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Summary

Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. 

This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is 

unknown. We discovered that the evolutionarily conserved C. elegans gene acdh-11 (acyl-CoA-

dehydrogenase, ACDH) facilitates heat adaptation by regulating the lipid desaturase FAT-7. 

Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, 

with syndromes that are exacerbated by hyperthermia. Heat up-regulates acdh-11 expression to 

decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and 

established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty 

acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from 

activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway 

drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and 

membrane fluidity via an unprecedented mode of fatty acid signaling.
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Introduction

How cells respond to changes in temperature is a fundamental issue in biology (de Mendoza, 

2014; Jordt et al., 2003; Sengupta and Garrity, 2013). Changes in ambient temperature affect 

nearly all cellular and biochemical processes and drive adaptive responses to maintain 

cellular homeostasis. For example, up- or down-shifts in temperature increase or decrease 

the fluidity of the cytoplasmic membrane, respectively. To maintain membrane fluidity 

within an optimal range for normal biological activity, lipid desaturases in the cell convert 

saturated fatty acids into unsaturated fatty acids to increase lipid desaturation and thus 

membrane fluidity in response to temperature downshifts (de Mendoza, 2014; Flowers and 

Ntambi, 2008; Holthuis and Menon, 2014; Nakamura and Nara, 2004; Zhang and Rock, 

2008). Unsaturated double bonds in lipids generate kinks into the otherwise straightened 

acyl hydrocarbon chain and thereby increase membrane fluidity. This fundamental process 

of maintaining membrane fluidity is called homeoviscous adaptation (HVA) and occurs in 

bacteria, archaea, and eukaryotes (Anderson et al., 1981; Cossins and Prosser, 1978; 

Shmeeda et al., 2002; Sinensky, 1974).

A two-component regulatory system mediates HVA in bacteria (Aguilar et al., 2001; de 

Mendoza, 2014; Holthuis and Menon, 2014; Zhang and Rock, 2008). In Bacillus subtilis, 

temperature down-shifts induce the expression of the des gene, which encodes a lipid 

desaturase, Des. This induction is controlled by the DesK-DesR two-component system: 

upon temperature down-shift, the transmembrane histidine kinase DesK phosphorylates and 

activates the response regulator DesR, which stimulates transcription of des. Activation of 

the DesK-DesR pathway enhances the survival of Bacillus subtilis at low temperatures. 

Whether regulation of lipid desaturation by this pathway is involved in heat adaptation 

remains unclear. Furthermore, neither DesK nor DesR has apparent homologs in eukaryotes, 

and specific biological pathways leading to lipid desaturase regulation and HVA in 

eukaryotes remain unknown.

The nematode Caenorhabditis elegans is an ectotherm, i.e. its body temperature depends on 

external sources. C. elegans survives and reproduces optimally over an environmental 

temperature range of 15°C and 25°C. Temperatures beyond this range cause physiological 

stress, reduction of fecundity, tissue damage and necrosis (Kourtis et al., 2012; van Oosten-

Hawle and Morimoto, 2014). Previous studies of C. elegans thermoregulation have focused 

on understanding how the heat-shock transcription factor HSF-1 functions to maintain 

proteostasis and cytoskeletal integrity (Baird et al., 2014; van Oosten-Hawle and Morimoto, 

2014; van Oosten-Hawle et al., 2013) and on sensory neural circuits and thermotaxis 

behavioral strategies that allow the animal to navigate a temperature gradient (Garrity et al., 

2010; Hedgecock and Russell, 1975; Mori and Ohshima, 1995; Sengupta and Garrity, 2013). 

Although the C. elegans genome encodes seven lipid desaturases that are evolutionarily 

conserved and involved in fatty acid regulation (Brock et al., 2006; Watts, 2009), the 

functions and mechanisms of HVA in C. elegans have not been explored.

We identified the C. elegans gene acdh-11 (acyl-CoA-dehydrogenase) from a genetic screen 

exploring how this animal responds to conditions of changing oxygen and subsequently 

discovered that acdh-11 functions in HVA and does so by regulating levels of the stearic 
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Co-A desaturase (SCD) FAT-7. acdh-11 encodes a member of the evolutionarily conserved 

ACDH family, which is broadly involved in lipid β-oxidation. To understand the mechanism 

of action of ACDH-11, we solved its high-resolution crystal structure. This structure helped 

us establish that ACDH-11 inhibits fat-7 expression by sequestering C11/C12-chain fatty 

acids and preventing them from activating fat-7 expression mediated by the nuclear 

hormone receptor (NHR) NHR-49, a C. elegans homolog of the mammalian fatty acid-

binding transcription factors HNF4α and PPARα (Antebi, 2006; Ashrafi, 2007; Atherton et 

al., 2008; Evans and Mangelsdorf, 2014; Van Gilst et al., 2005). Our findings demonstrate 

that specific intracellular fatty acids link ACDH-11 in a metabolic pathway to NHRs for 

transcriptional control of homeoviscous heat adaptation in C. elegans. We propose that these 

molecular principles and mechanisms are evolutionarily conserved and modulate membrane 

lipid homeostasis and heat adaptation in other organisms.

