applied Mathematics. We would thank

Virginia Vassilevska Williams for her inspiring ideas. We would like to thank Marco Carmosino,

Anant Dhayal, Ivan Mihajlin and Victor Vianu for proofreading and suggestions on this paper. We

also thank Valentine Kabanets, Ramamohan Paturi, Ramyaa Ramyaa and Stefan Schneider for

many useful discussions. Finally, we really appreciate the suggestions from the reviewers about the

writing and expression.

81

Chapter 4

The Model Checking for Extensions of

First-Order Logic

4.1 Chapter Overview

Here, we extend this class-based approach to fine-grained complexity. We consider the

fine-grained complexities of various well-studied extensions of first-order logic. Surprisingly, we

find that some extensions of first-order that increase the expressive power greatly do not change

the fine-grained complexity of the corresponding class of model checking problems, while some

extensions that do not change expressibility substantially increase the complexity of model checking.

(This may not be as paradoxical as it would appear at first glance. Parity is not expressible in

first-order, but a pre-processing stage to compute the parity would not greatly change the running

time of most queries. In the other direction, although at a qualitative level, expressive power might

be the same in an extension, the simulation might change quantitative aspects, such as the number

of quantifiers. Our bounds give limits on the quantitative price that must be paid in doing the

conversion from one logic to another.)

The basic logic that we consider is first-order relational logic. There is a finite list R1, ...,Rt

of relation symbols, each with a non-negative integer arity ai. A formula is built from these

82

symbols applied to variables, with Boolean connectives and the quantifiers ∀ and ∃. A finite model

is specified as a universe U and for each Ri a set of tuples (u1, . . . ,uai) ∈Uai . For algorithmic

purposes, we can either represent a relation as a matrix or tensor of Booleans, which for every tuple

of elements, specifies whether or not it is in the relation (analogous to an adjacency matrix of a

graph), or as a list of possible tuples in the relation (analogous to a list of edges in a graph). In this

chapter, we generally use the list representation, but sometimes need to refer to algorithms using the

matrix representation. We use n to mean the size of U , and m to be |U | plus the total number of

tuples in all relations.

Our starting place is the characterization of the fine-grained complexity of sparse first-order

properties from Chapter 3:

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking of k-quantifier

formulas requires time Ω(mk−1−ε). (This follows from [Wil14a]).

2. OV is complete for first-order: If the OV conjecture is false, then there is an ε > 0 so that for

every k ≥ 3, model checking of k quantifiers can be done in time O(mk−1−ε).

3. Model checking of k quantifiers can be improved using the fastest OV algorithm: Uncondi-

tionally, model checking of k quantifiers can be done in time mk−1/2Ω(
√

logm).

So improvements in the entire class of model checking problems are captured by the extent

to which OV algorithms can be improved.

We show, somewhat surprisingly, that different natural extensions of first-order logic some-

times maintain the complexity of model checking exactly, but sometimes change the complexity

in an interesting way. Whether the complexity of the model checking problem is changed seems

completely independent of whether the extension increases the expressive power of the logic.

In particular, we consider:

• Other complexity measures of first-order logic: instead of quantifier number k, we consider

formulas of quantifier rank k and variable complexity k.

83

• Extensions of first-order logic: we can add function symbols, ordering, and transitive

closure operations to first-order logic.

We get the following results:

First-order logic on ordered structures: The next three extensions all increase the expressive

power of the logics in different ways, but do not change the complexity of the corresponding

model checking problems.

In many applications, the elements of the universe are ordered, e.g., by time or location in

memory. First-order properties on ordered structures have strictly more expressive power

than those on unordered structures, even for properties not involving the ordering itself (by

Gurevich, Theorem 5.3 in [Lib13]). However, we show that adding orderings does not change

the complexity of model checking for k-quantifier first-order formulas:

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking on ordered

structures requires time Ω(mk−1−ε). (This follows from the earlier result for unordered

structures).

2. OV is complete for first-order on ordered structures: If the OV conjecture is false, then

there is an ε > 0 so that for every k ≥ 3, model checking for structures with ordering

can be done in time O(mk−1−ε).

3. Model checking can be improved using the fastest OV algorithm: Unconditionally,

model checking for formulas over ordered structures can be done in time mk−1/2Ω(
√

logm).

Any future improvements to OV directly carry over to the model checking problems,

regardless of how those improvements are obtained.

Transitive closures of symmetric relations: Adding transitive closure operations to first-order

logic enhances its power significantly. However, here we find a special class involving

transitive closure that is still equivalent to first-order: when transitive closure operations are

only taken on symmetric input relations. This allows us to query whether two elements are in

84

the same connected component of an undirected graph. We show that the same conclusions

above for first-order logic on ordered structures also hold for this class. Let ϕ be a first-order

formula with a fixed number of transitive closure operations that are only taken on symmetric

input relations, ϕ has k ≥ 3 quantifiers, then

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking for ϕ

requires time Ω(mk−1−ε). (This follows from the earlier result for FO without transitive

closure).

2. OV is complete for first-order: If the OV conjecture is false, then there is an ε > 0 so

that for every k ≥ 3, model checking for ϕ can be done in time O(mk−1−ε).

3. Model checking can be improved using the fastest OV algorithm: Unconditionally,

model checking for ϕ can be done in time mk−1/2Ω(
√

logm).

First-order formulas of quantifier rank k: We get a similar equivalence if we measure the com-

plexity of first-order formulas by quantifier rank rather than number of quantifiers. Quantifier

rank counts only the depth of nesting of quantifiers, rather than the total number of them. For

example ∀x[(∃yR(x,y))∧(∀zS(x,z))] has three quantifiers, but since the two inside quantifiers

are parallel rather than nested, has only quantifier rank two. However, we show that problems

of any fixed quantifier rank, have the same complexity of model checking as for that number

of total quantifiers. More precisely, let ϕ be a first-order formula of quantifier rank k, where

k ≥ 3, then

1. If the OV conjecture is true, then for every ε > 0, worst-case model checking for ϕ

requires time Ω(mk−1−ε). (This follows from the earlier result for quantifier number.)

2. OV is complete for first-order: If the OV conjecture is false, then there is an ε > 0 so

that for every k ≥ 3, model checking for ϕ can be done in time O(mk−1−ε).

3. Model checking can be improved using the fastest OV algorithm: Unconditionally,

model checking for ϕ can be done in time mk−1/2Ω(
√

logm).

85

Transitive closure of arbitrary binary relations: For the next two extensions, we give some evi-

dence that their model checking problems are not reducible to unextended first-order logic.

While we do not give stronger conditional lower bounds in terms of running time, we show

that these conditional bounds hold under a substantially weaker assumption than OVC, the

analog of SETH for constant depth circuits.

Allowing general transitive closures of arbitrary binary relations increases the power of

first-order logic dramatically. If a relation obtained from a transitive closure operation can

be negated then the formula can express an even larger class of problems. For the model

checking problem on graphs and for binary relations, however, the increase is less dramatic.

We can compute each new transitive closure of an existing relation in O(n3) time. Then we

can solve the model checking problem on the corresponding dense graph. This gives an

O(nk−1) algorithm for model checking k-quantifier problems for k ≥ 9, and O(nk) for any

k ≥ 3. While we were unable to close this gap, or to show that transitive closures increase the

complexity, we were able to prove the corresponding lower bound under a weaker assumption

than SETH, SETH for polynomial-sized bounded depth formulas. Under this hypothesis,

the class of 2-quantifier first-order formulas allowing transitive closure on arbitrary relations

cannot be solved in time O(m2−ε) for any ε > 0. More specifically,

1. The SETH of depth 2 circuit SAT implies the quadratic time hardness of 2-quantifier

FO with positive TC only on original relations.

2. The SETH of depth 3 circuit SAT implies the quadratic time hardness of 2-quantifier

FO with positive TC on subformulas containing TC only on original relations.

3. In general, the SETH of depth d circuit SAT implies the quadratic time hardness of

2-quantifier FO with d−1 nested layers of TC operations.

First-order formulas of variable complexity k: We get a similar result for another measure of

the logical depth of formulas. When the variable names can be reused in different scopes, but

there are no restrictions on the quantifier rank, then the situation is similar as when we allow

86

transitive closures on arbitrary binary relations: on formulas of variable complexity k, it is

not known whether it can be computed faster than O(nk−1+ω) for 3≤ k < 9, or faster than

O(nk−1+o(1)) when k ≥ 9, even if a large number of problems in this class can be solved in

quadratic time (if they are “weakly succinct”, see Appendix 4.10). Here we prove that under

the SETH for polynomial-sized constant depth formulas, the class of first-order formulas of

variable complexity 3 cannot be solved in time O(m2−ε) for any ε > 0.

First-order logic with unary function symbols: In general, function symbols can be replaced

with relations representing their graphs, so adding functions does not change the expressive

power of first-order logic. However, in doing so, we might increase the number of quantifiers

needed to express a property. We show that, assuming the low-dimension OV conjecture

(which follows from SETH), the complexity of model checking problem increases by almost

a linear factor when functions are added. More precisely, we show that if the low-dimension

OV conjecture holds, then ∀k≥ 2,∀ε > 0, there exists a k-quantifier first-order formula ϕ with

unary functions, so that no algorithm can decide ϕ in time O(mk−ε). In contrast, 2-quantifier

first-order formulas without function symbols can be decided in linear time.

This approaches a factor of m over the upper bound for model checking such formulas without

function symbols.

Table 4.1 shows the main results about different extensions of first-order logic. Figure 4.1

shows the reductions among problems. FOk stands for FO formulas with k quantifiers. The solid

arrow heads are reductions directly implied from the expressive power, and the hollow arrow heads

are non-trivial reductions. The solid lines are reductions preserving subquadratic time (except for

the reduction between exponential time problems, which does not preserve subquadratic time),

while the dashed lines are reductions between problems with different conjectured running time.

The thick lines are new results in this chapter, and the underlined problems get improved algorithms

from these results.

87

Table 4.1: Best algorithms and conjectured hardness of different classes of logic.

Logic Best Algorithm Conjectured
Hardness

Under Assumption

FOPk, k ≥ 3 mk−1/2Ω(
√

logm) (Chap-
ter 3)

Ω(mk−1−ε) OVC (Chapter 3)

FOP3(≤), k ≥ 3 mk−1/2Ω(
√

logm)

(this chapter)
Ω(mk−1−ε) OVC (Chapter 3)

FOPqr=k, k ≥ 3 mk−1/2Ω(
√

logm)

(this chapter)
Ω(mk−1−ε) OVC (Chapter 3)

FOPk(TCsym), k≥ 3 mk−1/2Ω(
√

logm)

(this chapter)
Ω(mk−1−ε) OVC (Chapter 3)

FOPk(TC), k ≥ 2 Õ(nk−3+ω),
nk−1+o(1) for k ≥ 9
[Wil14a]

Ω(mk−ε) constant depth circuit
SETH (this chapter)

FOPvc=k, k ≥ 3 Õ(nk−3+ω),
nk−1+o(1) for k ≥ 9
[Wil14a]

Ω(mk−1−ε) constant depth circuit
SETH (this chapter)

FOPFk, k ≥ 2 Õ(mk) (trivial) Ω(mk−ε) SETH (this chapter)

4.2 Organization of this Chapter

Section 4.5 shows adding function symbols to first-order logic will make the model checking

problem strictly harder by a reduction from OV. In Section 4.6 we show that introducing ordering to

FO will not make the model checking harder. Section 4.7 shows when we allow transitive closures

taken on symmetric input relations, the complexity stays the same. Section 4.3 proves that quantifier

rank k formulas are no harder than formulas with k quantifiers in prenex normal form. In Section 4.4

we study two classes of problems that are hard under the SETH of constant depth circuits: formulas

of variable complexity 3, and 2-quantifier formulas with transitive closure operations. In Section 4.8

we will talk about the open problems. Section 4.9 gives the baseline algorithm for first-order with

ordering and first-order formulas of fixed quantifier rank. In section 4.10 we will discuss the running

time for formulas of fixed variable complexity.

88

FOP3

FOPqr=3

FOPvc=3

FOPF3

FOP3(TC)

FOP3(≤)

Sparse OV

CNF SAT

Constant depth circuit SAT

FOPF2 FOP2(TC)

Exponential time problems

Quadratic time problems

FOPvc=3

(weakly succinct)

FOP3 (TCsym)

Low-dimension OV

Equivalence class

Figure 4.1: The expressive power and complexity of problems and classes of problems.

4.3 FO Formulas of Quantifier Rank k

A formula with quantifier rank k may have more than k variables when converted to prenex

normal form, but the following theorem shows that even if it seems more powerful, it is reducible to

quantifier number k problems.

Theorem 8. For non-decreasing 2Ω(
√

logm) ≤ s(m)≤ m, and k ≥ 3,

(FOPqr=k,mk−1/poly(s(m)))≤EC (FOP3,m2/s(m)).

To prove this theorem, we will show that (FOPqr=3,m3)≤FGR (FOP3,m2). The reduction

from FOPqr=k follows from the quantifier-eliminating downward self-reduction.

We will use a “Normal Problem” as an intermediate problem in the reduction. It is defined

as follows:

89

List all x such that ϕN(x) holds, where ϕN(x) = ∃y[(
∧

1≤i≤L∃ziψi(x,y,zi))∧(∀z′ψ′(x,y,z′))].

Each zi is a distinct variable from scope Zi. Each ψi is a conjunction of predicates1. The predicates

can appear either positively or negated.

In Lemma 4.3.1 we show a reduction from the Normal Problem to FOP3, and in Lemma

4.3.2 we show a reduction from an FOPqr=3 problem to the Normal Problem.

Lemma 4.3.1. (Normal Problem,m2/poly(s(m)))≤EC (FOP3,m2/s(m)).

Proof. Let d be a threshold value of the degree of elements.

Step 1. Decide for x of degree at least d on some Zi.

For those x of degree greater than d on some Zi, there can be at most m/d of them. We

enumerate all such x and then solve corresponding 2-quantifier problems in linear time by the

baseline algorithm. The total time is O(m2/d).

Step 2. Decide for y of degree at least d on some Zi.

For those y of degree greater than d on some zi, there can be at most m/d of them. We

enumerate all such y’s and then list all the x in the corresponding 2-quantifier problems in linear

time by the baseline algorithm. Finally we can merge all the lists of x. The total time is O(m2/d).

Step 3. Decide for x and y of degree less than d.

For each ψi, we consider the two cases based on whether it contains any positive occurrences

of binary predicates on zi.

Step 3-1. Consider the ψi’s where all binary predicates involving zi are negative.

In this case, we will show that if |Zi| is large enough, then the conjunction of all negative

predicates on zi is always true, otherwise the problem is easy to be transformed to the case in Step

3-2.

If |Zi| is greater than 2d, then for any pair of x and y, at least one zi ∈ Zi is not adjacent

to x or y by any relation, because x and y together have no more than 2d neighbors. Thus all the

1Here we assume all predicates are either unary or binary. A ternary predicate on x,y,zi can be treated in a similar
way as a binary predicate on either x,zi or y,zi.

90

negative predicates on zi are true on the triple (x,y,zi). So we can replace the conjunction of all

these negative predicates by true in ψi, leaving only binary predicates on x,y and unary predicates.

If |Zi| is less than 2d, then in time O(m ·2d) we can create a new relation Rc(x,zi). Rc(x,zi)

is true iff all binary relations on (x,zi) evaluate to false. We remove all binary relations on (x,zi)

from ψi, and append “∧Rc(x,zi)” to the end of it. Because Rc(x,zi) appears positively, we will

decide it in the next step. After creating the new relation, the size of the structure has become

m′ = m ·2d.

Step 3-2. Now in all of the remaining ψi’s, either some binary predicate on (x,zi) is positive or

some on (y,zi) is positive.

Without loss of generality, assume that in the formulas ψi, for 1 ≤ i ≤ u the pairs (x,zi)

are in some positive predicates, and for i > u, the pairs (x,zi) do not appear in any positive binary

predicate. Similarly, assume for j > t the pairs (y,z j) are in some positive predicates, and for j ≤ t,

the pairs (y,z j) do not appear in any positive binary predicate. It must be t ≤ u, because for any zi

there is at least one positive predicate on zi.

The idea of this reduction is to let the big variable x̃ contain variables zi for i≤ u, and let

the big variable ỹ contain variables z j for j > u. For each pair of x̃ and ỹ, there is a unique tuple of

(z1, . . . ,zL). Therefore, each ∃zi can be replaced by ∀zi.

