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Abstract—There is considerable interest in the combined use
of millimeter-wave (mmwave) frequencies and arrays of mas-
sive numbers of antennas (massive MIMO) for next-generation
wireless communications systems. A symbiotic relationship exists
between these two factors: mmwave frequencies allow for densely
packed antenna arrays, and hence massive MIMO can be
achieved with a small form factor; low per-antenna SNR and
shadowing can be overcome with a large array gain; steering
narrow beams or nulls with a large array is a good match
for the line-of-sight (LOS) or near-LOS mmwave propagation
environments, etc.. However, the cost and power consumption for
standard implementations of massive MIMO arrays at mmwave
frequencies is a significant drawback to rapid adoption and
deployment. In this paper, we examine a number of possible
approaches to reduce cost and power at both the basestation
and user terminal, making up for it with signal processing
and additional (cheap) antennas. These approaches include low-
resolution Analog-to-Digital Converters (ADCs), wireless local
oscillator distribution networks, spatial multiplexing and multi-
streaming instead of higher-order modulation etc.. We will
examine the potential of these approaches in making mmwave
massive MIMO a reality and discuss the requirements in terms
of digital signal processing (DSP).

Index Terms—massive MIMO, millimeter-wave, wireless syn-
chronization, one-bit ADCs, linear DSP.

I. INTRODUCTION

The deployment of large numbers of possibly on-chip

integrated or distributed antennas, known as massive Multiple

Input Multiple Output (MIMO) systems, the access to more

bandwidth through the use of mmwave frequencies, and

the use of low-cost wired and wireless optical links are all

considered as key enablers to meet the impending demand for

gigabit per second wireless data. However the implementation

of these large and sophisticated wireless systems will lead to a

significant increase in cost, complexity and power dissipation.

In particular, synchronization, local oscillator (LO) generation

and distribution is very challenging and the need to feed each

antenna with the LO signal for the demodulation process

as shown in Fig. 1(a) is a very critical issue. Due to the

losses of electrical wires that increase with trace length

and frequency, we propose and analyze, as alternative, the

concept of wireless LO distribution for large MIMO receivers,

following the approach in [1]. The basic idea is to deploy a

“dummy” radiating antenna placed at a distance (several wave

lengths) away from the intended receiving antenna array to

radiate, and thus wirelessly broadcast, a very weak carrier

signal for synchronization and direct detection, as depicted

in Fig. 1(b). Then, the receiving antenna elements can apply

simple additive mixing, e.g. direct detection with a diode,

and have almost perfect access to the in-phase and quadrature

signals of the users. A major advantage of wireless is the

fact that the LO power attenuation follows just the inverse

square law of free space propagation with respect to the array

dimension, while it suffers from an exponential attenuation

with respect to the trace length in wired synchronization due

to the skin-effect. Due to regulatory restrictions, however,

the radiated LO power has to be kept at a very low level.

In this paper we show that the achievable rate of this RF

architecture with weak wireless LO power and simple direct

detection antennas can still approach the ideal performance

by using asymmetric low order bandpass filtering. This

solution also offers the advantage of integrating the complete

millimeter-wave demodulation circuit into the antenna for

better sensitivity, and enabling the use of “cheap” active

antennas.

Furthermore, the idea of wirelessly synchronized antennas

can be combined with the utilization of low-resolution, for

instance, one-bit ADCs that essentially possess a unique circuit

implementation and might therefore qualify as a fundamental

research area in modern communication theory. In fact, the

analysis of the quantization process has gained a lot of

attention in academic research [2]–[8]. The proposed front-

end structure with combined wireless synchronization and one-

bit ADCs can be significantly simplified by employing such

low performance devices. Since just one-bit ADCs is used,

no further amplification is needed after the power detection.

This avoids the issues of other analog implementations (cal-

ibration, power, chip-area, aging, etc.) and leads to a very

cost and energy efficient front-end implementation with direct

high speed speed digital output, which we referred to as a

direct digitization one-bit antenna. Surprisingly, at low SNR,

prior to processing like beamforming, the loss due to one-bit

quantization is approximately equal to only π/2 (1.96dB) in

conventional MIMO systems regardless of the type of available

channel state information [3], [4], [9]. We analyze in this paper

the validity of this result in the context of massive MIMO and

http://arxiv.org/abs/1712.05819v1


deduce some implications in terms of DSP requirements.