Results

acdh-11 is required for heat adaptation

We previously reported that the C. elegans gene egl-9 controls a behavioral response to 

reoxygenation (the O2-ON response) by regulating fatty acid-eicosanoid signaling (Ma et 

al., 2013; Ma et al., 2012). We examined other egl mutants originally isolated based on egg-

laying behavioral defects (Trent et al., 1983) and discovered that the previously uncloned 

gene egl-25 is also required for both normal egg laying and the O2-ON response (Figures 

S1A–S1E). We molecularly identified egl-25 (Figure 1A; Figures S1A–S1E) as the gene 

paqr-2 (progestin and adipoQ receptor-2), the sequence of which has similarity to those of 

mammalian adiponectin receptors and which promotes the adaptation of C. elegans to cold 

temperature (Svensk et al., 2013; Svensson et al., 2011). Since the molecular function of this 

gene is unclear, we continue to refer to it by its original name, egl-25. We confirmed that 

egl-25 promotes cold adaptation and the intestinal expression of the SCD gene fat-7 (Svensk 

et al., 2013; Svensson et al., 2011) (Figures S1C and S1F).

We expressed a Pfat-7::fat-7::GFP fluorescent reporter (nIs590) in the egl-25 mutant 

background to seek egl-25 suppressor mutations that can restore fat-7 levels (see 

Experimental Procedures). We isolated over 40 mutations that suppress egl-25, eight of 

which (n5655, n5657, n5661, n5876, n5877, n5878, n5879, n5880) belong to one 

complementation group and are alleles of a functionally uncharacterized gene named 

acdh-11 (Figure 1A). The amino acid sequence of ACDH-11 suggests that it is a long-chain 

ACDH involved in fatty acid β-oxidation (Ashrafi, 2007; Srinivasan, 2014). acdh-11 

genetically interacts with acs-3, which encodes an acyl-CoA synthetase (Ashrafi, 2007; 

Mullaney et al., 2010). The eight mutations we isolated include one deletion allele and three 

missense mutations, each of which disrupts an amino acid residue completely conserved 

among ACDH protein family members (Figure 1B; Figure S2). Such loss-of-function 

mutations of acdh-11 restored only slightly the behavioral defects (in egg laying and the O2-

ON response) of egl-25 mutants but caused dramatic up-regulation of Pfat-7::fat-7::GFP in 

both egl-25 mutant and wild-type backgrounds (Figures 1C and 1D).

Because fat-7 encodes an SCD that catalyzes the limiting step of lipid desaturation and 

promotes membrane fluidity (de Mendoza, 2014; Flowers and Ntambi, 2008), we monitored 
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the extent of membrane fluidity in acdh-11 mutants using the fluorescent dye di-4-

ANEPPDHQ (Owen et al., 2012). We found that the fluorescence spectrum of di-4-

ANEPPDHQ was red-shifted (Figure S3A), suggesting increased membrane fluidity. Using 

liquid chromatography-mass spectroscopy (LC-MS) to quantify endogenous levels of 

various fatty acids, we found that acdh-11 mutants were abnormal in their compositions of 

specific fatty acid species (Figure 2A). In particular, we observed a markedly reduced level 

of stearic acid (C18:0, 18 carbon atoms and 0 double bonds), which is the most abundant 

saturated fatty acid in C. elegans (Figure 2A). The reduced level of C18:0, the metabolic 

substrate of FAT-7, is consistent with overexpression of Pfat-7::fat-7::GFP in acdh-11 

mutants. These data indicate that ACDH-11 functions to decrease fat-7 expression, the 

desaturation of the FAT-7 substrate stearic acid and membrane lipid fluidity.

Because changes in membrane fluidity are essential for adaptation to temperature shifts, we 

next examined the temperature sensitivity of acdh-11 mutants. We found that acdh-11 

mutant embryos successfully developed to adulthood at 15°C or 20°C but failed to do so at 

25°C (Figures 2B and 2C). Transgenic expression of wild-type acdh-11(+) or decreasing 

membrane fluidity by supplementing acdh-11 mutants with the membrane-rigidifying agent 

dimethyl sulfoxide (DMSO) (Lyman et al., 1976; Sangwan et al., 2001) or reducing the fat-7 

expression level by mutation rescued the 25°C growth defect (Figure 2C). Since temperature 

higher than 25°C causes heat stress, tissue necrosis and damage in C. elegans (Kourtis et al., 

2012; van Oosten-Hawle and Morimoto, 2014), we also examined survival of C. elegans 

adults at 37°C and found that acdh-11 mutants but not acdh-11; fat-7 double mutants 

exhibited increased death rates compared with wild-type animals (Figure 2D). By contrast, 

both acdh-11 mutants and the wild type exhibited similar sensitivity to other types of stress, 

including high osmolality and oxidative stress (Figures S3B and S3C). These results indicate 

that ACDH-11 promotes C. elegans heat adaptation (also see below) by regulating fat-7 

expression and membrane fluidity.