On each x, for all u tuples of neighbors z1 ∈ Z1, . . . ,zu ∈ Zu, we create a new element

x̃ = (x,z1, . . . ,zu) in the domain X̃ . Because x has at most d neighbors, the number of distinct x̃ is

bounded by du. Next, we create the following new relations on x̃. Define an auxiliary relation R3

where R3(x̃,x) is true iff the tuple represented by x̃ contains x, and R3(x̃,zi) is true iff x̃ contains zi.

Next we replace all relations on x by relations on x̃.

• For each unary relation Rk(x), we replace it by new unary relation R∗k where R∗k(x̃) is true iff

Rk(x)∧R3(x̃,x).

• For each unary relation Rk(zi) where i ≤ u, we replace it by new unary relation R∗k where

R∗k(x̃) is true iff Rk(zi)∧R3(x̃,zi).

91

• For each binary relation Rk(x,zi) where i≤ u, we replace it by new unary relation R∗k where

R∗k(x̃) is true iff Rk(x,zi)∧R3(x̃,x)∧R3(x̃,zi).

• For each binary relation Rk(x,z j) where j > u, we replace it by new binary relation R∗k where

R∗k(x̃,z j) is true iff Rk(x,z j)∧R3(x̃,x).

• For each binary relation Rk(x,z′), we replace it by new binary relation R∗k where R∗k(x̃,z
′) is

true iff Rk(x,z′)∧R3(x̃,x).

There are at most m ·du distinct elements of x̃, so the unary relations on it is also bounded by this

value. From each edge on x we have created at most du new edges. Since there are m′ edges, the

total size of new binary relations is O(m′ ·dL).

Similarly, on each y, for all L− u tuples of neighbors z1 ∈ Zu+1, . . . ,zL ∈ ZL, we create a

new element ỹ = (y,zu+1, . . . ,zL) in the domain Ỹ . Again we replace old relations by new relations

on ỹ in a similar way as those on x̃.

• For each unary relation Rk(y), we replace it by new unary relation R∗k where R∗k(ỹ) is true iff

Rk(y)∧R3(ỹ,y).

• For each unary relation Rk(z j) where j > u, we replace it by new unary relation R∗k where

R∗k(ỹ) is true iff Rk(z j)∧R3(ỹ,z j).

• For each binary relation Rk(y,z j) where j > u, we replace it by new unary relation R∗k where

R∗k(ỹ) is true iff Rk(y,z j)∧R3(ỹ,y)∧R3(ỹ,z j).

• For each binary relation Rk(y,zi) where i≤ u, we replace it by new binary relation R∗k where

R∗k(ỹ,zi) is true iff Rk(y,zi)∧R3(ỹ,y).

• For each binary relation Rk(y,z′), we replace it by new binary relation R∗k where R∗k(ỹ,z
′) is

true iff Rk(y,z′)∧R3(ỹ,y).

Similarly, the total size of the new relations is also O(m′ ·dL).

Next, we deal with relations between x̃ and ỹ.

92

• For each binary relation Rk(x,y), we replace it by new binary relation R∗k where R∗k(x̃, ỹ) is

true iff Rk(x,y)∧R3(x̃,x)∧R3(ỹ,y).

Because the number of x̃ corresponding to an x is du and the number of ỹ corresponding to an y is

dL−u, and because there are m′ relations on x,y, the total size of the new relations is O(m′ ·dL).

After modifying the input structure, next we will modify the formula ϕN(x). We change the

predicates in each formula ψi to get ψ∗i , and change the predicates in ψ′ to get ψ′∗.

• For each occurrence of predicate Rk(x), we replace it by R∗k(x̃). For each occurrence of

predicate Rk(x), we replace it by R∗k(ỹ).

• For each occurrence of predicate Rk(zi) where i ≤ u, we replace it by R∗k(x̃). For each

occurrence of predicate Rk(z j) where j > t, we replace it by R∗k(ỹ).

• For each occurrence of predicate Rk(x,zi) where i≤ u, we replace it by R∗k(x̃).

• For each occurrence of predicate Rk(x,z j) where j > u, we replace it by R∗k(x̃,z j).

• For each occurrence of predicate Rk(y,z j) where j > u, we replace it by R∗k(ỹ).

• For each occurrence of predicate Rk(y,zi) where i≤ u, we replace it by R∗k(ỹ,zi).

• For each occurrence of predicate Rk(x,y), we replace it by R∗k(x̃, ỹ).

• For each occurrence of predicate Rk(x,z′), we replace it by R∗k(x̃,z
′). For each occurrence of

predicate Rk(y,z′), we replace it by R∗k(ỹ,z
′).

We merge all zi elements and z′ elements into the same universe Z, and create unary

predicates IsZ1(z), . . . , IsZL(z) and IsZ′(z) to represent whether a z is originally from some certain

Zi or in Z′.

Now the goal of the new problem is to list all x̃ such that ∃ỹ∀z, all of the following holds.

• For i in range 1 to t, (IsZi(z)∧R3(x̃,z))→ ψ∗i (x̃, ỹ,z)

93

• For i in range u+1 to L, (IsZi(z)∧R3(ỹ,z))→ ψ∗i (x̃, ỹ,z)

• IsZ′(z)→ ψ′∗(x̃, ỹ,z)

So it is a “List-∃-∀” type problem of size O(m ·2d ·dL) = O(mdL+1). By the grouping-reduction

technique, it is reducible to FOP3. Assume “List-∃-∀” problems are in time m2/s(m). Then the

Normal Problem is in time O(m2/d + (mdL+1)2/s(mdL+1)) ≤ O(m2/d + (mdL+1)2/s(m)). By

choosing d = s(m)
1

2L+3 , we get running time O(m2/s(m)
1

2L+3).

Lemma 4.3.2. There is a linear time Turing reduction from any FOPqr=3 problem to the Normal

Problem.

Proof. Let the variables defined in the outermost layer be named x, let the variables defined in the

middle layer be named y and let the variables defined in the innermost layer be named z.

The structure outside the outermost quantifiers

For a quantifier rank 3 formula ϕ that is composed of form (Qixϕi(x)) connected by ANDs

and ORs, we decide each Qixϕi(x) separately. For each Qixϕi(x), we will show that we can compute

a list of x such that ϕi(x) is true, so that we can do union and intersection operations on all the lists

and decide the value of ϕ.

The outermost layer of quantifiers

To decide the truth value of ϕi(x) for every x, we write ϕi(x) in DNF, treating any quantified

subformulas as atoms, so that ϕi(x) has form
∨

j∈[J]
∧

k∈[K](Qi jkyϕ′i jk(x,y)) for some constants J

and K. For each x, we will decide for all j,k the truth value of Qi jkyϕ′i jk(x,y). Thus finally we can

decide whether for each x there exists some j such that for all k, Qi jkyϕ′i jk(x,y) holds. If Qi jk is ∀,

we decide its negation (that is ∃y¬ϕ′i jk(x,y)), and after we finally get a list of x, we complement the

list. Thus we can only consider the case Qi jk = ∃.

The second layer of quantifiers

We fix the x, i, j,k in the previous step, and consider subformula of form ∃yϕ′(x,y). We

write it in DNF so that it has form

94

∃y∨g∈[G]

∧
h∈[H](Qghzψ′gh(x,y,z)) =

∨
g∈[G]∃y

∧
h∈[H](Qghzψgh(x,y,z)).

Then
∧

h∈[H](Qghzψ′gh(x,y,z)) can be written in form (
∧

`∃zψ`(x,y,z))∧∀zψ′(x,y,z) by merging

all the ∀z subformulas into one big ∀z connected by ∧. Next, write each ψ` in DNF, and move the

∨’s outside the the“∃z”s, and distribute with the “
∧

`”, so that (
∧

`∃zψ`(x,y,z)) is equivalent to a

disjunction of (
∧

`′ ∃zψ`′(z)) where each ψ`′ is a conjunction of predicates and negated predicates.

Because “∨” commutes with “∃”, the big disjunction before “∃z” can be moved outside “∃y”. So

in the end, we only need to solve a constant number of instances of form “List all x such that

∃y[(∧`′ ∃zψ`′(z))∧ (∀zψ′(x,y,z))].

By the algorithm for OV in [AWY15, CW16] and the algorithm for FOPk in Chapter 3, we

get an improved algorithm for FOPqr=k in time mk/2Θ(
√

logm).

4.4 Conditional Hardness under the SETH of Constant Depth

Circuits

The satisfiability of higher depth circuits may be harder than the satisfiability of CNF. Thus,

the Strong Exponential Time Hypothesis of a circuit of depth greater than 2 is weaker than the

SETH of CNF-SAT. It may be possible that even if the SETH of CNF-SAT is refuted, the SETH

of higher depth circuits still holds true. This section shows that in this case, variable complexity 3

formulas and 2-quantifier formulas with transitive closures would require quadratic time.

4.4.1 Hardness of Variable Complexity 3 Formulas

In this section we prove the following theorem, which shows that the SETH of constant

depth circuit implies the quadratic-time hardness of FOPvc=3.

Theorem 9. If FOPvc=3 is solvable in time O(m2−ε) for some ε > 0, then the satisfiability of

constant depth circuits of size M with N variables is solvable in time 2(1−ε/2)N ·poly(M).

95

In Circuit SAT, without loss of generality we assume that the circuit is in De Morgan form:

it has d levels, where the gates of level (i+1) only have input wires from gates of level i. The NOT

gates only appear in the bottom level, which we call level 0. Let the level of AND and OR gates

nearest to the input wires be level 1, and the output gate be level d.

Now we reduce the satisfiability of this circuit to a property defined by an FO formula of

variable complexity 3. For the N input variables, we split them into two sets of size N/2 each. Let

α represent partial assignments of the first N/2 variables, and let β represent those of the rest N/2

variables. So there are 2N/2 distinct α and β. For each gate g and each partial assignment α, create

a variable gα representing the tuple (g,α). Define predicate Same(gα,g) to be true iff the gate in ga

is the same gate as g. Define unary predicate IsAND(gα) to true iff g is an AND gate, and similarly

define IsOR(gα) for whether g is an OR gate. For any tuple (g′α,gα) sharing the same α where gate

g′ is input to g, we let relation Input(g′α,gα) be true on this tuple.

For each level 1 gate g and each α, consider the two cases. If g is an AND gate, we evaluate

whether the partial assignment α does not falsify g. If so, then let the relation Sat1(gα) be true,

otherwise false. If g is an OR gate, we evaluate whether the partial assignment already makes g true.

If so, let the relation Sat1(gα) be true, otherwise false.

Similarly, for each level 1 gate g and each β, if g is an AND gate and β does not falsify g,

then let the relation Sat2(g,β) be true, otherwise false. If g is an OR gate and β makes g true, then

we let the relation Sat2(g,β) be true, otherwise false.

Next we will compute d intermediate relations from TrueGates1 to TrueGatesd . The relation

96

TrueGatesi(gα,β) holds iff g is a level-i gate, and the assignment by α and β satisfies g.

TrueANDGates1 = {(gα,β) |(gα ∈ Level1)∧ IsAND(gα)

∧Sat1(gα)∧∃g(Same(gα,g)∧Sat2(g,β))}

TrueORGates1 = {(gα,β) |(gα ∈ Level1)∧ IsOR(gα)

∧ (Sat1(gα)∨∃g(Same(gα,g)∧Sat2(g,β)))}

TrueGates1 = {(gα,β) |TrueANDGates1(gα,β)∨TrueORGates1(gα,β)}

For i = 2 to i = d, we define the following intermediate relations:

TrueANDGatesi = {(gα,β) |(gα ∈ Leveli)

∧ IsAND(gα)

∧∀g′α ∈ Leveli−1(Input(g′α,gα)→ TrueGatesi−1(g′α,β))}

TrueORGatesi = {(gα,β) |(gα ∈ Leveli)

∧ IsOR(gα)

∧∃g′α ∈ Leveli−1(Input(g′α,gα)∧TrueGatesi−1(g′α,β))}

TrueGatesi = {(gα,β) |TrueANDGatesi(gα,β)∨TrueORGatesi(gα,β)}

Finally, the circuit is satisfiable iff ∃gα ∃β TrueGatesd(gα,β).

Here, each intermediate relation is defined by 3 variables, therefore, the total variable

complexity is 3. Also, in the definition formula of each intermediate relation, there is at most

one occurrence of any previously computed intermediate binary relations. By Appendix 4.10, the

formula is weakly succinct, therefore it can be solved in quadratic time.

The total number of elements is 2N/2poly(M). The total number of original relations is also

2N/2poly(M). So if FOPvc=3 is time O(m2−ε), then the Circuit SAT instance is in 2(1−ε/2)N ·poly(M)

time, contradicting the SETH of constant depth circuits.

97

4.4.2 Hardness of 2 Variable Formulas with Transitive Closure

This section proves the conditional hardness for the case where the formula has only two

quantifiers, where transitive closure operations can appear arbitrarily.

Theorem 10. Let SATd be the satisfiability problem of depth d circuits with N variables of size M.

1. If the model checking for 2-quantifier FO formula with positive TC only on original relations

is in time O(m2−ε) for some ε > 0, then SAT2 can be solved in time 2(1−ε/2)N ·poly(M).

2. If the model checking for 2-quantifier FO formula with positive TC on subformulas containing

TC on original relations can be solved in time O(m2−ε) for some ε > 0, then SAT3 can be

solved in time 2(1−ε/2)N ·poly(M).

3. In general, if the model checking for 2-quantifier FO formula with d nested layers of TC

operations can be solved in time O(m2−ε) for some ε > 0, then SATd−2 can be solved in time

2(1−ε/2)N ·poly(M).

The reduction is similar to the one for FOPvc=3. We again use partial assignments α,β, and

let variable gα to represent tuple (g,α). Relations Same, Input are also defined in the same way.

This time we assume that in the circuit, on each level either all gates are AND or all gates are OR.

The bottom 2 levels of gates

• If the bottom level are AND gates, and the next level are OR gates:

First, define a relation Sat as follows:

Sat ={(g,β) | g ∈ Level1∧ (β does not make g false)}

∪{(gα,g) | gα ∈ Level1∧Same(gα,g)∧ (α does not make g false)}

∪{(g′α,gα) | g′α ∈ Level2∧gα ∈ Level1∧ Input(gα,g′α)}

The above relation can be created in time 2n/2poly(m), where m is the size of the circuit. This

relation is like a union of Sat1,Sat2,TrueGates1 and Input relations in the previous section.

98

Next, we define an intermediate relation for level 2 gates:

TrueGates2 ={(gα,β) | gα ∈ Level2∧TCSat(gα,β)}

∪{(g′α,gα) | g′α ∈ Level3∧gα ∈ Level2∧ Input(gα,g′α)}

We claim that level 2 gate g′ is satisfied by α and β iff TrueGates2 is true on tuple g′α,β. This

is because TrueGates2 is true on g′α,β where g′ is a level 2 gate iff there is a path g′α→ gα→ g→ β

by Sat, where g is a level 1 gate. This means neither α and β make the AND gate g false, so g is

satisfied by α and β. Also g is input to the OR gate g′, so g′ is also satisfied. In the other direction,

if g′ is satisfied by α and β then there must be such a path.

• If the bottom level are OR gates, and the next level are AND gates:

This case is analogous to the previous case because AND is the negation of OR. First, define

a relation Falsify as follows:

Falsify ={(g,β) | g ∈ Level1∧ (β does not make g true)}

∪{(gα,g) | gα ∈ Level1∧Same(gα,g)∧ (α does not make g true)}

∪{(g′α,gα) | g′α ∈ Level2∧gα ∈ Level1∧ Input(gα,g′α)}

Then we define an intermediate relation for level 2 gates:

TrueGates2 ={(gα,β) | gα ∈ Level2∧¬TCFalsify(gα,β)}

∪{(g′α,gα) | g′α ∈ Level3∧gα ∈ Level2∧ Input(gα,g′α)}

We claim that level 2 gate g′ is satisfied by α and β iff TrueGates2 is true on tuple g′α,β.

This is because TrueGates2 is false on g′α,β where g′ is a level 2 gate iff there exists a path

g′α→ gα→ g→ β by Falsify, where g is a level 1 gate. This means neither α and β make the OR

gate g true, so g is falsified by α and β. Also g is input to the AND gate g′, so g′ is also falsified.