Notation: Vectors and matrices are denoted by lower and

upper case italic bold letters. The operators (•)T, (•)H, tr(•)
and (•)∗ stand for transpose, Hermitian (conjugate transpose),

trace, and complex conjugate, respectively. The terms 1M

and IM represent the all ones vector and the identity ma-

trix of size M , respectively. The vector xi denotes the i-
th column of a matrix X and [X]i,j or xi,j denotes the

(ith, jth) element, while xi is the i-th element of the vector

x. We represent the Hadamard (element-wise in each real

dimension) and n-th power of vectors and matrices by the

operators ”A ◦B” and ”A◦n”, respectively, i.e., [A ◦B]i,j =
Re[A]i,jRe[B]i,j +jIm[A]i,jIm[B]i,j . Additionally, diag(B)
denotes a diagonal matrix containing only the diagonal ele-

ments of B and nondiag(B) = B − diag(B). Further, we

define Cx = E[xxH] − E[x]E[xH] as the covariance matrix

of x and Cxy as E[xyH]. Finally, O(·) and o(·) represent the

Bachmann-Landau notation for asymptotic behaviors.
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Fig. 1. LO distribution network: (a) Standard implementation (b) Wireless
synchronization.

II. ANALYSIS OF THE WIRELESS SYNCHRONIZATION

ARCHITECTURE

In the proposed wireless LO distribution system with

additive mixing, the receiver needs an appropriate way to lift

the weak carrier to a higher power level compared to the data

signal such that the mixing at the diode occurs almost with

negligible intermodulation products leading to an intact signal

in the baseband. This enables approaching ideal performance

with a low power penalty. However, to achieve this goal, a

popular approach widely used in the literature and in practice

is to include an additional separate processing path to recover

a replica of the residual carrier, typically using active circuits

for phase injection-locking [10]. Then, the filtered signal

and the reconstructed carrier are recombined before being

applied to the diode (or a mixer). The resulting complexity

is, however, still substantial for massive MIMO. In contrast,

Filter
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Fig. 2. Baseband representation of additive mixing at each antenna.

we show next that, interestingly, even a simple purely passive

bandpass filter G(f) of low order (smooth 1/f passband

characteristic) is potentially sufficient for joint processing of

the carrier and data signal and approaching ideal performance

without isolating the LO signal.

Since a real valued bandpass signal and its complex

baseband envelope representation have the same magni-

tude/absolute value, we represent all the signals in the base-

band for simplicity. The baseband model of each direct detec-

tion antenna is shown in Fig. 2. Assuming for simplicity the

LOS case and ignoring the array phase shift, the individual

antenna signal is described in the frequency domain as

Y (f) = G(f) (X(f) +XLO(f) + Z(f)) , (1)

with the information signal X(f) having power spectral den-

sity Φx(f) limited to bandwidth B and the noise Z(f) having

the power spectral density Φn(f) = N0, while G(f) is the

transfer function of the receive bandpass filter (BP) in the

baseband representation. The additive mixing with the LO

signal is obtained by taking the instantaneous power (squared-

magnitude) of y(t) and sampling it at 2B Hertz:

rDD[n] =

∣
∣
∣
∣
y

(

n
1

2B

)∣
∣
∣
∣

2

, (2)

where n is the discrete time index and 2B is the Nyquist

sampling frequency. In a coherent receiver the filter G(f) plays

the role of a band limiting anti-aliasing filter where the shape

in the passband is irrelevant from a theoretical point of view as

long as it is reversible. However as shown later, in the additive

mixing case, the shape of this filter is crucial.

Further, let us assume that x(t) consists of a complex

Gaussian process with a rectangular spectral density that is

band-limited to the two-sided bandwidth B. In addition, in the

proposed wireless synchronization architecture, a monotone

carrier signal is superimposed at the boundary of (or outside)

the information signal band by means of a “dummy” antenna.

The PSD of the noiseless received signal reads then as

Φx+xLO
(f) =

ρ

B
· rect(f/B) + εPLO · δ(f − B

2
), (3)

where 0 < ε < 1 is the portion of the radiated carrier tone

power PLO captured on each antenna and the rectangular

function rect(f) equals 1 for |f | ≤ 1/2 and is 0 elsewhere.

