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Diagnosis and treatment of fibromyalgia (FM) remains a chal-
lenge owing to the lack of reliable biomarkers. Our objective was
to develop a rapid biomarker-based method for diagnosing FM
by using vibrational spectroscopy to differentiate patients with
FM from those with rheumatoid arthritis (RA), osteoarthritis
(OA), or systemic lupus erythematosus (SLE) and to identify
metabolites associated with these differences. Blood samples
were collected from patients with a diagnosis of FM (n � 50), RA
(n � 29), OA (n � 19), or SLE (n � 23). Bloodspot samples were
prepared, and spectra collected with portable FT-IR and FT-
Raman microspectroscopy and subjected to metabolomics anal-
ysis by ultra-HPLC (uHPLC), coupled to a photodiode array
(PDA) and tandem MS/MS. Unique IR and Raman spectral sig-
natures were identified by pattern recognition analysis and clus-
tered all study participants into classes (FM, RA, and SLE) with
no misclassifications (p < 0.05, and interclass distances > 2.5).
Furthermore, the spectra correlated (r � 0.95 and 0.83 for IR
and Raman, respectively) with FM pain severity measured
with fibromyalgia impact questionnaire revised version (FIQR)
assessments. Protein backbones and pyridine-carboxylic acids
dominated this discrimination and might serve as biomarkers
for syndromes such as FM. uHPLC-PDA-MS/MS provided
insights into metabolites significantly differing among the dis-
ease groups, not only in molecular m/z� and m/z� values but
also in UV-visible chromatograms. We conclude that vibra-
tional spectroscopy may provide a reliable diagnostic test for
differentiating FM from other disorders and for establishing
serologic biomarkers of FM-associated pain.

Fibromyalgia (FM)2 is a member of a class of disorders called
“central sensitivity syndromes” (1–4) or “overlapping chronic

pain conditions” (5), all of which present significant diagnostic
and therapeutic challenges to medicine. FM remains undiag-
nosed in as many as 3 of 4 people with the condition, with an
average of 5 years between the time of onset of symptoms to
diagnosis, resulting in delayed and potentially suboptimal treat-
ment (6). FM appears to result from variable combinations of
sensitization of the central threat response system, dysregula-
tion of neuroendocrine function, and abnormal nociceptive
processing. The syndrome manifests clinically as widespread
pain and tenderness in reproducible anatomic locations accom-
panied by associated sleep disturbances and a variety of comor-
bid conditions (2, 3, 7–10).

Fibromyalgia is the most common cause of chronic wide-
spread pain in the United States (3, 7, 8), and females are 4 –9
times more likely to be diagnosed with FM than are men (7, 8).
Current evidence suggests that FM belongs to a much larger
continuum of chronic pain syndromes, which includes
chronic fatigue syndrome, irritable bowel syndrome and other
functional gastrointestinal syndromes, temporomandibular
syndrome, migraine, and interstitial cystitis/bladder pain syn-
drome, among others, all with considerable overlap (1, 3, 7, 8).
Estimates suggest that at least 2% of the adult population in the
United States may be affected by FM, with an overall annual
impact considering work absenteeism, lost productivity, and
health care rivaling the costs of rheumatoid arthritis (11–13).

The diagnosis of FM has evolved from relying primarily on
evidence for multiple painful tender points as promulgated in
the 1990 American College of Rheumatology (ACR) criteria
(14) to one that is more globally encompassing and based on a
combination of pain plus a multitude of other symptoms. The
2010 ACR criteria included symptom severity criteria coupled
with pain and other somatic symptoms (10), and in 2016, the
FM criteria were further refined to add additional distinctions
to help avoid misclassifying patients with regional myofascial
pain syndromes as having FM (9). Fibromyalgia is currently
diagnosed on the basis of the following findings: 1) presence of
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generalized pain, defined as pain in at least four of the five
regions of the body; 2) symptoms present at a similar level for at
least 3 months; 3) widespread pain index (WPI) � 7 and symp-
tom severity scale (SSS) score � 5 or WPI of 4 – 6 and SSS score
� 9; and 4) the diagnosis of FM is valid irrespective of other
diagnoses. Some studies have shown that a diagnosis alone
improves FM patients’ health satisfaction, with fewer symp-
toms reported over the long term and reductions in the cost of
medical resource utilization by patients (12, 13).

Unfortunately, no reliable diagnostic test for FM exists. Such
a test would be a significant step toward earlier diagnosis of and
intervention for this condition, helping to improve patient out-
comes, contain health care and/or legal costs, and potentially
provide clues to the etiopathogenesis of the syndrome. Our
group has recently reported the first metabolomics approach in
two central sensitivity syndromes, interstitial cystitis (15) and
FM (16). We isolated a low-molecular weight fraction of human
blood using centrifugal ultrafiltration through a semipermeable
membrane (filtrate), leaving high molecular solutes in the
retentate (16). The low-molecular weight fraction was analyzed
using IR microspectroscopy, which provided a unique spectral
pattern based on functional groups (e.g. methyl, carbonyl,
indole, etc.) in serum samples that vibrated in predictable ways
after absorbing IR light. Pattern recognition analysis of the
spectra allowed us to discriminate FM patients from those with
rheumatoid arthritis (RA) or osteoarthritis (OA) that appeared
to be metabolically similar (16). The approach did not conclu-
sively identify the metabolites responsible for the diagnostic
spectral differentiation, although changes in tryptophan catab-
olism seemed to be involved (16). Another metabolomics
approach has involved LC/quadrupole–TOF/MS with multi-
variate statistical analysis aimed at discriminating FM (n � 22)
patients and controls (n � 21) from blood plasma analysis (17).
According to the investigators, lysophosphocholine dominated
the metabolite profile, suggesting that there may be additional
potential biomarkers for FM diagnosis (17). Recently, Malatji et
al. (18) used NMR metabolomics to identify a diagnostic bio-
marker profile for FM from urine, identifying metabolites asso-
ciated with indicators of pain and fatigue symptoms (succinic
acid, taurine, and creatine) and perturbations in the gut micro-
biome (hippuric, 2-hydroxyisobutyric, and lactic acids).