99

Higher levels of gates

From level 3 up, if the current level i are OR gates and the level i−1 are AND gates, then

define intermediate relations

TrueGatesi ={(gα,β) | gα ∈ Leveli∧TCTrueGatesi−1(gα,β)}

∪{(g′α,gα) | g′α ∈ Leveli+1∧gα ∈ Leveli∧ Input(gα,g′α)}

Otherwise, if the current level i are AND gates and the level i−1 are OR gates, then define

TrueGatesi ={(gα,β) | gα ∈ Leveli∧¬TCFalseGatesi(gα,β)}

FalseGatesi ={(gα,β) | gα ∈ Leveli∧¬TrueGatesi(gα,β)}

∪{(g′α,gα) | g′α ∈ Leveli+1∧gα ∈ Leveli∧ Input(gα,g′α)}

For OR gates g′α where g′ is on level i, TrueGatesi(g′α,β) is true iff there exists some gα

where g is on level i−1 satisfying TrueGatesi−1(gα,β) and TrueGatesi−1(g′α,gα). This means g is

satisfied by α,β and g is input to g′.

For AND gates g′α where g′ is on level i, TrueGatesi(g′α,β) is false iff there exists some gα

where g is on level i−1 satisfying FalseGatesi−1(gα,β) and FalseGatesi−1(g′α,gα). This means g

is falsified by α,β and g is input to g′.

Finally, the circuit is satisfiable iff ∃gα ∈ Leveld ∃β TrueGatesd(gα,β).

Like the previous section, the total number of elements is 2N/2poly(M), and the total number

of original relations is also 2N/2poly(M).

4.5 FO with Unary Function Symbols

Consider adding function symbols to first-order logic. Unary functions can be represented

as arrays of linear size, but binary functions increase the input size to quadratic, and so on for higher

arities. So to measure complexity in terms of the input size, we only consider unary functions. To

100

simulate higher arities, we could increase the universe to a Cartesian power and then have unary

functions on this product space.

While we can simulate any function by a relation coding the graph of the function, R f (x,y) ⇐⇒

f (x) = y, to express, for example that f (x1) = f (x2) we would need to write ∃y,R f (x1,y)∧R f (x2,y).

So the number of quantifiers in the translated forumlas would increase, possibly up to the number

of function symbols appearing in the original. However, there is still a trivial O(nk) algorithm

for model checking a k-quantifier formula with functions. So, assuming the OV Conjecture, the

complexity grows by at most a linear amount over that for first-order without functions.

In this section, we show that this increase is necessary. Compared to the linear time baseline

algorithm for the model checking of 2 quantifier formulas, when we introduce function symbols, a

2 quantifier formula may require quadratic time to solve.

Theorem 11. The low-dimension OV conjecture implies that for any ε > 0, FOPF2 cannot be

decided in time O(m2−ε).

The low-dimension k-OV conjecture implies that for any ε > 0, FOPFk cannot be decided in

time O(mk−ε).

Consider an OV instance where the dimension of vectors d = c logn for some constant c.

We construct a hypergraph for model checking as follows.

Let each vector correspond to an element. Besides these elements, we create O(
√

n) extra

elements, each corresponding to a distinct boolean vector of dimension 1
2 logn. For all pairs of these

short vectors that are orthogonal to each other, we create an edge of relation R⊥ between them.

There are at most O((
√

n)2) = O(n) pairs of short vectors, so the relation R⊥ is sparse.

Each vector of length c logn can be partitioned into 2c blocks of length 1
2 logn. We define

functions f1, . . . , f2c so that fi : {0,1}c logn→ {0,1} 1
2 logn be the mapping from a vector to its i-th

block. Therefore, there exists a pair of orthogonal vectors x,y iff in FO with function symbols,

ϕ = ∃x∃y
2c∧

i=1

R⊥(fi(x), fi(y))

101

is satisfied.

If we can decide such ϕ in time O(m2−ε), then for any constant c > 0, OV of dimension

d = c logn can be solved in time O(n2−ε), contradicting the Low-Dimension OV Conjecture.

Furthermore, the SETH of CNF-SAT will also be refuted.

The reduction from k-OV is similar, where we create a set of O(k
√

n) extra elements rep-

resenting all boolean vectors of length (1/k) logn, and create kc functions mapping vectors to its

blocks of length (1/k) logn. Here, the relation R⊥ is k-ary, defined on the k-tuples of short vectors

whose inner product is zero. The total number of these k-ary relations is still (k
√

n)k = O(n).

4.6 FO with Comparison on Ordered Structures

In this section we will consider the case where elements are given a total pre-ordering, and

there are three predicates expressing that an element is greater than, less than, or equivalent to

another element in the ordering. The comparison relation is an implicit dense relation but can be

represented in O(n) space in the input, by giving a table indexed by element, giving the element’s

rank within the ordering, with equivalent elements given the same rank. (If we were not given this

table, we could use any sorting algorithm to construct it in O(n logn) time.) Using this table, we

can list the elements by this ordering in time O(n), and given any two elements, we can compare

them in time O(1). The following theorem shows that adding comparison to first-order logic does

not increase the fine-grained complexity because it is equivalent to first-order properties without

comparison.

Theorem 12. For non-decreasing 2Ω(
√

logm) ≤ s(m)≤ m,

(FOPk(≤),mk−1/s(poly(m)))≤EC (FOP3,m2/s(m)).

We will show that (FOP3(≤),m2/s(poly(m)))≤EC (FOP3,m2/s(m)). The reduction from

FOPk(≤) follows from the quantifier-eliminating downward self-reduction.

102

Assume in time TFO(m) we can list all x satisfying any formula of form ∃yQ3zψFO(x,y,z),

where ψFO is a quantifier-free first-order formula without ordering. By the grouping-reduction

technique, it is reducible to FOP3.

Let ϕ be in prenex normal form, and assume ϕ = Q1x∃yQ3zψ(x,y,z), for otherwise if y is

quantified by ∀, we will decide the negation of the formula. We show that we can list all x such that

∃yQ3zψ(x,y,z) holds.

Let g be a threshold value of elements’ degree. First, we decide whether to include x on

our list for all x of degree greater than g. There are at most m/g of them. For each large degree x,

treating it as a constant we get a 2-quantifier problem. By the baseline algorithm (Lemma 4.9.1), it

can be decided in time O(m). So the total time spent is O(m2/g).

Next, for all y of degree greater than g, we list the set of x that cause the one-quantifier

sub-formula to be true. For each large degree y, treating it as a constant we compute the problem:

list all x such that Q3zψ(x,y,z). Using the baseline algorithm we can list all x satisfying Q3zψ(x,y,z)

in time O(m). Finally we merge all lists of x computed on each y. For any x in the lists, there must

exist a y where Q3zψ(x,y,z) holds.

By triplicating elements, we can assume that the x, y, and z variables are quantified over

disjoint domains X , Y , and Z. The ordering relation is defined on the union of all three sets. We

remove from X and Y the elements of degree higher than g. We partition the whole universe

X ∪Y ∪Z into intervals where for each interval the total degree of elements in X ∪Y ∪Z is between

g and 2g, the interval is a single element of Z of degree higher than g. Thus, there are O(m/g)

intervals.

Note that we allow elements to be equivalent in the pre-ordering. When we group the

elements into intervals, we will keep all equivalent elements in the same interval, unless there are so

many such elements that their total degree is more than g. If that is the case, we break the set of

equivalent elements arbitrarily into groups of total degree between g and 2g, and do not include any

non-equivalent elements in these groups.

Let the elements of X ,Y,Z in the i-th interval form sets Xi,Yi,Zi, respectively. For each pair

103

of groups Xi,Yj, we need to create a list Li, j of those x in Xi for which there exists a y in Yj such that

the rest of the formula holds true. Our final output will be the union of all these lists.

We call a pair i, j special if either i = j or there is some tuple in one of the non-ordering

input relations involving elements from both intervals. There are at most O(m) special pairs, since

each tuple involves at most a constant number of intervals. We handle special and non-special pairs

differently.

Note that each element z not in either of the two intervals Zi or Z j has the same ordering

relationship with all xi ∈ Xi and the same ordering relationship with all y j ∈Yj. We say two elements

z1,z2 in Z are indistinguishable if they have the same ordering relationships to elements in Xi and

Yj, the same evaluation on unary relations, and have no non-ordering relationships involving any

elements of Xi or Y j. For any two indistinguishable z1,z2, for any x ∈ Xi, y ∈ Yj if the inner-most

formula is true for x,y,z1, then it is also true for x,y,z2. Thus, the formula, including the innermost

quantifier, is true for x,y if and only if it is true relative to a maximal set of distinguishable elements.

There are only O(g) elements z with some relation to the two intervals, O(g) in the two intervals, and

only constantly many equivalence classes of others under indistinguishability. As a preprocessing

step, in linear time, we can for each boolean combination of unary predicates for z, create a sorted

list of intervals with such elements. Then we can use binary search to see whether such an element

exists in some interval before i, between i and j, or after j. We can find z’s with a relation to either

Xi or Y j by searching all tuples involving such elements. Thus, we can construct in time O(g+ logn)

a maximal set of O(g) distinguishable elements for a given pair of intervals.

For special intervals, we use the quadratic time baseline algorithm on them, taking time

O(g2). So the total time is O(m ·g2).

For non-special intervals, we know there are no relations involving elements in the two

intervals. Assume without loss of generality that i≤ j. We create unary predicates on z that say

whether z comes from an interval before i, interval i, an interval between i and j, j, or after j. Call

these five predicates A1(z), . . . ,A5(z).

Recall that the formula is of the form: ∃yQ3zψ(x,y,z). We can further divide the sets Xi

104

and Y j into constantly many subsets Xi,α and Yj,β according to the set of unary relations α and β

that are true for x and for y respectively. If for each pair of α,β, we compute the list of x ∈ Xi,α so

that ∃(y ∈ Yj,β)Q3zψ(x,y,z), the final output is the union of these lists. For each, we can replace all

unary predicates of x and of y in ψ to get equivalent formulas ψ1(x,y,z), . . . ,ψ5(x,y,z) when Ai(z)

is true on z.

We can divide the z’s up into the five cases given by the new unary predicates A1, . . . ,A5. In

each case, we will show that ψ can be simplified.

For the different cases, ψi will be simpler in different ways. ψ1,ψ3, and ψ5 will have no

occurrences of the ordering relation. ψ2 will be a function only of x and z, and ψ4 only of y and z,

but may have ordering predicates.

If Q3 is ∃, our output list is the union of the corresponding lists for the five cases above.

(The list for the fourth case is either all x or none.) We will use the baseline algorithm to compute

those for cases 2 and 4 in O(g) time. The other three cases are size O(g) instances of 3-quantifier

unordered first-order statements, and so we can use the best algorithm for model checking on

unordered structures for these.

If Q3 is ∀, we only want to consider x,y so that all five conditions are true simultaneously.

We can use the baseline algorithm to compute the subset X ′ of x so that the second case holds, and

the subset Y ′ of y so that the fourth case holds. Then we restrict the universe to those subsets, and

solve the other three cases: find the set of x ∈ X ′ so that ∃(y ∈ Y ′)∀z[∧`=1,3,5(A`(z)→ ψ`(x,y,z))]

To finish the proof, we need to construct the simplified formulas ϕ` for the five cases. First

note that in all cases, we have fixed all unary relations on x and y, and for each two distinct intervals,

any x and y in the intervals have the same order, so we can also fix ordering relations between x and

y.

For any z not in interval i or j, the ordering between z and any x in Xi is fixed, and the

same for any y ∈ Yj. (For some z that occur before i, we might have equivalence to elements in

Xi, for some, they are strictly smaller, so what this fixed relationship is does depend on z.) We can

introduce six new unary relations on z coding this ordering with respect to x and with respect to y.

105

So for cases 1, 3 and 5, we can replace any ordering relation between x and z or y and z with the

corresponding unary predicate of z. This removes all ordering relations to obtain ψ1,ψ3 and ψ5.

To create ψ2, we are restricting to z in interval i. This fixes the ordering information between

z and any y ∈ Yj, but not between z and x. However, since the pair is not special, there are no

relations that involve both y and z. Thus, we can replace those relations by false in ψ. Similarly,

there are no relations that involve both x and y, so we can replace those relations by False as well.

In addition, we have already fixed the unary predicates of y, and comparisons between y and x or z.

Thus, the restricted formula now has no occurrences of y at all, so is a predicate ψ2(x,z).

The case for ψ4 is symmetric.

In summary, fix a combination of α,β, then for a pair of non-special interval Xi,Y j, we

first decide ψ2: list x so that a formula on x,z holds (in this case, y is indistinguishable to x and

z ∈ Zi so the variable y is omitted). Next, decide ψ4: list y so that a formula on y,z holds (here x is

indistinguishable to y and z ∈ Zi so we omit the variable x). Here we get a list of x and a list of y,

then on these two lists, we decide ψ1,ψ3,ψ5.

Thus, the total time we spend on this sub-problem is O(g) to solve the second and fourth

cases, and then the best algorithm to solve a three quantifier unordered query on O(g) sized inputs

for the other three cases . So for each non-special pair of i, j, the time for ϕ2 is O(g)+TFO(O(g)).

For special pairs, the time is TFO(g2). There are at most O(m) special pairs, and at most O((m/g)2)

non-special pairs of i, j. We spent time O(m2/g) to solve the “high degree” case. So the total time

is O(m+m2/g+(m/g)2 ·TFO(g)+m ·g2).

If s(m) is a polynomial improvement factor, i.e., TFO(m) = m2−ε, then by letting g = m
1

2+ε

the running time is O(m2− ε

2+ε).

By the algorithm for OV in [AWY15, CW16] and the algorithm for FOPk in Chapter 3, we

get an improved algorithm for FOPk(≤) in time mk/2Θ(
√

logm).

106

4.7 FO with Transitive Closure on Symmetric Input Relations

Consider the model checking of a first-order formula with transitive closures, where the

transitive closure operation can only be taken on symmetric input relations. In this case TCR(x,y)

is true iff x and y are in the same connected component by edges of undirected edge set R. Thus

the formula can have binary predicates about whether two variables are in the same connected

component or not. Note that there can be more than one symmetric relations that the transitive

closure operation can be taken on.

Theorem 13. For non-decreasing 2Ω(
√

logm) ≤ s(m)≤m and k≥ 3, if FOP3 is in time O(m2/s(m)),

then FOPk(TCsym) is solvable in time O(mk−1/s(poly(m))).

Proof. Like the previous section, here we consider the case k = 3, and demonstrate a subquadratic

time reduction to FOP3.

Let there be t different TC relations, where t is a constant integer. Let Tt(m) be the running

time on instances with t TC relations. We will reduce an instance with t TC relations to instances

with t− 1 TC relations. Here we pick one of the TC relations, and will only deal with this TC

relation. The goal is to reduce to instances without this TC relation.

Here we assume that in the input, each vertex has a “category”, indicating which connected

component it is in. The formula ϕ contains predicates of form TCR(x,y) to represent that x and y

are in the same connected component by edges of relation R.

Let ϕ = Q1xQ2yQ3zψ(x,y,z) Let the quantifier Q2 be ∃, otherwise we will decide the

negation of the formula.

ψ can be transformed into a disjunction of itself with TCR(x,y),TCR(x,z) and TCR(y,z)

replaced by all combinations of true and false respectively. Let C be the set of all the combinations

(there are at most 23 = 8 combinations).

So we consider the model checking of

ϕ = Q1x∃yQ3z [
∨

c∈C(ψc∧ (x,y,z satisfy c))]

107

ψc is ψ with all TC predicates replaced by true or false according to c.

Let g be a threshold value. First of all, find out all x of degree greater than g. On each of the

x, we solve a 2 quantifier problem in time O(m) by the baseline algorithm. Next, find all y of degree

greater than g. On each of the y, treating y as a constant we using the baseline algorithm we can list

all satisfying x in time O(m), and thus we can check for all x whether there exists a satisfiable y.

There are at most O(m/g) such large degree elements, so the total time to deal with these elements

is O(m2/g).

Next, list all elements in X ∪Y so that elements in the same category are listed consecutively.

Furthermore, we list all categories of total degree greater than g before the other small categories.

Partition the big list into O(m/g) groups so that each has total degree at most g. We make sure that

each category of total degree at least g is broken into groups that contain no elements from other

categories. The small-degree categories are merged together to make groups of total degree as near

to g as possible. In the i-th group, let the sets of elements in X ,Y be Xi,Yi respectively.

For each pair of sets (Xi,Yj) and each truth value combination c, do the following case

analysis.