High temperature up-regulates acdh-11 expression to decrease fat-7 expression

We generated a transcriptional reporter strain (Pacdh-11::GFP) with GFP driven by the 0.6 

kb promoter of acdh-11. We observed that growth at 25°C as opposed to 20°C or 15°C 

caused marked up-regulation of Pacdh-11::GFP predominantly in the intestine (Figure 3A), 

the site of fat-7 expression, suggesting that ACDH-11 regulates fat-7 cell-autonomously. 

Quantitative PCR (qPCR) revealed about a 2-fold induction of endogenous acdh-11 

transcripts at 25°C compared with 15°C (Figure 3B). By contrast, fat-7 expression in the 

wild type was strongly decreased at 25°C but increased in acdh-11 mutants, based upon both 

RNA-Seq and qPCR experiments (Figures 3C and 3D). This regulation of fat-7 by acdh-11 

is highly specific to acdh-11, since knockdown of acdh-11 but not of the other 12 members 

of the acdh gene family in C. elegans by RNAi caused fat-7 up-regulation (Figures 3E and 

3F). Temperature and acdh-11 affected fat-7 expression far more than expression of other C. 

elegans fat genes encoding lipid desaturases, including fat-5 and fat-6, two close fat-7 

homologs in C. elegans (Figure 3C) (Murray et al., 2007; Watts, 2009). These results 

demonstrate up-regulation of acdh-11 by heat and a highly gene-specific function for 

acdh-11 and elevated temperature in regulating the expression of fat-7, a member of the 
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lipid desaturase gene family. These findings are consistent with the hypothesis that acdh-11 

and fat-7 act in a pathway to facilitate C. elegans heat adaptation.

ACDH-11 crystal structure reveals the basis of ACDH-11 interaction with C11/C12-chain 
fatty acids

To understand the mechanism of action of ACDH-11, we solved its three-dimensional 

crystal structure as well as its structure in a complex with acyl-CoA (Table S1 and Figure 4). 

Recombinant C. elegans ACDH-11 was expressed from E. coli, purified and crystallized (Li 

et al., 2010). The structure of ACDH-11 was determined by molecular replacement, and the 

final atomic model of ACDH-11 was refined to 2.27 Å and 1.8 Å resolutions for the apo and 

the complex structures, respectively (Table S1). The overall structure is tetrameric (Figure 

4A), consistent with our previous observation that the purified recombinant ACDH-11 (70 

kD momoner) is a 264 kD protein in solution (Li et al., 2010). The monomer has an overall 

fold similar to that of its two described homologs, the E. coli alkylation response protein 

AidB (Bowles et al., 2008) and the human very long chain acyl-CoA dehydrogenase 

(VLCAD) (McAndrew et al., 2008). Each ACDH-11 monomer consists of an N-terminal α-

helical domain (residues 1–200, α-domain 1), a seven-stranded β-sheet domain (residues 

201–320, α-domain 2), a central α-helical domain (residues 321–480, α-domain 3), and a C-

terminal α-helical domain (Figure 4B). The tetramer comprises a dimer of dimers, with each 

subunit providing two loops important for stabilizing the dimer-dimer interaction (Figure 

4A; Figures S4A–S4E).

Long-chain ACDHs catalyze the initial step of fatty acid β-oxidation, the dehydrogenation 

of acyl-CoAs, with substrate-binding pockets that accommodate long-chain fatty acids of 

varying alkyl chain lengths (Grevengoed et al., 2014). To determine how the interaction of 

ACDH-11 with its substrates likely impacts HVA, we analyzed the classes of fatty acids that 

bind to the lipid binding pocket of ACDH-11. We found that ACDH-11 harbored the acyl 

chain of the fatty acid C11-CoA as a ligand in the crystal (Figure 4C; Figures 5A–5E). C11-

CoA was deeply buried inside a 14 Å-depth binding cavity of ACDH-11, the depth of which 

was restricted by two residues, Tyr 344 and Leu 159, limiting the maximum carbon length to 

C12 (Figure 4C; Figure 5A). The temperature B-factors (Woldeyes et al., 2014), which 

indicate the motilities of these two amino acids (Tyr 344 and Leu 159), are relatively low 

across the entire ACDH-11 sequence (Figure 5B). The ligand-free apo-structure of 

ACDH-11 displays the same conformation of Tyr 344 and Leu 159 (Figures S5C and S5D), 

further supporting the conclusion that the size of the binding cavity would not accommodate 

fatty acid carbon lengths longer than C12.