Due the strict regulatory restrictions in terms of radiated

power spectral density (especially for receivers), the power

PLO of the spectrally peaky LO signal has to be very low

(≤ 1µW). Additionally, one could alternatively aim at using

an LO frequency outside the authorized band to downconvert
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Fig. 3. RLC-ladder circuit for the bandpass filter.
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Fig. 4. Example of asymmetric baseband transfer function of the RLC BP

in Fig. 3 with R−1

1

√

L1/C1 = 80, R
√

C/L = 4, (2π
√

L1C1)−1
−

(2π
√

LC)−1=B, and its approximation in (4) for σ=
R
√

C/L

R−1

1

√

L1/C1

=0.05.

the signal to an intermediate frequency with more restricted

emission limits but for easier filtering and better performance

than the tight choice in (3). Together with the fact that the

attenuation factor ε decreases with the number of antennas,

this does not ensure the dominance of the LO signal compared

to the noise and information signal and consequently the use

of additive mixing at each antenna is not obvious. Therefore,

a careful analysis of this concept is required.

To cope with this issue and enhance the LO signal prior

to mixing, we utilize the following asymmetric receive filter

transfer function in the baseband representation with 1/f first

order roll-off rate in the passband:

G(f) =







0 for |f | > B
2

1

j(2f/B − 1) + σ
for |f | ≤ B

2 ,
(4)

with a parameter σ > 0 called the dissipation factor or inverse

Q-factor. This filter corresponds in the passband to a simple

second order RLC filter with resonant frequency around f0+
B
2

(f0 is the center frequency) multiplied with an ideal bandpass

filter of bandwidth B. A tentative approximate implementation

of the desired frequency behavior using RLC-ladder circuits

is illustrated in Fig. 3 and 4 and consists of a cascade of

RLC series and parallel circuits with slightly different resonant

frequencies, i.e. | 1
2π

√
LC

− 1
2π

√
L1C1

| ∝ B, while one of the

resonant circuits has an increasingly higher Q-factor 1/σ
(lower resistive loss) when ε decreases. The stopband behavior

of the filter is ignored in the model (4) (assumed to be ideal)

since it only affects the noise reduction and our focus is instead

on the self-interference issue.

In general the achievable rate RDD with wireless LO

mixing, which is upper bounded by the ideal Shannon limit

log2(1 + Nρ/(BN0)) with N antennas, is not trivial to

determine, we will derive a capacity lower bound assuming a

Gaussian input, and show that this lower bound can arbitrarily

approach the upper bound under the assumption of certain

asymptotic behavior for G(f) in (4). At the output y(t) of

this analog receive filter, we get the following PSD for y(t)
in each antenna

Φy(f) = |G(f)|2 · (Φx+xLO
(f) +N0) . (5)

Next, the Fourier transform of the energy-detected signal

|y(t)|2 reads as the following convolution

F{|y(t)|2} = Y (f)⊗ Y (−f)∗. (6)

Given that Y (f) is uncorrelated across frequency, the PSD

of |y(t)|2 is obtained as

Φ|y|2(f) = lim
T→∞

1

T
E[|F{|y(t)|2}|2]

= lim
T→∞

1

T
E

[∫

Y (f ′)Y (f ′−f)∗df ′
∫

Y (f ′′)∗Y (f ′′−f)∗df ′′
]

= lim
T→∞

1

T
E

[∫ ∫

Y (f ′)Y (f ′−f)∗Y (f ′′)∗Y (f ′′−f)∗df ′df ′′
]

f 6=0
= lim

T→∞

1

T 2
E

[∫

|Y (f ′)|2|Y (f ′ − f)|2df ′
]

= lim
T→∞

1

T 2

∫

E[|Y (f ′)|2]E[|Y (f ′ − f)|2]df ′

=

∫

Φy(f
′)Φy(f

′ − f)df ′=Φy(f)⊗ Φy(−f),

(7)

where the last four steps hold for f 6= 0 and follow by

expressing integrals as Riemann sums (df ′′= 1
T ). In summary,

Φ|y|2(f) =







δ(f)

(
∫ −B

2

−B
2

Φy(f)df

)2

for f = 0

Φy(f)⊗ Φy(−f) for f 6= 0.

(8)

Since the DC component at the output of the energy detector

is irrelevant to the information rate1, we restrict the following

analysis to the case of f 6= 0. Using (3) and (5), we obtain

for f 6= 0

Φ|y|2(f)
f 6=0
= εPLO

∣
∣
∣
∣
G(

B

2
)

∣
∣
∣
∣

2 ∣
∣
∣
∣
G(

B

2
− |f |)

∣
∣
∣
∣

2(

N0 +
ρ

B

)

+

|G(f)|2 ⊗ |G(−f)|2
(

N0 +
ρ

B

)2

f 6=0
=

εPLO

σ2

∣
∣
∣
∣
G(

B

2
− |f |)

∣
∣
∣
∣

2 (

N0 +
ρ

B

)

+

|G(f)|2 ⊗ |G(−f)|2
(

N0 +
ρ

B

)2

.