• Case 1: If all elements of Xi and Yj are from the same category, and c implies x ∈ Xi,y ∈ Yi

are in the same category, then all pairs of x,y satisfy c. Next, find the set edges between

Xi,Z and between Yi,Z satisfying c, and make a query to the oracle solving t−1 TC relation

problems. The running time is Tt−1(g).

• Case 2: If Xi and Yj have elements from the same categories and also elements from different

categories, then i and j must be equal or adjacent integers. In this case we just query the

baseline algorithm, so the time is O(g2).

• Case 3: If elements in Xi and elements in Yj are from completely different categories, and

c implies x,y should be in different categories, then all pairs of x,y satisfy c. This case is

similar as the first case.

108

By some preprocessing, for any pair of i, j, it is easy to tell which of the above three cases

the pair (Xi,Yj) is in.

There are O((m/g)2) instances of time Tt−1(g), and O(m/g) instances of time O(g2). The

total time is O((m/g)2 · Tt−1(g) + (m/g) · g2 + m2/g). If Tt−1(m) = m2/st−1(m) then by tak-

ing g = m1/2 there is Tt(m) = O(m2/st−1(m1/2)). Letting Tt(m) = m2/st(m), we get st(m) =

O(st−1(m1/2)) = O(st−2((m1/2)1/2)) = · · ·= O(s(m1/2t
)). Thus Tt(m) = O(m2/s(m1/2t

)).

4.8 Open problems

1. A very general type of open problem is to see whether other complexity classes have complete

problems under fine-grained reductions, or give evidence that there are no such complete

problems. To make sense, we need a stratification of the class where each layer in the

stratification has a reasonable conjecture for its worst-case complexity. For example, we

could look at SPACE(k logn), with conjectured complexity nk, if we restrict the tape alphabet

to binary.

2. MCϕ where ϕ is a variable complexity k formula with only unary and binary predicates can be

written in a straightline program whose intermediate relations have arity at most 2. Thus it can

be solved in Õ(nk−3+ω) time, and when k≥ 9, it can be solved in time nk−1+o(1), by [Wil14a].

When the input is sparse, will there be better algorithms? From the space complexity point of

view, it possible to succinctly represent the intermediate relations without explicitly listing

O(n2) tuples?

3. What is the best algorithm for FO formulas with t function symbols, where t is a fixed small

constant, such as 2 or 3? In this case, can a 2-quantifier problem be solved in time m2 or

faster? One idea is to use grouping-reduction to eliminate one function each time, but this

time we cannot guarantee that on any pair of groups, the relations on their function values are

still sparse compared to the group size.

109

4. The first-order logic can be extended to more expressive classes in many ways, including

least fixed point, and temporal logic. It would be interesting if they can be studied in the

fine-grained complexity context.

4.9 Baseline Algorithms

Lemma 4.9.1. For any integer k ≥ 2, FOPk, FOPqr=k and FOPk(≤) are in time O(mnk−2). The

model checking for k-quantifier formulas with transitive closure operations only on symmetric input

binary relations is also in time O(mnk−2).

The baseline algorithm for FOPk is proved in Section 3.9.1. For FOPqr=k and FOPk(≤), we

only need to show the case where k = 2. The cases for k > 2 follows from the quantifier-eliminating

downward self-reduction.

The linear time baseline algorithm for FOPqr=2 is straightforward from the baseline algo-

rithm for FOP2. Let the variables in the outer scopes be x and the one in the inner scopes be y. For

each variable named x and each variable named y, we can compute #(x) = |{y ∈ y | ψ(x,y)}| for

any quantifier-free formula ψ(x,y). Thus, for a variable x, we can list all elements in the domain of

x satisfying any ϕ(x) where ϕ has quantifier rank 1. Thus we can decide ∃xϕ(x) and ∀xϕ(x) for any

variable named x.

The linear time baseline algorithm for FOP2(≤) is also adapted from the baseline algorithm

for FOP2. We prove that FOP2(≤)⊆ TIME(m). Let ϕ = Q1x Q2y ψ(x,y), where

ψ(x,y) = ((x < y)∧ψ<(x,y))∨ ((x = y)∧ψ=(x,y))∨ ((x > y)∧ψ>(x,y))

for each x, we let Y<,Y=,Y> be the subsets of Y less than x, equal to x or greater than x. These

sets are disjoint. The proof for FOP2 showed that each time taking one x ∈ X , we can compute

#<(x) = |{y∈Y< |ψ(x,y)}| (and similarly #=(x),#>(x) for Y=,Y> respectively) in time linear to the

degree of x. Thus for each x, if y is quantified by ∃ then we check whether #<(x)+#=(x)+#>(x)> 0.

110

If y is quantified by ∀ then we check whether #<(x)+#=(x)+#>(x) = |Y |.

For k-quantifier formulas with transitive closure operations only on symmetric input relations,

it is easy to see that using the same method, for each x we can count the number of y satisfying a

relation and also satisfying a constant number of predicates about whether x and y are in the same

connected component by a certain undirected edge relation.

4.10 Baseline Algorithm for Variable Complexity k

4.10.1 Variable Complexity 2

Lemma 4.10.1. FOPvc=2 ⊆ TIME(m)

For the complement of a sparse relation, we call it a co-sparse relation. If a relation R is

co-sparse, we can represent it by its complement R̄, which takes only O(m) space.

First, convert the variable complexity 2 formula ϕ into a constant number of first-order

queries of at most 2 variables. Each query is one of the following forms.

1. R(x,y) = Ri(x,y)∧R j(x,y)

2. R(x,y) = Ri(x,y)∨R j(x,y)

3. R(x,y) = ¬Ri(x,y)

4. R(x) = ∃yRi(x,y)

5. R(x) = ∀yRi(x,y)

6. R = ∃xRi(x)

7. R = ∀xRi(x)

8. R = ¬Ri

111

We will show that if we have already computed all of the previous queries in O(m) time,

then we can compute the current query (or its negation, if it is co-sparse) in O(m) time.

1. Intersection

• The intersection of sparse relation Ri(x,y) and sparse relation R j(x,y) can be computed

in time O(min(|Ri|, |R j|)), by going through the shorter list of Ri and R j, and check if

the tuple satisfies the other relation.

• The intersection of sparse Ri(x,y) and co-sparse R j(x,y) can be computed in time

O(|Ri|), by going through all tuples of Ri, and check if the tuple satisfies the other

relation.

• The intersection of co-sparse Ri(x,y) and co-sparse R j(x,y) can be computed in time

O(|R̄i + R̄ j|), by letting R̄t be the union of R̄i and R̄ j.

2. Union

It is reducible to the intersection of two relations, by De Morgan’s Law.

3. Existential quantifier

• R(x) = ∃yRi(x,y) for sparse Ri(x,y) can be computed in time O(|Ri|) by going through

all tuples of Ri and list all x that appear in some tuple.

• R(x) = ∃yRi(x,y) for co-sparse Ri(x,y) can be computed by taking the complement of

∀yR̄i(x,y).

4. Universal quantifier

• R(x) = ∀yRi(x,y) for sparse Ri(x,y) can be computed in time O(|Ri|) by going through

all tuples of Ri, for each x count how many tuples it is in, and finally list all x that appear

in |Y | tuples.

• R(x) = ∀yRi(x,y) for co-sparse Ri(x,y) can be computed by taking the complement of

∃yR̄i(x,y).

112

4.10.2 3 and More Variables

Any formula of 3 quantifiers is can be solved in time O(nω) [Wil14a]. By applying this

algorithm on every line, we can decide a formula of variable complexity 3 in the amount of time.

This can be generalized to any k ≥ 3.

Theorem 14. (Strengthening of Williams’ algorithm) Any first-order property defined by a formula

of variable complexity k is decidable in time Õ(nk−3+ω) for k ≥ 2. For k ≥ 9, it can be decided in

nk−1+o(1) time.

SETH implies k-OV for k ≥ 2 requires time nk−o(1). Therefore, assuming SETH, for

2≤ k < 8, it is impossible to express k-OV in FO using only k variables, without blowing up the

input size by a polynomial factor.

4.10.3 Case Analysis on FO with Three Variables

Now we consider formulas of variable complexity 3.

If a ternary intermediate relation is created in the straightline program in a line of form

R(x,y,z) = ψi(x,y,z), then ψ must be quantifier-free. Whenever this ternary intermediate relation is

used in other places, we can just replace the relation by ψi. Thus we can without loss of generality

assume that all intermediate relations are unary or binary.

We define three types of variable complexity 3 formulas.

1. Strongly Succinct: The formula is equivalent to a straightline program where all intermediate

relations are unary. One example is to decide if there exists a length ` chain of orthogonal

vectors: v1 ⊥ v2,v2 ⊥ v3, . . . ,v`−1 ⊥ v` for some constant `.

We call it succinct because the intermediate relations can be succinctly listed. Because in

computing the straightline program, no dense relation is created, we can use the algorithm

for “List-∃-∀” problems for each line. Thus, it is subquadratic time reducible to OV by the

reduction in Chapter 3.

113

2. Weakly Succinct: The formula is equivalent to a straightline program where in each line

there is at most one occurrence of an intermediate binary relation. Most natural problems of

variable complexity 3 are in this case. The formula we have constructed for the constant-depth

circuit satisfiability is weakly succinct. FOPqr=3 problems are also weakly succinct.

We call it weakly succinct because some of the intermediate relations can be succinctly listed.

In this case, it can be solved in O(mn) time for sparse graphs. The proof will be presented in

the end of this section.

3. Non-succinct: The formula is not weakly succinct. Our best algorithm needs to explicitly

construct all intermediate relations. In this case, it is solvable in matrix multiplication time,

and in O(n3) using combinatorial algorithms.

An example is that, in a sparse graph, decide whether there is a pair (x ∈ X ,y ∈ Y) such that

for all z ∈ Z, z either has a neighbor not adjacent to x, or has a neighbor not adjacent to y. In

FO, it is

∃x∃y∀z(∃y′¬E(x,y′)∧E(z,y′))∨ (∃x′¬E(y,x′)∧E(z,x′))

which is equivalent to the straightline program

R1(y,z) = ∃y′(¬E(x,y′)∧E(z,y′))

R2(x,z) = ∃x′(¬E(y,x′)∧E(z,x′))

ϕ = ∃x∃y∀z(R1(y,z)∨R2(x,z))

An equivalent problem is: Given three families of sets, A,B,C, decide if for all ∀S1 ∈ A,∀S2 ∈

B, there is a set S3 ∈C contained in the intersection of A and B.

∀S1 ∈ A∀S2 ∈ B∃S3 ∈C(S3 ⊆ S1∩S2)

114

In FO,

∀x ∈ A∀y ∈ B∃z ∈C(∀y′(y′ ∈ x∨¬y′ ∈ z)∧∀x′(x′ ∈ y∨¬x′ ∈ z))

In matrix multiplication time, we can compute a list of all the pairs of S1 and S3 where S3 is

contained in S1, and a list of all the pairs of S2 and S3 where S3 is contained in S2, then we can

compute for all pairs of S1 and S2 whether there is a common S3 using matrix multiplication.

However, listing the pairs of S1,S3 and S2,S3 generates two dense relations that can be as

large as n2. So it is open whether non-succinct formulas can be decided in O(m2) time.

Proof for the O(mn) upper bound for weakly succinct formulas.

Consider each line of the straightline program R(x,y) = Qzψ(x,y,z). Without loss of

generality assume Qz is ∃, for otherwise we can compute the complement of R. Furthermore, we

also assume ψ(x,y,z) is a conjunction. For otherwise, we will write ψ(x,y,z) in DNF, and consider

each conjunction separately.

Case 1: The intermediate relation is on x,y.

Enumerate all x, for each x, we can list y such that Qzψ(x,y,z) holds for x,y, using the O(m)

time baseline algorithm. The time is O(mn).

Case 2: The intermediate relation is on y,z.

Case 2-1: Some binary predicate on x,z appears positively in the conjunction.

We enumerate the edges of the positive predicate, to get the pairs of (x,y), and for each of

them, enumerate all z, and check if ψ(x,y,z) holds. This takes time O(mn).

Case 2-2: All binary predicates on x,z appear negatively in the conjunction.

Let ψ′ be the subformula of the conjunction that contains all predicates on y,z, including the

intermediate relation.

For each y, count how many z satisfy ψ′ with y. Let the sum be f (y). The total time is

O(n2).

Enumerate all edges on x,z and enumerate all y. In this way we can count for each pair of

(x,y) the number of z so that ψ′ is satisfied on y,z and also there is an edge between x,z. Let the

115

sum be g(x,y). The total time is O(mn).

For each pair of x,y, the value f (y)−g(x,y) is the number of z such that ψ′ is true and also

there are no edges between x,z.

Case 2-3: There are no binary predicates on x,z.

Then there must be binary predicates on x,y, or otherwise x is isolated from other variables

in the formula, making it easier to decide. We do a similar counting argument as Case 2-2.

Case 3: The intermediate relation is on x,z.

This case is equivalent to Case 2, because we can switch variables x and y in the formula.

4.11 Acknowledgments

Chapter 4 contains material from “The Fine-Grained Complexity of Strengthenings of

First-Order Logic”, by Jiawei Gao and Russell Impagliazzo, which is currently in submission. The

author of this dissertation was a principal author of this work. The authors sincerely thank Marco

Carmosino and Antonina Kolokolova for comments on improving this paper.

116

Chapter 5

Reachability on Tree-Like DAGs, and

Applications to Dynamic Programming

Problems

5.1 Chapter Overview

5.1.1 Extending One-Dimensional Dynamic Programming to Graphs

The Least Weight Subsequence (LWS) is type of dynamic programming problems introduced

by [HL87]: select a set of elements from a linearly ordered set so that the total cost incurred by the

adjacent pairs of elements is optimized. It is defined as follows: Given elements x0, . . . ,xn, and an

n×n matrix C of costs ci, j, for all pairs of indices i < j, compute F on all elements, defined by

F(j) =


0, for j = 0

min0≤i< j[F(i)+ ci, j], for j = 1, . . . ,n

F(j) is the optimal cost value from the first element up to the j-th element. Because the cost matrix

C is sometimes fixed by the problem, instead of given by the input, we use the notation LWSC

to define LWS with a specific cost matrix C. The Airplane Refueling problem [HL87] is a well

117

known example of LWS: Given the locations of airports on a line, find a subset of the airports for

an airplane to add fuel, that minimizes the sum of the cost. The cost of flying from the i-th to the

j-th airport is defined by ci, j. Other LWS examples include finding a longest chain satisfying some

property, such as Longest Increasing Subsequence [Fre75] and Longest Subset Chain [KPS17];

breaking a linear structure into blocks, such as Pretty Printing [KP81]; variations of Subset Sum

such as the Coin Change problem, and the Knapsack problem. These problems have O(n2) time

algorithms using dynamic programming, and in many special cases it can be improved: when the

cost satisfies quadrangle inequality or some other properties, there are near linear time algorithms

(e.g. [Yao80, Wil88, GP89]). But for the general LWS, it is not known whether these problems can

be solved faster than n2−o(1) time.

A general approach to understanding the fine-grained complexity of these problems was

initiated in [KPS17]. Many LWS problems have succinct representations of ci, j. Taking prob-

lems defined in [KPS17] as examples, in LOWRANKLWS, ci, j = 〈µi,σ j〉, where µi and σ j are

boolean vectors of length d � n associated with each element. The CHAINLWS problem has

costs c1, . . . ,cn defined a property P so that ci, j equals c j if P(i, j) is true, and ∞ otherwise. P

is computable by data associated with the pair (i, j). (For example, in LONGESTSUBSETCHAIN,

P(i, j) is true iff set Si is contained in set S j.) So the goal of the problem becomes finding

a longest chain of elements so that adjacent elements that are to be selected satisfy property

P. When C can be represented succinctly, we can ask whether there exist subquadratic time

algorithms for these problems, or try to find subquadratic time reductions between problems.

[KPS17] showed that in many LWSC problems when C can be succinctly described in the input,

in subquadratic time it is reducible to a corresponding problem, which is called a STATICLWSC

problem. The problem STATICLWSC is: given elements x1, . . . ,x2n, a cost matrix C, and val-

ues F(i) on all i ∈ {1, . . . ,n}, compute F(j) = mini∈{1,...,n}[F(i)+ ci, j] for all j ∈ {n+1, . . . ,2n}.