Vibrational spectroscopy technology currently is being de-
veloped for routine clinical use in many areas of medicine (19),
including cancer (20 –22), urology (23), and rheumatology (24,
25). Vibrational (mid-IR and Raman) spectroscopy fingerprint-
ing capabilities offer rapid, high-throughput, and nondestruc-
tive analysis of a wide range of sample types producing a
characteristic chemical “fingerprint” with a unique signature
profile. Raman spectroscopy offers an attractive fingerprinting
technique because of the little or no sample preparation re-
quirement, noncontact and nondestructive capabilities, and
weak Raman response of water, allowing measurement in aque-
ous solutions and on substances enclosed in transparent con-
tainers, such as bags or vials, without opening them (26).
However, a major hurdle in biological samples has been the
interference of fluorescence. Traditional Raman handheld
units are equipped with visible laser excitation wavelengths,
such as 532 and 785 nm, to increase the Raman scattering

signal. Unfortunately, these shorter excitation wavelengths
increase fluorescence background, which obscure the Raman
signal. To reduce the fluorescence limitation, Raman spectrom-
eters can be equipped with longer excitation wavelength (NIR,
830 –1064 nm), but this results in diminished Raman signal
intensity. To address this signal limitation, a new generation of
semiconductor detectors (indium gallium arsenide array) recently
became available (27). In addition, the surface-enhanced Raman
spectroscopy phenomenon enhances (106–107) due to the large
electromagnetic field induced by localized surface plasmon reso-
nance by using metallic nanostructures (typically gold and silver)
that are in proximity of the metal surface. Such refinements result
in lower limits of detection of surface-enhanced Raman spectros-
copy in the ppb or single molecule level (28).

Advances in instrumentation and pattern recognition tech-
niques are making this technology ideal for rapid screening and
analysis of biological samples, permitting the separation of
spectra into discrete clusters that permit classification of indi-
viduals based on subtle physiological differences. Pattern rec-
ognition solves the class-membership problem (29) by using
unsupervised and supervised methods. In unsupervised tech-
niques, there is no information available prior to analysis in
regard to group structure of the samples (30). These techniques
usually are applied to discover sample groupings within data,
reveal any abnormal spectra in a data set, and determine the
natural variation among the samples. Principal component
analysis (PCA) is used to reduce large data sets into a smaller
number of orthogonal variables called principal components
(PCs), which carry the major variance of the original variables.
Thus, PCA reduces the dimensionality of data sets while simul-
taneously retaining the information present in the data (29).
Supervised classification uses a group of samples as a training
set, in which the categories of each sample are known prior to
analysis. Training set performance is then evaluated by com-
paring the predictions made by the model with the true catego-
ries of the samples used for validation (31). Supervised classifi-
cation methods include K-nearest neighbors, soft independent
modeling of class analogy (SIMCA), linear discriminant analy-
sis, partial least-squares discriminant analysis. Among the most
common of the supervised techniques is SIMCA, which allows
for the visualization of clustering patterns among samples (31).
In SIMCA, a PCA is performed on each class in the data set, and
a sufficient number of principal components are retained to
account for most of the variation within each class (32). An
important feature of SIMCA is that it only assigns an unknown
sample to the class for which it has a high probability. If the
residual variance of a sample exceeds the upper limit for every
modeled class in the data set, the sample is not assigned to any
of the classes represented in the data set.

The objectives of the current study were to develop simple,
rapid, sensitive, and robust methods for the diagnosis of FM
based on the highly characteristic mid-IR and Raman “finger-
print” from dried blood spots of peripheral blood samples
obtained by finger-stick combined with supervised pattern rec-
ognition techniques. In addition, we evaluated the identifica-
tion capabilities of LC-MS/MS to assist in a metabolomics
approach for biomarker elucidation and to provide information
to better understand the etiology and pathogenesis of FM.

Bloodspot test for fibromyalgia

2556 J. Biol. Chem. (2019) 294(7) 2555–2568



Results

Clinical characteristics of subjects

The clinical characteristics of subjects with FM are shown in
Table 1. Bloodspots were collected on 50 subjects (48 females, 2
males). Mean age was 45.5 � 10.3 years. Body mass index (BMI)
mean was 34.0 � 8.4 kg/m2 with a range of 18.0 –55.6 kg/m2.
Mean fibromyalgia impact questionnaire revised version
(FIQR) score was 59.3 � 20.8 with a range from 33.7 to 89.5.
Mean Beck depression index (BDI) was 27.1 � 12.8 with a range
from 7.0 to 56. Mean McGill pain index (MPI) was 25.9 � 10.2.
Eleven of 50 subjects with FM were antinuclear antibody
(ANA)-positive; however, all met ACR criteria for primary FM
with no evidence of systemic lupus erythematosus (SLE) or
other underlying connective tissue disorder. Concurrent med-
ications are listed for each individual with FM in Table 2. The
number of medications taken by each FM subject ranged from 1
(n � 8) to 5 (n � 1). Correlation analyses of FIQR versus BDI,
FIQR versus MPI, erythrocyte sedimentation rate (ESR) versus
CRP, ESR versus rheumatoid factor (RF), ESR versus cyclic cit-
rullinated protein (CCP), and ESR versus SLE disease activity
index (SLEDAI) are presented in Table 3. Corresponding Pear-
son coefficients and p values are �0.686 and p � 0.005 (statis-
tically significant) for the correlation between the FIQR and
BDI and �0.334 and p � 0.05 for FIQR versus MPI.

The clinical characteristics of subjects with RA are shown in
Table 1. Bloodspots were collected on 29 subjects (21 females, 8
males). Mean age was 51.5 � 11.2 years. Mean BMI was 31.7 �

9.6 kg/m2 with a range of 42.8 kg/m2. Mean ESR was 37.5 � 24.9
mm/h with a range of 128 mm/h. Mean CRP was 12.4 � 12.2
mg/liter. 28 of 29 subjects were RF-positive. 20 subjects were
CCP-positive. Nine of the RA subjects were ANA-positive;
however, all met ACR criteria for RA with no evidence of SLE or
overlap connective tissue disorder. Concurrent medications for
each individual with RA are listed in Table 2. The number of
medications taken by each RA subject ranged from 1 (n � 2) to
5 (n � 2). Corresponding Pearson correlation values and p val-
ues were as follows: ESR versus CRP, �0.292 (p � 0.14); ESR

Table 1
Demographic data for FM (n � 50), RA (n � 29), SLE (n � 23), and OA (n � 19) subjects
Median value is shown in curly brackets and minimum and maximum are shown in square brackets.

FM RA SLE OA

Age (years) 45.5 � 10.3 {44.5} �25, 68� 51.5 � 11.2 {54} �25, 70� 44.9 � 9.8 {46} �23, 59� 60.4 � 8.1 {61} �46, 74�
Sex 48 female, 2 male 21 female, 8 male 21 female, 2 male 14 female, 5 male
BMI 34.0 � 8.4 {34.5} �18, 55.6� 31.7 � 9.6 {31.4} �18.8, 61.6� 31.3 � 5.9 {30.1} �21, 44.8� 36.5 � 8.5 {36.5} �22.5, 52.0�
FIQR 59.3 � 20.8 {59.4} �25.1, 89.5�
ESR 37.5 � 9.6 {33} �2, 93� 32.6 � 17.1 {30} �4, 67�
ANA 11/50 8/29 16/23
DSDNA 10/23

Table 2
Medications taken by FM (n � 50), RA (n � 29), SLE (n � 23), and OA (n � 19) subjects

Subject
no.