(9)

1The DC component is removed by a second filter after diode mixing in
order to fully exploit the ADC dynamic range.



We notice that the first term in (9) corresponds to a

scaled version of the undistorted received signal, while

the second term includes the non-Gaussian signal-to-signal

intermodulation distortion, which is uncorrelated with the

desired undistorted part by the symmetry of the Gaussian

distribution. In this case, treating this distortion as Gaussian

noise with the same PSD in addition to the original additive

noise leads to a lower bound on the information rate as

discussed next.

Furthermore, when combining the signal from N such direct

detection antennas, with channel vector h having ‖h‖2 = N ,

the desired signal part corresponding to ρ/B combines coher-

ently, while the noise and even the distortion part do not com-

bine coherently, since
∑N

i=1 h
∗
i |hix(t)|2 = O(

√
N)|x(t)2| for

most practical channels (except for a planar array in the front-

fire direction). Note that hH is not the optimal linear receiver

(see next Section) due to the spatially colored second order

distortion and the following results can be further improved.

Assuming for simplicity hH as combiner, we get the following

lower bound on the achievable (proof technique similar to

Theorem 2 in the next section)

RDD ≥
∫ B

0

Cε(f)df, (10)

with

Cε(f) = log2



1+
N ρ

B

N0 +
σ2|G(f)|2⊗|G(−f)|2
εPLO|G(B

2
−|f |)|2

(
N0 +

ρ
B

)2



,

(11)

where notably G(f) from (4) also depends on σ. Further, we

calculate for −B ≤ f ≤ B

|G(f)|2 ⊗ |G(−f)|2 =

min(B
2
,B
2
+f)

∫

max(−B
2
,−B

2
+f)

1

(2f ′/B − 1)2 + σ2

1

(2(f ′ − f)/B − 1)2 + σ2
df ′

=
B arctanπ

(
2(2−f̄)(σ2+f̄)

σ(σ2−4+f̄(6−f̄))

)

2σ(4σ2 + f̄2)
+
B ln

(
σ2(4+σ2)

(σ2+(f̄−2)2)(σ2+f̄2)

)

2f̄(4σ2 + f̄2)
,

(12)

where f̄ = 2|f/B| and the arctanπ function is the arctangent

mapping on the codomain [0, π].
Now, assuming the inverse square law for the LO coefficient

ε, i.e. free space attenuation, ε ∝ N−2, then we state the

following theorem on the convergence of the achievable rate

to the ideal case for large N .

Theorem 1. If σ ≤ o(ε) then the achievable rate RDD with

wireless LO distribution converges to B log2(1 +
Nρ
BN0

) when

ε converges to zero. In other words, the resistive losses have

to go to zero faster than the LO power portion ε when the

number of antennas increases.

Proof. The expression σ2ε−1|G(f)|2 ⊗ |G(−f)|2 f 6=0
=

σ2ε−1O(σ−1) = O(σε−1) present in the denominator of the
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Fig. 5. Achievable rates with wireless synchronization vs. N for fixed
bandpass filter with σ = 0.05, ρ/(BN0) = 0dB, B = 1GHz, PLO = 1µW,
N0 = −174.2dBm/Hz, Noise figure = 3dB.

logarithm in (11) converges to 0 for all frequencies f 6= 0 if

σ ≤ o(ε). We deduce that

lim
ε→0,f 6=0

Cε(f) = C = log2(1 +
Nρ

BN0
). (13)

Since Cε(f) converges to C almost everywhere except at

{0} which has zero Lebesgue measure, and since Cε(f)
is majorized by C = log2(1 + Nρ/(BN0)), we have by

the dominated convergence theorem [11] the following lower

bound for RDD

lim
ε→0

∫ B

0

Cε(f)df =

∫ B

0

lim
ε→0

Cε(f)df = B log2

(

1 +
Nρ

BN0

)

.

(14)

As B log2

(

1 + Nρ
BN0

)

is at the same time an upper bound on

RDD by the data processing theorem, the theorem is proved.

The reasoning used to prove the achievability of the ideal

capacity with a wireless LO signal does not explicitly make

use of the properties of the propagation channel. Therefore

it can be easily generalized to more general channels with

multiple users and frequency selectivity.