It is a parallel, batch version (with many values of j rather than a single one) of the update

rule applied sequentially one index at a time in the standard DP algorithm. The reduction from

LWSC to STATICLWSC implies that a highly sequential problem can be reducible to a highly

118

parallel one. If a STATICLWSC problem can be solved faster than quadratic time, so can the

LWSC problem. Apart from one-directional reductions from LWSC to STATICLWSC, [KPS17]

also proved subquadratic time equivalence between some concrete problems: LOWRANKLWS

is equivalent to MIN INNER PRODUCT, NESTED BOXES is equivalent to VECTOR DOMINATION,

LONGEST SUBSET CHAIN is equivalent to ORTHOGONAL VECTORS, and CHAINLWS, which is

a generalization of NESTED BOXES and LONGEST SUBSET CHAIN, is equivalent to SELECTION,

a generalization of VECTOR DOMINATION and ORTHOGONAL VECTORS.

Some of the LWS problems can be naturally extended from lines to DAGs. For example, on a

road map, we wish to find a path for a vehicle, along which we wish to find a sequence of cities where

the vehicle can rest and add fuel so that the cost is minimized. The cost of traveling between cities x

and y is defined by cost cx,y. Connections between cities could be a general graph, not just a line.

Works about algorithms for LWS problems on graphs include [AST94, Sch98, CWHL11, LjLW12].

Using a similar approach as [KPS17], this dissertation extend the Least Weight Subsequence

problems to the Least Weight Subpath (LWSPC) problem whose objective is to find a least weight

subsequence on a path of a given directed acyclic graph G = (V,E). Let there be a set V0 containing

vertices that can be the starting point of a sequence. The optimum value on each vertex is defined

by:

F(v) =


min(0,minu v[F(u)+ cu,v]), for v ∈V0

minu v[F(u)+ cu,v], for v /∈ v0

where u v means u is reachable to v. The goal of LWSPC is to compute F(v) on all vertices

v ∈V . Examples of LWSPC problems will be given in Appendix A. LWSPC can be solved in time

O(|V | · |E|) by doing reversed depth/breadth first search from each vertex, and update the F value on

the vertex accordingly. It is not known whether it has faster algorithms, even for Longest Increasing

Subsequence, which is an LWSC instance solvable in O(n logn) time on linear structures. If C

is succinctly describable in similar ways as LOWRANKLWS, NESTED BOXES, SUBSET CHAIN

or CHAINLWS, we wish to study if there are subquadratic time algorithms or subquadratic time

119

reductions between problems.

Because the cost matrix C is either fixed in the problem or given succinctly in the input,

we consider that every vertex has some additional data so that cx,y can be computed by the data

contained in x and y. Let the size of additional data associated with each vertex v be its weight w(v).

The weight of a vertex can be defined in different ways according to the problems. For example,

in LOWRANKLWS, the weight of an element can be defined as the length of its associated vector;

and in SUBSET CHAIN, the weight of an element is the size of its corresponding subset. We use

m = |E| as the number of graph edges. Let n be the number of vertices. Let the total weight of all

vertices be N. We use M = max(m,N) as the size of the input. In this dissertation we will see that if

we can improve the algorithm for STATICLWSC to be subquadratic time, then on some interesting

classes of graphs we can solve LWSPC faster than M2−o(1) time.

5.1.2 Introducing Reachability to First-Order Model Checking

Introducing transitive closure to first-order logic is analogous to extending LWSC to paths

in graphs, which makes parallel problems become sequential. The first-order property (or first-order

model checking) problem is to decide whether an input structure satisfies a fixed first-order logic

formula ϕ. Although model checking for input formulas is PSPACE-complete [Sto74, Var82], when

ϕ is fixed by the problem, it is solvable in polynomial time. The sparse version of OV is one of

these problems, defined by the formula ∃u∃v∀i ∈ [d](¬One(u, i)∨ (¬One(v, i))), where relation

One(u, i) is true iff the i-th coordinate of vector u is one.

If ϕ has k quantifiers (k≥ 2), then on input structures of n elements and m tuples of relations,

it can be solved in time O(nk−2m) [GIKW17]. On dense graphs where k ≥ 9, it can be solved in

time O(nk−3+ω), where ω is the matrix multiplication exponent [Wil14a]. Here we study the case

where the input structure is sparse, i.e. m = n1+o(1), and ask whether a three-quantifier first-order

formula can be model checked in time faster than m2−o(1). The first-order property conjecture

(FOPC) states that there exists integer k≥ 2, so that first-order model checking for (k+1)-quantifier

120

formulas cannot be solved in time O(mk−ε) for any ε > 0. This conjecture is equivalent to MDOVC,

since OV is proven to be a complete problem in the class of first-order model checking problems;

in other words, any model checking of 3 quantifier formulas on sparse graphs is subquadratic time

reducible to OV [GIKW17]. This means from improved algorithms for OV we can get improved

algorithms for first-order model checking.

The first-order property problems are highly parallelizable. If we introduce the transitive

closure (TC) operation on the relations, then these problems will become sequential. The transitive

closure of a binary relation E can be considered as the reachability relation by edges of E in a graph.

In a sparse structure, the TC of a relation may be dense. So it can be considered as a dense relation

succinctly described in the input. In finite model theory, adding transitive closure significantly

adds to the expressive power of first-order logic (First discovered by Fagin in 1974 according to

[Lib13], and then re-discovered by [AU79].) In fine-grained complexity, adding arbitrary transitive

closure operations on the formulas strictly increases the hardness of the model checking problem.

More precisely, [GI19] shows that SETH on constant depth circuits, which is a weaker conjecture

than the SETH on k-CNF-SAT, implies the model checking for two-quantifier first-order formulas

with transitive closure operations cannot be solved in time O(m2−ε) for any ε > 0. This means this

problem may stay hard even if the SETH on k-CNF-SAT is refuted.

However, we will see that for a class of three-quantifier formulas with transitive closure,

model checking is no harder than OV under subquadratic time reductions.

We define problem SELECTIONP to be the decision problem for whether an input structure

satisfies (∃x ∈ X)(∃y ∈ Y)P(x,y). P(x,y) is a fixed property specified by the problem that can

be decided in time O(w(x)+w(y)), where w(x) is the size of additional data on element x. For

example, OV is SELECTIONP where P(x,y) iff x and y are a pair of orthogonal vectors. In this case

w(x) is defined as the length of vector x. (If we work on the sparse version of OV, the weight w(x)

is defined by the Hamming weight of x.)

On a directed graph G = (V,E), we define PATHP to be the problem of deciding whether

(∃x ∈V)(∃y ∈V)[TCE(x,y)∧P(x,y)], where TCE is the transitive closure of relation E and P(x,y)

121

is a property on x,y fixed by the problem. That is, whether there exist two vertices x,y not

only satisfying property P but also x is reachable to y. We will give an example of PATHP in

Appendix A. Also, we define LISTPATHP to be the problem of listing all x ∈ V such that (∃y ∈

V)[TCE(x,y)∧P(x,y)].

Considering the model checking problems, we let PATHFO3 and LISTPATHFO3 denote

the class of PATHP and LISTPATHP such that P is of form ∃zψ(x,y,z) or ∀zψ(x,y,z), where ψ is

a quantifier-free formula in first-order logic. 1 Later we will see that problems in PATHFO3 and

LISTPATHFO3 are no harder than OV. In these model checking problems, the weight of an element

is the number of tuples in the structure that the element is contained in.

Trivially, SELECTIONP on input size |X |= N1, |Y |= N2 can be decided in time O(N1N2),

where N1 is the total weight of elements in X , and N2 is the total weight of elements in Y . PATHP and

LISTPATHP on input size M and total vertex weight N are solvable time O(MN) by depth/breadth

first search from each vertex, where M is defined to be the maximum of N and the number of edges

m. In this dissertation we will show that on some graphs, if SELECTIONP is in truly subquadratic

time, so is PATHP and LISTPATHP. Interestingly, by applying the same reduction techniques from

PATHP to SELECTIONP, we can get a similar reduction from a dynamic programming problem on a

graph to a static problem.

5.1.3 Main Results

This dissertation works on two classes of graphs, both having some similarities to trees. The

first class is where the graph G is a multitree. A multitree is a directed acyclic graph where the set

of vertices reachable from any vertex form a tree. Or equivalently a DAG is a multitree if and only

if on all pairs of vertices u,v, there is at most one path from u to v. In different contexts, multitrees

are also called strongly unambiguous graphs, mangroves or diamond-free posets [GLL12]. These

graphs can be used to model computational paths in nondeterministic algorithms where there is at

1The formal definition of PATHFO3 and LISTPATHFO3 will be in the full version of this paper.

122

most one path connecting any two states [AL96]. The butterfly network, which is a widely-used

model of the network topology in parallel computing, is an example of multitrees.

The second class of graphs is when we treat G as undirected by replacing all directed edges

by undirected edges, the underlying graph has constant treewidth. Treewidth [RS84, RS86] is an

important parameter of graphs that describes how similar they are to trees. 2 On these classes of

graphs, we have the following theorems.

Theorem 15 (Reductions between decision problems.). Let t(M) ≥ 2Ω(
√

logM), and let the DAG

G = (V,E) satisfy one of the following conditions:

• G is a multitree, or

• G is a multitree of strongly connected components, or

• The underlying undirected graph of G has constant treewidth,

then, the following statements are true:

• If SELECTIONP is in time N1N2/t(min(N1,N2)), then PATHP is in time M2/t(polyM).3

• If PATHP is in time M2/t(M), then LISTPATHP is in time M2/t(polyM).

• When P(x,y) is of form ∃zψ(x,y,z) or ∀zψ(x,y,z) where ψ is a quantifier-free first-order

formula, SELECTIONP is in time N1N2/t(min(N1,N2)) iff PATHP is in time M2/t(polyM) iff

LISTPATHP is in time M2/t(polyM).

This theorem implies that OV is hard for classes PATHFO3 and LISTPATHFO3. By the

improved algorithm for OV [AWY15, CW16], we get improved algorithms for PATHFO3 and

LISTPATHFO3:
2Here we consider the undirected treewidth, where both the graph and the decomposition tree are undirected. It is

different from directed treewidth defined for directed graphs by [JRST01].
3This reduction also applies to optimization versions of these two problems. Let PathF be a problem to compute

minx,y∈V,x y F(x,y) and SelectionF be a problem to compute minx∈X ,y∈Y F(x,y), where F is a function on x,y, instead
of a boolean property. Then the same technique gives us a reduction from PathF to SelectionF . We will leave the
details to the full version of the paper.

123

Corollary 5.1.1 (Improved algorithms.). Let the graph G be a multitree, or multitree of strongly

connected components, or a DAG whose underlying undirected graph has constant treewidth. Then

PATHFO3 and LISTPATHFO3 are in time M2/2Ω(
√

logM).

Next, we consider the dynamic programming problems. If the cost matrix C in LWSPC is

succinctly describable, we get the following reduction from LWSPC to STATICLWSC. Except for

the reduction from LONGESTSUBSETCHAIN to OV, we always assume that all vertices have the

same weight.4

Theorem 16 (Reductions between optimization problems.). On a multitree graph, or a DAG whose

underlying undirected graph has constant treewidth, let t(N)≥ 2Ω(
√

logN), then,

1. if STATICLWSC of total weight N is in time N2/t(N), then LWSPC on input size M is in time

M2/t(poly(M)).

2. if LWSPC is in time M2/t(M), then LWSC on input size N is in time N2/t(poly(N)).

If there is a reduction from a concrete STATICLWSC problem to its corresponding LWSC

problem (e.g. from MININNERPRODUCT to LOWRANKLWS, from VECTOR DOMINATION to

NESTED BOXES and from OV to LONGEST SUBSET CHAIN [KPS17]), then the corresponding

LWSC, STATICLWSC and LWSPC problems are subquadratic-time equivalent. From the algo-

rithm for OV [CW16] and SPARSE OV [GIKW17], we get an improved algorithm for problem

LONGEST SUBSET CHAIN:

Corollary 5.1.2 (Improved algorithm). On a sparse multitree graph or a DAG whose underlying

undirected graph has constant treewidth, LONGEST SUBSET CHAIN is in time M2/2Ω(
√

logM).

The reduction uses a technique that decomposes multitrees into sub-structures where it is

easy to decide whether vertices are reachable. So we also get reachability oracles using subquadratic

space, that can answer reachability queries in sublinear time.

4In LONGESTSUBSETCHAIN, the subsets corresponding to different vertices can have different sizes.

124

Theorem 17 (Reachability oracle). On a multitree of strongly connected components, there exists a

reachability oracle with subquadratic preprocessing time and space that has sublinear query time.

On a multitree, the preprocessing time and space is O(m5/3), and the query time is O(m2/3).

5.1.4 Organization of this Chapter

In Section 5.2 we prove the first part of Theorem 15, by reduction from PATHP to SELECTIONP

on multitrees. The case for bounded treewidth DAGs will be presented in Section 5.2.4. Section 5.3

proves Theorem 16 by presenting a reduction from LWSPC to STATICLWSC. Section 5.6 discusses

about open problems. Appendix 5.4 proves the second part of Theorem 15 by reduction from

LISTPATHP to PATHP. Appendix 5.5 proves the last part of Theorem 15, the subquadratic equiva-

lence of SELECTIONP, PATHP and LISTPATHP when P is a first-order property. Appendix 5.7 talks

about the reachability oracle for multitrees.

5.2 From Sequential Problems to Parallel Problems

This section will establish the first part of Theorem 15 by showing that if t(M)≥ 2Ω(
√

logM),

then (PATHP,M2/t(polyM))≤EC (SELECTIONP,N1N2/t(min(N1,N2))). We will give the reduction

for multitrees and multitrees of strongly connected components.

5.2.1 The Recursive Algorithm

In the algorithm we first remove high degree vertices, then follow a divide and conquer

strategy. For simplicity of description, we will consider each strongly connected component as a

single vertex, whose weight equals the total weight of the component. Thus we will be working on

a multitree, instead of a multitree of strongly connected components. In the following algorithm,

whenever querying SELECTIONP or exhaustively enumerating pairs of reachable vertices and testing

P on them, we will extract all the vertices from a component. Testing P on a pair of vertices (or

125

strongly connected components) of weights N1,N2 is in time O(N1N2).

Let CUTPATHP be a variation of PATHP. It is the property testing problem for (∃x ∈ S)(∃y∈

T)[TCE(x,y)∧ϕ(x,y)], where (S,T) is a cut in the graph, such that all the edges between S and T

are directed from S to T . CUTPATHP on input size M and total vertex weight N can be solved in time

O(MN) if P(x,y) is decidable in time O(w(x)+w(y)): start from each vertex and do depth/breadth

first search, and on each pair of reachable vertices decide if P is satisfied.

Lemma 5.2.1. For t(M)≥ 2Ω(
√

logM), if SELECTIONP(N1,N2) is in time N1N2/t(min(N1,N2)) and

CUTPATHP(M) is in time M2/t(M), then PATHP(M) is in time M2/t(poly(M)).

Proof. Let γ be a constant satisfying 0 < γ≤ 1/4. Let TΠ(M) be the running time of problem Π on

a structure of size M, and let TSELECTIONP(N1,N2) be the running time of SELECTIONP on a pair of

sets (X ,Y) where the total vertex weight of X is N1 and of Y is N2.

We show that there exists a constant c where 0 < c < 1 so that if TSELECTIONP(N1,N2) ≤

N1N2/t(min(N1,N2)) and TCUTPATHP(M)≤M2/t(M), and TPATHP(M
′) is at most M′2/t(M′c) for all

M′ < M, then TPATHP(M)≤M2/t(Mc). We run the recursive algorithm as shown in Algorithm 3.

The intuition is to divide the graph into a cut S,T , recursively compute PATHP on S and T , and deal

with paths from S to T . For large-weight vertices, we deal with them separately so that CUTPATHP

will not deal with large-weight vertices.

For the vertices of weight more than Mγ, we deal with them separately as a first step. If

a vertex has more than Mγ ancestors/descendants, and if SELECTIONP on size (N1,N2) is in time

O(N1N2/t(minN1,N2)), then the time to deal with a vertex of weight Ni is at most O(MNi/t(Ni))≤

O(MNi/t(Mγ)). Because all Ni sum to at most M, the total time is O(M2/t(Mγ)). If the vertex

has less than Mγ ancestors/descendants, then the exhaustive search time on all such v and all their

ancestors/descendants sums to at most O(M ·Mγ). After the computation, the vertex becomes an

“auxiliary” vertex. In the upcoming steps we will only use auxiliary vertices as intermediate points

in the path, but will not include them in calls to SELECTIONP or treat them as potential endpoints

of a path and check P on them. This can be done by keeping a list of vertices to be ignored. There

126

Algorithm 3: PATHP(G)

// Reducing PATHP to SELECTIONP and CUTPATHP
1 if G has only one vertex then return false.
2 Let M be the size of the problem.
3 for each vertex v of weight ≥Mγ do
4 if v has at least Mγ ancestors then
5 Compute SELECTIONP on the set of v’s ancestors and v.