Medicationsa
Subject

no.
Medicationsa

Subject
no.

Medicationsa

for FMFM RA SLE OA FM RA SLE OA

1 1, 3, 5 9, 15 20 1, 9 18 1, 2 15 2, 18, 20, 27 2, 9 35 1, 2
2 2, 4 22, 27 18, 20 4, 9 19 30 15, 18, 23 18, 21 2, 9, 27 36 1, 2, 7, 9, 26
3 5, 26, 27 2, 18, 26 18 9 20 1, 4 9, 12, 24, 26, 27 1, 18, 19 37 3, 27
4 27 15 2, 4, 18 9, 27 21 2, 7, 26 2, 15, 27, 28 1, 2, 3, 18, 20 38 1, 2, 5
5 2, 4, 27 1, 2, 15, 18 16, 18 2, 6, 27 22 1, 2, 8 9, 23 2, 6,8, 16, 18 39 3, 4
6 2, 5 4, 15, 33 17, 19 6, 27 23 1, 2, 7, 9, 26 20, 27, 29 30 40 3, 7, 26
7 8,9 2, 15, 32 16, 18, 20 2, 26 24 3, 27 17, 20, 22 41 3
8 1, 7 18, 35 17, 18, 20 3, 4 25 1, 2, 5 42 30
9 1, 2, 6, 9 9, 15 15, 18 26 3, 4 15, 20, 28 43 2, 6, 26
10 3, 8 15, 31 3, 15 1, 2, 6, 27 27 3, 7, 26 2, 15, 18, 20 44 2, 4
11 1, 6 1, 12, 22 2, 18, 20 2, 6, 9, 27 28 3 15, 31 45 1, 3, 6
12 2, 6, 12 18, 26 2, 9, 26 29 30 46 2, 6, 12
13 1, 2, 6, 26 28 18, 26 2, 9, 11, 26 30 2, 6, 26 47 2, 5, 8
14 2, 4, 12 2, 4, 18, 20 9, 18, 27 9, 27 31 2, 4 48 1, 2
15 30 12, 15, 22, 23, 31 1, 2, 18, 26 9 32 1, 3, 6 49 2, 10
16 5 9, 27, 34 15, 18, 20 4, 26 33 2, 6 ,12 50 1
17 1,6 20,23 18, 27 3, 27 34 2, 5, 8

a Medications listed are as follows: tricyclics (amitriptyline, doxepin, nortriptyline, imipramine, trazodone) � 1; gabapentin � 2; pregabalin � 3; duloxetine � 4;
venlafaxine � 5; fluoxetine � 6; milnacipran � 7; topiramate � 8; nonsteroidal anti-inflammatory drugs � 9; cyclobenzaprine � 10; metaxalone � 11; tizanidine � 12;
carisprodol � 13; baclofen � 14; methotrexate � 15; azathioprine � 16; mycophenolate � 17; hydroxychloroquine � 18; belimumab � 19; prednisone � 20;
cyclophosphamide � 21; adalimumab � 22; etanercept � 23; infliximab � 24; tofacitinib � 25; tramadol � 26; hydrocodone � 27; rituximab � 28; abatacept � 29;
none � 30; leflunomide � 31; tocalizumab � 32; sulfasalazine � 33; golimumab � 34; auranofin � 35; 	 � no value or not obtained.

Table 3
Pearson correlation coefficients between self-reported symptoms
questionnaire scores and other laboratory measures assessing dis-
ease states
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versus RF, �0.484 (p � 0.01, statistically significant); and ESR
versus CCP, �0.663 (p � 0.09).

The clinical characteristics of subjects with SLE is shown in
Table 1. Bloodspots were collected on 23 subjects (21 females, 2
males). Mean age was 44.9 � 9.8 years. Mean BMI was 31.3 �
5.9 kg/m2 with a range of 23.8 kg/m2. Mean ESR was 32.6 � 17.1
mm/h with a range of 63.0 mm/h. Mean CRP was 7.2 � 7.4
mg/liter with a range of 25.4. 16 subjects were ANA-positive at
time of the bloodspot draw, whereas seven tested ANA-nega-
tive. SLEDAI values for all subjects ranged from 2 to 26 with a
mean of 11.4 � 7.0. Concurrent medications for each individual
with SLE are listed in Table 2. The number of medications taken
by each SLE subject ranged from 1 (n � 3) to 5 (n � 2). Pearson
correlation value (p value) for ESR versus SLEDAI was �0.489
(p � 0.15) (Table 3).

The clinical characteristics of subjects with OA is shown in
Table 1. Bloodspots were collected on 19 subjects (14 females, 5
males). Mean age was 60.4 � 8.1 years. Mean BMI was 36.5 �
8.5 kg/m2 with a range of 29.5. Concurrent medications for
each individual with OA are listed in Table 2. The number of
medications taken by each OA subject ranged from 0 (n � 1) to
4 (n � 3).

IR and Raman spectroscopy

A representative FT-Raman (red line) and FT-IR (black line)
microspectroscopic spectrum from serum of an FM patient is
presented in Fig. 1. These spectra highlight the complementary
nature of the techniques. The FT-IR spectrum was dominated
by the strong vibration modes of water (OH stretching mode
centered at 3400 cm	1), glucose (C-OH stretching at 1040
cm	1), polysaccharides (CO and CC ring vibration at 1110
cm	1), lipids (CH3 and CH2 stretching bands at 2940 and
2880 cm	1), and a weak signal in the 1450 –1200 cm	1 range
associated with proteins, phosphate-carrying compounds, and
lipids. In contrast, the FT-Raman spectrum showed major
bands centered at 650, 830, 900, 1040, 1240, and 1445 cm	1

associated with vibrations of aromatic amino acids groups, gly-
cans, collagen, and mineral content of samples. Although FT-IR
and Raman spectroscopies measure the vibrational energies of
molecules, they are governed by different selection rules. FT-IR
measures the absorption of the IR light by the sample due to
changes in the dipole moment of the molecule, whereas Raman
is based on the inelastic scattering of light caused by the
changes in polarizability of the molecule (33). Due to the differ-
ences in vibrational activity between Raman and FT-IR, some
modes are active in both spectroscopies, but others are only
active in Raman or FT-IR. In general, symmetric stretches and
bends tend to be Raman-active, whereas vibrations involving
strong dipole moments are more strongly observed by IR spec-
troscopy. Thus, carbonyl, hydroxyl, or amine stretching vibra-
tions are usually very strong in an FT-IR spectrum, whereas
vibrations of carbon double or triple bonds and aromatic
groups are very strong in a Raman spectrum (34).