From a practical point of view the Q-factor σ−1 of the filter

G(f) is limited and cannot be arbitrarily high. Therefore, we

consider in Fig. 5 the achievable rate (10) for fixed σ = 0.05
and PLO = 1µW as function of the number of antennas N ,

while the LO attenuation scales as ε = N−2. We observe that

the maximum is achieved at around N = 2000, which is very

encouraging in terms of the use of wireless synchronization

for massive MIMO.

III. SYSTEM WITH ONE-BIT ADCS

In this section, we aim at further simplifying the RF front-

end by using one-bit ADCs to convert the baseband signal

into the digital domain. It is worth mentioning that sampling

the RF signal directly at passband without frequency mixing

would also be possible with one-bit ADCs, but the analog

filtering, the timing jitter and the required sample-and-hold

circuit might be critical. Therefore, we focus in the following



on coarse quantization of the baseband signal, while the

wirelessly synchronized mixing can potentially be used for

the down-conversion. For the analysis, we consider K single

antenna users and N receive antennas in the uplink. For

simplicity, we assume a frequency flat channel, even though

the concept can be generalized to a frequency selective setting.

After propagation through the channel, and a desirably

simple analog preprocessing, the unquantized received signal

prior to the ADCs reads as

y = H · x+ z, (15)

while the one-bit converted signal for the digital processing is

r =
1√
2
sign(Re{y}) + j√

2
sign(Im{y}), (16)

where z ∈ CN is the noise vector having i.i.d. elements with

unit variance, H = [h1, . . . ,hK ] ∈ CN×K comprises the user

channels hk, k = 1, . . . ,K , that are assumed to be known at

the receiver and x is the transmitted data which is assumed

to be i.i.d. Gaussian distributed with variance ρ (representing

the SNR)2. Similarly, the entries of H are assumed to be i.i.d.

Gaussian with unit variance 3.

IV. BUSSGANG DECOMPOSITION AND PERFORMANCE

CHARACTERIZATION FOR THE ONE-BIT SYSTEM

The Bussgang theorem [12] implies that one can decompose

the output of the nonlinear quantizer r = Q(y) into a desired

signal component and an uncorrelated distortion e

r = Dy + e, (17)

where D can be obtained from the linear minimum mean

square error (MMSE) estimation of r from y

D = E[ryH]E[yyH]−1 = CryC
−1
y , (18)

and the distortion error e has the following correlation matrix

Ce = E[(r −Dy)(r −Dy)H]

= Cr −CryD
H −DCyr +DCyD

H

= Cr −CryC
−1
y Cyr.

(19)

The Bussgang decomposition ensures also that e and x are

uncorrelated if x is jointly Gaussian with y. To prove that, we

use the fact, that e = Q(y)−Dy is a deterministic function

of y, and thus, when conditioned on y, is independent of all

other signals. That is

E[x · eH] = Ey[E[x · eH|y]]
= Ey[E[x|y] · E[eH|y]]
= Ey[CxyC

−1
y · E[eH|y]]

= CxyC
−1
y E[y · eH] = 0,

(20)

2The Gaussian assumption is not essential here as the noise dominates the
signal on each antenna especially in the mmwave bands. It is made to provide
a lower bound on the performance and characterize the gap to the ideal case.

3The asymptotic results derived later turn out to be quite useful also for
sparse channels according to our simulations.

where we used the fact that the Bayesian estimator E[x|y]
corresponds to a linear estimator for jointly Gaussian signals

x and y. Based on this decomposition, the channel output r

can be written as function of the channel input in the following

form

r = Dy + e

= DHx+Dz + e

= H ′x+ z′,

(21)

where we introduced the effective channel

H ′ = DH = CryC
−1
y H, (22)

and the non-Gaussian effective noise z′ with the covariance

matrix

Cz′ = Ce +DDH

= Cr −CryC
−1
y Cyr +CryC

−1
y C−1

y Cyr

= Cr − ρH ′H ′H.

(23)

Based on this decomposition, the following lower bound has

been derived in [9], [13].

Theorem 2. For the quantized system with i.i.d. Gaussian

input x of covariance matrix Cx = ρI, we have

I(xk; r) ≥ Rk, (24)

with

Rk = log2(1 + ρh′H
k (Cr − ρh′

kh
′H
k )−1h′

k) = log2(1 + γk),
(25)

wehre H ′ and Cz′ are given in (22) and (23) respectively.