6 else
7 Exhaustively search all pairs of vertices on the set of v’s ancestors and v, test P

on all pairs. If P is true on any pair then return true.
8 if v has at least Mγ descendants then
9 Compute SELECTIONP on v and the set of v’s descendants.

10 else
11 Exhaustively search all pairs of vertices on v the set of v’s descendants, test P on

all pairs. If P is true on any pair then return true.
12 Replace v by an auxiliary vertex of weight 1.

13 Topological sort all vertices.
14 Keep adding vertices to S by topological order, until the total weight of S exceeds M/2.

Let the rest of vertices be T .
15 Run PATHP on the subgraph induced by S.
16 Run CUTPATHP(S,T).
17 Run PATHP on the subgraph induced by T .
18 if any one of the above three calls returns true then return true.

are O(M1−γ) of vertices of weight more than Mγ, thus the total size of lists is O(M ·M1−γ) = M2−γ.

Let MS and MT be the sizes of sets S and T respectively. Assume MS ≥ MT and let

∆ = MS−MT . Then we have

TPATHP(M) = TPATHP(MS)+TPATHP(MT)+TCUTPATHP(M)+O(M2/t(Mγ))

= TPATHP(MT +∆)+TPATHP(MT)+TCUTPATHP(M)+O(M2/t(Mγ))

≤ 2TPATHP(M/2+∆)+TCUTPATHP(M)+O(M2/t(Mγ))

= 2(M/2+∆)2/t((M/2+∆)c)+M2/t(M)+O(M2/t(Mγ)).

Let d be the constant factor of term O(M2/t(Mγ)). We can pick c to be small enough so that

127

dt(Mc)/t(Mγ) = ε. Thus the term d ·M2/t(Mγ) = εM2/t(Mc). The term M2/t(M) is less than

M2/t(Mγ), so it is also less than εM2/t(Mc). So the running time by the above formula yields to at

most 2(M/2+∆)2/t((M/2+∆)c)+2εM2/t(Mc). Because the function M2/t(Mc) is monotonically

increasing, the formula is upper bounded by 2(M/2+∆)2/t((M/2+∆)c)+2ε(M/2+∆)2/t((M/2+

∆)c) = (2+2ε)(M/2+∆)2/t((M/2+∆)c). When ∆≤Mγ for γ < 1/4 and when M is large enough,

Mγ�M so M/2+∆ = (1+o(1))M/2. So (2+2ε)(M/2+∆)2 can be significantly less than M2.

Moreover, we can make (2+2ε)(M/2+∆)2/M2 less than t((M/2+∆)c)/t(Mc) because t grows

very slowly. Thus we get (2+2ε)(M/2+∆)2/t((M/2+∆)c)≤M2/t(Mc).

5.2.2 A Special Case that Can Be Exhaustively Searched

The following lemma shows that if no vertex has both a lot of ancestors and a lot of

descendants, then the total number of reachable pairs of vertices is subquadratic to m. This lemma

holds for any DAG, not just for multitrees. We will use this lemma in the next subsection to show

that in a subgraph where all vertices have few ancestors and descendants, we can test property P on

all pairs of reachable vertices by brute force.

Lemma 5.2.2. If in a DAG G = (V,E) of m edges, every vertex has either at most n1 ancestors or at

most n2 descendants, then there are at most (m ·n1 ·n2) pairs of vertices s, t such that s is reachable

to t.

In a DAG G = (V,E) of m edges, let S,T be two disjoint sets of vertices where edges between

S and T only direct from S to T . If every vertex has either at most n1 ancestors in S or at most n2

descendants in T , then there are at most (m ·n1 ·n2) pairs of vertices s ∈ S and t ∈ T such that s is

reachable to t.

Proof. We define the ancestors of an edge e∈E to be the ancestors (or ancestors in S) of its incoming

vertex, and its descendants to be the descendants (or descendants in T) of its outgoing vertex. Let

the number of its ancestors and descendants be denoted by anc(e) and des(e) respectively.

For each edge e, it belongs to exactly one of the following three types:

128

Type A: If anc(e)≤ n1 but des(e)> n2, then let count(e) be anc(e).

Type B: If des(e)≤ n2 but anc(e)> n1, then let count(e) be des(e).

Type C: If anc(e)≤ n1 and des(e)≤ n2, then let count(e) be anc(e) ·des(e).

∑e∈E count(e) ≤ m · n1 · n2 because the count value on each edge is bounded by n1 · n2. We will

prove that this value upper bounds the number of reachable pairs of vertices.

For each pair of reachable vertices (u,v) (or (u,v) s.t. u ∈ S and v ∈ T), let (e1, . . . ,ep) be

the path from u to v. Along the path, anc does not decrease, and dec does not increase. A path

belongs to exactly one of the following three types:

Type a: Along the path anc(e1) ≤ anc(e2) ≤ ·· · ≤ anc(ep) ≤ n1, and des(e1) ≥ des(e2) ≥ ·· · ≥

des(ep)> n2. That is, all the edges are Type A.

Type b: Along the path des(ep) ≤ des(ep−1) ≤ ·· · ≤ des(e1) ≤ n2, and anc(ep) ≥ anc(ep−1) ≥

·· · ≥ anc(e1)> n1. That is, all the edges are Type B.

Type c: Along the path there is some edge ei so that anc(ei)≤ n1 and des(ei)≤ n2. That is, it has

at least one Type C edge.

There will not be other cases, for otherwise if a Type A edge directly connects to a Type B edge

without a Type C edge in the middle, then the vertex joining these two edges would have more than

n1 ancestors and more than n2 descendants.

If a path from u to v is Type a, then its last edge ep is Type A. If it is Type b, then its first

edge e1 is Type B. If it is Type c, then there is some edge ei in the path that is Type C. This means:

1. For each Type A edge e, count(e) is at least the number of all Type a pairs (u,v) whose path

has e as its last edge.

2. For each Type B edge e, count(e) is at least the number of all Type b pairs (u,v) whose path

has e as its first edge.

129

3. For each Type C edge e, count(e) is at least the number of all Type c pairs (u,v) whose path

contains e.

Therefore each path is counted at least once by the count(e) of some edge e.

5.2.3 Subroutine: Reachability Across a Cut

Now we will show the reduction from CUTPATHP to SELECTIONP, where the graph does

not contain vertices of weight greater than Mγ. The high level idea of CUTPATHP is that we think

of the reachability relation on S×T as an |S|× |T | boolean matrix whose one-entries correspond to

reachable pairs of vertices. If we could partition the matrix into all-one combinatorial rectangles,

then we can decide all entries within these rectangles by a query to SELECTIONP, because in the

same rectangle, all pairs are reachable.

Claim 5.2.1. Consider the reachability matrix of on sets S and T . Let MS and MT be the sizes of

S and T . If there is a way to partition the matrix into non-overlapping combinatorial rectangles

(S1,T1), . . . ,(Sk,Tk) of sizes (r1,c1), . . . ,(rk,ck), and if there is some t so that computing each

subproblem of size (ri,ci) takes time ri · ci/t(min(ri,ci)), and each ri and ci are at least `, then all

the computation takes total time O(MS ·MT/t(`)).

Proof. Let the minimum of all ri be rmin and the minimum of all ci be cmin. Then the factor

of time saved for computing each combinatorial rectangle is at least t(min(rmin,cmin)), greater

than t(`). So the time spent on all rectangles is at most O((∑t
i=1 ci)(∑

t
i=1 ri)/t(`)), also we have

(∑t
i=1 ci)(∑

t
i=1 ri)≤MS ·MT because the rectangles are contained inside the matrix of size MS ·MT

and they do not overlap. So the total time is O(MS ·MT/t(`)).

The algorithm CUTPATHP(S,T) is shown in Algorithm 4. It tries to cover the one-entries of

the reachability matrix by combinatorial rectangles as many as possible. Finally, for the one-entries

not covered, we go through them by exhaustive search, which takes less than quadratic time.

130

Algorithm 4: CUTPATHP(S,T) on a multitree
1 Count the number of ancestors anc(v) and descendants des(v) for all vertices.
2 Insert all vertices with at least Mα ancestors and Mα descendants into linked list L.
3 while there exists a vertex v ∈ L do

// we call v a pivot vertex
4 Let A be the set of ancestors of v in S.
5 Let B be the set of descendants of v in T .
6 Add v to A if v ∈ S, otherwise add v to B.
7 Run SELECTIONP on (A,B). If it returns true then return true.
8 for each a ∈ A do
9 let des(a) = des(a)−|B|.

10 if des(a)< Mα and a ∈ L then remove a from L.

11 for each b ∈ B do
12 let anc(b) = anc(b)−|A|.
13 if anc(b)< Mα and b ∈ L then remove b from L.

14 Remove v from the graph.

15 for each edge (s, t) crossing the cut(S,T) do
16 Let A be the set of ancestors of s (including s) in S.
17 Let B be the set of descendants of t (including t) in T .
18 On all pairs of vertices (a,b) where a ∈ A,b ∈ B, check property P. If P is true on

any pair of (a,b) then return true.

In the beginning, we can count the number of ancestors (or descendants) of all vertices in

the DAG in O(M) time by going through all vertices by topological order (or reversed topological

order).

In each query to SELECTIONP(A,B), all vertices in A can reach all vertices in B, because

they all go through v. For any pair of reachable vertices s ∈ S, t ∈ T , if they go through any pivot

vertex, then the pair is queried to SELECTIONP. Otherwise it is left to the end, and checked by

exhaustive search on all pairs of reachable vertices.

The calls to SELECTIONP correspond to non-overlapping all-one combinatorial rectangles

in the reachability matrix. This is because the graph G is a multitree. For each call to SELECTIONP,

the rectangle size is at least Mα×Mα. Thus the total time for all the ∃∃P calls is O(M2/t(Mα)) by

Claim 5.2.1.

Each time we remove a pivot vertex v, there will be no more paths from set A to set B, for

131

otherwise there would be two distinct paths connecting the same pair of vertices. Thus, removing a

v decreases the total number of pairs of reachable vertices by at least Mα ·Mα = M2α. There are M2

pairs of vertices, so the total number of pivot vertices like v is at most M2/M2α = M2−2α.

Each time we find a pivot vertex v, we update the number of descendants for all its ancestors,

and update the number of ancestors for all its descendants. Because it has at least Mα ancestors

and Mα descendants, the value decrease on each affected vertex is at least Mα. So each vertex has

decreased its ancestors/descendants values for at most M/Mα = M1−α times. In other words, each

vertex can be an ancestor/descendant of at most M1−α pivot vertices. The total time to deal with all

ancestors/descendants of all pivot vertices in the while loop is in O(M ·M1−α) = O(M2−α).

Finally, after the while loop, there are no vertices with both more than Mα ancestors and Mα

descendants. In this case, by Lemma 5.2.2 in Section 5.2.2, the total number of reachable vertices is

bounded by M ·Mα ·Mα = M1+2α. Each vertex has weight at most Mγ. So the total time to deal

with these paths is O(M1+2α ·Mγ ·Mγ) = O(M1+2α+2γ).

Thus the total running time is O(M2/t(Mα)+M2−α +M1+2α+2γ). By choosing α and γ to

be appropriate constants, we get subquadratic running time.

If t(M) = Mε, then by choosing α = γ = 1/(4+ ε), we get running time M2−ε/(4+ε).

5.2.4 CUTPATHP for Bounded-Treewidth DAGs

We prove the first part of Theorem 15 on DAGs whose underlying undirected graphs have

constant treewidth. The algorithm PATHP for constant treewidth graphs is the same as the one for

multitrees. In this section we will show the reduction algorithm CUTPATHP for constant treewidth

graphs on a cut (S,T).

Let T be the decomposition tree of a graph G. Recall that by the definition of tree decompo-

sition, each node z of the tree corresponds to a set B(z) which is a subset of vertices of G. Because

the treewidth is constant, each set B(z) has a constant number of vertices. Every vertex of G appears

in at least one set of a tree node. Also, for every edge of G, there is at least one tree node whose set

132

contains both its endpoints. And if a vertex v appears both in B(z1) and B(z2), then along the path

from z1 to z2, v must appear in all the sets of the tree nodes. Here we consider the decomposition

tree as rooted, where all edges are directed from the root to leaves.

We use a similar reduction idea as Section 5.2.3. In the decomposition tree, each time we

find a node z to split the tree into two connected components. We first deal with all the paths that go

through the vertices in B(z). Any other path in the graph must be completely contained in one of

the connected components we have created. In the end, all connected components are so small that

we can go through all pairs of reachable vertices by exhaustive search. The algorithm is defined in

Algorithm 5.

The following claim uses a 1/3−2/3 trick on trees:

Claim 5.2.2. In a rooted tree of size n, we can find a connected subgraph of size between (1/3)n

and (2/3)n in O(n) time.

Proof. For each node z in the tree, we will compute the size of the subtree rooted at z, denoted by

f (z). We compute f (z) from the leaves up to the root, by a reversed topological order. If z is a leaf

then let size(z)← 1.

On each parent node p, we initially let f (p)← 1, and then for each child ci of p, add the

value f (ci) to f (ci). If before we add the f (ci) of certain child ci to f (p), f (p)< (1/3)n, and after

we add f (ci) to f (p), f (p)≥ (1/3)n, then there are two cases:

If f (p)≤ (2/3)n, then the subgraph formed by p and its subtrees c1, . . . ,ci is the connected

subgraph we want.

If f (p)> (2/3)n, then it must be f (ci)≥ (2/3)n− (1/3)n = (1/3)n. That is, the subtree

rooted at ci has size between (1/3)n and (2/3)n. But then we should have already returned the

subtree rooted ci instead. So this case would not happen.

After we have added the sizes of all the children of p to f (p), we have finished computing

f (p). If f (p) is still less than 1/3, we will continue to let the next vertex by the reversed topological

order be the current parent.

133

Algorithm 5: CUTPATHP(S,T) on constant treewidth DAG
1 Compute T , the tree decomposition of the underlying undirected graph.
2 for each z in T do
3 Let size(z) be the number of nodes of T .

4 while there exists a tree node z in T so that there is a connected subgraph of T rooted at
z with size between (1/3)size(z) and (2/3)size(z) do
// z can be found in time O(size(z)) by Claim 5.2.2.

5 for each v ∈ B(z) do
// Deal with all paths going through v.

6 Let A be the set of ancestors of v in S.
7 Let B be the set of descendants of v in T .
8 Add v to A if v ∈ S, otherwise add v to B.
9 if both A and B have at least Mα vertices then

10 Run SELECTIONP on (A,B). If it returns true then return true.

11 else
12 Exhaustively check P on all pairs of a ∈ A and b ∈ B. If P is true on any

(a,b) then return true.
13 Remove v from the graph, and from the sets of all the tree nodes.

14 Remove z from T .
15 for each tree node z′ who was originally in the same connected component with z do
16 Update size(z′) to be the new size of the connected component z′ is in.

17 for each edge (s, t) crossing the cut(S,T), do
18 Let A be the set of ancestors of s (including s) in S.
19 Let B be the set of descendants of t (including t) in T .
20 On all pairs of vertices (a,b) where a ∈ A,b ∈ B, check property P. If P is true on

any pair of (a,b) then return true.

Next we will analyze the reduction algorithm. First, if a the treewidth of a graph is constant,

then the corresponding decomposition tree can be computed in linear time [Bod96].

Unlike multitree graphs, here the calls to SELECTIONP are not non-overlapping rectangles:

different v from the same B(z) may share the same ancestors or descendants. However, each

time after removing a z, the connected components of the decomposition tree correspond to

non-overlapping rectangles in the reachability matrix, and will not overlap with the rectangles

corresponding to the ancestors and descendants for any v ∈ B(z). Thus, the overlapping only

happens when dealing with the ancestors and descendants of different v from the same B(z),

134

and these SELECTIONP rectangles will not overlap with other SELECTIONP rectangles after z is

removed. Because in each non-overlapping rectangle corresponding to a connected component, we

only computed the SELECTIONP for |B(z)| times, which is a constant. So by Claim 5.2.1, the total

time spent on all the calls to SELECTIONP is still O(M2/t(Mα)).