SIMCA’s class projection (Fig. 2 and Table 4) generated from
FT-IR spectra resulted in distinct clustering of the specimen
samples according to their disease class (FM (n � 30), RA (n �
20), or SLE (n � 30)). The 3D plot was used to visualize cluster-
ing among samples (sample patterns, groupings, or outliers),
with each symbol in the cluster representing the spectrum of
each sample. The class boundaries (ellipse surrounding each
cluster) are defined using a 95% confidence interval projected
on the first three principal components and showed well-sepa-
rated classes according to the clinical diagnosis of the subjects.
Cross-validation identified three (FM class), four (RA class),
and four (SLE class) PCs that explained most of the variance in
the data set, minimizing the risk of overfitting and thus gener-
ating a robust biomarker model in the training process. A sta-
tistic that provided information regarding the ability of SIMCA
to discriminate among classes was the interclass distance
(ICD), a measurement (Mahalanobis distance between the cen-
troids of the classes) statistically derived in the multivariate

Figure 1. Representative spectra from serum of an FM patient collected by FT-Raman (red line) and FT-IR (black line) microspectroscopy.
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space that indicates the distance between clusters. A class dis-
tance greater than 3.0 is regarded as significant to differentiate
two groups of samples as different classes (35, 36). ICDs were
largely independent of one another with ICD values of 4.5 (FM
and RA), 4.0 (FM and SLE), and 3.5 (RA and SLE) and no class
overlapping (Table 4). Furthermore, the misclassification sta-
tistic showed 100% success in classifying samples. SIMCA’s dis-
crimination power statistic (Fig. 2) identified the most discrim-
inating variables (i.e. candidate biomarkers) between classes;
the greater the discrimination power, the more a variable influ-
ences the classification (35). Major IR bands responsible for the
grouping of the three classes were in the region of 1700 and
1400 cm	1, corresponding to amide I (1640 cm	1) and amide II
(1555 cm	1) vibrations and contributions from both lipids and
proteins (�asCH2 and CH3).

SIMCA analysis of the discriminating power for FM and RA
subjects (Fig. 2) showed the unique contributions of aliphatic
backbone conformations (1432 cm	1; �sCH2) of proteins and
aromatic groups (1515 cm	1). Lechowicz et al. (24) reported
that the band at 1424 cm	1 was the most effective in distin-
guishing RA from non-RA individuals. The authors indicated
that the band at 1430 cm	1 has been assigned to H-C-H and
O-C-H in-plane bending vibration of proteins containing pro-
line and tryptophan amino acids (24). The signal at 1515 cm	1

is consistent with the C�C stretch of aromatic compounds
(36).

SIMCA analysis of Raman spectra (Fig. 3A) showed marked
biochemical differences of SLE (5 PCs) subjects from FM (5
PCs) and RA (4 PCs) subjects, with interclass distances of 12

units indicating enormous differences among these classes. On
the other hand, the model showed marginal discrimination
between FM and RA (ICD � 1.3), whereas the cross-validated
model gave no misclassifications. The 3D class projection (Fig.
3A) showed some cluster overlapping between FM and RA
samples, but this overlapping can be misleading because the
graph does not account for the relevant variance left out by
using more than three PCs, and thus the 3D graph cannot real-
istically display the multidimensional nature of the model. The
fact that the FM and RA clusters are closer in space reflects
more similar Raman patterns compared with SLE; thus, a two-
class SIMCA analysis generated for FM versus RA subjects
improved the cluster separation. It resulted in an interclass dis-
tance of 2.5 by using 5 PCs and resulted in models with zero
misclassification. Furthermore, the predictive accuracy of the
model generated with Raman spectra was evaluated by using an
external validation set (Fig. 3B) providing correct class mem-
bership for all subjects and demonstrating the robustness and
sensitivity of the model for diagnosis of FM and related rheu-
matic syndromes.

The three-class SIMCA model showed that the discriminat-
ing region (620 –1120 cm	1) was dominated by the bands cen-
tered at 660 and 907 cm	1, characteristic of pyridine ring vibra-
tions and C–C skeletal (protein backbone) stretching modes of
alanine (37), respectively (Fig. 3C, red line). Interestingly, a two-
class SIMCA analysis of FM and RA subjects (Fig. 3C, black
line) revealed that most of the variable importance in the prior
model was influenced by SLE sample characteristics. The dis-
criminating power plot (Fig. 3C, black line) for FM versus RA
was dominated by a band centered at 840 cm	1 attributed to
tyrosine residues in proteins (38).

Multivariate analyses of the IR and Raman spectra yielded
robust models indicating that peptides in the filtered blood
fluid are effective diagnostic markers. In addition, the pattern
recognition analysis highlighted the importance of aromatic
and carboxylic acid molecules, which might support the asso-
ciation between phenolic and acidic amino acid groups as can-
didate molecules that include tryptophan and its metabolites.

Vibrational spectroscopy explains pain intensity outcomes

Fig. 4 shows the correlation between the FT-IR spectral data
from bloodspot cards collected from 20 patients and their cor-

Figure 2. SIMCA class projections and discrimination power statistic (red line, discrimination between FM and RA; black line, discrimination between
FM and SLE) for the classification of serum samples of FM, RA, and SLE evaluated by ATR-IR spectroscopy (n � 30 FM, 20 RA, 20 SLE).

Table 4
Interclass distances between disease groups based on FT-IR and
Raman analysis (IR: n � 30 FM, 20 RA, and 20 SLE; Raman: n � 40 FM,
n � 23 RA, and n � 25 SLE) (SIMCA, p < 0.05)

ICD
FM RA SLE

FT-IR
FM 0.0
RA 4.5 0.0
SLE 4.0 3.8 0.0

Raman
FM 0.0
RA 1.3 0.0
SLE 11.7 12.7 0.0
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responding FM disease activity by using self-reported disease
activity (FIQR) scores. The dependent variable (FIQR scores)
was transformed by using the logarithmic function (log FIQR),
and partial least-squares regression (PLSR), a multivariate lin-
ear regression technique, was used to develop a predictive
model that gave excellent linear relationship (r � 0.94) and S.E.
of cross-validation (SECV) of 1.1 (100.041) for FIQR scores
(35–90 range) using the first four latent variables (Fig. 4). The
SECV evaluates the predictive accuracy of the partial least-
squares model combined with the sensitivity of the model to
individual spectra in the training set; in other words, it mea-
sures the model’s ability to predict new samples. Fig. 4 shows
the regression vector for the PLSR model, estimated weights
that are applied to the variables while fitting the bilinear rela-
tionship between independent variables (spectra) and depen-
dent variables (scores). The bands correlating to FIQR disease
activity were centered at 1625, 1580, and 1522 cm	1. The band
that was most important in explaining FIQR scores was associ-
ated with the stretching frequencies of the imidazolium ring
with a typical strong peak centered at about 1580 cm	1 corre-
sponding to the functional group -C�N-. The band centered at
1522 cm	1 corresponds to the N–H bending in plane and C–N
stretching of amino acids (amide II), whereas the signal at 1646

cm	1 is attributable to the contribution of the �-helix second-
ary structure of the amide I frequency (41).