Proof. We first introduce the linear minimum mean square

error (LMMSE) estimate of x given the quantized observation

r reading as

x̂ = CxrC
−1
r r = CxH

′H(H ′CxH
′H +Cz′)−1r. (26)

Then we have the lower on the achievable rate per user

I(xk, r) = h(xk)− h(x|r) = h(xk)− h(xk|r)
= h(xk)− h(xk − x̂k|r) (27)

≥ h(xk)− h(xk − x̂k
︸ ︷︷ ︸

ǫk

) (28)

≥ log2
cxk

cǫk
. (29)

We get (27) as x̂ is a deterministic function of r. Since

conditioning reduces entropy, we obtain inequality (28). On

the other hand, The second term in (28) is upper bounded by

the entropy of a Gaussian random variable whose covariance

is equal to the error variance cǫk = ρ − ρ2h′H
k C−1

r h′
k of

the linear minimum mean square error (MMSE) estimate of

xk, leading to (29). Finally we obtain the lower bound on

the mutual information as in (25) using the matrix inversion

lemma.



A. Bussgang decomposition based on the Price’s theorem and

Taylor expansion

An elegant way to perform the Bussgang decomposition for

general types of nonlinearities is to use Price’s theorem [14]

which can provide the derivatives of the output covariance

matrix Cr as function of the covariance matrix Cy as follows

[15]

∂kcrirj
∂ckyiyj

= E

[

∂kQ(yi)

∂yki

∂kQ(yj)
∗

∂yk,∗j

]

. (30)

Since the derivative of the quantization operation is described

by the Dirac-delta function, the calculation of the first order

derivative or higher of [Cr]i,j with respect to [Cy]i,j with i 6=
j is possible in closed form. Therefore, even if calculating Cr

in closed form might be not possible, one can still determine

the following Taylor expansion around nondiag(Cy) = 0

nondiag(Cr)=nondiag(Σ1◦Cy)
︸ ︷︷ ︸

desired part

+nondiag(Σ3◦C◦3
y )+· · ·

︸ ︷︷ ︸

distortion uncorrelated with x

,

(31)

where Σℓ are matrices that are only a function of diag(Cy).
Due to the odd symmetry of the quantization function, the

even-order terms vanish. The expansion is decomposed into

two part as explained in the following. Bussgang’s theorem

states that the matrix Cry is row-wise proportional to Cy.

Consequently, the desired (undistorted) part CryC
−1
y Cyr in

the decomposition (19) is a diagonally scaled version of

Cy which turns to be given by (again based on the Price’s

theorem)

[CryC
−1
y Cyr]i,j =

∂crirj
∂cyiyj

∣
∣
∣
cyiyj=0

· cyiyj
= [Σ1]i,j · cyiyj

(32)

for i 6= j. In other words, the Bussgang decomposition (19)

can be interpreted as extracting the linear term in the Taylor

expansion (31) and considering it as the desired signal part,

while treating the remaining higher order terms as additive

distortion noise. To study the impact of the nonlinearity, it is

very useful to consider the first and third order terms. These

terms will be studied in the next two subsections.

In the special case of a one-bit symmetric quantizer, it is

even possible to express Cr in closed form. In fact, due to

the classical arcsine law [14], the output of a decision device

ri,Re/Im = 1√
2
sign[yi,Re/Im] ∈ {− 1√

2
, 1√

2
} applied to a multi-

variable Gaussian input y has the following correlation matrix

Cr =
2

π

[

arcsin
(

diag(Cy)
− 1

2Cydiag(Cy)
− 1

2

)]

, (33)

with Cy = ρHHH + I, where the arcsine function is

applied element-wise to its matrix argument. Additionally, the

correlation matrix between the input and the output of the 1-bit

quantizer can be obtained as [12]

Cry =

√

2

π
diag(Cy)

− 1

2Cy. (34)

Then, we get the effective channel from (22) as

H ′ =

√

2

π
diag(Cy)

− 1

2H, (35)

while the effective noise covariance in (23) becomes

Cz′ =
2

π

[

arcsin
(

diag(Cy)
− 1

2Cydiag(Cy)
− 1

2

)]

−
2

π
ρdiag(Cy)

− 1

2HHHdiag(Cy)
− 1

2 .
(36)

The arcsine law is however not tractable when characterizing

the performance in the large system limit. Therefore, we resort

to the first order and third order approximations introduced

previously.