When we remove all vertices v ∈ B(z), the graph vertices from sets of different connected

components of the decomposition tree are not reachable to each other. Because any path from one

connected component to another must go through some vertex in B(z).

Unlike multitree graphs, this time some vertex v in B(z) may have fewer than Mα ancestors

or descendants. If so, then we do exhaustive search on the sets of v’s ancestors and descendants,

since calling SELECTIONP will not save time. Each time we find a v, the connected component of

the decomposition tree that v belongs to loses at least (1/3)size(v) of its vertices, thus each vertex

can be the ancestor/descendants of at most O(log3/2 M) such v’s. There are at most M vertices in

the graph, each of which can take part in at most Mα such paths going through each such v. So the

total time is O(M · log3/2 M ·Mα) = O(M1+α · log3/2 M).

Also, because each vertex can be the ancestor/descendants of at most O(log3/2 M) such v’s,

the total time for updating size for all of them is also bounded by O(M · log3/2 M).

In the end, each remaining vertex has O(Mα) ancestors and O(Mα) descendants. The total

running time for the exhaustive search is O(M ·Mα ·Mα ·M2γ) = O(M1+2α+2γ) by Lemma 5.2.2.

The overall running time is O(M2/t(Mα)+M1+α · log3/2 M+M1+2α+2γ). By choosing α

and γ to be appropriate small constants, we get subquadratic running time.

5.3 Application to Least Weight Subpath

In this section we will prove Theorem 16. The reduction from LWSPC to STATICLWSC

uses the same structure as the reduction from PATHP to SELECTIONP in the proof of Theorem 15

shown in Section 5.2.

Process LWSPC(G,F0) computes values of F on initial values F0 defined on all vertices of

135

G. On a given LWSPC problem, we will reduce it to an asymmetric variation of STATICLWSC.

Process STATICLWSC(A,B,FA) computes all the values of function FB defined on domain B, given

all the values of FA defined on domain A, such that FB(b) = mina∈A[FA(s)+ca,b]. Let NA and NB be

the total weight of A and B respectively. It is easy to see that if STATICLWSC on |NA|= |NB| is in

time N2
A/t(NA), then STATICLWSC on general A,B is in time O(NA ·NB/t(min(NA,NB))).

We also define process CUTLWSPC(S,T,FS), which computes all the values of FT defined

on domain T , given all the values of FS on domain S, where FT (t) = mins∈S,s t [FS(s)+ cs,t].

The reduction algorithm is adapted from the reduction from PATHP to SELECTIONP.

LWSPC is analogous to PATHP, STATICLWSC is analogous to SELECTIONP, and CUTLWSPC is

analogous to CUTPATHP. In PATHP, we divide the graph into two halves, recursively call PATHP

on the subgraphs, and use CUTPATHP to deal with paths from one side of the graph to the other

side. Similarly in LWSPC, we divide the graph into two halves, recursively compute function F on

the source side of the graph, then based on these values we call CUTPATHP to compute the initial

values of function F on the sink side of the graph, and finally we recursively call LWSPC on the

sink side of the graph. In CUTPATHP, we first identify large all-one rectangles in the reachability

matrix, and then use SELECTIONP to solve them, and finally we go through all reachable pairs of

vertices that are not covered by these rectangles. Similarly, in LWSPC, we will use the similar

method to identify large all-one rectangles in the reachability matrix and use STATICLWSC to solve

them, and finally we go through all reachable pairs of vertices and update F on each of them.

The algorithm LWSPC is similar as PATHP, and is defined in Algorithm 6. Initially, we let

F(v)← 0 for all v ∈ V0, and let F(v)← +∞ for all v /∈ V0. We run LWSPC(G,F0) on the whole

graph. Here we only consider the case where all vertices have the same weight. (For SUBSETCHAIN

the subset associated with each vertex can have different sizes. But by the universe-shrinking self

reduction in [GIKW17] we can transform the universe of the sets to be as small as 2Θ(
√

logn) for

problems with n subsets. By expressing the set using a vector of length equal to the size of the small

universe, we will make all vertices have the same weight.)

The algorithm CUTLWSPC(S,T,FS) is adapted from CUTPATHP, with the following changes:

136

Algorithm 6: LWSPC(G = (V,E,V0),F0)

1 if G has only one vertex v then
2 if v ∈V0 then
3 return min(0,F0(v)).

4 return F0 on v.

5 Let M be the size of the problem.
6 Topological sort all vertices.
7 Keep adding vertices to S by topological order, until the total weight of S exceeds M/2.

Let the rest of vertices be T .
8 Compute F on domain S, by F ← LWSPC(GS,F0), where GS is the subgraph of G

induced by S.
9 Let FT ← CUTLWSPC(S,T,F).

10 For each t ∈ T , let F0(t)←min(F0(t),FT (t)).
11 Compute F on domain T , by F ← LWSPC(GT ,F0), where GT is the subgraph of G

induced by T .
12 return F on domain V .

1. In the beginning, FT (t) is initialized to ∞ for all t ∈ T .

2. Each query to SELECTIONP(A,B) in CUTPATHP is replaced by

(a) Compute FB on domain B by STATICLWSC(A,B,FS).

(b) For each vertex b in B, let FT (b) be the minimum of the original FT (b) and FB(b).

3. Whenever processing a pair of vertices s, t such that s is reachable to t in either the preprocess-

ing phase or the final exhaustive search phase, we let FT (t)← FS(s)+ cs,t if FS(s)+ cs,t <

FT (t).

4. In the end, the process returns FT , the target function on domain T .

Correctness of CUTLWSPC.

The correctness of CUTLWSPC follows from the correctness of CUTPATHP. We claim that

after running CUTLWSPC(S,T,FS), for any vertex t ∈ T , there is FT (t) = mins∈S,s t [FS(s)+ cs,t].

Because for any pair s ∈ S, t ∈ T , such that s reachable to t, they are either processed in a query

to STATICLWSC(A,B) where s ∈ A, t ∈ B, or computed separately thus FT (t)←min(FT (t),F(s)+

cs,t).

137

Correctness of LWSPC.

The LWSPC algorithm has the following facts:

1. Whenever a process LWSPC on domain V1 ⊆V returns, the values of F on V1 are fixed and

will not be changed henceforth.

2. Whenever there is an edge from u to v, then the value of F on u is always fixed before the

value on v. So the final values of function F on all vertices are fixed by topological order.

3. Each time we call LWSPC on a subset of vertices V1 ⊆V , the F values on all ancestors of

any vertex in V1 that are not in V1 have been fixed by some previous calls to LWSPC.

Assume that when we call LWSPC on subgraph with cut (S,T), initially there is

F0(v) =


minu∈R(v)\(S∪T),u v[F(u)+ cu,v], if v /∈V0

min(0,minu∈R(v)\(S∪T),u v[F(u)+ cu,v]), if v ∈V0

(5.1)

where R(v) is the set of vertices reachable to v. Then, if LWSPC(S,F0) is correct, after run-

ning LWSPC(S,F0), for any s ∈ S\V0, there is F(s) = minu∈R(s)\T,u s[F(u) + cu,s]. And af-

ter running CUTLWSPC(S,T,F), we have FT (t) = mins∈S,s t [F(s) + cs,t]. Then after taking

F0(t) = min(F0(t),FT (t)) on all t, for any t ∈ T\V0, we get F0(t) = minu∈R(t)\T,u t [F(u)+ cu,t].

Similarly for any t ∈ T ∩V0, F0(t) gets the the minimum of this value and 0. Therefore, on each call

of LWSPC(V1,F0) on a subset V1 ⊂V with initial values F0, F0 keeps the invariant in formula (5.1).

The time complexity of this reduction algorithm follows from the argument of Section 5.2.

Here because all vertices have the same weight and we are dealing with DAGs so there are no

strongly connected components. And in PATHP, there will not be the term M2/t(Mγ). The rest of

the time analysis is the same as Section 5.2.

138

5.4 From Listing Problems to Decision Problems

In this section we prove the second part of Theorem 15, that LISTPATHP is reducible to

PATHP.

Consider a star graph, which is a graph with its vertex set partitioned in X ,Y and another

single vertex c. Every x ∈ X is connected to c, and c is connected to every y ∈ Y . Let problem

FINDXP be the following problem: on a star graph, find an x ∈ X satisfying (∃y ∈ Y)P(x,y). We

will prove that LISTPATHP is reducible to FINDXP and FINDXP is reducible to PATHP.

Lemma 5.4.1. Let t(M)≥ 2Ω(
√

logM). (LISTPATHP,M2/(t(polyM)))≤EC (FINDXP,M2/t(M)))

Proof. We use a grouping reduction technique similar as the trick in [WW10] and [AWW16].

We modify the algorithm for PATHP in Section 5.2 to get the algorithm for LISTPATHP.

That is, we divide the graph into two subgraphs and call LISTPATHP recursively in a similar wa as

PATHP. PATHP needs to call SELECTIONP as queries, and in the counterpart of LISTPATHP we will

call FINDXP as queries.

Whenever we need to call SELECTIONP(X ,Y), we partition X and Y into groups of size

at most
√

M. Thus there are O((|X |/
√

M)× (|Y |/
√

M)) groups. For each pair of group Xi,Y j, we

construct a star graph and call FINDXP on it. The star graph is constructed as follows: Connect

every x ∈ Xi to a dummy vertex c, and connect c to every y ∈ Yj. Thus if there exist some satisfying

x in Xi, FINDXP will find a satisfying x.

Every time a satisfying vertex x in Xi is found by FINDXP, we mark it and add it into the

list of satisfying x, and then call the FINDXP on the same star again with x removed from the graph.

We keep calling FINDXP on this graph, ignoring all marked vertices, until either all elements in Xi

are marked and removed, or FINDXP cannot find a satisfying x.

Because there are at most M vertices that can be listed, there are at most M calls to

FINDXP that returns a satisfying x. Each call has instance size
√

M. The running time is O(M ·

(
√

M)2/t(
√

M)). The total time spent on the rest of the algorithm is the same as the running time

of PATHP.

139

Lemma 5.4.2. Let t(M)≥ 2Ω(
√

logM). (FINDXP,M2/(t(polyM)))≤EC (PATHP,M2/t(M)))

Proof. First, we pick an arbitrary element x1 ∈ X , and construct a graph by letting x1 connect to all

y in Y . Then we call PATHP on this graph. If it returns yes, then we return x1.

Otherwise, on the star graph we will replace the center vertex c by x1, remove the original

x1, and call PATHP on this graph. After each call to PATHP, if it returns yes, we divide X in two

halves and call PATHP again. Using binary search and shrinking the size of X by half each time, we

will finally find a satisfying x.

Lemmas 5.4.1 and 5.4.2 imply the reduction

(LISTPATHP,M2/(t(polyM)))≤EC (PATHP,M2/t(M))) for t(M)≥ 2Ω(
√

logM).

5.5 From Parallel Problems to Sequential Problems

We prove the third part of Theorem 15, the other direction of the reduction. The reduction

from PATHP to LISTPATHP is straightforward.

To reduce from SELECTIONP to PATHP, we can construct a graph with dummy vertex c in

the middle, such that each x in set X is connected to c, and c is connected to every y in set Y . If P is

expressible by first-order logic, then we will let c act like one of the y’s when computing R(x,c),

and act like of the x’s when computing predicates on P(c,y). Let x1 be an arbitrary element in X ,

and y1 be an arbitrary element in Y . We create c by merging x1 and y1 into a single element. c

has all the relations x1 and y1 have. Thus, on any x ∈ X ,x 6= x1, the value of P(x,c) is the same as

P(x,y1). Symmetrically on any y ∈ Y,y 6= y1, the value of P(c,y) is the same as P(x1,y). Therefore,

there exists x,y such that P(x,y) is true iff SELECTIONP on this graph returns true.

In general, if we are allowed to define another property P′ such that P′(x,y)← (P(x,y)∧(x 6=

c)∧ (y 6= c)), we have a reduction from SELECTIONP to PathP′ .

140

5.6 Open problems

One open problem is to extend PATHP and LWSPC to general DAGs and find subquadratic

time reductions and equivalences. Also, we would like to consider the case where the graph is not

sparse, where we use O(MN) as the baseline time complexity instead of O(M2).

It would also be desirable to study the fine-grained complexity of the DAG versions of other

quadratic time solvable dynamic programming problems, e.g. the Longest Common Subsequence

problem.

5.7 Reachability Oracle

This section presents a proof of Theorem 17. A reachability oracle on a graph takes in a

pair of vertices u,v in the graph, and answers whether v is reachable from u. A naive approach is to

use O(n2) space to store the reachability of all pairs of vertices. By adapting the PATHP algorithm

on multitrees, we get sublinear time reachability oracles for multitrees using subquadratic space

and subquadratic preprocessing time. If the graph is a multitree of strongly connected components,

we can first treat each strongly connected component as a single vertex, whose weight is the total

weight of all vertices in the component.

The reachability oracle for multitrees can be adapted directly from the PATHP algorithm. In

the recursion tree of calling PATHP, we take down the final subproblem that each vertex belongs to,

and when querying a pair of vertex, we find the PATHP instance corresponding to the least common

ancestor of the two final subproblems corresponding to these vertices, and consider the CUTPATHP

process called by this PATHP instance.

Next we modify the CUTPATHP algorithm. Among all pivot vertices, we call the ones who

have no other pivot vertices as descendants “sink pivot vertices”. After computing the number of

ancestors and descendants for all vertices, we can decide if a vertex is a sink in time linear to the

degree of the vertex.

141

We create another graph G′. Similar to CUTPATHP, we keep finding pivot vertices who have

at least Mα ancestors and Mα descendants in the remaining graph, and then remove them. Whenever

finding a pivot vertex v, we create edges from all its ancestors to v, and from v to all its descendants

in G′.

Thus, when querying a pair of vertices a,b, if a can reach b, there are three cases:

• Case 1: b is a pivot vertex. Then there is an edge from a to b in G′.

• Case 2: The path from a to b goes through at least a pivot vertex. In this case, it must go

through a sink pivot vertex. We decide if there is a sink pivot vertex v adjacent to a in G′

who is also adjacent to b. Each vertex can be an ancestors of at most M/Mα sink pivot

vertices, because each sink pivot vertex has more than Mα descendants, and different sink

pivot vertices have disjoint set of descendants. So this checking can be done in time M/Mα.

• Case 3: The path from a to b does not go through any pivot vertex. Then we can do a DFS

starting from a that traverses through at most Mα of a’s descendants in the remaining graph

G to find b. The time taken is O(Mα).

Thus, the query time is O(M/Mα +Mα), which is sublinear to M.

If the graph is a multitree, not a multitree of strongly connected components, then every

vertex has unit weight. In this case, the modified CUTPATHP process runs in time O(m2/mα +

m2−α +m1+2α), because now we do not use SELECTIONP thus the function t(m) is O(m), and

there are no large-weight vertices thus we can pick γ = 0. If we choose α = 1/3, then the running

time is O(m5/3). The modified PATHP algorithm has running time satisfying the recursion T (m) =

2T (m/2)+O(m5/3), which is O(m5/3). So the preprocessing time and space is O(m5/3), and the

query time is O(m2/3).

142

5.8 Acknowledgments

Chapter 5 contains material from “On the Fine-grained Complexity of Least Weight Sub-

sequence in Multitrees and Bounded Treewidth DAGs”, by Jiawei Gao, to appear in International

Symposium on Parameterized and Exact Computation (IPEC 2019). The author of this dissertation

was a principal author of this publication. The author would like to thank Russell Impagliazzo

for his guidance and advice on this paper, and thank Marco Carmosino, Anant Dhayal and Jessica

Sorrell for helpful comments.

143

Bibliography

[ABDN18] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences
of falsifying SETH and the orthogonal vectors conjecture. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 253–266. ACM,
2018.

[ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness
results for LCS and other sequence similarity measures. In Foundations of Computer
Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

[AGW14] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic
equivalences between graph centrality problems, apsp and diameter. In Proceedings
of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages
1681–1697. SIAM, 2014.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the
logical level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with edit distance and friends: Or: A
polylog shaved is a lower bound made. In Proc. STOC, pages 375–388. ACM, 2016.

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of pure and applied logic,

24(1):1–48, 1983.