The structure reveals that strong binding of ACDH-11 to C11-CoA is mediated by at least 

ten hydrogen bond interactions (Figure 5A), including one between Ser 267 and the 3’-

phosphate on the CoA moiety; two between the side chain of Asn 331 and the N2 and N3 

nitrogens of the adenine ring; two between the side chain of Arg 321 and the O4 and O5 

oxygens in the adenosine 3’, 5’-diphosphate group; two between the side chain of Arg 476 

and the O9 and O10 oxygens of the pyrophosphate portion; two between the side chain of 

Arg334 and the O1 and O2 oxygens of the peptidyl portion; and one between the main chain 

of Ser215 and the N2 nitrogen of the peptidyl portion. We compared the structure of 
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ACDH11 bound with C11-CoA with other structurally characterized ACDHs (SCAD, 

MCAD and VLCAD) (Battaile et al., 2002; Kim et al., 1993; McAndrew et al., 2008) and 

found that ACDH-11 provides more hydrogen bonds (Figure S6) than other ACDHs and 

binds to the acyl chain via hydrophobic interactions that are defined by a deep binding 

pocket (Figure 5A). Using isothermal titration calorimetry (ITC), we quantified the binding 

affinities of C12-CoA and C8, C10, C12 fatty acids (we tested these even number chain-

fatty acids, since their synthetic forms are readily available) to purified ACDH-11. The ITC 

results (Figures 5C–5E) showed that the disassociation constants for C10, C12 and C12-

CoA binding to purified ACDH-11 are 21.3±2.6 µM, 10.3±2.4 µM and 5.2±1.3 µM, 

respectively, and no significant binding was detected for C8 (Figures S5G and S5H). These 

biochemical results demonstrate the selectivity of ACDH-11 for fatty acids with chain 

lengths from C10 to C12, fully consistent with our conclusions based on structural 

observations. We obtained the structure of the complex without having added any ligand 

supplement during crystal growth, as C11-CoA presumably was tightly sequestered by 

ACDH-11 during the step of protein expression in E. coli.

ACDH-11, C11/C12-fatty acids and NHR-49 act in a pathway to drive heat adaptation

The strong and selective binding of C11/C12-chain fatty acids to ACDH-11 indicated by the 

crystal structure of ACDH-11 could explain the functional specificity of ACDH-11 in 

regulating fat-7 expression and heat adaptation. Specifically, we hypothesize that heat-

induced ACDH-11 sequesters intracellular C11/C12-chain fatty acids, which are required for 

activating nuclear fat-7 expression through fatty acid-regulated transcription factors.

To test this hypothesis, we examined whether supplementing C. elegans with exogenous 

fatty acids of various lengths could stimulate fat-7 expression. We tested effects of a fatty 

acid series from C3 to C20 on the expression of Pfat-7::fat-7::GFP. At 25°C, this reporter 

was turned off (Figure 6A). Most of the fatty acids had no significant effects on 

FAT-7::GFP expression. By contrast, C10, C11, and C12 activated reporter expression in 

markedly higher fractions of the animals (Figure 6A). The activity of C10 was lower than 

that of C11 and C12. fat-7 is a known transcriptional target of NHR-49 (Pathare et al., 2012; 

Van Gilst et al., 2005), a C. elegans homolog of the mammalian transcription factors 

PPARα and HNF4α, which are known to bind fatty acids, including C12 (Dhe-Paganon et 

al., 2002). We found that nhr-49 RNAi eliminated the effect of C11 or C12 in activating 

FAT-7::GFP (Figure 6B). nhr-49 RNAi or mutations also completely blocked 

overexpression of FAT-7::GFP in acdh-11 mutants (Figure 6B and Figure S7A). NHR-49 

shares high sequence identity (37% amino acid residues, Figures S7B and S7C) with 

HNF4α (Dhe-Paganon et al., 2002), suggesting that NHR-49 likely exhibits a fatty acid-

binding pocket that can accommodate C11/C12 fatty acids. These results indicate that 

C11/C12 requires NHR-49 to activate fat-7 expression and that ACDH-11 sequesters 

C11/C12 fatty acids and thereby prevents them from activating nuclear fat-7 expression.

Discussion

Based on our observations, we propose a model for how ACDH-11 regulates C. elegans heat 

adaptation (Figure 7). Under cold conditions (e.g. 15°C), intracellular C11/C12 fatty acids 
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promote fat-7 expression via fatty acid-regulated nuclear receptors (e.g. NHR-49). Up-

regulation of fat-7 promotes lipid desaturation and thus membrane fluidity, which is an 

adaptation to cold. As a PAQR-related transmembrane protein with a ceramidase or 

phospholipase-like domain (Pei et al., 2011), EGL-25 likely acts to increase levels of 

C11/C12 and hence promote signaling in cooperation with NHR-49 (Svensk et al., 2013) 

and other NHRs (Brock et al., 2006; Pathare et al., 2012) for cold adaptation. Our data 

suggest that intracellular C11/C12 fatty acids activate fat-7 expression via NHRs, which 

likely require lipid-transporting proteins to transduce C11/C12 fatty acid signals into the 

nucleus; however, we do not exclude the possibility that C11/C12 fatty acids might be 

further metabolized or processed to indirectly modulate NHR activation. In the cold, 

acdh-11 is expressed at low levels and has little or no function.