Similarly, Raman spectral data from bloodspot cards col-
lected from 30 patients were correlated to FM disease activity
by using the log transformation of the self-reported disease
activity (FIQR) scores. The PLSR predictive model gave an ade-
quate linear relationship (r � 0.88) and SECV of 1.1 (100.043) for
FIQR scores (45–90 range) using the first four latent variables
(Fig. 5). The bands correlating to FIQR disease activity (Fig. 5)
were centered at 1450 cm	1 and in the region from 2000 to
2200 cm	1, which are associated with CH2 and CH3 deforma-
tion in proteins and the contribution of CN sp1 bonds, respec-
tively (42).

Overall, PLSR regression models for disease activity showed
similar fit with attenuated total reflectance (ATR)-IR as with
Raman after logarithmic transformation of the FIQR scores.
The FT-Raman microscope technique limited sources of spec-
tral variation associated with changes of source (laser) power
at the sample, optical path length, matrix effects, and sample
position. Our vibrational spectroscopy approach generated
data showing the potential to rapidly score physiological symp-
toms of patients from spectral data. Although we need to
extend these studies to a larger sample size, the results strongly

Figure 3. A, SIMCA class projections (n � 40 FM; n � 23 RA; n � 25 SLE). B, SIMCA model performance using an independent validation set (n � 10 FM; n � 6
RA; n � 7 SLE) comparing predictions with true categories. C, discrimination power statistic (red line, discrimination between FM and RA; black line, discrimi-
nation between FM and SLE) for the classification of serum samples of FM, RA, and SLE evaluated by FT-Raman spectroscopy.

Figure 4. PLSR model correlating the IR spectral data and logarithmic transformed self-reported disease activity (FIQR) scores for FM disease subjects
(PLSR) and regression vector for the PLSR model (n � 20).
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suggest that vibrational spectroscopy can identify state as well
as trait markers of disease.

Metabolomic analysis by ultrahigh-performance LC
(uHPLC)-PDA-MS/MS

From each disease group, 10 randomly selected samples were
analyzed by uHPLC-PDA-MS/MS both with and without the
use of a C18 column. Without the use of a column, m/z� values
ranged from 74.75 to 365.40 under positive-ion detection; 34
predominant ions were detected (Fig. 6). Under negative-ion
detection, 19 major ions were detected ranging from 79.55 to
343.40 (Fig. 6). None of the detected m/z values were unique to

a specific disease group under positive or negative-ion detec-
tion or their relative intensities. However, after determining
ratios of m/z intensities to the mean, the proportions of some
select ions were significantly different among the disease
groups (Fig. 6 and Table 5).

Under positive-ion mode detection, the ratios of m/z� 74.75
and 184.85 differed significantly according to analysis of vari-
ance (ANOVA) (Table 5). For all groups, the m/z� 184.85 was
also in the greatest intensity and, therefore, was selected for
product ion scanning. The major fragments of this ion were, in
order of decreasing relative intensity, 45.65 (100%), 57.50 (75%),
30.05 (45%), 32.05 (13%), 42.20 (8%), 27.90 (7%), and 93.00 7%).

Figure 5. PLSR model correlating Raman spectral data and the logarithmic transformation of the self-reported disease activity (FIQR) scores for FM
disease subjects (PLSR) and regression vector for the PLSR model (n � 30).

Figure 6. Ratio to mean intensities (and S.D. (error bars)) of m/z (positive- and negative-ion detection) of blood sample extracts from different disease
groups from direct injection (n � 10). *, m/z with significant differences between diseases (ANOVA, p � 0.05).
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To attempt to identify this compound, the m/z� of the intact
compound and its fragments were searched in the Human
Metabolome Database (39). However, no comparative mass
spectra strongly matched the spectrum of this m/z�. Identifi-
cation of this m/z� and others will require subsequent evalua-
tion and/or development of a MS/MS spectral library. Despite
the lesser amount of detected ions under negative mode,
the ratios of three specific m/z	 differed significantly: 95.65,
217.90, and 290.15 (Table 5). Of these m/z	, 95.65 showed the
greatest intensity.

Using the direct injection approach minimizes the loss of any
compound of potential interest. However, it also risks that
some components from the sample or solvents may mask
potential target analytes that could differentiate the different
disease groups. To enhance resolution and detection of other
metabolites, the sample extracts were analyzed by HPLC-PDA-
MS/MS after separation on a C18 column. In terms of general
chromatographic appearance, all samples showed a large abun-
dance of very polar compounds, observed as large peaks in elut-
ing from the column in the first 1.5 min (Fig. 7). Under the
uHPLC conditions used, the void volume of the column was

0.35 min, corresponding to the observed peak 1. The spectro-
grams of peaks 2 and 3 showed these to be the result of metab-
olites from each sample; there was co-elution observed between
these peaks, further evidenced by similar absorbance spectra
and �max (Fig. 7). Importantly, the use of a column enhanced
analyte detection by MS/MS. The MS spectrum of peak 2
showed 42 m/z�, ranging from 104.20 to 268.85; of these ions,
the ratios of five significantly differed among the disease groups
(Table 5). As observed from direct injection, the ratio of the
intensities of m/z� 184.85 was significantly different between
the different disease groups. With the use of the C18, this com-
pound was demonstrated to be very polar. Similarly for peak 3,
34 m/z� were detected (104.20 –348.10), with five of these sig-
nificantly differing among the disease groups (Table 5).

Also observed in the chromatograms of Fig. 7, HPLC utiliz-
ing a C18 column also effectively separated some less polar
metabolites (
12–18 min). To improve visualization of these
peaks, the max-plot chromatograms (detection from 260 to 450
nm) from 7 to 22 min were enlarged and presented as Fig. 8. All

four disease groups showed similar PDA chromatographic pat-
terns, with the same number of major peaks. Peaks X, Y, and Z
appeared to be unique to disease groups RA and SLE; however,
these peaks were only observed in 1–2 samples from each of
these groups and therefore were considered outliers. Detection
of absorbance from 260 to 450 nm was selected to encompass as
many wavelengths absorbed by these compounds while reduc-
ing noise from the far-UV region. The absorbance spectrum of
peak 12 showed the greatest �max of 397 nm, entering the visible
region of light, whereas most peaks showed �max of 260 –280
nm, typical of aromatic rings. Peak 13 also showed a compara-
tively larger �max of 294 nm (Fig. 8). Of particular note, peak 13
of the FM group visually appeared to be in a lower proportion to
the other peaks as compared with the different disease groups.
Multivariate analysis of these chromatograms also showed sig-
nificant difference between the disease groups, interclass dis-
tances � 2.2 (Table 6 and Fig. 9). Class projection resulted in
the distinct clustering of the four disease groups. The discrim-
inating region of these UV-visible chromatograms ranged from
14 to 17 min, correlating well with the visually observed differ-
ences, such as peak 13 (Fig. 8). Peaks at five different retention
times were identified as discriminating variables.