[AL96] Eric Allender and Klaus-Jörn Lange. StUSPACE(logn)⊆DSPACE(log2 n/ log logn).
In International Symposium on Algorithms and Computation, pages 193–202.
Springer, 1996.

[AR18] Udit Agarwal and Vijaya Ramachandran. Fine-grained complexity for sparse graphs.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, pages 239–252, 2018.

[AST94] Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-
weightk-link path in graphs with the concave monge property and applications. Dis-
crete & Computational Geometry, 12(3):263–280, 1994.

144

[AU79] Alfred V Aho and Jeffrey D Ullman. Universality of data retrieval languages. In Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 110–119. ACM, 1979.

[AW85] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits. In Foundations of Computer Science, 1985., 26th Annual Symposium
on, pages 11–19. IEEE, 1985.

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of
faster alignment of sequences. In Automata, Languages, and Programming, pages
39–51. Springer, 2014.

[AWW16] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse graphs.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
Algorithms, pages 377–391. SIAM, 2016.

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 218–230. SIAM, 2015.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM
(JACM), 42(4):844–856, 1995.

[BCH16] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On the
complexity of some quadratic-time solvable problems. Electronic Notes in Theoretical
Computer Science, 322:51–67, 2016.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[BI13] Christopher Beck and Russell Impagliazzo. Strong ETH holds for regular resolution.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 487–494, 2013.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 51–58. ACM, 2015.

[BIS90] David Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41(3):274 – 306, 1990.

[BK15] Karl Bringmann and Marvin Kunnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.

145

[Bod96] Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

[Bri14] Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In Foundations of Computer Science
(FOCS), 2014 IEEE 55th Annual Symposium on, pages 661–670. IEEE, 2014.

[BRS+18] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole
Wein. Towards tight approximation bounds for graph diameter and eccentricities. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 267–280. ACM, 2018.

[CGI+16] Marco L Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan
Paturi, and Stefan Schneider. Nondeterministic extensions of the strong exponential
time hypothesis and consequences for non-reducibility. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pages 261–270.
ACM, 2016.

[CIKK16] Marco L Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In 31st Conference on Compu-
tational Complexity, 2016.

[CIP02] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query,
partial match, orthogonal range searching, and related problems. In Automata, Lan-
guages and Programming, pages 451–462. Springer, 2002.

[CW16] Timothy M Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and
More: Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1246–1255.
SIAM, 2016.

[CWHL11] S.C. Chen, J.Y. Wu, G.S. Huang, and R.C.T. Lee. Finding a longest increasing
subsequence on a galled tree. In the 28th Workshop on Combinatorial Mathematics
and Computation Theory, Penghu, Taiwan, 2011.

[DF92] Rodney G Downey and Michael R Fellows. Fixed-parameter intractability. In
Structure in Complexity Theory Conference, 1992., Proceedings of the Seventh Annual,
pages 36–49. IEEE, 1992.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and complete-
ness i: Basic results. SIAM J. Comput., 24(4):873–921, August 1995.

[Fag76] Ronald Fagin. Probabilities on finite models. The Journal of Symbolic Logic,
41(01):50–58, 1976.

[FG06] Jörg Flum and Martin Grohe. Parameterized complexity theory, volume xiv of texts
in theoretical computer science. an eatcs series, 2006.

146

[FJ56] Lester R Ford Jr. Network flow theory. Technical report, DTIC Document, 1956.

[Fre75] Michael L Fredman. On computing the length of longest increasing subsequences.
Discrete Mathematics, 11(1):29–35, 1975.

[FSS84] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GI19] Jiawei Gao and Russell Impagliazzo. The fine-grained complexity of strengthenings
of first-order logic. Electronic Colloquium on Computational Complexity (ECCC),
26:9, 2019.

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Com-
pleteness for first-order properties on sparse structures with algorithmic applications.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’17, pages 2162–2181, 2017.

[GLL12] Jerrold R Griggs, Wei-Tian Li, and Linyuan Lu. Diamond-free families. Journal of
Combinatorial Theory, Series A, 119(2):310–322, 2012.

[GO95] Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computa-
tional geometry. Computational geometry, 5(3):165–185, 1995.

[GP89] Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional
dynamic programming. 1989.

[HL87] Daniel S Hirschberg and Lawrence L Larmore. The least weight subsequence problem.
SIAM Journal on Computing, 16(4):628–638, 1987.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: Exponential versus probabilistic time. Journal of Computer and System
Sciences, 65(69):672–694, 2002.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In Computational
Complexity, 1999. Proceedings. Fourteenth Annual IEEE Conference on, pages 237–
240. IEEE, 1999.

[IPZ98] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? In Foundations of Computer Science, 1998. Pro-
ceedings. 39th Annual Symposium on, pages 653–662. IEEE, 1998.

[JMV15] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I, pages 749–760, 2015.

[JRST01] Thor Johnson, Neil Robertson, Paul D Seymour, and Robin Thomas. Directed tree-
width. Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

147

[JS99] David S Johnson and Mario Szegedy. What are the least tractable instances of max
independent set? In Proceedings of the tenth annual ACM-SIAM symposium on
Discrete algorithms, pages 927–928. Society for Industrial and Applied Mathematics,
1999.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complexity, 13(1–2):1–46,
2004.

[KP81] Donald E Knuth and Michael F Plass. Breaking paragraphs into lines. Software:
Practice and Experience, 11(11):1119–1184, 1981.

[KPS17] Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained
Complexity of One-Dimensional Dynamic Programming. In 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:15, 2017.

[Lib13] Leonid Libkin. Elements of finite model theory. Springer Science & Business Media,
2013.

[LjLW12] Guan-Yu Lin, Jia jie Liu, and Yue-Li Wang. Finding a longest increasing subsequence
from the paths in a complete bipartite graph. 2012.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant Depth Circuits, Fourier
Transform, and Learnability. J. ACM, 40(3):607–620, 1993.

[LWW18] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness
for shortest cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1236–1252. Society
for Industrial and Applied Mathematics, 2018.

[MPS16] Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms
for succinct stable matching. In International Computer Science Symposium in Russia,
pages 294–308. Springer, 2016.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. Randomness. Journal of Computer
and System Sciences, 49:149–167, 1994.

[PI00] Pavel Pudlak and Russell Impagliazzo. A lower bound for dll algorithms for k-sat. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, San Francisco, CA, USA, January 9-11, 2000, pages 128–136, 2000.

[RS84] Neil Robertson and Paul D Seymour. Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984.

[RS86] Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309 – 322, 1986.

148

[Sch98] Baruch Schieber. Computing a minimum weightk-link path in graphs with the concave
monge property. Journal of Algorithms, 29(2):204–222, 1998.

[SHI90] Richard Edwin Stearns and Harry B Hunt III. Power indices and easier hard problems.
Mathematical Systems Theory, 23(1):209–225, 1990.

[Sto74] Larry Joseph Stockmeyer. The complexity of decision problems in automata theory
and logic. PhD thesis, Massachusetts Institute of Technology, 1974.

[Var82] Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 137–146. ACM,
1982.

[Wil88] Robert Wilber. The concave least-weight subsequence problem revisited. Journal of
Algorithms, 9(3):418–425, 1988.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implica-
tions. Theoretical Computer Science, 348(2):357–365, 2005.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM Journal on Computing, 42(3):1218–1244, 2013.

[Wil14a] Ryan Williams. Faster decision of first-order graph properties. In Proceedings
of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), page 80. ACM, 2014.

[Wil14b] Ryan Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32,
2014.

[Wil16] Virginia Vassilevska Williams. CS267 lecture 1, algorithms for fixed subgraph isomor-
phism. http://theory.stanford.edu/˜virgi/cs267/lecture1.pdf, 2016.

[Wil18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings of the ICM, 2018.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

[Yao80] F Frances Yao. Efficient dynamic programming using quadrangle inequalities. In
Proceedings of the twelfth annual ACM symposium on Theory of computing, pages
429–435. ACM, 1980.

[Yao82] Andrew C Yao. Theory and applications of trapdoor functions. In Foundations of
Computer Science (FOCS), pages 80–91, 1982.

149

http://theory.stanford.edu/~virgi/cs267/lecture1.pdf

Appendix A

Examples of Problems

A.1 Model Checking Problems

Below we list some problems studied in fine-grained complexity, with their first-order

definitions on structures with unary and binary relations.

• Graph problems. The input structure is G = (V,E) with a universe V and a binary relation

E.

1. Diameter-2: (∀x1)(∀x2)(∃x3) [E(x1,x3)∧E(x3,x2)].

2. Radius-2: (∃x1)(∀x2)(∃x3) [E(x1,x3)∧E(x3,x2)].

3. k-Clique: (∃x1) . . .(∃xk)
[∧

i, j∈{1,...,k},i 6= j E(xi,x j)
]
. More generally, for a fixed graph H of

k vertices, deciding if H is a subgraph or induced subgraph of the input graph G (e.g., the

k-Independent Set problem) can be expressed in a similar way.

4. k-Dominating Set:(∃x1) . . .(∃xk)(∀xk+1)
[∨k

i=1 E(xi,xk+1)
]
.

• Set problems. The inputs are set families S or S1, . . . ,Sk over a universe U . Here, all sets are

given explicitly and represented by first-order variables. These structures contain a single

binary predicate ∈.

150

1. Hitting Set: 1 (∃H ∈ S)(∀S ∈ S)(∃x) [(x ∈ H)∧ (x ∈ S)].

2. k-Set Packing: (∃S1 ∈ S) . . .(∃Sk ∈ S) (∀x)
[∨k

i=1
(
(x ∈ Si)→

∧
j 6=i(x /∈ S j)

)]
.

3. k-Empty Intersection (k-OV): (∃S1 ∈ S1) . . .(∃Sk ∈ Sk)(∀u ∈U)
[∨k

i=1¬(u ∈ Si)
]
.

4. k-Set Cover: (∃S1 ∈ S1) . . .(∃Sk ∈ Sk)(∀u ∈U)
[∨k

i=1(u ∈ Si)
]
.

5. Set Containment: (∃S1 ∈ S1)(∃S2 ∈ S2) (∀u ∈U) [(¬(u ∈ S1))∨ (u ∈ S2)].

k-Empty Intersection is equivalent to k-OV, and Set Containment is equivalent to Sperner

Family problem. See Section 1.3 for definitions and conjectures for variants of the Orthogonal

Vectors problem.

A.2 Problems about Reachability

We give a list of problems that can be considered as instances of LWSPC or PATHP.

Trip Planning (LWSP version of Airplane Refueling)

On a DAG where vertices represent cities and edges are roads, we wish to find a path for a

vehicle, along which we wish to find a sequence of cities where the vehicle can rest and add fuel so

that the cost is minimized. The cost of traveling between cities x and y is defined by cost cx,y. cx,y

can be defined in multiple ways, e.g. cx,y is cost(y) if dist(x,y)≤M and ∞ otherwise. dist(x,y) is

the distance between x,y that can be computed by the positions of x,y. M is the maximal distance

the vehicle can travel without resting. cost(y) is the cost for resting at position y.

Longest Subset Chain on graphs (LWSP version of Longest Subset Chain)

On a DAG where each vertex corresponds to a set, we want to find a longest chain in a path

of the graph such that each set is a subset of its successor. Here cx,y is −1 if Sx is a subset of Sy, and

∞ otherwise.

Multi-currency Coin Change (LWSP version of Coin Change)
1Other versions of Hitting Set where the sets are not given explicitly are second-order logic problems. Our definition

here is consistent with the version in the Hitting Set Conjecture.

151

Consider there are two different currencies, so there are two sets of coins. We need to find a

way to get value V1 for currency #1 and value V2 for currency #2, so that the total weight of coins is

minimized. Each pair of values v1 ∈ {0, . . . ,V1} and v2 ∈ {0, . . . ,V2} can be considered as a vertex.

We connect vertex (v1,v2) to (v′1,v
′
2) iff v′1 = v1 +1 or v′2 = v′2 +1. The whole graph is a grid, and

we wish to find a subsequence of a path from (0,0) to (V1,V2) so that the cost is minimized. The

cost is defined by C(v1,v2),(v′1,v2) = w1,v′1−v1
and C(v1,v2),(v1,v′2)

= w2,v′2−v2
, where wi, j is the weight of

a coin of value j from currency #i.

Pretty Printing with alternative expressions (LWSP version of Pretty Printing)

The Pretty Printing problem is to break a paragraph into lines, so that each line have roughly

the same length. If a line is too long or too short, then there is some cost depending on the line

length. The goal of the problem is to minimize the cost.

For some text, it is hard to print prettily. For example, if there are long formulas in the text,

then sometimes its line gets too wide, but if we move the formula into the next line, the original

line has too few words. One solution for this issue is to use alternate wording for the sentence, to

rephrase a part of a sentence to its synonym. These sentences have different lengths, and formulas

in some of them will be displayed better than others. These different ways can be considered as

different paths in a graph, and we wish to find one sentence that has the minimal Pretty Printing

cost.

A PATHP instance

Say we have a set of words, and we want to find a word chain (a chain of words so that the

last letter of the previous word is the same as the first letter of the next word) so that the first word

and the last word satisfy some properties, e.g. they do not have similar meanings, they have the

same length, they don’t have the same letters on the same positions, etc. Each word corresponds to

a vertex in the graph. For words that can be consecutive in a word chain, we add an edge to the

words.

152

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Fine-Grained Complexity of Model Checking Problems
	Overview of the Dissertation
	Definitions of Model Checking Problems and Classes
	First-Order Property Problems
	Types of First-Order Property Problems with Different Complexity Measures
	Types of Problems Definable by Extensions of First-Order Logic

	Fine-Grained Complexity Preliminaries
	Fine-Grained Reductions
	Conjectures
	Basic Reduction Techniques

	Consequences Under the Nondeterministic Strong Exponential Time Hypothesis
	Introducing NSETH
	Reasons that NSETH Is Hard to Refute
	Hardness of Reducibility under NSETH

	Characterizing the Quantifier Structure of SETH-Hard FO Property Problems
	Acknowledgments

	The Completeness of Orthogonal Vectors
	Chapter Overview
	Motivation
	Main Results
	Organization of this Chapter

	Outline of the Proof
	The Building Blocks
	Complementing Sparse Relations
	Sparse and co-Sparse Relations

	Completeness of k-OV in MC(k)
	How to Complement a Sparse Relation: Basic Problems, and Reductions Between Them
	Randomized Universe-Shrinking Self-Reduction of BP[] where =1k
	Deterministic Universe-Shrinking Self-Reduction of BP[1k]
	Hybrid Problem
	Reduction to Basic Problems
	Turing reduction from general MC(k) problems to the Hybrid Problem

	Derandomization
	Proof of Lemma 3.5.1
	Proof of Lemma 3.5.2
	Hybrid Problem
	Extending to More Quantifiers

	Extending to Hypergraphs
	Hardness of k-OV for MC(k-1)
	Improved Algorithms
	Baseline and Improved Algorithms
	Baseline Algorithm for First-Order Properties
	Algorithms for Easy Cases

	Open Problems
	Acknowledgments

	The Model Checking for Extensions of First-Order Logic
	Chapter Overview
	Organization of this Chapter
	FO Formulas of Quantifier Rank k
	Conditional Hardness under the SETH of Constant Depth Circuits
	Hardness of Variable Complexity 3 Formulas
	Hardness of 2 Variable Formulas with Transitive Closure

	FO with Unary Function Symbols
	FO with Comparison on Ordered Structures
	FO with Transitive Closure on Symmetric Input Relations
	Open problems
	Baseline Algorithms
	Baseline Algorithm for Variable Complexity k
	Variable Complexity 2
	3 and More Variables
	Case Analysis on FO with Three Variables

	Acknowledgments

	Reachability on Tree-Like DAGs, and Applications to Dynamic Programming Problems
	Chapter Overview
	Extending One-Dimensional Dynamic Programming to Graphs
	Introducing Reachability to First-Order Model Checking
	Main Results
	Organization of this Chapter

	From Sequential Problems to Parallel Problems
	The Recursive Algorithm
	A Special Case that Can Be Exhaustively Searched
	Subroutine: Reachability Across a Cut
	CutPathP for Bounded-Treewidth DAGs

	Application to Least Weight Subpath
	From Listing Problems to Decision Problems
	From Parallel Problems to Sequential Problems
	Open problems
	Reachability Oracle
	Acknowledgments

	Bibliography
	Examples of Problems
	Model Checking Problems
	Problems about Reachability