B. First order approximation

For low SNR per antenna, which is relevant for mmwave

applications, we can make the first order approximation fol-

lowing (31)

Cr

ρ≪1≈ diag(Cy)
− 1

2

[
2

π
Cy + (1− 2

π
)diag(Cy)

]

diag(Cy)
− 1

2 ,

(37)

leading to the uncorrelated effective noise from (23)

Cz′

ρ≪1≈ diag(Cy)
− 1

2

[
2

π
I+ (1− 2

π
)diag(Cy)

]

diag(Cy)
− 1

2.

(38)

This approximation is also only valid when N is not signifi-

cantly larger than K , an observation that will be discussed later

on. Next, using the fact that ρ ≪ 1, we obtain the effective

signal-to-interference-noise-and-distortion ratio (SINDR)

γk = ρh′H
k



Cz′ + ρ
∑

k′ 6=k

h′
k′h

′H
k′





−1

h′
k (39)

ρ≪1≈ ρhH
k

(

I+ (
π

2
−1)diag(I+ρHHH)+ρ

∑

k′ 6=k

hk′hH
k′

)−1

hk.

(40)

Further, following the common massive MIMO assumption

N ≫ K ≫ 1, we have diag(HHH) → KI and hH
k′hk → 0

for k′ 6= k, and N for k′ = k, which yields the asymptotic

first order result

γ ≈ N
ρ

1 +Kρ

(
π

2
− Kρ

1 +Kρ

)−1

=
Nρ

π
2 + (π2 − 1)Kρ

,

(41)

corresponding to the well known performance loss of factor

2/π (≈−1.96dB) of the one-bit system compared to the ideal

case at low SNR per antenna ρ [3], [9], [16]. In the next sub-

sections, we provide a more accurate third order approximation

and discuss the validity of the first order approximation. In

addition, we investigate the efficiency of linear processing

treating the quantization error as additive noise. In fact, the

third order approximation provides an indication of whether

or not linear processing is appropriate for quantized massive

MIMO, and when advanced DSP is required to maintain the

large antenna gain.



C. Third order approximation

From (39), (36), (35), we obtain the following expression

using the third order Taylor expansion of the arcsine function

(c.f. (31)), together with the large system limit diag(Cy) →
(1 +Kρ)I:

γk
ρ≪1≈ ρ

1 +Kρ
hH
k

(

(
π

2
− Kρ

1 +Kρ
)I+

1

6

(
ρ

1 +Kρ

)3

nondiag((HHH)◦3)+
ρ

1 +Kρ

∑

k′ 6=k

hk′hH
k′

)−1

hk.

(42)

Next, we consider the matrix nondiag((HHH)◦3) and aim at

simplifying it by identifying the significant distortion part in

the direction of the channel hk

hH
k nondiag((HHH)◦3)hk

(a)
≈ 3hH

k nondiag((HHH)◦2 ◦ hkh
H
k )hk

(b)
≈ 3hH

k nondiag(E[(HHH)◦2] ◦ hkh
H
k )hk

= 3hH
k nondiag((

K

2
+

jK

2
) ◦ hkh

H
k )hk

=
3K

2
hH
k nondiag(hkh

H
k )hk,

(43)

where, in (a), we neglect the terms that do not combine

coherently with respect to the direction hk, and in (b), we ap-

proximate the matrix (HHH)◦2 by its expectation. Thus, we

can replace nondiag((HHH)◦3) by 3K
2 nondiag(hkh

H
k ) ≈

3K
2 hkh

H
k (approximation in the Frobenius norm sense) in (42).

Further, we neglect the inter-user interference in (42) via the

assumption N ≫ K to obtain the final expression

γ ≈N
ρ

1 +Kρ

(
π

2
− Kρ

1 +Kρ

)−1

·



1− 1.5N ·K

6
(

π
2 − Kρ

1+Kρ

)(
1+Kρ

ρ

)3

+ 1.5N ·K




 .

(44)

This formula reveals that the processing gain is actually

bounded, as some distortion terms combine coherently in the

user’s channel direction when N → ∞:

lim
N→∞

γ ≈ 4

K

(
1 +Kρ

ρ

)2

. (45)

The linear behavior predicted by the first order approximation

(41) is only valid up to a certain N and holds longer the

smaller ρ is. The approach presented here can be also applied

to higher resolution or other type of nonlinearities.