Discussion

This study assessed the feasibility of vibrational spectroscopy
to differentiate individuals with FM from those with several
other rheumatic conditions, including RA, SLE, and OA. In
addition, we wanted to determine whether various degrees of
severity of FM were biochemically distinguishable from each
other using a novel means of rapid detection. Advantages of
such a methodology, if developed and honed to reproducibility,
would be a capability for identifying specific treatment subsets
for FM as well as identifying new targets as differentiated from
each other metabolically by spectroscopy (UV-visible, MS, and
vibrational). The results of the study found a unique Raman
spectral signature that clustered all subjects into classes (FM,
RA, and SLE) with no misclassifications. The discriminating
power was dominated by vibrations of the backbone in proteins
and nucleic acids, and also indicated mineral differences in
blood as biomarker. In addition to Raman (differentiating FM
from SLE and RA), HPLC-PDA-MS/MS also distinguished
between disease groups with certain metabolites existing in
significantly different proportions, which resulted in discrimi-
nating UV-visible chromatograms. Furthermore, preliminary
studies showed the capability of Raman to differentiate be-
tween severe and mild FM based on FIQR disease assessments.
Two recent studies have identified the value of subcategorizing
patients with FM based on similar symptoms, with the rationale
being that such groupings could provide a means toward more
individualized clinical evaluation and intervention (40, 41).
Therefore, FM appears to be characterized by distinctive sub-
sets, which further studies may distinguish as biochemically
distinct.

Through the use of uHPLC-PDA-MS/MS, differences in the
metabolic profiles of serum samples from patients with FM,
RA, OA, and SLE were observed in terms of very polar and less
polar compounds, which may be correlated to the Raman and
IR findings, which differentiated disease groups based on aro-

Table 5
Listing of m/z (positive- and negative-ion detection) of blood sample
extracts from different disease groups from direct injection and pass-
ing through a C18 column having significant differences, according
ratio to mean intensities (n � 10) (ANOVA, post hoc t test, p < 0.05)

* See Fig. 2 for characterization of C18 column peaks 2 and 3.
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matic amino acid groups, glycans, collagen, and mineral con-
tent of samples. Differences in early eluting metabolites were
observed from mass spectral data. Generally, samples from FM
and OA patients appeared to share more metabolic similarities
when compared with those from RA or SLE groups; this was
observed in both the more polar mass spectral data (Table 5)
and the later eluting components of the UV-visible chromato-
grams (Fig. 8). This was in partial contrast to previous findings
in which RA and OA groups were metabolically similar and
distinctive from the FM group (16). Some of the metabolites
that most distinguished FM from the other disease groups
included heme, cysteine-GSH disulfide, and NAD� (16). How-
ever, these larger metabolites were not found in significant pro-
portions under the conditions of this study. Metabolites differ-

entiating between disease groups were small compounds with
m/z� � 300.

Less polar components, eluting later during the uHPLC runs,
were also found to differentiate between the disease groups.
UV-visible absorbance of 280 nm was common to many of
these separated peaks, which is typical of compounds com-
posed of aromatic rings. Previous works have found some of the
distinguishing metabolites of FM patients to be related to tryp-
tophan metabolism and catabolism (16, 42). Due to its aromatic
moiety, tryptophan is one of the few amino acids capable of
absorbance of 280 nm and is actually responsible for UV light
absorbance by many proteins. Perhaps the differences in the
UV chromatograms among the disease groups may be partially
a result of these amino acids metabolites or derivatives. These
findings suggest that the combination of HPLC-PDA-MS/MS
analytical methods may be useful in the diagnosis of FM from
different classes of “central sensitivity syndromes.”

In our current study, we recorded the medications that
patients were on at the time of their blood spot analysis for all
disease conditions. There was no obvious medication signal/
effect that could be discerned by spectroscopy or MS/MS
among the current cohort; however, the effect of medications
on these analyses was beyond the scope of this current study. It
would require medication-free control populations with simi-

Figure 7. Averaged uHPLC-PDA chromatograms (260 – 450 nm) of blood sample extracts from different disease groups (intensities averaged within
each group, n � 10).

Figure 8. Averaged uHPLC-PDA chromatograms (260 – 450 nm) of blood sample extracts from different disease groups from 7–12 min (intensities
averaged within each group, n � 10). The area shaded in gray indicates the retention times that were found responsible for the discrimination among
diseases (see Fig. 9).

Table 6
Interclass distances between disease groups based on absorbance
(260 – 450 nm) during uHPLC-PDA analysis, t � 14 –17 min (n � 10)
(SIMCA/PLSR, p < 0.05)

Interclass distances
FM RA OA SLE

FM 0.0
RA 5.5 0.0
OA 2.2 5.7 0.0
SLE 3.5 3.5 3.9 0.0
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lar demographic (age, BMI, sex, etc.) and clinical features
(FIQR, BDI, MPI) to be compared with a correspondingly
matched population on a specific medication(s) to determine
what medication effects might have on these results. It would be
of interest to determine potential static and prospective
changes over time elicited by various medication groups (tricy-
clics, serotonin, norepinephrine reuptake inhibitors, etc.).

There is a wide range of opinions on FM among physicians.
Many physicians lack the necessary training to accurately diagnose
this condition. As a result, patients with poorly explained symp-
toms are often lumped into the FM category, although their clini-
cal features might fit other diagnoses better. Examples might
include generalized anxiety disorder, somatoform disorder, and
restless leg syndromes, among many others. Some physicians do
try to adhere to the updated classification criteria for diagnosis of
FM (1, 9, 10, 14), whereas still another segment of the physician
population displays a level of skepticism about the disease that
dissuades many patients from even seeking a diagnosis due to con-
cern that their symptoms will be thought to be entirely “psycho-
logical.” Despite adoption of the newly revised criteria by many, it
is increasingly recognized that use of these criteria for diagnosis is
fraught with error due to a significant level of subjectivity in the
survey elements (WPI and SSS) (9).