Under heat conditions (e.g. 25°C), acdh-11 is transcriptionally up-regulated, and elevated 

levels of the ACDH-11 protein sequester intracellular C11/C12, preventing downstream 

NHR activation and consequent fat-7 expression, thereby promoting lipid saturation and 

membrane rigidity in response to heat. Upstream sensors and mediators of this heat-induced 

acdh-11 up-regulation remain to be identified. At high temperature, in both wild-type 

animals and egl-25 mutants C11/C12 is sequestered by ACDH-11, resulting in normal 

adaption to heat. By contrast, in egl-25; acdh-11 double mutants as well as in acdh-11 single 

mutants, C11/C12 is not sequestered by ACDH-11 and its consequent higher levels drive 

fat-7 expression (although fat-7 expression requires NHR-49, our data do not preclude the 

possibility that ACDH-11 sequestration of C11/C12 also prevents the activation of other 

NHRs). The resulting membrane lipid desaturation causes excessive membrane fluidity and 

thus a failure to adapt to heat. The genetic epistatic interactions among egl-25, acdh-11 and 

nhr-49, the high penetrance of their corresponding mutant phenotypes (Figure 1 and Figure 

S7A) as well as mechanistic insights from the ACDH-11 structure together strongly support 

this model.

In both prokaryotic and eukaryotic cells, SCD fatty acid desaturases catalyze the limiting 

step of fatty acid desaturation and mediate HVA by maintaining optimal ranges of 

membrane fluidity in response to temperature shifts (Cossins and Prosser, 1978; de 

Mendoza, 2014; Flowers and Ntambi, 2008; Sinensky, 1974; Zhang and Rock, 2008). 

Bacterial two-component systems, which are not present in eukaryotes, link membrane 

sensing of temperature shifts to nuclear transcription of desaturase genes for HVA (Aguilar 

et al., 2001; de Mendoza, 2014). Eukaryotic organisms, including warm-blooded animals, 

also exhibit HVA (Anderson et al., 1981; Cossins and Prosser, 1978; Shmeeda et al., 2002), 

a phenomenon far less studied and understood than bacterial HVA. Unlike systemic 

thermoregulation, eukaryotic HVA likely evolved as a mechanism to locally and cell-

autonomously respond to temperature shifts. Cold temperature up-regulates plasma levels of 

adiponectin in humans (Imbeault et al., 2009), although roles of adiponectin and its 

receptors in HVA have not been explored. C. elegans SCDs and adiponectin receptor 

homologs have been proposed to regulate cold adaptation (Svensk et al., 2013; Svensson et 

al., 2011). Our findings support this hypothesis and further identify functional roles of 

ACDH-11 and C11/C12 fatty acids in the egl-25 and fat-7 pathway to control HVA in C. 

elegans. Unlike long-chain fatty acids that are well-known to mediate various cell signaling 
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processes, sequestration of medium-chain C11/C12 fatty acids by ACDH-11 represents an 

unprecedented mode of fatty acid signaling. The novel pathway and mechanisms we have 

discovered provide a molecular basis for homeoviscous heat adaptation in C. elegans, 

shedding light on a long-standing mystery concerning a fundamental cell biological 

problem.

Mutations in human ACDH genes cause disorders of fatty acid oxidation that become life-

threatening under fever or hyperthermia (Jank et al., 2014; O'Reilly et al., 2004; Zolkipli et 

al., 2011), with responses that are analogous to the vulnerability of C. elegans acdh-11 

mutants to heat. Although maintaining a sufficient diet is currently the standard-of-care 

management option to prevent symptoms of ACDH-deficiency in human patients, 

hyperthermia is a more significant independent risk factor than hypoglycemia (Rinaldo et 

al., 2002; Wolfe et al., 1993; Zolkipli et al., 2011). Our findings suggest that imbalance of 

lipid desaturation contributes to heat sensitivity of human ACDH-deficient patients and that 

therapeutic targeting of lipid desaturases might alleviate the thermo-sensitive syndrome of 

human ACDH-deficient patients. In addition, we found that ACDH-11 acts in a metabolic 

pathway to modulate activation of nuclear receptors by sequestering C11/C12 fatty acids, a 

plausibly widespread mechanism of controlling intracellular fatty acid signaling. Given that 

lipid metabolism and signaling are fundamentally similar between nematodes and other 

organisms (Ashrafi, 2007; Grevengoed et al., 2014; Holthuis and Menon, 2014; McKay et 

al., 2003; Nakamura and Nara, 2004; Srinivasan, 2014; Watts, 2009), we propose that the 

pathway and mechanisms we have identified for C. elegans are evolutionarily conserved and 

modulate lipid metabolic homeostasis as well as thermal adaptation-associated physiological 

and pathological processes in other organisms, including humans.