D. Validity of the uncorrelated distortion assumption and the

benefits of spatial multi-streaming

Let us first consider some numerical examples. Then, we

will discuss the validity of the first order approximation

(41) that assumes uncorrelated distortion error and draw key

consequences for the design of such low resolution systems. In

fact, the validity of this approximation is also an indicator of
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Fig. 6. Achievable linear processing gain (39) versus N for i.i.d. channel and
ρ = −6dB using the exact formula (39) based on (36) and the approximations
(41) and (44). For QPSK, linear processing can be sufficient; for 16QAM,
however, nonlinear advanced processing [17]–[20] is required.
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Fig. 7. Achievable processing gain versus N for ρ = 0dB (one stream,
K = 1) and ρ = −3dB (two streams/dual polarization, K = 2).

whether or not linear DSP would be sufficient. The achievable

linear processing gain γ/ρ from (39) versus N for K = 10 and

ρ = −6dB is plotted in Fig. 6 using the exact formula (39), the

first order approximation (41) and the first order approximation

(44). The third order formula seems to reflect the behavior of

γ accurately as we observe in Fig. 6, and it is also useful for

evaluating the performance of linear detection methods for

one-bit massive MIMO systems with N antennas and ρ as the

SNR per data stream and per antenna. In contrast, we observe

an increasing gap between the first order approximation (41)

and the exact formula (39), since the correlations of the

quantization errors become more effective with more antennas

compared to the noise. The observed increasing gap suggests

that with a very large number of antennas, the nonlinear effects

do not completely vanish and one should consider the use of

advanced nonlinear DSP as developed in [17]–[20] to further

maintain the array gain, particularly if higher order modulation

is desired which requires higher processing gain. This is in

contrast to the common assumption that linear processing is

nearly optimal with larger N in the ideal case. This assumption



is not necessarily sufficient for low resolution receivers even

for a single user scenario if higher order modulation schemes

are intended. By comparing (41) and (44), we deduce the

following proposition

Proposition 1. In addition to the common massive MIMO

assumption, N ≫ K , the following condition is required for

the near-optimality of linear processing with one-bit ADCs:

Nlinear DSP ≫ π

4

√

Kγ3 =
π

4

√

K(2R − 1)3. (46)

Proof. Linear processing is nearly optimal when the approx-

imation (41) is valid, i.e., when the i.i.d. quantization noise

assumption holds. To ensure this, we deduce from the more

accurate approximation (44) the following condition:

1.5N ·K ≪

6

(
π

2
− Kρ

1 +Kρ

)(
1 +Kρ

ρ

)3

≈ 6

(
π

2
− Kρ

1 +Kρ

)−2
N3

γ3
.

(47)

After straightforward simplifications, we obtain the result.

The required number of antennas increases cubically with

the desired γ, which might become inconvenient (1000s of

antennas) for higher-order modulation schemes. To rely on

linear DSP, this suggests that the user’s terminals should

instead aim at reducing their initial SNR per dimension, by

using the entire bandwidth and the time interval and having

more streams instead of using higher order modulation and/or

concentrating the signals in space, time or frequency. In

fact, making use of all available dimensions decorrelates the

quantization error, which is extremely beneficial as we can

observe in Fig. 7, where very surprisingly γ after processing

can be higher with two parallel streams than with one stream

for the same total power and a larger number of antennas.

In other words, the achievable rate is more than doubled

when going from one-stream to double-stream transmission

and linear DSP becomes more efficient. This effect is essential

in low resolution receivers and can be even more impactful

with more superimposed independent signals in space, time or

frequency. It is worth noting that two spatial streams are even

possible in a line-of-sight condition based on dual polarization.

V. CONCLUSION

We considered the use of wireless LO synchronization and

one-bit receivers for reducing the RF complexity of large

array base stations in the uplink. We showed that wireless LO

synchronization is possible with limited losses for more than

1000 antennas even with practical band-pass filters and strict

emission requirements. Low resolution receivers with a large

number of antennas are intended to operate at low to moderate

SNR per antenna and information dimension. To this end, it

is very desirable that users simultaneously exploit the entire

available bandwidth and spatial dimensions. That implies that

the popular FDMA or TDMA schemes are not appropriate

for low resolution systems while SDMA and spatial multi-

streaming strategies are extremely beneficial. In fact, the use

of higher order modulations, which is principally possible

with coarsely quantized massive antenna arrays, generally re-

quires advanced nonlinear processing techniques, while multi-

streaming with QPSK modulation can still be performed with

linear techniques at low RF and DSP complexity.
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