For physicians, a diagnosis of FM often provides an explana-
tion for difficult to understand symptoms. For patients, a diag-
nosis of FM may offer them some confirmation that symptoms
are real and not psychological. The development of new criteria
for FM has helped somewhat with uniformity of clinical diag-
nosis in published reports. Unfortunately, for the majority of
patients with FM, the updated diagnostic criteria still fail with
regard to providing an objective measure confirmatory of dis-
ease, which is what many FM patients are seeking. Conse-
quently, despite revised criteria, there remains no gold standard
for defining or diagnosing FM. Results from the 2012 United
States National Health Interview Survey revealed that most
patients who received a diagnosis of FM from a health profes-
sional did not satisfy published FM criteria (43). In addition, use
of the updated diagnostic criteria has not translated into health
care cost savings. We surmise that the reason for this is that true
cost savings (such as avoiding unnecessary testing like magnetic

resonance imaging, computed tomography scan, repeated
blood testing, etc.) will only occur once we have discovered a
reproducible biomarker that is widely accepted among practi-
tioners and patients. Hughes et al. (44) showed that initial diag-
nosis of FM leads to modest decreases in health care costs for
1–2 years post-diagnosis, but those initial savings dissipated
and health care costs and utilization escalated subsequently
well beyond prediagnosis levels. The authors theorized that the
reason why costs rose is because patients remained in pain
post-diagnosis, and possibly because in FM there is a lack of
“effective treatment” (44). Alternatively, we surmise that many
patients feel that the “diagnosis” is still subjective, and satisfac-
tion may never be achieved for the great majority until we have
a widely accepted gold standard or biomarker. Unfortunately,
current Food and Drug Administration–approved therapies for
FM have not been able to show superior efficacy over mindful-
ness techniques or health coaching (45, 46).

Thus, our studies have great importance both for develop-
ment of a reproducible biomarker and for identifying potential
new therapeutic targets for treatment. With advances in the
methodologies described here and subsequent identification of
differentiating metabolites, techniques for treatment of FM and
related disorders may be advanced.

Materials and methods

Patients

All studies involving human subjects were approved by the
Ohio State University Institutional Review Board and abide by
the Declaration of Helsinki principles. Following institutional
review board approval (2015H0312), blood samples were ob-
tained from patients with FM (n � 50), RA (n � 29), SLE (n �
23), and OA (n � 19) at the Ohio State University Rheumatol-
ogy clinics located at Care Point East. Criteria for diagnosis of
FM included the following: age 18 – 80 years with history of FM
and meeting current revised ACR criteria (9, 10). We also
required that no physical trauma or infection prior to the onset
of FM could be identified as the primary initiating factor in their
FM. The diagnoses of RA and SLE were based on ACR criteria
for each disorder (47, 48). Patients with FM, RA, SLE, and OA

Figure 9. SIMCA class projections for the classification of serum samples of FM, RA, OA, and SLE patients separated by chromatographic profiles
during uHPLC-PDA analysis, detection 260 – 450 nm, and discriminating peak retention times.
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were screened using current or history of exclusionary medical
and psychiatric diagnoses (e.g. cancer or connective tissue dis-
order, multiple sclerosis, congestive heart failure, diabetes,
bipolar disorder, melancholic depression). In addition, samples
were collected only from patients who had been under the care
of the clinician investigator (K. V. H.) for at least 6 months. This
additional requirement was applied to provide a further safe-
guard for the accuracy of the diagnosis of patients to ensure that
we had obtained samples from patients whose disorder had
been correctly diagnosed.

Questionnaires

Self-reported symptoms were obtained from all subjects. The
FIQR is a 10-item self-rating instrument that measures physical
functioning, work status, depression, anxiety, sleep, pain, stiffness,
fatigue, and well-being. It is the most frequently used assessment
tool for gauging overall impact of FM on quality of life (49).

The McGill pain questionnaire is a reliable and valid instrument
for indicating both descriptive aspects of pain and pain intensity.
This tool is used to assess the level of generalized pain severity for
subjects. This instrument uses sensory, affective, and evaluative
word descriptors to measure the patient’s subjective pain experi-
ence. Scores are obtained for three classes of verbal descriptors as
well as an overall measure of current pain, with higher scores indi-
cating greater pain intensity. This tool has been shown to be effec-
tive in both acute and chronic pain populations (50).

The Beck Depression Inventory is a 21-item self-adminis-
tered questionnaire with established reliability and validity (51,
52). It is widely used to measure depression in patient populations.
It can be used to quantify the psychological/behavioral dimension
of FM impact. For each item on the inventory, subjects pick one of
four statements to describe how they have been feeling in the past
week; higher scores indicate greater depression. The BDI gener-
ates a total score (range 0–63) and two subscores (cognitive/affec-
tive, range 0–42; somatic, range 0–21).

The most commonly used study of lupus activity is called the
SLEDAI (49). It is a list of 24 items, including 16 clinical items and
8 items of laboratory results. These items are scored based on their
presence or absence within the 10 days prior to the blood draw
obtained for diagnosis of SLE. Other assessments of disease
include the erythrocyte sedimentation rate (ESR), C-reactive pro-
tein (CRP), rheumatoid factor (RF), cyclic citrullinated protein
(CCP), and anti-nuclear antibody (ANA).

Sample preparation

Blood was collected from subjects and applied to blood spot
cards, which were then dried and transported to the Rodriguez-
Saona spectroscopy laboratory for analysis. Variation in blood
spot size was minimized by collecting samples on cards (What-
man 903 Protein Saver Snap Apart Card, GE Healthcare) with
preprinted circles as guides to standardize the volume of blood
applied; when applied to its border, each circle contains 
50 �l
of blood. Upon arrival to the laboratory, 3-mm samples were
punched from the card, extracted with 1 ml of ammonium ace-
tate buffer (1% in water), and mixed by sonication (Sonic Dis-
membrator model 100, Fisher), and the supernatant was
transferred to Amicon� Ultra centrifugal filter devices (30 K)
and centrifuged (model 5415, Eppendorf, Westbury, NY) at

14,000 � g for 15 min at 4 °C. Centrifugal membrane filter
devices were used to remove large nominal molecular mass
(�30-kDa) blood components that interfered with resolving
targeted biomarker compounds (15). Overall, the membrane
filters removed proteins and isolated water-soluble molecules,
such as sugars, amino acids, peptides, and lipids. Two small-
volume (2-�l) drops of the blood filtrate fluid from all patients
were deposited onto SpectRIMTM Raman IR slides (Tienta Sci-
ences, Inc., Indianapolis, IN) and were allowed to dry at room
temperature (
30 min), and Raman spectra were collected
from each drop. Raman spectra were collected on the edge of
the dried sample because it deposited more material providing
reproducible signatures from samples. Esmonde-White et al.
(53), studying the molecular changes associated with osteoar-
thritis by Raman spectroscopy, reported that proteins in spec-
imens tend to accumulate on the edge of drops, whereas smaller
and more soluble components precipitate in the center during
drop deposition. In the case of IR spectroscopy, 5-�l aliquots of
the filtrate were diluted in methanol (50 �l), mixed, and placed
onto the ATR well for data collection.

Vibrational spectroscopy of samples

FT-IR spectra were collected using a 5500 portable system
equipped with a heated five-reflection ZnSe ATR crystal. The
optical bench includes a Michelson interferometer with a
mechanical bearing moving mirror, a potassium bromide beam
splitter, and a deuterated triglycine sulfate detector operating at
room temperature. To enhance the signal-to-noise ratio, 64
scans were co-added and signal-averaged. The ATR cell was
warmed to 40 � 1 °C so that all remaining solvent was evapo-
rated before measurement.