Experimental Procedures

EMS mutagenesis, genetic screens and whole-genome sequencing

To screen for egl-25 suppressors, we mutagenized egl-25(n573) mutants carrying the 

Pfat-7::fat-7::GFP transgene nIs590 with ethyl methanesulfonate (EMS) and observed the 

F2 progeny using a dissecting microscope and GFP fluorescence at 20°C. We isolated 

suppressor mutants with restored expression of Pfat-7::fat-7::GFP in egl-25 mutants. We 

mapped the suppressor mutations using standard genetic techniques based on polymorphic 

SNPs between the Bristol strain N2 and the Hawaiian strain CB4856 (Davis et al., 2005). 

We used whole-genome sequencing to identify the mutations; data analyses were performed 

as described (Sarin et al., 2008).

Mutations and Strains

C. elegans strains were cultured as described (Brenner, 1974). The N2 Bristol strain 

(Brenner, 1974) was the reference wild-type strain, and the polymorphic Hawaiian strain 

CB4856 (Wicks et al., 2001) was used for genetic mapping and SNP analysis. Mutations 

used were as follows: LG I, nhr-49(nr2041) (Van Gilst et al., 2005); LG III, egl-25(n573, 

gk395168, ok3136) (Thompson et al., 2013b; Trent et al., 1983), acdh-11(n5655, n5657, 

n5661, n5876, n5877, n5878, n5879, n5880, gk753061); LG V, fat-7(wa36) (Watts and 

Browse, 2000). gk395168 and gk753061 (molecular null, causing an L119-to-amber stop 
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codon) were obtained from the Million Mutation Project and outcrossed six times 

(Thompson et al., 2013a).

Transgenic strains were generated by germline transformation (Mello et al., 1991). 

Transgenic constructs were co-injected (at 10 – 50 ng/µl) with mCherry reporters, and lines 

of mCherry-positive animals were established. Gamma irradiation was used to generate 

integrated transgenes. Transgenic strains used were as follows: nIs590[Pfat-7::fat-7::GFP] 

(integrated from the extrachromosomal array waEx15[Pfat-7::GFP + lin15(+)] (Brock et al., 

2006)); nIs616[egl-25(+); Punc-54::mCherry]; nIs677[Pacdh-11::GFP; Punc-54::mCherry]; 

nEx2270[acdh-11(+);Punc-54::mCherry].

Protein purification, structure determination, model building and refinement

Protein was expressed and purified as described (Li et al., 2010). Briefly, the acdh-11 gene 

was amplified and cloned into the expression vector pEXS-DH (derived from pET-22b, 

Novagen). 8xHis-tagged ACDH-11 was expressed in the E. coli strain BL21 (DE3) and 

isolated from the cell lysate by Ni2+-NTA (Qiagen) affinity chromatography. ACDH-11 

was further purified using ion exchange chromatography (RESOURCE S column, GE 

Healthcare) and size exclusion chromatography (Superdex 200 100/300 GL Column, GE 

Healthcare). For crystallization, ACDH-11 was concentrated to 12 mg/ml in 20 mM Tris pH 

8.0, 150 mM NaCl. Large yellow crystals grew in 100 mM Tris pH 8.0, 200 mM magnesium 

formate and 13% PEG 3350 through sitting-drop vapor diffusion at 16°C.

Immediately prior to data collection, the ACDH-11 crystal was quickly soaked in 

cryoprotectant solution (13% PEG 3350 and 20% glycerol) and flash-cooled at 100°K in a 

stream of nitrogen gas. The high-resolution diffraction data set for the complex structure 

was collected on beamline BL5A of the Photon Factory (KEK, Japan). The diffraction data 

set for the apo structure was collected on beamline BL17U of Shanghai Synchrotron 

Radiation Facility (SSRF, China). The structure of ACDH-11 was resolved by molecular 

replacement using the program Phaser (McCoy et al., 2007). ACDH-11 shares 30% 

sequence identity with E. coli AidB (Bowles et al., 2008), and the refined coordinates of 

AidB were used to construct the search model. The programs Coot (Emsley and Cowtan, 

2004) and Refmac5 (Murshudov et al., 1997) were used for manual model building and 

refinement. The difference-Fourier map exhibited long and continuous electron densities 

corresponding to the FAD co-factor acyl-CoA. The length of acyl-chain was determined 

according to the electron density. C11-CoA was assigned because of its best RSCC (real 

space correlation coefficient, see Figures 5E and 5F). The statistics of data collection and 

structural refinement are summarized in Table S1.

The coordinates for the final refined model were deposited in PDB (protein data bank) with 

the accession number 4Y9J for the C11-CoA bound structure and 4Y9L for the C11-CoA 

free structure of ACDH-11.