Raman reflectance spectra were recorded using an NRS-4100
dispersive laser Raman microscope (Jasco Inc., Easton, MD),
equipped with a with a motorized x-y stage; �5, �20, and �100
NIR objectives; and an indium gallium arsenide detector, which
works at a temperature of 	70 °C. Spectra were collected from
2920 to 500 cm	1 using a resolution of 1 cm	1. Laser wave-
length was at 1064 nm, exposure was 60 s, and accumulation
was 2. The grating, slit, and attenuator settings were 150 liters/
mm, 200 � 800 �m, and 25%, respectively. Measurements were
performed using a �20 NIR objective. Background reflectance
spectra were recorded between samples to minimize effects of
the environment on the sample spectrum.

Multivariate analysis

Spectral differences (IR and Raman spectra and UV-visible
chromatograms from HPLC-PDA detection) between samples
from subjects with FM and those with RA, SLE, or OA were
evaluated using multivariate statistical techniques to resolve
spectral information of interest, to cluster the samples accord-
ing to the presence of the health condition (class), and to cor-
relate symptom severity with spectral information. SIMCA and
PLSR were carried out using Pirouette pattern recognition soft-
ware (Pirouette� version 4.5, Infometrix Inc., Woodville, WA)
as described previously (15). For all multivariate analysis, the
only transformation applied to the data during the develop-
ment were mean centering followed by a second derivative (35-
point window). Second derivative transformation of the spectra
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allowed for further extraction of useful information and re-
duced spectral noise.

SIMCA, a supervised pattern recognition data-analysis
method that uses the variance-covariance matrix, was used to
reduce the dimensionality of the multivariate data sets by deter-
mining the principal components that best explained the sys-
tematic variation (29). A cross-validation algorithm was then
used to determine the number of principal components that
yielded the minimum prediction error. In SIMCA, the principal
components contain information about influential chemical
and/or biological systems that define the classes; by determin-
ing the F-statistic, an upper limit for the residual variance
(noise) can be calculated for all samples belonging to each class,
resulting in a set of probabilities of class membership for each
sample. Thus, an unknown sample can only be assigned to the
class for which it has a high probability. If the residual variance
of a sample exceeds the upper limit for the modeled classes in
the data set, it is not assigned to any of the classes; either it is an
outlier, or it belongs to a class not represented in the data set
(54). The classification model was developed on a training set
(80% of the total number in a class) with known patient diagno-
sis, and the model performance was evaluated with an external
validation set (remaining 20% of samples) of patients that were
not used in the training, and their predictions were compared
with true categories (model sensitivity).

To distinguish FM activity (flares), signature biomarker band
intensities in the spectrum were correlated to the patient’s
reported outcomes (FIQR) survey for the development of a
quantitative algorithm, PLSR, to determine disease state. PLSR
is a bilinear regression based on the extraction of “latent vari-
ables” (29). These orthogonal factors (latent variables) explain
most of the covariance of the x (spectra) and y variables. PLSR
reduces the dimensions contained in thousands of IR predic-
tors into a few factors to explain variations in both the depen-
dent variables and the spectral domain. The end result is a lin-
ear model able to predict a desired characteristic (disease
status) based on a selected set of predictors (IR spectra). PLSR
has been particularly successful in developing multivariate
calibration models for the spectroscopy field because it
reduces the impact of irrelevant x variations (noise) in the
calibration model, resulting in more accurate and reproduc-
ible calibration models (50, 55). The performance of the
model was evaluated based on the number of latent variables,
loading vectors, SECV, coefficient of determination (R-
value), and outlier diagnostics.

Metabolomic analysis by uHPLC-PDA-MS/MS

The untargeted metabolic profiling platform employed for
this analysis consisted of uHPLC coupled to a PDA and tandem
mass spectrometer (MS/MS) detectors for chemical species
extracted from blood samples under alkaline conditions de-
scribed above. To the dried bloodspot card samples previously
extracted from punches, 1 ml of HPLC-MS grade H2O was
added, and samples were vortexed for 15 s to homogenize.
Aqueous samples were filtered through 0.2-�m nylon syringe
filters (Phenomenex, Torrance, CA) into glass HPLC vials.
Blood spot extract samples were evaluated by uHPLC-PDA-
MS/MS using a uHPLC system (Shimadzu Nexera-i LC-2040C)

coupled with tandem MS (Shimadzu LCMS-8040). Samples
were evaluated by both direct injection into the system with no
column and with the use of a Pinnacle DB C18 column, 1.9-�m
particle size, 50 � 2.1-mm length (Restek Corp., Bellefonte,
PA). When directly injected (25 �l of sample) into the system,
flow consisted of 0.2 ml/min 0.1% formic acid in water. When
passed through the column (25 �l of sample), the column was
heated to 40 °C, and flow consisted of a binary gradient at 0.2
ml/min. Gradient consisted of solvents A (0.1% formic acid in
H2O) and B (acetonitrile at 0% B) for 0 –5 min followed by
increase of B from 0 to 40% during 5–20 min. Spectral data were
collected from 200 to 800 nm.

Conditions for MS/MS by electrospray ionization included
the following: 1.5-liter/min nebulizing gas flow, 230 °C desolva-
tion line temperature, 200 °C heat block temperature, and 15-li-
ter/min drying gas flow. m/z data were collected under both
positive and negative modes from 25 to 1000 m/z with the first-
quadrupole total ion scan with event times of 100 ms. From
analysis of preliminary data obtained, ions of interest were
monitored under the same ionizing conditions using precursor
and product ion scans with collision energy of 	35.0 eV using
argon gas for a secondary collision event. Data were collected
using Lab Solutions software (Shimadzu). uHPLC-PDA-MS
was performed on 10 samples (n � 10) from each disease group.

Data imputation and statistical analysis

To assist with data visualization, raw m/z intensity values for
each metabolite were rescaled by dividing all sample values by
the mean value for each individual metabolite as similarly
described by Hackshaw et al. (16). Each individual determina-
tion of m/z was then expressed as a ratio relative to this mean
value to determine -fold changes in metabolite concentrations.
For statistical analyses and data display purposes, any missing
values were assumed to be below the limit of detection, and
these values were imputed with the compound minimum (min-
imum value imputation). Statistical analysis of metabolomics
data was performed using one-way ANOVA (two-tailed, � �
0.05) and Tukey’s honest significant difference post hoc test
(� � 0.05) using Minitab 16 (Minitab Inc., State College, PA).
UHPLC-PDA chromatograms (detection from 260 to 450 nm)
from samples analyzed with the use of a C18 column were also
investigated by multivariate analysis as described above.
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