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) measurements were performed with a MicroCal 

iTC-200 titration micro-calorimeter (GE Healthcare, MA, USA) at 25 °C. The sample cell 
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was filled with ACDH-11 (25µM in 20 mM MES, pH 6.5 and 10% glycerol). ACDH-11 

concentration was determined by the BCA (Bicinchoninic Acid) method. The free fatty 

acids C8, C10, C12 and C14, and C12-CoA (800 µM) prepared in the same buffer were 

injected into the sample cell in 2-minute time intervals. 20 injections in total were conducted 

within 40 min. The reaction solution contained 1% DMSO to increase the solubility of fatty 

acids. As negative control, the ligands were titrated into the buffer without ACDH-11 

proteins. All experiments were repeated five times. The data were processed using the 

Origin software (Version 7.0).

Gene expression analyses

For qPCR and RNA-Seq experiments, total RNA from age-synchronized young adult (24 

hrs post-L4) hermaphrodites (200 in total, picked manually) was prepared using 

TissueRuptor and the RNeasy Mini kit (Qiagen). Reverse transcription was performed by 

SuperScript III, and quantitative PCR was performed using Applied Biosystems Real-Time 

PCR Instruments. The specific intron-spanning primer sequences used were: act-3 forward – 

TCCATCATGAAGTGCGACAT; act-3 reverse – TAGATCCTCCGATCCAGACG; fat-7 

forward – ACGAGCTTGTCTTCCATGCT; fat-7 reverse – 

AGCCCATTCAATGATGTCGT; acdh-11 forward – TTGATCCATTTGTTCGGAGA; 

acdh-11 reverse – GGTGGCTAGCTTGTGCTTTC. RNA-Seq was performed by the 

Illumina TruSeq chemistry, and data were analyzed using standard protocols (Trapnell et al., 

2010).

Nomarski and GFP fluorescence images of anesthetized C. elegans were obtained using an 

Axioskop II (Zeiss) compound microscope and OpenLab software (Agilent). The fraction of 

FAT-7::GFP-positive animals observed was quantified by counting animals using a 

dissecting microscope equipped for the detection of GFP fluorescence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. acdh-11 regulates fat-7 expression
(A) Schematic of egl-25 and acdh-11 gene structures. Shown are egl-25(n573), 

acdh-11(gk753061) and another eight acdh-11 mutations isolated from egl-25(n573) 

suppressor screens. Both n573 and n5880 are ochre (CAA-to-TAA) mutations and gk753061 

is an amber (TTG-to-TAG) mutation. (B) Sequence alignments of ACDH-11 homologs 

from Escherichia coli (AidB), Drosophila melanogaster (CG7461), Danio rerio (Acadvl), 

Mus musculus (Acadvl) and Homo sapiens (ACADVL). For clarity, only the regions 

corresponding to that surrounding amino acid residue R455, which is disrupted by the 
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acdh-11 mutation n5876, are shown. The three shades of blue indicate the degree of amino 

acid identity (deep blue > 80 %; blue > 60 %; light blue > 40%). Arrow indicates the 

completely conserved R455 residue, which is disrupted by the acdh-11(n5876) mutation. 

(C) Fractions of animals expressing FAT-7::GFP at 20°C as scored visually. p < 0.01 (n = 

100 for each of five independent experiments). (D) EGL-25 and ACDH-11 antagonistically 

regulate the abundance of the nIs590[Pfat-7::fat-7::GFP] reporter (FAT-7::GFP). 

Representative Nomarski and GFP fluorescence micrographs are shown of C. elegans adults 

of the genotypes indicated and grown at 20°C. Alleles used were: egl-25(n573), 

egl-25(n573); acdh-11(n5655) and acdh-11(n5878).
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Figure 2. ACDH-11 regulates lipid desaturation and promotes C. elegans survival at high 
temperature
(A) LC-MS profiling of fatty acids extracted from young adult C. elegans populations of the 

wild type and acdh-11(gk753061) null mutants. Fatty acids are indicated in the form C:D, 

where C is the number of carbon atoms in the fatty acid and D is the number of double 

bonds in the fatty acid. Fatty acid levels were normalized to total protein levels in the wild 

type and acdh-11 mutants (p < 0.01 from four independent samples for each genotype). (B) 
Bright-field images showing the arrest of larval development of acdh-11(gk753061) null 

mutants but not of wild-type animals grown at 25°C. Bleach-synchronized embryos were 

grown for 4 days at 25°C. (C) Fractions of embryos of indicated genotypes or treatment that 

developed to adulthood at 25°C (under the same conditions as in B). p < 0.01 (n = 20 for 

each of four independent experiments). (D) Fractions of adults that survived 37°C heat stress 

after shifting animals (24 hrs post-L4) from 15°C to 37°C. After 24 hrs recovery at 15°C, 

animals without pumping and responses to repeated touch were considered dead and 

counted for quantification. Error bars, standard deviations (n = 50 for each of four 

independent experiments). Statistical details in Supplemental Information. Scale bars, 100 

µm.
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Figure 3. Temperature up-regulates acdh-11, causing down-regulation of fat-7 expression
(A) Representative Nomarski and GFP fluorescence micrographs of wild-type transgenic 

animals with nIs677[Pacdh-11::GFP] (left), the expression of which is up-regulated by high 

temperature at 25°C. A high-magnification view of another animal (right) shows GFP 

predominantly in intestinal cells (arrows). Scale bars, 100 µm. (B) qPCR results showing 

that endogenous acdh-11 is transcriptionally up-regulated at 25°C. p < 0.01 (n = 4 for each 

genotype). (C) RNA-Seq quantification of the expression levels at 15°C, 20°C, and 25°C 

(normalized to levels at 20°C) of genes encoding all seven C. elegans lipid desaturases (fat-1 
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to fat-7). Arrow indicates down-regulation of fat-7 expression by temperature. FPKM, 

fragments per kilobase of exon per million fragments mapped. (D) qPCR quantification 

showing fat-7 expression levels in wild-type animals and acdh-11 mutants. p < 0.01 (n = 4 

for each genotype). (E) Representative Nomarski and GFP fluorescence micrographs of 

wild-type nIs590 transgenic animals showing that RNAi against acdh-11 induces 

FAT-7::GFP expression at 25°C. Scale bars, 100 µm. (F) RNAi against all acdh gene family 

members showing that acdh-11 was specifically required for down-regulating FAT-7 

abundance at 25°C. p < 0.01 (n = 100 for each of four independent experiments).
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Figure 4. Structure of ACDH-11 showing its binding to the fatty acid C11-CoA
(A) Surface representation of ACDH-11 tetramers showing a dimer of dimers: green-cyan 

and magenta-orange. For each subunit, the N-terminal loop and the L1'2' loop are shown to 

form the dimer-dimer interface. (B) Ribbon representation of an ACDH-11 monomer 

showing four domains (α-domain 1, 2, 3 and β-domain). (C) Surface representation of an 

ACDH-11 dimer with an enlarged view of the ligand-binding cavity bound to C11-CoA. 

FAD, the enzymatic co-factor present in the crystal, is also shown and labeled.
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Figure 5. Affinity and selectivity of ACDH-11 binding to acyl-CoA fatty acids
(A) Diagram of C11-CoA interactions with ACDH-11. Arg 321, Asn 331 and Arg 476 form 

six hydrogen bonds with the CoA moiety; these six bonds are not in other ACDH structures 

(see Figures S5 and S6). The hydrogen bonds formed by Ser 215, Ser 267, and Arg 334, 

which are found in SCAD or MCAD (see Figure S6), are also shown. The carbonyl oxygen 

of the thioester of C11-CoA is hydrogen-bonded with the amino nitrogen of Glu 464, a 

conserved catalytic residue in ACDHs, indicating a sandwich-like conformation comprising 

Glu 464, the thioester carbonyl, and the flavin ring. The cavity (grey) depth is limited by Tyr 

344 and Leu 159. (B) Plot of Temperature-B factor vs. residue number of ACDH-11 

showing that both Leu 159 and Tyr 344 have low Temperature B-factors and indicating the 

low mobility of these two residues. (C), (D) and (E) Isothermal titration calorimetry (ITC) 
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measurements of C12-CoA (C), C12 (D) and C10 (E) binding strengths to ACDH-11. The 

profiles of the ITC binding data with the baseline subtracted are shown at the top. The peak-

integrated and concentration-normalized enthalpy changes vs. the molar ratios of ligands 

over the ACDH-11 protein are plotted at the bottom.
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Figure 6. ACDH-11 acts through a fatty acid-mediated transcriptional pathway
(A) Fractions of otherwise wild-type adults carrying the Pfat-7::fat-7::GFP reporter nIs590 

in which this reporter was activated by various fatty acids. Control, animals treated with 

only the fatty acid-salt solvent M9 buffer. p < 0.01 (n = 100 for each of four independent 

experiments). (B) Representative Nomarski and GFP fluorescence micrographs of wild-type 

transgenic adults showing that RNAi against nhr-49 blocks activation of nIs590 reporters by 

C11/C12 or acdh-11 mutations. Control, animals with an RNAi vector L4440. Scale bar, 

100 µm.
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Figure 7. Model for ACDH-11 function
Model showing proposed mechanism for how the ACDH-11 pathway mediates C11/C12 

fatty acid signaling and heat adaptation. Heat up-regulates ACDH-11, which prevents 

C11/C12 from activating NHRs and fat-7 expression, leading to low levels of membrane 

lipid desaturation and reduced membrane fluidity for adaptation to heat (see text for details). 

Light blue indicates low protein activity or a low level of protein abundance. 15°C and 25°C 

represent low and high temperatures, respectively.
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